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ON A CLASS OF CONVOLUTION ALGEBRAS
OF FUNCTIONS

by Hans G. FEICHTINGER

Introduction.

In this note we give a general construction of convolution al-
gebras of measurable (continuous) functions on certain locally compact
groups. The spaces A (A , B , X , G) constructed here will consist of
those functions of a convolution algebra A H B which can in a certain
sense be "well approximated" by functions with compact support.

Although this construction seems perhaps a bit artificial there
is a great number of examples of spaces of this type that have a quite
natural interpretation. On the other hand the given construction
demonstrates their common properties in the best way and reveals
most of their structure. It is also the most direct approach, to the results
presented here. Several further assumptions are necessary for the
theorems but if one takes concrete examples it can be shown that
most of these assumptions are fulfilled in the cases of interest.

The paper is organized in the following way. In the first section
the notation will be fixed and the material we need for the cons-
truction will be prepared. § 2 contains the definition of the spaces
A (A , B , X , G) and a demonstration of their fundamental proper-
ties. It is the main part of this paper. Examples of such spaces that
are defined in a different, more natural way can be found in the last
section. § 3 contains some results on inclusions between such spaces.
Finally § 4 presents further results, especially for spaces defined
on Abelian groups. Most of the results in this section are derived
from more general theorems on Banach convolution algebras. In this
connection a paper of Domar is of importance for us.
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The spaces A (A , B , X , G) are a generalization of the spaces
A^(G) or A^(G) which have been considered in an earlier note [3].
Therefore most of the assertions stated in that note are special cases
of the theorems presented here.

1. Preliminaries.

G shall denote a noncompact locally compact group that is
a-compact, dx shall be a fixed left invariant Haar measure on G. For
a measurable set M, |M| shall denote its measure. For any function
/ on G and y <E G let Ly f (Ry f) be defined by

Lyf(x) : -f^y-'x) ;R^/Oc) : = f(xy-^ A(^ - 1 ) ,

where A is the modular function on G. K(G) denotes the space of
all continuous functions on G with compact support. Throughout
this paper it will be more convenient to speak as usual of "measurable
functions" on G identifying two functions which coincide almost
everywhere (a.e.), than to speak of equivalence classes of measurable
functions.

A normed space of measurable functions will be called P-space,
if every convergent sequence has a subsequence converging almost
everywhere. If the space is complete it will be called a BP-space. A
normed space B of measurable (continuous) functions is called solid,
if for every function/G B and any measurable (continuous) function
g satisfying \g(x)\ ^ |/(x)| a . e . , ^ G B and l l ^ l l g ^ II/11^ must
hold.

It is well known that any solid Banach space of measurable
functions is also a BF-space. Sometimes such spaces are called Banach
function spaces. Moreover the norm of a BF-space is unique up to
equivalence by the closed graph theorem.

The most important solid BF-spaces are of course the spaces
If (G), 1 <; p <; °° of absolutely p-summable or essentially bounded
functions on G respectively. C° (G), the space of continuous functions
on G vanishing at infinity is a solid space of continuous functions.
It can be identified with the closure of K(G) in L°° (G). The corres-
ponding sequence spaces will be denoted by zp and CQ .

Since we shall be concerned with spaces of functions on groups
the following properties are of importance :
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LI) B is left invariant, i.e. Ly B C B for every y E G ;
B satisfies LI) and y —> L / is a continuous function

L2) from G into B for all / G B ;

Bsatisfies LI) and Ly is a contraction,
L3) i.e. | |LJ IB<I for all y <E G.

Right invariance and properties Rl) — R3) are defined in a simi-
lar way, with Ly replaced by Ry . We note that the set of all BF-spaces
forms a lattice, if we define for two BF-spaces Bj and B^ :

BI A B, : = BI n B^ , II/IL : = II/1^ + II/"B, ;
Whenever B^ H B^ appears it will be thought of this BF-space.

BI v B, : = { / | / =A +f2 . /^B,} .

1 1 / 1 1 , : = inf {II/J^ + II/A, . /-/i + /2 ) .

The subset of solid BF-spaces forms of course a sublattice. The
same is true for all BF-spaces on G satisfying one of the conditions
LI) — L3) or Rl ) — R3). For later reference we state here some facts
concerning the above properties. For simplicity we give only the "left"
versions. The "right" versions can be proved in a similar way.

L E M M A 1.1. — Let B be a left invariant BP-space, then L is a
bounded operator for every y € G. If I I L llg denotes the operator
norm on this space the following inequality holds :

II L^y lie < II L,JB II Ly l ie for x , y G G .

Proof. — The assertion follows from the closed graph theorem
since Ly is evidently a linear operator having closed graph. The ine-
quality is a trivial consequence therefrom.

All left invariant BF-spaces defined in a natural way satisfy
L4) y —> II Ly llg is a locally bounded function.

Remark. — 1) In many cases y ——^ \\Ly /Up is a continuous func-
tion for every / out a dense subspace of B. In this case it follows that
y——> IILJIg is a measurable function on G, being semi-continuous.
On the other hand B satisfies L4) if G = R and if y —> \\Ly Hg is a
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measurable function on R, y —> log I J L ^ H g being a subadditive func-
tion. For a proof see [5], Chap. VI. A similar proof applies to the torus
group G = T. It is difficult to derive therefrom a similar result for
groups of the form

G = R^ x T " x Z ^ m ^ ^ G N .

These calculations show for example, that any space

L^(G) =yi/w G L^(G)} , 1 ^ p < 00} , H;(^) > i

which satisfies LI) also satisfies L4), K (G) being dense in it.

L E M M A 1.2. - // B satisfies L4) then

B, : = { / 1 / G B , y —> L^/

is a continuous function from G into B} is a closed subspace of B.

Proof. - For a fixed compact neighbourhood Uo of the identity
sup { I I Ly H B , y G Uo} < Ko < oo for some Ko > 1 by L4). If now
e > 0 and / in the closure of B^ are given, there is some h G By such
that II/ - h II B < e/3Ko. Since h lies in B^ there is some U C Uo
such that \\h - Lyh I I a < e/3 for all y E U. All together we have
II/- L ^ / H B < 1 1 / - / 2 1 1 B + 11^ - L^llg + IIL^IB l l / z - / l l B < e
for all y G U, showing that/lies in B^.

Now we are going to prepare the material we need for our cons-
truction.

I) In the sequel (B^)^o will denote a (fixed) sequence of neigh-
bourhoods of the identity (except n ~= 0) such that we have

51) Bo = 0 , U B, = G ;
yi==l

52) B«B^ CB^i for n > 1 ;

to avoid trivialities we assume further

53) B,, + G for all n > 0 .

The characteristic function ofG \B^ shall be denoted by x
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Remarks. — 2) On every compactly generated group G one can
find such a sequence, e.g. by taking B^ = U2""1 for n > 1, U being
an arbitrary compact neighbourhood of e, but one can take B^ = U5""1

as well.

3) If G is connected S2) and S3) imply B^ 1=- B^ for n > 1,
since the closure of B^ must be contained in the interior of B

4) From Sl) and S2) property S4) follows :

S4) For every compact set K C G there is some n^ G N
such that K C B^ for n > n^.

5) If G = G, x G^ and (B^o C G,, i = 1, 2 are given
satisfying Sl) and S2),then (B^)^o, B^ : = B^ x B^ also satisfies
Sl)andS2).

6) We don't suppose that the B/s are relatively compact sets
(e.g. strips in R2).

II) X is a solid BK-space which is right invariant, i.e.
XI ) (X, | Jx) is a Banach space of bounded sequences ; these

will be denoted by x = (xj = Oc^o .
X2) X is an ideal in I 0 0 (with multiplication coordinatewise)

such that
X3) \xy\^ < |x|x l3^L for all ^ G X and y E ?°° ;

X4) X contains all "finite" sequences and 1(1 , 0 , . . .)|x = 1 ;
X5) D : (XQ , x^ ,. . .) —> (0 , XQ , x i , . . . ) satisfies DX CX.

As an immediate consequence of the closed graph theorem X5) implies
that D is a continuous operator on X. We denote its operator norm by

II D II x . Sometimes it will be necessary (this condition will be indicated
seperately) to suppose.

X6) The space of all finite sequences is dense in X,

i.e. |(0 , . . .0 ,^ ,^+i , . . . ) l x — — > O a s n — — > oo for every x G X .

Given a solid BK-space we shall call the sequence c = (c^) of
positive numbers defined by c^ : = | (1 , . . . , 1 ,0 , . . .) [^ (n times
one) the fundamental sequence ofX.
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Remark. — 7) c = (c^) is a nondecreasing sequence. If X is a
proper subspace of CQ c is unbounded (We shall use only such spaces).
If X satisfies X5) we have by X4) (i.e. CQ = 1) :

c^ ^ ( H D l I x + l)^-i ^ ( l l D l I x + 1)" .

Note that different spaces may have the same fundamental sequences.
The most important examples of such spaces are weighted CQ and

^-spaces, e.g.

X = X? = {(xj | (x^n3) C /q } for some s > - - or
q

X = X^ = {(x^ix^n5—>0 as n—> 00} for some s>0.

Orlicz sequence spaces should be mentioned too.
Ill) (A , | |^) shall denote a solid BF space on G which is a

Banach convolution algebra, i.e. |/* g\^ < K \f\A\g\A f o r / , ^ E A
and a fixed constant K < o°. Without loss of generality we suppose
K = 1.

IV) (B , | Ie) shall be a solid BF-space on G which is a twosided
Banach-A-convolution module, i.e. for / E A , ^ € B f * g and g */
are in B,

f ^ g : = j f ( y ) L y g d y - j RyfgWdy
G G

and |/ * g\^ < K, \f\^ \g\^ and \g * f\^ < K^ 1/1^ \g\a ^r
some constant K^ < °°. We suppose again K^ = 1. B is called an
essential module if A * B is dense in B.

If B is contained in A, B is called a normed ideal of A.

Remark. — 8) It follows from the assumptions that A H B is a
solid BF-space and furthermore a Banach convolution algebra. Thus
A H B contains K (G) if A is left invariant. This can be shown in the
following way :

L E M M A 1.3. - // B is a normed left (right) invariant, solid BF-
space on G, containing any function /o, continuous on some open
set, then K (G) is continuously embedded into B.

Proof. — Since B is solid, we may suppose that /o is a positive,
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continuous function with compact support, such that/o(;Co) > 0 for
some point XQ E G. Thus for some

§ > 0 u : = { x E G , /o0c) > § > 0}

is a nonvoid, open, relatively compact subset of G. If K is an arbi-
trary compact subset ofG, then there is some

^ K ^ K ^ ( G ) , I I ^ K I L < 1 , ^(x) = 1

for all x G K. Since K^ : = supp ̂  is compact there is a finite

sequence 0,)^i C G such that K^ C (J ^.U. It follows that for
1=1

an arbitrary k G K(G), supp / : C K t h e following inequality holds :

\k(x)\ < l l /dL^W< II^L§- 1 S L^OC). The finite
i=l

sum is an element of B and thus k lies in B, B being solid. Moreover
II k II B < II ̂  II g II k I I „ holds, showing that the inclusion K (G) —> B
is continuous.

C O R O L L A R Y 1.1. - Let B ̂  {0} be a solid, left invariant space
that is closed under convolution. Then K(G) C B.

Proof. - If B ^ { 0 } then there is a measurable set

M C G , |M| > 0 ,

such that XM G B. Since XM e L' n L°°(G), XM * XM E B is a po-
sitive, continuous function and XM * X M ( O ) = I M | > 0. Thus lemma
1.3. is applicable.

We shall assume from now on that any solid space appearing in
the context contains K(G). As we have seen this condition is rather
mild.

L E M M A 1.4. - //B is a left invariant BP-space, containing K(G)
as a dense subspace, then B satisfies L4) and L2).

Proof. - By remark 1) B satisfies L4). Therefore B^ is closed
in B by lemma 1.2. . By lemma 1.3. B^ contains K(G) and therefore
B == B^ , i.e. B satisfies L2).



142 H-G- FEICHTINGER

The most important examples for III are of course the group
algebra L1 (G) itself or an arbitrary Beurling algebra

L^(G) : = { / l / w G L ^ G ) }

([7], Chap. 3, §7.1.) defined by means of a weight function w
satisfying

Wl) w(x) > 1 ,
W2) w (xy) < w (x) w ( y ) for all x , ^ G G,
W3) w is locally bounded.

Corresponding to L1 (G) one can take as A-convolution-module
B = 17 (G) or I/ 0 L^ (G), 1 < p < oo ; B = C° (G) or L1 n C°(G)
if G is a unimodular group. All these spaces satisfy LI) — L3) and
Rl) — R3). If G is not unimodular R3) fails to hold and one has to
replace L1 (G) by A = L^(G) defined by w^(x) : = max (AQc), 1).
In this connection the following lemma is of great use.

L E M M A 1.5. - Let B C L^ (G) be a left invariant W-space
satisfying L2), then B is a left convolution module over some Beurling
algebra L^(G).

Proof. - If we define wQc) : = max( l , IlL l ip) , then w
satisfies Wl) and W2) by lemma 1.1. and L2) implies W3). Thus
L^(G) is a Beurling algebra. Furthermore we have for /G L^(G),
g ^ B :

I I /*^IB= ^ff(y)Lygdy\\^<f |/00| \\Lyg\\^dy<

< f\fW\^(Y) II^IB^< ll/llw,i II^IB.

Thus B is a left L^, (G) — convolution module.
It follows from lemma 1.3. and lemma 1.4. that any solid BF-

space which is left and right invariant and contains K (G) as a dense
subspace is a twosided Banach convolution module for a suitable
Beurling algebra L^(G). Thus we have a rather extensive assortement
of examples.
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2. The spaces A ( A , B , X , G ) and their fundamental properties.

We are now able to present the main results of this paper.

D E F I N I T I O N . - Let (B^)^^o , x^, X be as in I and II, A and B
solid BF-spaces (containing K (G)). Then we define

A ( A , B , X , G ) : = { / E A U B , (l/XjB)n>o ^ X}

1 1 / 1 1 : = I/IA + KI/XjB).>olx .

If A H B is a space of continuous functions one has to replace x^ by
a continuous function ̂ , X^-i ^ ^ ^ X» for n > 1.

A (A , B , X , G) is well defined, since f\^ or fV^ lie in B for
n > 0, B being solid. It is easy to see that II I I is a norm since it follows
from Sl) that it is the sum of two norms. If it is clear from the context
we shall omit some of the letters, writing shortly A (A , B , X) or only
A for example. Instead of A (A , A , X , G) we write A (A , X , G).

We do not indicate the dependence of A (A , B , X , G) on the se-
quence (B^)^Q because in the most important case it is in fact inde-
pendant of the choice of (B^ )^o . More precisely we have :

L E M M A 2.1. - Let (^n\>o an(^ ^n\>o ^e two sequences of
relatively compact subsets satisfying Sl) and S2') : B^B^ = B^.^ and
C^ = C^+i for n > 1. Then the spaces A (A ,B , X , G) defined
by means of these t\^o sequences coincide and have equivalent norms.

Proof. — Denote the spaces derived by means of (B^)^o and
(C^)^o by A^ and A^ respectively. On account of the symmetry of
the assumptions it will be enough to prove one inclusion, e.g. Ai C A^ .
By S4) there is some HQ E N such that B^ C C^. From S2') we
derive B^ = B,B, C C^C^ = C^, and further B^ C C^,,
for k > 1. If we denote the characteristic functions of G \ B^ and
G\C^ by x^ and ^ respectively it follows that

1/^4-fc-llB ^ I /XJB

for all k > \ and / E B and l/^.lg < |/|g = I / X O ' B f^/ < n^
hence the sequence (\f^o\Q\>o lsa nnnorant of the sequence
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^ : = ( I / IB , . . . I / I B » I /XJB- 1 / X j B - - - ) .

But if / E AI it follows from X5) that z G X and

" / I I A , < I / I A + I ^ I X < I - / I A +^-! I / I B + ( l l D l l x + l / z o - l 11/11̂

< K O - I + ( " D l l x + I)"0"1] 11/11^.

Thus /G A^ and 11/11^ < K 11/11^ for some K < oo. The proof is
now complete.

THEOREM 2.1. - ( A ( A , B , X , G ) , II I I ) is a solid W-space.
Moreover the inclusions K (G) C A (A , B , X , G) C A H B hold and

I / I A + I / I B < 11/11 for all / G A .

Proof. - It is clear, that (A, II I I ) is a normed, solid linear space
contained in A 0 B. Furthermore we have I / I B == 1/Xola by Sl)
and thus I / I B + I / I A < 11/11 by X4). Using S4) we see that for any
/e K(G) 1/xJa = = 0 for n > n(f). Thus again by X4) K(G) C A,
K(G) being contained in A H B by our general assumption. Now
we have to show the completeness of (A, II I I ) . It will be enough to

00

show that every absolutely convergent series ^ fk of nonnegative
k=l

00

functions fk G A with ^ II / f c II < K < ^represents an element
fc==i

00

/E A with 11/11 < K. Since A 0 B is a BF-space / = ^ /fc conver-
fc= i

00

ges in A n B and/(x) = ^ /^CO a.e., hence
k=l

00

I / X « I B < 2 I^XJB •
n= 1

From the completeness of X we can deduce

1 1 / 1 1 = I/IA + KI/XjB).>olx < I/IA + I S (I^XjBLxJx
k=l

00

< I/IA + S KI/'XjB).>olx<K <oo.
A:=l

The proof is now complete.
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Remark. - It is clear that | (1/x^ \B\>O Ix ls a no™ equivalent
to II / II if B is contained in A.

T H E O R E M 2.2. - If A and B are as in III and IV respectively, then
A (A , B , X , G) is a Banach convolution algebra.

Proof. - Let /, g G A be given. It is known that/ * g G A 0 B.
Since A is solid and since \ f * g \ < |/| * \g\ holds we may suppose
that / and g are nonnegative functions. Now using S2) we obtain for
x e G \ B ^ a.e. :

/ * g(x) = f f(y) g ( y - ^ x ) dy +/ f(y) g ^ y - ^ x ) dy
CAB"-! ^-i

< ^ f^n-iW g ( y ~ ' x ) d y + f^ f ( y ) g x ^ _ ^ y - l x ) d y .

Thus we have shown the fundamental inequality

(*) (/ * g)\n <fXn-i * g + / * S^n-Y ^ U > \ .

It follows |(/ * g)x^\B < \f^n-i\B I ^ I A + I / I A \8Xn-i\Q and
further

II/* ^ 1 1 = I / * ^ I A + KI / *^)XjB) .>o lx

< I/IA I^IA + I^IA KI/IB. 1 / X o l B . l /X i lB - .O Ix

+ I / IAKI^ IB . I ^ X o l B - - . ) l x

< I / I A \8\A + I ^ I A ( I + " D " x ) K I / X j B ) . > o l x

+ |/ |^(1 + l l D l l ^ ) | ( | ^ x j B ) . > o l x

< (1 + l l D H x ) 11/11 1 1 ^ 1 1 .

The proof is now complete.
Since B is also a twosided Banach convolution module over the

Banach algebra A (A , X , G) the space

A (B , A , X , G) = A (A , X , G) 0 B

is a Banach algebra by remark 8). Considering the last part of the proof
of theorem 2.2 we see that the roles of A and B can be changed on
the right side of the estimate following (*). Moreover
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A (A , B) H A (B , A) = A (A U B)

holds. Thus we have :

T H E O R E M 2.3. - A(B ,A ,X ,G) is a solid Banach convolution
algebra with the norm 11/11' : = |( | /x^ \A\>O\X + I / I B • Moreover
there is some C < o° such that for /, g E A (B , A , X , G) we have
/ * ^ e A ( A H B , X , G ) and II / * g I I ^ A U B ) < C 11/11' 11^ I I ' ; i n
particular A (A 0 B , X , G) is a normed ideal of A(B , A , X , G).

In a similar way one can prove the following assertions :

T H E O R E M 2.4. - If A.^ and B^ are twosided Banach convolu-
tion modules over A ^ . Then A(A^ , B^ , X) is a twosided A(Ai , X)-
convolution module.

Proof. - A careful repetition of the proof of theorem 2.2 will
convince the reader.

C O R O L L A R Y 2.1. — Let AI and A^ be solid Banach convolution
algebras such that A^ is a twosided A^-module, then A(A^ , X) is a
twosided A(A^ , X)-module, in particular A(A^ , X) is a normed
ideal in A (A^ , X) if A^ is a normed ideal of A ^ .

This corollary is of special interest for the case Ai = L1 (G)
and A^ = L1 n L^G), G unimodular.

C O R O L L A R Y 2 .2 .— Put

^m : = { / G A 0 B, supp / C B ^ } C A C A 0 B.

Then the restriction of the norm of A 0 B to A"" is equivalent to
the restriction of the norm of A to Am .

Proof. — It will be sufficient to show there is some K^, < oo
such that for every / G A ^ KI /XJB^X) Ix < K^ 1/le holds. ;
but this is a simple consequence of X4) since I / X ^ I B == 0 holds for
n > m. Therefore we can take K^ == c^ .

The corollary remains true if one replaces B^ by any compact
set K C G (S4).
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It follows from the corollary that the space A (B , X) can be
considered as an approximation space ([2], Kap. 2.) with P^ == A".

T H E O R E M 2.5. — If A and B are left (right) invariant then the
same is true for A (A , B , X , G). Moreover A satisfies L4) ;/ A and
Brfo.

Proof. — We shall give the proof only for L y G G. By S4)
there is some HQ such that y ^ B^ for n > H Q . For n > HQ the ine-
quality X^-H < ^yXn holds. This follows from the fact that by S2)
y ~ 1 x G B^ i f x E B ^ . ^ . Thus we have

(L^/)X^+1 < Lyf. Ly\^ == Ly ( f \ ̂ ) fOT ^ > ^ .

We deduce further

114/11 - IIL,/11^ 4- KI (4 / )x jB) .>o lx

< 11^ 1 1 ^ |/|^ + l ( (4 / )Xo lB .—l (4 / )x , jB .O. . . ) | ^

4- KO,...0,i(4/)x,^jB . • • • ) l x

< 1 1 4 1 1 ^ 1 / 1 ^ + IIL^UI/IB^ + "Dll^ KI/xjB).>olx]

< (IIL,̂  + ll4llB[^+ IIDII^]) 1 1 / 1 1 .

C O R O L L A R Y 2.3. — For y ^ B^

11411^ < 11411^ + ||4||g [c + | |D[ |^]
holds.

T H E O R E M 2.6. — // X6) holds, i.e. the finite sequences form a
dense subspace of X and ;/K(G) is a dense subspace of A H B, then
K(G) is dense in A ( A , B , X).

Proof. — Let /G A, e > 0 be given. We have to show that there
exists some k E K(G) such that I I / — A: II < e. First of all we choose
a function k^ E K(G) such that \f - k^\^ < e/4 holds. Now by S4)
there is some HQ G N, such that supp k^ ^ B^ for n > H Q . By X6)
there is some n^ > n^ G N, such that

1 ( 0 , . . . O , ,/X.JB . l /X , ^ jB - - . ) l x<^ /4
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holds. Since \f\^ I A < I/ - ^i IA < 6/4 holds, we have

ll/X.JKe/2.

Furthermore by the assumptions there is some k £ K(G) such that
\f~f\n^ ~ ^ I A H B ^ ^2 ̂ "^i holds. We may suppose that supp k
is contained in B^+i , for otherwise we can choose a continuous
function ^, 0 < ^ (x) < 1, ^ (x) = 1 for x C B^ supp ^ C B +1
and replace /: by k^ and the above inequality remains true. From
supp (/ — /x^ ) c B^ it follows that

supp(/- /x^ - k)CB^^

and therefore I I / - -/x^ - ^11 < e/2 by corollary 2.2. All together
we have obtained II/- /ell < II / - fXn - k\\ + ll/^ II < e,
hence K (G) is dense in A.

T H E O R E M 2.7. - // X6) holds and A H B satisfies L2) then
A (A , B , X) satisfies L2) ^oo.

Proof. - First of all we note that A n B satisfies L4) by remark 1)
and therefore A (A , B , X) satisfies L4) by corollary 2.3. On the other
hand it follows from X6) that U A"" is a dense subset of A. By

m > 1

the assumptions and by corollary 2.2. any A^ is contained in A^,.
Thus A = A^, by lemma 1.2., i.e. A satisfies L2).

A slight modification of the proofs gives

C O R O L L A R Y 2.4. - Let A n B satisfy L3) and let K(G) be
dense in A H B. Then A (A H B , X , G) is a proper subspace of

A ( A , B , X , G )
// A n B ̂  B.

C O R O L L A R Y 2.5. -For all? > 1 A(L1 n L^, X) is a proper
subspace of A (L1 , Lp , X) and each of these spaces is a proper subs-
pace of the corresponding space with p being replaced by any q,

1 < q < p < °°.
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3. Inclusion results.

The following relations are easily verified.

PROPOSITION 3.1. -

A ( A , B , X ) n A ( A i , B i , X ) = A(A H A^ , B n B ^ , X) ;

A ( A , B ,X) n A ( A , B , X i ) = A ( A , B ,X H X ^ ) ;

if furthermore A^ C A, B^ C B and X^ C X holds, we have

A ( A , B , X ) C A ( A i ,Bi , X i ) .

The proof is left to the reader.

Considering the above proposition it is natural to ask whether
proper inclusions lead again to proper inclusions. We don't give a
full discussion of this problem but confine ourselves to the most
important special cases. Thus we shall see that at least for a great
number of interesting examples an affirmative answer can be given.
The following technical lemma will be useful.

L E M M A 3.1. — Let (B^)^Q be given as in I). Then for any com-
pact subset K C G there exists a subsequence (B^ )^Q C G such
that for a suitable sequence C>^)/c>o C(J Y k ^ ^ ^n \^i -i holds.

Proof. — We note that it follows from S2) and S3) that for any
m € N there is some n > m such that B^ C B^_i ^ B^ holds. Since
K is compact we have K U K A C B^ for some k^ G N (S4). To
prove the assertion it will be enough to show that for any HQ > k^
there is some / > n^ and some y^ G G such that y -K C B \B _ i ,
i.e. B^.K-^XB^K"1 ^ 0. Suppose B^.K"1 = B^ K-1 for all/ > n^.
It follows from S2) that for all / > n^

B . C B, Bf, KT'C B,^.i K"1 = B^ K~1 C B^ B^ C B^/ / KQ 7+1 HQ — HQ KQ — ^o+l

holds. This is a contradiction to our first observation.
Note that y^ e B^ B^ C B^ ^ holds. For connected groups

we may suppose T^^ == n^ + 1 (confer remark 3).
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THEOREM 3.1. - Let A and B satisfy LI) and L3) wrf /<?/• ^wo
solid BK-spaces X ^ , X^, X^ C X^ be given. Denote their fundamental
sequences by c and d respectively. Then any closed, left invariant subs-
pace M ^ {0} of A ( A , B , X 2 , G ) contains elements, which don't
belong to A (A , B , X i , G), if d ^ / c ^ —^ 0 as n —> oo .

Proof. - Suppose M ^ M H A(Xi) . Since M and M H A(X^)
are BF-spaces with the norm o f A ( X ^ ) and A ( X ^ ) respectively, these
two norms must be equivalent when restricted to M. This will lead
to a contradiction. Since M ^ {0} holds there is some /G M and
some compact subset K C G such that

I I /XK"A(X,) > II/XK"A(X,) > I/XJB = S > 0

holds. If we choose 0^)^>i and (^)^i as in lemma 3.1. and put
fk •' == ^n1 ^y f^ then {fk}k>i c M' M being left invariant. Now
we have to give estimates for the norms of the f^s. We know from
lemma 3.1. that y^ G B^ ^ holds. Thus by corollary 2.3. and L3)
we obtain :

".^(X,)- <~; "4,/llA(x,)<^ "4,"A(X,) 11/"A(X,)

<<-;(1 + IIDII^ +^+i) 11/»A(X,)

< ( 1 + l lDl lx )«;+ 1) + I I / " A ( X , ) ,

showing that { /^} is bounded in A(X^). On the other hand we have

H A H A / X ^ ^ ^«1 I I I C fv t i l^fc A ( X ) ) n^ \\Ly^ ( , /XK- ' "A(X,) '

since by lemma 3.1. supp Ly ( /Xp) c B,, \B^ _ _ , , we have by L3)

14 ( / X K ) X « I B = U / X i J B ^ ^ O ^r " < " K
/C

( 0 for n > n^ .

Thus we obtain \\Ly ( / X K ) H A ( X ) ^ ^ cn and further

"A "A (Xp>5^^ ,

showing that { / ^}^^ i is unbounded in A(Xi). Therefore the two
norms are not equivalent on M and M ^ M n A ( X ^ ) must hold.
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T H E O R E M 3.2. - Let A , B , Xi , X^ be as in theorem 3.1. Then
any closed left ideal I of A (A , B , X^ , G) is not any more a left
ideal in A ( A , B ,X^ ,G).

Proof. - Let I be any closed left ideal of A(Xi) c_ A(X^), then
I is a Banach algebra itself. If it is also a left ideal in A(X^) we have
by theorem 2.3. of [ 1 ] the following inequality :

^ * / " A ( X ^ ) < C 11/CII^)" /"A(X,)

for some C < oo and all k e ACX^), /e I c A ( X i ) . This implies
that for every k e K (G) c A (Xi) and every / G I the set

[\\Lyk */ll^xp "L^A^). Y ^ G }

is bounded. Since (Lyk) * / = Ly(k * /) for all y G G we may
apply arguments as in theorem 3.1. with / replaced by k * / to lead
this assumption to a contradiction.

C O R O L L A R Y 3.1. — Under the above assumptions

A ( A , B , X i ,G)

cannot be an ideal in A(A , B , X^ , G).

C O R O L L A R Y 3.2. - Let A ,B , X ^ ,X^ as in theorem 3.1. Let
G be an Abelian group. Define for a compact subset Kc G with
nonvoid interior I,(K) = [fe A(X,), supp fc K}, i - 1,2. Then
for any K the inclusion I^ (K) .c 1̂  (K) ̂  proper.

Proof. - 4 is a closed ideal of ACX^) , thus I^ = 1̂  implies that
I i , being a closed ideal of A(X^) , must be an ideal in ACX^in con-
tradiction to theorem 3.2.

A similar result for Beurling algebras has been proved by R.
Spector( [8 ], Theorem III. 1.6.).

PROPOSITION 3.2. -Let A , B , B^ satisfy L\)andL3),

A n B c A o B i

and K(G) be dense in both spaces. Then for any X the inclusion
A (A , B , X , G) c A (A , B^ , X , G) is proper if the inclusion
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A n Be A n B^
Z5 proper.

Proof. - Since K(G) is dense in both spaces the inclusion is
proper if and only if the two norms are not equivalent, when restricted
to K (G). Thus for any n e N there is some k e K (G) satisfying

I ^ I A + I ^ I B = 1. I ^ I A + I ^ I B > n 4- 1

and thus \k\^^ > n. By lemma 3.1. there exist y e G and m e N
such that y (supple B^ \ B ^ _ ^ . Therefore we can calculate the
norm of L ,̂ k, using LI) and L3)

"4^A(A,B) = I ^ I A + ^ I ^ I B < 1 + ^ < 2^ ,

"^"ACA^)- ' ^ I A + ^ I ^ I B ^ > ^ ,

showing that the norms of A (A , B) and A (A , B^) are not equivalent.
Thus the inclusion must be proper.

Finally we want to consider the following problem. Let us denote
the closure of K (G) in A by A°. What can we say about the inclusions
Ao c \ c A ? Suppose X6) holds. Then A, = A if A n B satisfies
L2 (theorem 2.7.) and A° == A if K(G) is dense in A n B (theorem
2.6.). Now we shall give an example showing that both of the inclu-
sions may be proper in case X6) is not satisfied, even when K(G)
is dense in A n B. Since X6) is not fulfilled essentially if /°° is involved
in the construction, the counterexample concerns the most important
case.

PROPOSITION 3.3. - For G = R^ and (BJ^o as usual we
considered} , L1' , X, , R^, 1 < p < oo wz^

X, : = {(x,), (^)er}

for some s > 1 - 1/p > 0. Then A° is a proper subspace of A
which is in turn a proper subspace of A. Moreover A° is not an ideal
in A^, (resp. A).

Proof. - 1) By S4) it will be sufficient to show that there is some
/'e A such that y -^ Ly /is a continuous function from G into B, but
11/Xfcl l > ^o > ° for a11 k E N. To this aim we take some cube Q
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in Rw such that for some neighbourhood VQ of zero and a suitable
sequence (y^)n>\ C R^ y^ 4- U^ -1- Q C B^\ B^ for n > 1 holds If

00

we put now for a given s r : = s + 1/p then / : = V ^"^L,. Xo
^-j >n v<

M==l

will be such a function, r > 1 implies/^ L^R^). Moreover we have

l / x j p = ( l IQi^r
Vyi==A: /

< I Q I 1 ^ (^ - D-^^P == ,Q|1^ (^ - i)-5 ,

showing that / lies in A. On the other hand I / X A ; I ^ \^\llp k~8 im-
plies I I / X ^ H A > ^P ^ 1/Xjp > IQI 1 ^ > 0 for all k^ N, thus

«>fc
/ ̂  A°. On the other we have for y e Uo and

1^1 < IQi '^ (QA^ + Ql < K M

for some K < °°. Thus we have

l ( / -L^ / )x , l < I 1 ̂ "(L^XQ-L^^XQ)^
rt=A:

< \QAy + Qi 1 ^^- l r / ' + l / p <K / l ^ l^ - ' fo ra l l^e N.

Since L^R"") satisfies L2) this implies that y —^ Ly/is continuous
at y = 0. Lemma 1.1. gives the assertion.

2) First of all we can choose some a > 0 such that

. > 1 - 1/p 4- "
P

am
holds. Furthermore we put r : = s 4- 1/p — — . Let Q^ be a cube

P
with the length of his edges n~a, Q^i c; Q^ for n > 2 and (y^n>2

00

as above. Then we put / : = V 77"^ L,, Xn • r "> 1 and a > 0— -^ N<-^
»=2

imply / e L1 (RW). Furthermore

i /x. ip < (s ^-^--r < ^ - ir"^^^ == ^ - D-
"M^A:

implies /E A. But since for any y E U^ C Rw Q^ n j; + Q^ = 0 for
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n >n(y) we have for k>n(y):(f- Lyf)Xk\p > \f\k\p> k-5

for all y e Uo. Thus II / - Ly /II ̂  > e^> 0 for all y e Uo, showing
that / must lie in A \ \.

3) The last assertion follows directly from 1). Take / as in 1)
and k c K+(G) ;c \, supp k C UQ ; then it is easily shown that
k * / ^ A°.

4. Further properties ; spaces on abelian groups.

To be able to derive further results we state without proof the
following results concerning general solid Banach convolution algebras.
Thereby we shall use the following notation : A Banach algebra has
(multiple) left approximate units if for /^ e A (/^ . . . f^ e A), e > 0
there is some g e A such that II g * f^ — f^\\^ <e for ; = 1 (;' = 1,... n).

THEOREM A. - Let A be a solid, left invariant Banach convo-
lution algebra, then the following properties are equivalent :

i) A satisfies L2)
ii) A has multiple left approximate units in K (G).

iii) K (G) * A is dense in A.

COROLLARY 4.1. — If A is a solid, left invariant Banach convolu-
tion algebra satisfying L4), A^, is just the closure of K(G) * A (cf.
theorem 2.5.).

PROPOSITION B. — Let A satisfy one of the properties of theo-
rem A. Then any essential, closed ideal M of A is left invariant.

THEOREM C. - Let A be a solid, left (right) invariant Banach
convolution algebra. If K (G) is dense in A, then the closed left (right)
invariant subspaces and the closed left (right) ideals of A coincide.

As consequences of these results we have :

THEOREM 4.1. - Let X6) hold and K(G) be dense in A //
A n B has left approximate units then A (A , B , X , G) has multiple
left approximate units.
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Proof. - First of all we show that it follows from the assumptions
that A n B has approximate units in K(G). Let /e A n B, e > 0
be given. Then there is some g e A n B such that

"^ * / - / " A n B < ^ / 2 .

If we choose k e K(G)c A n B, \\k - g\\^ < e/2 I I / H A H E we
obtain

l l ^ * / - / "AnB< 1 1 ^ - ^IA "/"Ane + l ^ * / - / "AnB<^

Therefore by theorem A A n B satisfies L2). Now by theorem 2.7.
A satisfies L2) and again by theorem A A has multiple left appro-
ximate units in K (G).

THEOREM 4.2. - Let X6) hold and K(G) be dense in A n B .
Then the closed left (right) ideals and the closed left (right) invariant
subspaces of A (A , B , X , G) coincide.

Proof. - This theorem follows from theorem C and theorem 2.6.
We shall now give a number of further results concerning the

case of an abelian group G. To obtain them we apply results of Y.
Domar who has given an analysis of certain commutative Banach
algebras in his fundamental paper [3].

D E F I N I T I O N (cf. [3], p. 5) - Let A be a solid Banach convolu-
tion algebra on a locally compact abelian group, A c_ L1 (G). We say
that A = { / , /e A} is of type F if A satisfies

Fl) for any a G G and any neighbourhood U of a there is some
/ G A such that f(a) ^ 0 and supp / C U holds.

F2) K (G) is dense in A.

Remarks. — 1) This a simplified version of the definition given
in [3], adapted to our situation.

2) Since A is a commutative Banach algebra condition Fl) is
equivalent to the assumption that A is a standard function algebra
in the sense of [7] (cf. [7], Chap. 2 § 1.1.). In any such standard func-
tion algebra A there is for any compact set K C. G and any neigh-
bourhood U of K some /e A such that f(x) == 1 for x e K, and
supp f c U.
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THEOREM D ([31 Th. 2.11, [7], Chap. 6, § 3.1). - L^(G)' is of
type F if and only if the condition BD) holds :

(BD) ^ n~2iog\w(xn)\<^ for all x E G .
M = I

L E M M A 4.1. - Let A be a left invariant solid subalgebra ofL1 (G)
satisfying L4). Then A satisfies Fl) ifBD') holds :

00

(BD') ^ n~2\og\w(xn)\<^ forall x E G ,
»i=i

with w(x) = max(l JLJI^).

Proo/ — By lemma 1.2. A .̂ is a closed subspace of A satisfying
L2). Moreover K(G) C A^ by corollary 1.1. It will be sufficient to
show that A^ satisfies Fl). By lemma 1.5. \ is a left convolution mo-
dule over some Beurling algebra L^, (G) (with w as above according to
lemma 1.3.). It follows from BD') that L^,(G)^ is of type F and there-
fore satisfies Fl), i.e. given a G G and U there is some/E L^(G),
/(a) ̂  0, supp/C U. But there is certainly some h E A^, h (a) ̂  0,
\ being left invariant since \ is of course character invariant (i.e.
I X ^ I A = I ^ I A for ^y ^ E A and any character x on G). But now
/ * h = fh G \, /(a) /z (a) ̂  0 and supp /z/C supp/C U. Thus \
satisfies Fl).

T H E O R E M 4.3. -IfbothAandBsatisfyBD')thenA(A,B,X,G)
satisfies F 1). Moreover A (A ,B, X ,G) is of type F, if furthermore K (G)
is dense in A ( A , B , X , G ) .

Proof. - By lemma 1.4. A (A, B , X, G) satisfies L2).
Put v^OO : = max(l , I j L ^ H ^ ) , ^(x) : = max (1 , I I L ^ H g ) and

H^CX) : = max (1 , HLJI^) . By lemma 4.1. it will be enough to show
that ^3 satisfies BD). To this aim we note that by corollary 2.3. we
have

^3(x) < w, (x) + w^x) [c^ + IID 11x1

<Kwi(x)v^Mc^ for x ^ B ^ , K < oo .
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Now given any x G G there is some n^ E N such that x G B^ . I f fol-
lows from S2) that jc" G B^^ for ^ < n < 2m+l holds. Using
this fact, the monotony ofc^ and the inequality

c^ <(1 + I IDH^rc , n , m G N
we obtain

; 2^

^ n-^OgW^^) == E S n-2 lOgH^Oc")
"=1 M = l M = 2 W - 1 + 1

v ?< L 2j n-2 [ logWi(^")+logn'2(x")
m=l n=2'" - l+l

+ l og(cno+m)1 + C

<c,(x)+c,(^)+ ^ 2'"- l(2'"- l)-21og(c )
w ^ l

00

< C i ( x ) + C 2 ( x ) + ^ 2-^-^logc^
m = l

+ f 2-^-^mlogd + | |D| lx)<°o .
w=l

The proof is now complete.

C O R O L L A R Y 4.2. - A (A ,B , X ,G) satisfies Fl) if A and B ^z-
^/^ L3).

By [3] we have a number of results concerning solid Banach
convolution algebras contained in L^G^if A is of type F. We state
some of them.

The only multiplicative linear functionals on A are of the form
/ *—^ /(^o)» xo G G- The toplogy on G is the weakest among all topo-
logies for which all/€ A are continuous functions on G. Therefore the
space of regular maximal ideals of A coincides with G and the Fourier
transform coincides with the Gelfand transform. Moreover we have
lim I I / * / * • . • */||^" == 11/11., (^-fold convolution of/).

n-* °°

The functions /G A with/having compact support are dense in A
and moreover A has multiple approximate units if it is translation inva-
riant. Thus A is a Wiener algebra in the sense of [7], Chap. 2. § 2.4. It
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follows that any closed ideal I of A contains all functions/E A such
that supp /CG\cosp I holds. In particular the only closed ideal
with empty cospectrum is A itself.

At the end of this section we shall be concerned with the fac-
torization problem.

D E F I N I T I O N ([9], def. 2.1.). — Let be a commutative Banach
algebra. We say that A has the (weak) factorization property if for
every x €: A there exist elements y , z G A (y^ . . . y^ , z^ . . . z^ G A)
such that^z = x (y^ Zi + - • - + y^^n = x)-

T H E O R E M 4.4. — Let G be a nondiscrete abelian group. Then
A ( A , B , X , G ) doesn't have the weak factorization property, if
A C I/^G) for some po < °° and if A and B satisfy BD'), e.g. if
they satisfy L3).

Proof. — All essential calculations for this proof can be found
in [9]. On account of [9], theorem 4.1. we have : Let A be a Banach
algebra contained in L1 (G) having properties F. and P. ([9], def.
2.9.), then A has not the weak factorization property. Property F. is
exactly the assumption A C L^CG) for some PQ < °°. Using the
proof of [9], theorem 2.10. we see that A has property P, if it satis-
fies Fl) since it is solid. This is the case here by theorem 4.3.

C O R O L L A R Y 4.3. — // the assumption of theorem 4.4. are ful-
filled A (A , B , X , G) cannot have bounded approximate units.

C O R O L L A R Y 4.4. — Let G be as above. Then none of the algebras
A(L1 , Lp , X , G), 1 < p < °° has the weak factorization property.

5. Examples.

There is a number of examples of spaces A (A , B , X , G) which
can be defined in a natural way, different from the definition given
in section 2. The most natural examples are the spaces defined on
G = Rw or G = 7^ , defined by means of

B , : = { x G G , 1x1 < 2"-1}
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for n > 1 and A == L1 (G). It is not very difficult to verify that the
space A° defined by B = L°° (G) and

X = X^ : = {(^), (2^)000}

for some a > 0 is the same as

Aa(G) = { / I / ^ L ^ G ) , / ^ ) (1 + |xireC°(G)}

with the norm 11/11^ : = l l / l l i + 11/wJL, wjx) : = = ( ! + (x l^ .
These spaces stood at the beginning of our work.

More general any space A (L1 , L°° , X , G) on a locally compact
group defined by some space

X = X, == {(^), ( a ^ x ^ ^ F } , a= (^)

being a fixed, nonin creasing sequence in CQ can be identified with a
space \(G) as defined in [4] (def. 3). To prove this assertion it will
be enough to show that there exists a so called "gage function" g
([4], def. 2) such that A(L1 , L°°, X^ , G) = A^(G). This can easily
be shown if one defines g by^(x):==^ forx € B^_n\B^ and n > 0.
We have to show that Gl) - G4) ([4], def. 2) are satisfied. First of
all we observe that 0^4.1 > ^o^n must hold for some §o, 1 > §o > 0
and all n > 0, since X^ must satisfy X5). We put now U^ : = B^_i
for x E B^+i \B^ if ^ > 2 and U^ C B^_i such that x e U^ U^ if
x E B2 and A : = §^1 > 1. Then Gl) holds, G2) follows from S2)
and G3) follows from X5), G4) is a consequence of X4). It is not dif-
ficult to see that g can be replaced by a continuous function defining
the same space A^ (G).

On the other hand any space A^R^) which has been defined
by means of any "special gage function" g ([4], def. 1) on R'" can
be identified with some space A(L1 , L°° , X^ , R^). A number of
such functions has been given in [4]. The same is true for all known
spaces A^(G) defined by means of a general gage function. One also
readily verifies that in this case A°g (G) can be identified with

A(L1 ,C°,X,°,G)

with X^ = {(^ , (fl^JcJE Co} . Since K(G) is dense in A^(G)
all theorems derived in this paper are applicable to the spaces A°(G).
Thus the theory developed here represents in many points a generali-
zation of the results obtained in [4].
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As in the case of B == L°°(G) the spaces A(L1 , V , X^ , FQ
also have a natural representation as

{ / l /GL^Fn , ^GC°(0 ,oo ) with

^(x) = ( 1 4 - (x|)^ f l/OQl^}
l^l>;c

with the norm of A equivalent to the norm defined by 11/11^ + \\h .L
A similar method is applicable if X^ is replaced by some space X
defined by means of spaces / ^ , 1 < q < oo^ e.g. XJ (use L^C^oo)).
For the case that /°° is involved in the construction confer proposition
3.3.

It is worth mentioning that the spaces A (B , X , G) can be consi-
dering as approximation spaces ([2], Chap. 2). For example it follows
from [2], Satz 2.1.1. that the space A (B , X^ , FT) defined by

X ^ - {(x,), (2^)G^}, a > 0

is the same as B^ with Q = a > 0 and a = 2.

P, = { / C B , supp / C [ - n , n^} .

Since B is solid we have E^ (/) == l/^ Ig . ̂  being the characteristic
function of Fr\[-^,^r and therefore E ^-i (/) = 1/xJe •
It also follows from [ 2 ], Satz 2.1.1. that

A ( B , X ^ R W ) = { / 1 / G B , l / ^ l a G X ? }

with ^ = 6 - \/q, X^ : = {(xj, (^xJE/^}.
Finally we observe that the fact that

AO^X0), X°= {(x,), (x^^Gco)

is a convolution algebra has been used implicitely in the definition
of rapidly decreasing functions in [6]. Furthermore any space

A(L^(G), X ^ , G)

can be identified with a suitable Beurling algebra L^, (G). Therefore
lemma 1.5. is in many cases a consequence of theorem 2.4., e.g. for
B = (L^,, V , X), since X D X^ for a suitable a > 0
(e.g. 2"> 1 + ||D||^).
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Added in proof :

After the submission of this paper the author became acquainted
with a very recent paper [10] and with [11]. We note that a slight
modification of the proof of theorem A 7 of [10] shows that this
theorem remains true for general locally compact groups. In particular
we have (confer remark 1)): If y —^ II Ly II g is measurable, B satisfies
L4), without any restriction on the group G.

Furthermore we observe that the functions g constructed in
[4] are in fact WSA functions in the sense of [ 10]. Therefore theorem 3
of [10] provides an elegant and elementary proof for the fact that
the spaces A^(G) or A^(G) are Banach convolution algebras. On the
other hand the spaces L^ or L^ and e^ or e^ are essentially special
cases of the algebras A (A , B , X , G), e.g. in case G == R1' or TY and
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the WSA function 0 is increasing for |z I t °° we have

L^ = (L1 , L00 , Q

and H = (L1 , C° , c^J where C(c^) : - [x \ (x, wj E F^)}
for a suitable sequence w, w^ > 1. Under the same conditions we
obtain e^ == (L1 , L2 , Q and e^ = (L1 , L2 , c^ J. For example
we have (using the notation of [ 11 ]) :

e(a) = { / G L ^ n ^ / E A d . 1 ,L\X^Z)}

with equivalence of norms. As a consequence lemma 8 a and theorem
8b of [11] are special cases of theorem 2.2.. Moreover in most cases
the spaces A (A , B , X , G) satisfy condition b) of theorem 2 of [10]
(replace S by A and B by A). Thus theorem 1 of [10] gives in many
cases an alternative approach to the consequences of theorem 4.3.
above.
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