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PROPERTIES
OF ORLICZ-PETTIS OR NIKODYM TYPE
AND BARRELLEDNESS CONDITIONS

by Philippe TURPIN

1. Introduction.

1.1. The following result is known (it is an easy consequence of [7],
[21] (proposition 0.5)).

THEOREM 1.1. — Let avectorspace F be locally convex metrizable
and complete for a linear topology J . Let I, be a Hausdorff linear
topology on E ., coarser than J . Let # be a a-ring of subsets of a
set T and p:5¢ —— F an additive set function.

Then, u(s#) is bounded for J if the convex hull of u(y) is
bounded for T, .

Proof. — The space S(T, #) of # -simple functions is barrelled
for the topology & .. of uniform convergence on T ([7 ] (lemma 2.4).
[13] (proposition 6) and references of [13] ;see also [10] (pp. 145 and
217)). The assumption on u implies that the mapping x — fx du of
S(T, ) into F is continuous for J, and therefore for J (closed
graph theorem, [11] p. 40).

The barrelledness of (S(T,),¥.) gives also the following gene-
ralization of the Nikodym uniform boundedness principle ([5], [20],
[21] (lemma 0.6)).

THEOREM 1.2. — Let G be a locally convex topological vector
space, # a o-ring : every pointwise bounded set M of bounded addi-
tive set functions # —> G is equibounded on # .
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The following Orlicz-Pettis type theorem 1.3 ([7], [21]) is an easy
consequence of theorem 1.1 ; o-exhaustive spaces are defined in defi-
nition '.5 below.

THEOREM 1.3. — Let a vector space F be locally convex, com-
plete, metrizable and o-exhaustive for a linear topology 7, let # be
a o-ring.

Then, if a set function u:# —> F is 0-additive for some
convex Hausdorff linear topology 7, on F coarser than 7, u is
o-additive for T .

1.2. In section 2 below, the theorem 2.3 shows (via the proposi-
tion 2.2) that theorems 1.1 and 1.3 are false if F is a suitable (non
locally convex) Orlicz space of generalized sequences.

And in section 3 the theorem 3.2 shows that the uniform boun-
dedness principle (theorem 1.2 above) is not verified by some non
lIocally convex space G.

One may ask whether these theorems remain true under suitable
hypotheses of generalized convexity (‘“‘galb” hypotheses [22]). In
section 5 the problems of extending theorems 1.1 or 1.2 are reduced to
the study of certain barrelledness conditions (introduced in section 4)
related to the notion of galb. This shows that these problems are
equivalent. A (very small) galb is evaluated for which the corresponding
barrelledness condition is not fulfilled : this refines the sections 2 and
3. A positive result for the galb of p-convexity, 0 <p < 1, would
permit to generalize a theorem of Bennett and Kalton to Hardy classes
H? ,p>0.

In theorem 3.1 we mention a little extension of theorem 1.2, of an
other kind.

1.3. Let us make precise our terminology and notations.

R, R,, N are the sets of real numbers, non negative real numbers,
non negative integers.

An F-seminorm of a (real) linear space E is a function
v: E —> R, verifying, for

xE€EE yeEE reR vix+y)vx) +vQy)virx)<v) if |r| <1

and v(rx) —> 0 when r —> 0. An F-seminorm v is an F-norm when
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v(x) =0 = x =0. An F-seminormed (resp.. F-normed) space
(E, v) is a vector space endowed with an F-seminorm (resp F-norm) »
and with the associated linear topology.

A subset B of a topological vector space E (resp of an F-
seminormed vector space (E, v)) is said to be bounded (resp metrically

bounded) when B is absorbed by every neighbourhood of 0 (resp
when sup{v(x) |x € B} < o).

If o is a ring of subsets of a set T, S(T, #) is the vector
subspace of RT generated by the set of the characteristic functions
Xy, HE .

If 5 is aring and E a vector space, a fonction u: #— E is

additive when u(H U K)=u(H) + u(K) as soon as HE # and
K € A& are disjoint.

If E is endowed with a linear topology J (resp with an F-
seminorm v) u: # —> E is bounded (resp metrically bounded)
when u(5£) is bounded (resp metrically bounded). A set M of func-
tions o —— E is equibounded (resp metrically equibounded) when
{#(H)|u €M, HeE #} is bounded (resp metrically bounded), point-
wise bounded when {u(H)|u € M} is bounded for every HE .

DEFINITION 1.4 ([3]). — An additive set function u: # —> E is
exhaustive when u(H,) — O for every disjoint sequence (H,) C .

DEFINITION 1.5. — We say that a topological vector space E is
exhaustive (resp o-exhaustive) when, for every ring (resp o-ring) # ,
every bounded additive set function u: # —> E is exhaustive.

1.4. Every bounded subset of a topological vector space E is
metrically bounded for every continuous F-seminorm of E. The
converse is generally false but ([23]) it is true if E is galbed by some
sequence (a,) with a, >0 for every n (definition 4.1 infra).

Every exhaustive additive set function with values in an F-
seminormed space is metrically bounded ([3]), but it may be unboun-
ded ([24]).

A metrically bounded additive set function with values in a
Musielak-Orlicz space L¥(£2) is bounded (and even with bounded
convex hull) if sup ¢(r, w) = oo for almost every w €  (see [8].

r>0

generalized in [16], [25], [9]).
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2. Counterexample to the Orlicz-Pettis property.

2.1. For every integer n = 1, let us define a constant d,, in the
following way. If N =2"*!'  let Sy = {0,1}N be the set of points
of RN with coordinates equal to 0 or 1 ;let £, be the (finite) set
of the affine subspaces L of RN generated by n + 1 points of Sn
and verifying O € L. If |x|, = suplx;| for x = (x,) € RN, we let

d, =inf{lx|l./lx€ Yy L}. ¢))
LeY,

The d, 's "will be used via the following lemma. B(T) is the space
of bounded functions T— R.

LeMMa 2.1. — Let H;,0<i<n, be n+ 1 subsets of a set T
and suppose that xy, does not belong to the vector subspace V of
B(T) generated by {Xu,; | 1 < i< n) Then we have the inequality

xEV

where |x|. = sup |x(¢)| forevery x € B(T) .
teT

Indeed, let # be the ring generated by the H,’s, 0 <i<n, and
let # be the partition of U H; associated to (H;). Endowing the
i

vector space S(T, # ) with the basis {xy | H € #}, we construct an
affine isometry o« of (S(T, %), |.l.) onto a subspace of (RN, 1.1,
with N =2"*! = verifying a(xy) € Sy for every HE # and
a(xHo) = 0. Hence a(V)EY, and [xHo — x|, = la(x)].=d, if
xX€EV.

Let us establish the following minoration of d, (which can cer-
tainly be improved).

log,d, Z2—(n+1)2". 2)

n

If LEZ, and N = 2"*! | L is contained in an affine hyperplan

P of RN which is generated by N linearly independent points

$; €Sy, 1 <j<N.Wehave P={x €RN |f(x) =1} for some linear
N

form f:x—> ) a;x; of RN. The g;'s are solutions of the Cramer

i=1
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N

system ), a4;5,;, =1,1<j<N, with 5;,€{0,1} .4, = D,/D, D,
i=1

and D being determinants of matrices of order N with entries equal

to 0 or 1. Hence [D,/<2!"NNNZ ([2]), ID|>1 and
N

N
3 la;l < NV/2 _ So, for every x €L, |x|,,>(2 la,.l)‘l > N-N/2
=

i=1

and (2) follows.

2.2. Let ¢ be a subadditive Orlicz function, that is an increasing
and continuous map ¢ : R, —> R, verifying ¢(0) =0, ¢(r) > 0 for
r>0 and o¢(r, +r,)<g¢(r,) + ¢, for r, and r, in R, .

If © is a set we consider the Orlicz space 1¥(£2) of generalized
real sequences x = (x_),cq defined by

19(Q) = (x ER? [Ix], = Y, @(x,]) < oo} -
weEN

PROPOSITION 2.2. — 1¥(§2) is an exhaustive complete metrizable
topological vector space for the F-norm |.|, .

For the exhaustivity, see [15] (theorem 4).

The proposition 2.2 and the following theorem show that
theorems 1.1 and 1.3 are false if J is not assumed to be locally convex.

THEOREM 2.3. — Let # be an infinite ring of subsets of aset T,
let Q be a set having the cardinality of the continuum, and let ¢ be
a subadditive Orlicz function verifying the condition

Vs <o, ¥ ¢7'(s/i)y=o0(d,) when n—> o, (3)
i=n
where d,, is defined by (1).
Then, there exists an additive set function u: #—> 1¥(82)
which is o-additive and bounded for some Hausdorff locally convex

topology 7, on 19(Q2) coarser than the topology of the F-norm |.|,.
but which verifies

sup |u(H)|, = o
He ¥

(and consequently [3], which is not exhaustive for the F-norm |.|,) .
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Owing to (2), the condition (3) is verified if
logP (llog r]) =0 (p(r)) when r—> 0 forsome p > — 1.

In 3) ¢~ ! isdefined by ¢~ ! (¢) = sup{r = 0|p(r) < t}.

Let X be the g-algebra of all subsets of N .

We take for §2 a subset of A containing {{4}|A € N} and such
that (x),eq is a Hamel basis of the vector space S(N, ).

If x € 19(Q2) the series Z X, X, converges in the Banach
wWEN

space 17 (= 17(N)) of the bounded sequences (for the supnorm |.|w).

Indeed, ¢, being subadditive, verifies r = 0 (¢(r)) when r —> 0
and {x, | w € N} is bounded in 1.

This allows to define a continuous linear map u : 19(2) — 1~
by

ux) = X X, X, - (4)

weN

LEMMA 2.4. — The condition (3) implies that u is injective.
Indeed, let x € u~!(0). There exists an injective sequence
(w;);en of 2 verifying

oo

ux) =, TiXew; = 0, (&)

i=0

with r, = X Z o(lr;]) =s <o and |r;| decreasing, whence,
i=0
for i=1,

Il < @~ (/i) . (6)
Suppose x # 0 ;then r, ¥ 0 and, by (3), the condition

i o (s/D) < Iryld, N

n+1

holds for n large enough. From (5), (6) and (7) we deduce

n oo
erXwo + Z rini |ea< 2 lril < ‘roldﬂ .

i=1 n+1
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This contradicts the lemma 2.1 since Xwo is not algebraically
spanned by {xwi [i =1} : the lemma 2.4 is proved.

The range of u contains S(N ,> ), so we can define an additive
set function m : A —> 1¥(f2) by

mK) =u'l(xx) , KEX

There exists a sequence (H,),en ©of non empty pairwise disjoint
elements of # and a map j: N —— T such that j(n) € H, for
every n € N. Let u = j(m) :5¢ — 1¥(£2) . In other words,

pH) =m(~' H) , HE #

Let 7, be the inverse image by u of the product topology of
RN . 7, is a Hausdorff locally convex topology on 19(2), coarser
than the topology defined by |. ], .

Then m, and therefore u, are o-additive and bounded for 7, .

But p is not metrically bounded for | [, . The following lemma
gives a slightly stronger result, which we shall use in theorem 3.2.

Let 7. be the topology on 1¥(£2) defined by the norm |u(.)|.

LeMMA 2.5. — If the subadditive Orlicz function ¢ verifies (3),
then, for every s€ R, ,u(#) is not included in the I -closure
B(s) of B(s) = {x € 1*(Q) | Ix|, < s}.

It is sufficient to prove that m(x) ¢ B(s), if o, is the ring
of the finite subsets of N.

Let s€ R, . By (3) there exists an integer n verifying

Yo7 (s/i) <d, /2. ®)

n+1
If KEX, and m(K) € B(s), we have

umK) = xx =z + X 1 Xy, ,
i=1

where w; € Q ,r; satisfies (6) and [z],<d,/2 : from this and
(8) we get
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n
X = L7 Xyl <
i=

and, by lemma 2.1, X is generated by the n elements x,,,,1 <i<n,
of our Hamel basis. Hence K has at most »n elements since K is finite

and xx = Zx_{h}, with {h} € Q forevery h.
heK

The lemma 2.5 and the theorem 2.3 are proved.

Problem 1. — If $2 has the continuum cardinality, for what
subadditive Orlicz functions ¢ is it true that every 1¥(£2)-valued addi-
tive set function defined on a o-ring is o-additive for [l if it is o-
additive for some Hausdorff locally convex linear topology J, on
19(82) coarser than the topology defined by [l ?

By theorem 1_.3 and proposition 2.2 this is true if o(r) =r.

By a theorem of Kalton ([6] or [13]), this would be always true if
§2 was countable (even without assuming 7 ° locally convex).

3. Counterexample to the uniform boundedness principle.

First, let us give the announced slight generalization of theorem
1.2.

A subset B of a topological vector space E is said to be additi-
vely bounded when sup v(x) < oo forevery continuous F-seminorm »
xXEB

of E.

THEOREME 3.1. — Let (E,J) be a topological vector space, and
suppose that there exists some o-exhaustive linear topology ' on E
such that (E ,7) and (E,J") have the same bounded subsets.

Then, if # is a a-ring, every pointwise bounded set M of
bounded measures # —> (E, 9 ) is ‘“additively equibounded” (i.e.
{u(H) |u € M, H € 5#} is additively bounded in (E, 7)).

If J is locally convex we can take for ' the weak topology
o(E,E").

An imitation of the second proof of theorem 2 in [5] gives
this theorem. Let (H,),., be a disjoint sequence of # . If
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uH,)IlnEM,n>0} is not bounded, there exist scalars
€,— 0,¢, >0, asubsequence (K,) of (H,) and a sequence (u,)
of M such that €,u, (K,) does not tend to 0 for '. But,forJ ',
the additive set functions €,u, are exhaustive and €,u, (H) — 0 for
every H € 5. So they are equiexhaustive (theorem of Brooks and
Jewett : [4], [14]), which is a contradiction. Therefore,
{w(H,)ILEM,n >0}
is bounded and (lemma of [4]) M is additively equibounded for & .

Now let us show that the conclusion of theorem 3.1 does not hold
in general.

Take the space 1¥(£2) and the operator u : 1¥9(2) — 1¥ of
section 2 (¢ is a subadditive Orlicz function). Since u# is continuous
we define an F-norm [.|, , on 1 topologically equivalent to the
norm |.|, if welet,for hEN, x € 17,

xI, , = inf{lx, |, + 2 1x,lulx = ulx)) +x, ,x; €19(2),x,€17}

Now let G be the F-normed space consisting of the sequences
(xp)pen such that x, €17 for every h and [x,l,, — O when
h — oo, endowed with the F-norm

HCepMl, = sup Ixyl, 4 -
heN

THEOREM 3.2. — If 5 is an infinite ring of subsets of a set T and
if ¢ verifies the condition (3) of theorem 2.3, there exists a pointwise
bounded set of bounded additive set functions # — (G, |l.ll ¢)
which is not metrically equibounded.

Proof. — Take the set function m: s —> 19(f2) defined in
section 2. Forevery HE€ 4 and h € N, let
My (H) = (ef u(m(H)))en
k

where €, is the symbol of Kronecker. Each u, : # — G is a
bounded additive set function and {u, |# € N} is pointwise bounded :
this follows from

7, (DI, = lru(u(E), , < min {lrp(H), , 2"r},r€R.
Suppose that there exists s verifying
sup {llu, (Il, [hEN, HEH} <5 <o,
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For every HE o and every h €N, |uu (H))I%,, <s, so
p(H) = x, + u™'(x,) with |x,|, <s and [x,], <27"s. By lemma
2.5 this is impossible (we should have u(#’) C B(s)) .

COROLLARY 3.3. — There exists an F-normed space G on which
no a-exhaustive linear topology has the same bounded sets than the
F-norm topology of G.

Indeed, take the above space G, with ¢ verifying the condition
(3), and apply the theorem 3.1.

4. Barrelledness conditions.

4.1. Let A be a bounded subset of 1! (= 1' (N)) and let E be a
topological vector space ;let & be its topology.

DEFINITION 4.1. — We say that {A}galbs E (or its topology &),
or that E (or &) is {Al-galbed, when, for every zero-neighbourhood
V in E, there exists a zero-neighbourhood U in E verifying

N
V(an )n>0 €A ’ VN=0 > V(xn )0<n<N € Ul N s 2 anXy EV.
n=0
We say that a point a € 1' galbs E (or &), or that E (or¥)
is a-galbed, when {{a}} galbs E .

In the words of [22],{A} galbs E iff A is bounded in the galb
%(E) of E ([22],n° 2.3.2.1).

For example, if 0 <p <1, E is locally p-convex ([18], [26])
if and only if E isgalbed by {B”}, with

B”=3a€1’l2|anl”<1§. ©)

n=0

PRrRoOPOSITION 4.2. — Every {Al-galbed linear topology & is the
lower upper bound of a set of semimetrizable (i.e. F-seminormable)
{A}-galbed linear topologies.

Indeed, for every zero-neighbourhood V for &, there exists a
sequence (V,),., of balanced zero-neighbourhoods such that
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Vo€V, VvV, +V,,CV, and (V,,V,,,) verifies the condition
of the definition 4.1. (V,) is a basis of zero-neighbourhoods for an
{A}-galbed semimetrizable linear topology. & is the lower upper
bound of these topologies.

PropoSITION 4.3. — [f A contains some sequence (a,) verifying
a, >0 for every n (or, more generally, if A is not bounded in the
space 19 of [22], n° 0.1.7.1), a subset B of an {Al}galbed (resp {A}-
galbed and metrizable) topological vector space E is bounded if B is
metrically bounded for every continous F-seminorm of E (resp for
every F-norm defining the topology of E).

Proof. — Apply [23] (propositions 3 and 4). When E is metri-
zable, observe that if an F-norm p defines the topology of E and if
a continuous F-seminorm ¢ of E is unbounded on B, the F-norm
sup{p, q} enjoys both these properties.

DEFINITION 4.4. — We say that E (or its topology &) is {A}-
barrelled when & is finer than any {A}-galbed linear topology I on
E which admits a basis of & -closed zero-neighbourhoods.

If a €1', we shall write “a-barrelled’ instead of ''{{a}}-barrelled”.

Remark 4.5. — In view of the proposition 4.2, the above defini-
tion 4.3 is unaltered if J is assumed to be semimetrizable.

For example, the ultrabarrelled spaces of [11], [12], [17], [26] are
the O-barrelled spaces, where O is the null element of 1' .

DEFINITION 4.6. — If 0<p <1, a p-barrelled space is a
{BP}-barrelled space, where BP is defined by (9).

So, the usual barrelled spaces are the 1-barrelled locally convex
spaces.

Remark 4.7. — a) Every {A}-barrelled space is {B}-barrelled if
ACB.

More precisely, every {A}-barrelled space is {B}-barrelled if and
only if A is bounded in the strict galb Gs{gi}“ generated by {B} :
cf. [22], n° 5.5.8.
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b) If (E,¥) is {A}-barrelled, the {A}-galbed hull of £ (i.e. the
finest {A}-galbed linear topology on E which be coarser than &) is
{A}-barrelled.

Only the “only if” part of a) need a proof. If A is not bounded
in Gs{‘l;if‘ there exists a complete metrizable linear space (X ,%)
which is galbed by {B} but not by {A} ([22], théoréme 5.7.2). Now
we use an argument of [17] : (X, %) is O-barrelled, so the {A}galbed
convex hull & (43 of & is {Al}-barrelled (by b) above) ; if & (a} Was
{B}barrelled, we should have ¥ = ¢ {a} (theorem 4.8 below), a
contradiction.

THEOREM 4.8. — E is {A}-barrelled if and only if, for every {A}-
galbed complete metrizable topological vector space F, every linear
operator u : E — F with closed graph is continuous.

Proof. — If {A} galbs F and if u : E—> F islinear, it is easily
seen that {A} galbs the linear topology on E which admits as a basis
of zero-neighbourhoods the closures in E of the sets u~}(V), V zero-
neighbourhood in F. Therefore, u is almost continuous if E is
{A}-barrelled, hence continuous if, moreover, F 1is complete and
metrizable and if the graph of u is closed ([11] or [26]).

Conversely, if J is a semimetrizable (remark 4.5) {A}-galbed
linear topology endowed with a basis of zero-neighbourhoods closed in
(E, ), the complete Hausdorff space F associated to (E,J) is
metrizable, complete and {A}-galbed and it is known that the graph of
the canonical map (E ,¥) — F is closed.

PROPOSITION 4.9. — If {A} galbs E, for E to be {A}-barrelled, it
is sufficient that, for every {Al}-galbed complete and metrizable linear
space (F,J) and for every {A}-galbed Hausdorff linear topology
J, on F coarser than I , every continuous linear operator
u: E— (F,7,) isstill continuous from E to (F,J).

Indeed, if u : E —> F islinear, let 7, be the linear topology on
F which admits as a basis of zero-neighbourhoods the set of subsets
u(U)+ V, where U (resp V) runs over the filter of zero-neigh-
bourhoods in E (resp (F,J)). J, is coarser than J, {A}-galbed if
E and J are {A}-galbed, and Hausdorff if the graph of
u:E— (F,7)
is closed.
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THEOREM  4.10. — Let us consider the following conditions.
(i) E is {A}-barrelled.
(ii) For every {Al}-galbed topological vector space F, every
pointwise bounded family of continuous linear operators
u;, :E—F, i€l
is equicontinuous.

Then, (i) implies (ii) in any case, and (ii) implies (i) if {A} galbs
E.

Remark. — We can say also that (ii) holds if and only if the
{A}galbed hull of the topology 4 of E is {A}-barrelled.

L. Waelbroeck established the implication (ii) = (i) for A = {0}
in [26]. And we use essentially the method of [26].

Proof. — It is seen as usual that (i) implies (ii), observing that {A}
galbs the coarsest topology on E for which {u;li €1} is equi-
continuous.

Conversely, let us assume that {A} galbs the topology & of E
and let  be an {A}-galbed semimetrizable linear topology on E with
a basis of & -closed zero-neighbourhoods. By proposition 4.2 and [22]
(n°® 0.1.4.1) there exists on E an F-seminorm p and a family of
F-seminorms (v;)e; defining respectively the topologies J and & and
verifying the condition

(R, ») VN >0, V(x,) € EN*! |

N
sup v (x,) < 27% = sup V(Z a, x,,) < 2
a€A n=0
with Kk =h + 1, for v =p and also for v € {»;1i €I}, and for
every h €EN.
Let /' = {2" y,|lh €N, i€} Forevery v € A, letus define
an F-seminorm p, on E by

p,(x) =inf {p(x,) + v(x,)|Ix =x, +x, ,x;, €EE, x, € E}L
Let G be the subspace of EY consisting of the points

x = (xv),,e/ for which {v €N |xv # 0} is finite. Equip G with the
F-seminorm

r(x) = sup p,(x).

vEN



80 P. TURPIN

{A} galbs G. Indeed, every v € N verifies (Ry 4+1), hence p,
and r verify (R, ,,,).

For every v € A, define u, : E— G by (u,(x)),r = e,’j'x',
where e,’j' is the symbol of Kronecker. From (r(u,(x)) = p,(x)
<inf{p(x),»(x)} we deduce that {u,|v EN} is pointwise bounded
and that the u,s are continuous for <.

That (ii) implies (i) now follows from the following observation :
for every € >0, {x € Elsup r(u,(x)) <e} is contained in the
veEN

F-closure of {x € E|p(x) <e}.

Indeed, since r(u,(x)) = p,(x), if x is in the first set, for every
i€1 and h €N, there exists x, €E and x, € E verifying
x=x, +x,,p0,) <e,vix,) <27

5. Application to vector valued set functions.

Let & be a ring of subsets of a set T and A a bounded subset
of 1! . Let y{A} be the finest {A}-galbed linear topology on
S(T,#) for which {xy |H € #} is bounded. If a € 1!, we write
¥, instead of & ((,}}-

If F is an {A}-galbed topological vector space, an additive set
function u: # — F is bounded if and only if the map f— [fdu
of S(T, 5#) into F is continuous for the topology & (a}-

If, for some s € ]0,% [,(27"%),5, €A ,¥{a} is the topology
&.. of uniform convergence on T (for s <1 this is essentially a
theorem of Rolewicz and Ryll-Nardzewski : [19]).

Indeed & 4} is obviously finer than & .. On the other hand,
'.9’{,\} is galbed by the sequence (27"),,, ([22], theorem 5.6.2), the
additive set function x : H— x; ( # —> S(T,4#)) is bounded for
the topology & A} therefore, by [25] (theorem 3.5), or from the
argument of [19] or [22] (n° 7.2.7.2), the identical mapping
f— [ fdx of (S(T,#),¥.) into (S(T, ), & {a}) is continuous.

But &, is strictly finer than &%, if 4 is an infinite ring and if,
forevery s € R, a = (a,) verifies a, = 0R-"".

Indeed, &, =< ., would imply that, for every a-galbed space E,
every bounded additive set function u: # — E would be
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“L™bounded” in the sense of [22]. But this would contradict
the theorem 7.4, c) of [22] (which remains true when 5 is a ring),

where A = )'27"§, for Dirac measures 8, carried by disjoint ele-
0 .

ments of .

The following theorem is an immediate consequence of the propo-
sition 4.9 and the theorem 4.10.

THEOREM 5.1. — For every ring # of subsets of a set T, the
following conditions are equivalent.

(@) S(T, &) is {A}-barrelled for the topology & (A}

(8) For every {Al}-galbed complete metrizable topological vector
space (F, ), an additive set function p: # —> F is bounded for
if it is bounded for some Hausdorff {A}-galbed linear topology 7 |
coarser than J .

(y) For every {A}-galbed topological vector space G, every
pointwise bounded set of bounded additive set functions # —> G is
equibounded on # .

Remark 5.2. — If # is an infinite o-ring and if X is the
o-algebra of all subsets of N, S(T,s#) and S(N, X') are simulta-
neously {A}-barrelled or not for their respective topologies .S”{A}.

S(N, ") is {A}-barrelled if S(T,s#) is because the first space is
a quotient of the second (transpose the map j : N — T of section 2).

Conversely let us suppose that S(N, ") is {A}-barrelled for its
topology & (4} The lemma of [5] shows that the set function
u: # — F of the above condition (B) is metrically bounded for
every continuous F-seminorm on (F,J), and therefore bounded for
T (proposition 4.3). Indeed, J is {A}-galbed and A is not bounded
in 19 because the barrelledness hypothesis implies that {A} does not
galb the space 1¥(£2) of theorem 2.3.

Problem 2. — For what bounded subsets A of 1! is the topology
Ziay on SN, A") {A}-barrelled ?

Let us observe that if .SP{A} is {Al}-barrelled, then '7{13} is
{B}-barrelled if B D A (or, more generally, if A is bounded in the
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strict galb generated by {B}) since this condition implies that 5"{3}‘ is
the {B}-galbed hull of & .} (remark 4.7).

It is known ([10]. [13] and references of [13]) that S(N, ) is
barrelled for the topology & .. of uniform convergence on N.

Is &, p-barrelled for 0 <p <1?

This would give a generalization to the case p > 0 of a theorem
of Bennett and Kalton ([1]) on Hardy classes H?, p = 1.

May be, ¥ .. (=%,) would be a-barrelled when a, = 2~ for

some s >0 and ¥, would not be a-barrelled when a, = 0 (27")
for every real s.

The second point would be given by a suitable improvement of the
minoration (2). We are only able to prove that &, is not a-barreiled
under a stronger decreasciency condition on a (theorem 5.3 below).

Note that &.. is not a-barrelled if a, = (27°) for every s.
Indeed the proof of theorem 7.4 of [22] gives an a-galbed complete
metrizable topological vector space E and a measure u : o — E
which is not “L™bounded” for the given topology of E, but is
L™bounded for some Hausdorff coarser linear topology.

THEOREM 5.3. — If S is an infinite ring of subsets of a set T
and if a given sequence a €1' verifies n* = 0(log(log(la,'l)) when
n —> o for every real s, then S(T,#) is not a-barrelled for the
topology & , .

Observe that this theorem contains the most important part of
theorems 2.3 and 3.2 ; namely, the existence of a non metrically
bounded additive set function with values in a complete F-normed
space F, which is bounded for some Hausdorff linear topology on
F coarser than the F-norm topology of F, and the existence of a
pointwise bounded family of bounded additive set functions which is
not metrically equibounded ; moreover, these set functions take their
values in spaces verifying some galb condition.

Indeed, apply the theorem 5.1 and the proposition 4.3.

To prove the theorem 5.3 we show the condition () of the
theorem 5.1 is not satisfied. In the situation of theorem 2.3, let

F = on 147 (2)
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where ¢, (r) = log?(ilog r|) for r >0 small enough. F is endowed

with the lower upper bound of the topologies induced by the spaces

17 (). F is complete, metrizable and galbed by a. Let us verify

the last point. If — 1 <p<¢g<O0, hpq A\) = sup ¢p(7\r)/¢q (r) is
. 0<r<1

of the same order than ¢, ,(A) for A—> 0 ([22], proposition

3.1.13), whence )\ h,,(a,)<o and a galbs F by [22] (theorem

n=0
3.2.1). ¢, verifies (3) for p>—1. So the additive set function
pu: # — F constructed as in section 2 is not bounded in 197 (£2)
if p>—1 (theorem 2.3), whence not bounded in F. But if
u: F— 17 is defined by (5), u is bounded for the inverse image
by u of the topology of 1°, which is separated (lemma 2.4), locally
convex and coarser than the topology of F.

We could deduce directly from theorem 2.3 the weaker result that,
if A is an infinite ring, ¥, (i.e. the finest linear topology on
S(T,s) for which {xy |H€E #} is bounded) is not O-barrelled
(i. e. ultrabarrelled). This would be less satisfactory. Indeed, without
galb condition, the (topological) unboundedness of an additive set
function is not very significant, since it does not forbid the o-additivity

([24D.

Problem 3. — 4 being an infinite o-ring,is S(T, /) 1-barrelled
for the above topology &, ?

In other words, if (F,Z) is a Banach space and if an additive set
function u :# —> F is bounded for some Hausdorff (non locally
convex) linear topology on F coarser than 7, is u bounded for 7 ?

The answer is probably no.
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