MASAYUKI ITÔ

On the Green type kernels on the half space in \mathbb{R}^n

<http://www.numdam.org/item?id=AIF_1978__28_2_85_0>
ON THE GREEN TYPE KERNELS
ON THE HALF SPACE IN \mathbb{R}^n

by Masayuki ITÔ

1. Let \mathbb{R}^n be the $n(\geq 2)$-dimensional Euclidian space and D be the half space \(\{ x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n; x_1 > 0 \} \). For a point \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \), we write

\[
\bar{x} = (-x_1, x_2, \ldots, x_n) \quad \text{and} \quad |x| = \left(\sum_{j=1}^{n} x_j^2 \right)^{1/2}.
\]

When $n \geq 3$, we put $G_2(x, y) = |x - y|^{2-n} - |x - \bar{y}|^{2-n}$ in $D \times D$. Then G_2 is the Green kernel on D. Analogously we set, for a number α with $0 < \alpha < n$,

\[
G_{\alpha}(x, y) = |x - y|^{\alpha-n} - |x - \bar{y}|^{\alpha-n}
\]

in $D \times D$, and we call it the Green type kernel of order α on D. The following question was proposed to me in a letter by H. L. Jackson: Does G_{α} also satisfy the domination principle provided that $0 < \alpha < 2$?

This paper is inspired by this question. Let $C_c(D)$ and $C(D)$ be the usual topological vector space of real-valued continuous functions in D with compact support and the usual topological vector space of real-valued continuous functions in D, respectively. We set

\[
C_c^+(D) = \{ f \in C_c(D); f \geq 0 \}
\]

and $C^+(D) = \{ f \in C(D); f \geq 0 \}$. For a given Hunt convo-
olution kernel \(x \) on \(\mathbb{R}^n \), we define the linear operator
\[
V_x : C_c(D) \ni f \mapsto (x \ast f - x \ast \overline{f})_D \in C(D),
\]
where \(\overline{f} \) is the reflection of \(f \) about the boundary \(\partial D \) of \(D \) and where \((x \ast f - x \ast \overline{f})_D \) is the restriction of
\[
x \ast f - x \ast \overline{f}
\]
to \(D \). If \(V_x \) is positive (that is, \(f \geq 0 \implies V_x f \geq 0 \)), we say that \(V_x \) is the Green type kernel associated with \(x \).

The purpose of this paper is to show the following two theorems.

Theorem 1. — Let \(x \) be a Hunt convolution kernel on \(\mathbb{R}^n \) and \((x_p)_{p \geq 0} \) be the resolvent associated with \(x \). Suppose that \(x \) is symmetric with respect to \(\partial D \). Then the following two conditions are equivalent:

1. \(V_x \) is a Hunt kernel on \(D \).
2. For each \(p > 0 \), \(\frac{\partial}{\partial x_1} x_p \leq 0 \) in the sense of distributions in \(D \).

Theorem 2. — Let \(x \) be a Dirichlet convolution kernel on \(\mathbb{R}^n \) and \(\alpha \) be the singular measure (the Lévy measure) associated with \(x \). Suppose that \(x \) is also symmetric with respect to \(\partial D \). Then the following two conditions are equivalent:

1. \(V_x \) is a Dirichlet kernel on \(D \).
2. \(\frac{\partial}{\partial x_1} \alpha \leq 0 \) in the sense of distributions in \(D \).

This theorem gives immediately that the question raised by H. L. Jackson is affirmatively solved.

2. Let \(x \) be a convolution kernel on \(\mathbb{R}^n \). Similarly we define \(V_x \). When \(V_x \) is positive, we set
\[
\mathcal{D}^+(V_x) = \{ f \in C^+(D) ; V_x f \in C^+(D) \},
\]
where
\[
V_x f(x) = \sup \{ V_x g(x) ; g \in C^+_c(D), g \leq f \}
\]

(1) An \(f \in C^+_c(D) \) may be considered as a finite continuous function in \(\mathbb{R}^n \) with compact support \(\subset D \).

(2) In potential theory, a convolution kernel means a positive measure.
in D. Put $\mathcal{D}(V_x) = \{f \in C(D) : f^+, f^- \in \mathcal{D}^+(V_x)\}$ and, for an $f \in \mathcal{D}(V_x)$, $V_x f = V_x f^+ - V_x f^-$. Then V_x is a linear operator from $\mathcal{D}(V_x)$ into $C(D)$.

Lemma 3. Let x and x' be two convolution kernels on \mathbb{R}^n. Suppose that x and x' are symmetric with respect to ∂D and that the convolution $x \ast x'$ is defined. If V_x is positive, then, for any $f \in C_c(D)$, $V_x f \in \mathcal{D}(V_x)$ and

$$V_x(V_x f) = (x \ast x' \ast f - x \ast x' \ast \overline{f})_D.$$

Proof. We may assume that $f \geq 0$. Since $x \ast x'$ is defined and $|V_x f| \leq x' \ast f + x' \ast \overline{f}$, we have $V_x f \in \mathcal{D}(V_x)$. Our convolution kernels x and x' being symmetric with respect to ∂D, $x \ast \overline{f}(x) = x \ast f(x)$ and

$$x' \ast \overline{f}(x) = x' \ast f(x).$$

For the sake of simplicity, we write $h(x) = V_x f(x)$ in D and $h(x) = 0$ on $\mathbb{R}^n - D$. Then, for a $g \in C_c^+(D)$, we have

$$\int \mathcal{D}(V_x f)(x) g(x) \, dx \, dx$$

$$= \int (x \ast h(x) - x \ast \overline{h}(x)) g(x) \, dx$$

$$= \int h(x) \check{x} \ast g(x) \, dx - \int \overline{h}(x) \check{x} \ast g(x) \, dx$$

$$= \int_D (x' \ast f(x) - x' \ast \overline{f}(x)) \check{x} \ast g(x) \, dx$$

$$- \int_{\mathbb{R}^n - D} (x' \ast \overline{f}(x) - x' \ast f(x)) \check{x} \ast g(x) \, dx$$

$$= \int x' \ast f(x) \check{x} \ast g(x) \, dx - \int x' \ast \overline{f}(x) \check{x} \ast g(x) \, dx$$

$$= \int x \ast x' \ast (f - \overline{f})(x) g(x) \, dx,$$

where \check{x} is the adjoint convolution kernel of x; that is, $\check{x}(E) = x(\{-x; \, x \in E\})$ for any Borel set E. Since g is arbitrary, we obtain the required equality.

Remark 4. In the above lemma, we have $V_x f \in \mathcal{D}(V_x)$ and $V_x(V_x f) = V_x(V_x f)$ provided that V_x is also positive.

Lemma 5. Let x be a convolution kernel on \mathbb{R}^n. Suppose that x is symmetric with respect to ∂D. Then V_x is positive if and only if $\frac{\partial}{\partial x_1} x \leq 0$ in the sense of distributions in D.

Proof. — First we shall show the « if » part. For a $t \in (0, \infty)$, put $H_t = \{x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n; x_1 = t\}$ and

$$D' = \left\{ x = (x_1, x_2, \ldots, x_n) \in D; \int_{H_t} dx = 0 \right\}.$$

It suffices to prove that, for any $f \in C_c^\infty(D)$ and any $x \in D'$, $x \ast f(x) \geq x \ast f(\bar{x})$, because $\int_{D-D'} dx = 0$ and

$$x \ast f(\bar{x}) = x \ast f(x).$$

We choose a sequence $(\varphi_k)_{k=1}^\infty$ of non-negative, spherically symmetric and infinitely differentiable functions such that $\int \varphi_k dx = 1$ and that the support of φ_k, supp (φ_k), is contained in $\{x \in \mathbb{R}^n; |x| < 1/k\}$. Then $x \ast \varphi_k$ is symmetric with respect to ∂D and $\frac{\partial}{\partial x_1} x \ast \varphi_k(x) \leq 0$ in

$$\{x \in \mathbb{R}^n; x_1 \geq 1/k\}.$$

Let $f \in C_c^\infty(D)$ and $x = (x_1, x_2, \ldots, x_n) \in D'$. Then

$$\int_{|x_1-x_1| \geq 1/m} f(y) x \ast \varphi_k(x-y) dy \geq \int_{|y_1-x_1| \geq 1/m} f(y) x \ast \varphi_k(\bar{x}-y) dy$$

provided with $0 < m \leq k$. By letting $k \to \infty$ and $m \to \infty$, we obtain that

$$x \ast f(x) = \int f(y) d\hat{x} \ast \varepsilon_x(y)$$

$$\geq \int_{\mathbb{R}^n-H_x} f(y) d\hat{x} \ast \varepsilon_x(y)$$

$$\geq \int_{\mathbb{R}^n-H_x} f(y) d\hat{x} \ast \varepsilon_x(y)$$

$$\geq x \ast f(\bar{x}) - \left(\sup_{z \in \mathbb{R}^n} |f(z)| \right) \int_{H_x} dx = x \ast f(\bar{x})$$

where ε_x denote the unit measure at x. Since f and x are arbitrary, the « if » part is true.

Next we shall show the « only if » part. Suppose that the « only if » part is false. Then there exist a number $t > 0$, a point $x = (x_1, x_2, \ldots, x_n) \in D$ with $x_1 > t$ and a non-negative, spherically symmetric and infinitely differentiable function φ in \mathbb{R}^n with supp $(\varphi) \subseteq \{x \in \mathbb{R}^n; |x| < t\}$ such that $\frac{\partial}{\partial x_1} x \ast \varphi(x) > 0$. Hence we can choose a number
s > 0 such that s < x_1 - t and that, for every \(y \in D \) with \(|y| < s \), \(x * \varphi(x - y) < x * \varphi(x - y) \). Since

\[
x * \varphi(x - y) = x * \varphi(x - y),
\]
we have, for an \(f \neq 0 \in C_\infty^+(D) \) satisfying

\[
\text{supp} (f) \subset \{ y \in \mathbb{R}^n; |y| < s \},
\]
\[
x * f * \varphi(x) < x * f * \varphi(x) = x * \bar{f} * \varphi(x).
\]
But this contradicts the inequality \(x * f \geq x * \bar{f} \) in \(D \).
Thus we see that the "only if" part is true.

In the same manner as above, we obtain the following

Lemma 6. — Let \(\alpha \) be a positive measure in \(\mathbb{R}^n - \{0\} \).
Suppose that \(\alpha \) is symmetric with respect to \(\partial D \). If \(\frac{\partial}{\partial x_1} \alpha \leq 0 \)
in the sense of distributions in \(D \), then, for any \(f \in C_\infty^+(D) \),

\[
\int f(x - y) \, d\alpha(y) \geq \int \bar{f}(x - y) \, d\alpha(y)
\]
in \(D \cap C \text{ supp} (f) \).

3. We say that a convolution kernel \(x \) on \(\mathbb{R}^n \) is a Hunt convolution kernel if \(x = \int_0^\infty x_t \, dt \), where \((x_t)_{t \geq 0} \) is a vaguely continuous semi-group of positive measures in \(\mathbb{R}^n \); that is,

\[
\alpha_0 = \delta (\text{the Dirac measure}), \quad \alpha_t * \alpha_s = \alpha_{t+s} (\forall t \geq 0, \forall s \geq 0)
\]
and the application \(\mathbb{R}^+ = [0, \infty) \ni t \to \alpha_t \) is vaguely continuous. In this case, \((x_t)_{t \geq 0} \) is uniquely determined (see, for example, [3]) and called the vaguely continuous semi-group associated with \(x \). For a \(p \in \mathbb{R}^+ \), put

\[
x_p = \int_0^\infty \exp (-pt) x_t \, dt;
\]
then \((x_p)_{p \geq 0} \) is called the resolvent associated with \(x \). This is characterized by a family \((x_p)_{p \geq 0} \) of convolution kernels on \(\mathbb{R}^n \) satisfying

\[
x_p - x_q = (q - p) x_p * x_q (\forall p \geq 0, \forall q > 0)
\]
and \(\lim_{p \to 0} x_p = x_0 = x \) (vaguely).
Lemma 7 (see [3] or Theorem 5 in [6]). — Let \(x, (x_t)_{t \geq 0} \) and \((x_p)_{p \geq 0}\) be the same as above. For a \(p > 0 \) and a \(t > 0 \), put
\[
\alpha_{p, t} = \exp (- pt) \sum_{k=0}^{\infty} \frac{p^k t^k}{k!} (px_p)^k \quad \text{and} \quad \alpha_{p, 0} = \varepsilon;
\]
then \((x_{p, t})_{t \geq 0}\) is a vaguely continuous semi-group of positive measures and we have
\[
x + \frac{1}{p} \varepsilon = \int_0^\infty x_{p, t} \, dt \quad \text{and} \quad \lim_{p \to \infty} x_{p, t} = x_t \quad \text{(vaguely)} \quad (t \geq 0).
\]

Lemma 8. — Let \(x = \int_0^\infty x_t \, dt \) be a Hunt convolution kernel on \(\mathbb{R}^n \) and \((x_p)_{p \geq 0}\) be the resolvent associated with \(x \). If \(x \) is symmetric with respect to \(\partial D \), then, for any \(p \) and any \(t \), \(x_p \) and \(x_t \) are also symmetric with respect to \(\partial D \).

Proof. — For a \(p > 0 \), we denote by \(\bar{x}_p \) the reflection of \(x_p \) about \(\partial D \). Evidently \((\bar{x}_p)_{p \geq 0}\) is the resolvent associated with \(\bar{x} \). By using \(\bar{x} = \bar{x}_0 \) and the unicity of the resolvent associated with \(x \), we have, for each \(p > 0 \), \(x_p = \bar{x}_p \). This means that \(x_p \) is symmetric with respect to \(\partial D \). This gives also that, for any \(f \in C_c(D) \),
\[
\int_0^\infty \exp (- pt) f \, dx_t \, dt = \int_0^\infty \exp (- pt) \bar{f} \, dx_t \, dt \quad (\forall p \geq 0).
\]
The Laplace transformation being injective, we have, for each \(t \geq 0 \), \(\int f \, dx_t = \int \bar{f} \, dx_t \). Hence, \(f \) being arbitrary, we see that \(x_t \) is symmetric with respect to \(\partial D \).

Similarly we have the following

Remark 9. — If \(x \) is symmetric with respect to the origin 0 (resp. spherically symmetric), then \(x_p \) and \(x_t \) are also symmetric with respect to 0 (resp. spherically symmetric).

Let \(x \) be a convolution kernel on \(\mathbb{R}^n \). We say that \(x \) is a Dirichlet convolution kernel if the (generalised) Fourier transformation \(\hat{x} \) of \(x \) is defined and equal to \(\frac{1}{\psi} \), where \(\psi \) is a real-valued negative definite function in \(\mathbb{R}^n \) such that \(\frac{1}{\psi} \)
is locally summable. By virtue of the Lévy-Khinchine theorem, we have, for any \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \),

\[
\psi(x) = c + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j + \int (1 - \cos (2\pi x \cdot y)) \, d\alpha(y),
\]

where \(c \) is a non-negative constant, \(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j \) is a positive semi-definite form, \(x \cdot y \) is the inner product in \(\mathbb{R}^n \) and where \(\alpha \) is a positive measure in \(\mathbb{R}^n \) — {0} symmetric with respect to 0 and satisfying \(\int |x|^2/(1 + |x|^2) \, dx(x) < \infty \).

It is well-known that the above decomposition of \(\psi \) is unique. The positive measure \(\alpha \) in \(\mathbb{R}^n \) — {0} is called the singular measure associated with \(x \). Since, for each \(t \geq 0 \), \(\exp (-t\psi) \) is of positive type in \(\mathbb{R}^n \), there exists a positive measure \(\alpha_t \) in \(\mathbb{R}^n \) such that \(\alpha_t = \exp (-t\psi) \). Evidently \((\alpha_t)_{t>0} \) is a vaguely continuous semi-group of positive measures and \(\alpha = \int_0^\infty \alpha_t \, dt \). Hence a Dirichlet convolution kernel is a Hunt convolution kernel and symmetric with respect to 0.

4. A positive linear operator \(V : C_c(D) \to C(D) \) is called a continuous kernel on \(D \) (Evidently \(V \) is continuous). Similarly as in the section 2, we define \(\mathcal{D}(V) \) and \(\mathcal{D}(V) \).

We say that \(V \) is a Hunt kernel on \(D \) if \(V = \int_0^\infty \tilde{V}_t \, dt \) (that is, for any \(f \in C_c(D) \), \(Vf(x) = \int_0^\infty \tilde{V}_t f(x) \, dt \) in \(D \)), where \((\tilde{V}_t)_{t>0} \) is a continuous semi-group of continuous kernels on \(D \); that is, \(\tilde{V}_0 = I \) (the identity), for any \(t \geq 0 \), \(s \geq 0 \) and any \(f \in C_c(D) \), \(\tilde{V}_s \tilde{V}_t f = \tilde{V}_{t+s} f \) and the application \(\mathbb{R}^+ \ni t \to \tilde{V}_t f \) is continuous in \(C(D) \). Similarly as in [3], we see that \((\tilde{V}_t)_{t>0} \) is uniquely determined, and we call it the continuous semi-group associated with \(V \).

For a \(p \geq 0 \), put \(V_p = \int_0^\infty \exp (-pt) \tilde{V}_t \, dt \); then we call \((V_p)_{p>0} \) the resolvent associated with \(V \). It is known that, for any \(p \geq 0 \), \(q > 0 \) and any \(f \in C_c(D) \), \(V_pf \in \mathcal{D}(V_q) \), \(V_qf \in \mathcal{D}(V_p) \),

\[
V_pf - V_qf = (q - p)V_q(V_pf) = (q - p)V_p(V_qf)
\]

(the resolvent equation) and \(\lim_{p \to 0} V_pf = V_qf = Vf \) in \(C(D) \).
Let V_1 and V_2 two continuous kernels on D. If, for any $f \in C_c(D)$, $V_2 f \in \mathcal{D}(V_1)$, the application $C_c(D) \ni f \mapsto V_1(V_2 f)$ is positive linear, we denote it by $V_1 \cdot V_2$.

Remark 10 (see [2]). — A Hunt kernel V on D satisfies the domination principle; that is, for two $f, g \in C_c^+(D)$, $V f \leq V g$ on $\text{supp}(f)$ implies the same inequality on D.

5. We shall show Theorem 1 mentioned in the section 1.

(1) \Rightarrow (2). By Lemmas 5 and 8, it suffices to prove that, for each $p > 0$, V_x^p is positive. Let $(V_p^x)_{p \geq 0}$ be the resolvent associated with V_x. Then, for an $f \in C_c^+(D)$ and a $p > 0$, $V_x f = (pV_x + I)(V_p f)$. On the other hand, Lemmas 3 and 8 give the $V_x f \in \mathcal{D}(V_x)$ and

$$V_x f = (x * (f - \overline{f}))_D = ((px + \varepsilon) * x_p * (f - \overline{f}))_D = (pV_x + I)(V_x f).$$

By using the resolvent equation, we have

$$V_p f - V_x p f = (I - pV_p)((pV_x + I)(V_p f - V_x f)) = 0.$$

The function f being arbitrary, we have $V_p = V_x^p$, and hence V_x^p is positive.

(2) \Rightarrow (1). By Lemma 5, V_x^p is positive ($\forall p > 0$). Let α_p, be the positive measure defined in Lemma 7 ($\forall p > 0, \forall t > 0$) and $(\alpha_t)_{t \geq 0}$ be the vaguely continuous semi-group associated with x. By Lemmas 3 and 7,

$$V_{x_p}^t = \exp(-pt) \sum_{k=0}^{\infty} \frac{p^{k} k!}{(pV_{x_p})^k}.$$

where $(pV_{x_p})^0 = I$, $(pV_{x_p})^1 = pV_{x_p}$ and

$$(pV_{x_p})^{n+1} = (pV_{x_p})^n \cdot (pV_{x_p}).$$

Therefore $V_{x_p}^t$ is positive. From Lemma 7, it follows that, for any $f \in C_c(D)$, $\lim_{p \to \infty} V_{x_p}^t f = V_x f$ in $C(D)$ ($\forall t > 0$). Hence V_x is positive. By using Lemma 3, we see that $(V_x^t)_{t \geq 0}$ is a continuous semi-group of continuous kernels on D and that $V_x = \int_{0}^{\infty} V_{x_t} dt$. Consequently V_x is a Hunt kernel on D. This completes the proof.
Question 11. — Let \(x \) be a Hunt convolution kernel on \(\mathbb{R}^n \) satisfying \(x = \overline{x} \). Is it true that \(V_x \) is a Hunt kernel on \(D \) provided that \(V_x \) is positive?

Remark 12. — Let \(k(x) \) be a non-negative continuous function in the wide sense in \(\mathbb{R}^n \) satisfying \(k(x) = k(\overline{x}) \). Suppose that \(\lambda = k(x) \, dx \) is a Hunt convolution kernel and that \(V_x \) is also a Hunt kernel on \(D \). Put

\[
G(x,y) = k(x-y) - k(x-y) \quad \text{in} \quad D \times D.
\]

If the function kernel \(k(x-y) \) satisfies the continuity principle (3), then \(G \) satisfies the domination principle; that is, for two positive measures \(\mu \) and \(\nu \) in \(D \) with compact support and with \(\int G \mu \, d\mu < \infty \), then \(G\mu \leq G\nu \) on \(\text{supp} (\mu) \) implies the same inequality in \(D \), where

\[
G\mu(x) = \int G(x,y) \, d\mu(y).
\]

It is known that \(k(x-y) \) satisfies the continuity principle when \(x \) is a Dirichlet convolution kernel (see [4]).

We show this remark. We see that \(G \) also satisfies the continuity principle. Therefore it suffices to prove that, for a positive measure \(\mu \) in \(D \) with compact support and an \(x \in D \), \(G\mu \leq G\varepsilon_x \) in \(D \) provided that \(G\mu \leq G\varepsilon_x \) on \(\text{supp} (\mu) \) and that \(G\mu \) is finite continuous (see [8]). Since \(V_x \) is a Hunt kernel, there exists \(f \in C_c^\infty(D) \) such that \(V_xf = Gf = 1 \) on \(\text{supp} (\mu) \), where \(Gf(x,z) = \int G(y,z)f(z) \, dz \). Here we remark that \(\mu \) is considered as a positive measure in \(\mathbb{R}^n \). For a given positive number \(\delta \), there exists a neighborhood \(U \) of \(0 \) such that, for any finite continuous function \(\varphi \geq 0 \) in \(\mathbb{R}^n \) with \(\text{supp} (\varphi) \subset U \) with \(\int \varphi \, dx = 1 \), \(\mu * \varphi, \varepsilon_x * \varphi \in C_c^\infty(D) \) and \(G(\mu * \varphi) \leq G(\varepsilon_x * \varphi) + \delta Gf \) on \(\text{supp} (\mu * \varphi) \). By letting \(\varphi \rightarrow \varepsilon \) (vaguely) and \(\delta \downarrow 0 \), we have \(G\mu \leq G\varepsilon_x \).

(3) This means that, for a positive measure \(\mu \) in \(\mathbb{R}^n \) with compact support, the function \(\int k(x-y) \, d\mu(y) \) of \(x \) is finite continuous provided that its restriction to \(\text{supp} (\mu) \) is finite continuous.
6. Theorem 1 gives the following

Corollary 13. — Let \(x = \int_0^\infty \alpha_t \, dt \) be a Hunt convolution kernel on \(\mathbb{R}^n \). Then \(x \) is symmetric with respect to \(\partial D \) and \(V_x \) is a Hunt kernel on \(D \) if and only if, for each \(t \geq 0 \), \(\alpha_t \) is symmetric with respect to \(\partial D \) and \(\frac{\partial}{\partial x_1} \alpha_t \leq 0 \) in the sense of distribution in \(D \).

Corollary 14. — Let \(x = \int_0^\infty \alpha_t \, dt \) be a Hunt convolution kernel on \(\mathbb{R}^n \) and \(\mu \) be a Hunt convolution kernel on \(\mathbb{R}^1 \) supported by \(\mathbb{R}^+ \). Suppose that \(x_\mu = \int_0^\infty \alpha_t \, d\mu(t) \) is defined (in the sense of measures) and that \(x \) is symmetric with respect to \(\partial D \). If \(V_x \) is a Hunt kernel on \(D \), then \(V_{x_\mu} \) is also a Hunt kernel on \(D \).

Proof. — We denote by \((\mu_p)_{p \geq 0} \) the resolvent associated with \(\mu \). Since \(\mu_p \leq \mu \), \(x_{\mu, p} = \int \alpha_t \, d\mu_p(t) \) is defined \((\forall p \geq 0) \). It is known that \(x_{\mu, p} \) is a Hunt convolution kernel on \(\mathbb{R}^n \) and that \((x_{\mu, p})_{p \geq 0} \) is the resolvent associated with \(x_\mu \) (see Theorem 1 in [5]). By Theorem 1 and Corollary 13, \(\alpha_t \) is symmetric with respect to \(\partial D \) and \(\frac{\partial}{\partial x_1} \alpha_t \leq 0 \) in the sense of distributions in \(D \). Hence \(x_\mu \) is also symmetric with respect to \(\partial D \) and \(\frac{\partial}{\partial x_1} x_{\mu, p} \leq 0 \) in the sense of distributions in \(D \) \((\forall p \geq 0) \). Consequently Theorem 1 gives this corollary.

In the same manner as above, we have the following

Corollary 15. — Let \((\alpha_t)_{t \geq 0} \) be a vaguely continuous semi-group of positive measures in \(\mathbb{R}^n \) and \(\mu \) be a Hunt convolution kernel on \(\mathbb{R}^1 \) supported by \(\mathbb{R}^+ \). Suppose that \(\int_0^\infty \alpha_t \, d\mu(t) \) is defined and that, for each \(t \geq 0 \), \(\alpha_t \) is symmetric with respect to \(\partial D \) and \(\frac{\partial}{\partial x_1} \alpha_t \leq 0 \) in the sense of distributions in \(D \). Then \(V_{x_\mu} \) is a Hunt kernel on \(D \), where \(x_\mu = \int_0^\infty \alpha_t \, d\mu(t) \).
We shall show that the question raised by H. L. Jackson is affirmatively solved.

Remark 16. — Let \(\nu \) be a positive measure in \((0, 2)\) such that \(\int_0^2 \frac{1}{x} \, d\nu(x) < \infty \) and \(c_0, c_1 \) be non-negative constants. Put

\[
\varphi = \begin{cases}
 c_0 x + \left(\int |x|^{\alpha-n} \, d\nu(x) \right) dx & \text{if } n = 2 \\
 c_0 x + \left(\int |x|^{\alpha-n} \, d\nu(x) + c_1 |x|^{2-n} \right) dx & \text{if } n \geq 3.
\end{cases}
\]

Then \(\varphi \) is a Hunt kernel.

In fact, we have, with a positive constant \(c(\alpha) \),

\[
|x|^{\alpha-n} = c(\alpha) \int_0^\infty \frac{1}{(2\pi t)^{n/2}} \exp \left(-\frac{|x|^2}{2t} \right) t^{\alpha-1} \, dt
\]

\((0 < \alpha < 2 \text{ if } n = 2, 0 < \alpha \leq 2 \text{ if } n \geq 3)\). Evidently the function \(c(\alpha) \) of \(\alpha \) is finite continuous. Put

\[
\mu = \begin{cases}
 c_0 x + \left(\int c(x) t^{2/2-1} \, d\nu(x) \right) dt & \text{if } n = 2 \\
 c_0 x + \left(\int c(x) t^{2/2-1} \, d\nu(x) + c_1 c(2) \right) dt & \text{if } n \geq 3
\end{cases}
\]

in \(\mathbb{R}^1 \). Since \(\int_0^2 \frac{1}{x} \, d\nu(x) < \infty \), \(\varphi \) is a convolution kernel on \(\mathbb{R}^n \) and

\[
\varphi = \left(\int \frac{1}{(2\pi t)^{n/2}} \exp \left(-\frac{|x|^2}{2t} \right) d\mu(t) \right) dx.
\]

Hence \(\mu \) is a convolution kernel on \(\mathbb{R}^1 \) supported by \(\mathbb{R}^+ \). Then \(\mu \) is a Hunt convolution kernel on \(\mathbb{R}^1 \) (cf. [5]), and Corollary 14 gives our remark.

Let \(G_x \) be the Green type kernel of order \(\alpha \) in \(D \). Put

\[
G(x,y) = \begin{cases}
 \int G_x(x,y) \, d\nu(x) & \text{if } n = 2 \\
 \int G_x(x,y) \, d\nu(x) + c_1 G_x(x,y) & \text{if } n \geq 3.
\end{cases}
\]

Then Remarks 12 and 16 give that \(G \) satisfies the domination principle.

7. Let \(L_{\text{loc}}(D) \) be the usual Fréchet space of real-valued locally summable functions in \(D \). A Hilbert space \(H(D) \)
 contained in $L_{\text{loc}}(D)$ is called a Dirichlet space on D if the following three conditions are satisfied:

1. For each compact set K in D, there exists a constant $A(K) > 0$ such that, for any $u \in D$, $\int_K |u| \, dx \leq A(K) \|u\|$.

2. $C_c(D) \cap H(D)$ is dense both in $C_c(D)$ and in $H(D)$.

3. For any normalized contraction T on R^1 and any $u \in H(D)$, $T \cdot u \in H(D)$ and $\|T \cdot u\| \leq \|u\|$.

This is the definition by A. Beurling and J. Deny (see [1]). Here we denote by $\|\cdot\|$ and by (\cdot, \cdot) the norm in $H(D)$ and the associated inner product, respectively. For an $f \in C_c(D)$, (1) gives that there exists uniquely $u^*_f \in H(D)$ such that, for any $u \in H(D)$, $(u^*_f, u) = \int uf \, dx$.

Let V be a linear operator from $C_c(D)$ into $L_{\text{loc}}(D)$. We say that V is a Dirichlet kernel on D if there exists a Dirichlet space $H(D; V)$ on D such that, for any $f \in C_c(D)$, $Vf = u^*_f$.

Evidently $H(D; V)$ is uniquely determined. We call $H(D; V)$ the Dirichlet space associated with V and V the kernel of $H(D; V)$. For a Dirichlet kernel V on D, we set

$$\mathcal{D}(V) = \left\{ f \in L_{\text{loc}}(D); \sup_{u \neq 0 \in C_c(D) \cap H(D; V)} \left\{ \frac{\int uf \, dx}{\|u\|} \right\} < \infty \right\}$$

and $\mathcal{D}^+(V) = \{ f \in \mathcal{D}(V); f \geq 0 \}$, where $\|\cdot\|$ denote the norm in $H(D; V)$. By virtue of (2), for an $f \in \mathcal{D}(V)$, there exists uniquely $Vf \in H(D; V)$ such that, for any $u \in C_c(D) \cap H(D; V)$, $(Vf, u) = \int uf \, dx$.

where (\cdot, \cdot) denote the inner product in $H(D; V)$. Thus V may be considered as a linear operator from $\mathcal{D}(V)$ into $H(D; V)$. It is known that V is positive (that is),

$$f \in \mathcal{D}^+(V) \implies Vf \geq 0 \text{ a.e.} \quad (\text{see [1]}) .$$

(4) This means that T is an application: $R^1 \to R^1$ such that $T(0) = 0$ and $|Ta - Tb| \leq |a - b|$ $(\forall a, b \in R^1)$.
Lemma 17. — Let x be a Hunt convolution kernel on \mathbb{R}^n satisfying $x = \overline{x}$. If V_x is a Dirichlet kernel on D, then V_x is a Hunt kernel.

Proof. — For the sake of simplicity, we write $H = H(D; V_x)$. Denote by $\| \cdot \|$ and by (\cdot, \cdot) the norm in H and the inner product in H, respectively. Let $L^2(D)$ be the Hilbert space of real-valued square summable functions in D. For a $p \geq 0$, H_p denotes the Hilbert space associated to the norm $\| u \|_p = (p \int |u|^2 \, dx + \| u \|^2)^{1/2}$ on $H \cap L^2(D)$. Evidently H_p is a Dirichlet space on D. Let $f \in C_c(D)$. For any $u \in C_c(D) \cap H$, we have

$$\int V_p f(x) u(x) \, dx = \frac{1}{p} \left((V_p f, u) - (V_p f, u) \right)$$

$$= \frac{1}{p} \left((V_x f, u) - (V_p f, u) \right)$$

$$\leq \frac{1}{p} \left(\| V_x f \| + \| V_p f \| \right) \| u \|,$$

where V_p is the kernel of H_p and where $(\cdot, \cdot)_p$ is the inner product in H_p. Hence $V_p f \in D(V)$. Since, for any $u \in C_c(D) \cap H$,

$$p(V_x(V_p f), u) = p \int u(x) V_p f(x) \, dx$$

$$= (V_p f, u) - (V_p f, u) = (V_x f - V_p f, u),$$

(2) gives $V_x f - V_p f = p V_x(V_p f)$ a.e. in D. Let $(x_p)_{p \geq 0}$ be the resolvent associated with x. By Lemmas 3 and 8, we have $V_x f - V_{x_p} f = p V_x(V_{x_p} f)$. In the same manner as in the proof of Theorem 1, we have $V_p f = V_{x_p} f$ a.e. in D, and hence V_{x_p} is positive ($\forall p > 0$). By Theorem 1 and Lemma 5, we see that V_x is a Hunt kernel.

We shall prove Theorem 2 mentioned in the section 1.

$(1) \implies (2)$. Let $(x_p)_{p \geq 0}$ be the resolvent associated with x. Then it is known that $p^2 x_p \to x$ vaguely in $\mathbb{R}^n - \{0\}$ as $p \to \infty$ (see [1]), and hence theorem 1 and Lemma 17 give that $\frac{\partial}{\partial x_1} x \leq 0$ in the sense of distributions in D.

$(2) \implies (1)$. Since $p^2 x_p \to x$ vaguely in $\mathbb{R}^n - \{0\}$ as $p \to \infty$, Lemma 8 gives that x is symmetric with respect to ∂D. Let A be the diagonal set of $D \times D$ and β be the
positive measure in $D \times D - A$ defined by
\[\iint f(x)g(y) \, d\beta(x,y) = \iint (f(x-y) - \bar{f}(x-y))g(x) \, dx(x) \, dy(y) \]
for any couple $f, g \in C_c(D)$ with $\text{supp}(f) \cap \text{supp}(g) = \emptyset$ (see Lemma 6). For any p, α being symmetric with respect to the origin, we have $\alpha = \bar{\alpha}$, and hence β is symmetric with respect to A. Let $C_c^\infty(D)$ be the topological vector space of real-valued and infinitely differentiable functions in D with compact support (we identify an element of $C_c^\infty(D)$ and an infinitely differentiable function in \mathbb{R}^n with compact support in D).

Let $f \in C_c^\infty(D)$. Consider the approximation of the function $|f(x) - f(y)|^2$ of (x,y) by the functions of form $\sum_i \varphi_i(x)\psi_i(y)$ in $D \times D$, where $\varphi_i \in C_c^\infty(D)$ and $\psi_i \in C_c^\infty(D)$ with
\[\text{supp}(\varphi_i) \cap \text{supp}(\psi_i) = \emptyset. \]

Then we see that
\[0 \leq \iint |f(x) - f(y)|^2 \, d\beta(x,y) + \int |f(x)|^2 \, a(x) \, dx
= \iint |f(x - y) - f(x)|^2 \, dx(x) \, dy(y)
- \iint (\bar{f}(x-y) - \bar{f}(x))(f(x-y) - f(x)) \, dx(x) \, dy(y) < \infty \]
where, for $x = (x_1, x_2, \ldots, x_n) \in D$, $a(x) = 2 \int_{y_i \geq x_i} dx(y)$.

Let \tilde{H} be the specialized Dirichlet space with the kernel x (see [1]). We denote by $||| \cdot |||$ and by $\langle (\cdot, \cdot) \rangle$ the norm in \tilde{H} and the associated inner product. For a couple $f, g \in C_c^\infty(D)$, we put
\[(f,g) = \int fg \left(\frac{a}{2} + c \right) \, dx + \frac{1}{4\pi^2} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \int \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \, dx \]
\[+ \frac{1}{2} \int \int (f(x) - f(y))(g(x) - g(y)) \, d\beta(x,y) = \langle (f - \bar{f}, g) \rangle = \frac{1}{2} \langle (f - \bar{f}, g - \bar{g}) \rangle, \]

(6) The author would like to express his hearty thanks to Prof. F. Hirsch for the correction of this formula.
where $\hat{x} = \left(c + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} + \int (1 - \cos (2\pi x \cdot y)) \, dx(y) \right)^{-1}$. Then (\cdot, \cdot) is an inner product in $C^\infty_c(D)$. For a compact set K in D, we have

$$\sup_{u \in C^\infty_c(D), u \neq 0} \frac{\int_k |u| \, dx}{\|u\|} = \sup_{u \in C^\infty_c(D), u \neq 0} \frac{\sqrt{2} \int_k |u - \bar{u}| \, dx}{\|u - \bar{u}\|} < \infty,$$

where $\|u\| = (u, u)^{1/2}$. Hence the completion H of $C^\infty_c(D)$ by $\| \cdot \|$ is contained in $L^1(D)$. Evidently, for any $u \in C^\infty_c(D)$ and any normalized contraction T on \mathbb{R}^1, $T \cdot u \in H$ and $\|T \cdot u\| \leq \|u\|$. For a $u \in H$, we choose a sequence $(u_k)_{k=1}^\infty \subseteq C^\infty_c(D)$ such that

$$\lim_{k \to \infty} \|u_k - u\| = 0.$$

Since $(T \cdot u_k)_{k=1}^\infty$ converges weakly to $T \cdot u$ in H as $k \to \infty$ (see [1]), we have $T \cdot u \in H$ and $\|T \cdot u\| \leq \|u\|$. Hence H is a Dirichlet space on D. We shall show that V_x is the kernel of H. For an integer $m \geq 1$, let T_m denote the projection from \mathbb{R}^1 into $\left[-\frac{1}{m}, \frac{1}{m} \right]$. Let $f \in C_c(D)$; then $x \ast (f - \bar{f}) - T_m \cdot x \ast (f - \bar{f}) \in H$ and

$$V_x f - T_m \cdot V_x f \in C_c(D),$$

because $x \ast (f - \bar{f}) = 0$ on ∂D and $\lim_{|x| \to \infty} x \ast (f - \bar{f})(x) = 0$. Therefore there exists a neighborhood V_m of the origin such that, for any non-negative, spherically symmetric and infinitely differentiable function φ in \mathbb{R}^1 with $\text{supp} \, (\varphi) \subseteq V_m$ and $\int \varphi \, dx = 1$, $f \ast \varphi \in C^\infty_c(D)$ and

$$(V_x f - T_m \cdot V_x f) \ast \varphi \in C^\infty_c(D).$$

Since

$$(x \ast (f - \bar{f}) - T_m \cdot x \ast (f - \bar{f})) \ast \varphi = (V_x f - T_m \cdot V_x f) \ast \varphi - (V_x f - T_m \cdot V_x f) \ast \varphi$$

and, for a $u \in \tilde{H}$,

$$\|u \ast \varphi\|^2 = \iint ((u \ast \varepsilon_x, u \ast \varepsilon_y)) \varphi(x) \varphi(y) \, dx \, dy \leq \|u\|^2,$$
we have
\[\| (V_x f - T_m \cdot V_x f) \star \varphi \|^2 \]
\[\leq \frac{1}{2} \| | x \star (f - \bar{f}) - T_m \cdot x \star (f - \bar{f}) | |^2 \leq 2 \| | x \star (f - \bar{f}) | |^2. \]

By letting \(\varphi \, dx \to \varepsilon \) (vaguely) and \(m \to \infty \), we see that \(V_x f \in H \) and, for any \(u \in C_c^\infty (D) \),
\[(V_x f, u) = (x \star (f - \bar{f}), u) = \int u(f - \bar{f}) \, dx = \int uf \, dx. \]
This implies immediately that, for any \(u \in H \),
\[(V_x f, u) = \int uf \, dx. \]
Consequently \(V_x \) is the kernel of the Dirichlet space \(H \). This completes the proof.

Theorem 2 gives also that the question raised by H. L. Jackson is affirmatively solved. In fact, the singular measure associated with the convolution kernel \(r^{2-\alpha} \) is equal to \(c_\alpha |x|^{-\alpha} \, dx \) provided that \(0 < \alpha < 2 \), where \(c_\alpha \) is a positive constant, where \(|x|^{2-\alpha} \, dx \) is symbolically denoted by \(r^{2-\alpha} \) \((0 < \alpha < n)\).

We denote now by \(\Delta \) the laplacian on \(\mathbb{R}^n \). We say that a convolution kernel \(\kappa \) on \(\mathbb{R}^n \) is a Frostman-Kunugui kernel if \(\kappa \) is spherically symmetric, vanishes at infinity \((^6)\), and if \(\Delta \kappa \geq 0 \) in the sense of distributions outside the origin \(0 \). Theorem 2 and Theorem 1 in [7] give the following

Corollary 18. — Suppose \(n \geq 3 \). Then the following two statements hold.

(1) For a Frostman-Kunugui kernel \(\kappa \neq 0 \) on \(\mathbb{R}^n \) satisfying
\[\frac{\partial}{\partial x_1} \Delta \kappa \leq 0 \] in the sense of distributions in \(D \), there exists uniquely a spherically symmetric Dirichlet convolution kernel \(\kappa' \) on \(\mathbb{R}^n \) such that \(V_{\kappa'} \) is a Dirichlet kernel on \(D \) and that, for any \(f \in C_c (D) \),
\[V_x (V_{\kappa'} f)(x) = V_x (V_\kappa f)(x) = G_\kappa f(x) \] in \(D \).

(2) For a spherically symmetric Dirichlet kernel \(\kappa \) on \(\mathbb{R}^n \) such that \(V_\kappa \) is a Dirichlet kernel on \(D \), there exists uniquely

\(^6\) This means that, for any finite continuous function \(f \) in \(\mathbb{R}^n \) with compact support, \(\kappa \star f(x) \to 0 \) as \(|x| \to \infty \).
a Frostman-Kunugui kernel x' on \mathbb{R}^n such that $\frac{\partial}{\partial x_1} \Delta x \leq 0$
in the sense of distributions in D and that, for any $f \in C_c(D)$, $V_x(V_x f)(x) = V_x(V_x f)(x) = G_x f(x)$ in D.

Proof. — First we shall show (1). By Theorem 1 in [7], there exists uniquely a spherically symmetric Dirichlet kernel x' on \mathbb{R}^n such that $x \ast x' = r^{2-n}$. We have, with a positive constant c, $(\Delta x) \ast x' = -c \varepsilon$ in the sense of distributions in \mathbb{R}^n. This implies that the singular measure associated with x is equal to $\frac{1}{c} \Delta x$ outside 0. Theorem 2 and our assumption give that $V_x f$ is a Dirichlet kernel on D. Since $\Delta x \geq 0$ in the sense of distributions in $\mathbb{R}^n - \{0\}$ and x vanishes at infinity, $\frac{\partial}{\partial x_1} x \leq 0$ in the sense of distributions in D. By Lemma 5, V_x is positive, and by Lemma 3 and Remark 4, we obtain the required equality. Let's show the uniqueness of x'. Let x'' be a Dirichlet convolution kernel on \mathbb{R}^n which is possessed of the same properties as of x. Since x is injective (see Theorem 1 in [7]) (7) and

$$x \ast (V_x f - V_x f) = x \ast (V_x f - V_x f)$$
in \mathbb{R}^n (8), we have $V_x f = V_x f$ ($\forall f \in C_c(D)$). This implies that, for any $f \in C_c(D)$, $(x' - x'') f = (x' - x'') \ast f$. In the same manner as in Lemma 5, we have $\frac{\partial}{\partial x_1} (x' - x'') = 0$ in the sense of distributions in D. Since $x' - x''$ is spherically symmetric and vanishes at the infinity, we have $x' = x''$. Thus we see that (1) holds.

Next we shall show (2). By Theorem 1 in [7], there exists uniquely a Frostman-Kunugui kernel x' on \mathbb{R}^n such that $x \ast x' = r^{2-n}$. Since the singular measure associated with x is equal to $\frac{1}{c} \Delta x'$ outside 0, Theorem 2 gives that

$$\frac{\partial}{\partial x_1} \Delta x' \leq 0$$
in the sense of distributions in D. Similarly as

(7) This means that, for an $f \in C(D)$, $f = 0$ provided that $x \ast |f|$ is defined and that $x \ast f = 0$.

(8) We may assume that $V_x f$ is a continuous function in \mathbb{R}^n with support $\subset \bar{D}$.
above, we see that $V_{\alpha'}$ is positive and the required equality holds. Since α is also injective (see, for example, [1]), we can similarly show the uniqueness of α'.

Remember the Riesz decomposition formula

$$r^{a-n} \ast r^{(2-a)-n} = a_\alpha r^{2-n} \quad (0 < \alpha < 2),$$

where a_α is a positive constant (see [9]). Then, by this corollary, we see that G_α satisfies the domination principle provided with $n \geq 3$ and $0 < \alpha < 2$.

Remark 19. — For a spherically symmetric convolution kernel α on \mathbb{R}^n, $\frac{\partial}{\partial x_i} \alpha \leq 0$ in the sense of distributions in D if and only if $\frac{\partial}{\partial r} \alpha \leq 0$ in the sense of distributions in $\mathbb{R}^n - \{0\}$, where $r = |x|$. In this case, α is absolutely continuous outside 0.

By using Theorem 1, Corollary 13 and this remark 19, we have the following

Remark 20. — Let $\alpha = \int_0^\infty \alpha_t dt$ be a spherically symmetric Dirichlet kernel on \mathbb{R}^n. Then V_α is a Dirichlet kernel on D if and only if, for any $t \geq 0$, α_t is of form

$$\alpha_t = c_t e + k_t(|x|) dx,$$

where c_t is a non-negative constant and k_t is a non-negative decreasing (in the wide sense) function on \mathbb{R}^+.

8. First we shall show that the inverse of the question raised by H. L. Jackson is also affirmative.

Proposition 21. — If the Green type kernel $G_\alpha (0 < \alpha < n)$ on D satisfies the domination principle, then $0 < \alpha \leq 2$.

Proof. — Since G_α satisfies the domination principle, G_α also satisfies the balayage principle (see, for example, [8]); that is, for a positive measure μ in D with compact support and a compact set F in D, there exists a positive measure μ_F^\prime supported by F such that $G_\alpha \mu \geq G_\alpha \mu_F^\prime$ in D and
G_\alpha \mu = G_\alpha \mu_F \text{ G}_\alpha \text{-n.e. on } F \quad (\ast). \text{ Let } \mu \neq 0 \text{ and } F \text{ be a closed ball contained in } D \text{ such that } \text{supp } (\mu) \cap F = \emptyset. \text{ Suppose that } \alpha > 2. \text{ Let } t \text{ be positive integer satisfying } 0 < \alpha - 2t \leq 2 \text{ and } \beta = \alpha - 2t. \text{ Then}

\begin{align*}
G_\alpha(x,y) &= \int G_{2t}(x,z)G_\beta(z,y) \, dz \\
(\text{see Lemma 3}). \text{ Since } G_{2t}(G_\beta \mu) = G_{2t}(G_\beta \mu_F) \text{ a.e. on } F, \text{ we have } G_\beta \mu = G_\beta \mu_F \text{ a.e. on } F, \text{ because } \\
\Delta^t(G_{2t}(G_\beta \mu) - G_{2t}(G_\beta \mu_F)) &= (-c)^t(G_\beta \mu - G_\beta \mu_F)
\end{align*}

in the sense of distributions in } D, \text{ where } c \text{ is the positive constant satisfying } \Delta r^{2-n} = -c \varepsilon. \text{ Since } G_\beta \mu \text{ is continuous on } F \text{ and } G_\beta \mu_F \text{ is lower semi-continuous, we have } G_\beta \mu \geq G_\beta \mu_F \text{ on } F, \text{ and so } \int G_\beta \mu_F \, d\mu_F < \infty. \text{ The function kernel } G_\beta \text{ satisfying the domination principle, we have } G_\beta \mu \geq G_\beta \mu_F \text{ in } D. \text{ By virtue of the injectivity of } G_\beta, \text{ we have } G_\beta \mu \neq G_\beta \mu_F. \text{ But this contradicts the equality } G_{2t}(G_\beta \mu) = G_{2t}(G_\beta \mu_F) \text{ G}_\alpha \text{-n.e. on } F. \text{ Thus we achieve the proof.}

We raise a question.

Question 22. — Let \(x \) be a convolution kernel on \(\mathbb{R}^n \) satisfying \(x = \overline{x} \). Suppose that \(V_x \) is a Hunt kernel on \(D \). Then is it true that \(x \) is the sum of a Hunt convolution kernel and of a non-negative constant ?

The following proposition shows that the answer is «yes» in a special case.

Proposition 23. — Let \(x \) be a convolution kernel on \(\mathbb{R}^n \) satisfying \(x = \overline{x} \). Suppose that \(V_x \) is a Hunt kernel on \(D \). If \(\int dx < \infty \) and \(x \) is absolutely continuous outside 0, then \(x \) is a Hunt convolution kernel.

Proof. — We may assume that \(\int dx < 1 \). For a \(p \in (0,1] \), we put

\[x_p = \sum_{k=0}^{\infty} (-p)^k(x)^{k+1}; \]

(\ast) We write \(G_\lambda \mu = G_\lambda \mu_F \text{ G}_\lambda \text{-n.e. on } F \) if, for any positive measure \(\nu \) in \(D \) with \(\text{supp } (\nu) \subset F \) and \(\int G_\lambda \nu \, d\nu < \infty, \int G_\lambda \mu \, d\nu = \int G_\lambda \mu_F \, d\nu. \)
then \(x_p \) is a real measure in \(\mathbb{R}^n \), absolutely continuous outside 0, \(x_p = \bar{x}_p \) and \(\int d|\bar{x}_p| < \infty \), where \(|x_p| \) denote the total variation of \(x_p \). Since \((p\lambda + \varepsilon) * x_p = \lambda \), Lemma 3 gives that, for any \(f \in C_c(D) \), \((pV_x + 1)(V_{x_p}f) = V_xf \). Let \((V_{x_p})_{p \geq 0} \) the resolvent associated with \(V_x \). In the same manner as in Theorem 1, we have, for any \(f \in C_c(D) \), \(V_{x_p}f = V_xf \) in \(D \). Hence \(V_{x_p} \) is positive. In the same manner as in Lemma 5, we have \(\frac{d}{dx_1} x_p \leq 0 \) in the sense of distributions in \(D \). We show that \(x_p \) is a convolution kernel. It suffices to prove that, for any \(f \in C_c(D) \), \(\int_D f(x) \bar{x}_p(x) \geq 0 \), because

\[
\mathcal{X}_p(\{0\}) = \frac{x(\{0\})}{1 + px(\{0\})} \geq 0, \quad x_p = \bar{x}_p
\]

and \(x_p \) is absolutely continuous outside 0. For each integer \(k \geq 1 \), we choose a non-negative, spherically symmetric and infinitely differentiable function \(\varphi_k \) in \(\mathbb{R}^n \) such that \(\int \varphi_k \, dx = 1 \) and \(\text{supp} \, (\varphi_k) \subset \{ x \in \mathbb{R}^n; \, |x| < \frac{1}{k} \} \). Since

\[
\frac{d}{dx_1} x_p * \varphi_k(x) \leq 0 \quad \text{in the set}
\]

\[
\left\{ x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n; \, x_1 \geq \frac{1}{k} \right\}
\]

and \(\lim_{|x| \to \infty} x_p * \varphi_k(x) = 0 \), we have \(x_p * \varphi_k(x) \geq 0 \) in the above set. Hence, for any \(f \in C_c(D) \),

\[
\int_D f(x) \, dx_p = \lim_{k \to \infty} \int_{x_1 \geq \frac{1}{k}} f(x) \left(x_p * \varphi_k(x) \right) \, dx \geq 0.
\]

Consequently \(x_p \) is a convolution kernel \((\forall p \in (0,1]) \). Since \(x - x_p = p* x_p \), \(x \geq x_p \). For a \(p \in (1, 2] \), we put

\[
x_p = \sum_{k=0}^{\infty} (1 - p)^k (x_1)^{k+1};
\]

then \(x_p \) is also a real measure in \(\mathbb{R}^n \), absolutely continuous outside 0, \(x_p = \bar{x}_p \), \(\int d|\bar{x}_p| < \infty \) and \(x - x_p = p* x_p \). In the same manner as above, \(x_p \) is a convolution kernel. Inductively we obtain a family \((x_p)_{p \geq 0} \) of convolution ker-
nels satisfying \(x - x_p = px \ast x_p \) and \(\lim_{p \to 0} x_p = x \) (vaguely). By Lemma 3.2 in [6], we obtain that, for each \(p \geq 0 \) and \(q > 0 \), \(x_p - x_q = (q - p)x_p \ast x_q \) and \(\lim_{p \to 0} x_p = x \) (vaguely), where \(x_0 = x \). Since \(V_x \) is a Hunt kernel on \(D, \ x \neq 0 \), and hence, for any \(x \neq 0 \in \mathbb{R}^n, x \neq x \ast \varepsilon_{x} \), because
\[
\lim_{|x| \to \infty} x \ast f(x) = 0
\]
for any finite continuous function \(f \) in \(\mathbb{R}^n \) with compact support. Hence, by Corollary 1 of Theorem 5 in [6], \(x \) is a Hunt convolution kernel. This completes the proof.

Remark 24. — In the above proposition, if \(x \) is spherically symmetric, the same conclusion holds without the assumption that \(x \) is absolutely continuous outside \(0 \). See Remark 19.

BIBLIOGRAPHY

Manuscrit reçu le 10 janvier 1977
Proposé par G. Choquet.

Masayuki Irô,
Mathematical Institute
Nagoya University
Nagoya, Japon.