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BROWNIAN MOTION AND GENERALIZED ANALYTIC
AND INNER FUNCTIONS

by A. BERNARD, E.A. CAMPBELL and A.M. DA VIE

Dedie a Monsieur Claude Chabauty.

Introduction.

Let / be an entire function on the complex plane C , let ZQ G C
and let b(t)(t> 0) denote plane Brownian motion started at ZQ .
According to a theorem of P. Levy, f(b(t)) is, in a sense which will
be made precise below, Brownian motion started at /(z^), with a
different time-scale. The purpose of this paper is to investigate which
functions /: R" —^ ̂ (n > p) between Euclidean spaces preserve
Brownian motion in this manner. A necessary and sufficient condition
is that / satisfy a certain system of partial differential equations.
If p = 1 this system reduces to the equation V2 f = 0, i.e. / must
be harmonic. If p = 2 , then treating / as a complex-valued function,
the requirement is that / and f2 both be harmonic. An alternative
characterization is that <^ o / is harmonic for any harmonic function
</? on R^ . Functions between Riemannian manifolds possessing this
property have been studied by Fuglede [6] but he did not consider
the case of R" —^ R^ in detail. We concentrate on the case
/: R3 —^ R2 , for which we obtain a reasonable description based on
the fact that the level sets of / must be straight lines. The general case,
for which we have less information, is considered briefly.

We also consider a notion of inner function which includes the
classical one. Roughly speaking, if U and V are domains in R"
and RP respectively, then a mapping /: U —^ V which maps
Brownian motion started at XQ G U and stopped when it reaches
the boundary of U to Brownian motion started at /(^o) anc^ stopped
at the boundary of V , we call a stochastic inner function. When U
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and V are both the open unit disc in R2 = C the stochastic inner
functions are just the classical (non-constant) inner functions and
their complex conjugates. We conjecture that if U C R" is bounded
(n > 2) and V C R 2 there are no stochastic inner functions, and
prove this when n = 3 . A proof of this conjecture for n = 2m
would prove the non-existence of inner functions (in the usual sense)
on the unit ball of C'" (m > 1). We exhibit some non-trivial sto-
chastic inner functions with p > 2 .

It was hoped that the Brownian path preserving property would
enable probabilistic methods to be brought to bear on problems such
as the existence of inner functions on balls. Unfortunately we have
not realized this hope, and the arguments presented here are based
mainly on the differential equations.

1. Brownian path preserving functions and their differential equations.

Let us first recall that a Brownian motion in R" is a family
of R^-valued random variable {6(0: t^ 0} on a probability space
(ft, F,P) satisfying:

(i) for each t>0 the random variable b(t) — b(0) has a
Gaussian distribution with density (27^f^"/2 exp(- {x^/21)

n
where \x\2 = ̂  x2 ;

i
(ii) if 0 < t^ < t^ < . . . < t^ then the random variables

b(t^) — 6(^_i), . . . , & ( t^) — b(t^) are independent;

(iii) for each co G n the mapping t —^ b(t) (a?) from [t > 0}
to R" is continuous.

Let XQ G R . If moreover b(0) == XQ almost surely, we say
b(t) is a Brownian motion issued from XQ .

We next make precise the notion of a function which preserves
Brownian motion.

DEFINITION 1.1. -Let U be a domain in R" and let f: U —^ R^
be continuous. We say that f is Brownian path preserving ( B P P )
if for each XQ G U and for each Brownian motion b(t) defined
on (?2 ,F ,P) , issued from X Q , there exist:
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1) a mapping a? —> a^ on n such that for each CD, a = a
is a continuous strictly increasing function on [0,r[ , wher^e
T = sup { t : b(s) G U for 0 < s < t} is the exit time of
b from U, and such that for each t > 0 , the mapping
a? —> ̂ (^ is measurable on the set {r > t} C n. We also
require that for each s the random variable a(s) be indepen-
dent of the family of random variables [b(t) - b(s) : t > s} ;

2) a Brownian motion b\t) defined on a probability space
( f t \F ' ,p ' ) in RP , issued from 0, such that

3) on the probability space product of (0, F, P) and (n\F\P')
the random function a(s) = a^(s) defined for s> 0 by

/(^(a-1^))), s < or(r) = lim a(t)
a(s) = t->r

fWr))+ 6'(5-a(r)), s> a(r)
is a Brownian motion issued from /(x^).

The following characterization of BPP functions is due essentially
to P. Levy.

THEOREM 1.2. - Let V be a domain in R" and let
f = (/i, • . • , fp) be a non-constant continuous mapping of U into
R^ . For f to be BPP it is necessary and sufficient that the following
two conditions be satisfied:

(i) for each f = 1 , . . . , p , ̂ . is harmonic on U
(ii) for each x EU the gradient vectors V^.(x) (/' = 1 , . . . , p)

have equal length and are mutually orthogonal.

Before giving the proof, we remark that (i) plus (ii) is equiva-
lent to the statement that ^ o f is harmonic for every harmonic
function </? on Rp .

Proof. - We first prove necessity of (i) and (ii). We suppose
/ is BPP and let </? be a harmonic function on RP ; it suffices to
show that <^ o / is harmonic.

Let W be an open ball in RP , let V^-^W), and let
^ o ^ V . Let U^ = { x G U : |x| < m , r f ( x , R " \ U ) > m - 1 } and let
V ^ = V H U ^ . For m large enough, XQ G V^. Let r,r^ denote
the exit times of b from U and U^ respectively and let a and
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a be as in Definition 1.1. Let ^ be the exit time of a from W and
let 0 == min( V/, a(r)), Q^ = min(^ , a(r^)). i// and a(r) are
stopping times for a, hence so is 0 ; using the fact that </? is har-
monic, and bounded convergence, we obtain

^ ° /(^o) == ^(0))

= E ^(a(0))

= limE^o/^a-1^)))
w

= lim E ^ o /(^(min^"1^), r^)))

= lim ̂  (Xo)
m

where ^ is the harmonic extension to V^, of ^ o /| 3V^ , and
E denotes expectation (note that minCa"1^), T^) is the exit time
of 6 from V^). Then g^——>^of pointwise an V ; also
|^(x)Ksup|<^| for x E V^ , so / is harmonic on V. Since
W is any open ball in R^ , </? o / is harmonic on U.

The proof of sufficiency is based on the theory of stochastic
integrals, for which we refer to [9]. Given / satisfying (i) and (ii)
we define a by

o(t)= riV/;.(6(5))|2^, 0 < r < r ;
o

by (ii) this is independent of i. This a satisfies condition (1) of
Definition 1.1. Define U^ , r^ as above and let

( a ( t ) : t ^ r ^
^mW =

\ ̂ O^ t - r ^ , t > r ^ .

With b ' as in 1.1(2) define a random function a^, indexed by
S I x S l ' by

( ^), s < a(r^)
a^ (s) ==

( fWrJ) + b^s- a(r^)), s> a(rj,

where a(^) is as in 1.1 (3). Then a.s. ^(w) is continuous on [ s : s> 0},
and for each s^a^^s)—> a(s) a.s. If we can show that a^ is
a Brownian motion for each m , it will follow that a(s) is a Brownian
motion.
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Fix m, and define

^j^'
(&(T^)+6^-rJ, t>r^ .

Then & is a Brownian motion by [9, p. 10]. Now let 7^.. . , 7^
be real numbers with 2 72 == 1 . Then using Ito's formula [9, sec-
tion 2.9]

ST^^O))- ST,^(&(O))+ f ( e ^ d b )
i J i Jo

where the ^-dimensional non-anticipating functional e of b is
defined by

( l:7,9/,/a^(&(0), t<r^
e^t) - /

' 7 ; t > ̂  .

Since k(6(0)|2 = I V/;.(6(^))12 it follows from [9, Section 2.9,
problem 1] that £ 7^ ^w) is a one-dimensional Brownian motion.
This is true whatever the choice of 7 .̂ , hence a^ is a p -dimensional
Brownian motion, as required.

Remark 1.3. — We point out some special cases. If p = 1 , the
BPP functions are just the harmonic functions. If p = 2 , we can
identify R2 with C and regard / as complex-valued; then / is

n
BPP if and only if / is harmonic and ^ (3//3x^.)2 = 0 , or equi-

i=\
valently if / and f2 are both harmonic (and then all powers of
/ are harmonic). If n = p = 2 the BPP functions are the (complex-)
analytic or conjugate-analytic functions. Identifying Cw with R2^ ,
a complex-analytic function on U C C ^ defines a BPP function
from U to R2 .

The only affine BPP functions from R" to R^ are of the form
f(x) = \Ax + b , where A is a real p x n matrix with AAt = Ip ,
X > 0, and b £ Rp . Note also that a composition of BPP functions
is BPP; in particular if /: U—^ C is BPP and g is analytic on a
domain containing /(U) then g o / is BPP. However, linear com-
binations of BPP functions are not in general BPP.



212 A- BERNARD, E.A. CAMPBELL AND A.M. DAVIE

Remark 1.4. — In the case where U = W1, we have r = °°
and one may ask whether 0(00), which is the explosion time of
the image motion, is necessarily infinite a.s. If n = 2 , the fact that
plane Brownian motion returns infinitely often to any neighborhood
of the origin implies that a(°°) = °° a.s. In general it is not hard
to show that either a(°°) = °° a.s. or a(°°) < °° a.s. But for n > 3
we can construct a harmonic (and hence BPP) function /: W1 —> R
such that a(oo) < oo a.s., as follows:

Let e(t) be a positive continuous function (t > 0) with
e(t) —> 0 very fast as t —> oo . Let S = {x = (^ , . . . , x^) G FT :
x^ > 0, |.x^| < e ( x ^ ) , /: = 2, . . . , n}. Provided e(t) —> 0 fast
enough, Brownian motion in R" (issued from any given point) b(t)
eventually avoids S, in the sense that a.s. there exists T such that
t > T ===^ b(t) ^ S. We assert the existence of a harmonic real-
valued non-constant function / on R" with I / I < 1 on R^VS.
Given this, a.s. lim sup 1/(&(0)1 < 1 so that if a(s) denotes thet-> °°
image Brownian motion then a.s. lim sup \a(s)\ < 1 , whence

s->a(oo)
Or(oo) < oo a.S.

It remains to construct /. Choose a sequence {y^} of points
in S, with \y^\ —> oo , so that for k > 2 there is an open ball
B^ centered at y^ , contained in S, and containing y ^ _ ^ . Let
f^ be harmonic on R"\{j^}, vanishing at o° , with |/J < 1 outside
S, but not identically zero. Define f^ inductively so that f^ is
harmonic on R"\{^^} and \f^-f^_^<62~k outside B^ (for
example by truncating the expansion of /^_^ in spherical harmonics
about y ^ ) . Then provided 5 is small enough f^ converges to a
limit / with the desired properties.

2. BPP functions from domains in R3 to C.

We have already remarked that a complex-valued function /
on a domain in R" is BPP if and only if / and f2 are both har-
monic* In general it seems to be hard to describe such functions, but
for n = 3 a good deal can be said. The reason for this is that BPP
functions in this case have the property that their level sets are straight
lines. Before proving this we give two examples.
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Example 2.1. - Let V be a domain in C, let g be an
analytic function on V and define / on V x R C R 3 by
f ( x , y , z ) == g(x + iy). Then / is BPP. The level sets of / are
lines parallel to the z-axis.

Example 2.2. - The function f ( x , y , z ) = (x 4- i y ) / ( r - z) ,
where r = (x2 + y2 + z2)112 , is BPP on R^KO, 0, z) : z > 0} .
The level sets of / are rays through 0.

THEOREM 2.3. - Let V be a domain in R 3 and let /: U —> C
be a BPP function. Then for each p £ U there is a unique straight
line I through p such that f is constant on the component of
I H U containing p .

Proof. — We first assume that p is not a critical point of /
(a critical point of / is a point where all first derivatives of / vanish).
Using the notation f^ = Qf/9x etc., we have

f2 + f2 4-/2 = 0 . (1)J x J y J z v /

Differentiating (1) with respect to y and z , multiplying respecti-
vely by f^ and fy , and adding:

Wyfxz + fzfxy) + Wfyy + ̂ ) + (/; + f^fy. = 0 . (2)

In view of (1) and the fact that / is harmonic,
fff = = / ( / / • + / / - / / ) - (3)
' ' y ' z - ' x x J x ' J x J x z J z 3 xy - ' x - ' y z - ' v /

Now since p is not a critical point we may by rotating and trans-
lating the coordinate frame, assume that p = (0,0,0) and, at p ,
/ y = 0 , / ^ 0 , / ^ ^ Q . Then from (3) we have, in some neigh-
borhood of p , |/^|<M|/J for some constant M > 0 . Let
g(t) = f^(t,0,0). Then g(0) = 0 and for \t\ small enough,
\g\t)\ < M\g(t)\. Hence g(t) = 0 in a neighborhood of 0, so
/ is constant on a neighborhood of p on the x-axis, and hence,
since / is real-analytic, on the component of Un(x-axis) contain-
ing p .

This proves existence of / for a non-critical point p ; in view
of (1) the (real) Jacobian of / at p has rank 2 so / is unique, and
we denote it by l ( p ) .

The set of all straight lines through the origin can be identified
with the real projective plane RP2 ; by translation the set of lines
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through any given point can also be identified with RP2 . If p is
a non-critical point we denote by §(p) the point of RP2 associated
in this way with /(p).

We now prove existence of a line of constancy for a critical
point p ; we denote by K the set of critical points o f / i n U. If
p G K we can find a sequence p^ G U\K with p^ —^ p . Since
RP2 is compact, by taking a subsequence we may assume that 5(p^)
converges to a limit 8 . 6 corresponds to a line / through p and
the continuity of / implies that / is constant on the component
of / H U containing p .

To prove uniqueness for a critical point we need two lemmas.

LEMMA 2.4. — If f is BPP on an open ball B and K is the
set of critical points of f in B then B\K is connected.

Proof. — Suppose B\K is disconnected. Then [11, V. 14.3 and
V.2] there is a component D of K such that B\D is disconnected.
Since D is a connected set of critical points of the smooth function
/, / is constant on D [4, p. 38]. Let XQ G B\D and consider
Brownian motion b(t) issued from XQ . As B\D is disconnected,
with positive probability b(t) hits D before leaving B. But then
f(b(t)) hits the singleton /(D) with positive probability, in contra-
diction to the BPP property.

LEMMA 2.5. — Let B be an open ball centered at p and let
TT : B\{0} —^ RP2 be the mapping "which sends each line through
p to the corresponding point of RP2. Let E be a closed connect-
ed set in RP2 with more than one point. Then TT'^E) has posi-
tive capacity (i.e. Brownian motion has positive probability of hitting
it).

Proof. — In R2 any compact connected set with more than
one point has positive capacity. The lemma follows from this using
the BPP function of example 2.2.

We now complete the proof of the theorem.

Suppose p E K and let E be the (closed) set of 5 E RP2 such
that there is a sequence p^ E U\K with p^ —> p and 5(p^) —> § .
If B is any small open ball centred at p then q—^ 5 (q) is con-
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tinuous on B\K, and by lemma 2.4 B\K is connected, so §(B\K)
is connected. Hence E is connected. As / is constant on the union
of the lines through p corresponding to points of E, lemma 2.5
ensures that E is a single point, which we denote by 5(p), and
the corresponding line l ( p ) . This defines 5 as a continuous mapp-
ing from U into RP2 .

Again let p G K and suppose there is a line of constancy /
through p , corresponding to S^^S^) . Then there is an open
segment J of / containing p such that J C U and if q E J then
S(^) ^ 8 . Let F be the set in R3 formed by the lines l(q), q G J ,
intersected with a small cylindrical domain with axis J , contained
in U. Let G be the projection of F onto a plane normal to / .
Since {8(q): q E J} is connected, G is either a line segment or
contains an open subset of this plane. In the former case F contains
an open subset of a plane, and so has positive capacity. In the latter
G has positive capacity, as a subset of R 3 , hence so does F, by
[8, Theorem 2.9]. Since / is constant on F we obtain a contra-
diction, so l(p) is the only line of constancy through p .

The following partial converse to Theorem 2.3 is useful.

PROPOSITION 2.6. - Let U be a domain in R 3 and f a non
constant twee continuously differentiate complex valued func-
tion on U. Suppose f satisfies

(a) through each point of U there is a straight line segment
on "which f is constant, and

(b)/,2 +/; +^2 = 0 on U.
Then f is harmonic (and hence BPP) on U .

Proof. — Let p be a non-critical point of /. Rotate the coor-
dinates so that the line of constancy through p is parallel to the
x-axis. Then fy + 0, /^ ^ 0. From (b) we deduce the identity (2)
obtained in the proof of 2.3. Since /^(p) = 0 and /^(p) = 0 we
deduce that V2/^) = 0. Thus V2/ = 0 at the non-critical points
of /, and hence, since V2/ is continuous, throughout U.

We now show how the differential equations for a BPP func-
tion can locally be reduced to a system of two-dimensional equa-
tions.
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Suppose / is BPP on a domain U C R3 . Fix p £ U and choose
orthogonal coordinates so that p is the origin and l ( p ) is not pa-
rallel to the plane z = 0. Choose a ball B , centered at p , con-
tained in U , such that, for q £ B , l(q) is not parallel to the plane
z = 0. Let W = B H {z == 0}, which we can regard as a domain
in R2 . Define g on W by g(u, v) = f(u, ̂ ,0 ) . The line of con-
stancy through (u, v, 0) can be parametrised as

{(u + ^p(u,v)\, v + ^,i;)X,X): X G R } .

Then <^? and ^ are continuous real functions on W. For X small
enough

f(u+ ^p(u,v)\,v+ ^(u,v)\,\)=g(u,v). (1)

THEOREM 2.7. - With the above notations, the real functions
</? and ^ and the complex function g on W are real analytic and
satisfy the equations

—p— = - ^ , ^ - ^ = 2^ ^ (2)
1 + <^2 l 4. ,^2 ? ^ ^ 1 + <^2 t v v /

a^zrf
(1 + <P2)^2 + 2<^ ̂  + (1 + 02)^2 = 0.. (3)

Conversely, suppose (p and ^ are twice continuously differen-
tiable real functions satisfying (2) on a domain W C R 2 . Then (p
and \p are real analytic, and there exists a solution g of (3) on W.
For any such g , (1) defines a BPP function f in an open set con-
taining W x {0} in R3 .

Proof. — Assume first that W contains no critical points of
/. Then the real analyticity of < ^ , ^ and g follows from that of
/. Writing x = u + ^(u,v)\, y = v 4- \IJ(u,v)\, z = X , diffe-
rentiating (1) yields

^ = ( 1 4 - X^)/, + XV/^
S. -^/.^-d +W/^

0 = <^/, + i^+/. (5)
(5) together with /̂ 2 + f^ + /2 == 0 gives

(1 + ^)/,2 4- 2^ /,/, + (1 + ^2)^2 = 0
and solving (4),

^fx = Su + ^^(^i;^ - ^^)
A/^ = ̂  + X(^^ - ̂ ^)
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where
A = 1 4- X(^ + V/ , ) + X2^, ^ - ̂  ^) ̂  0

for X small enough. Also f^ and fy never vanish on W , so f^Ify
is a root of the quadratic

(1 + (^)a2 + 2<^ a 4- (1 -h ^2) - 0 (6)

for all (^,t0 CE W and all small X . So if we fix u and v we find
that

Su + ̂ (^y§u - ^uSy)
gv + M<^u - Y^)

is a root of (6) for all small X , and hence is independent of X . We
deduce (3) and the equation

^^2 + ̂ v - ^u)Su^ - ^^2 = 0.

For this latter equation to be compatible with (3) requires (2). So
(2) and (3) hold.

Conversely, given twice continuously differentiable <^ and ^
satisfying (2), by the theory of the Beltrami equation [1, Chapter 5],
(3) possesses solutions and all solutions are twice continuously diffe-
rentiable. The above argument can then be reversed to show that
/ defined by (1) is twice continuously differentiable and satisfies
fl + f^ + f^ = °' so is Bpp ̂  Proposition 2.6.

To complete the proof we must remove from the first half of
the proof the assumption that / has no critical points in W. Let
K be the set of all points of W which are critical points of /. Then
all points of K are isolated (this can be seen as follows: first, K
is totally disconnected, since if J is a component of K with more
than one point, the / is constant on J [4, p. 38] and hence on the
union of the lines of constancy through J , which is impossible by an
argument similar to the last part of the proof of Theorem 2.3. Then
since K is a real analytic set the argument of corollary 3 of [10,
p. 100] shows that each point of k is isolated). Let q ^ k ; we
wish to prove that the function 5 : W — ^ RP2 is smooth at q .
To do this we re-select the coordinate system so that </? and ^ as
defined above vanish at q. Let B be an open disc centered at q ,
contained in W, so that B H K = {q}. Let A be a solution in B
of the Beltrami equation
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(1 4V)^ 4- 2^^/2,+ (1 + ^2)^2 = 0

as constructed in [1, Ch. 5, Theorem 1]. By taking B small we can
make the suprema of |<p| and I V / | over B arbitrarily small, so
that in the notation of [1, Ch. 5] we can arrange that p > 4. Then
by equation (13) of [ 1, p. 96]

\h{r) -h(q)\>M\r-q\a, r E B, (8)

for some M > 0, a > -y • Moreover h is homeomorphic on B.
Now define F(u + <pX, v + ^X, X) = h(u,v). Then since g == G o h
on B\{^}, for some G, analytic or^conjugate analytic on /z(B\^}),
it follows that F is harmonic on B\l(q) for some open set B in
R3 containing B. Moreover F is continuous on B, so F is har-
monic on B. Finally by (8) q is not a critical point of F, so the
desired result follows by applying the first part of the proof to the
BPP function F.

Remarks 2.8. — (A) Equation (3) can be interpreted as saying
that W admits a conformal structure with respect to which g must
be analytic or conjugate-analytic. To state this fact globally, if / is
BPP on a domain U in R" , then the family of lines of constancy
of / can be given the structure of a Riemann surface so that /, or
any other BPP function with the same level sets, is analytic or con-
jugate analytic with respect to this structure.

(B) Theorem 2.7 implies that any twice continuously differentiable
solutions of (2) are in fact real analytic; this also follows from general
results about elliptic equations. If in (2) we write </? = tan G,
^ == - tan H then G^ = H^ so there exists F with F^ = G, F^ = H
and then F satisfies

cos^/^F^ + cos^FJF,, - ̂  sin(2F,)sin(2F,)F^ = 0,

with the constraint that Fy and F^ lie in the interval ( — — » — ) .

This is a quasi-linear elliptic equation for which the Dirichlet pro-
blem can be solved in any smooth strictly convex domain, given
sufficiently small smooth boundary values [7, Ch. 6, Th. 42]. Thus
there exist many solutions of (2).
(C) Another way to reduce the equations for a BPP function
to two variables is to note that any BPP function satisfies
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fyfxx + t x f y y ~ ^xfyfxy = 0 (this is obtained by differentiating
•42 + f1 + ̂  == ^ wlt^ resPect to x ? V 2Ln<^ z ^d then eliminat-
ing all derivatives involving z). Thus the restriction of any BPP func-
tion to the plane z = 0 satisfies this equation. Conversely, given
a real-analytic complex function g on a simply connected domain
W in R2 satisfying g^g^ + g^gyy - ^ g ^ g y g ^ y = 0 , and such
that g^ + g2 does not vanish, one can use the Cauchy-Kowalewski
theorem to extend g to a BPP function on an open set in R3

containing W (see Prop. 3.1 below). A further application of the
Cauchy-Kowalewski theorem shows that, given real-analytic complex
functions g and h on an open interval I on the x-axis, with g '
and g12 + h2 non-vanishing, there exists a BPP function / on an
open set in R3 containing I , with / = g and / = h on I. This
says essentially that one can find a BPP function with given values
on a given line, and given lines of constancy through the points of
this line, provided these data are real analytic.

(D) The construction of global solutions raises interesting problems.
In particular, we do not know of any BPP functions defined on the
whole of R3 , apart from functions whose lines of constancy are
all parallel, i.e. functions of the form f(x, y , z) = g(x + iy),
where g is an entire function, or obtained from such a function
by an orthogonal transformation. One way to try to construct a
BPP function on R3 is to seek a solution of (2) on R2 , such that
the associated lines fill up R3 without meeting each other. It is
not hard to show that, given </? and ^ satisfying (2) in a convex
domain W C R2 , the necessary and sufficient condition for the
lines never to meet is that ^ have constant sign. If W C R2 and
^ does have constant sign, then the lines fill R3 if and only if
[u2 4- v2 4- (u^ - v^p)2]/^2 + ^2) —> oo as u2 + v2 —> oo . This
is equivalent to saying that r(6 + p"1)—> °° as r—^ °° , where
r = (u2 + i;2)172 , p = (<^2 + ^2)172 and 6 is the acute angle bet-
ween the vector (u, v) and (<^?, ^) • Thus, to construct a non-trivial
BPP function on R 3 , it suffices to construct <^ and ^ satisfying
(2) on R2 and in addition ^ > 0 on R2 and r(Q + p~1)—> oo
as r —^ °° . Example 2.9 below shows that <^ and ^ can be cons-
tructed satisfying all these conditions except the last.
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We can easily show that a polynomial in x, y , z which is a
w

BPP function must be of the trivial type. Write /= ^ f^ where
fc=0

/^ is homogeneous of degree k and f^ is not identically zero.
Now suppose u is a vector parallel to some line of constancy of
/. Then for some x G R 3 , the function g(\) = f(x 4- \u) is cons-
tant on R , which implies fyn(u) = 0. Unless all the lines of cons-
tancy are parallel, the set of such vectors u is open, so f^ = 0,
a contradiction. So all the lines are parallel.

Example 2.9. — A solution of equations (2) on the disc
u2 + v2 < 1 is given by f(u, i;) = — v i s , ^(u,v) =—u/s where
s = (1 — u2 - i;2)172 . The equation (3) for g becomes
(1 - u2)g^ — luvg^g^ 4- (1 — v2)g^ = 0, and has one solution
g(u,v) = (u + ;i;)/(l 4- s ) . The associated straight line through
( u , v , 0 ) has equation x = u — v z / s , ^ = v 4- ^z/5'. These lines
are disjoint and fill up the domain

U = R^Oc.^O):^ 2 + ^> 1} .
So / (x ,^ ,z ) = ^ ( M , i O defines a BPP function on U. Explicitly,

/ ( x , ^ , z ) = ( x + ^ ) / [ ( l + ^ ) ( 1 4-zzA)]
where

s = [A + (A2 4- z2)172]172^ = (1 -x2 - y2 - z 2 ) / ! .

Note that if 0 < r < 1 then the union of the lines of constancy
passing through the points of the circle u2 + v2 = r2 is the hyper-
boloid of revolution x2 +y2 = ̂ [l + z^d - r2)] .

Note also that by choosing X ^ 0 and considering the lines
of constancy of / through th^ points of the plane z == X , we
obtain a solution of equations (2) on R2 such that the associated
lines never meet, yet fail to fill up R3 .

The idea of the above example was suggested by B. 0ksendal
and A. Stray.

3. BPP functions from higher dimensions to C .

We have less information about BPP functions on domains in
R" for n > 3 . We describe some properties of the level sets and
characterize restrictions of BPP functions to affine hypersurfaces.



BROWNIAN MOTIONS AND GENERALIZED ANALYTIC AND INNER FUNCTIONS 221

Let / be a complex-valued BPP function on a domain U in
FT, let zG/ (U) , let E = f-^z) and let p E E . Suppose p is
not a critical point of /. Then we can rotate the coordinates so that,
near p , E = [x : x^ = g^(x^. . . x^), x^ = g^(x^ . . . x^)} , where
g^ and g^ are smooth real functions on R""2 and grad g^ and
grad g^ vanish at p . Then we have the following result.

THEOREM 3.1. - With the above assumptions, V2^ and V2^
vanish at p .

Proof. — We write /,. for Q f / 3 x ^ , etc. The choice of coor-
dinates ensures that f^ (p) = 0 , / = 3 , . . . , n . From the equa-

n

tion ^ f2 = 0 we find that, at p , /i/n + fif\i = 0 and

/=i
f\ f\i + /2/22 = ° . and also f\ = ± ?/2 ^ ° ' whence f^ + /^ = 0,

n
so Z ^ / ^ 0 ' Now let h ( x ^ . . . x ^ ) = f ( g ^ g ^ , x ^ . . . , x ^ ) .

/=3
Then h has the constant value z , so

o = ̂ h(p) =/,(p) v2^^) + /.(.^v2^,^) + i 4.(p).
/=3

The last term is zero and g^ and g^ are real so we conclude that
V^p^O, V^/p)^.

The following corollary will be used in section 5.

COROLLARY 3.2. - A non-empty level set of a BPP function
f: U —> C cannot be compact.

Proof. — Suppose E == f~l(z) is non-empty and compact.
First suppose that E contains no critical point of /. Let B be
a closed ball such that E C B and E U 3B ^ 0 . Then if p G E n 3B ,
the conclusion of Theorem 3.1 is false at p , a contradiction.

If E contains critical points, let V be an open set containing
E so that V is a compact subset of U. By Sard's theorem [4, p. 38]
the image under / of the critical points of / has Lebesgue measure
0, so we can find Zi ^/(V)\/(3V) so that /^(z^) contains no
critical point. Then V H/ '^z^) is compact, giving a contradiction.
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Theorem 3.1 says that the level sets of / have zero mean cur-
vature vector at each point, and so are minimal surfaces (of codimen-
sion 2). See e.g. [5, Section 52].

We next describe a property of the second derivatives of a BPP
function. Consider a smooth complex-valued function / on a do-

n

main in FT , satisfying H ^2 = 0 (1) . Let A denote the matrix
7=1

of second derivatives (/^). Differentiating (1) twice yields the
matrix relation

S f, 3A/3JC, = - A2 .
7

Hence ^ f^ SA .̂ = - k^(k = 1, 2 ,. . .) and so
7

S^a^A^/ax. = - k t r A k + l . (2)

If now / is BPP then tr(A) = 0 , so by successive applications
of (2), / r (A^=0 for ^ = 1 , 2 , . . . , so A is nilpotent. Thus
the matrix of second derivatives of a BPP function at any point is
nilpotent.

We apply this to a boundary value problem: given a complex-
valued function g , defined on a domain W in ^ (regarded as
a subspace of R^), when can one extend g to a BPP function
in a domain in R^ containing W ? Clearly g must be real-
analytic; if m = 1 this is sufficient but we show that if m > 1 g
must satisfy a system of partial differential equations. We use
x ^ , . . . , x^ for coordinates in F^ and x^ for the extra dimension.

If / satisfies (1) in a domain in R^^ then, writing
m m

D = - E f, we have D^ = - E fzfn 0' = 1 , . . . . m) and
/•=i /=i

m

^oo == ^ f^fifki ' Consequently a necessary condition for g
k,l=l

to have a BPP extension is the nilpotency of the (m + 1) x (m + 1)
matrix B given by

B - f " ^1^k J
where a = ̂  ^^, , ^ = - D'/2 ^ ̂ , and c^ - Dg^

^J /
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(D = — ^ g^ j . Note that this condition is independant of the
k

choice of sign of D1/2 .
We now prove a converse.

PROPOSITION 3.1. - Let g be a real-analytic complex function
on a simply — connected domain W in Rw , and suppose ^ g1

is never zero. Suppose the matrix B defined above is nilpotent at
each point of W . Then there is a BPP function f on a domain
U in R^1 containing W , with f=g on W .

Proof. — Since W is simply connected, ~~2^ has a real-analytic
square root on W , so by the Cauchy-Kowalewski theorem [12, Sec-
tion 1.2] we can find /, real-analytic on a domain U in R^^ con-

m
taining w, with / = g on W and ^ f^ = 0 on U. Let A be

k=0
the (m + l ) x ( m + 1) matrix-valued function [f.J on U. Then
at each point of W , A is nilpotent, so A^1 = 0.

m
The matrix A is singular since ^ f^f^ = 0 so its character-

k=o

Istic function can be written det(XI - A) = \m+v -4- Y V/^V where
r=i

^ i , . . . , V/^ are real-analytic functions on U . Then

A^ + S V/, A" = 0

and using equation (2) above we find that the functions ^(A^),
k = 1 , . . . , m, satisfy the equations:

9 m Q
/, —— (tr A^) == - S f, —— (tr A^) - k tr(^),

3xo ^ 9x,
k = 1, . . . , m - 1

3 m 9 m

/, —— (tr A-) = - ̂  ^ —— (tr A^) 4- k ^ ^ ̂  (A^) .
"^O y = l ^r r=\

Moreover tr A^ = 0 on W so by the uniqueness part of the Cauchy-
Kowalewski theorem it follows that ^(A^) = 0 , f e = l , . . . , m .
In particular tr(A) = 0 s o / i s harmonic, and hence BPP, on U .

We remark that for a given g there are exactly two possible
extensions /, corresponding to the two choices of (—S^) 1 ^ .
One extension is a reflection of the other in the subspace R'1 .
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In order that B be nilpotent it suffices that tr^) = 0 for
A: == 1 , . . . , m — 1. The equation tr(B) = 0 can be written

(2^)V^=2^^. (3)

If m = 2, (3) suffices for nilpotency of B but if m > 2 the other,
highly non-linear equations must be satisfied. The investigation of
these equations poses formidable problems. We note merely that
if g is constant on an affine subspace of codimension one through
each point then they are satisfied, and that if g is real-valued this
condition is also necessary.

We remark also that if g is real-valued then (3) is equivalent
to the statement that its level sets are minimal surfaces. Equation
(3) for real g arises from the problem of minimising / Igrad^l

uwith given boundary values on 9U. See e.g. [2].

4. BPP functions with range dimension greater than 2.

We have little information about BPP functions in general.
Fuglede [5, Section 10] proved, in a more general context, that BPP
functions are open mappings. We show that between spaces of the
same dimension (n > 2) the only BPP functions are the affine
functions of the form /(x) = XAx + b where X > 0, A is a
p x n matrix with AAt = I , and 6 G R ^ . This result can be
deduced from a theorem of Liouville [3, 20.9 Problem 11] stating
that the only conformal mappings of a domain in R" into
R" (n > 2) are compositions of translations, rotations, dilations
and inversions. A more general result for "BPP" functions on
Riemannian manifolds is proved by Fuglede [6, Section 8]. We give
an elementary proof avoiding the machinery of Riemannian geometry.

THEOREM 4.1. - Let U be a domain in R" (n > 2) and let
f: U —^ R" be BPP. Then f is affine.

Proof. — Since / is BPP there is a function h on U so that

s"^.i= l ^i ^i

(here /i , . . . , / „ are the components of /).
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Hence ^ a/, 9/-s axa"^' (1)i= l ox/ ^fc

Thus, for each / ,

V 9f? ^2, ^— = h
.=i ^i

so

2 y ^ - ^ = ^ - (2)h ̂ , ̂  ^ (2)
and

9h , " 3f. 92/.
——— == 2 7 ! " ^ . y^

^j i=l ^k ^j^k

Also if j ^ k , then by (1) V -a/l- a/L = 0 so
/=i a^- ax^

^ y M ^ ! 4 = _ 2 y ^ 92^ ^ ^ ^
^ 3x^ 3 :̂̂  ^ Bx^ Qx^Qx^ 9x^

using (3).
Combining this with (2) yields

^l^'/-''2-"^-1=1 QX] dx/
Since V2/^. = 0, 9h/9x^ = 0 for / = 1 , . . . , n, so h is constant.

n
Now, for each 7 , ^ (Qf^./Qx,)2 =h. The proof is completed by

1=1
the following lemma.

LEMMA 4.2. - Suppose g ^ , . . . , g^ are harmonic real valued
functions on a domain U and satisfy 2 g2 = h, a constant. Then
§ 1 5 • • • , Sn are eac^ constant on U.

Proof. - Fix XQ C U and let G(x) = 2 g,(Xo)^,(x), x E U.
Then G is harmonic on U and by the Cauchy-Schwarz inequality
G(x) < h. But G(^o) = h, so by the maximum principle G is
constant, so G(x) = A , x G U. But then equality is attained in
the Cauchy-Schwarz inequality, so

giW = 8i^o), x C U, ; = 1 , . . . , n,
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An interesting class of BPP functions can be constructed as
follows. Define /: C x C — ^ R x C by /(z , w) = (|z|2 - |w|2 , 2zw).
Identifying C with R 2 , / is a BPP function from R 4 to R 3 .
Replacing C by the quaternions and Cayley numbers we obtain
BPP functions from R8—> R5 and R16 —> R9 respectively.
These functions satisfy l/(x)l = \x\2 so they map the unit sphere
to the unit sphere. Moreover their level sets are compact, in contrast
to corollary 3.2. One may ask whether any other pairs (n, p ) with
n>p>2 exist for which BPP functions from R" to R^ can
have compact level sets.

5. Stochastic inner functions.

Let U and V be domains in R'1 and R^ respectively, and
let /: U—>V be BPP. Let XQ G U and let b(t) be a Brownian
motion issued from XQ and stopped at its exit time r from U.
We say that / is a stochastic inner function from U to V if, for
every compact K C V, almost surely these exists a , with 0 < a < r
such that, for o < t < r, /(6(0) $ K. It is not hard to show that
this definition is independent of the choice of XQ .

If U and V are bounded domains with smooth boundary,
this is equivalent to requiring that the boundary values of / (which
exists a.e. on 3U) are a.e. in 3V. Thus if U and V each coincide
with the unit disc in the plane, then the stochastic inner functions
are just the (non-constant) inner functions in the usual sense, together
with their complex conjugates.

A special case of interest arises when U and V are respectively
the open unit balls in R" and R^ . Then one may ask for which
values of n and p stochastic inner functions exist. The examples
at the end of section 4 show that they exist when (n, p ) = (4,3),
(8,5) or (16,9). It is possible that these are the only pairs with
n > p > 2 for which stochastic inner functions exist. Any non-
constant inner function, in the usual sense, on the unit ball in C^,
is a stochastic inner function from the ball in R2'" to the disc. Thus
a proof of the non-existence of stochastic inner functions from the
ball in R"(^ > 2) to the disc would solve the well-known problem
on the existence of non-constant inner functions on the unit ball in
C^ (m > 1). However, the only case we are able to solve is n = 3.
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THEOREM 5.1. — Let U be a bounded domain in R3 and V
a domain in C. Then there are no stochastic inner functions
f: U — ^ V .

Proof — Suppose such an / exists. Choose a non-critical point
p € U of /. Choose coordinates and define <^ and ^ as in Theo-
rem 2.7. We may suppose <^(p) ̂  0, except in the case where all
the lines are parallel or with a common point. Choose a small open
disc W about p in the (u,v) plane, such that <^y =^ 0 in W .
Define
T : W x R—> R3 by T(M,I ; ,X) == (^ 4- <^,i;)X, i; 4- ^(u, v)\,\).
Then T has Jacobian 1 4- X(<^ 4- y/y) 4- X2^ i//y - </?y ^y) , which
since <^y ^= 0 and by equations 3.7(2), does not vanish on W x R .
This is true also in the case when <^?, ^ are constant. T is moreover
(1-1) on W x R . Let Q = T(W x R) , an open set, and let Q^
be the component of U H Q containing p . The function h defined
on Q by A(T(M, v , X)) == f(u, v, 0) is real-analytic on Q and coin-
cides with / near p , so / = h on Qo. Hence /(Qo) == /(W).

Now let b(t) be Brownian motion issued from XQ , and let
r be the exit time of b from U. Then with positive probability
& ( r ) e Q for 0 < t < r , which is a contradiction since /(W) is
a compact subset of V .

If we assume continuity of boundary values we can prove non-
existence in higher dimensions.

PROPOSITION 5.2. — Let V be a bounded domain in R"(^ > 2)
and V a domain in C. Then there is no continuous f: U —> V
such that /(U) C V, /(9U) C 3V, and f is BPP on U .

Proof. — Suppose such an / exists. Let z G/(U). Then /"^(z)
is a compact subset of U , in contradiction to Corollary 3.2.
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