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A WHITNEY EXTENSION THEOREM IN Lp
AND BESOV SPACES

by A. JONSSON and H. WALLIN

0. Introduction.

0.1. The classical Whitney extension theorem (see [27, Ch VI] or the
original paper by Whitney [30]) deals with the extension of Lipschitz
continuous functions on a closed set F C R" to Lipschitz continuous
functions on R". The class of Lipschitz functions on F which is
involved. Lip (a, F), a > 0, is defined by means of the usual multi-
index notation in the following way. Let k be a non-negative integer
and assume that k < a < k + 1. The function /, or, to be more
exact, the collection {//}i,i<^ belongs to Lip(a,F) if the func-
tions fj are defined on F, /o = /, and if fy and the functions
R. defined by

ffW= ^ ff+l(y) ( x - y Y + R ^ x , y ) , (0.1)
I i 4- / K Zr l •1/+/KA:

satisfy

|/,Oc)|<;M and |R,Oc,jQ|<M|x-:^'1, x , ^ G F , |/| < k.
(0.2)

The norm of / G Lip(a, F) is the smallest constant M such
that (0.2) holds. When F = R" the functions fy , |/| > 1, are the
partial derivatives D7/ of /

The Whitney extension theorem now states that there exists
a continuous mapping E : Lip(a, F) —> Lip(a, R") which gives
an extension of /o = / from F to R".
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We see from (0.2) that Whitney's theorem deals with the case
when we have a supremum norm on F. We shall prove a Whitney
extension theorem in \f, 1 < P < 00, i.e. a theorem where we
replace the supremum norm by a corresponding If-wmi taken with
respect to a fixed positive measure /i supported by the closed set
F where p. is in some sense a "d-dimensional" measure, 0 < d < n.
We refer to section 1 (Definition 1.1) for the precise condition on
(i and here we note only that this condition on ^ also imposes a
condition on F. Examples of classes of sets satisfying this condition
are given in section 2. We assume that k<a<k+\, 1 < P< °°
and replace the condition (0.2) by the condition that the norm

ll^lp,a,M = (0.3)

2 (II/A,.^ // ^^^)"^{"').
\f\<k v \x-y\<l \^~y\ '

is finite. Here || ||p ^ denotes the L^AO-norm and the functions
/. have to be defined only ^-a.e. on F. We now define (Definition 1.2)
the generalized Besov space B^(F) to consist of those functions /, or,
more exactly, elements {f/}^^^ fo = f' such that ll/llp,^<00-
When F = FT the functions f,, I/I > 1, are the distribution deri-
vatives D7/ of /o =/ (Proposition 1.2) and B^(R") coincides (Pro-
position 1.3) with the ordinary Besov space A^(R") = A^(R");
if a is an integer we define B^R") by B^(R") = A^(R").

Our Whitney extension theorem in If (Section 1, Main
Theorem, (A)) can now be formulated in the following way, if
k < P = = a - ( n - d)lp < k + 1. There exists a continuous mapping

E: B^F)-^(R")

which gives an extension of {fj}^^,, to a function E{^.} in the
sense that the restriction to F of the derivative D^E^.}) is equal
to /• M-a.e. on F, for |/| < k. Here we use the pointwise restriction
of the strictly defined function (Definition 1.4).

The converse of our Whitney extension theorem in If , 1 < p < °°,
also holds (Section 1, Main Theorem, (B); note that the converse
in the classical Whitney case, p = °°, is trivial): If /^ B^(R"), then
R(/), defined by
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R(/)={DYIF},,,^,
where D^IF is the restriction to F of D7/, belongs to B^F),
^ < j 3 = = a — (n— d)lp < k + 1, and the restriction operator

R: B^R") —> B^(F)

is continuous.

0.2. A classical extension and restriction theorem by Besov and others
states that if A^R") is the ordinary Besov space (see Definition
1.3 for p = q and [27, section V. 5] for the general case) and
j3 = a - ( n - d ) / p > 0, where d is a positive integer, d < n, then
every function in A^R^) can be extended to R" so that it is a
function in A^q(Rn). Conversely, the restriction to R^ of a func-
tion in A^R") belongs to A^(R^). The extension and restric-
tion problem leading to this and to related theorems has been studied
by a large number of authors: Besov [6], Stein [28], [27], Taibleson
[29], Aronszajn, Mulla and Szeptycki [5], Lizorkin [19], Gagliardo
[17], NikoPskii [22], [21], Burenkov [ I I ] , and others. The case when
Rd is replaced by a "smooth surface", e.g. a surface locally satisfying
a Lipschitz condition has also been considered; we refer to Besov
[7], [8] and [9]. Extension and restriction problems in the case when
Rd is replaced by an arbitrary closed set have been investigated by
Wallin [31], Sjodin.[26], Jonsson [18], Adams [1] and Peetre [24].

It is easy to see from our discussion in section 0.1 that our Main
Theorem in section 1 generalizes the restriction and extension theorem
by Besov (in the case p = q, j3 not integral) to the case when R^
is replaced by closed sets F of a much more general kind than the
sets which have been considered in this theorem before (see Definition
1.1 and section 2). Furthermore, we get a version of the theorem
where also the derivative of order / of the extended function 1E{/.}
coincides on F with the corresponding function f., |/| < k (see
the final remarks in section 1). Finally it should be noted that our
method of proof gives a new proof also in the classical case of the
theorem of Besov.

0.3. Let D be an open set in R" with a boundary 3D which has
some smoothness property. If a function / belongs to a Sobolev
or a "Besov" space in D, is it then possible to extend / to a function
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in R" belonging to the analogous Sobolev or Besov space in R" ?
Extension problems of this kind have been considered by NikoPskii
[23], Calderon [13], Stein [27, Ch VI. 3], Besov [10], and others.
The conditions on D are usually approximatively equal to saying
that 3D is of class Lip 1. Our extension method is applicable to
this problem. From the discussion in section 0.1 we see that if the
closure D of D is a d-set with d = n, then every function in
B^(D), a not an integer, can be extended to a function in B^R"),
and the extension operator is continuous. Our condition on D is
weaker than the conditions used in the references mentioned above
(compare example 2.4).

0.4. Summary. The main definitions and the main results are stated
in section 1 which serves as a detailed introduction of the paper.
The condition imposed on F is examined in section 2. In section 3
we give the connection between our generalized Besov spaces and
the classical Besov spaces. In chapter II (section 4-6) we treat the
extension problem and in chapter III (sections 7-9) the restriction
problem.

0.5. Notation. R" is the ^-dimensional Euclidean space with points
x = (^ i , . . . , x^). We let R^, d < n, consist of those x E R"
for which x^ = . . . = x^ = 0.
B(x , r) is the closed boll of radius r centered at x.
d{x , F) is the distance from x to F.

11/llp is the It-norm with respect to Lebesgue measure dx\ \\f\\p^
is the L^Qx) norm; 11/llp^^ and ll/ll^p are defined in Definition
1.2. Integration is over the whole space if nothing else is indicated.
A^(E) is the d-dimensional Hausdorff measure of E (see section 2.2).
m^ denotes the d-dimensional Lebesgue measure and m = m^.
f = ( / i , . . . , / „ ) is a multi-index, /! = j\ ! . . . / „ ! , |/| = j\ + . . . 4 - / ^ ,
x1 = x^ . . . x^1, and D7 denotes the derivative corresponding to /.
C^ is the set of C°°-functions with compact support.
c denotes different constants at most times it appears.
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CHAPTER I

THE PROBLEM

1. Definitions and main results.

1.1. In the extension problem we need a special kind of closed sets.
As a preparation for the definition of these sets we define a special
class of measures.

DEFINITION 1.1. — Let F he a closed non-empty set A positive
measure ^ is called a d-measure on F (0 < d < n) if

a) supp p. C F and
b) there exists a number r^ > 0 such that for some constants

^ , ̂  > 0
^i (B(x , r ) )<c^ r^, x G R", r < r o , and (1.1)

^(BOc,r))>C2^, x E F , r < r o . (1.2)

The set F is called a d-set if there exists a d-measure on F.
As an example, R^, d positive integer, and a closed rectangle

in R^, are d-sets. See section 2 for other examples.
The d-sets have, of course, a close connection to the d-dimensional

Hausdorff measure. We denote the d-dimensional Hausdorff measure
by A^ and the Hausdorff dimension of a set E by dim E. These
concepts are defined and the following proposition proved in section 2.

PROPOSITION 1.1. — a)// F is a closed d-set, then

dim(F n B(x , r)) = d, for x E F, r > 0,

and the restriction AJF of A^ to F is a d-measure on F.
b) If /^ and ^ are d-measures on F, rter^ are constants

Ci , c^ > 0 ^c/z ^^^ Ci /Xi < ^2 ^ ^2 ^i •

In other words, the closed set F is a d-set if and only if the
restriction to F of the d-dimensional Hausdorff measure is a d-measure
on F.
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With a suitable normalization, the ^-dimensional Hausdorff
measure coincides with the ^-dimensional Lebesgue measure; by Pro-
position 1.1, the d-dimensional Hausdorff measure serves as a "cano-
nical measure" on a d-set in the same way as the Lebesgue measure
does on R".

1.2. We now define the spaces B^(F) needed in the extension problem.

DEFINITION 1.2. (The generalized Besov or Lipschitz space
B^(F).) — Let F be a closed d-set, k a non-negative integer,
k<a<k+\, and 1 < p < oo. We say that /GB^(F), or, for
greater clarity, that {f^-^^ e ®^(^)» tf ^e functions f. satisfy

a) the functions f. are defined d-a.e. on F, ie. everywhere
on F except on a subset of d-dimensional Hausdorff measure zero

b)/o == / d-a.e. on F, and

c) if Ry are defined by

ff(x)= S -W^(x-^y+R,(^ ,^) ,x ,^eF,
i / + / i < f c "

and [i. is a d-measure on F, then the norm \\f\\p^a^ = IH^/}llp,a,^
defined by

u^,^ == (1.3)

£(«^,.+f // i^^^)^)"'),
\j\<k {\x-y\<l lx •yl

is finite.

When ^ = A^ | F, we put

ll̂ ,a,P = \\f\\p.a.,

and take this as the norm of {f^} G B^(F).
It follows from Proposition 1.1. that "d-a.e. on F" is equivalent

to "jn-a.e. on F" so that the integration in (1.3) has a meaning. In
some cases we get an equivalent norm by taking the integration in
(1.3) over R" x R" instead of over the part of R" x R" determined
by the condition \x —y\ < 1 (see Proposition 3.1).
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In the definition we have used the ordinary notation concerning
multi-indices /' = (;\ , .. ., /„) and / = = (/i , . . . , / „ ) ; see the intro-
duction. It should be noted that, by Proposition 1.1 b), the norms
ll/Hp^^ and 11/llp^,^ are equivalent, if ^4 and ^2 are rf-measures
on F.

The functions f., 0 < \f\ < k, in Definition 1.2, of course
serve as derivatives of / on F. In fact, we have the following pro-
position when F = R".

PROPOSITION 1.2. — If k is a non-negative integer, k < a < k 4- 1,
and {^}|,i<^ ^ B^R^), then f^ is the distribution derivative D7/
of / o==/ ; /or 1/KA.

This proposition, which is proved in section 3, shows that we
can talk about /eB^(R") without specifying f^ 0 < |/| < k,
since these last functions are uniquely determined by /.

The next proposition, which is proved in section 3, states that,
when F = R", the generalized Besov space B^(F) coincides with
the ordinary Besov space which can be defined in the following way:

DEFINITION 1.3. — If k is a non-negative integer and k < a < k-\-1,
the ordinary Besov space A^R") consists of those /E I/CR") for
"which the norm ("with distribution derivatives)

11 /11^ „ - I IID//H,
a(R ' l/Kfc

, y / rr ID^Qc) - D'f(y)\" y/p+,^ UJ \.-yr^ d x d y )
is finite. When a = k+\ the first difference W f(x) - ̂  f(y) shall be
replaced by the second difference Wf(x) - 2 Dff((x^y)/2) + D^O).

PROPOSITION 1.3. - B^(R") = A^(R") with equivalent norms.

The space B^(F) was defined (Definition 1.2) for a > 0, a
not an integer. In order to get greater unity in the notation we put,
because of Proposition 1.3, B^(R") = A^R"), a positive integer.

1.3. In order to define the restriction to F C R" of a function /
defined a.e. in R" we need the concept of a strictly defined function
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/. If / is_a locally integrable function on R", we define the corrected
function / by

f(x) = lim ————- F f(t)dt
r-.o m(B(x,r)) J^r)

Sit every point x where the limit exists. We say that / can be strictly
defined at all points where / is defined. According to a fundamental
theorem by Lebesgue, / = J a.e. By redefining, if necessary, / on
a set of Lebesgue measure zero, we can consequently obtain that
f=f at all points where the limit exists. If this is done we say that
/ is strictly defined and make the following definition.

DEFINITION 1.4. - // fC Li^(R") and F C R", then /|F
is the pointwise restriction to F of the strictly defined function f.
Of course, f\P is defined at those points only where f can be strictly
defined.

We now wish to formulate the main result of the paper, stating
roughly speaking that the restriction of /EB^(R") to a rf-set F
is an element in B^(F), P = a - (n-d)/p, and that, conversely,
every element in B^(F) can be extended to a function in B^(R").

MAIN THEOREM. - Let F be a d'set, 0 < d < n, l < p < o o ,
n-d

P = a————,
P

and k < j3 < k 4-1 where k is a non-negative integer.
(^(Extension theorem) For every element {/.}|.^^ E B^F)

there exists a function E({^.}) E B^(R"), which is an extension of
^f\l\<k in ̂  sense ̂ ^

[W(E{f^)]\P = /, d-a.e. on F, for |/| < k , (1.4)
so that the extension operator

E: B^(F) —^ B^(R")
is continuous.

(B) (Restriction theorem) If /E B^(R"), then R(/), defined by

R(/)= {(TOIF},^,,
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belongs to B^F) awd rt^ restriction operator

R: B^(R") —^ B^(F)
^ continuous.

Notice that E{f.} denotes a function, not a collection of func-
tions. The extension part of the theorem is proved in Chapter II and
the restriction part in Chapter III. In both cases we prove more than
is stated in the Main Theorem. When F = R^, d < n, the Main
Theorem is reduced, by means of Proposition 1.3 and the discussion
in section 3.4, to the well-known extension and restriction theorem
by Besov and others (see [27, p. 193]). It should be noted, however,
that, by (1.4) in our Main Theorem, not only does the (corrected)
extended function E{f.} coincide with /o = / d-a.e. on F but,
furthermore, that the derivatives of E{^.} of orders less than or equal
to k coincide d-a.e. on F with the corresponding functions f..

2. Examples and properties of d-sets.

2.1. In section 1 we mentioned that R^ and closed rectangles in
W1 are d-sets. We give a number of further examples.

Example 2.7. — Let d be a positive integer and A a closed
rectangle in R^, bounded or not bounded. Let F C R" be a
Lipschitz image of A in the sense that there exists a bijective mapp-
ing /: A —> F such that / satisfies a Lipschitz condition on A,
1/(^) — /(•x')! ̂  M|jc — x ' \ , x, x ' € A, and the inverse function
f~1 satisfies an analogous Lipschitz condition on F. We claim that
the closed set F is a d-set.

In fact, if m^ is the d-dimensional Lebesgue measure, we define
a measure p. supported by F by p.(E) = m^CT^E)), E CF.

The restriction of m^ to A is a d-measure on A and since,
by the Lipschitz conditions,

BCT1^), ̂ r) cr'Wx^)) C B(F1^), M,r), for x E F,

where the constants M^ and M^ depend only on the Lipschitz
constants, we conclude that ^ is a d-measure on F.
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In this example we could clearly replace A by any d-set and
m^ by a cf-measure on A.

Example 2.2. - Let F C R1 be the ordinary Cantor set,

F = ^ F,,
n=0

where F^ = [0,1] and Fy, is the union of 2" closed intervals,
each of length 3~", obtained by removing the middle thirds of the
intervals of Fn-i • ^ ^n ls ̂  measure consisting of the unit mass
uniformly distributed on F^, ^ converges to a measure ^LI, support-
ed by F, and it is easy to see that ^ is a rf-measure on F for
d=log2/ log3. Consequently F is a d-set for d=log2/log3.

It is quite obvious that this example extends to generalized
Cantor sets in R".

Let ^ be a d-measure on F. The conditions (1.1) and (1.2)
in section 1 are obviously satisfied for any choice of the positive
(finite) number ^ (but with different constants c^ and c^). We
can also conclude that

^(BC^r))^^, x G FT, r>r^. (2.1)

This follows from the fact that B(x,r) can be covered by a
constant times r" number of balls with radii 1. However, we cannot
in general replace r" in the right member of (2.1) by r d . This follows
from the next example.

Example 2.3. - Let F == U py where we take the union over
all integers v and py = {x = ( x ^ , . .. , x^): x^ = v}. Let, for each
v, the restriction of p. to p y be given by the (n— 1 )-dimensional
Lebesgue measure on p y . Then {i is clearly a d-measure on F with
d = n— 1 but for large values of r we have M(B(^, r)) > c r " .

Example 2.4. — We can, of course, in different ways construct
d-sets which locally are for instance of the forms described in the
examples above. A general way to do this is the following. For any
set U C R" and any 6 > 0, we put U6 = {x\ B(x,e) C U}. Let
the closed set F be such that there exists an e > 0, an integer N,
and a sequence {U,} of open sets so that:
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(i) U U' D F
i l

(ii) no point of R" is contained in more than N of the US

(hi) there exist constants r^.c^.c^ > 0, a number d, 0 < d < w,
and positive measures ^n,, supp^CF, so that ^,(B(x,^)) < c^ ^d,
x G R", r < ro and ^,(B(JC, r)) > ̂  ̂ , x G U, n F, r < ^o.

We shall prove that F is a d-set.
We let Vf be the restriction of ^ to 0, = Uf72 and put

/A = 21/,. Then supp ^ C F and we claim that ^ is a d-measure on
F. If x G F, then, by (i), x G U f̂ for some i, and

Vi^(x^))>v^(x^))>c^rd,

for r < min(e/2, r^). In order to get an estimate in the other direction
we put \(x) == {i: 0, n BQc, r) ̂  0}. Then, by (ii),

Z €3 e" < ^ w(U, n B(x, r)) < Nw(B(^, r)) < €4,
iGI^) i£l(jc)

if r < ro. Hence, the number of elements in I(x) is bounded by a
constant c and we get by (iii),

^(B(x, r)) = 2^,(B(x, r)) < c . c^ ^, /- < r^, x E R",

proving that p. is a d-measure on F.

We notice that the sets F which are minimally smooth boun-
daries 3D of open sets D in the terminology of Stein [27, p. 189],
are d-sets with d = n — 1. In fact, in this case the closure of the parts
U, 0 F are (^—l)-sets of the kind considered in Example 2.1 corres-
ponding to Lipschitz mappings with uniformly bounded Lipschitz
conditions. We also notice that if D is an open set with minimally
smooth boundary, then the closure D of D is a d-set with d = n.
In fact, it is easy to see that the restriction to D of the ^-dimensional
Lebesgue measure is an ^-measure on D.

2.2. We define the d-dimensional Hausdorff measure, 0 < d, of
any set E C R", A^(E), as follows. For a certain constant a(d)
(see (2.2) below) and any e > 0, let

A^(E) = a(d) inf S (diam E,)^
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where the infimum is taken over all coverings of E by denumerably
many sets E/ C R", UE, D E, with diameters diam E, < e. Then
A^E) = Un̂  A^(E).

Since E, and its convex hull have equal diameters, we get the
same set function if we require all E, to be convex. We also clearly
get the same set function if all E .̂ are assumed to be open (closed).
In case we require all E, to be balls we get a set function which
on E is not smaller than A^(E) and not larger than 3d A^(E). We
define the constant a(d) by

aW^-^r^y / r^+l ) (2.2)

which guarantees that A^(E) coincides with the ^-dimensional outer
Lebesgue measure of E (see for instance [14, p. 174]). The d-
dimensional Hausdorff measure is an outer measure and the class
of sets measurable A^ contains the Borel sets in R". The Hausdorff
dimension of E, dim(E), is the infimum of the set of numbers d
such that A^(E) = 0. It is easy to see that dim(E) < n for all E C R".
By rf-a.e. we mean everywhere except on a set of rf-dimensional
Hausdorff measure zero. Note that A^(E) = 0 implies ^i(E) = 0
if M is a positive measure such that ^i(B(x, r)) < cr^, r < r^, x G R".
In fact, By = B(x^/o), ^ < r^, UBy D E implies

^(E)<2Ai(B,)<c2^

and this sum can be made arbitrarily small if A^(E) = 0.

2.3. Proof of Proposition 1.1, a). - Let F be a closed rf-set, /x a d-
measure on F, and r^ a positive number. For x G F, 0 < r < ̂
and denumerably many closed balls B, with radii /•, < r^,
UB, D (F H B(x, r)), we obtain from Definition 1.1 (Cy are positive
constants):

c, rd < ^i(B(x, r)) < Z ^i(B,) < Z ^ rf .
i <

However, for any e > 0, the last sum is, for a suitable choice
of {B,}, less than €3(6 4- A^(F H B(;c, r))), which gives

A^FnBOc^))^-^1-^, x E F , r < r ^ . (2.3)
^
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To get an inequality in the other direction we have to use some
kind of covering argument. Let B(x,r), r < r Q , be such that
A^(FnB(;c,r))>0, r<A^(FnBOc, r ) ) , and let 0 < e < ̂ - r.
By the Heine-Borel covering lemma we can cover FHB(x , r ) by
finitely many open balls S, C B(;c, r4-e) with centers in F H B(x, r)
and radii less than e. By a standard argument (see for instance the
proof of Lemma 8.4 in [25]), we can choose a disjoint subcollection
{B,} of {S,} such that US, C U/3, where |8. is the ball concentric
with B, whose radius is three times the radius r^ of B,.. Since
U ( 3 , D U S , D F n B ( j c , A - ) , we get, by the definition of Hausdorff
measure,

0(^)2(6^ > t ,
if e is small enough.

But, by the properties of ^n,

c, Srf < 2^(B,) == ^i(UB/) < ̂ i(B(x, r+e)) < c^+e^.

By letting e tend to zero and t to A^(F Fl B(x, r)) we conclude
that

A^(FnB(^,r))<a(^)6d^ l^rd, ^ GR", r<^. (2.4)

From (2.3) and (2.4) we see that A^|F is a d-measure on F.
We also see that 0 < A^(F 0 B(;c, r)) < oo, x G F, r > 0, and,
consequently, that dim(F 0 B(x, r)) == d for x G F, r > 0.

2.4. Proof of Proposition 1.1, b). — Let JL^ and /^ bed-measures
on F. Take an open set 0 such that A4(0) > 0 and a number
t<fji^0). Since jLi^ is a regular Borel measure (see for instance
[25, Theorem 2.18]), there exists a compact set K, K C 0, such
that JLI^(K) > t. We can cover K H F by finitely many open balls
S, C 0 with centers in K H F and arbitrarily small radii r,. By the
same argument as in the proof of part a) of Proposition 1.1, we can
choose a disjoint subcollection {BJ of {S,} such that US, C Uj3,
where j3, is the ball concentric with B,, whose radius is three times
the radius r, of B,. We get

t < ̂ (K) < ̂ (US,) < MiTO < SMi(ft-) < Sc^y

< c, 3d 2c^(B,) == c^ 3^(UB,) < c, ̂  3d ̂ (0).

By letting t tend to ^(0) we conclude that ^(0) < c^^{0).
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For an arbitrary Borel set E we have

A4(E)<^(0)<C3M2(0), O D E , 0 open.

By taking infimum over 0 we conclude that ^(E) < c^p.^(E).
Since we obtain an inequality in the other direction in the same way,
we have proved what we wanted.

3. Connection to classical Besov spaces.

3.1. We first show that in some cases the domain of integration in
the double integrals defining the norm of B^(F), may be taken to
be the whole of F x F.

PROPOSITION 3.1. - Let F be a d-set, let fi be a d-measure on
F, and suppose furthermore that IJL satisfies

/x(B(x,r))<Ci ^, x E R " (3.1)

for all r > 0. Then the norm \\f\\p^ in Definition 1.2 is equivalent). Then
to the norm

^ - ̂  ̂  - ff ,̂ &. ̂ ) ̂ ) l/p).
Proof. - We obviously have 11/llp^^ < Wp.a^ and from

( rr iR/Q^r , / , . / , i/p ^\M^ i.-^-^^^ <

< ( CC ^iW ^ / ^ / Jl/p j.
[M^ ̂ -y^-^^^ +

y ( rr \x-y\^ \f,^y}\" . , , . , , )
^ ; JJ^ ~(W~ \x-y\^-^ ̂ )^)j

i_ '̂  } 1 1 \" ^ \ \j i+{\^ /i , , . - . . y VP
^ i J^ ~(W~ \.-y\^-^ ̂ ^

< (see Lemma 8.1) < C S ll^/llp,^ <
I/+/KA:

it easily follows that \\f\\^ < C \\f\\^ .

Remark 3 A. —With a similar argument, one realizes that for
any a satisfying 0 < a < oo the norm ||/|| ^ is equivalent to the
norm '
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11/11 •^^.^i^ii.^^^^l-'')-
This holds for any rf-measure jn.

Remark 3.2. - In the proof of Proposition 3.1 we never used
the lower bounds of a d-measure, so an analogous statement holds
for any positive measure satisfying (3.1) for all r > 0.

3.2. Proof of Proposition 1.2.

LEMMA 3.1.-^ k<a<k+l, Kp<oo, { f i e BW)
^d /^ 0 E C^. 77 ,̂ wfrt / = /o,

D7^/ * 0) (^) = 0;. * 0) Qc), x G R'1, I/I < fc (3.2)

Proo/ - Consider a fixed multiindex / with I/I < k-\, and
assume that (3.2) holds for this /. It is clearly sufficient to prove
that (3.2) then holds for all /+/ with |/| = 1.

Put g = D^/* 0) = (by our assumption) = fy * 0, and let
x and A be points in R". We have
^+/Q - ̂ (x) = f(ff(y+h) - f^(y)) <t>(x-y)dy =

= / S ^f^^x-y^dy+f ^ -^f^W^x^dy^
1 / 1 = 1 w KI/K^-I/I /! 7

+ fRf(y^-h^y)<l>(x-y)dy.

Obviously, the second term after the latter equality sign is
0(|A|2), h —> 0, and since we also have

g(x+h)-g(x)= S hlDlg(x)+0(\h\2\ h—> 0,
l / i = i

it follows that

R,(y+h,y)<l>(x-y)dy = ^ h'(D'g(x) - f f,^(y) ^(x-y)dy)
1(1=1/

+ OW),h-^ 0. (3.3)
Now, since {f,}^^ e B^(R") we have that

1. \h^ kf ̂ y+hly) ̂ -y)dy p d h < ( - + - = l )<p q

<11^ t ——^.f\Ri(y+h,y)\''dydhq \h\<i W'1^
<00
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if e satisfies p4-e < (a-|/|)p. From this and (3.3) it follows that
for some e satisfying 0 < e < 1 we have

/ -1——T S —— (D^(x) - fff^y) <l>(x-y)dy) P dh < oo
\h\<l I'2! 1/1=1 \fl\ ~

which gives D^(x) - ff^.^y) (t>(x-y)dy =0, 1 / 1 = 1 , i.e.
D^(/*0)(^)=(/;-^*0)(^), 1 / 1 = 1 . With this, the lemma is
proved.

Now we can easily prove Proposition 1.2. Functions
W\f\<k E 8^") are g^^ ^d we shall prove that the distribution
derivatives D7/ of fo==f are equal to ^.. Let 0 satisfy 0 > 0,

0 ^ C ^ , f ( l > d x = l , define 0, by 0,(x) = e-" 0 (^), and put

/^ = /* 0^. The lemma above shows that D7/^ = /, * 0^, and since
(see e.g. [27], p. 62) II/;-- ̂  *0el lp—^ 0, e—^ 0, we thus have

ll^-D^llp-^O, 6-^0.

This enables us to conclude from

f(Wf,) ̂  dx = (-1)171 ff,(D^)dx, V/ E q;
that

/y;. <// ̂  = (-i)'7' //D^ ̂  ^ E c;
i.e. that D7/ = /;. in the distribution sense.

3.3. Proof of Proposition 1.3. - It is immediate from Proposition
1.2, Proposition 3.1, and the fact that Rf(x,y) = f^x) -ff(y), |/| = k,
that

^"W) ̂  "/".*^" ̂  c M^9 fe W^a' '

In order to prove a converse inequality, we shall establish the
inequalities
/ /y- \R^(x,y)\P M/p
UJ 1^ 'i^-i/Dp d x d y ) <c Sl•x-•yj i/+/i=^ (3.4)

/ ^ W1 f(x) - W1 f(y)\P M/pU f — ^ y r ^ d x d y ) 9 I^I^^-^^A^R") ,
where the functions fj in the definition of R .̂ are taken to be D7/
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Then it clearly follows that

ll/llp^.R^CH/l^^/EA^R").

We first prove (3.4) assuming that /E C°°. Using the exact remainder
in Taylor's formula we get

R,(x,y) = DW - Z °-30' D^'/W - S oc—0' D/W
|/+<l<fc-i • • l/+(l=fc ' •

-(fc-i/i) f'd-^-i7'-1 ( S ^—^'D^/^+e^-^))^)>/" V<i=k /! /

- 1: (^—)l-^tf(y).
\f+l\=k l '

Since (A:-|/l) f (l-6)k-{n-l dQ = 1 we may put the last
^o

sum under the integral sign, and we get

/ /•/» IR-OC,^)^ M/p
UJ |^_^|^(^I/I)P d x d y ) <

< c (JY'/1 S ^-^)/ (D^/(3.+0(x-^)) - D^/(j.))d0|^
0 \f+l\=k

dx dy \i/p
\^_y\n+(oi-\j\)p I

^ (Minkowski's inequalities for integrals) <

< c f1 ( [ [ S iD^/^+e^-^)) - D /̂OQIP
^o ^JJ 1^1=^

^ ̂  y/p -ijc-^r^-^p/ ?

which after substituting x ' = y + B ( x - y ) gives (3.4) f o r / G C00.
Let now / be an arbitrary function in A^(R"). Then there

exists a sequence {0^} of functions in C°° converging t o / i n
Ag(R") (see e.g. [29, p. 444]), and hence also a subsequence {0^}
of {0^} such that IY'0^——> D7/ a.e., |/| < k. By Fatou's lemma
and (3.4) we then have
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(rrJ^'Z-dxdy)1"'^\ j j ^-yr^'^ '
_ ^r\D'_-jl>n^^

<limC I^(Jj———1,,-^rCTP /

m^ }IW ^riD!^i_^'/w^^y/'',-c 1: UJ —î 7r^-fc)p /
|;+(t=k

which is (3.4) in the general case.

. r^ eRP(F) F=R", then by Proposition 1.2 the
3.4. If UyW^V1'' ..„,_,. uy /=/,. This is not true
functions f, are umquely detenmn^ by f 1 ^ ̂ ^ ̂  ̂

^^fw^^ -let ],and J2, r6^
L of ^ensional .ultiin.ceŝ ^ ̂  ̂ ,

^^'/x^e^Ae functions R/(x,y) in the definition of

BP(R<i)/R" C R", are given by

/.w= 2 (^w^^f.''^-^"'-
7 |/+/|<fc "

/eJi

Thi, shows .h..fo, /e), '-•"d.•hefunc••on^(^•••;;̂
^ K consid«.d ^ a ̂ -̂̂ "JB ,̂"̂  „ R-

;:.TB ,̂̂ ^ ̂ ^ . -. - ""'• -nd •t

also shows that p ̂
IH/,l|,Kt«.,,.l.» ° ,^ ll(/,.Ae,,,l,."<.".-l(l,'."'

»„«. the index W inte..estta. «. have .he B.SO, no^ i; B;

^ sr/;-̂ ^ ̂ ^^^b-
means of ^ ^ , (36)^iy^, ,=/ ,+, , , / \ej^e^l7l^- ( 3 - )

Here, D'1' denotes the derivative in R". The nonn \\{f,} lip,., R«

is by (3.5) and Proposition 1.3 equivalent to ̂  "^-i/,^)'



A WHITNEY EXTENSION THEOREM WLP 157

Conversely, any set {/. € A^^R^)}^ ^^ determines through
(3.6) a function in B^IVQ.

This is also of importance when one compares our extension
and restriction theorem to the classical ones in the case F = R^ C R".
In view of the discussion above, a restatement of the Main Theorem
in Section 1.3 in terms of classical Besov spaces when F = R^ is
as follows.

THEOREM 3.1. - Let 0 < d < n, d integer, 1 < p < oo,
n-dP = a ———, k < j3 < fe+ 1 where k is a nonnegative integer,

P
and let J^ and J^ be as above.

(A) (Extension Theorem) For every collection
H.GA^i^CR^ej^i/K^ there exists a function EL^GA^R")
which is an extension of {./^•(EJ, m ̂ e sense t^'at

(D^E {./,}) | R^ = /;., 1/KA, /EJ , .
Also,

(WE{ff})\ R^ == D71^, / = ;i +/2, 7i ^ J i , /2 E J2 , !/1 < k
and furthermore

?{f'}^W<c s 1^"A^ .(R.)-^a^ ^ /ej^ ^-j/iC" )

(B) (Restriction Theorem) If /G A^(R'1), rf^

(D^IR^ e A^^), I/ I < ^ / e J, ^d

(D<01 R" == D^CD^/iR^, / = A +/2, 7i ^ J i , h e J2. l7l < k.

Furthermore,

S IKD^IR^I! < C 11/11̂  .
/GJ^ ^-l/r" ) '^a^" )

Obviously, this theorem can be considered as a precise form of
the classical extension and restriction theorem for Besov spaces, in the
case when (3 is not an integer and p = q (see Section 0.2 in the
introduction; if only one function / belonging to A^R^) is given, and
one wants to extend it to a function in A^R"), one may of course put
/o = / and e.g. /, = 0 if 7 ^ ̂ . / ^ 0. and |/| < k, and then use
Theorem 3.1). Compare in this connection also [27], § 4.4, p. 193.
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CHAPTER II

THE EXTENSION THEOREM

4. The extension operators E^ .

4.1. We first restate, in a slightly more precise form, the extension
thoerem of this paper. See also Remark 4.1 below for a more general
version of Theorem 4.1.

THEOREM 4.1. - Let F C R" be a d-set, 0<d<n, 1 < p < oo,
n-d

{S = a ———— > 0, and k < fS < fe+1, where k is a nonnegative

integer. Then there exists a linear operator E^ on B^F), such that
for every {f^, G B^(F),

(a) IIE^{/;Jllp^R«<c|l{y;.}| |^^p (4.1)

where c depends only on F,j3,p, and n, i.e. E^ is a continuous
operator into B^(R"),

(b) D7^ {/;.})! F = .̂ d-a.^. o^ F for \j\ < k, and

(c) E^}ec°°(CF).
The operator E^ is defined in this section, and in sections 5

and 6 we prove that it has the stated properties. However, we shall
first of all, in Section 4.2, reduce the case d = n to the case d < n.

Remark 4.1. — In proving the theorem above, the lower bound
of a rf-measure is the essential one. In fact, it is obvious from the proof
of Theorem 4.1, that the theorem holds if F is a closed set, JLI is
a fixed measure supported by F, finite on bounded sets, and satisfying
(1.2),i.e.

fi(B(x,r))>cr^ ;c G F, r^r^

Then B^F) shall be interpreted as the space of functions {./•},,1^
with finite norm ||{/,-}|| ^ ^ , where the norm is given by (1.3) with



A WH1TNEY EXTENSION THEOREM IN Lp 1 59

this measure fi. It is interesting to compare this to the situation in
the restriction theorem (Theorem 7.1), where only the upper bound
(1.1) is needed.

4.2. The case d = n. Suppose that Theorem 4.1 has been proved
for 0 < d < n. Using also the restriction part of the Main Theorem,
we can then obtain the theorem for d = n by the following argu-
ment (compare also the discussion in Section 3.4). Let functions
{fj}\f\<k G fi^) be g^^ where F C R" is a given d-set with d = n.
Define for any multiindex /' = = ( / , . . . , /„, 7^+i) = (/, /n+i ) , with
|/'| < k, a function fy on F by f^ = fj if /'^+i = 0, f^ = 0
if Ai+i > °- Then {f/^^^k e ̂ (^ where F is considered as
a subset of R"^. Let E' be the operator extending {fj'}^^

continuously into B^R"^), a = j3 4- — ? as in Theorem 4.1, and

put g^ = (D^E'H.^IR". Then gy = ff d-a.e. on F, and
using also the restriction part of the Main Theorem we see that
ll{^llp^R"<cll^^llp^,F==cll{W^,F• Here' of course' the

dimension of the multiindex indicates whether F (and R") is con-
sidered as a subset of R" or R"^. Define now gj for any ^-dimen-
sional multiindex / by gj = g(^o)' Since llte/Jllp^Rw = ll^llp^.R"'
it follows that the functions {^•}..,^ give the desired extension
of ^I/K.-

4.3. As was pointed out in the introduction, our extension is of
Whitney type, and in the construction of E^ we need the same type
of machinery as in the Whitney extension theorem. We give here
a short description of these tools and state their properties. Our pre-
sentation follows [27], p. 167-170, where details and proofs may be
found.

Let F be a given closed set. Then there exists a collection of
closed cubes Q^ with sides parallel to the axes with the following
properties.

(a) C F - U Q ^ .
(b) The interior of the cubes are mutually disjoint.
(c) For a cube Q^, let diam Qj^ denote its diameter and

d(Q^ , F) its distance to F. Then

diam Q^ < d(Q^ , F) < 4 diam Q^. (4.2)
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(d) Suppose Q^ and Qy touch. Then

1/4 diam Q^ < diam Q^ < 4 diam Q^. (4.3)

(e) Let e be a fixed number satisfying 0 < e < A » and let
Q^ denote the cube which has the same center as Q^ but is expanded
by the factor 1+e. Then each point in C F is contained in at most
No cubes Q^, where No is a fixed number. Furthermore, Q^ inter-
sects a cube Qy only if Qj^ touches Qy.

In connection with this decomposition, we shall use the following
notation:

x^ = the center of Q.
l^ = the diameter of Q^
s^ = the length of the sides of Q^ (thus /^ = -\/ns^)

Sometimes we also denote the center of Qj^ by y ^ .
Next we make a partition of unity. Let ^ be a C°°-function sa-

tisfying 0 < ^ < 1, ^(x) = 1, x e Q and ^(x) = 0, x ^ (l+e)Q,
where Q denotes the cube centered at the origin with sides of length

(y __ y »

1 parallel to the axes. Define ^ by \pfr(x) = \p ——k•\, and then
sk /

^ by 0^(^)= ^W/S ^M, x C ^ P . Then 0^(jc) = 0 if
^

x ^ Q^ S ̂ A:^) = ^ ^ E CF, and it is easy to show that for any
multiindex / we have

ID^OC)! < A, (diam Q^)-1^1. (4.4)

4.4. Let now F be a d-set, 0 < d < n, and let p. denote the measure
AJF. Recall that ^ satisfies

c^<^(B(;c,r))<c^, r < r ^ , x E F (4.5)

for some constant r^, which may be taken arbitrarily big (see Section
2.1). Let {.//},.i^ be a collection of functions defined on F, and
summable with respect to ^ on bounded sets.

Put

P(x,Q = S 0'—07 f.0), x E FT, t C F.
I/KA: ^ .
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Define an operator E^ by

(E^.})(x) = S 0,0c)c, / PQc, r)4x(r), x E CF,(4.6)
( 1^-.<,|<6/,

where c, is defined by

c-1 == / ^(r)=^(B(x,,6/,))
|f-jc,|<6/,

Note that, since F has ^-dimensional Lebesgue measure zero,
the function E^{^} becomes defined a.e. in R" by (4.6).

Next fix a function $ such that $ € C°°, $(x) == 1 if
d(x,F)<3, $0c) == 0 if d(x,F)>4, and such that D7^ is
bounded for every /, with a bound which may depend on /. The
extension operator E^ is now defined by

(E^^})(x)=$(x)(E^{y;.})(x).

4.5. From (4.2) we see that there exists a point p, € F with
|p, - x,| < 5/,. This gives ^(B(x,,6/,)) > jLi(B(p,,/,)) > c^/f if
/. < ro or

c,^-1-^ i f / ,< ' -o . (4.7)cl
where c,"1 = ^(B(;c,,6/,)), an estimate which is important in what
follows.

5. Lemmas.

5.1. It will be convenient to make some more agreements on nota-
tion. Let k and m be nonnegative integers, and let {fj}\j\^k be
a collection of functions on the d-set F, locally summable with res-
pect to the d-measure on F. Below the function E^{^.} will be
denoted by /, so E^{^.} = $/ The remainders corresponding to
{//}|/K^ {D7/},,,^, and {DW)},,,^ will be denoted by
r^(t,s), R^x,y), and R^(x,y), respectively, i.e.

r,0,^) = ff(t) - S (-t-s)- f^(s), s , t E F, (5.1)
\j+l\<k l '
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Ry(^) = Wx) - S °—3^ D^/OQ, x , y G C F, (5.2)
I /+/KW C I

and R .̂ (x,^) is the same expression with / replaced by <&/
We also put

P/0^) = S °——°- f^(t\ x E R", r G F, I / I < ^.
1/+/KA: ( -

Note that Po(x,r) = P(x,r) as defined in 4.3, and that
a7
^- P(x,t)=P^x,t\ 1/Kfc

The following identities will be useful below.

LEMMA 5.1. — Suppose x ,y E R" and s, t E F. Then

P,(x,r)-p,(x,.)= S , (^,)0_0/ (5j)
i/+/i<fc ' ^ '

a^zrf

P/(^^)- S P^O^)0-^'. (5.4)
1/+/KA: / !

For a proof of (5.3), see e.g. [27], p. 177.

The identity (5.4) is just the Taylor expansion of the polynomial
in x, Py(x,^), around the point y.

5.2. In the following lemma, the fundamental estimates on the ex-
tended function in terms of the given functions {^.} on F are given.
Recall that C F = U Q^., where Q, are cubes with centers x, (or^.)
and diameters /,.

LEMMA 5.2. -Let F bead-set, 0<d<n, let [f^. ̂  e B^F),
k < ft < /;+1, 1 < p < oo, let m be a nonnegative integer, m > k,
and let f = E .̂} be given by (4.6). Let also x E Q .̂ and y G (^
be points with distance from F not greater than 4, and put

V^-) = if M r̂ d^t)diJi(s).
\t-Xi\<30li
\s-Xi\^30lf
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(a) TTz^n for any multiindex j

\WfW <c S /PMI- l / l )p-2d JJx,)
IMKA: (5.5)

4- c S Z^^ / 1/^)1p ^(0
[f+l\<k \t-Xf\<30li

(b) For j with \j\ < m and R-(x,y) given by ( 5 . 2 ) we have

IR/Oc^r < c ^ l^ l^ l^ ff \r^(t,s)\P d^t) dn(s)
| /+/ |<fc \t-Xf\<30l{

\s-yv\<30ly

+ c 1: I: 1^1'^ /^•-•^^-2d J,(^) (5.6)
\u\<k \j+l\<m

+ C 1: l^-WP-^ J^(x,).
|M|<fc

^r^ the constants c depend only on j\ m, F,(3,p, and n.
Note that the second sum in (5.5) and the first in (5.6) vanish

if I / 1 > k. The number 4 in the assumption d(x,F), d ( y , F ) < 4,
may be replaced by any positive number.

Proof. — For convenience, we first make the following change
of notation: We assume that x G Qj and y € Qj^, and we shall
consequently prove that the lemma holds with i and v replaced
by I and N, respectively.

From the definition of /,

fW == S W c, / P(x, t) dix(t\ x G C F,
, | f - jc^|<6/ ,

it is easy to see that D7/^) equals

A,(x) == S 0,W c, / P^(x, t) d^(t)
i \t-Xi\<6li

plus terms of type

B.(x) = ^ D^ 0,(x) c, f f^(x, r) ̂ (0,
l \t-Xi\<6li

/ '+ /"=/ , / ' ^ 0 = ( 0 , 0 , . . . , 0 ) .

Here, P,(x,0 shall be interpreted as zero if |/| > k. Similarly,

we have that R,(x,^) = D7/^) - ^ ^—^ ^f(y) equals
I /+ /KW / -
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H(x,y) = A,(x) - Z -0—JO A.^(^)
I/+/KW "

plus terms of type B.,00, f ^ 0, plus terms of type

s ^/f^ Vo^ (/+0^0.
I/+/KW / ! /

The proof consists of estimating Ay(^), B.»(x) and H(;c,^).
The lemma follows from the estimates (5.9), (5.10) and (5.11) below.

Let Q, be a cube touching Qp Then, by (4.3),

\t-x^\ < \t-x,\ 4- |x,-xJ < 6/, + /,. + /i < 30/i if \t-Xi\ < 6/,
(5.7)

and by (4.7) and (4.3)

c,^-1-/-^ < c/ .^ . (5.8)
c!

Since 0^.(x) ̂  0 only if x E Q?, and x E Q? iff Q .̂ and Qj
touch, it follows that (5.7) and (5.8) hold for the at most No numbers
i such that 0,(x) + 0.

Recalling that c, = Oz(B(jc,,6/,))}'~1, we see from Holder's
inequality that

I A/x)| < ̂  0,(^) c, f |P,(JC , 01 d^t)
i \t-Xi\<6lf

<l:0,(^c^ / |P.(x,r)|^(0 l/p.
i |r-;c,|<6/,

Since the sum has at most No terms not equal to zero and 0.(x) < 1,
we get using (5.7) and (5.8)

|A.(^r < N^ c^ l^ f |P.(x, r)|^ ^(0
Ir-^iioo/j

which gives

|A,(xr<c/^ I ^lp / 1^(01^^(0. (5.9)
1/+/KA: |r-JCj|<30/j

Since S 0^.(jc)=l, x G C F we have S D^x) = 0, / ^ 0.
' i
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Using this and the definition of c, we get

B,.00 = ̂  D^0,(x) (c, / P,.(x,r) ^(r) - P,.(x,^))
i lf-^,|<6/,

= ^ D .̂OO c, / (P,-(x, r) - P,.0c^)) ^(r)
f l r -^ i l<6/ ,

so, by Holder's inequality,

|B,.(x)|<S ID^MIc^
( / |P,»(x, 0-^^^)1^/1(0 I/P
j l t - jc, |<6/,

and thus, using (4.4), (4.3), (5.7), and (5.8),

|B,.(xr < c ̂ lnp l^ f |P^(x,0 - P,»(x,^ rf/z(0.
Ir-jc^ioo/i

Integrating this inequality with respect to s over B(x^,30/i)
we obtain, since clearly /x(B(Xi, 30/j)) > c if,

\B^(X)\P<C /^- l / ' ip Z,-^ // |P,»(x,0-P,.(x,^ dii(t)d^s).
Ir-jciioo/i
l^-xjioo/i

Since by Lemma 5.1 we have
(x-t)1

y»V^ , (^ — Fy»»V^ ,3; — (̂ ^ ,"+^t?^7———,- j————

l."-l-;l<;Ir ^ '

P,»(x,0 - P,»(x,5) = S r,..,(t,s)
|/"+/|<A:

and since | x — ^ | < 3 1 / i m the domain of integration, we obtain

|B,,W < c S iW-\H)p-^ ff \r^(t,sT dn(t)dn(s)
\f"+l\<k | f-JCj|<30/j

|5-JCj|<30/i

SO

|B,,(^)|^<c S /^l- l /Dp-2^ j^^) (510)
lM|<fc

In order to estimate H(x,y), we first rewrite it using £ 0,(x) = 1
and the definition of c ^ , in the form
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H(^) = ^ 0,(x) c, / {P.(^,r)-
f \t-Xi\<6l{

v c^--^)7 v r
- ^ —7;— 1 0.00 ̂  J P/^, s) d^s)} d^(t) ==

I/+/KW ( - y |J-^|<6^

= Z c/0,(x) ̂  c,0^) ^f (P,(x,r) - P,(^,5) + P,(x,.?) -
i v |r-jc,|<6/,.

1^-^1<6^

v (x-y)1

- L ————P^(y,s))d^(s)d^t).
I/+/KW < !

Since w > k and P,+^0,.s') = 0 if |/+/| > k, the identity
(5.4) shows that the two last terms inside the brackets are zero, and
hence we get

|H(x^)|<2:^0^)Sc^0^)
i v

ff \P.(x, t) - P,(JC , sW dKt) dfi(s)\ l/p.
|r-jc,|<6/, )
\s-yy\<6ly

Using among other things also (5.3) we get

\H(x,y)f

^/r^ ff I S ^t,s)(x-^pd^Ji(t)d^Ji(s)"i 'N Ir-jcjioo/i | | /+/|^A;
l^-^Nl^30^

<c 1: / ^ / ^ / m p // \r.^t,sWd^t)dn(s). (5.11)
\/+l\^k |r-jcj|<30/j

\s-y^\<30l^

5.3. The following simple observation will be used in Section 6.

LEMMA 5.3. - Let 7>0 , a > 0, h > 0, /^r ^ ^rf ^2 &^
positive measures and put h^ = 2"^, m integer. Then there exist
non-negative constants a^ and a^, depending only on 7 and a,
such that
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^i // -î -? d^(t) d^(s)
Ir-.K^ Î P

< i V // h(t,s)dn^(t)d^(s)
W=WQ |f-^|<fl/I^

^ ^ -^^^)-If-^Ka/.^ \t-S\

Proof. — From

S V JY h(t,s)dfi,(t)d^(s)
m=mo a/in,+i<|t-j|<a/iCT

< £ V // h(t,s)dn,(t)d^(s)
m=mQ 0<\t-s\<ahyn

= S V S JY h(t,s)d^(t)d^(s),
m=mQ v=m ahy^^<\t-s\<ahy

the first inequality is obvious, and the second follows after a change
of order in the summation.

5.4. Lemma 5.2 gives estimates on \R^(x,y)\ and ID7/^)!, which
are independent of x and >», as long as x G Q, and y G Q^. The
next lemma, and some consequences of it given after its proof, is
our main tool when we shall put these local estimates together, to
get an estimate of the norm ||/||̂  „.

LEMMA 5.4. — Let a > 0, let h be a non-negative function
defined on a closed set F C R", and let fi be a measure supported
by F. Put h^ = 2~1 and

A, = {x\h^ <d(x,F)<h^}, I integer.

Let the function g be given by

gW == / h(t) djLi(r), x C (mi Q,) n Ap
\t-xi\^alf

Then for XQ E R", 0 < r< oo

/ g(x)dx<ch^ f h(t)d^(t\ (5.12)
-f^I l^ -^o l<r+(a+ l ) / i j

\x-XQ\<r
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especially for r = 4-oo^

/ ^(x)rfx < c ̂  / A(r) ^(r). (5.13)
jceAj

Here the constant c depends only on a and n.

Proof. - If / and I are such that Q, intersects Aj, we obtain
from (4.2) that (h^ - /,)/4 < /, < ̂  and hence

^ / 1 0 < / , < A i if Q / H A i ^ 0 . (5.14)

Put M = 0-IQ, 0 A, n B(x^r) ̂  0}. Then

/ g(x)dx < Z / ^)dx < S ̂  / A(r) rf^).
-^^I ^M Q,nA, ieM Ir-jc.Ka^

l^-^ol^ (5.15)

Now, since by (5.14) |x, - ̂ .1 > h^(W^n) if / , / E M , /^ / ,
it is easy to realize that there exists a constant c, only depending
on a and n, such that a fix point in R" is covered by the balls
B(x,,ah^\ i CM, at most c times. Furthermore, none of these
balls covers a point x with d(x,Xo) > r 4- (a-^-l)h^ This gives

Z / h(t)d^(t)<c f h(t)dyi(t\
!eM l^-^Ka/ij l r-^o«r+(a+l)/ i j

which together with (5.15) proves the lemma.
For further reference, we point out some consequences of this

lemma. If g is given by

g(x) = // \rf(t,sW dyi(t) dyi(s\ x G int Q,,
\t-X{^alf
\s-Xf\<alf

then using (5.14) we see that

^) ̂  f f \r^(t,s)\P dfi(s) dii(t\ x G (int Q,) H A,,
\t-Xf\<alf \s-t\<2ah^

SO

/ 8WxxfE^ (5.16)i^-^oK/- r f
<c^ ^ J \r,(t,s)\P dn(s)dn(t).

\t-XQ\<r+(a+l)hi \s-t\<2ahi
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If ^(x,jQ is given by

g ( x , y ) = // \rf(t,s)f dfJL(t) dvi(s\ x G hit Q,, y E int Q,
|r-^,|<3o/,
|5-^|<30^

then for h^h^ <CQ h^, x E (intQ,) n A, we have by (5.12) and
(5.14)

j g(x,y)dy
yGAN

\y-x\<h^

<ch^ f f |r ,̂5r dfi(t) dn(s)
\s-x\<h^+31h^ \t-Xf\<30lf

<ch^ f f \r^t,s)f d^(t)d^s).
\t-Xf\<30lf \s-t\^(l+62cQ)h^

Using (5.13) we thus obtain

// g ( x , y ) d y d x
jc£Aj,j/eAN V ^ . l / J
\x-y\<h^ /•/»

<^^^ J J |r,(^r^(0d^).
l5-r|<(l+62co)/iK

6. Proof of the extension theorem, d < n.

6.1. Throughout this section the assumptions are as in Theorem 4.1
with the exception that we assume that d < n (see 4.2), i.e. F is
a d-set, Q<d<n, l < p < o o , j 3 > 0 , | 3 non-integer, the integer

k satisfies k < j3 < fc+1, and a is given by fS = a — ———• We
P

also define the integer m by w < a < m 4 - l . Let now functions
^ff^\f\<k E B^F) be given, and consider the function / = E ^ {./.}.
Our task in this section is to prove that / fulfills the requirements
(a) — (c) in Theorem 4.1.

It is obvious from the definition of E^ that / satisfies (c). The
proof of (b) is relatively short, and will be carried out in 6.5. The
main problem is to prove that (a) holds. We assume until later that
m < a < m 4-1. Statement (a) is then equivalent to

||DWt|̂  < c II{/;.}II^,F. I / I < ̂  (6.1)
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and

( ff IR;̂ )̂  .^t-,;,),)17' < c ll{/,}ll^,p, I/I < m.\x-y\<i ^ y\ ^.2)
We shall obtain these inequalities by showing

( / WW dx Y < c \\{f^ ̂  , I/Km, (6.3)
\(x,V)<^ /

( // iR,(̂ r . dxd^ T ^c II{W,,,F- 1 / 1 ^ ̂\x-y[<i \^-y\ ^^
cf(jc.F)<2 vu )

and

( // IR^,^ ^i^y^^c 1: ||/,||̂ , I/Km.
l^c-^Ki IA y { \i\<k (^ 5)

2<d(;c,F)<5 v )

Clearly (6.4) and (6.5) give (6.2), and since all derivatives D7^
are bounded, (6.3) implies (6.1).

6.2. We first prove (6.3). Let Aj and Aj be as in Lemma 5.4, let
I>--2 and | / |<m. Integrating (5.5) over Aj, using (5.14) and
(5.16) with r == + oo on the first sum of (5.5), and (5.13) on the
second sum, we get

/ \WW dx < c S /^l-l/Dp-2^ ̂  ff ^(t^sW d^t)
Aj \u\<k \t-s\<60h^

dui(s) + c S /,^-^l^ y |^^(^)|P ̂ (^
\f+l\<k

Note that

(I^I-I/DP - 2d + ̂  > (|M|-a)p -2d+n= (\u\-ft)p - rf.

Replace as we then may the factor /^d"!-I/DP-2^ by h^-^-^
in the formula above, and sum overall I with I > —2. Using Lemma
5.3 on the first sum and summation of £ h^~d on the second, we get

/ lDywi^<c£ // i,^^^
cf(jc,F)<4 \u\<k |r-^|<240 I'3 ~ (1

+c S I \f^tW dn(t).
I/+/KA:

In view of Remark 3.1, this proves (6.3).
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6.3. In order to prove (6.4), we shall prove that

I V^"171^ // \^,y)fdxdy<c\\{f^^, |/| < m
K=O I^-J/K/IK ' ' (66)

d(x,F)<2 v ' /

which by Lemma 5.3 is equivalent to (6.4).
The strategy of the proof of (6.6) is as follows. If y is close

to x compared to the distance from x to F, we use (5.5) as an
estimate for Ry(x,^). This is possible, since then / is infinitely
differentiable in a neighbourhood of the line segment between x
and y, and we can, via the remainder in Taylor's formula, give an
estimate of Ry(x,j0 in terms of derivatives of / If y is not close
to x, we instead use (5.6) as an estimate for Rj(x,y).

Let K be fixed, and assume first that I < K—2. Let x G Q .̂ H Aj,
let y satisfy \x—y\<h^ and let L denote the line segment between
x and y. Then

|R/(^)1 < c Ix-:^-1^1 S sup |D^/(S)|. (6.7)
l/+/|=w+l ^eL

Now, if ^ G L and, say, { G Q^, then

AI+I - AK - /. < rf(Q.,F) < AI + AK,

so by (4.2) ——< /„ < 5/?i/4. Also |^-xJ < 30^ implies \t-x,\ <

<|^-xJ4- |x^-SI+ |S-x| 4- |^-x,| <30/^+ / ^ 4 - A K 4 - / , ^ 39/?i +
+ /, < (by 5.14) < 400/,. In view of this, (6.7) and (a) of Lemma 5.2
give

iR/oc^r
^^-.mi)p ^ ^-m-^-za ff \r^t^d^t)d^s\

\u\^k |f-jc^.|<400^
\s-Xf\<400l{

Using (5.16) with r = +00 we obtain

ff \R^x,y)fdxdy
\x-y\<h^
x^ (6.8)

<c/^-1^ 2: A^—-^-^- // M )̂l̂ (r)̂ ).
|M|<A: |f-5|<800/»j
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We note here that it is easy to see that a similar formula holds
for ff \^(x,y)\P d x d y ^ I =-2,-3, and that this formula

\x-y\<l
jcGAj

gives (6.5).

Assume next that I > K-2. Integrating formula (5.6), using
(5.14), (5.17), and (5.16) with r = 4-oo, gives

// \R,(x,y)f dxdy<
\x-y\^H^

d(JC,F)</i^_^

^ Z Z // |R/(^r dxdy
I=K-1 N=K-2 IJC-^K/I^

xG^.y^A^

< c Z t S^--^^ // ^,(t,s)fd,(t)W
I=K-1 N=K-2 1/+/KA: I^-DOOO/IK

+ C T V y /;"+I/IP ^(l"l-l/+/l)P-2^+w

N=K-2 |M|<A: |/+/|<w

// 1^0,^ ^(0^(5)
|5-r|<60^

+c i h^ S /,^"l-l/i)p-2^ // \r^t,s^d^t)d^s).
I=K--1 |M|<A: |j-r|<60^

(To obtain the last term above, and similarly the term in the middle,
use (5.16) with r = +00 after arguing as follows with g(x) = ]^(x.)
x E Q .̂ : u l 9

S J J g(x)dxdy< ff g(x)dxdy
N=K-2 \x-y^h^ ix-y^h,.

xG^.y^A^ jcGAj

=ch^ j g(x)dx.)
jceAj

Together with (6.8) this gives, if we take the two last terms above
together,

// \R,(x,y)\P dx dy < c S /^"-2d+1^
\x-y^h^ \f+l\<k
d(x,¥)^2

ff l^/^^)!77 ^(0^(^)+
\s-t\<bh^
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+c ^ y h^1^ y /;(lMl-l/+/l)p-2d+«
|K |< fc I /+/KW N=K N „/,

JJ K(^,5)|p^(^)^)+
\s-t\<bh^

4- C S /^-1/WP ^ ^^l-m-l)p-2^ ^9)
IMKA- 1=0 /»/»

Jj I ̂ 0,^^(0^(5)
|5-r|<6/ij

Here we may take b = 3200. A straightforward summation gives

£ v-^-171^ jy iR^rAc^
K=0 l^c-^K/i^

d(JC,F)<2
<^ Z £ ^-(^I«I)P •^ |r,(r,.r^(r)^)

\u\<k M=0 |5-f|<6/i^

which by Lemma 5.3 and Remark 3.1 proves (6.6).
For example,

K
V ^-"-(^-I/DP+^+^-I/I+I)? V L(tMl-W-l)p-2cf+M
^ ^K A- AZI

K=0 1=0 /»/»
JJ 1^0,^^(0^(5)=

Ij-fK^I

= S Z h^1-^ hW-^p-^n fr \^(t,s)f dfji(t) dn(s) <
1=0 K=I \s-t\<bh^

< (since a < m+1) < c £ /,^-(ap-^^)+lKip

JY kj^rrf^)^).
Is-rKft/ij

It is only in this performed summation the condition a < m + l is
needed.

6.4. The case a = m-\-\. Recall that if a is an integer, we use the
classical definition of B^(R"), that is f€ B^(FT), a = = m + l , iff
the norm

"/""."" = .̂  "^ + («,0)
î )-2Dy^).pyM,

i,1,'-''' î r..-"). 'fa^)
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is finite. Here the double integrals may be taken over \x-y\ < 1
(compare Proposition 3.1).

Let {fj}\j\<k e ̂ (F). From the preceding calculations, it
follows that our extension / of {/.}|yi<^ belongs to B^(R") for
a' < a. Hence by Proposition 1.2 the distributional derivatives of
orders /, |/| < m, are functions in 1 ,̂ and we have

Z w\\,<c\\{^\\^.
\!\<m

It remains to estimate the double integrals in (6.10). These are esti-

mated as the integrals jj -——7 \n^(a-m)p cix dyf I7! = mf were
\x —y\

estimated in Section 6.3, the only difference of significance being
that by using the mean value theorem twice, the estimate (6.7) is
replaced by

IDy(jc) - Wfi^) + D^OOl < c \x-y\2 ^ sup ID^/O)!,
2 |/+/|=W+2 ^-L

which gives convergence in the last summation of 6.3 also in the case
a= m+1.

6.5. Proof of statement ( b ) of Theorem 4.1.

It is easy to see that the following variant of (5.5) holds

\Wx)-^(x,t,W<c S /^I-I/DP-^
\u\<k /»/»

j j \r^t,s)y dfji(t)dn(s)+
\t-Xi\<30lf

/> \S-X{\<301{
+c S l^ J Ir^O,^^), xEQ, .

\f+l\<k \t-X{\<30lf

Let ly be the smallest integer such that h^ ^ < r. Then by
(5.14), (5.16) and (5.12)

/ |Dy(x)-P,(^,^r dx
\x-tQ\<r

<C S t ̂ ('"I-I/DP-^ / / |^,5)|P^(/)rf^)+
\u\<k ly \t-tQ\<cr \t-s\<60H^

+c s K171^ / i^o.^r^o).
1/+/KA: \y \t-tQ\<cr
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Since H^P-^P-^P-^ < ^-^-I/DP ^-(^l«l)p ^ g^
using among other things Lemma 5.3,

-Sr / |D^)-P.(x,r,rdx<
r 1^-roK''

<c S r^- ff -^1^^)^)
|M|<fc |5-r|<120r I1-"5!

i^-foKcr

4 - C y ..1/IP-^(^-1/+/1)P+^ f Î H^o)^
1 c ^ r ^ |. . |tf+(^-l/+/l)p aMV/'

|/+/|<fc It-roKcr l*"^!

1 r
Since —^-——- J g(t) d^t)—> g^) jix-a.e., r-^ 0, if

^(B(ro,r)) B^ ^
^eL^), see e.g. [14, p. 156] and [25], Theorem 2.18, for the
required regularity of p., and since r"^ < c(^(B(ro,r)))~1, this
shows that

^- / |Dy(Jc) - P/x,^ rfx = 0(^-'^), r—> 0, I / I < k,
r \x-tQ\<r

for jLi-almost all I Q .

Since obviously -̂ - J |P.(x, t^) - f^t^ dx = CK^),
r \x-tQ\<r

r—> 0, for jn-almost all ^, it follows, since | / |<j3, that

\ f \Wx) - f^W dx —^ 0, r — > 0 , /x-almost all ^,
r \x-tQ\^r

which gives (b) of Theorem 4.1.
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CHAPTER III

THE RESTRICTION THEOREM

7. Main Theorem.

7.1. The purpose in this chapter is to prove the following theorem.

THEOREM 7.1. - Let 0 <d <n, 1 <p <°° and

^a--"-^, k<p<k+\,
P

where k is a nonnegative integer. Let ft be a positive measure such
that, for some constants c^ and r^ > 0,

IJi(B(x,r)) < c, r " , x € R", r < r<,. (7.1)

For yGB^R"), let R,. be defined by

D'u(x) = S D/ lu(y) (x-y)1 + R,(x,y), for |/| < k. (7.2)
|/+(Kfc ' •

and put

ll"llp^^= S IID/Mllip,(3,M ^ ""•*"?,»- r73t1/Kfc V-?-'1/Kfc

, Y ff IRy^,^ . / , , , , 1/P+ L •/J T—^pTZ^-lT^ d^ ̂ ^ •|/|<fc |a;-y|<l \x~y\

Then for all u € B^(R"),

""llp.^^ll^.R"' (7-4)
"where c is a constant depending only on a , j3 ,p , rf a^rf ^Lt.

Here Rf(x,y) is defined at all points where the other terms
in (7.2) are strictly defined. It follows from the assumptions (see 7.4)
that the derivatives D7^, |/| < k, can be strictly defined rf-a.e. and
hence jn-a.e. (see Section 2.2). If F is a rf-set and JLI a rf-measure
on F, the theorem gives, in the notation of the Main Theorem of
Section 1 that the restriction R(u) G B^F) and that the restriction
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operator R: B^(R") —> B^(F) is continuous, which is part B of
the Main Theorem in Section 1.

Remark 7.1. - In Theorem 7.1 we put conditions on the deri-
vatives of u. It is possible to prove analogous theorems where we
instead put conditions on the differences of u.

7.2. In the proof of Theorem 7.1 we need the Bessel potentials. A
function u is the Bessel potential of order a, 0 < a, of the func-
tion /E L^R") if

u-G^f,

where the Bessel kernel G^ has Fourier transform

G^(x) = ( 1 4 - 47r2 Ixl2)-^2.

The norm of the potential u is denoted by 11^11 and defined
by pfa

\\u\\^ == 11/H,.

The Bessel kernel is a positive, decreasing function of |;c|, ana-
lytic on R"\{0}, satisfying, for a number c^ not depending on x
(see e.g. [5, § 2])

ID^GJ^KcJxl^1-", for a < ^ 4 - 1 / ] , (7.5)

|D^(x)|<Ci log—— 0 < | x | < l , for a =^+|/ | , (7.5')\x |
D7 G^(x) is finite, continuous at x = 0, for a > n 4-|/|, (7.5")

and, for all derivatives,

|D^(x)|<Ci 6?-^', K|x|<oo, for some c > 0. (7.6)

If /G LW) we claim that

D^G^ */) = (W G^) * / for I / I < k < a, (7.7)

in the distribution sense, where the convolutions in the right member
of (7.7) can be written as integrals since D7 G E L^R") for
I / I < k < a. If the support of / is compact, formula (7.7) is obvious.
However, the formula is true — and, of course, well-known - even
if / does not have compact support. In fact, by writing / = /\4- f^
where /i = / for \x\ < ^ and f^ = / for |x| > r ^ , we conclude
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that D^G^ * /;.) = (D7 G^) * f, for i = 1, 2, |x| < ̂ , where, for
i = 2, we can differentiate under the integral sign and get a continuous
function for \x\ < r^ .

7.3. It is an important fact that the strictly defined function u = G^ * /
coincides with the integral at all points where the integral defining
the Bessel potential is absolutely convergent. We need a version of
this result also for derivatives of potentials.

PROPOSITION 7.1. - Let u = G^ */, /€ IAR"), a-(n-d)lp>k,
0 < d < n, 1 < p < °°, and k a nonnegative integer. Then D7^
I / I < k, can be strictly defined rf-a.e. and the integral (D' G^) */
is absolutely convergent and coincides rf-a.e. with the strictly defined
function D7^, | / |<<;.

Proof. - (Compare [3, p. 13].) By putting D'u = (D7^)*/
(see (7.7)) and changing the order of integration we obtain, for a point
x where (D7 G^) * / is absolutely convergent,

—————- / ID^OQ- ((D^G^^f)(x)\dy<
m(B(x,r)) ̂  ,)

< (\ ^ \^ f ID7GJ^-^)-D7GJx-z)|^^ |/(z)|dz.^ [m(B(x,r))^^ J

For z ^ x, the function in square brackets converges pointwise
to zero, as r —> 0. Hence, if we have dominated convergence, the
right member tends to zero, as r —> 0. We consider first the case
when ^—a+1/1 > 0. Take a point x where

/ ^^''!<-Iz-jcKl \z~x\

By a well-known property of Riesz (and Bessel) potentials (see
[16, pp. 287 and 294] or [2, § 4]) this integral is convergent d-a.e.,
since d>n-p(a-\j\) for |/| < k. It follows from (7.5), (7.6) and
(7.8) that (D^G^)*/ is absolutely convergent at x. Furthermore,
by (7.5),

^n1 ^ / \WG,(y-z)\dy< c { y .m(t5(x,r)) B^ ^ mwx,r)) ^^ \y—z\ /
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But this is less than a constant times l^-z]"^"0'4'170 by the
Frostman mean value theorem [15, p. 27]. We use this estimate when
\x-z\ < 1. When \x-z\ > 1 we estimate the left member of (7.9)
by means of (7.6) which works when r is small. Altogether this gives
the desired dominated convergence and completes the proof of the
proposition when n—a+\j\ > 0. The case n—a^-\j\ == 0 can be
treated similarly and the case ^ — a 4 - | / | < 0 is trivial because of
(7.5ff).

7.4. From Proposition 7.1 we can among other things conclude that
D^, I / I < k, can be strictly defined d-a.e. if u e B^(R") and
a-(n-d)lp > k. In fact, u E B^(R") implies that, for e > 0,
u=G^^f^ where f^ E L^R") (see [4, p. 46]) and therefore
Proposition 7.1 gives the desired result if e is chosen small enough.

8. Lemmas on potentials.

In this section we collect a number of lemmas on potentials
for the proof of Theorem 7.1. The main lemma is Lemma 8.4 which
should be compared to [I], [18, Theorem 2] and [24]. Lemma 8.4
is a weaker form of Theorem 7.1 for potentials.

8.1. We start by the following very simple lemma.

LEMMA 8.1. — Let 0 < d < n and let v be a positive measure
such that, for some constants c^ and r^ > 0,

KB(x,r) )<Ci r^ x E R", r<r^ (8.1)

Then

a) / 'd1^=0(ac!-7) if d>r a<r^ and
\x-t\<a ^ ^

b) / -cw^ = 0(^-7) if d < 7, r^ = oo.
\x-t\>a {x rl

Here 0 stands for a constant depending on c^ 7 and d.

Proof. — If we write
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r dv(t) ^ dv(B(x,r))r dv(t) _ ra
J ly_^|T "~ J(\^a î r Jo

and make a partial integration we get a). In a similar way b) is proved.

8.2. We next need two lemmas on the Bessel kernel G^.

LEMMA 8.2. - For a fixed a, 0 < a < ^4-fe-H, k a nonnegative
integer, a—n not a nonnegative integer, we define H. by

^G,(x)= S D/+lGa(y) (x-y)1 + ̂ (x,y). (8.2)
1/+/KA: l'

Then
f ̂ (x-t.y-Wdt ^^c^-y^ for |/| < k, (8.3)
R"

s>0, 7="--(^-a), A : < 7 < A ; + 1 ,
s

if c is a certain constant.

Proof. — The proof essentially proceeds by a straightforward
use of the estimates of G^ given by (7.5) and (7.6). A complication
is that, due to convergence problems, the calculations have to be
organized in different manners for different a.

By changing y — t to t and putting x—y = h, where we assume
h ̂  0, we write the left member of (8.3) raised to the power s in
the form

/|D-G.(^)- £ D!^^
R" \,+i\<k < '

dt
\f+l\<k

f + / =14-11.
\t\<2\h\ |r|>2|/i|

Estimate of II. We use Taylor's formula on the integrand and
get a remainder with derivatives of G^ of order ^4-1 at a point
t^-Bh, 0 < 0 < 1 , such that \t+9h\ > \t\ - \h\ > \t\/2 since
\t\ > 2\h\. By means of this and (7.5) we get (c denotes different
constants)

r / i /? !^1 -1 7 1 v
n<c J (,,.n-^l) ^ sin^ a < ̂ +!-I?!"-lfl>2|/t|
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and thus, e.g. by means of Lemma 8.1,

IKcl/;!"-^-^171) if n<s(n-a+k+\).

Thus IKcl/zl^-171^ since 7 < f e + l .

Estimate of I when 0 <a<n. We estimate each term in the
integrand separately. The estimation of a typical term proceeds in
the following way by means of (7.5)

/ -D ,̂-|•„
l\\t\<2\h\

<d^ ! M^L,;̂ ,) ? lf ^<^I/-HI.
\t\<2\h\ l^l

The last member is, e.g. by Lemma 8.1, less than

c\h^1^ \h\n~s(n~ot+}}+l^ = c\h\n~s(n~oi+}n)

if |/+/| < k and n >s(n—a+k). We get in a similar way

J |D7 G^O+A)|5 dr < c l/zl'1-^-^!/!)
lf|<2|/i|

if a< /2+ | / | , I / I < k and n>s(n-a+k).

Consequently,

Kcl/zl^-171^ since y > k and a < w .

Estimate of I wA^z ^ < a < ^4-fe+ 1, a—n not an integer.
For a fixed a, let ^ be an integer, 1 < v < ^4-1, such that

nJfV—\<a<n-st-v. We put 6 = n—a+v and observe that
0 < 6 < 1. Since a < n-\-v, we can proceed exactly as we did in
the case a < n, when we want to estimate the terms in the integrand
containing a derivative of G^ of order /+/ with |/+/| > v or order
/ with I / I > v. In fact, for these terms we have a < ^4-|/+/| and
Qi<n-\-\]\, respectively. These terms consequently give, exactly
as in the case a < n, a contribution c\h\^~^^5 in the estimation
o fL

If I / I < v we get, by Taylofs formula with exact remainder,
for the other terms in the integrand,
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^.^- S D'̂ -
I/+/KV l ' \0'~^)

^.-i/D/d-pr1-/' 2 Di+lGa(t+ph) k^p.0 i/+/i=^ / '
It should be noted that this formula is true also when the closed

line segment between t and t+h contains the origin. This follows
since the singularity at the origin of D'^'G^t), 1/+/1 = v, is of type
I / |~ 6 , 8 < 1, and consequently integrable along a line segment
through the origin which means that the derivative of order v—\—\j\
of the function p —> F(p) = D'G^(t+ph) is absolutely continuous
in [0,1].

We obtain by (7.5) that the right member of (8.4) is dominated
by

c{hrw ^ ̂ pt-^ since a<n+v-

We denote this last integral by A and use the estimate

|r+pA| > |r,+pA,|, t = (t,, .. . , ^), h = (^ , . . ., ^),

where for a fixed h, i is chosen so that |A,| > |A|/\//!. This gives,
since 0 < 5 < 1,

A< J . ^ ^ <cl^l-6, for |r |<2|A|, 6=^-a+i/.

The terms in the left member of (8.4) consequently give a contri-
bution to I which is bounded by

c\h\rt |A|^-1^1) [hi-65 = clAr-^-^'') = clAI^-171)5.

Hence, we get the same estimate of I and by combining this with the
estimate of II we finally obtain the desired estimate (8.3).

Remark 8.1. - The latter method of estimation of I gives, with
some extra effort, a proof of the lemma in the case when a-n is a
nonnegative integer, n > 1, also. We omit the proof of this since
we do not need the lemma in this case - in fact, we need the lemma
for a dense set of a-values only.

8.3. The next lemma is similar to Lemma 8.2 but technically a little
more complicated.
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LEMMA 8.3. - Let oc, k and Hy. be as in Lemma 8.2 and
0 < d < n. Let, for some constants c^ and r^ > 0,

H(B(x,r))^Ctr'1, x € R", r<r^.

Then. for i < 0,

{ ff \H,(x-t, y-tW d(i(x) d^y)}^ < c 2(^+1'~'/1)

2'•<|^-J,|<2•+1 (8.5)

for /GR" , \f\<k, s>0, -y^-CM-a), k<y<k+\, if
c is a certain constant.

Proof. — For a fixed t we put

EI = {(x,y) G R" x R": \y-t\ < 4.2', 2' < \x-y\ < l^1} and

E, = {(x,y): \y-t\ > 4.2', 2' < |x->'| < 2f+l},

and estimate the left member of (8.5) raised to the power s by

// D'G^x-t)- S ^^^(x-yY'd^d^)
2 l<|JC-^|<2 l+l | /+/|<fc /

-ff.ff^^.
KI ^

Estimate of II. We estimate H. by means of Taylor's formula
at y-t and get a point y-t+0(x-y), 0 < 6 < 1, so that

IKcff {l1^1-1^ S ID^G^-r+e^-^)!}5^^)^^).
E^ |/+/|=fc+l

But \y-t+Q(x-y)\ > \y-t\ - \x-y\ > \y-t\/2 since \y-t\ >
> l\x—y\. Since a < ^4-fe-H we use this combined with (7.5) for
\y-t\ < 1 and with (7.6) for \y-t\ > 1. After that we perform the
x-integration, from which we get a factor bounded by c 21^, and obtain

^<c2"< f c + l-^ 2^ < f dKy)

l^-^ \y-t\^-^^ (8.6)

+ / e-^y-^ d^(y)\ .
\y-t\>l )

The first of the last two integrals is estimated by means of Lemma
8.1,b)tobe

C^-^"-^^) if d<5(M-a+fc+l) .
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The second integral is estimated by means of the same type of
calculation as in the proof of Lemma 8.1 which gives — remembering
that, by (2.1), ^(B(x,r)) < c r", r > ̂  - that the integral is bound-
ed. Together we get

II<c2I<2rf-J<w-a+^)=c2"(f+7'"l/l) since y<k+l.

Estimate of I when 0 < a < n. In this estimate we have
\x-t\ < \x-y\ + \y-t\ < 21+1 + 4-21 = 6-21. We proceed in the
same way as in the corresponding case in the proof of Lemma 8.2.
For a typical term we get by means of (7.5), since a<^+|/+/|,

//
E!

——Ga(y t) (x-y)1 s d^x) dfji(y)

y.m OF dii(x)d^(y)
u^ \t)-,f\s(n-0t+\f+ly \y-,(\s(n-a+\f+l\)

By Lemma 8.1 and the assumption on ^ this is dominated by

^ ^is\l\ y(d-s(n-a+\/+l\)) f dp.(x)

\x-t\<6-21

= ^ ^(2d-s(n-a+\/\)) ^ d^s(n-Oi-^\J^-l\).

Thus I<c2^+ 7~ l / l ) J since ^>k.

Estimate of I when n<a<n-^k-^-l, a—n not an integer.
Again we proceed as in the proof of Lemma 8.2 with 5 = n-a-^-v
where v is an integer, 1 < v < fc-H, such that 0 < 6 < 1. The
terms on which we use Taylofs formula give a contribution to I which
is dominated by

-'<'-"•• n\i:^'^\^^.
The inner integral is estimated in the same manner as in the

proof of Lemma 8.2 to be 0(2-16). Consequently, the whole expres-
sion is dominated by

c 21<l/-'/l)^ 2"~^622Id = c 2^(cf+•s(<y-l/l))

By combining this with the contribution to I which we get from
the other terms, and with the estimate of II, we obtain (8.5) and
the lemma is proved.



A WHITNEY EXTENSION THEOREM IN 1̂  185

8.4. We now come to the main lemma.

LEMMA 8.4. - Let 0 < a < M+fe+1, k a nonnegative integer,
a—n not a nonnegative integer, 0 <d <^n, 1 < p < oo^ and suppose
that

k<a-n-dL<k-^\.
P

Let M = G ^ * / , /GLW), and define R, by (7.2). Let ^ be
a positive measure satisfying (7.1). Then, for a certain constant c,

| ^f \Rf(x,yW d^x) d^y)\vlp < c 2^-W \\u\L, ,
( 2l<\x-y\<2l+l ) f8 7)» < v * /

for i < 0, I / I < k, 7 = - + a - n——.
P P

and \Wu\\^ < c \\u\\^, |/| < k. (8.8)

^r^ l|M|lp^ = 11/11̂  ^ rt^ potential space norm and HD^H r/ze
L^^i) ^orw.

Proo/ — We consider the case p > 1 only; the case p = 1 is
formally slightly different and, in fact, somewhat simpler. We first
prove (8.7). We observe that, by (7.2), R^(x,y) is defined at all
points where Wu(x) and D7^^), |/4-/| < k, are strictly defined.
Also, by Proposition 7.1, we can in (8.7) put

R/(x^) = /H/(^-^ Y-t)f(t)clt

where H .̂ is defined by (8.2). Now take a function 0 defined on
R" x R" such that

// 10(^)1^ du(x) d^(y) == 1 , 1 + 1 = l.
2I<|^-^|<21+1 P P

Let 0 < a < 1. By means of Holder's inequality we obtain

ff ^(x,y)(l)(x,y)d^(x)dfji(y)
2l<\x-y\<2l+l

= \fff^'(x-t, y-t)f(t) (t>(x,y)dtdii(x)d^y)\

fff \n(x-t.y-t)r \f(tW dt d^x) d^(y) l/p

fff |H,(x-^ y-t)^-^' \<j>(x^yW1 dt dfi(x) d^y)}^'.
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By using Lemma 8.3 on the first and Lemma 8.2 on the second
of the integrals in the last member we get, remembering the normali-
zation on 0 , that the left member is less than

c ||/||̂  {2l(^+71-l/l)ap}l/P. ^I(7^1><l-^y/^ (8.9)

if 7i==~-(^-c0, f e < 7 i < ^ + l , (8.10)

and 72 == .._ . ,- (n-a), k<^<k+l. (8.11)

By simplifying (8.9) and using that ||/||̂  = \\u\\^, we obtain
(8.7) by the converse of Holder's inequality if we verify that it
is possible to choose a, 0 < a < l , so that (8.10) and (8.11)
hold. Solving for a in the conditions (8.10) and (8.11) we get, when
a < n + k (the case a > n + k is simpler),

0<————————<a< d

p(n-a+k+l) p(n-a+k)

and 1 ————n——— < a < 1 — ————"———— < 1
p\n-a+k) p^n-a+k-^l) 9

respectively. It is, consequently, possible to choose a if

" < ! - . "
p(n-a-^k+l) p\n-a+k+l)

and 1 - ——————< d

p\n-a+k) p(n-a-^-k)

These last two conditions can be simplified to

n-dk<a-———<k+l
P

which is true by our assumption. Hence (8.7) is proved.

Proof of (8.8). - The proof of (8.8) is, of course, simpler and
does not depend on the lemmas 8.2 and 8.3. By taking a function 0
such that 11011p^ = 1 and a number a, 0 < a < 1, we obtain, for
I / I ^ k, by means of Holder's inequality,
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|/(D/M) 0 diJi(x)\ < ff\D'G^x-y)f(y) 0(jc)| ̂  ^Qc)

^f ID^Oc-jQI^ |/OO|P ̂  dui(x) l/p.

// ID/G^-jOI^-'')?' |̂ )|P' dy dn(x) " " ' •
We need to estimate the integrals containing the Bessel kernel.

We get
fiDiG^x-yT" dui(x)= f + f =I+H.

\x-y\<l/l \3t-y\>ll1

By (7.5) and Lemma 8.1

.< f ^(JC) /I y-(n-a+|/|)ap

ij^l-^"-^^'^7 <c'

for a</2+|/ | , if
d>(n-a+\f\)ap. (8.13)

For a = ^ + | / | we use (7.5') and a calculation analogous to the
proof of Lemma 8.1 and for a>n+\j\ we use (7.5") to conclude
that I is finite. By (7.6) we get

II <c / e-^-^Oc)
\x-y\>\12

which is bounded by a calculation of the kind used to estimate (8.6).
Similarly we obtain that

f^'G^x-y^-^'dy^^

if n >{n-a-¥\j\){\-d)p\ (8.14)

By simplifying (8.12) with these estimates we conclude by the
converse of Holder's inequality that

IID ÎÎ  <c 1 1 / 1 1 ^ =c M|̂ , \f\<^

if it is possible to choose a, 0 <a < 1, so that (8.13) and (8.14)
hold. Since |/| < k, (8.13) and (8.14) are satisfied if

. rf n
a < ,———— and a> \-

(n-a-¥k)p (n^a+k)?'

Since these conditions are the same as some of the conditions
on a which we had in the proof of (8.7), it is possible to choose a,
and the proof of Lemma 8.4 is complete.
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9. Proof of Theorem 7.1.

Theorem 7.1 is now proved by means of Lemma 8.4 and the
theory of interpolation spaces. In this section we follow Peetre [24]
who showed how a special case of Theorem 7.1 (k = 0, a < n,
HD^H not included, p. a little more special) can be obtained by
means of interpolation theory and an estimate of the type (8.7).

9.1. Let AQ and A^ be a couple of Banach spaces continuously
embedded in a topological vector space, and Bo and B^ another
such couple. One introduces certain intermediate spaces

A^=(Ao,Ai )^ , 0 < 0 < 1 , Kp<oo,

and B^p by means of the so called K-method. We refer to [24] and,
for a complete treatment, to [12] or [20] for the basic facts on inter-
polation spaces. As an example we mention, that if we denote by
L^(R") the space of Bessel potentials u = G^ */, /e L^R"), with
norm \\u\\^ = ||/||p, then

(L^(R"), L^(R"))^ = B^R"), a = (l-0)a, + 0a,, (9.1)

where B^(R") is the usual Besov space with three indexes [20, Ch. 6].
A basic fact which is used below is that if T is a bounded linear
mapping from Ay to By, for v = 0, 1, then T is a bounded linear
mapping also from A^ to B^. We also need the following lemma.

LEMMA 9.1 (Peetre [24, Theorem 1.3]). - Let T = ^ T,

where T,: Ay —> By is a bounded linear operator with norm M, y
such that M , y < c c^0-^, ^ = 0 , 1 , / integer, where ^ is a fixed
number, ¥= 1, and 0 < 6 < 1. Then T: A^ —> B^ is a bounded
linear operator.

We now turn to the proof of Theorem 7.1 throughout using
the notation and assumptions of Theorem 7.1. The more difficult
part in the proof of (7.4) is to take care of the terms in (7.3) involving
Ry (this is done in 9.2); in fact the following straightforward inter-
polation will take care of the terms involving D7'^. We interpolate
by using (8.8) with a fixed p but with a changed to Oy, v = 0, 1,
where 0 < o^ < a < a^ < n-\-k-¥\, a =(1-0) c^ 4- Qa^, and
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k < ay - (n-d)lp < fe-t-1. (9.2) We get an inequality analogous
to (8.8) for the corresponding intermediate spaces. In the Ie ft member
the intermediate space is still lAjLi) and in the right member we get,
by (9.1),

(L^(Fr), L^(R"))^ = B^(fV1) == B^(R").

This gives
IID^H^ < c \\u\\^^n for l/Kfc. (9.3)

9.2. Following Peetre we shall use interpolation in two steps to prove
the remaining part of (7.4).

Step l . - W e use Lemma 9.1 with Ay = L^(R") where a^
satisfies (9.2), oiy—n not a non-negative integer,

B^L^R-xR",^^), .=0 ,1 , and
v l-^—yl /

T .̂ == T,^. where T, ^ = 0 if f > 0 and, for ; < 0,

(T^)^^=-i^^if 2 l<|x^|<2-

and ( T , . M ) ( X , J ' ) = O otherwise. According to (8.7)

IIT,-,̂ !̂  < c llul)^ 2'((t•/-"^-<?) = c HullA, 2'(a>--a),

v = 0, 1, I / I < k, since <! == a - (n-d)lp. Since 0 = (a-ao)/(o;i-o;o),
the norm M, „ in Lemma 9.1 satisfies

M,̂  < c l1^-^ = c uX8-''), r = 0, 1, if co = 2ao-al.

We can thus use Lemma 9.1 to conclude that

|ll:T,,u||^<c|M|^, \f\<k.

But Bg«, = Bo = BI and by (9.1), Agi = B^R"). Hence

s // i;̂ !:..̂ )̂ '"̂ c """.„,„.,
1/KA: 1^-^Kl l^"'^! "a ^n ^'a '>" /

(9.4)
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Step 2. — We now interpolate by using (9.4) with a changed
to c^ and j3 to j3y = ^v — (^—^/P? ^ = 0, 1, where j3y shall
satisfy the Same condition as (3 in Theorem 7.1, % < ^ < o^i and
a = ( l—0)ao + 0c^. We get an inequality analogous to (9.4) for the
corresponding intermediate spaces. In the right member we get the
intermediate space [20, Ch 6]

(B^R"), B^FT))^ = B^(R") = B^(R").

The intermediate space in the left member is obtained by means
of the Stein-Weiss interpolation theorem which gives intermediate
spaces between L^-spaces with different weights [20, Ch. 5]. This
gives, since P = ff^-0) + ^0, that (9.4) is true with B^R") in
the right member changed to B^(R"). If we combine this with (9.3)
we see that (7.4) and by that Theorem 7.1 is proved.
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