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INTERSECTION PROPERTIES OF BALLS
IN SPACES OF COMPACT OPERATORS

by Asvald LIMA

Let A be a real or complex Banach space. The closed ball in A
with center a and radius r is denoted by B(a, r) and the unit ball
B(0,1) by A,; A*is the dual space of A. A family {B(q;, r;)}ep
of balls in A is said to have the weak intersection property if

'_Ql‘ B(f(;),r,)#® in R or C for every f€ A¥. The notion
of weak intersection property was introduced by Hustad [8]. In the
real case this is equivalent to |lg; —g;ll<r; +r, foral i,jET.
Let » =3 be a natural number. We say that A is an E(n)space
if every family of n balls in A with the weak intersection property
has a non-empty intersection. In the real case this is the same as the
n.2. intersection property (n.2.1.P.) studied by Lindenstrauss in [15].
Lindenstrauss proved that a real space A has the 4.2.1.P. iff it has
the n.2.I.P. forall n iff A* isisometric to an L, (u)-space. Hustad -
[8] and Lima [13], [14] then showed that for a complex space, A is
an E(3)space iff A is an E(n)space for all n iff A* is isometric
to an L, (u)space. In the real case, the 3.2.1.P. does not imply the

42.LP. In fact, real L,(u)spaces have the 3.2.1.P., but not the
4.2.1.P.

We shall mainly study (real) spaces with the 3.2.I.P. and spaces
with an intersection property which is weaker than E(3). First, in
§ 1, we extend the following theorem of Hanner [5] to infinite dimen-
sional spaces : A real Banach space has the 3.2.L.P. if and only if for
every pair F,, F, of disjoint faces of A,, there exists a proper face
F of A, suchthat F, C F and F,C—-F.
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A Banach space A is said to have the extreme point intersec-
3
tion property (E.P.LP.) if .Ql B, ,r;)) #@ for every family

{B(a; , ri)}?'=1 of three ballsin A with the weak intersection property
such that B(a,,r;) N B(a,,r,) consists of one point. (Observe
that B(a,,r,) N B(a,,r,) consists of one point if and only if
lla, — a, I=* (@, — a,) is an extreme point of A,). Clearly every
E(3)-space has the E.P.I.LP. Real spaces with this property were studied
in [15]. In § 2 we generalize Theorem 4.7 in [15] to the complex case.
Thus we get that A has the E.P.I.P. if and only if | f(e)| = 1 for all
extreme points e of A, and f of A}.

The connection between the spaces with the E.P.LLP. and the
CL-spaces is studied in § 3. (A is a CL-space if A; = co(FU —F)
for every maximal proper face F of A,). We show that dual CL-
spaces have the E.P.IP., and if A* has the E.P.LP. then A is
“almost” a CL-space. (This is made precise in § 3).

In § 4 we show that if P is a bicontractive projection (i.e.
IPI<1 and ||[I —P||< 1) in a (real) CL-space, in an E(3)-space,
orinan L, (u)space, then 2P — I is an involutive isometry. This result
is a partial generalization of a theorem of Bernau and Lacey [2] and
the proof is very simple.

The last three paragraphes are devoted to the study of intersection
properties of spaces of linear operators, and in particular to the space of
all compact operators C(Y , X) from a real Banach space Y to areal
Banach space X . In Theorem 5.2 and Theorem 5.5 we show that if
X* and Y* are CL-spaces, then C(Y,X) has the E.P.LP. if and
only if every extreme operator T in the unit ball of C(Y , X) is nice.

(T is nice if T* maps extreme points of X} into extreme points of
Y)).

Corollary 6.6 and Theorem 6.8 together with Theorem 7.1 and
Theorem 7.5 show that C(Y, X) has the 3.2.I.P. if and only if Y
and X have the 3.2.1.P. and either Y is an L,-space or X has the
4.2.1.P. We also show that C(Y,X) has the 4.2.1.P. if and only if
Y isan L,-space and X has the 4.2.LP.

The results in § § 5,6 and 7 are strongly influenced by the work of
Lazar [10]. The results we obtain are generalizations of some of the re-'
sults in [10]. Also some results of Sharir and Fakhoury are generalized.
(See [20], [21], [22], [23], [24] and [27].)
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The notation we use is fairly standard. We write co(S) for the
convex hull of a set S, S for the closure of S and 9,C for the
set of extreme points of a convex set C .

If C isasetin A, the cone (C) is defined by

cone(C) = Ago AC .

The smallest face of a point x in a convex set C is given by

face(x)= {y €C:x=ay + (1 — a)z for some aE€<0,1] and some z €C}.

1. Spaces with the 3.2.1.P.

We will here generalize a characterization of Hanner [5] of spaces
with the 3.2.1.P. to infinite-dimensional spaces. Hanner’s theorem says
that a finite dimensional space has the 3.2.1.P. if and only if any two
disjoint faces of its unit ball are contained in disjoint parallel hyper-
planes. Before we state the theorem we need some definitions and a
lemma.

If x€ A,, face(x) means the smallest face of A, containing

x . Forany x € A, write C(x) = cone [face ﬁ%ﬂ)] for x #0

and C(0) = (0). Following [1] we define an ordering < on A as
following :

z<x means |lx|l=lz|l+llx—-2z]|.

LemMA 1.1. — Let A be a real or complex Banach space and let
X,y € A. Then thereexist z,u,v € A such that

x=z+u lxli=IlzIll+lull
y=z+v lyll=lzlIl+1lvll
and Cu) N C) = (0).

Proof. — Define
C={z€A :z<x and z<y}.
Let (z,) be a maximal totally ordered subset of C. By Lemma 2.8

4
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in [1] (z,) has a least upper bound z and (z,) converges to z.
Define

u,=x -z, and v, =y —2z,.
Then u = limu, and v = lim v, exist. Clearly we have

x=z+u lxll=lzll+ul

y=z+v lyll=lzll+lvll.

Suppose w € C(u) N C(v). Then for some a>0, oaw<u
and aw < v. Hence
z,<z<z+aw<x
and
2, <z<z+aw<y

forall . Since (z,) is maximal totally ordered and z is its least upp-
er bound, weget z =z + aw . Hence w =0 and C(u) N C@) = (0).
This completes the proof.

A real Banach space A is said to have the R;,-property if for
every pair x, y of points in A, there exist z,u,v € A such that

x=z+u, lxll=IlzIl+lul,
y=z+v, llyll=lzll+lvl,

and
lx —yll=llu—vll=1llull +lv].

THEOREM 1.2. — Let A be a real Banach space. The following
Statements are equivalent :

(i) A* has the 3.2.1.P.
(ii) A has the 3.2.1P.
(iii) A has the R; ,-property

(iv) For every pair F,, F, ofdisjoint proper faces of A, , there
exists a proper face F of A, such that F, CF and F, C —F.
(v) For every pair x,y of pointsin A such that 1=|x|=|yll

and face (x) N face (y) =@, there exists a proper face F of A,
such that x €F and y € — F.

(vi) For every pair x,y ofpointsin A such that 1=|x||=]|yll
and face (x) N face (y) = @, we have ||x — y|| =2.
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Proof. — (i) <= (ii) <= (iii) is proved in [12].
(iv) == (v) < (vi) is trivial
(vi)= (iii). Let x,y € A and let z,u,vE A be as in Lemma

1.1. Since C(u) N C(v) = (0), we have
face |u||) (nvu) ’

o] lll'l'—"—rl‘lll—Z But then |lu — vl =[lull + llv].

(iii) == (iv). Let F, and F, be disjoint proper faces of A, .
Let Q= {(x,y):x€F, and y €F,}. We order & by writing
(x,y)<(u,v) if and only if x € face (u) and y € face (v). Since
A has the R, ,-property and F; N F, = @, we get that [|x —y||=2
for each (x, y) € 2. For each (x, y) € Q define

K(x = ={e€A¥:e(x)=1 and e(y)=—1}.

Then K ,) #®, and K ,) is a w*-compact face of A}. It
follows that if (x, y) < (u, v), then

Kix,y) 2 Koy -

Hence {K,},cgq isdirected by inclusion. Let

K= n K,

weEN

Then K is a non-empty w*-compact face of A¥. Let e € K N 9, At
and let F= {z€ A, :e(z) =1}. Then F is a proper face of A,
and F, CF and F, C — F. The proof is complete.

Remark. — For spaces with dim A < oo the equivalence of (ii)
and (iv) was proved by Hanner in [5].

By an easy application of the Hahn-Banach theorem it follows
that Theorem 1.2 (iv) is equivalent to the statement in the Abstract,
ie. if F, and F, are disjoint faces of the unit ball A, , then there
exists a hyperplane H such that F, CHand F, € — H.
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2. The extreme point intersection property.

If A is a real Banach space, write I' = {* 1} and if A is
complex write I' = {§ € C : |0 | = 1}. The next result is well known
in the real case.

THEOREM 2.1. — Let A be a real or complex Banach space, let
e€d, A, , let S={f€AT¥ |Ifll=f(e)=1} andlet ®: A —> C(S)
be defined by ®(x)(f) = f(x). Then the following statements are
equivalent :

() I fe)l =1 forall fE 3, A¥.
Gii) 9, A* CTS.

(iii) For every x € A, there exists 0 € I" such that
lx +@ell =llxIl +llell.

(iv) ® is an isometry into.

Proof — (1) = (ii) = (iv) == (iii) is trivial.

(iii) == (ii). Suppose for contradiction that 0, A’l" ¢TI.S. By
Milman’s theorem we then have A¥ ¢ co(I"-S) (w*-closure). Let
f € A¥ be such that f€& ¢co(I' -S). By the Hahn-Banach theorem
there exists x € A such that

Re f(x) > sup {Reg(x) : g€ coT - S)}-

-Let § €' be such that [[x + fell =(lx|l + 1 and let g € 9, A}
be such that ||x||+ 1 =g(x +0e). Then | x|l =g(x) and
1 =0g(e). Hence g €T - S and

g(x) =llx|l = Ref(x) > Reg(x) = [Ix|l.

This contradiction shows that -9, A} € I" - S. The proof is complete.

We say that A has the extreme point intersection property
(EP.LP. in short) if for every family of balls {B(g;,r;)};_, in A

with the weak intersection property and such that B(a,,r,) N B(a,,r,)
consists of one point a, then we have a € B(a;, r3) .

A is said to have the restricted E.P.IP. (R.E.P.1.P.) if the above
holds wheneverall r;, = 1.
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The next result is an extension to the complex case of Theorem
4.7in [15].

THEOREM 2.2. — Let A be a real or complex Banach space. The
following statements are equivalent :

(i) A has the E.PILP.

(ii) A has the REPILP.

Gii) | f(e)l =1 forall e€0,A, andall f€ 0, A¥.

(iv) For all e€0,A, and all x € A, there exists § €T
such that ||x + fell = |Ix|| + 1.

(v) For all e € 0, A, and every maximal proper face F of A,,
there exists 0 € I such that 0e € F .

Proof. — (iiil) < (iv) follows from Theorem 2.1 ; (i)= (ii)
and (v)= (iv) are trivial. It remains to prove (ii)=— (iv)== (v)
and (iii)= (i).

(ii) = (iv). Suppose for contradiction that there exist x € A
and e €9,A, such that ||[x + fel|l <|lx|]| + 1 forall 6 €T". We
may assume ||x || = 1. Since the map 6§ —> ||x + Oe|| is uniformly
continuous, we get

s=sup{llx +0el]l:0€ET}2.

Let r=3 —s>1. Thenfor 6 €T
lrx +0ell < Q2 —=s)lix]l +llx +6e] <2.

The balls {B(0,1), B(zx +e,1), B(rx — e, 1)} has the weak
intersection property. In fact, if g € A¥, let u = rg(x) and v=g{e) .
Then since |lu + O0v|| <2 for all § €ET', er have |u| + |v| <2
and |v|<1. Hence w€BO,1)NBu+v,1)NBu—-wv,1)
where

(u i |ul<1

u
— if Ju|>1.
ful

If yEB@x +e,1)NB(@x —e, 1), then

1 1
e=5(e+rx—y)+5(e—rx+y)
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is a convex combination in A,. Since e€9d,A,, we get
e=e+rx—y, sorx=y. Hence

{rx}=B(x +e,1)NB@rx —e,1).
By (i), m € B(0,1) so r<1. This contradiction shows that
(ii) == (iv).
(iv)== (v). Let e€0d,A, and let F be a maximal proper
face of A;. Foreach x €F, let
={0€Tl :|x + Bell =2}.
,#¢ by (iv) for each x€F. If x,,...,x, €F, then

1 n
x=—% x,€F and T, C A I'... Hence {I' }Lcr has the
n ;= i=1 %

finite intersection property. Since each I', is compact, there exists
9 € QF I'.. Then co({fe} U F) is a convex subset of the sphere
X

of A, . Since F is maximal, we get e € F .

(ili)== (i) Suppose {B(a;, ,)} ., has the weak intersection
property and that
' B(a,,ry) N B(a,, ry) = {a}.

Then (r, + r,)a =rya, + rya, . By translation we get

BO,r,)NB(@, —a,,r;)= {a—a,}.
We have '

a—al—-(r )(az— )
1

Hence e=rj'(a—a,)€09,A,. Let g€ 0,At. Then we have
B(O,rl)nB(g(az“al);rz)nB(g(a3_al),r;;);&(b-

By (iii) |g(e)] = 1. By rotating if necessary, we may assume
gla, — a,) =r, +r,. Butthen

BO,r)) N Blgla, —ay),r) = {r}.
Hence r, € B(g(a; — a,),r;). Thus
=gy —a) —r,| =lglay —a,) —gla—a,)l =lgla; —a)l.

It follows that a € B(a;,r;). The proof is complete.
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Remarks. — a) Complex L,-spaces have the E.P.LP. by [12 ;
Corollary 6.8]. Preduals of complex L,-spaces have the E.P.LLP. by
Theorem 4.8 of Hustad [8]. (See also [13] and [14]). Hence Theorem 1
of Hirsberg and Lazar [7] is an easy consequence of Theorem 2.1
and Theorem 2.2. Theorem 1 of [7] says that if A is predual of a
complex L,-space and e € 9, A, , then the map & of Theorem 2.1
is an isometry. (See also [9]).

b) Suppose now that A is a complex predual of an L,-space.
Suppose x € A and [[x|I<1. If x¢9,A,, then |f(x)| <1 for
some f&€ d,A¥. An application of the selection theorem [19] then
shows that there exists a y € A with y # 0 such that ||x — 0y || <1
forall § €T . Hence for x € A with |[x|| <1, wehave x ¢ 9, A,
ifand only if ||x — 6y || <1 forsome y # 0 andall 6 €T .

c) Suppose A is a C*-algebra with identity I. If A is com-
mutative, then it is known that |f(I)| =1 forall f€ 9, Af. Assume
conversely that |f(I)| =1 forall f€ 9, Af. Then by Theorem 2.1
and the Remarks following Corollary 1.6 in [18], we get that A is
commutative. In particular A is commutative if and only if A has the
E.P.LP.

3. CL-spaces and semi L-summands.

Let A be a real or complex Banach space. A closed subspace J
of A is called a semi L-summand if for every x € A, there exists a
unique y €J such that ||[x — y|l =d(x,J), and moreover this y
satisfies [Ix || = Iyl + llx — y 1.

Semi L-summands were studied in [12].

THEOREM 3.1. — Let A be a real Banach space and let e €9,A, .
Then span(e) is a semi L-summand if and only if |f(e)| =1 for all
fE€ o, AT.

Proof. — Assume first that span(e) is a semi L-summand. Then
by Corollary 6.8 in [12] we get |f(e)| = 1 forall f€ 3, A¥. Next,
if |f(e)l =1 forall f€ o, A}, define

={f€AY:fled=Ifll=1}. _
From Theorem 2.1 we get A’l" =co(FU—F). Let f€ A and define
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a=inf {f(x) : x € F},

b=sup {f(x): x €EF}
and

1
=—(a+be-
g=7 ( )
Then g € span(e) is the unique element we are seeking.

Remark. — Theorem 3.1 is false in the complex case. Assume A
is complex and that A* isisometric to an L, (u)-space. Let e € 3, A,
and assume span(e) is a semi L-summand. By [12 ; Theorem 6.14]
span(e) is a semi L-summand in A**, so e € 9, A¥*. It is known
that A** is isometric to C(S) for some compact Hausdorff space S
([26]). Hence we may assume e = 1 € C(S). Either S is dispersed
or S contains a perfect subset [9]. In both cases it is easy to see that
(ii) in Theorem 5.6 of [12] is not fulfilled. This contradicts that
span(e) is a semi L-summand.

ProrosITION 3.2. — Let A be a real Banach space and let
e € 0, A, . The following statements are equivalent :

(i) span(e) is a semi L-summand.

@) If lIxll =1 and e & face (x), then there exists a proper
face F of A, suchthat x €F and e € — F .

(iii) If G isaproper faceof A, and e & G, then there exists a
proper face F of A, such that GC F and e € — F .

Proof. — Similar to the proof of Theorem 1.2 using Theorem 3.1
and Theorem 2.1. See also Theorem 4.7 in [15].

We say that a real Banach space A is a CL-space if
A, = co(F U — F) for every maximal proper face F of A, . A isan
almost CL-space if A, = co(F U —F) for every maximal proper face
F for A, .

THEOREM 3.3. — Let A be a real Banach space and let F be a
maximal proper face of A,. Then A, = co(F U —F) if and only if
for every x € A with ||x|| =1 and face(x) N F =@, we have
x € —-F.
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Proof. — This is a special case of Corollary 2.10in [1].

THEOREM 3.4. — Let A be a real Banach space. Let F be a
maximal proper face of A, and let f € 0, A} be such that f=1
on F. The following statements are equivalent :

(i) A, =co(FU —F).
(ii) B(O,1 —€) €S co(FU — F) forevery e €<0,1>.

(iii) span(f) is a semi L-summand.

Proof.- — (i) <= (ii) follows from the Tukey-Klee-Ellis theorem
[4]. (@)= (iii). Similar to the proof of Theorem 3.1. (iii) == (i)
This follows from the next theorem.

THEOREM 3.5. — Let A be a real or complex Banach space and
let e€d,AY. Let F={x€E€A:|xll=1=ex)}. If span(e)
is a semi L-summand then F # @ and A, = o[ - F).

Proof. — Assume A is real. (The proof in the complex case is
almost identical to the real case). Let S = ¢co(F U — F). By applica-
tion of the Bishop-Phelps theorem [3], it follows that S # @ . We shall
prove S=A,. Assume for contradiction that there exists an
x € A,\S. By Hahn-Banach there exists an f&€ A* with [[f|l =1
such that

Ixll = fx)>sup {f(y):y €S}.

By Theorem 3.1. and Theorem 2.1 we may assume | f+ el = 2.
Choose & > 0 such that

(f+ 8e)(x) >sup {(f+ be)(¥): y €S}.

By the Bishop-Phelps theorem [3], there exists g € A* such that
lgllh=lf+8ll=1+8, |[(f+8)—gll<sd and g(z)=Igll
forsome z € A, . We may also assume

g(x)>sup {g(y) : ¥y €S}.
We have

lg —dell <Ifll+8=If+dell=1lgll.

This shows that C(g) N C(e) # (0) . Hence for some A # 0, we have
since span(e) is a semi L-summand,
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Hghh=1Aell +1lg — Aell-

Hence Xe(z) =|A| and (g — Ne) (z) = |lg — Ae||. It follows that
z €S and

lgll=gx)>sup{g(y): yE€St=g@)=llgll.

This contradiction shows that A, = S. The proof is complete.

Remark. — Theorem 3.5 improves Theorem 4.8 (b) of
Lindenstrauss [15].

COROLLARY 3.6. — Let A be a real Banach space. The statements
below are related as follows (i)== (ii) = (iii) :

(i) A* isa CL-space.
(ii) A* has the E.P.LP.

(iii) A is an almost CL-space.

Proof. — (i) = (ii) follows from Theorem 2.2, and (ii) == (iii)
follows from Theorem 2.2, Theorem 3.1 and Theorem 3.5.

Remark. — In [12] we proved that every space with the 3.2.1.P.
is a CL-space.

From Theorem 2.2 we get the following corollary.

COROLLARY 3.7. — Let A be real or complex and let dim A < oo,
Then the following statements are equivalent :

G A, = co (T - F) for every proper maximal face F of A, .
@) I f(e)l =1 forall e€9,A, andall f € 0, A} .
(iii) Af = co(" - F) for every proper maximal face F of A¥}.

4. Bicontractive projections.

In this section P shall be a projection in a real or complex Banach
space A. U shall denote the operator U=2P —I. Then U is

1
involutivei.e. U> =1 and P = > I+ V).
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We say that P is bicontractive if ||P||<1 and [ I-P|<1.
Clearly P is bicontractive if U is an isometry.

In [2] Bernau and Lacey showed that in L,-spaces, I<p<o,
and in preduals of L,-spaces P is bicontractive if and only if U is an
isometry. We will prove this result for a class of spaces which contains
L,-spaces and preduals of L,-spaces.

The following theorem is well known and easy to prove, so we
only state it.

THEOREM 4.1. — Let P be a projection in a real or complex
Banach spaces A and U = 2P — 1. The following statements are
equivalent :

(i) U isan isometry
(i) U* isan isometry
(iii) U(A,) € A,

(iv) U*(AY) C A}

(v) U*(@0, A¥) C A}

LeMMA 4.2. — Assume P is a bicontractive projection in a real
or complex Banach space A . Assume e € 0,A, and that span(e)
is a semi L-summand. Then ||U(e)|l = 1.

Proof. — By Theorem 5.6 in [12], we can write Pe =te + f
where t€C, fEA and ||[f+0ell=Ifll+16| for all § €EC.
Then we have

1 =llell=1IPell = |t] + 1 fIl,
so

I—=1el211l. (4.1)
We also have

I=llell=lle-Pell=lI(¢—De+fll=lt=11+IflIZ1 -t +fll,

SO
ler=1r0. (4.2)

Since P is a projection we get

te + f=Pe=Pe=P(te + f) = t’e + tf + Pf.
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Hence
NAIZNPAI=1e (A —)e+ A =) f =1 FULID 11— = 1HILIDA—I2]),

SO

[N = el —(e]). 4.3)
Moreover we have
WAZNf=PAl=Mef+ec—Dell=1e (A AN+HIT =D [ I+ 1=12]),

SO
A —=1eDIfA=Q —1eniel. (4.4).

If |[¢/=1. then f=0and t=1by 4.1). If t =0, then f=0
by (4.2). Assume next that 0 < |7|<1. By (4.1) and (4.3) we
get ||fIl=1—1¢] and by (4.2) and (4.4) we get ||f]l = |¢].

1
Hence || fll=it|= 5 By the inequality preceeding formula (4.2)

1 1
weget|1—t|=1—|t|=~2~,sot=E.Thusweget
1
Pe = — e+—f—).
2 (WAl
Hence
—e if |t]|=0
Ue = e if [t =1
oo
— if 0<|t|<1.
( 171

The proof is complete.

THEOREM 4.3. — Let A be a (real) CL-space and let P be a
projection in A . Then P is bicontractive if and only if U is an
isometry.

Proof — Assume P is bicontractive and let x € A. Let F be

U(x)
UGl
be such that e =1 on F. Then span(e) is a semi L-summand by
Theorem 3.4. By Lemma 4.2 we get

a maximal proper face of A, such that €F. Let e€0, A}
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IUx || = e(Ux) = U*e(x) < l|U*ell - lIx |l = lIx|l-

Hence U(A,;) € A, and U is an isometry. The proof is complete.

The same method of proof gives the next two results.

THEOREM 4.4. — Let A be a real or complex Banach space such
that span(e) is a semi L-summand for all e € 0, A¥. Then a pro-
jection P in A is bicontractive if and only if U is an isometry.

THEOREM 4.5. — Assume A or A* is isometric to an L, (u)-
space. Then U is an isometry for every bicontractive projection P
in A.

Remark. — Theorem 4.5 is contained in Theorem 2.1 and
Theorem 2.8 of Bernau and Lacey [2].

The last result in this section shows that the M-projections and
the L-projections are the most regular bicontractive projections. A
projection P issaid to be an L-projection if

lxll = [IPx || + |lx — Px||
forall x € A and P issaid to be an M-projection if

[lx| = max(IPx |l s llx — Px|)
forall x € A.

THEOREM 4.6. — Let P be a projection in a real or complex
Banach space A . The following statements are equivalent :

(i) P isan M-projection .

(ii) P* isan L-projection .
(iii) P*e = e or O forall e € 0, A} .
(iv) U*e =e or —e forall e € 0, A} .

Proof. — (i) = (ii) is proved by Alfsen and Effros in [1].
(i) = (iii) = (iv) is trivial.
(iii) = (ii). Let x € A* with |x||=1.

Choose a net (x,) in co(d,A¥) such that x, —> x(w*). Write
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Xo= Y Ne;, where \, >0, » N\ =1 and ¢ €9,A}. Let

i=1 i=1

I={i:P*, =¢;) and J = {i : P*¢;, = 0}. Then P*x, = Y N\ ¢
i€l

and x, — P*x, = Y. N . If llx, |l = 1 then clearly
i€l

L= llx, Il = 1P*x Il + llx, — P*x Il
If lIx, <1, choose f, € A,, such that

12 f,0e) = llxg 2.
Then we have

DN =P |l = £, (P*x,)

iel

and

TN lx, - Pl > £, (x, — P¥x,).

i€J
Hence

S 2
1= 2 N =P x|l + llx, — P*x Il = £,0x,) = lIx, II° .
i=1

Since || || is w*lower semi-continuous, we get that [x || — x|l = 1.

P* is w*-w* continuous so
P*x,— P*x and x, — P*x,— x — P*x(w*).

Hence [x, I>— 1 and
L= x| <IP*x |l + llx — P*x || <Um || P*x, || + lim |Ix, — P*x, [I<1

$0
L=lxll =IP*x|l + |lx — P*x]|.

The proof is complete.
5. Nice operators and the E.P.I.P.

We will now consider A(X*,Y) = the operators from X* to
Y which are w*-norm continuous on X} .
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THEOREM 5.1. — Let F be a maximal proper face of the unit
ball of A(X*,Y). Then there exist x € 0, X} and a maximal proper
face G of Y, such that

F={T€EAX*,Y):ITII<1 and Tx € G}.

Proof. — Consider the ordering < on F where T<S if and
only if T € face (S). Then (F,<) isa directed set. Since each TE F
is w*-norm continuous on X} we get that K; = {x EX¥ :||Tx|l = 1}
is a non-empty, w*-compact union of faces of X¥.If T<S, then
S=aT+ (1 —-—a)U for some o€ <0,1] and some UEF. It

1
follows that T < S implies Kg € K; . Since S < 3 (S+ T) and

1
T< By (S+T), {Kilregp is directed by inclusion. Hence

K = TQF K #@® and K is a w*-compact union of faces. From

[25] we get KN, X¥+# @ . Choose x €K N, X¥. Then it
follows that if T<S, then Tx € face (Sx). Hence we get that
ng face (Sx) is a proper face of Y, . Let G be a maximal proper

face of Y, such that sLe)F face (Sx) € G . Then clearly

FC{T:|ITII<1 and Tx € G}
and since the latter set is a face, we get

F={T:lITHI<1 and Tx € G}.

The proof is complete.

THEOREM 5.2. — Assume Y has the EPIP.. If every
Te€d, AX*,Y), satisfies T(@,X}¥)C0,Y,, then AX*,Y) has
the EPILP.

Proof. — Let T€ 0, A(X*,Y), andlet S€ A(X*,Y). Choose
x € 0, X¥ such that ||S]| = [ISx||. Let G be a maximal proper face
S(x)
IS
E.P.IP., we get by Theorem 2.2 that 6Tx € G for some 6 €I .
Hence

IS+ UTH=USxI + 16Tx | =[I(S+OT)(x)Il =IIS+6T|
and A(X*,Y) hasthe E.P.I.P. by Theorem 2.2.

of Y, such that

€G. Since Tx€9,Y, and Y has the
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The next lemma is an easy consequence of Theorem 2.1. We
omit the proof. '

LemMa 53. — Let x€ A with |xll=1. If x€TI'-G for
every maximal proper face G of A,, then x €03,A, .

LEmMMA S5.4. — Let x € 0,X¥ and assume span(x) is a semi
L-summand. Let G be a maximal proper face of Y, . Then
F={Te AX*,Y):||ITI<1,Tx € G} is a maximal proper face
of AX*,Y), .

Proof — Clearly F is a face. By Theorem 5.1 there exists
z € 0, X¥ and a maximal proper face H of Y, such that
FC{TEAX*Y):|TI<1, Tz € H}.

Let K={ueX:lull=1=xw)}. By Theorem 3.5 we have
X, =co( -K). Foreach u € K, define T, € A(X*,Y) by

T, @) =v@)-y

where y € G is a fixed element. Then ||T,ll<1 and T,(x) =y € G.»
Hence we have T,(z)=z@u)-y€H, ie. |z@)|=1. If
u,,u, €K, then

(27

Hence by rotating z if necessary, we may assume z =1 on K. But
then z =x sinc X, = co('-K). From the argument above it also
follows that G CH, so G = H. The proof is complete.

1 =

1 1
=3 lzu,)| + 5 lz(uy)l.

THEOREM 5.5. — Assume span(e) is a semi L-summand for
every e€0,X¥. If AX*,Y) has the E.PILP., then every
Te o, A(X*,Y), satisfies T(0,X¥)Cd,Y, .

Proof — Let T€ 9, A(X*,Y), andlet x €9,X¥. Let G be
a maximal proper face of Y, and define

F={S€e AX*,Y): lISI<1 and Sx € G}.
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F is a maximal proper face of A(X*,Y), by Lemma 5.4. Hence
by Theorem 2.2, 6T € F forsome 8 €T', so 6Tx € G. By Lemma
53 Tx €0,Y, . The proof is complete.

COROLLARY 5.6. — Let X and Y be real or complex spaces
such that X* and Y (or Y*) are L,-spaces. Then the maximal
proper faces of A(X*,Y), are exactly the sets

{TEAX®:Y):ITII<1, Tx € G}

where x € 0, XY and G is a maximal proper face of Y, . Moreover
A(X*,Y) has the EPIP. if and only if T(0,X§)< 0,Y, for all
Te€ o, AX*Y), .

Remark. — If X and Y are real spaces, then Corollary 5.6.
remains true if we only assume that Y and X* have the E.P.LP.

Remark. — Since C(X,Y) is isometric to A(Y*,X*) by the
map T —> T* (the adjoint operator), Corollary 5.6. could also
have been formulated for C(X,Y).

Let TEC(X,Y),. If both X* and Y* are CL-spaces, then
the statements below are related as follows :

(i) = (i) == (iii) = (iv)
(i) For every maximal proper face G of Y, , there exists a
maximal proper face F of X, such that T(F) C G.

(ii) For every y €0,YF, there exists a maximal proper face
F of X, such that

1 =T*y(x)=y(Tx) forall x€F.
(i) T*(@,Y§) € o, X}
(iv) Te9,C(X,Y), .
(The proof is an easy application of Theorem 3.5).

We will now give a partial extension of the results above to
LX,Y).

THEOREM 5.7. — Assume X* has the EPIP. If every
T€d,L(X,Y), satisfies T@O,Y})Cd,XF, then L(X.Y) has
the E.P.LP.
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We will need a theorem of T. Johannesen. Since the proof
is published in Norwegian, we will indicate the proof.

THEOREM 5.8 (T. Johannesen). — Let K be a compact convex
set and let F be a subset of K such that i) F is aunion of faces of
K and ii) K\F is a countable union of compact convex sets. Then
FNo,K+0o.

Proof. — We may write K\F = Gl C, where C,CC, .,
n=

for all n and every C, is compact and convex. Let f,, be the charac-
teristic function to C, . Since F is a union of faces it follows that
if x €F and p is a probability measure on K representing x ,
then u(F)=1. Hence f,=0 on F. (See [29 ; p. 27]) If
FN3,K=¢, then lim inffn =1 on K by [29 ; Th. 1.4.10.].
This contradict lim inff,, =0 on F, so weget FN3,K#0Q .

Proof of theorem 5.7. — Let T € 3, L(X,Y), .

Clearly if suffices to show that (iv) in Theorem 2.2 is satisfied
for a dense subset of L(X,Y). The operators in L(X,Y) such that
the adjoint operator attains its norm on Y§ are dense [28]. Hence it
suffices to show that ||T + 0S| =1 + ||S| for some 6 €I' when

SeL(X,Y) satisfies [[S||=|IS*y|l for some y€Y¥. Let
F={y€eYf:IISI=S*yl}. By Theorem 58 FNa,Y¥+0®,
so [ISI=IS*yll for some y €9,Y¥. Since T*y €3, X¥ and

X* has the E.P.LP. we get ||S+0T| =|S*y +0T*y||=1+|S|
forsome 8 € I'. The proof is complete.

Remark. — In this section we have tried to generalize results of
Blumenthal, Lindenstrauss and Phelps [22] and of Sharir [21]. Other
results in this direction is in [10], [20], [23], and [24].

6. The 3.2.IP. for C(X,Y). Sufficient conditions.

- We use the following notation.

L(X,Y) = the Banach space of all bounded operators from X
to Y.
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C(X,Y) = the Banach space of all compact operators from X
to Y.

A(X*,Y) = the Banach space of operators from X* to Y which
are w*-norm continuous on X¥ .

It is well known that C(X,Y) = A(Y*,X*).

PROPOSITION 6.1. — Let Q be an M-projection in Y. Then
T—> Q-T isan M-projectionin C(X,Y), in L(X,Y), and in
AX*Y).

Proof — Clearly

max (| QT I, IT = QTIN < ITI

for all bounded operators. Fix T € L(X,Y), let € > 0 and choose
x € X with ||x|l =1 such that || Tx|| > ||T|| —e. Then

ITI—e<ITx|l = max(IQTx I, I Tx — QTx 1)
< max(|QTI,IT - QTIN<ITI.
Hence |ITIl = max(IQTII,IIT — QTIl).
The proof is complete.
COROLLARY 6.2.
LX, 1) xX*e-.-o X*)n"
AX* 1) =Xe---8X) .
12
PROPOSITION 6.3. — Let P be an L-projection in X . Then
T—> TP is an M-projection in L(X,Y) and in C(X,Y). If P
is'an M-projection in X, then T—> T -P* is an M-projection
in A(X*Y).
Proof. — We have for T € L(X,Y),
NTH = IT*|| = max (IP*T*||,I T* — P*T*|) = max (| TP , I T — TP}

by Proposition 6.1. From this the conclusion easily follows.

COROLLARY 6.4. — L(17,Y)=(Y® - ---® Y)l,, .
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Remark. — Corollary 6.2 and Corollary 6.4 are well known and
are used in [10] and [17].

THeorREM 6.5 (Real case). — Let n =3 or 4. Assume X has
the n2.IP. and that Y has the 4.21P. Then A(X*)Y) has the
n.2.I.P.

Proof. — Let T,,...,T, € A(X*Y) and let r,,...,r,>0
n
such that || T, — Tj I<r, + r; forall i and j. Then S = .L_Jl T, X¥)

is norm-compact in Y. Let € > 0. By Theorem 3.1 in [11], there
exists a subspace Z of Y such that Z =17 for some m and
dix,Z)<ellx|| forall x €S. Let Q be a projection of norm 1
in Y such that Q(Y) =Z. Then (T, — QT;|ll<e for all i and
QT, e AX*Z)=(Xo...® X)lm . This last space has the n.2.LP.

z

by Theorem 4.6 in [15]. Hence A B(QT,, 7, + ) # ¢ in ACX%Y).
1= :

n

But then 'ﬂl B(T;,r; +2e) #® in AX*)Y). By Lemma 4.2
i=

in [15], A(X*,Y) has the n.2.1.P. The proof is complete.

CoOROLLARY 6.6 (Real case). — Assume that Y is an L,-space
and that X has the n2IP. (n =3 or 4). Then C(Y,X) has the
n2.LP

THEOREM 6.7 (Complex case). — If X and Y are preduals of
L,-spaces, then A(X*)Y) is a predual of an L,-space. If Y is an
L,-space and X is a predual of an L,-space, then C(Y,X) is a predual
of an L,-space. ”

Proof. — Proceed as in the proof of Theorem 6.5 and replace
[11 ; Theorem 3.1] by [18 ; Theorem 1.3] and [15 ; Lemma 4.2]
by [8 ; Theorem 4.8].

THEOREM 6.8 (Real case). — Assume Y has the 3.2.IP. and
that X has the 4.2.IP. Then C(Y,X) has the 3.2.1.P.

Proof. — Similar to the proof of Theorem 6.5.

THEOREM 6.9 (Real case). — Assume X* is an L,-space and that
Y has the 3.2.IP. Then A(X*)Y) has the 3.2.I.P.
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Proof — AX*Y) C AX*Y**). AX*Y**) = C(Y*,X) has
the 3.2..LP. by Theorem 6.8. and the operators with finite rank are
dense. Assume {B(T;,r;)}—, are balls in A(X*)Y) such that

i’
T, — T;ii<r,+r; forall i and j. Let € > 0. Then there exists
S € AX*Y**) such that [T, - SII<r,+e( =123) and dim
range S <. Choose x,,...,x, €X} such that

p
T,(X$)C U B(T;(x;),¢) forall i.
I:

Let E=span {T;(x;):i=123;j=1,...,p} +range SCY**.

By the “principle of local reflexivity” [16] there exists an operator
U:E— Y suchthat U=1on YNE and

A-elyl<IUyI<d+e)llyll forall y €E.

Then U-S€ AX*Y) and if x € X} and T;(x) € B(T,.(x,.) ,€),
then

I1Tx —U-Sxl| < IT,x — Tx;ll + IT;x; — U - Sx|i
S e+ [|UT;x; — USx|l

e+ (1 +e)llTx; — Sx||

N

<e+ (A +e)ITx — Tx; Il +IIT;x — Sxi]
<e+(l+e)et+r +e]

=r, +e( +3+ 2e).

?

3
By Lemma 4.2 in [15], 'Qx B(T;,r;) # @ in A(X*)Y). The proof

is complete.

Remark. — 1) The proof of Theorem 6.9 uses the principle of
local reflexivity in the same way as Lindenstrauss and Tzafriri use
it in the proof of Theorem 1.e.5in [17].

2) Theorem 6.5 was proved by Lazar [10] in the case that X is
a simplex space. Fakhoury [24] has proved Corollary 6.6 in the case
n=4. He also considered spaces of weakly compact operators.

Using Zorn’s lemma, we can prove the following algebraic selec-
tion theorem.
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THEOREM 6.10. — Let E and F be Hausdorff locally convex
vector spaces. Let K C E be a convex set with the Riesz decompo-
sition property and let F° be the family of all compact convex non-
empty subsetsof F. If ¢ : K—> F° isa convex map i.e.

Ap(x) + (1 =N () Spx + (1 =N y)

for all x, y €K and all X\ € [0,1], then there exists an affine func-
tion Y : K—> F such that Y (x) € p(x) forall x €K.

We omit the proof. We only note that we must prove that there
exists a minimal affine map n : K— F° such that n(x) C ¢(x)
forall x € K. That n is affine means that

ME)+ (1 =) =n0x + 1A -N)y)
forall x,y €K andall A € [0,1].

THEOREM 6.11 (Real case). — Let n =3 or 4. Let X be an
L,-space and assume Y is a dual space with the n.2.1P. Then L(X,Y)
has the n.2.LP.

Proof. — Let {B(T;, r;))}=, be n balls in L(X,Y) such that
NT, — T;I<r,+r, forall i,j. Let F be a maximal proper face
of X,. Define ¢ : F — 2¥ by

o) = N BT,(),7).

Then ¢(x) # @ and ¢(x) is a w*-compact set for each x. ¢ is
convex, so ¢ has an affine selection ¢ by Theorem 6.10. Extend
Y to a linear mapT: X—> Y. Then T is bounded and
IT — T; Il <r; for all i. The proof is complete.

COROLLARY 6.12. — Assume X and Y are L,-spaces. Then
L(X,Y) has the 3.2.LP. and L(X,Y*) isa P,-space.

Proof — 1t follows by the proof of Theorem 6.11 that L(X,Y*)
is a P,-space. L(X,Y**) has the 3.2.1.P. by Theorem 6.11 and since
Y is range of a projection of norm 1 in Y**, we get that L(X,Y)
has the 3.2.1.P. The proof is complete.
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COROLLARY 6.13. — Assume X has the 3.2.1.P. and that Y
is a dual space with the 4.21P. Then L(X,Y) has the 3.2.IP.

Proof — L(Y*,X*) has the 3.2..LP. by Theorem 6.11. Let
{B(T;, 7)), be balls in L(X,Y) such that | T, ~T,I<r, +r,
forall i,j. Then there exists T € L(Y*,X*) such that ||T —T}|| <v,
for all i. Hence also ||T* — T}*||<r, for all i. Since Y is a
dual space, there exists a projection P in Y** with ||3P =1 and

P(Y**)=Y. Then P- T*|x € L(X,Y) and P-T*|x € 'Ql B(T;,r;).

Hence L(X,Y) hasthe 3.2.1.P.

In the complex case we can prove.

THEOREM 6.14. — Let X and Y be complex L,-spaces. Then
L(X,Y*) is a complex P,-space.

THEOREM 6.15. — Let X be a Banach space. Then C(X,cq) is
an M-ideal in L(X,c,) and CX,c,) is isometric to
(X*@.--0X*0- )¢, .

Proof. — Let P, be the M-projection

P,((x,,))=(xy,...,x,,0,...).
Then clearly

C(X,e0) = U L(X,P,(co).

L(X,P,(cy)) is an M-ideal in L(X,c,) by Proposition 6.1. Hence
C(X,cq) isan M-idealin L(X,c,). (See[1] or [12]).

Let Q, be the projection Q,((x,,)) = (0, .. ,0,x,,0,..).
Then by Proposition 6.1 L(X,P,(ci) =X*e---o X*)ln by

themap S — (Q,S,Q,S,...,Q,S). Themap S—> (Q,S, ...,
Q,S,...) is an isometry of C(X, ¢,) onto (X*®.. . ®#X*®. . )

Co .
The verification is easy and we leave it to the reader.

Remark. — In [6] Hennefeld showed that C(c,,c,) is an M-
idealin L(cq, cq) -
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7. The 3.2.1.P. for C(X,Y). Necessary conditions.

THEOREM 7.1 (Real case). — Let n =3 or 4. If C(X,Y) or
L(X,Y) has the n.2.1P., then X* and Y has the n.2.IP.

Proof. — We show the theorem in the case that C(X,Y) has
the n.2.I.LP. Let Z be a subspace of Y with dimZ = 1. Then
X* is isometric to C(X,Z) € C(X,Y). Let P be a projection in
Y with ||IP|l=1 and P(Y)=Z. Thenthe map T—> P-T is
a projection in C(X,Y) onto C(X,Z) with norm 1, so C(X,Z)
and also X* has the n.2.1.P.

We have that C(X,Y) is isometric to A(Y* X*). Let now Z
be a subspace of X* with dimZ =1 and let € > 0. Then there
exists a w*-continuous projection P in X* such that P(X*)=Z
and ||IP|I<1+e. Now Y is isometric to A(Y*,Z) C A(Y*,X*)
and T—> P - T is a projection in A(Y* X*) onto A(Y*,Z) with
norm <1+ €. Since € >0 is arbitrary, we get that Y has the
n.2.I.P. The proof is complete.

COROLLARY 7.2. — C(X,Y) has the 4.2.IP. if and only if X
isan L,-space and Y has the 4.2.I.P.

Proof. — Use Corollary 6.6 and Theorem 7.1.

COROLLARY 7.3. — Let Y be a dual space. Then L(X,Y) has the
4.2.ILP. if and only if X is an L, -space and Y has the 4.2.IP.

Proof. — Use Theorem 6.11 and Theorem 7.1.

Remark. — Theorem 7.1 and the corollaries above can also be
generalized to the complex case.

ProposiTioN 7.4. — L(12 ,13) does not have the 3.2.LP.

Proof —Letx,=(1,-1,-1),x,=(1,1,-1), x3=(1,1,1)
and x, =(1,—1,1) in 12 . Define G, = co((0,1,0), (0,0,—1),
(-1,0,0)) and G,= co((0,-1,0), (0,0,—1), (—1,0,0)). Define
disjoint faces F, and F, of L(l.f,,lf‘)1 by
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F,={T:IITI<1 and Tx, = (1,0,0)}
and

F,={T:ITI<1,Tx; =(0,0,-1) and Tx; € G; for i = 2,4}.

Note that a T€ F; N F, would have T(x, + x;) = (1,0,-1)
while T(x, + x,) has a negative first component. Hence F, NF, =0
since T(x; +x;) =T(x, +x,). Assume F is a maximal proper
face of L(12,13), suchthat F, € F. Then by Theorem 5.1

F={T:|ITI<1 and Tx, € G}

for some x4, € {x,,...,x,} and some proper maximal face G of
(13), . Since F, CF it follows that x, =x, and (1,0,0)€G.
We have to consider four cases.

(i) G =co0((1,0,0), (0,1,0),(0,0,1)). Define T€ L(12,13)
by Tx, =(0,0,1), Tx,=(0,1,0), Tx;=(0,0,—1) and
Tx, = (0,—1,0). Then TEFNF, so F, £ — F.

(i) G = c0((1,0,0), (0,—1,0),(0,01)). The operator T in
(i) showsthat F, € — F.

(iii) G = co0(1,0,0),(0,1,0),(0,0,—1)). Define TEL(12,13}),
by Tx, =Tx, =Tx; =Tx, =(0,0,—1). Then TEFNF, so
F, € —F.

@iv) G =c¢0((1,0,0), (0,-1,0),(0,0,—1)). The operator T
in (iii) showsthat F, € — F.

By Theorem 1.2 we get that L(li , 1:,‘) does not have the 3.2.1.P.
The proof is complete.

THEOREM 7.5. — Assume C(X,Y) or L(X,Y) has the 3.2.IP.
Then either X isan L,-space or Y has the 4.2.1P.

Proof. — The two cases are similar so we will assume C(X,Y)
has the 3.2.1LP. Assume for contradiction that X is not an L,-space
and that Y does not have the 4.2.1.P. By Theorem 7.1 X* and Y
have the 3.2.1.P. By Proposition 7.4 we can choose balls {B(a;, 1)} _,
in L(12,13) such that |lg; —a;ll<2 for all i and j and

.Ql B(;,1) = @ . Choose € > 0 such that
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(1 +e)f
iél B(a,., (1 —Z)z)=®'

Since X* has the 3.2.I.LP. and not the 4.2.1.P,, there exists by
[12 ; Theorem 5.14] an isometry T : 1: — X** By the principle
of local reflexivity [16], we can imbed T(l:) almost isometrically
into X . Hence we can find an operator S : 13, —> X and a pro-
jection P in X such that

A -allxI<ISEI<+elxl

forall x€ 12, |IPI<1+e¢e and P(X)=S(12). Since Y has the

3.2.ILP. and not the 4.2.1.P., we can find [12 ; Corollary 4.5] an
operator U : lf —> Y and a projection. Q in Y such that

Ad-elxlI<IUI<A+e)lxl

forall x€ 13, ||IQI<1+e¢e and Q(Y) = U(13). Define a projec-
tion R in C(X,Y) by R(V) =Q.V.P. Then [[RII<( +e¢)?.
Let T, =U"-gq; - S~ !'.-PeC,Y). Then

IT, -T;1<2(1 +e’ 1 —e) .

Since C(X,Y) has the 3.2.I.P. we can find W € C(X,Y) such that
IT, —WII<( +¢€? (1 —e€)" forall i. Then we have

IT, -RWI=1Q T, P-Q -W-PI<(U+eU-e".

Hence
(T, — RW)lp ol <1 +e)* (1 —e)!
and

llg;—U™" - RW)lpxy - SI=11U""- (U-g,- S7' — R(W)lpx) - S
<NUHHI(T, - RW)lpexy Il - IS
<A +ef—e)2.

3
This contradicts that 0 B(g;, (1 + €)° (1 —e)"?)# @ . The proof
I=

is complete.

CoRrOLLARY 7.6. — C(X,Y) has the 3.2.LP. ifand only if X and
Y has the 3.2.IP. and either X isan L,-space or Y has the 4.2.IP.
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COROLLARY 7.7. — Let Y be a dual space. L(X,Y) has the
3.21IP ifand only if X and Y has the 3.2.LP. and either X is
an L,-space or Y has the 4.2.IP.

Remark. — By the method of proof used in Theorem 7.1 we
can also prove that if C(X,Y) is a real L,-space, then dim X =1
or dimY = 1. In fact, by Theorem 3.9 and Theorem 3.10 in [12]
X* and Y are L,-spaces, and by Theorem 7.5 X or Y* isan L,-
space. But then dimX <2 or dimY < 2. Now Proposition 6.3
shows that dimY =1 or dim Y =1.

Remark. — We have made a detailed study of L(12,1}). Some
of the results we obtained are the following:

D If TE,LAZ,13),, then T@,(12),) € 9,(13), .
From Theorem 5.2 and Corollary 3.6 we get :
2) L(l: s li) is a CL-space.

From Theorem 5.1 we get that the unit ball of L(l: , 1‘;’)
contains 32 maximal proper faces. Hence the unit ball of the dual
space contains 32 extreme points. From this we get :

3) L(12,13) does not contain any non-trivial L-summand.
Counting the extreme points of the unit ball of L(l: , lf) we get 90.
Since 90 is not divisible by 4 we get.

4) L(li, lf) does not contain any non-trivial M-summand.
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