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THE LEVI PROBLEM
FOR DOMAINS SPREAD

OVER LOCALLY CONVEX SPACES
WITH A FINITE DIMENSIONAL
SCHAUDER DECOMPOSITION (slt)

by Martin SCHOTTENLOHER

Introduction.

In this article it is shown that for certain locally convex
Hausdorff spaces E over C with a finite dimensional
Schauder decomposition (for example for Frechet spaces with
a Schauder basis) the Levi problem has a solution, i.e. every
pseudoconvex domain spread over E is a domain of exis-
tence.

The Levi problem for infinite dimensional spaces has pre-
viously been investigated for less general situations by several
authors (cf. list of references). Their common method is the
following: For a suitable sequence (rrj in a pseudoconvex
domain Q c E with the property that the cluster points
of (x^) are dense in the boundary ^Q. of Q, an analytic
function /*: 0, —> C is constructed which is unbounded on
sufficiently many subsequences of (^). Non-schlicht domains
have been studied in a similar manner (cf. [10]).

A different method is presented in this paper. We show that
a pseudoconvex domain Q. spread over a metrizable, locally
convex space E with an equicontinuous finite dimensional
Schauder decomposition (cf. Section 2 for the definition)
has a strong convexity property which is expressed in terms

*) This article constitutes a part of the author's « Habilitationsschrift », cf. [311.
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of suitable subalgebras (namely « regular classes », cf. [26])
of the algebra 0(0.) of all analytic functions on ti. A cha-
racterization given in [26] implies that Q is a domain of
existence. Similar to [5], where only schlicht domains are
considered, the result extends to non-metrizable spaces E
which satisfy certain countability conditions, for instance
it extends to hereditary Lindelof spaces with an equiconti-
nuous finite dimensional Schauder decomposition. In particu-
lar, a pseudoconvex domain spread over a Silva space (called
« LS-Raum » in [6]) with a finite dimensional Schauder
decomposition is a domain of existence.

The method presented here also provides a tool to prove
an approximation theorem of the Oka-Weil type for pseudo-
convex domains, thereby generalizing and strengthening
results of Noverraz [20]. Moreover, we prove that a pseudo-
convex domain spread over a Frechet space (resp. a Silva
space) with a finite dimensional Schauder decomposition is
holomorphically convex.

The Levi problem remains unanswered for arbitrary sepa-
rable, locally convex spaces since a Banach space with a
finite dimensional Schauder decomposition has the bounded
approximation property, and not every separable Banach
space has the bounded approximation property (cf. [7]).
For the non-separable case counterexamples are known
(cf. [13]).

I want to thank R. Aron, V. Aurich, G.Katz, C. 0. Kiselman
and Ph. Noverraz for many fruitful discussions and valuable
suggestions.

0. Notations and Preliminaries.

Throughout this paper let E be a locally convex Hausdorff
space over the field C of complex numbers. The set of non-
trivial continuous seminorms on E will be denoted by
cs(E). For a e cs(E), y e E and r > 0 the a-fcaH with
radius r and center y is B^(y, r) == {x e E\(x.{x — y) < r},
and the line segment of length r in the direction of a e E
is D^y; a, r ) = {y + Xa]X eC , \\\ < r}.

A domain spread over E is a pair (Q, p) where Q is a
connected Hausdorff space and p : Q -> E is a local homeo-
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morphism. If p is injective, the domain (t2, p) is called a
schlicht domain. For short, we often write Q instead of
(Q, p) for a domain spread over E although p is the
essential part of the pair (t2, p) and many properties depend
on the particular projection p : ^1 —> E.

For a fixed domain (Q, p) spread over E the distance
functions d^ : £1 -> [0, oo], a e cs(E), and

SQ: a x E-> ]0, oo ]

are useful to describe local and global geometric properties
of (0, p). They are defined as follows :

^{x) === ^P {r > 0| There exists a connected neigh-
borhood U of x such that p\ U : U —^ B^{px, r) is
a homeomorphism} u {0} for x e Q, and

8Q(rc, a) == sup {r > 0[ There is a connected D <= Q
with x e D such that p|D : D -> Dp:(p^; a, r) is a
homeomorphism}

for (a;, a) e D x E. C?Q is continuous while SQ is in
general only lower semicontinuous. For 0 < r ^ ^o(^)
(resp. 0 < r ^ S^(x, a)) the oc-&aM B^rc, r) in Q (resp.
the line segment DQ(^; a, r) in Q) is defined to be that
component of p-^B^p^, r)) (resp. of R-^DF^P^; a, r)))
which contains .r. For V <= t2 we put

^(V) - inf {^)|rr e V},

and V? = u {B^, 5)|o; e V} if 0 < s < ^(V). d^ and
SQ are related by the following formula :

d^{x) = inf {SQ(^, a)|a e E, a(a) ^ 1}

for x e Q, and a e cs(E).
An upper semicontinuous function v : 0. -> [— oo, oo[

on a domain (Q, p) spread over E is called plurisubharmonic
{psh) if all restrictions of p to line segments in 0. are
subharmonic. (Q, p) is called pseudocowex if — log SQ is
psh on (Q X E, p X ide).

A continuous function f: Q, -> C on a domain (Q, p)
spread over E is called analytic if all restrictions of f to
line segments in ^ are analytic. (P(ti) denotes the algebra
of analytic functions on t2. A function f: Q -> C is ana-



210 MARTIN SCHOTTENLOHER

lytic if and only if for every x e 0. there exist a e cs(E),
r > 0 with r < d^x), and a sequence of continuous n-homo-
geneous polynomials PY(^) : E -> C such that

f{y} = 2 P'/N. {PV - P^) uniformly for y e B^{x, r).
o^^i

A simultaneous analytic continuation (s.a.c.) of a collection A
of analytic functions on a domain (^, p) is a morphism
/ : (0, p) -> (D, p) (i.e. a continuous map / : 0. -> Q, into
another domain (t2, p) with p = p o j) such that

A <= {go/ |ge^)} .

An s.a.c. / of A <= 0{0.) is called maximal if for every
s.a.c. / / of A there is a unique morphism / with / = j o j ' .
There exists always a maximal s.a.c. of A, and it is unique
up to isomorphisms. When A == 0(0.) it is called the envelope
of holomorphy. (Q, p) is said to be an A.-domain of holomorphy
it id^: (0, p) —^ (0, p) is a maximal s.a.c. of A. (Q, p)
is a domain of existence if (t2, p) is an {/*}-domain of holo-
morphy for a suitable fe 0(0.), and a domain of holomorphy
if it is an ^(^)-domain of holomorphy. A domain of holo-
morphy is always pseudoconvex.

Finally, the A.-hull VA of V c: 0 for A c ^P(Q) is defined
by V A = ( V ) ; = { ^ G Q | |/^)| ^ H/lv for all ye A}, where

||/'||v-sup{|^)||^GV}.

1. Permanence Properties.

In this section we first show that for a separable, metri-
zable, locally convex space E the property that every
pseudoconvex domain spread over E is a domain of existence
is inherited by complemented subspaces of E. Then a dual
situation is investigated (following Dineen [3], [4] who
considers only schlicht domains) : Let 9 : E -> F be a linear,
continuous, open surjection of locally convex Hausdorff
spaces. Then the Levi problem for domains spread over E
is studied under the assumption that it can be solved for
domains spread over F.
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The first permanence property is proved with the aid of
admissible coverings and regular classes (cf. [26], [30]).
The definitions and some results which are needed also in
Section 3 are briefly recalled :

1.1 DEFINITION. — A covering 3S of a domain (0, p)
spread over E is called admissible if £1 = \J {V jVeSS} ,
where V is the interior of V, and

1° For U, V e SB there exists always W e 3S with

U u V c= w.

2° For every U e §S tA^re ea;̂  a e cs(E), 5 > 0 ami
V e 3S ^c/i ̂  ^(U) > s and U? c: V.

For an admissible covering SS of Q. we define

A^= {f^=(^W\ ||/1u < oo for all U £ SB}.

Then As^ is a regular class of analytic functions in the fol-
lowing sense: A collection A <= ^(t2), A ^ 0, of analytic
functions on ^ is said to be a regular class if

3 0 X f l e A and P^eA for all X e C . / ' e A . n e N and
a e E, where P^/*: t2 -> C is given by ^ i—^ Pnf{x).a,
x e ii.

4° For each ^ e 0, there is a neighborhood U of x with
l iy i lu < oo for all f e A .

Note that according to a result of Josefson [14] it follows
from condition 4° that ^P(^) is a regular class if and only if
E is finite dimensional.

For an admissible covering 3S of £1 the regular class
As^ is endowed with a natural topology, the topology of
uniform convergence on all sets U e 3S. A^ is a Frechet
algebra when 3S is countable.

1.2 DEFINITION. — Let A c ^(0). Then (t2, p) is called
A-separated if A separates the fibers of p, i.e. if for x, y e t2
with x ^ y and px = py there exists / e A with f{x) ^ f(y)'
When SB is an admissible covering of 0. then (t2, p) is
called A^convex if for every U e 38 there exists a e cs(E)
and s > 0 with d^{\3^) > 0.
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1.3. PROPOSITION (cf. [26], [30]). — Let 3S be a countable,
admissible covering of a domain (0., p) spread over E. Then
Q. is an As^-domain of holomorphy if and only if Q, is As^-
convex and A^-separated.

1.4. PROPOSITION (cf. [26], [30]; see also [17]). — For a
domain (Q, p) spread over a separable^ metrizable, locally
convex space E the following properties are equivalent:

1° D is a domain of existence.

2° Q is an A-domain of holomorphy for a suitable regular
class A.

3° There exists an admissible covering 38 of 0. such that
£2 is As^'convex and K^-separated.

4° There exists a countable^ admissible covering SS of 0,
such that R = {f e As^\ Q is an {f}'domain of holomorphy}
contains a countable intersection of open and dense subsets of
A$g. In particular, R is dense in As^.

Recall that a vector subspace F of a locally convex Haus-
dorff space E is said to be complemented if there exists a
linear, continuous projection 9 : E —>• E with <p(E) == F. E
is then isomorphic to F X ^"^(O).

1.5. PROPOSITION. — Let (ti, p) be a domain spread over
the complemented subspace F of E == F X G(G a locally
convex Hausdorff space over C). Suppose there is an admis-
sible covering 2S of (t2 X G, p X ide) such that Q. X G is
KsQ-convex [resp. A^-separated). Then there exists an admissible
covering SB of 0. such that Q is As^-convex (resp. As^-separa-
fed). SB can be chosen to be countable whenever 28 is countable.

Proof. — For U e 3S let Uo be defined by

Uo == {xe Q|(o;,0) eU}.

It can easily be checked that SB == (Uo)u<=» ls an admissible
covering of ti. Let 0. X G be A^-convex. For every U e SS
there are a e cs(E) and s > 0 with C?QXG(UA^) > s. Let
x e Q. with d^x) ^ s. There exists f e As^ with

11/llu < 1/^,0)1
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since d^{x, 0) ^ d^{x) ^ s. Put f^x) = f{x, 0) for x e 0.
Then ô e A^ and ||/o||u, ^ ||/1|u < \U{x)\ which implies
^(Uo)A^. Hence ^((Uo)^) > 5, and Q is A^-convex.
The separation property can be shown similarly.

1.6. COROLLARY (1). — Let F be a complemented subspace
of a metrizable, locally convex space E such that every pseudo-
convex domain spread over E is a domain of existence. Then
every pseudoconvex domain 0. spread over F is a domain
of holomorphy (resp. a domain of existence when E is sepa-
rable).

Proof. — Let (Q, p) be a pseudoconvex domain spread
over F. Then (Q X G, p X ide) is pseudoconvex over
E = F X G, and thus an {/*}-domain of holomorphy for
a suitable f e C?(0 x G). Since E is metrizable there is a
countable, admissible covering S of 0. x G such that
fe A<g. The corollary now follows from 1.5, 1.3 and 1.4.

The following generalization of 1.5 would be a useful result:
Instead of a product E == F X G and the projection <p :
E -> F consider a linear, continuous, open surjection 9 :
E -> F. To a domain (Q, p) spread over F there corres-
ponds the pull-back (^*, p*), a domain spread over E
which is defined by n* = {(x, a) e Q x E\p{x) = 9(0)} and
p*(x, a) == a, (x, a) e ti*.

Conjecture. — If D* is A^-convex (resp. A^-separated)
for an admissible covering % of Q* then 0. is Agg-convex
(resp. A^-separated) for a suitable admissible covering 9R
of 0 °

A confirmation of the above conjecture for separable Banach
spaces E would answer the Levi problem positively for all
separable Banach spaces, since for every such space F there
exists a linear, continuous surjection 9 : Li -> F and since
Li has a Schauder basis.

Instead of the above conjecture we can deduce certain
continuation properties of ^* from corresponding properties

(1) G. Katz has proved a similar result in his thesis, Rochester, N.Y., 1974.
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of Q(2) which is done already by Dineen in [3] for schlicht
domains (see also Nachbin [18] for more special situations, and
Aurich [1] for the case of E == C^.

We first need a lemma :

1.7. LEMMA. — Let (Q, p) be a pseudoconvex domain spread
over E. Suppose there are XQ e t2 and a e cs(E) with

^o) > 0.

Then SQ(^, a) == oo holds for all x e Q, and a e a-l(0).

Proof. — Fix a e a-l(0) and let Z denote the interior
of {x e tl| SQ(^, a) = oo}. Z ^ 0 since ^o e Z. To prove
the lemma it is enough to show Z = 0. which follows from

(*) DQ(^$ &, () c: Z for all z e Z, b e E and ^ < SQ^, 6).
To prove (*) we choose (B e cs(E) and s > 0 so that
(B(6) - 1, Bj^, 2^) <= Z and 4(y) > 5 for all

y e Do(z; &, t).

Let z' e B^(z, s) and .r e Do(^; a, oo). Then SQ^, b) ^ s
(by [29, 1.7] for instance). Hence x i—>- — log 8jQ(a;, 6),
^ e n^7 ? a? °°)? ls bounded from above and thus a constant
( — l o g 8^ is psh, and a subharmonic function on C which
is bounded from above is a constant). Consequently,
^(•^ b) = S^O^? b) for all x e Do(z'; a, oo), and it follows
(again by [29, 1.7]) that S^, a) = oo for all

y ' eU{B^/ ,5) |yeD^; &,( )} .

Hence Do(z; &, f) <= Z which completes the proof.

1.8. PROPOSITION. — L^< 9 : E —^ F 6e a linear, continuous,
open surjectwn of locally convex Hausdorff spaces over C, and
let (Q, p) &6 a pseudoconvex domain spread over E. Assume
further that there are (B e cs(E) and XQ e 0 wi^/i df^^o) > 0-

1° There exists a pseudoconvex domain (dy, p^) spread
over F and a continuous open surjection 90: Q —> Q.^ with
P = P^ ° ?Q 5ucA (Aa( 9^ separates the fibers of p, and tAe
following universal property is satisfied: For every continuous

(a) We have recently learned that P. Berner has obtained some related results
in his thesis, Rochester, N.Y., 1974.
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map ^ : Q —> Q' into a domain (O.', p') spread over F
w^A p = p' o ^ and ^{x) = ̂ {y) for x, y e 0. whenever
90(^0 == ?Q(2/)? there exists a unique morphism of domains
j : Qy -> Q' w^/i / o cpQ == ^. Hence (tiy, p<p) 15 a quotient
in a suitable category. Also : (Q, p) is isomorphic to the pull-
back of (Qy, py).

2° For every morphism j : £1 —> S m(o a pseudoconvex
domain (S, gr) spread over E (/i<°re em'5t5 a unique morphism
h : (^y? P?) -> (^o? ??) wl^ î! ° / = /y ° 9Q. Hence the fol-
lowing diagram is commutative

n -^o

Moreover, j is an isomorphism of domains whenever j ^ is.

3° Suppose i2y is an A-domain of holomorphy for a collec-
tion A of analytic functions on Q^. Then 0, is an A o <p-
domain of holomorphy, where A o cp == {fo (fQ\fe A}. In
particular, Q 15 a domain of existence (resp. a domain of
holomorphy) whenever Q^ is.

4° Suppose Q.^ is A^-convex (res p. A^-separated) for a
(countable) admissible covering 3S of t2®. T^M Q is Agg-
convex (resp. As^-separated) for a suitable (countable) admis-
sible covering SB of Q.

Proof. — 1° According to 1.7, SQ(^, a) = oo for all ^ e ^
and all a e (P o cp)"1^), in particular for a e 9~1(0). Hence
the relation ^ defined by

x ^ y ^==^ There is a e cp'^O) with y e 'D^{x', a, oo),

for x, y e Q, is an equivalence relation on Q. It is not diffi-
cult to see that ^ is an open equivalence relation and that
the graph of ^ is closed in Q, X ^. Therefore, Q.^ = £11 ^
endowed with the quotient topology is a connected Hausdorff
space, the natural projection <pQ: Q. —> Q.^ is a continuous,
open surjection, and py : ^y —> F, 90(^)1—^ ^{px) for
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x e Q, is a local homeomorphism. Clearly 9 o p == n o 90.
For a;, y e Q with .r ^ y and px = py the definition of
^ yields x ^ y immediately, hence 9o(^) ^ y^y). The
universal property of (RQ : H -> ^y follows directly from the
corresponding property of 0,^ as a quotient in the category
of topological spaces.

It remains to show that (tiy, py) is pseudoconvex. From
the construction of tiy it follows that

(*) SQ(^ ^) = 8^(9Q(^), 9(^)) for a; e t2, a e E,

since, in a suitable neighborhood U of DQ(^; a, SQ(^, a)),

(plU)-^ + Xa) = (p^U))-^?^) + X9(a)),
| X) < 8 ,̂ a).

Now ( * ) implies that f^ is pseudoconvex because Q.
was supposed to be pseudoconvex.

2° Let / : Q, —> S be a morphism of pseudoconvex domains
spread over E. Because of d^^^x^)) ^ d^00^) > 0, there
is a quotient map <ps : s -> ^y as in 1°. The universal pro-
perty applied to ^ == (p^ ° / then yields a morphism

/y : Qy -> Sy with ?s ° / == /y 0 ?Q.

Suppose now that /<p is an isomorphism. Let x, y e Q
with x ^ y. When pa; == py, then (pQ(rr) ^ 9o(z/) by 1°.
Since j\ is injective, /y o 9^) ^ ^ o ^^(y) and therefore
JW ^ J\y}^ When prc ^ pz/, then /(^) ^ j((y) since /
is a morphism. Thus / is injective. It remains to show that /
is surjective. Let y e S. Because /y and <pQ are surjective
there is a; e n with /y o 9^) == ^^(y). Now 9^ o y(a;) === <p^(y)
implies j\x) ^ y , and hence there exists a point x ' e £i,
a/ -^ a;, with /(^ /) = y : Take a == qy — q o j\x) e ^(O)
and a;' == (pID)-^?^ + ^)? where D = DQ(^; a, oo).

3° Let Qy be an A-domain of holomorphy, A <= ^(^<p),
and let /: Q, —> S be the maximal s.a.c. of A o <p. Then S
is in particular a domain of holomorphy and therefore pseu-
doconvex. According to 2° there is a canonical morphism
/ < p : iiy -> S^, and it is easy to see that /y is an s.a.c. of A.
Therefore /<p is an isomorphism and so is / due to 2°, which
means that £1 is an A o 9-domain of holomorphy.
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4° SB === (pQ^U^ue^ has the required properties.
The consequences of Proposition 1.8 can be formulated

conveniently by the following notion: A collection 0 of
continuous, linear surjections <p : E -> Ey, 9 e O, is called
a basic system of E (and E is then said to be a surjective
limit of the spaces E^, 9 G <I>, cf. [4], [15] if

F == {|B o 9 | 9 e < D , P £ C S ( E ^ ) }

generates the topology of E and if for all a, (B e F there is
Y e F with sup {a, (B} ^ Y. 0 is called open (and E is
said to be an open surjective limit) when all 9 6 $ are open
mappings. Examples can be found in [3], [4], [15], [18].

1.9 COROLLARY. — Let E be an open surjective limit of
spaces E^), 9 e 0, such that every pseudoconvex domain spread
over Ey, 9 e 0, is a domain of existence (resp. a domain of
holomorphy^ A^-convex, A.yseparated). Then every pseudocon-
vex domain spread over E is a domain of existence (resp. a
domain of existence^ Ag^- convex^ Ks^-separated).

Proof. — Let (Q, p) be a pseudoconvex domain spread
over E. For XQ e Q, there exists a e cs(E) with

^o) > 0,

and one can find 9 0 0 and (B e cs(Ey) so that a ^ p o 9,
hence rf^09^) ^ d^Xy) > 0. The assertion now follows from
Proposition 1.8.

2. Schauder decompositions.

Let E be again a locally convex Hausdorff space over C.

2.1. DEFINITION. — A sequence (wj of linear, continuous
projections n^: E -> E with dime ^n(E) < oo, n e N, is
called a finite dimensional Schauder decomposition (for short
f.d. decomposition) of E if rc^ o 7^ = n^ o 7^+1 = n^ for
all n e N and lim 7r^(rc) == re /or aM x e E.

n>ao

This definition differs slightly from the definition of a
Schauder decomposition in [16, ch. VII], but coincides in
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the case of a Frechet space. An f.d. decomposition is called
finite dimensional expansion of identity in [231.

Let (^) be an f. d. decomposition of E. Then (wj
is said to be ^.-monotone for a seminorm a e cs(E) if the
following (obviously equivalent) conditions are satisfied:

1° a o T^ ^ a o TT^+I for all n e N.
2° a o TT^ ^ a tor all n 6 N.
3° a == sup {a o Trjn e N}.
The straightforward proof of the following lemma is omitted.

2.2. LEMMA. — For an f.d. decomposition (n^) of E the
following properties are equivalent:

1° (TrJ converges locally uniformly to id^ in the following
sense: For all XQ e E, a 6 cs(E) and e > 0 there are N e N,
(3 e cs(E) and 8 > 0 such that a(7c^) — x) < e for all
x e B|(a;o, 8) and n ^ N.

2° For each a e cs(E), the seminorm

a = sup {a o Tcjn e N}
i5 continuous.

3° T/ie topology of E 15 generated by {a e cs(E)|(7rJ 15
a-mono (one}.

^° (^n) l5 equicontinuous.
Note that an f.d. decomposition of a barrelled space E is

already equicontinuous, since for every a e cs(E),

T = { a ; e E [ a o TT^) ^ 1

for all n e N} = {x e E|a(.r) ^1} is a barrel, and thus a
is continuous.

A locally convex space with an f.d. decomposition
is obviously separable. However, not every separable, locally
convex space has an f.d. decomposition, since a Banach space
with an f.d. decomposition has the approximation property,
and there are separable Banach spaces without the approxi-
mation property (cf. [7]). General examples of locally convex
spaces with an f.d. decomposition are the spaces with a
Schauder basis (cf. [16]). An example of a space with an equi-
continuous Schauder decomposition which occurs in Complex
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Analysis is the Frechet space ^(R) of analytic functions on
a Reinhardt domain R c C^ with 0 e R. Each f e 0(R)
has a locally uniformly convergent power series expansion

f(z)=I.Pnf{0).z, zeR,
m

hence lim ^ P^O) == f in ^(R). Therefore, the projections
w>ac n==0 m

TC,: <B{R) -» (P(R), defined by ^(f) = S PY(0), /•e(P(R),
n=0

form an f.d. decomposition which is equicontinuous since
<P(R) is barrelled.

The next proposition, due to Dineen [3], allows to reduce
our study of the Levi problem to spaces which have a conti-
nuous norm.

2.3. PROPOSITION.— Let [n^) be an equicontinuous /*. d.
decomposition of E. Then E is an open surjective limit ofspaces
E^, cp e $, where each Ey has a continuous norm and an equi-
continuous /*. d. decomposition.

The proof is essentially the same as for spaces E with a
Schauder basis (cf. [3]).

3. The Levi problem.

3.1. THEOREM. — Let (0, p) be a pseudoconvex domain
spread over a locally convex Hausdorff space E with an equi-
continuous f.d. decomposition such that there is a sequence

(ay) of seminorms ay e cs(E) with ^1 == L J jQ^, where
v e N

^a == [x e 0-\d^{x) > 0} for a e cs(E). Then there exists a
countable, admissible covering 35 of £1 such that ^1 is A$^-
convex and As^-separated.

The rest of this section will be devoted to proving 3.1.
However, we first want to present the main consequences :

3.2. COROLLARY. — Let E be a metrizable^ locally convex
space with an equicontinuous f.d. decomposition. The following
properties of a domain ^ spread over E are equivalent:

1° Q is pseudoconvex.


