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INTERSECTION PROPERTIES OF BALLS
IN SPACES OF COMPACT OPERATORS

by Asvald LIMA

Let A be a real or complex Banach space. The closed ball in A
with center a and radius r is denoted by B(a, r) and the unit ball
B(0 , 1) by AI ; A* is the dual space of A . A family {B(^., r,)},^p
of balls in A is said to have the weak intersection property if
^ B(/(fl ,) ,r ,)^0 in R or C for every / E A ^ . The notion
of weak intersection property was introduced by Hustad [8]. In the
real case this is equivalent to ||̂ . - a. || < .̂ + r for all f, 7 G F.
Let n > 3 be a natural number. We say that A is an E(n)-space
if every family of n balls in A with the weak intersection property
has a non-empty intersection. In the real case this is the same as the
n.2. intersection property (n.2.I.P.) studied by Lindenstrauss in [15].
Lindenstrauss proved that a real space A has the 4.2.I.P. iff it has
the n.2.I.P. for all n iff A* is isometric to an Li(jn)-space. Hustad
[8] and Lima [13], [14] then showed that for a complex space, A is
an E(3)-space iff A is an E(A2)-space for all n iff A* is isometric
to an Li(jLi)-space. In the real case, the 3.2.1.P. does not imply the
4.2.LP. In fact, real Li(jLi)-spaces have the 3.2.1.P., but not the
4.2.LP.

We shall mainly study (real) spaces with the 3.2.1.P. and spaces
with an intersection property which is weaker than E(3). First, in
§ 1, we extend the following theorem ofHanner [5] to infinite dimen-
sional spaces : A real Banach space has the 3.2.1.P. if and only if for
every pair F ^ , F^ of disjoint faces of A^ , there exists a proper face
F of AI such that Fi C F and F^ C - F .
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A Banach space A is said to have the extreme point intersec-
3

tion property (E.P.I.P.) if H B(^. ,^)=^0 for every family
{B(^. , r,)}jL i of three balls in A with the weak intersection property
such that B(^i , r ^ ) H B(a^ , r^) consists of one point. (Observe
that B(a^ , r ^ ) H B(a^ , r^) consists of one point if and only if
l l ^ i — a,z 11"1 (ft\ — ^2) ls an extreme point of A^). Clearly every
E(3)-space has the E.P.I.P. Real spaces with this property were studied
in [15]. In § 2 we generalize Theorem 4.7 in [15] to the complex case.
Thus we get that A has the E.P.I.P. if and only if \f(e)\ = 1 for all
extreme points e of A^ and / of A^ .

The connection between the spaces with the E.P.I.P. and the
CL-spaces is studied in § 3. (A is a CL-space if A^ == co(F U — F)
for every maximal proper face F of A ^ ) . We show that dual CL-
spaces have the E.P.I.P., and if A* has the E.P.I.P. then A is
"almost" a CL-space. (This is made precise in § 3).

In § 4 we show that if P is a bicontractive projection (i.e.
I I P || < 1 and ||I - P |[ < 1) in a (real) CL-space, in an E(3)-space,
or in an L^ (/x)-space, then 2P — I is an involutive isometry. This result
is a partial generalization of a theorem of Bemau and Lacey [2] and
the proof is very simple.

The last three paragraphes are devoted to the study of intersection
properties of spaces of linear operators, and in particular to the space of
all compact operators C(Y , X) from a real Banach space Y to a real
Banach space X . In Theorem 5.2 and Theorem 5.5 we show that if
X* and Y* are CL-spaces, then C ( Y , X ) has the E.P.I.P. if and
only if every extreme operator T in the unit ball of C(Y , X) is nice.
(T is nice if T* maps extreme points of X^ into extreme points of
Y?).

Corollary 6.6 and Theorem 6.8 together with Theorem 7.1 and
Theorem 7.5 show that C ( Y , X ) has the 3.2.LP. if and only if Y
and X have the 3.2.I.P. and either Y is an Li-space or X has the
4.2.LP. We also show that C ( Y , X ) has the 4.2.I.P. if and only if
Y is an Li-space and X has the 4.2.I.P.

The results in § § 5,6 and 7 are strongly influenced by the work of
Lazar [10]. The results we obtain are generalizations of some of the re-*
suits in [10]. Also some results of Sharir and Fakhoury are generalized.
(See [20], [21], [22], [23], [24] and [27].)



INTERSECTION PROPERTIES OF BALLS 37

The notation we use is fairly standard. We write co(S) for the
convex hull of a set S , S for the closure of S and 3^ C for the
set of extreme points of a convex set C .

If C is a set in A , the cone (C) is defined by

cone(C) = U XC .\>o
The smallest face of a point x in a convex set C is given by

face(x)= {y^C:x=ay + (1 -a)z for some aG< 0,1] and somezGC}.

1. Spaces with the 3.2.I.P.

We will here generalize a characterization of Hanner [5] of spaces
with the 3.2.I.P. to infinite-dimensional spaces. Hanner's theorem says
that a finite dimensional space has the 3.2.I.P. if and only if any two
disjoint faces of its unit ball are contained in disjoint parallel hyper-
planes. Before we state the theorem we need some definitions and a
lemma.

If x G A^ , face(x) means the smallest face of A^ containing

[ y -»

x . For any x G A , write CQc) = cone face (——\ for x •=h 0
\||;c||/J

and C(0) = (0). Following [1] we define an ordering < on A as
following :

z < x means ||;c || = ||z || + ||jc - z || .

LEMMA 1 . 1 . — Let A be a real or complex Banach space and let
x , y E A . Then there exist z , u , v G A such that

x = z - ¥ u ||x|| = ||z|| + | |M| |

y = z +v \\y\\ = ||z|| + ||i; ||

and C(u) 0 C(v) = (0).

Proof. — Define

C = {z E A : z < x and z < y} .

Let (z^) be a maximal totally ordered subset of C . By Lemma 2.8
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in [1] (z^) has a least upper bound z and (z^) converges to z .
Define

u ^ = = x - z ^ and ^ = y - z^ .

Then u = lim ̂  and v = lim ̂  exist. Clearly we have

x =z + M ||x|| = H z || + I I ^ H

y = z +1; H ^ l l = ||z || + Hi; I I .

Suppose w G C(u) H C(i;). Then for some a > 0 , aw < u
and aw < v. Hence

z^ < z < z 4- aw <x
and

z^ < z < z + aw < ̂

for all 7 . Since (z^) is maximal totally ordered and z is its least upp-
er bound, we get z = z + aw . Hence w == 0 and C(u) H C(v) = (0).
This completes the proof.

A real Banach space A is said to have the R^ ^-property if for
every pair x , y of points in A , there exist z , u , v E A such that

and

x =z + M , ||x|| = ||z || + I I ^H ,

y =z +1 ; , |MI = llz II + IMI,

1 1 ^ -.yll = 1 1 ^ - v\\ = II^H 4- || i; ||.

THEOREM 1.2. - Let A be a real Banach space. The following
statements are equivalent :

(i) A* has the 3.2.LP.
(ii) A has the 3.2.LP.

(iii) A has the Rg ^-property
(iv) For every pair F^ , F^ of disjoint proper faces of A^ , there

exists a proper face F of A^ such that F^ C F and F^ C -F.
(v) For every pair x , y of points in A such that 1 = ||x || = \\y \\

and face (x) H face (y) == 0, there exists a proper face F of A^
•wcA rtar x G F a^d j/ E - F .

(vi) For ^v^ry pair x , ^ of points in A 5^cA rtar 1 = ||x || = \\y \\
and face (x) H face Cv) = 0, w^ Aav^ ||;c - y || = 2 .
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Proof. - (i)^> (ii) ^=» (iii) is proved in [12].

(iv) —» (v) -<==» (vi) is trivial

(vi) ==^ (iii). Let x, y G A and let z, M , i; E A be as in Lemma

1.1. Since C(u) n C(v) = (0), we have

face (-M-) H face f-1—') = 0,
^IMI7 ^IMI/

80 "iT^T" i r^H"= 2 ' Butthen 1 1 ^ - ^ 1 1 = 1 1 ^ 1 1 - H M I -

(iii) =^ (iv). Let F^ and F^ be disjoint proper faces of A^ .
Let ft = {(x , j/) : x G Pi and ^ E F^}. We order ft by writing
(x , y ) < (u, v) if and only if x E face (^) and y € face (v). Since
A has the Ra^-property and F^ n F^ = 0, we get that \\x-y\\=2
for each (x , y) e ft . For each (^ , .y) E ft define

^x.y) = ^ e A? : eOc) = 1 and e ( y ) = - 1} .

Then K ^ ^ ) = ^ = 0 , and K^^) is a w*-compact face of A?. It
follows that if (x , y ) < (u , v) , then

^jc.jQ D ^u.v) '
Hence {Ky,}y,^^ is directed by inclusion. Let

K = H K., .wen w

Then K is a non-empty w*-compact face of A^ . Let e € K 0 3^ A?
an,d let F = {z E A^ : ^(z) = 1}. Then F is a proper face of Ai
and F^ C F and F^ C - F . The proof is complete.

Remark. — For spaces with dim A < oo the equivalence of (ii)
and (iv) was proved by Hanner in [5].

By an easy application of the Hahn-Banach theorem it follows
that Theorem 1.2 (iv) is equivalent to the statement in the Abstract,
i.e. if F^ and F^ are disjoint faces of the unit ball A^ , then there
exists a hyperplane H such that F^ C H and F^ C - H .
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2. The extreme point intersection property.

If A is a real Banach space, write F = {± 1} and if A is
complex write F == [6 G C : | 0 \ = 1} . The next result is well known
in the real case.

THEOREM 2.1. - Let A be a real or complex Banach space, let
eG3,A^ let S= { / G A f : ||/|| =f(e) = 1} and let $ :A—> C(S)
be defined by $(x) (/) = f(x) . Then the following statements are
equivalent :

(0 1/^)1 = 1 for all / E 8 ^ A f .

(ii) a^A? c rs.
(iii) For every x G A , there exists 6 G F ^c/z //^r

||x 4 - ^ H = ||jc|| + Ml.

(iv) $ /5 a^z isometry into.

Proof. - (i) ^^ (ii) ==» (iv) ==» (iii) is trivial.

(iii)—^ (ii). Suppose for contradiction that B^A^ <£ F.S. By
Milman's theorem we then have A f ^ c o ^ T ' S ) (w*-closure). Let
/ ^ A ^ be such that f^co(Y • S). By the Hahn-Banach theorem
there exists x G A such that

Re/(x) > sup [Reg(x) : g E co(r . S)}.

-Let 6 GT be such that \\x + 0^|| = ||jc|| + 1 and let g ^ B^A?
be such that \\x || + 1 = g(x + 6e) . Then \\x || = ^(x) and
1 = O g ( e ) . Hence g e r • S and

^(^•) = 1 1 ^ 1 1 > Re/(jc) > Reg(x) = \\x\\.

This contradiction shows that 8^ A? C r • S . The proof is complete.
We say that A has the extreme point intersection property

(E.P.LP. in short) if for every family of balls {Bfo, , r,)}?^ in A
with the weak intersection property and such that B(a^ , r ^ ) 0 B(a^ ,^)
consists of one point a , then we have a € B(a^ , r^) .

A is said to have the restricted E.P.LP. (R.E.P.I.P.) if the above
holds whenever all r^ = 1 .
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The next result is an extension to the complex case of Theorem
4.7 in [15].

THEOREM 2.2. - Let A be a real or complex Banach space. The
following statements are equivalent :

(i) A has the E.P.I.P.
(ii) A has the R.E.PJ.P.
(iii) \f{e)\ = 1 for all e G 3^ and all /G 3^A? .

(iv) For all e € 3^ A^ anrf a// x G A , r/^r^ e-x^ 0 G r
^cA rAar ||;c + 0^|| = ||x|| + 1 .

(v) For all e E 3^Ai and every maximal proper face F o/ Ai ,
r/!̂  ĵwr.? 0 e r ^c/z rtar 0e E F .

Proo/ - (iii) <==» (iv) follows from Theorem 2.1 ; (i) ==» (ii)
and (v)==^ (iv) are trivial. It remains to prove (ii) ==^ (iv) ===^ (v)
and (iii)==^ (i).

(ii)==» (iv). Suppose for contradiction that there exist x G A
and e C 3^ AI such that | | j c+^ | |< | | x | | 4 - l for all 6 C r . We
may assume ||x|| = 1 . Since the map 6 —> \\x + Qe \\ is uniformly
continuous, we get

s = sup {|| ;c + 0^11 : e er}< 2 .
Let r = 3 - ^ > 1 . Then for 6 E F

||r;c + 06? || < (2 -5)||x|| + ||jc + 0^ | |<2 .

The balls { B ( 0 , 1 ) , B(rx + e , 1), B(rx - e , 1)} has the weak
intersection property. In fact, if g G Af , let u = rg(x) and v ==^(e).
Then since || u + 0v \\ < 2 for all 0 G F , ^ have | u \ 4- 11; | < 2
and | u | < l . Hence w G B(0, 1) n Q(u + u , 1) H B(^ - i;, 1)
where

^ if | u | < 1
w =

u
\u

If y C B ( r x + ^ , 1 ) 0 B(r;c - ^ , 1 ) , then

if I u | > 1 .

1 1
e = — (e 4- rx: - y ) 4- - (^ - rx + y )
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is a convex combination in A^ . Since ^ € 3^ A^ , we get
e = ^ 4- rx — y , so rx = ^ . Hence

W = B(rjc + e , l ) H B(r;c - e,\).

By (ii), r? :eB(0, l ) so r < 1 . This contradiction shows that
(ii)-^(iv).

(iv)=====^ (v). Let e e 3^A^ and let F be a maximal proper
face of A ^ . For each x ^ F, let

I\ = { 0 e r : \\x^6e\\ =2} .

I\ =^= 0 by (iv) for each x € F . If ^ ^ , . . . , x^ C F , then

x=- ^ x , e F and F^ C n F^.. Hence {I\}^p has the

finite intersection property. Since each I\ is compact, there exists
6 e n r,,. Then co({Qe} U F) is a convex subset of the spherejceF
of AI . Since F is maximal, we get Qe € F .

(iii)==» (i) Suppose {B(^., ^)}?^ has the weak intersection
property and that

B(^,ri)H B(^,^)= {a}.

Then (/^ + 7-2)^ =^2^1 + ^i^ • By translation we get

B(0,ri)nB(^ -^1^2)= {^-^i} .
We have

a-al={7^)(a2-al)-
Hence ^ = r\1 (a - a^) G 3^ Ai . Let g e 3^ Af . Then we have

B(0,^)nB(^2 -a,),r^)nB(g(a^ - a ^ ) , ^ ) ^ ( t ) .

By (iii) |^(e)| = 1 . By rotating if necessary, we may assume
g(a^ - a^) = r^ + ^ . But then

B(0 , r,) H B(g(a2 - a^) , r^) = {r,} .

Hence ^ G B(g(a^ - a^), ^3). Thus

^> 1^^3 - ̂ i) -''il = 1^(^3 - a\) -S(fl - a^\ = 1^(03 - a) | .

It follows that a ^ B ( a ^ , r ^ ) . The proof is complete.
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Remarks. — a) Complex L^-spaces have the E.P.I.P. by [12 ;
Corollary 6.8]. Preduals of complex L^-spaces have the E.P.I.P. by
Theorem 4.8 of Hustad [8]. (See also [13] and [14]). Hence Theorem 1
of Hirsberg and Lazar [7] is an easy consequence of Theorem 2.1
and Theorem 2.2. Theorem 1 of [7] says that if A is predual of a
complex L^-space and e € 3^A^ , then the map $ of Theorem 2.1
is an isometry. (See also [9]).

b) Suppose now that A is a complex predual of an L^-space.
Suppose x E A and \\x\\ < 1 . If x ^ 3^ , then |/(x)| < 1 for
some /€ 3^A^ . An application of the selection theorem [19] then
shows that there exists a y E A with y =^= 0 such that ||jc - Qy \\ < 1
for all 6 E F . Hence for x G A with \\x \\ < 1 , we have x ^ 3^ A^
if and only if || x - Qy \\ < 1 for some y ^ 0 and all Q e F .

c) Suppose A is a C*-algebra with identity I . If A is com-
mutative, then it is known that I / (I) I = 1 for all / € 3^ A^ . Assume
conversely that I/(I) I = 1 for all f^Q^Af. Then by Theorem 2.1
and the Remarks following Corollary 1.6 in [18], we get that A is
commutative. In particular A is commutative if and only if A has the
E.P.I.P.

3. CL-spaces and semi L-summands.

Let A be a real or complex Banach space. A closed subspace J
of A is called a semi L-summand if for every x € A , there exists a
unique y CE J such that || x — y || = d(x , J) , and moreover this y
satisfies \\x\\ = || y \\ + \\x - y \\.

Semi L-summands were studied in [12].

THEOREM 3.1. — Let A be a real Banach space and let e G 3^A^ .
Then span(e) is a semi L-summand if and only if | f(e) | = 1 for all
/ e a ^ A ? .

Proof — Assume first that span(e) is a semi L-summand. Then
by Corollary 6.8 in [12] we get \f(e)\ = 1 for all /E 3^Af . Next,
if \f(e)\ = 1 for all fC 3 ^ A f , define

F = { / E A ? :f(e)= 11/H =1}.
From Theorem 2.1 we get A^ = co (F U — F). Let / G A and define
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a = inf {/(jc) : jc €E F},

6 = sup [f(x) : jc C F}
and

1
^ = — (a + 6) e •

Then ^ G span(e) is the unique element we are seeking.

Remark. — Theorem 3.1 is false in the complex case. Assume A
is complex and that A* is isometric to an Li (jn)-space. Let e G 3^ A^
and assume span(e) is a semi L-summand. By [12 ; Theorem 6.14]
span(e) is a semi L-summand in A** , so e E 3^A^* . It is known
that A** is isometric to C(S) for some compact Hausdorff space S
([26]). Hence we may assume e = 1 G C(S). Either S is dispersed
or S contains a perfect subset [9]. In both cases it is easy to see that
(ii) in Theorem 5.6 of [12] is not fulfilled. This contradicts that
span(e) is a semi L-summand.

PROPOSITION 3.2. — Let A. be a real Banach space and let
e E 3^ A^ . The following statements are equivalent :

(i) span(e) is a semi L-summand.
(ii) // \\x || = 1 and e ^ face (x) , then there exists a proper

face F of A^ such that x G F and e G — F .
(iii) // G is a proper face of A^ and e ^ G , then there exists a

proper face F of A^ such that G C F and e G - F .

Proof. - Similar to the proof of Theorem 1.2 using Theorem 3.1
and Theorem 2.1. See also Theorem 4.7 in [15].

We say that a real Banach space A is a CL-space if
A^ = co(F U - F) for every maximal proper face F of A^ . A is an
almost CL-space if A^ = co(F U - F) for every maximal proper face
F for AI .

THEOREM 3.3. — Let A. be a real Banach space and let F be a
maximal proper face of Ai . Then A^ = co(F U - F) if and only if
for every x G A with \\x \\ = 1 and face (x) H F = 0 , we have
x E - F .
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Proof. — This is a special case of Corollary 2.10 in [1].

THEOREM 3.4. — Let A be a real Banach space. Let F be a
maximal proper face of A^ and let /E 3^Af be such that /= 1
on F. The following statements are equivalent :

(i) AI ==co(F U -F).
(ii) B(0, 1 - e) C co(F U - F) for every e C <0 ,1 > .

(iii) span(/) is a semi L-summand.

Proof. — (i) ^==^ (ii) follows from the Tukey-Klee-Ellis theorem
[4]. (i)"^ (iii). Similar to the proof of Theorem 3.1. (iiO—^a)
This follows from the next theorem.

THEOREM 3.5. — Let A be a real or complex Banach space and
let e C 3^ A? . Let F = {x G A : \\x \\ = 1 = e(x)} . // span(e)
is a semi L-summand then F ̂  0 and A^ = co(r • F).

Proof. — Assume A is real. (The proof in the complex case is
almost identical to the real case). Let S = co (F U - F). By applica-
tion of the Bishop-Phelps theorem [3], it follows that S ^= 0 . We shall
prove S = A^ . Assume for contradiction that there exists an
x E A^\S . By Hahn-Banach there exists an /G A* with ||/|| = 1
such that

|| x || >f(x)> sup {f(y) : y ^ S } .

By Theorem 3.1. and Theorem 2.1 we may assume ||/+ e\\ = 2 .
Choose 5 > 0 such that

(/ + 8e) (x) > sup {(/ + 8e) ( y ) : y G S}.

By the Bishop-Phelps theorem [3], there exists g E A* such that
11^11 = 11/+ 8e\\ = 1 + 8 , nf+8e)-g\\<6 and g ( z ) = ||^||
for some z G A^ . We may also assume

g ( x ) > sup { g ( y ) : y C S} .
We have

\\g-6e\\< H/ll +5 = ||/+ 8e || = \\g\\.

This shows that C(g) H C(e) + (0). Hence for some X =^ 0 , we have
since span(e) is a semi L-summand,
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1 1 ^ 1 1 = 1 1 X ^ 1 1 -^\\g-\e\\.

Hence X^(z) = | X | and (g - \e) (z) = || g - \e || . It follows that
z E S and

\\g\\>g(x)>sup{g(y) : y e S } > g ( z ) = \\g\\.

This contradiction shows that A^ = S . The proof is complete.

Remark. - Theorem 3.5 improves Theorem 4.8 (b) of
Lindenstrauss [15].

COROLLARY 3.6. — Let A be a real Banach space. The statements
below are related as follows (i) "̂  (ii) ===^ (hi) :

(i) A* is a CL-space.
(ii) A* has the E.P.I.P.

(iii) A is an almost CL-space.

Proof. - (0=^ (ii) follows from Theorem 2.2, and (ii)—=» (iii)
follows from Theorem 2.2, Theorem 3.1 and Theorem 3.5.

Remark. — In [12] we proved that every space with the 3.2.1.P.
is a CL-space.

From Theorem 2.2 we get the following corollary.

COROLLARY 3.7. — Let A be real or complex and let dim A < oo.
Then the following statements are equivalent:

(i) A^ = co(r • F) for every proper maximal face F of A^ .
(ii) \f(e)\ = 1 for all e E 3^ and all /E 3^A? .

(iii) Af = co(r • F) for every proper maximal face F of A^ .

4. Bicontractive projections.

In this section P shall be a projection in a real or complex Banach
space A . U shall denote the operator U = 2P - I . Then U is

involutive i.e. U2 = I and P = — (I + U) .
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We say that P is bicontractive if II P II < 1 and || I - P || < 1 .
Clearly P is bicontractive if U is an isometry.

In [2] Bemau and Lacey showed that in Lp -spaces, 1 <p <°° ,
and in preduals of Li-spaces P is bicontractive if and only if U is an
isometry. We will prove this result for a class of spaces which contains
Li-spaces and preduals of Li-spaces.

The following theorem is well known and easy to prove, so we
only state it.

THEOREM 4.1. — Let P be a projection in a real or complex
Banach spaces A and U = 2P - I . The following statements are
equivalent:

(i) U is an isometry
(ii) U* is an isometry

(iii) U(Ai) C AI
(iv) U*(A?) C A 5s

(v) U*(3 ,A?)CA?

LEMMA 4.2. — Assume P is a bicontractive projection in a real
or complex Banach space A . Assume e E 3^Ai and that span(e)
is a semi L-summand. Then ||U(^)|| = 1 .

Proof. — By Theorem 5.6 in [12], we can write Pe = te + /
where r C C , / E A and ||/ + 6e \\ = ||/|| + \Q \ for all 0 € C .
Then we have

1 = Ml >\\Ve\\ = \t\ + H / 1 1 ,
so

i - m > i i / i i . (4.i)
We also have

\=\\e\\>\\e-Ve\\^\\(t-\)e+f\\=\t-\\^\\f\\>\ -\t\ + 1 1 / 1 1 ,

so
m> ii/ii. (4.2)

Since P is a projection we get

te 4- / = Pe = P2e = P(te + /) = t 1 e + tf 4- P/.
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Hence

ll/ll>l|P/ll==l|r(l-^+(l-r)/||=(|r|+||/| |)|l-r|>(|r|+||/| |)(i-|r|),
so

1 1 1 ii/ii > i no - \t\). (4.3)
Moreover we have

ll/ll>ll/-P/ll=l|r/+r(r-l^||=|r|(||/| |+|l-r|)>|r|(||/| |+l-|r|),
so

(1 - M) 11/11 XI - 1 1 1 ) i r | . (4.4).
If 1 1 1 = 1 . then / = 0 and t = 1 by (4.1). If t = 0 , then / = 0
by (4.2). Assume next that 0 < | r | < l . By (4.1) and (4.3) we
get 11/H = 1 - |r | and by (4.2) and (4.4) we get ||/|| = \t\.

Hence ||/|| = 1 1 1 = — . By the inequality preceeding formula (4.2)

we get 1 1 — 1 1 = 1 — [ 1 1 = — , so t = — . Thus we get

p,=-L/,+_L).
2 V \\f\\>

Hence

Ve =

- e if 1 1 1 = 0
e if 1 1 1 = 1

/ if 0 < 1 1 [ < 1
1 1 / 1 1

The proof is complete.

THEOREM 4.3. - Let A be a (real) CL-space and let P be a
projection in A . Then P is bicontractive if and only if U is an
isometry.

Proof. — Assume P is bicontractive and let x € A . Let F be

a maximal proper face of A< such that ———— € F . Let e G 9 A?||U(;c)||
be such that e = 1 on F . Then span(e) is a semi L-summand by
Theorem 3.4. By Lemma 4.2 we get
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||U;c|| = ^ ( U X ) = U ^ ( J C ) < | | U ^ | | . H J C | | == ||jc||.

Hence U(A^ C A^ and U is an isometry. The proof is complete.
The same method of proof gives the next two results.

THI^OREM 4.4. — Let A be a real or complex Banach space such
that span(e) is a semi L-summand for all e G 3^ A^ . Then a pro-
jection P in A is bicontractive if and only if U is an isometry.

THEOREM 4.5. —Assume A or A* is isometric to an Li(ju)-
space. Then U is an isometry for every bicontractive projection P
in A .

Remark. - Theorem 4.5 is contained in Theorem 2.1 and
Theorem 2.8 ofBemau and Lacey [2].

The last result in this section shows that the M-projections and
the L-projections are the most regular bicontractive projections. A
projection P is said to be an L-profection if

l|x|| = ||Px|| + ||x -Px||

for all x CE A and P is said to be an M-projection if

||x|| =max(| |Px| | , | |x -Px\\)
for all x G A .

THEOREM 4.6. — Let P be a projection in a real or complex
Banach space A . The following statements are equivalent :

(i) P is an M-projection .
(ii) P* is an L-profection .

(iii) P*^ = e or 0 for all e G 3^ A^ .

(iv) V*e == e or - e for all e ^ 3^ A^ .

Proof. - (i) ̂  (ii) is proved by Alfsen and Effros in [1].
(ii) ===> (iii) «==> (iv) is trivial.

(iii) =» (ii). Let x G A* with ||x|| = 1 .
Choose a net (x^) in co(3^Af) such that x^—^x(w*). Write
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n n
xa= ^ x!^ where \ > ° ' S \ = * and e! E ^A^ . Let

i = 1 1 = 1

I = {i : P*6?, = €,} and J = [i : P*e, = 0}. Then P*^ = ^ X, e,
/el

and ^ - P*^ = ^ X,e, . If \\x^ || == 1 then clearly
i-ej

1 = II JC I I = II P*Y II 4- I I Y P*Y I I1 " ' ' ' a " I I 1 - • '̂Q! I I '̂  l l - ' -a — r •^a I I •

If 11̂  || < 1 , choose /^ G AI , such that

l>/a(^)>II^J12-
Then we have

^ \>1|P*^JI>/JP*^)
i'ei

and
S \>\\x^-^x^\\>f^x^-^x^.
t'ej

Hence

1 = £ X,>||P^J| +ll^-P*^||>/Jx,)>||xJ|2 .
» = i

Since || || is w*-lower semi-continuous, we get that \\x^\\—> \\x\\ = 1.
P* is w*-w* continuous so

P*JC^—^ P*v and x^ - P*x^ x - P*x(w*).

Hence ||̂  ||2-^ 1 and

1 = \\x || < ||P*v || + || r - P*v || <lim || P*^ || +lim||^ - P*^ || <1

so
1 = H ^ l l = ||P*^|| + ||x -P*JC||.

The proof is complete.

5. Nice operators and the E.P.I.P.

We will now consider A(X* , Y) = the operators from X* to
Y which are w*-norm continuous on X^ .
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THEOREM 5.1. - Let F be a maximal proper face of the unit
ball of A(X* , Y). Then there exist x E 3^ X^ and a maximal proper
face G o/ YI such that

F = {T E A(X* , Y) : || T || < 1 and Tx E G}.

Proof. — Consider the ordering < on F where T < S if and
only if T 6 face (S). Then (F, <) is a directed set. Since each T E F
is w*-norm continuous on X^ we get that K-r == {x G X? : ||T;c|| = 1}
is a non-empty, w*-compact union of faces of X^ . I f T< S , then
S = a T + ( l - a ) U for some a E < 0 , l ] and some U E F . It

follows that T < S implies Ks c KT . Since S < — (S 4- T) and

T < — (S + T), {K^-r^p is directed by inclusion. Hence

K == H KT =5^ 0 and K is a w*-compact union of faces. FromT G F l

[25] we get K H B^X? ̂  0 . Choose x E K 0 B^X? . Then it
follows that if T < S , then TJC G face (S;c). Hence we get that

U face (Sx) is a proper face of Y^ . Let G be a maximal proper
face of Y, such that U face (Sx) C G . Then clearly1 SGF ^ ^ - J

F C {T : || T || < 1 and Tx C G}
and since the latter set is a face, we get

F = {T : || T || < 1 and Jx G G} .

The proof is complete.

THEOREM 5.2. — Assume Y has the E.P.I.P. . If every
T G ^ A ( X * , Y ) ^ satisfies T(^X?) C 3^ , then A(X*,Y) has
the E.P.I.P.

Proof. - Let T € 3^A(X* ,Y)^ and let S G A(X* ,Y) . Choose
x G 8^ X^ such that || S || = || Sx \\. Let G be a maximal proper face

SOc)
of YI such that — — ^ G . Since r T x ^ 9 ^ \ ^ and Y has the

II S ||
E.P.I.P. , we get by Theorem 2.2 that OTx E G for some 6 E F .
Hence

||S|| 4- ||T|| = ||Sx|| + ||0T^|| =||(S+0T)(x)||= HS+0TI I

and A(X*,Y) has the E.P.I.P. by Theorem 2.2.
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The next lemma is an easy consequence of Theorem 2.1. We
omit the proof.

LEMMA 5.3. - Let x G A with | | ; c | | = = l . // x G F • G for
every maximal proper face G of A^ , then x G 3^A^ .

LEMMA 5.4. — Z^r x € 3^Xf wrf assume span(x) is a semi
L-summand. Let G be a maximal proper face of Y^ . Then
F = {T G A(X*, Y) : || T || < 1 , Tx G G} is a maximal proper face
o/A(X*,Y)^ .

Proof. — Clearly F is a face. By Theorem 5.1 there exists
z € 3^X^ and a maximal proper face H of Y^ such that

F C {T € A(X*, Y) : || T || < 1 , Tz E H} .

Let K = [u G X : ||^ || = 1 = x(u)} . By Theorem 3.5 we have
Xi = co(F . K) . For each u E K , define T^ € A(X* ,Y) by

T^) == v(u) • y

where y E G is a fixed element. Then ||TJ < 1 and T^(x) = y G G.
Hence we have T^(z) = z(^) • y ^ H , i.e. |z(^) I = 1 . If
u ^ , u^ G K , then

^i 4-M^
• ° ̂ -r")

1 1
= - |z(Mi)| + - |z(^)l

Hence by rotating z if necessary, we may assume z = 1 on K . But
then z = x sine X^ = co(r-K). From the argument above it also
follows that G C H , so G = H . The proof is complete.

THEOREM 5.5. — Assume span(e) is a semi L-summand for
every ^ E ^ , X ? . // A(X*,Y) has the E.P.LP. , then every
T G ^ A ( X * , Y ) i satisfies T ( 3 , X f ) C ^ Y i .

Proof - Let T G 8^A(X* ,Y)i and let x G 3^Xf . Let G be
a maximal proper face of Y^ and define

F = {S G A(X* , Y) : [I S || < 1 and Sx E G} .
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F is a maximal proper face of A(X*,Y)^ by Lemma 5.4. Hence
by Theorem 2.2, 0T G F for some 6 E r , so 0T;c G G . By Lemma
5.3 T x G ^ Y i . The proof is complete.

COROLLARY 5.6. - Let X and Y ^ ms(/ or complex spaces
such that X* and Y (or Y*) a^ L^-spaces. Then the maximal
proper faces of A(X* ,Y)i are exactly the sets

{ T E A ( X * , Y ) : ||T||< 1 , T J C E G }

"where x G 8^X^ and G is a maximal proper face of Y^ . Moreover
A(X*,Y) /^ the E.P.I.P. if and only if T(^Xp C 3^ /or a//
TE3,A(X*,Y^ .

Remark. - If X and Y are real spaces, then Corollary 5.6.
remains true if we only assume that Y and X* have the E.P.I.P.

Remark. - Since C(X,Y) is isometric to A(Y*,X*) by the
map T—> T* (the adjoint operator), Corollary 5.6. could also
have been formulated for C(X,Y).

Let T G C ( X , Y ) i . If both X* and Y* are CL-spaces, then
the statements below are related as follows :

(i) ̂  (ii) ̂  (iii) =» (iv)

(i) For every maximal proper face G of Y^ , there exists a
maximal proper face F of X^ such that T(F) C G .

(ii) For every y E 8^ Y^ , there exists a maximal proper face
F of Xi such that

1 = T*^(JC) = y ^ x ) for all x E F .

(iii) T*(^Y?)C a^x?
(iv) Te3 ,C(X,Y)^ .

(The proof is an easy application of Theorem 3.5).
We will now give a partial extension of the results above to

L(X,Y).

THEOREM 5.7. - Assume X* has the E.P.I.P. If every
T E 3^L(X,Y)^ satisfies T(^Yp C ^x? , then L(X,Y) has
the E.P.I.P.
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We will need a theorem of T. Johannesen. Since the proof
is published in Norwegian, we will indicate the proof.

THEOREM 5.8 (T. Johannesen). - Let K be a compact convex
set and let F be a subset of K such that i) F is a union effaces of
K and ii) K\F is a countable union of compact convex sets. Then
F H 3^ K ^ 0 .

Proof. - We may write K\F = G Q, where C, C C „
n=i n n ~ " 1 1

for all n and every €„ is compact and convex. Let /„ be the charac-
teristic function to €„ . Since F is a union of faces it follows that
if x E F and fi is a probability measure on K representing x ,
then ^ L I ( F ) = I . Hence /„ = 0 on F . (See [29 ; p. 27].) If
F H 3^K = 0 , then liminf/;, > 1 on K by [29 ; Th. 1.4.10.].
This contradict lim i n f / ^ = 0 on F , so we get F n 3^K ^ 0 .

Proof of theorem 5. 7. - Let T E ̂  L(X,Y)i .

Clearly if suffices to show that (iv) in Theorem 2.2 is satisfied
for a dense subset of L(X,Y). The operators in L(X,Y) such that
the adjoint operator attains its norm on Y^ are dense [28]. Hence it
suffices to show that || T + 0S|| = 1 + || S|| for some 6 E F when
S E L(X,Y) satisfies || S || = || S*y || for some y E Y? . Let
F = { ^ E Y ? : ||S|| = ||S*^||}. By Theorem 5.8 F O ^ Y ? ^ 0 ,
so || S || = || S*y || for some y E 3^ Y? . Since T*^ G 3^ X? and
X* has the E.P.LP. we get || S 4- 0T|| = || S*y 4- Q^y \\ = 1 + || S ||
for some 6 E r . The proof is complete.

Remark. — In this section we have tried to generalize results of
Blumenthal, Lindenstrauss and Phelps [22] and of Sharir [21]. Other
results in this direction is in [10], [20], [23], and [24].

6. The 3.2.LP. for C(X,Y). Sufficient conditions.

We use the following notation.
L(X,Y) = the Banach space of all bounded operators from X

to Y .
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C(X,Y) = the Banach space of all compact operators from X
to Y .

A(X*,Y) = the Banach space of operators from X* to Y which
are w*-norm continuous on Xf .
It is well known that C(X,Y) =sA(Y*,X*).

PROPOSITION 6.1. - Let Q be an ^-projection in Y . Then
T—>• Q - T is an M-profection in C(X,Y), in L(X,Y), and in
A(X*,Y).

Proof. - Clearly

max(||QT||,||T-QT||)<||T||

for all bounded operators. Fix T e L(X,Y), let e > 0 and choose
x £ X with | | j c | |= l such that || Tx || > || T || - e . Then

1 1 T || - e < || Tx || = max(|| QT;c || , || Tx - QTx (|)

<max(||QT||, | |T-QT||)<||T||.

Hence || T || = max(|| QT || , || T - QT ||).
The proof is complete.

COROLLARY 6.2.

L(X,0 ss(X* ® • • - ® X * ) „
^•0

A ( X * , l ^ ) a ( X ® - - - © X ) „.
i-

PROPOSITION 6.3. - Let P be an ^-projection in X . Then
T—> T • P is an ^-projection in L(X,Y) and in C(X,Y). // P
is'an ^-projection in X , then T—> T • P* is an U-profection
in A(X*,Y).

Proof. - We have for T € L(X,Y),

I J T H = ||T*|| = max(||P*T*||,||T* - P*T*\\) = max(||TP|| , ||T - TP||)

by Proposition 6.1. From this the conclusion easily follows.

COROLLARY 6.4. - L(1^,Y) a (Y ® • • • ® Y) „ .
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Remark. — Corollary 6.2 and Corollary 6.4 are well known and
are used in [10] and [17]. '

THEOREM 6.5 (Real case). — Let n = 3 or 4 . Assume X has
the n.2.I.P. and that Y has the 4.2.I.P. Then A(X*,Y) has the
n.2.I.P.

Proof. - Let T^ , . . . , T^ E A(X*,Y) and let ^, . . . , /•„ > 0
such that || T, - T, || < r, + .̂ for all i and / . Then S = U T, (Xp
is norm-compact in Y . Let e > 0 . By Theorem 3.1 in [ I I ] , there
exists a subspace Z of Y such that Z ^ 1^ for some m and
d(x , Z) < e || .x || for all x E S . Let Q be a projection of norm 1
in Y such that Q(Y) = Z . Then ||T, - QT, || < e for all i and
QT, G A(X*,Z) ^ (X © . . . ® X) ^ . This last space has the n.2.I.P.

^00

by Theorem 4.6 in [15]. Hence H B(QT, , r, + e) ^= 0 in A(X*,Y).

But then ^ B(T, , r, + 2e) ̂  0 in A(X*,Y). By Lemma 4.2
i == 1 '

in [15], A(X*,Y) has the n.2.LP. The proof is complete.

COROLLARY 6.6 (Real case). — Assume that Y is an L^-space
and that X has the n.2.I.P. (n = 3 or 4). Then C(Y,X) has the
n.2.I.P.

THEOREM 6.7 (Complex case). — If X and Y are preduals of
L ̂ -spaces, then A(X*,Y) is a predual of an L^-space. If Y is an
L^-spaceand X is a predual of an L^-space, then C(Y,X) is a predual
of an L^space.

Proof. — Proceed as in the proof of Theorem 6.5 and replace
[11 ; Theorem 3.1] by [18 ; Theorem 1.3] and [15 ; Lemma 4.2]
by [8 ; Theorem 4.8].

THEOREM 6.8 (Real case). — Assume Y has the 3.2.1.P. and
that X has the 4.2.I.P. Then C(Y,X) has the 3.2.LP.

Proof. — Similar to the proof of Theorem 6.5.

THEOREM 6.9 (Real case). —Assume X* is an L^-space and that
Y has the 3.2.LP. Then A(X*,Y) has the 3.2.LP.
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Proof.- A(X*,Y)CA(X*,Y**). A(X*,Y**) a C(Y*,X) has
the 3 2 I P by Theorem 6.8. and the operators with finite rank are
dense/Assume {B(T,, r,)},3^ are balls in A(X*,Y) such that
|| T - T. II < r. + r. for all ; and /•. Let e > 0 . Then there exists
S € A(X*.Y**') such that ||T, - S|| < r, + e 0- = 1.2,3) and dim
range S < ~ . Choose x,,. . ., Xp € X? such that

T,(Xf)C U B(T,(x,),e) for all (•.

Let E=span {T.Qc,): ̂  1,2,3 ; / = 1 ,... ,p} + range S CY** .

By the "principle of local reflexivity" [16] there exists an operator
U : E —>• Y such that U = I on Y n E and

(1 -e)H>'ll<IIUj'||<(l +e)||j/l| tor all y ^ E .

Then U • S € A(X*,Y) and if x € Xf and T,(x) € B(T,(^.), e) ,

then

|| T,̂  - U • Sx || < II T,x - T.^.ll + II T,^ - U • S^c II

< e + || UT,x, - USx II

<e + (1 + e)l|T,-x, - Sx||

< e + (1 + e) [II T,x - T,x, II + II T,x - Sx 1 1 1

< e + (1 + e) [e + '•, + e]

=r, + e(r, + 3 + 2e).

3
n»=iBy Lemma 4.2 in [15]. ̂  B(T,,r,)^0 in A(X^Y). The proof

is complete.

Remark. - 1) The proof of Theorem 6.9 uses the principle of
local reflexivity in the same way as Lindenstrauss and Tzafriri use
it in the proof of Theorem _l.e. 5 in [17].

2) Theorem 6.5 was proved by Lazar [10] in the case that X is
a simplex space. Fakhoury [24] has proved Corollary 6.6 in the case
n = 4. He also considered spaces of weakly compact operators.

Using Zorn's lemma, we can prove the following algebraic selec-
tion theorem.
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THEOREM 6.10. —Let E and F be Hausdorff locally convex
vector spaces. Let K C E be a convex set with the Riesz decompo-
sition property and let F' be the family of all compact convex non-
empty subsets of F . If (p : K —^ P0 is a convex map i.e.

\^(x) + (1 - \)^p(y) C ^(Xx + (1 - \)y)

for all x, y € K and all X G [0,1], then there exists an affine func-
tion ^ : K —> F such that ^(x) G ^p(x) for all x E K .

We omit the proof. We only note that we must prove that there
exists a minimal affine map 77 : K—> Fc such that r ] ( x ) C \p(x)
for all x £ K . That r] is affine means that

XT?OC) + (1 - X)T?OQ = r?(X;c + (1 - \)y)

for all x, y C K and all X G [0,1].

THEOREM 6.11 (Real case). — Let n = 3 or 4 . £er X 6^ an
L^-space and assume Y is a dual space with the n.2.1.P. Then L(X,Y)
has the n.2.1. P.

Proof. - Let {B(T,,r,)}^i be n balls in L(X,Y) such that
II T, — T .̂ || < r, + /y for all i , / . Let F be a maximal proper face
of Xi. Define ^ : F —> 2Y by

rf>(x)= ̂  B(T,(^),r,).

Then ^p(x) ̂  0 and ^p(x) is a w*-compact set for each x . ^ is
convex, so ^ has an affine selection V/ by Theorem 6.10. Extend
0 to a linear map T : X —> Y . Then T is bounded and
|| T — T, || < r^ for all / . The proof is complete.

COROLLARY 6.12. — Assume X and Y are L^-spaces. Then
L(X,Y) has the 3.2.I.P. and L(X,Y*) is a P^-space.

Proof. - It follows by the proof of Theorem 6.11 that L(X,Y*)
is a Pi-space. L(X,Y**) has the 3.2.LP. by Theorem 6.11 and since
Y is range of a projection of norm 1 in Y** , we get that L(X,Y)
has the 3.2.I.P. The proof is complete.
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COROLLARY 6.13. —Assume X has the 3.2.I.P. and that Y
is a dual space with the 4.2.I.P. Then L(X,Y) has the 3.2.I.P.

Proof. - L(Y*,X*) has the 3.2.I.P. by Theorem 6.11. Let
{B(T,,r,)}^i be balls in L(X,Y) such that ||T, - T, || <r, + r^
for all /, /. Then there exists T E L(Y*,X*) such that || T - T,* || < ^
for all i . Hence also ||T* -T,**||<r, for all i . Since Y is a
dual space, there exists a projection P in Y** with ||P|| = 1 and
P(Y**) = Y . Then P • T*Jx ^ L(X,Y) and P • T*lx € 0 B(T,,r,).

Hence L(X,Y) has the 3.2.I.P.
In the complex case we can prove.

THEOREM 6.14. — Let X and Y be complex L^-spaces. Then
L(X,Y*) is a complex P^-space.

THEOREM 6.15. - Let X be a Banach space. Then C(X,Co) is
an M-ideal in L(X,C()) and C(X,Co) is isometric to
(X* © . .. ® X * ® • • • ) C o .

Proof. — Let ?„ be the M-projection
PJO^O-O^—^^O,. . . ) .

Then clearly —3————————
C(X,Co)= U L(X,PJCo)).

yi — 1

L(X,P^(<:o)) is an M-ideal in L(X,Co) by Proposition 6.1. Hence
C(X,Co) isan M-idealin L(X,Co). (See [1] or [12]).

Let Q^ be the projection Q^((^)) = (0 , . . . , 0 ,^ , 0 , . . .).
Then by Proposition 6.1 L(X,P^(Co)) ^ (X* © • • • © X*) „ by
the map S —> (Qi S , Q^ S , . . . , Q^ S) . The map S —> (Qi sF. . . ,
Q^ S , . . .) is an isometry of C(X, c^) onto (X* ® . . . © X* © . . .)^ .
The verification is easy and we leave it to the reader.

Remark. — I n [6] Hennefeld showed that C(Co,Co) is an M-
ideal in L(C() , Co) .
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7. The 3.2.I.P. for C(X,Y). Necessary conditions.

THEOREM 7.1 (Real case). - Let n = 3 or 4 . // C(X,Y) or
L(X,Y) has the n.2J.P., then X* and Y has the n.2J.P.

Proof. - We show the theorem in the case that C(X,Y) has
the n.2J.P. Let Z be a subspace of Y with dim Z = 1 . Then
X* is isometric to C(X,Z) C C(X,Y). Let P be a projection in
Y with I I P I I = 1 and P(Y) = Z . Then the map T —> P • T is
a projection in C(X,Y) onto C(X,Z) with norm 1 , so C(X,Z)
and also X* has the n.2J.P.

We have that C(X,Y) is isometric to A(Y*,X*). Let now Z
be a subspace of X* with dim Z = 1 and let e > 0 . Then there
exists a w*-continuous projection P in X* such that P(X*) = Z
and ||P||< 1 4 - e . Now Y is isometric to A(Y*,Z) C A(Y*,X*)
and T—> P • T is a projection in A(Y*,X*) onto A(Y*,Z) with
norm < 1 4- e . Since e > 0 is arbitrary, we get that Y has the
n.2J.P. The proof is complete.

COROLLARY 7.2. - C(X,Y) has the 4.2.LP. if and only if X
is an L^-space and Y has the 4.2.LP.

Proof. - Use Corollary 6.6 and Theorem 7.1.

COROLLARY 7.3. -Let Y be a dual space. Then L(X,Y) has the
4.2.LP. if and only if X is an L^-space and Y has the 4.2.LP.

Proof. - Use Theorem 6.11 and Theorem 7.1.

Remark. - Theorem 7.1 and the corollaries above can also be
generalized to the complex case.

PROPOSITION 7.4. - L(lj! ,1^) does not have the 3.2.I.P.

Proof. -Let x, = (1 , - 1 ,-1), ̂  = (1 ,1 ,-1), ̂  =(1,1,1)
and ^ = ( 1 , - 1 , 1 ) in 1^. Define G^ = co((0,1,0), (0,0,-1),
(-1,0,0)) and 64 = co((0,-l ,0), (0,0,-1), (-1,0,0)). Define
disjoint faces F^ and F^ of L(l^ , l f ) ^ by
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F, = {T : ||T||< 1 and Tx, = (1 ,0 ,0 ) }
and

FS = {T : ||T|| < 1 ,^3 = (0,0,-1) and T^ G G, for i = 2,4}.

Note that a T G F^ H F^ would have T(XI +^3) = (1,0,-1)
while TO^ + x^) has a negative first component. Hence F^ 0 F^ =0
since T(JC^ +^3) = T(x^ + x ^ ) . Assume F is a maximal proper
face of L(l<^ , l f ) i such that F^ C F . Then by Theorem 5.1

F = {T : || T|| < 1 and TjCo G G}

for some XQ G {;c^, . . . ,^4} and some proper maximal face G of
( l^ ) i . Since F^ C F it follows that x ^ = x ^ and ( 1 , 0 , 0 ) G G .
We have to consider four cases.

(i) G=co( ( l , 0 , 0 ) , (0,1,0), (0,0,1)). Define T E L ( 1 ^ , 1 ? )
by T^ = (0,0,1), T^ =(0 ,1 ,0) , T^ = (0,0,-1) and
Tx4 = (0,-1,0). Then T C F 0 F^ so F^ £ - F .

(ii) G =co(( l ,0 ,0) , (0,-1,0), (0,01)). The operator T in
(i) shows that F^ £ - F .

(iii) G = c o ( l , 0 , 0 ) , ( 0 , l , 0 ) , ( 0 , 0 , - l ) ) . Define TGL(1^, 1^
by T j C i = T j C 2 = T x 3 = T j ( - 4 = ( 0 , 0 , - l ) . Then T € F H Fa so
F^ £ - F .

(iv) G=co( ( l ,0 ,0 ) , (0 , - l ,0 ) , (0 ,0 , - l ) ) . The operator T
in (iii) shows that F^ £ - F .

By Theorem 1.2 we get that L(l^ , 1^) does not have the 3.2.I.P.
The proof is complete.

THEOREM 7.5. -Assume C(X,Y) or L(X,Y) has the 3.2.I.P.
Then either X is an L^-space or Y has the 4.2.LP.

Proof. — The two cases are similar so we will assume C(X,Y)
has the 3.2.I.P. Assume for contradiction that X is not an L^-space
and that Y does not have the 4.2.LP. By Theorem 7.1 X* and Y
have the 3.2.I.P. By Proposition 7.4 we can choose balls {B(fl,,l)}?^
in L(l^,1^3) such that | |a,-^.||<2 for all i and / and
H B(a,, 1) = 0 . Choose e > 0 such that
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,-('.. ̂ )^
Since X* has the 3.2.1.P. and not the 4.2.I.P,, there exists by
(12 ; Theorem 5.14] an isometry T : 1̂  —^ X** . By the principle
of local reflexivity [16], we can imbed T(l^) almost isometrically
into X . Hence we can find an operator S : 1̂  —^ X and a pro-
jection P in X such that

(1 -e)||^||<||S(x)||<(l +e)\\x\\

for all x <= 1^ , ||P || < 1 + e and P(X) = S(l^). Since Y has the
3.2.I.P. and not the 4.2.I.P. , we can find [12 ; Corollary 4.5] an
operator U : 1 ? —> Y and a projection Q in Y such that

(1 -e)| |^| |<| |U(x)| |<(l +e ) ||x||

for all x e 1^ , I I Q H < 1 + e and Q(Y) = U ( l ^ ) . Define a projec-
tion R in C(X,Y) by R(V) = Q . V . P . Then || R || < (1 + e)2 .
Let T, = U • a, • S~x • P € C(X,Y). Then

||T( -T, ||< 2(1 + e ) 2 ( l -<?)-1 .

Since C(X,Y) has the 3.2.I.P. we can find W € C(X,Y) such that
|| T, - W || < (1 + e)2 (1 - e)- * tor all i . Then we have

| |T,-R(W)| |= | | Q - T , - P - Q - W - P | | < ( 1 + e ) 4 ( l -e)-1.

Hence
|| (T, - R(W))|p(x)ll < (1 + e)^! - e)-1

and

l l f l ^ - U - 1 • R (W) |p (x ) -S | |= | |U- 1 - ( U - a , - S-1 - R(W)|ppy) • S||

OIU- 'HIKT, -R(W))lp(x)l l • U S ||

<(1 +e)6 (1 -e)-2.

This contradicts that n B(a, , (1 + e)6 (1 - e)~2) ¥= 0 . The proof
is complete.

COROLLARY 7.6. - C(X,Y) has the 3.2.I.P. if and only if X and
Y has the 3.2.I.P. and either X is an Li-space or Y has the 4.2.I.P.
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COROLLARY 7.7. - Let Y be a dual space. L(X,Y) has the
3.2.I.P. if and only if X and Y has the 3.2.1 P. and either X is
an L^-space or Y has the 4.2.I.P.

Remark. — By the method of proof used in Theorem 7.1 we
can also prove that if C(X,Y) is a real L^-space, then dim X = 1
or dimY = 1 . In fact, by Theorem 3.9 and Theorem 3.10 in [12]
X* and Y are L^-spaces, and by Theorem 7.5 X or Y* is an L^-
space. But then dim X < 2 or dim Y < 2 . Now Proposition 6.3
shows that dim Y = 1 or dim Y = 1 .

Remark. — We have made a detailed study of L(l^ , \\) . Some
of the results we obtained are the following:

1) If T e ^ L ( l ^ , l ^ , then T0,(l^) C ^(1^ .
From Theorem 5.2 and Corollary 3.6 we get :
2) L(l^ ,1^) is a CL-space.
From Theorem 5.1 we get that the unit ball of L(l^ , i f )

contains 32 maximal proper faces. Hence the unit ball of the dual
space contains 32 extreme points. From this we get :

3) L ( l ^ , l ^ ) does not contain any non-trivial L-summand.
Counting the extreme points of the unit ball of L(l^ ,\\) we get 90.
Since 90 is not divisible by 4 we get.

4) L ( l ^ , l ^ ) does not contain any non-trivial M-summand.
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