
ANNALES DE L’INSTITUT FOURIER

NACHMAN ARONSZAJN

K. T. SMITH
Functional spaces and functional completion
Annales de l’institut Fourier, tome 6 (1956), p. 125-185
<http://www.numdam.org/item?id=AIF_1956__6__125_0>

© Annales de l’institut Fourier, 1956, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1956__6__125_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


FUNCTIONAL SPACES AND FUNCTIONAL COMPLETION (')
by N. ARONSZAJN and K. T. SMITH

INTRODUCTION

The incentive for the development of a general theory of
functional completion has been the need for complete classes
of admissible functions in differential problems. Traditionally
the admissible functions have been assumed to be sufficiently
regular, but during the evolution of existence proofs it became
necessary to reconsider the hypotheses of regularity. In the
final analysis, existence proofs use the completeness of the
class of admissible functions with respect to a norm deter-
mined by the problem. On the other hand, the usual classes
of sufficiently regular admissible functions are not complete.

In some instances it has proved feasible to adjoin to the
usual class of admissible functions suitable ideal objects to
obtain a class with the required properties of completeness,
the « abstract completion », to extend the differential opera-
tor to such ideal objects, to prove the existence in the enlarged
class of a solution to the problem in question, and finally to
prove by using the special character of the problem that the
solution is necessarily one of the original admissible functions (2).
Often the last step is unmanageable, however, and then the
very questions of which the differential problem is composed,
questions of differentiability of the solution, its boundary
values, etc., are meaningless. Furthermore, comparison of
the enlarged classes arising from two different problems is

(*) Paper written under contract with Office of Naval Research, Nonr 58304.
(2) See for example, K. 0. FRIEDBICHS [16].
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not possible in any direct way, and there are questions in which
such comparisons are necessary (3).

In some problems, especially those connected with the
Laplace operator, there have been scattered attempts to com-
plete the usual class of admissible functions by the adjunction
of concrete functions determined in a definite way by the
original class of functions and its norm (4). The success of these
attempts was notable for the reason that the problem of com-
pletion by functions was not then well defined. They are
the fore-runners of the general theory of functional comple-
tion.

The basic difficulty in the completion by functions of a
functional class lies in the impossibility of using functions
which have significant values at each point. It is in the nature
of the problem that if there is a functional completion at all,
then associated with it are certain exceptional sets of points.
Any two functions which differ only on one of the exceptional
sets must be considered equivalent.

Thus the problem of functional completion divides into two
parts. The first of these is to find a suitable class of excep-
tional sets. The second is to find the functions, defined
modulo these exceptional sets, which must be adjoined in
order to obtain a complete functional class. It turns out that
there may be an infinite number of suitable exceptional
classes (of exceptional sets) in a given problem, but to any one
of them corresponds essentially one functional completion. As
to the infinite number of suitable exceptional classes, it is
clear that the most suitable is the class whose exceptional
sets are the smallest, for to it corresponds the completion
whose functions are defined with the best possible precision.
Whenever such a minimal exceptional class exists the corres-
ponding completion is called the perfect completion. Use of the
perfect completion is especially important in differential pro-
blems, for if the exceptional sets are too large, then it is impos-
sible to discuss derivatives, boundary values, etc., in the nor-
mal way.

In the first sections of Chapter i of this paper we give the

(8) Comparison of the enlarged classes for two different problems is an essential
part of some recent approximation methods; see N. ARONSZAJN [3, 7].

(4) e.g. 0. NIKODYM [21]; J. W. CALKIN [11]; C. B. MORREY [20].
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precise definitions and general theory of functional completion
in an abstract setting (5).

We define exactly the classes of sets which will be called
exceptional classes, then the functional classes, normed func-
tional classes and functional spaces relative to a given excep-
tional class 31. This leads finally to a precise definition of
a functional completion relative to 31 or relative to any larger
exceptional class 3T 13 31. We give a construction of the func-
tional completion relative to 31', supposing that it exists.

The bulk of the chapter is devoted to the more difficult
problem of determining the exceptional classes relative to
which a functional completion does exist. We introduce set
functions S(A), S(A), and c^(A). The last, constructed from
S by means of functions ^{t) of a variable <^0, are called
capacities. In certain classical cases they coincide with clas-
sical capacities. The classes of sets for which the functions
S, S, and Cy vanish give bounds for the exceptional classes
relative to which a completion can exist. We introduce the
« maj oration property », and under assumption that it holds
(which is always true in cases met in applications) we prove
that one of the above bounds is exactly the exceptional class
for the perfect completion, if the perfect completion exists.
Under the same assumption necessary and sufficient condi-
tions for the existence of the perfect completion are obtained.
We obtain also some properties of the functions constituting
the complete class. These are of importance in applications.

The chapter is concluded by a discussion of proper functional
completion, the case where it is actually possible to use func-
tions defined everywhere.

Chapter n is given to examples. We do not show any of

(5) A general theory of functional completion was announced by N. ARONSZAJN
in [2] and presentend in [8]. The new presentation given in this paper differs from
its predecessor in several respects. The most important is the use of set functions
to replace the classes of sets (S ! Mn !. The set functions are simpler conceptually
and easier to handle. Another improvement is the introduction of the maj oration
property and the solution for spaces having this property of the problem of perfect
completion. By using the maj oration property it is possible to obtain the perfect
completion in all the examples in which formely the theory of measurable spaces
was used. Consequently it has been possible to defer discussion of the latter until
the time when they will be used in the theory of pseud o-reproducing kernels. Finally
the choice of examples is quite different in the two papers.
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the applications of the theory to differential problems, for
these will be treated fully in forthcoming papers. Rather,
we have chosen the examples with the object of bringing out
in concrete cases the significance of the notions introduced
in Chapter i. In some of the examples, however, especially
example 3, we are able to use the general theory to give new
proofs of known results.

The first example treats a well known space of analytic
functions.

The second example is the completion of a space of conti-
nuous functions in which the norm is the L^ norm with res-
pect to a Borel measure a in a locally compact topological
space. The example is one which is thoroughly discussed
in measure theory; here it serves exclusively as illustration.
One point which might be unexpected is that the perfect
completion is not always the space L^a), though for the usual
topological spaces — say metrizable spaces — it is.

The third example is the completion of classes of functions
harmonic in a domain and continuous in the closed domain
in which the norm is the L^ norm on the boundary. We
obtain the extension to n-dimensional spheres, and more gene-
rally to n-dimensional domains of bounded curvature, of theo-
rems which are classical in the case of the circle in the plane.
In particular, by using the capacities as defined in the general
theory we obtain the extension of Fatou's theorem to these
domains (6).

The last example is the completion of the class of potentials
of M. Riesz of order a, 0 <C a <; M, of finite energy (7). We
obtain the perfect completion on the basis of the general theory
of Chapter i, and we prove that the exceptional sets for the
perfect completion are the sets of outer capacity 0. We
establish the following connection between the set functions
and capacities of the general theory and the usual inner and
outer capacities: S(A)2 ==^(A)2 = Ca(A) == yo(A) for any set A,

(6) The theorem in question is that concerning the convergence of a harmonic
function to its boundary values. Its extension to domains of bounded curvature
was obtained by C. de la VALLEE POUSSIN [25]. A further extension to more general
domains was obtained by I. I. PRIVALOFF and P. KOUZNETZOFF [22].

(7) The perfect completion for the case a = 2 was conjectured by N. ARONS-
ZAJN [2]. The perfect completion for arbitrary a was constructed first in J. DENY
[15]. An independent construction for a = 2 was announced in N. ARONSZAJN [6].
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where c^ is our capacity formed with the function (p(() == (2 and
where yo is the usual outer capacity of order a. Furthermore,
Y»(A) == yo(A) for any analytic set A, where -^ is the usual inner
capacity of order a (8). These results justify our terminology.

(8) We prove this result by applying the general theory of capacities of G. CHO-
QUET [14, 14aJ. The result is new for a > 2.
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CHAPTER I

GENERAL THEORY

§ 1. Linear functional classes. — If f and g are real or
complex-valued functions defined on respective subsets A and
B of an abstract set 6, then f + g and a/*, a real or complex,
denote the following functions : f + g is defined on the set
A ft B, and (/*+ g) (re) == f(x} + g(^); a/" is defined on the set A,
and (a/*) {x) == oif{x). A rea? linear functional class is a
class ^ of real valued functions, each defined on a subset of
a fixed abstract set £, such that if f and g belong to 9 and a
is real, then /*+ g and a/* belong to ^. A complex linear func-
tional class is the obvious analogue. A linear functional class,
or simply a functional class, is a real or a complex linear func-
tional class.

The abstract set ^ in which the functions of a linear functional
class S are defined is called the basic set of <?. A given func-
tion f in ^ is not necessarily defined on the whole of the basic
set K ; the subset on which f is not defined is called the excep-
tional set of /*. Members f and g of 9 are equal only if they
are identical.

In particular, /*and g are different whenever their exceptional
sets are different. For this reason a linear functional class
is not necessarily a vector space in the ordinary sense. In
tact, if f and g are any two functions with different exceptional
sets, then O./*^=0.g, for the former has the exceptional set
of /*, and the latter has the exceptional set of g; O./*^0.g
is impossible in a vector space. Similarly, the identity
(f + g) — g == f touls in a general linear functional class.
These examples give already the main deviation from vector
space behavior, however: addition is associative and commu-
tative, the usual distributive laws hold, and l./*= /*.
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Let S be the class of all exceptional sets of functions in 9.
It is clear that the union of each pair of sets in S is again in 8,
for the union of the exceptional sets of f and g is the excep-
tional set of /*+ g. An equivalence relation is defined on 9 as
follows : f=f if /"and f are defined and equal save on some

subset of a set in &. It is immediately verified that if f^ f
and g=g^ then OLf=<x.f and

y+g-f+g'.

The equivalence classes in 3?, under the usual definitions of
addition and scalar multiplication of equivalence classes,
form a vector space (9).

§ 2. Functional classes rel. 81 and normed functional classes. —
Let 9 be a linear functional class on a basic set 6, and let 8
be the class of exceptional sets of functions in S. In practice
it often happens that more sets must be considered excep-
tional than those already in &. In order to treat examples of
this kind we are compelled to introduce a general notion of
exceptional class. An exceptional class will serve to define,
as £ defined in the last section, an equivalence relation on the
class 9. In this definition, subsets of exceptional sets play
the same role as the exceptional sets themselves, so it is
justifiable to insist that each subset of an exceptional set be
exceptional. In order to ensure that the equivalence be
compatible with the linear operations in 9^, we require that
a finite union of exceptional sets be exceptional. In order to
ensure that it be compatible with limit processes, we require
that even a countable union of exceptional sets be exceptional.
The formal definition follows.

An exceptional class in the basic set 6 is a class 31 of subsets
of K which is

(2. 1) hereditary : if A e 81 and B C= A, then B e gl.

(2.2) cr-additive: i fA,e3l ,n=l ,2 , . . . , then Q A,e3l(10).
n=l

(9) This equivalence relation is not the only one which transforms ^ into a
vector space. The relation with the smallest equivalence classes is given by;

=== // if / == // wherever both are defined.
(10) We shall use the following standard notation: if 51 is a class of subsets of a
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A linear functional class 9 is a linear functional class rela-
tive to 81 if 31 is an exceptional class which contains the excep-
tional set of each f in S. If 9 is a functional class relative
to 81 (written rel. 31), then 81 is called an exceptional class
for .?, and the sets in 81 are called exceptional sets. In order
to avoid unnecessary repetition we make the following
conventions : the letter 3, with or whitout indices, will
denote a linear functional class; 8 will denote its basic set;
81, with or without indices, will denote an exceptional
class in 8.

It is clear that for each linear functional class 9 there exists
an exceptional class, which in general is not unique. The
largest exceptional class for 9 is the class of all subsets of £;
the smallest exceptional class for 9 is the class &<j/,? where ?
is the class of all exceptional sets of functions in ^; the inter-
section of any family of exceptional classes for 9 is again
an exceptional class for 3 .̂

Any exceptional class 81 for the functional class ^ defines
on 9 a natural equivalence relation : f~=f if /*and f are defined
and equal save on a set in 81. As before, the equivalence
classes form a vector space, but usually it is more convenient
to work directly with the functional class and its functions
than with the vector space and its equivalence classes. Con-
sequently, the equivalence notation, f=.ff will be used rarely.
In its stead we shall write f == f exc. 81. In fact, we shall
say that any proposition is true exc. 81 if the set of points
at which it is not true belongs to the exceptional class 81. Also,
for two sets A and B we shall say AcB exc. 81 if A — B e 81.
Similarly, A = B exc. 8t means (A — B) U (B — A) e 81.

If £? is a functional class rel. 81, then so is the class S ' of all
functions defined exc. 81 and equal exc. 81 to some function
in 9. y is called the saturated extension of 9 rel. 81. ^ is
saturated rel. 81 if it coincides with its saturated extension.
Let S and ^<^ be functional classes rel. 81 and 8li respectively.
From the relation ^C^ one obtains no relation in general
between 81 and 8lr If ^ is saturated, however, then 8lc8lr

set 8, then 5l/» is the class of all subsets of sets in 91; S(, is the class of all coun-
tableunions of sets in Sl; 5U is the class of all countable intersections of sets
in S(. With this notation the fact that S( is an exceptional class can be written
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A pseudo-norm on a functional class 9 is a real valued func-
tion \\f\\ on 9 with the properties :

(2.3) [|f||>0,
(2.4) ||a/1|=|a|||/1],
(2.5) ll/'+gll^llfll+llgll.

It can be proved by the homogeneity property (2. 4) that
if a function f in <? is equal to 0 wherever it is defined, then
!]/*|[ == 0. A normed functional class rel. 31 is a functional class 9
rel. 51 together with a pseudo-norm on S which has the property :

(2. 6) 1|/1| == 0 if and only if f= 0 exc. 81.

A pseudo-norm with property (2. 6) will be called a norm.
The following statements can be proved without difficulty.

In each of them ^ is a functional class with a fixed pseudo-
norm.

1) If ^ is a normed functional class rel. 31, then so is its satu-
rated extension {with the natural extension of the norm).

2) If yc:^, then S (with the pseudo-norm ofS) is a normed
functional class rel. 31 whenever ^ is.

3) If^ is a normed functional class rel. 31' and rel. 3T ~^> 3F, then
it is also a normed functional class rel. 31 whenever 31/C: 31 C 3F.

4) If ^ is a normed functional class relative to each of a
family of exceptional classes, then it is also normed functional
class relative to the intersection of the family.

Condition (2. 6) comprises two implications. Taken separ-
ately they provide bounds above and below for the exceptional
classes relative to which ^ can be a normed functional class.
Let ^ / be the class of all subsets B of 8 such that for some f
in ^ with ||/*||=0, BcEf/*^) is undefined, or f(x)^0].

X

Let ^ be the class of all subsets B of 6 such that for every f
in ,7 with ||/1|>0, B :p E [f(x) ̂ 0].

d'

The classes &' and ^ are both hereditary but they are
not in general cr-additive or even additive.

5) A necessary and sufficient condition that ^ be a normed
functional class rel. 31 is that y d 31 C: &7. A necessary and
sufficient condition that there be an exceptional class relative
to which ^ is a normed functional class is that ̂  cz y.



134 N. ARONSZAJN AND K. T. SMITH

REMARK 1. — The inclusion &'C:y does not hold tor all
9\ even when it does, ^C:^" may not.

Example 1. — Take 6 to be the open interval 0< x <1, and 9
to be the class of functions on S with continuous bounded deri-
vatives ; define the pseudo-norm by 1 1 f\ \ = ^ \ f ' {x ) \ dx. In this
case the class 8' consists of all subsets of ^, the class 8" of all
subsets with empty interior. There is no exceptional class
relative to which 3 is a normed functional class.

Example 2. — Take fi to be the closed interval 0 < x < 1,
and 9 to be the class of continuous functions on ^; define the
norm by \\f\\ = sup f{x)\. In this case sr is (0), and ^ is
again the class of subsets of ^ with empty interior. S is a
normed functional class relative to the class SC of sets of
Lebesgue measure 0, and also relative to the class 5F' of
sets of first category; but there is no 31 larger than 51' and 31'
relative to which 9 is a normed functional class.

CONCLUSION. — If there is any exceptional class relative
to which a given functional class with a pseudo-norm is a nor-
med functional class, then there is a smallest such class, but
there may not be a largest.

In any functional class 9 with a pseudo-norm convergence
(in norm) is defined as follows: a sequence \fn\ of functions
in 9 converges to a function fin 9 (written /*„ -— /*, or f= lim/*J
if j l / n—yi l—O. The sequence ^ is Cauchy if |!/;,—/,||—0.
9 is complete it each Cauchy sequence of functions in 9 con-
verges to some function in 9.

REMARK 2. — A sequence in«? may have several limits. I f ^
is a normed functional class rel. 3t, any two are equal exc. 51.

REMARK 3. — Suppose that 9 is a normed functional class
rel. 51, and let V be the vector space associated with 9 by
means of the equivalence relation defined by 3(. It is clear
that the pseudo-norm has a constant value on each equivalence
class. If this constant value is taken as the norm of the
class, then V becomes a normed linear space in the usual
sense. A convergent sequence in ^ corresponds to a conver-
gent sequence in V, a Cauchy sequence in 9 to a Cauchy sequence
in V. 9 is complete if and only if V is complete.
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§ 3. Functional spaces. — In a general normed functional
class norm convergence of a sequence of functions fn has no
bearing upon the convergence of the functions pointwise.
The object of the rest of this paper is to study functional classes
in which the two kinds of convergence are linked.

A functional space rel. 31 is a normed functional class rel. 31
in which the following condition holds :

(3. 1) If fn—^f, then there is a subsequence ^ ^ such that
fn,{x)-^f{x) exc. 51.

In the statements below, 9 is a functional class with a fixed
pseudo-norm.

1) If «5 is a functional space rel. 21, then so is its saturated
extension.

2) If y C^?, then y (with the pseudo-norm ofS) is a functional
space rel. 31 whenever ^ is.

3) If 9 is a functional space rel. 21' and rel. 2T 13 2F, then 9
is a functional space rel. 21 whenever 21' C: 21 C: 21".

4) If 9 is a functional space relative to each of a sequence
of exceptional classes, then 9 is a functional space relative to
their intersection.

PROOFS. — Statements 1), 2), and 3) can be obtained easily
from their counterparts in the preceding section. Statement
4) is obtained as follows. Let 21 be the intersection of the
sequence j 2 l n ^ - It ^ is a functional space relative to each
2ln, then by 4), section 2, 9 is a normed functional class rel.
21. If fn—^fj then there is a subsequence ^ i ,n j such that
f^^(x)-^f(x) exc. 2li; then a subsequence [f^,ni of ^fi,n\ such
that f^n{x)-^f{x) exc. 21.2 — hence also exc. 2li ft 2la. The
standard diagonal process yields a subsequence of the original
| /\ \, which converges at every point exc. 21; thus S is a nor-
med functional class rel. 21 in which (3. 1) holds.

REMARK. — Even if 9 is a functional space relative to some
exceptional class 21, 4) cannot be used to obtain the existence
of a minimal exceptional class relative to which it is a functional
space; for 4) provides only for countable intersection of excep-
tional classes. As yet there is neither a general proof nor a
counter-example for the existence of such a minimal class.
It is certain that there need not be a largest exceptional class
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relative to which 9 is a functional space. This is shown by
Example 2 of the last section.

Examples. — Example 2 of the last section provides two
functional spaces. Other common functional spaces are
the spaces 17, p^l. To be specific, let 8 be the interval
O^^^l, and let 31 be the class of subsets of 8 of Lebesgue
measure 0; then 17, p^l, is the class of all functions f
defined exc. 81 which are measurable and such that

ii^i/'A^^r^-
With the indicated norm, 17 is a functional space.

Proper functional spaces. A proper functional class is a
functional class rel. 81 == (0), the class consisting of the empty
set. A proper normed functional class is a normed functional
class rel. (0). A proper functional space is a functional space
rel. (0).

5) Either of the following statements is a necessary and suf-
ficient condition that a proper normed functional class 9 he a
proper functional space.

a) If fn—^f, then fnW—^fW for each x in 6.
b) For each x in 8, the expression f(x) is a continuous linear

functional on 9.

PROOF. — The sufficiency of a) and the equivalence of a)
and b) are evident. We prove the necessity of b}. It is
clear that the expression f(x) is a linear functional on 9. If
it is not continuous, then it is unbounded on each sphere
11/11 ̂ £, so for each n there is an /*„ satisfying \\f\\^^n
and l/'n(^)|^M. Obviously /\-^0, but no subsequence of
fn{^) does. This requires that x belong to an exceptional
set, and contradicts the fact that there is no exceptional set
but 0.

§ 4. Functional completion. — It is well known that the
functional space 17 described in the example in the last
section is obtained by completing a simpler functional class.
Let 8 be the interval O^x^l^ and let Cp denote the func-
tional class of all continuous functions defined everywhere
on fi with the norm.

^iip^o/w^r-
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Cp is a proper normed functional class. It is not complete,
nor is it a proper functional space. The exceptional class
consisting of sets of Lebesgue measure 0 and the functional
space 17 provide the solution to the following problem: to
find an exceptional class 81 relative to which Cp is a functional
space, and to find a complete functional space 9 rel. 31 which
contains Cp as a dense subset.

A normed functional class 9 rel. 31 is embedded in a normed
functional class 9' rel. 81' if ^CZ9\ SIdST, and the norm
of each function in 9 is the same as its norm as a function
in y. A subset 3) of a normed functional class S (or of any
functional class with a pseudo-norm) is dense in 9 if each f
in 9 is a limit of a sequence \f^\ in 3). A functional completion
of a normed functional class 3 rel. 31 is a functional space
^ ' rel. 81' such that 9 is embedded in 9' and is a dense subset
of y.

In the statements which follow 9 and 9 denote normed
functional classes rel. 31 and 3T, respectively.

1) 9 is embedded and dense in its saturated extension.
2) S is complete if and only if its saturated extension is

complete.
3) If ^' is a functional completion of «?, then the saturated

extension of ^' is also a functional completion of S, and it is
the only saturated functional completion rel. 81'.

PROOFS. — 1), 2) and the first part of 3) are obvious. Sup-
pose that <y and S" are two saturated functional completions
rel. 31' of ^. We shall show that 9 ' C - ^ " , from which it will
follow by symmetry that ^ and 9" are identical. Let f
belong to ^f. Then there is a sequence S/*^ of functions in
^ such that as elements of S ' , fn—^f, and such that f^ {x) —^ f(x)
exc. 3T. The sequence ^fn\ is necessarily Cauchy in 3s7, and
since ||g||' = | g\\ == HgH" for all g in ^, it is Cauchy in 9"
too. As 9" is complete, there is an f" in &' such that
fn—^f" in y ' . For a suitable subsequence, therefore,

frf{x)=limf^x)=f{x)exc.^\

Since 9" is saturated, f belongs to 9". Thus 9 and 9" are
identical functional classes; their norms agree as they agree
on the dense subclass 9.
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In view of the first part of 3) there is never a loss of gene-
rality in restricting our discussion to saturated completions.
This is sometimes convenient because of the uniqueness pro-
perty described in the second part of 3).

4) If S has a functional completion rek 8T, then the saturated
completion ^ rel. 31' is described as follows:

(4. 1) A function f defined in 6 belongs to 9' if and only
if there is a Cauchy sequence \f,,\ in 3< such that /\ (x) —^ f(x)
exc. 81'. If f belongs to ^', then \\f[\ = limH/^ll for any such
Cauchy sequence.

PROOF. — From the definitions of functional completion
it is clear that for each f in the completion there is a sequence
with the properties listed. On the other hand, suppose that
f is a function for which there exists such a sequence \fn['
As ^/*»| is Cauchy, it has a limit /* in 3 ,̂ and for a suitable
subsequence \fn\, f ' { x ) == limf^(x) = f(x) exc. 5F. Since V
is saturated, it must contain /*.

5) If 9 has a functional completion rel. 8T and rel. S^IDST,
then it also has a functional completion rel. ^[flf whenever
rcsrcr.

PROOF. — Under these circumstances a functional comple-
tion y rel. 3f is in fact also one rel. 3T'. It is sufficient to
show that Q' is a functional space rel. Sl^; for this it is suffi-
cient (see 3), section 3) to show that 9' is a functional space
rel. 3F. The only point which requires verification is that
if /*== 0 exc. 3F, then \\f\\ = 0. It is easy to see, however,
from the description (4. 1) that S ' is embedded in the saturated
completion rel. 3F, so that f=0 exc. 3F and j | / ' [ |=^0 are
incompatible.

6) If ^ has a functional completion relative to each of a
sequence {^in} °f exceptional classes, then it has a functional
completion relative to their intersection,

PROOF. — Let ^r be the intersection, and let ^ be the class
of functions described in (4. 1). Define \\f\\ for these func-
tions as it is defined there. It is evident that ^ is a functional
class rel. 3F. Let ^ be the saturated completion rel. ^l,.
From 4) it follows that for each n ^ ' is embedded in ^. From
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this it follows directly that the norm on 9 is well defined,
and that ^ is a functional space rel. 3ln.

Consider a function f in 9^. There is a Cauchy sequence
\f^\ in ^ converging exc. ̂  to f. Now, \f^\ is Cauchy in every
Sj, therefore convergent in every 9j. Hence for each / it
contains a subsequence which converges pointwise exc. 3l/.
By the diagonal process it is possible to obtain a subsequence
which converges exc. 31', converges therefore exc. 31' to a func-
tion f in 9. We have proved that 9'C.^^ and that each
f in ^ is equal exc. 31̂  to an // in 9\ This means that ^
is the saturated extension of ^' rel. 21 ,̂ so that 9\ like ^ is
complete and is a functional space rel. 21 .̂ By 4), section 3,
y is a complete functional space rel. 31'. That 9 is embedded
and dense in 9' does not require proof.

This proof shows the possibility of using (4. 1) not only
in describing a functional completion known a priori to exist,
but also in making an existence proof. Whenever 9 is a nor-
med functional class rel. 31 C: 31', (4. 1) defines a class of func-
tions 9 which is a functional class rel. 3T. It also gives a
procedure to define a norm in ^/; this norm is well defined
if and only if it does not depend on the choice of the Cauchy
sequence \f^\ converging to f pointwise exc. ST.

7) (a) y is a normed functional class rel. 31' if and only
if for each Cauchy sequence ^f,^ in 9 which converges pointwise
exc. 3T the conditions fn{x)-^0 exc. 81' and \\f.,\\-^0 are
equivalent. If 9 is a normed functional class rel. 31', then 9
is embedded and dense in 9.

(b) If y is a normed functional class, and if each Cauchy
sequence in 9 contains a subsequence which converges exc. 81',
then y is complete. 9 is a functional completion of S if and
only if it satisfies this condition on Cauchy sequences and is
a functional space rel. 3(7.

PROOF. — (a) If y is a normed functional class rel. 31'
(which implies in particular that the norm in 9' is well defined),
then a sequence \f,,\ of the type indicated has a limit f in
y to which it converges pointwise exc. 31'. Each condition
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which follows is obviously equivalent to the conditions adja-
cent to it: (i) II^I^O; (ii) ||/H=0; (iii) f{x) = 0 exc. 31';
(iv) fn(x)^0 exc. r.

Suppose that 9 has the property described in (a). If for
an fin 9 there are Cauchy sequences |/\| and [ g ^ in 9 which
converge exc. 8T to /; then | ||/\||—|!^|| ^[|^—^[|-^0, for
\fn—gn\ is a Cauchy sequence which converges to 0 exc. 8T.
Therefore the procedure of (4. 1) for norming 9 is well defined;
the norm of an f does not depend on the particular approxi-
mating sequence. The proof that ^ is a normed functional
class rel. 8T in which 9 is embedded offers no difficulty. In
order to show that 9 is dense in 9 we verify the fact that if
f is a pointwise limit exc. 3T of a Cauchy sequence [f^ in S,
then ||/^—/I ]-^0. For each n, f^—f is a pointwise limit
exc. 8T of the Cauchy sequence \f^—f^\ in ^, so that by defi-
nition \\f^—/'H == lim ||/^--/'J|, and this can be made

m -^- oo

arbitrarily small by proper choice of n because the sequence
|/*^ is Cauchy.

(b) If y is a functional completion, then by definition
it is a complete class and a functional space rel. 3F; hence
each Cauchy sequence has a subsequence which converges
exc. 3F.

To prove completeness under the hypothesis in (&) it is
sufficient, since we have already established that S is embedded
and dense in 3 ,̂ to prove that each Cauchy sequence in ^
has a limit in 9\ By hypothesis each Cauchy sequence in
9 has a subsequence which converges exc. ST. The pointwise
limit of this subsequence belongs necessarily to S\ and it is
the limit in norm of the subsequence, therefore also of the
sequence.

REMARK 1. — It is particularly important in applications
to make use of completions for which the exceptional sets are
as small as possible, for in these the functions are determined
most accurately. If there is a smallest exceptional class 31
relative to which a given 9 has a functional completion, then
the saturated completion rel. 81 is called the perfect comple-
tion of ^. Proposition 4) is relevant here, but it cannot
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be used, even with the hypothesis that there exists some
completion, to deduce that there exists a perfect completion.
It provides only for countable intersection of exceptional
classes. This general question of existence is open. We were
able, however, to settle it under special assumptions general
enough to have a wide range of applications (see the end of
section 6).

§ 5. The functions § and S and the classes which they define.
— In this section and the next we introduce certain functions
and classes of sets which lead toward solutiotis, partial or
complete, to the following problems : (i) to decide when a given
normed functional class admits a functional completion; (u) to
decide when it admits a perfect completion; {Hi) to describe the
exceptional sets for a perfect completion. The classes intro-
duced will provide explicit bounds for the exceptional class
of a perfect completion; in every example where a perfect
completion has been found, its exceptional class coincides
with the bounds given. Throughout the two sections 31 is a
fixed exceptional class, 9 is a fixed normed functional class
rel. 31. The initial definitions follow.

DEFINITION a). — ? is the class of all sets Bc:8 for which
there is an fin 9 satisfying \f{x}\^ 1 on B exc. 3t; for each B
in &, S(B) is the infimum, over all f in 9 satisfying |/*(^)|^1 on
B exc. 31, of the numbers \\f\\.

DEFINITION &). — 8 is the class of all sets Bc8 for which
there is a Cauchy sequence \fn\ in 9 satisfying liminf \fn{^)\^ 1
on B exc. 31; for each B in &, S(B) is the infimum, over all
Cauchy sequences \f^\ in S satisfying liminf |/^(.r)[^ 1 on B
exc. 3t, of the numbers lim||/^||.

DEFINITION c). — 8° is the class of all sets B in 8 with S(B) == 0;
&° is the class of all sets B in 8 with S(B) == 0.

The first two statements below follow directly from these
definitions.

1) If A€s3l , then A <= & and S(A) = 0; ifB^^and B^B
exc. 31, then B' e &, and S(B) == o^B'); if B e & and B' C: B, then
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B' e &, and S(B') ̂  S(B). T/ie same statements hold for 8 and S.
Consequently, &, S°, 8-, and 8° are aH hereditary and contain 81.

2) Sc&CS^^BeS, (^n S(B)^S(B). J^nce 8°c&°(11).
3) (a) If 9 is a functional space rel. 81 then 81 == S0.

(6) If 9 is complete and a functional space rel. 81, then
? = 8, S(B) = S(B) and 81 = &° == ^°.

4) (a) For each B e §° t/iere is a sequence \f^\ in 9 such
that \\f,\\ -^ 0 and \fn(x)\-^ oo on B exc. 81.

(fc) IfBd.& is such that for some sequence if^ in3<,\\fn\\—^0
and Km 1/^)1 > 0 on B exc. 81, t/ien B e ̂ .

5) If BCZK is such that for some Cauchy sequence \fA in 9^
\fn(x}\-^ oo on B exc. 81, then B e §°.

PROOFS. — 3) (a). By 1) 81 C 8°. On the other hand if
Be 8°, there exists ^| such that [|/n||-^0 and \fn(x)\^l for
x e B exc. 81. By definition of functional spaces it follows
that B e 81.

3) (fc). In view of statements 1) and 2) and 3) (a), we have
only to prove that &:D? and S(B)^S(B). Let B e S and
let \fn\ be a Cauchy sequence such that liminf|/^(a;)| .> 1
for xeB exc. 81. Since 9 is a complete functional space
we can find a subsequence \f'^\ and a function f^9 such that
\f'n\-^f and f^x)-^f{x) exc. 81. It follows, \f{x)\^l
for xe B exc. 81 and lim||/';,|| == \\f\\ and thus both our assertions
are proved.

4) (a) If S(B) == 0, then for each n there is a function g^ in
9 such that | |gn| | ̂  1/n2 and | g,{x) \ > 1 on B exc. 81. Take /, == ng,.

(&) If B^^Eri/^l^-U then ^^.^^^IIAII and
a o a o a o a ' L ' • • J oo

BC:(J (J HB,,, exc. 81. On the other hand, f^ B^ e 8°,
k = = l / = : l n = = Z n= I

' 00 \
for S. n^")^1^ S(B,.,)^inf /c[|/n||== 0. Hence the result.

n=l / n^l n^l

5) Let M == lim||/^||. For each £ > 0, the sequence is.fn\ is
a Cauchy sequence in 9 satisfying liminfj£/^(rc)|^ 1 on B exc.
81. Therefore S(B)^£M.

(u) In general the equality £° = sto and even 8? == YS is not true, as will be shown
at the end of the example in section 9.
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The rest of the section is given to the statement and proof
of its main theorem. The theorem displays necessary and
sufficient conditions that 9 be a functional space, or that
it admit a functional completion, relative to a given exceptional
class 5r^?l. The conditions for the existence of a functional
completion rel. 31', unlike those given in section 4, are expres-
sible within 9 and 81', without recourse to the auxiliary class
.y (which is always the functional class defined by (4. 1)).
However, new information about 9 is required for the proof
of the theorem. Since this has independent interest, we
state it as a lemma distinct from the main line of argument.
When y is a normed functional class rel. 31', the classes S and
S?° and the function S formed for 9' are denoted by 8, 8°, and S.

THEOREM. — Let 9 be a normed functional class rel. 31, and
let 3r:32t.

(a) In order that 9 be a functional space rel. 8T it is necessary
and sufficient that conditions la and 2a be satisfied.

1, If f[x) = 0 exc. 3T, then \\f\\= 0.
2^ Each sequence of sets B,,, such that §(B^) —^ 0, contains a

subsequence whose limit superior belongs to 3t '^12).
(&) In order that ff have a functional completion rel. 81' it

is necessary and sufficient that conditions I/,, 2^,, and 3^ be satis-
fied.

1ft For each Cauchy sequence \f^\ in 9 which converges
pointwise exc. 8(7 the conditions fn{x) —^ 0 exc. 31' and \\fi\\ —^ 0
are equivalent.
\ Each Cauchy sequence ^f^\ in ^ contains a subsequence

which converges pointwise exc. 8T.
3ft Each sequence of sets B^ such that S(B^)-^0 contains a

subsequence whose limit superior belongs to 31'.

LEMMA. — Let ^ be a normed functional class rel. ^f , ^t 31' ̂ 3 31,
and suppose that conditions 1^ and 2^, are satisfied. Then 9

(12) The standard definitions of the limits superior and inferior of a sequence
00 SO 00 00

j Bn j of sets are as follows : lim sup B/» = 0 I J B«; lim inf B» = I J C\ Bn. The
A=ln==fc A==ln==A

limit superior consists of those points which belong to inflnetely many Bn, the
limit inferior of those points which belong to all but finitely many Bn.
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is a complete normed functional class rel. ST. IfW = B exc. 3T
for some set B e §, then B' e & and ^(B') ̂  S(B). //' B' e ?,
t/ien (Aere is a set B e & sucA (Aa( B' = B e^c. 8T anrfS(B') == S(B).

PROOF. OF THE LEMMA. — The truth of the first part of
the lemma, which states that 9 is a complete normed functional
class rel. 81' can be seen from proposition 7) section 4.

Suppose that B'Cg is equal exc. 3T to some B e &. For
each £ > 0 there is a Cauchy sequence \fA in 9 satisfying
liminf |/^)1 >1 on B exc. 81 and lim \}f^ ̂  §(B) + £.
Because of 2^ it can be assumed that |/^ converges pointwise
exc. ST. Then its pointwise limit f belongs to 91 and satisfies
|7(^)|>1 on B' exc. r. Therefore B'e&, and

W^ \\f\\= Hm W^S(B)+£,

so that ^(B^^B).
Suppose that B' belongs to 8. For each £ > 0 there is a

function f in 9 satisfying | f{x) \^ 1 on B' exc. 31' and
||/'|| ̂  S(B') + £• There is also a Cauchy sequence if^t
in 9 which converges pointwise to f exc. 8T. Let Bg be the
set of points x in B' such that lim inf\f^x}\^l. Then
Be e &, B, = B' exc. 81', and

S(B,)^ lim 11^11 =1^1^^)+£.
X)

If B = Q B^, where £, -^ 0, then B <= [l, B = B' exc. r,

and S(B) ̂  ^(B'). The inequality ^(B)^^7) was established
in the last paragraph.

PROOF. OF THE THEOREM. — First we shall use the lemma
and results from section 4 to show that (6) is implied by (a).
Then we shall prove (a).

Because of 4), section 4, 9 has a functional completion rel. 3F
if and only if 9' itself is a functional completion rel. 3T. Because
of 7), section 4, 9 is a functional completion rel. 81' if and only
if Ifc and 2^ hold, and in addition 9' is a functional space. If
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1& and 2fr are assumed, then, by virtue of the lemma, 3^ (as
it stands) is equivalent to 2^ (as applied to 9'}. Therefore
(6) is implied by (a).

Suppose that 9 is a functional space rel. 81'. Obviously 1^
holds. If \^n\ is a sequence of sets in &, then for each n
there is a function fn in 9 satisfying [/n(rc) j ̂  1 on B^ exc. 21
and [I^II^^B,) + 1/n. If S(B,) — 0, then, as 9 is a func-
tional space rel. 21', there is a subsequence \fnk\ °f \fn\ which
converges pointwise to 0 exc. 81'. Since lim sup |/^(^)| ̂  1 on
lim sup B^ exc. 81, lim sup B^ must belong to 8T; and 2,,
holds.

Suppose that la and 2<, hold. It is clear (from 1̂  alone)
that 9 is a normed functional class rel. ST. Given a sequence
\f,\ in 9 with IIA11—0, set B, = E [1/^)1^ 1/M,], where |M^

is any sequence of positive numbers converging to infinity and
such that M,| \f,\ \ -^ 0. Then B, e &, and S(B,) — 0. By hypo-
thesis, there is a subsequence |B^J of |B^ with lim sup B^ <= 8T.
On the complement of lim sup B^, fn^) —^ 0 exc. 81'. There-
fore fn^)-^0 exc. ^T; hence the defining property of a func-
tional space is true.

COROLLARY. — If 9 is a functional space rel. 8T, then ?r:D^.
If 3' has a functional completion rel. 81', then 31' 13 &^.

This follows from the fact that for B e &° (or B e &°) we can
put B^=B in condition 2a (or 3&).

REMARK 1. — The second part of the theorem and the lemma
show that & and 8 play the same role for completion of ^ as &
and S for 9. A simple consequence of the lemma is that 8
is the class of all sets equal to some set in 8 exc. 31', and that
S(B') = min S(B) for all B e & such that B = B' exc. 51'.

§ 6. Capacities. — In section 5 a lower bound for the excep-
tional class of a perfect functional completion was given. In
this section an upper bound is given, and additional conditions
for the existence of functional completions are obtained.
The description of the upper bound resembles that of the lower
bound : certain set functions on the basic set are introduced,
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and the upper bound is determined as the class of null sets
for these functions. In some of the differential problems which
have had a decisive effect on the development of the thoery
of functional spaces the set functions in question prove to
include among them the classical capacities. For this reason
they will be called capacities in the general case also. Throu-
ghout the section, 31 is an exceptional class; 3 is a normed
functional class rel. 8t$ and o, &, etc. are the functions and
classes defined in section 5.

If 9(() is a non-negative real-valued function satisfying
(i) 9(() is defined for all (> 0, 9 (() > 0 for ( > 0; (ii) 9(1) is non-
decreasing; (iii) 9(0) = lim 9(() = 0; then 9 determines a set

t-^O

function c^ on &^ as follows :
(6. 1) For each B e ̂ , Cy(B) =infV 9[S(B,)], where the

n = l
infimum is taken over all sequences ^ B^ c & such that B d (J B^.

n= 1

The set function c^ is called the ©-capacity. Only routine
calculation with the definition is needed to establish the fol-
lowing properties of c == Cy.

(6. 2) (a) For each B e 8o? c(B) is a non-negative real num-
ber or + °°-

(b) If BCB' then c(B)^c{Bf)', c(0)=0.

(c) If B=QB, then c(B)^^c(B,).

(d) For each B e S, c(B) is finite.
(e) To each £ > 0 corresponds a S > 0 such that if

£(B)<S, then c(B)<£.

In order to shorten notations and make proofs easier to
read we will operate directly with the properties (6. 2), rather
than with the functions 9 explicitly. Accordingly we make
two definitions : a capacity is a set function c on ^ with the
properties {a)-(c) in (6. 2); a capacity is admissible if it has also
properties {d) and (e).

The class of admissible capacities will be called Q. The
class of sets which are of capacity 0 for a given admissible
capacity c will be called ?L; the class of sets which are of capa-
city 0 for all admissible capacities will be called ^IQ.
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REMARK 1. — One of the chief objects of the section is to
show that ^IQ is an upper bound for the exceptional class of
a perfect completion, if a perfect completion exists. It might
seem that acceptance of abstract capacities makes the bound
better than it would be if only cp-capacities were accepted.
This is not true. Given any admissible capacity c, it is easy
to construct a ^-capacity c® such that if c(B) =^0 then Cs(B) ̂  0.
A similar comment is to the point with regard to weakening
( d ) and (<?) by deleting {d) and replacing {e) by a condition
of the following nature : {e') there is a number Sy > 0 such
that whenever By is fixed and satisfies S(Bo) <i §o? then (e}
holds with respect to the subsets of Bo.

It will be observed that the conditions (a)—(c) are exactly
the defining conditions for an outer measure on ^ Thus
every capacity is an outer measure on the hereditary T-ring &j.
In spite of this, it would be deceptive to use the term outer
measure instead of the term capacity. The problems with
which we are concerned are of an entirely different kind from
those in measure theory. Measurability, for instance, is irre-
levant; and in fact it may happen that the only measurable
sets in ^ are the sets of measure 0.

1) A capacity c on ^y is admissible if and only if c(B) is
finite for each B in &, c(A) == 0 for each A in 81, and either of
the two equivalent conditions (a) or (6) below holds.

(a) To each pair of numbers £ > 0 and Y) > 0 corresponds
a S > 0 such that if \\f\\ < S, then c ' E ^f(x}[ > e}\ < Y],

(6) If I J / n l l — ^ 0 , then \f^\ converges to 0 in capacity {with
respect to c); that is, for each £ > 0, lim c(B, g) == 0, where
B,.,.=E [1/̂ )1^1.

T

PROOF. — It is obvious that conditions (a) and (&) are equi-
valent. Let c be admissible; choose So > 0 such that S(B) < So
implies c(BX^/2 and put 5 = £GO. Then \\f\\ < S gives.

/• (S

0 ( E [I/^OI^^I} ̂  <^ ~ = °o? hence condition (a). That (a)
\ x I £ £

implies admissibility of c follows by a similar argument in
reverse.
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2) Let c be an admissible capacity on &,. To each B' e ̂
and e > 0 correspond sets B anrf D sucA (Aa( B' C B U D
B e S, S(B) ̂  §(BO, and c(D) < e.

PROOF. — Choose, as l)-(o) permits, a sequence of numbers
§„ such that if 11/-| | ̂  §„, then c/ E [\f{x) \ > 1/2»]) ̂  i/2". Then
choose Cauchy sequences {/^ such that: liminfj/'^a;))^ 1 on
B' exc. 31, sup|CT<o(B /)+^ and \\f^f^,\\^ §„, for

/c=l, 2, .... "Let Bi^Er^^l^l-^l and let

^^E^fy^-^i^)^}.
For all n and A-, we have clearly, B^B^^ Q A^ exc. 51.
Hence for every i==l,2,... (=1+1

B/cn(B^+ u^->)c:nBr+u u^ exc. 31.
n=i\ /=n+i / n=i n=t f=Yn

Since W)^-^jn|<———^_,(S(B/)+|,) we get
oo x / \ /

for B. = Q BW, S(B.) ̂  o(B'). For D, = Q Q A^> we have
S>~' oo » » n=((=n+l

^O.)^^ 2 ̂ n^S ^^=—— Fonlarge enoughn=l /=^i-n /»==( /=/i-+-i ^ Z
C(D, )<£ and the inclusion B'C=B,+D; exc. 81 proves our
statement.

3) If c is an admissible capacity on S ,̂ then to each £ > 0
corresponds a S > 0, namely, the S of (6. 2) (e), 5ucA that if
B e & and S(B) ̂  S (^n c(B) ̂  e. /M particular, if 8(B) = 0,
(Aen c(B) = 0, 50 ^a( ^C=8l,.

PROOF. — For each £ > 0 let S > 0 be determined in accor-
dance with (6. 2) {e). From 2) it follows that if l(B}^S
then C(B)^£. ?

4) To each admissible capacity c on &<j corresponds a sequence
of numbers ^ such that if \f^\ is any sequence of functions
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in 9 satisfying \\f^— f^_,\\ ̂  §„, then fn{x) converges point-
wise exc. 5l<,, and for each £ > 0, the convergence is uniform
outside some set of capacity less than £.

PROOF. — For a given sequence of functions /*„, let

^n=E[\M-f^{x)\>l|2n].

If a point x belongs to no An with n^n^ then for every n
with n^n^ and every p,

n+p n 4- p

l/n^)-/n(^ S l/^)-A-i(^ ^1/^1/2^X0.31.fn+PW /nW|=^: ^j 1 / *W——/fc - l \
fc=.n-+-l fc=n-+-i

Therefore /^(a?) converges uniformly on the complement of
000

<c==no
^J Afc, exc. 3ly for every choice of Ho. By 1) it is possible to

cho°ose ^ so that if \\f\\^, then c /E W 1^1/2"] )^ 1/2";

hence so that c( Q ̂ W 2 ̂ ^^ S 1/2^ l^"0-1.
\fc=no / fc=no fc=no

REMARK 2. — The last statement is analogous and its proof
is identical to the classical theorem on pointwise convergence
of Cauchy sequences in a space L/" relative to a measure a
(more generally to convergence in measure). As a matter
of fact, in the functional space L/", the measure pi is equal
to its capacity Cy for ^(p) = p^

We shall consider now the conditions 1 ,̂ 2^, and 3^ of the
theorem in the last section with respect to the class ^ of
null sets of an admissible capacity c$ 2^ 3^, and half of 1̂
are automatically satisfied.

1, If HAJI^O, then fnW-^0 in capacity (by 1) (6)),
so that if fn converges pointwise exc. ̂  it must converge
pointwise to 0 exc. 3lc-

2ft Given a Cauchy sequence { g n } , pick a subsequence
\fn} so that [[^—fn-i\\^^ where t ^ j is the sequence of
numbers provided by 4). By 4) the subsequence \f^\ converges
exc. 81,.

3ft First use 3) to find a sequence of numbers §„ such that
if o(B)^;^, then c(B)^112\ If |B^ is a sequence of sets
such that o(B^)-^0, then |B^ contains a subsequence |B^



150 N. ARONSZAJN AND K. T. SMITH

such thatS(B,)^X Let B =limsupB, =-.f} QB;, Then for
k=.i n=k

every k, c{B)^c(\J B^W Y c(B,)^Y 1/2^——. There-
fore c(B)=0. ^==k -/ n=l "=^ 2

The following theorems are now immediate consequences
of the theorem of section 5.

THEOREM I. — Let c be an admissible capacity on u^.
(a) 9 is a functional space rel. ?lc if and only if ||/*(|==0

whenever f(x) == 0 exc. 3lc-
(fc) ^ has a functional completion rel. 3(c if c^^d only if

H/'nJI—^O whenever ^f^ is a Cauchy sequence which converges
pointwise to 0 exc. 3(c.

THEOREM II. — Let ?r be an exceptional class containing 31.
(a) If 9 is a functional space rel. 3F, then for each admissible

capacity c, 9 is a functional space rel. 5F 0 ^lc.
(b) If 9 has a functional completion rel. 31/, then for each

admissible capacity c, 9 has a functional completion rel. SF ft 3lc.

COROLLARY 1. — If 9 has a perfect functional completion^
then its exceptional class 81' satisfies ^CZ^ d ̂ IQ.

REMARK 3. — It is possible to form ^-capacities with the
aid of the function S as easily as with the aid of the function o.
However, proposition 2) implies that for any 9 the ^-capacity
formed with o is identical with the ^-capacity formed with o.
Similarly, if 5 has a functional completion, it is possible to
form capacities with the aid of the o-function for the complete
class (a function which we have called o). Suppose that there
is a completion rel. SFlD^t, and let c? be given. In view of
Theorem II and in view of the fact that our interest centers
on small exceptional classes rather than on large ones,
we can suppose that 9l/C:§{^. Under these conditions it
follows from the lemma and the remark 1 of the last section
that the ̂ -capacity formed with o is identical with the ^-capacity
formed with S and therefore also with the c-capacity formed
with o.

These observations have a bearing on the existence of func-
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tional completions, or more accurately, they make clear what
part of the existence problem remains open. According to
Theorem II the existence of a completion rel. 3F for any 8F
imp lies the existence of a completion rel. 3lc Ft 3F for every
9-capacity, but it is not clear whether the existence of a com-
pletion rel. some 2lc itself is implied. Therefore, the problem
is this : is the existence of a completion equivalent to the exis-
tence of a completion rel. some 3lc ? By the observations of
the present remark the problem is reduced to the following:
does there exist a complete functional space for which the whole
basic set belongs to 81 ?̂ (A negative response to the second
question is equivalent to an affirmative response to the first.)

REMARK 4. — Sometimes, when the basic set K is topolo-
gical, it is important to know that there is a functional com-
pletion whose exceptional class has some topological property,
that of being generated by its Borel sets, for example. Let
^ denote the class of sets B of the following type : for some /
in 9 and some real a > 0 and ^ > 0, B == E [a < Re f(x) < ̂ ] exc. 31.

x

By the classical methods of the theory of Baire functions,
one proves easily that the set where a sequence \fn\ does
not converge pointwise belongs to the class ^ggo. It follows
that if S has a functional completion rel. 3T, it has also a func-
tional completion rel. (3F fl 9^8cr)/r A bound slightly better
than the one in the corollary is therefore (^IQ ft ^ly^)h'

Theorems I and II together with the corollary of section 5
lead immediately to the following:

COROLLARY 2. — Iff079 some admissible capacity c, v^ == $4,
then a functional completion o f S exists if and only if the condition
of Theorem I — (fc) relative to Sic is satisfied. If the last condition
is satisfied, then the completion relative to 3lc = ̂  is a perfect
completion.

The interest of this corollary lies in the fact that we can prove
the equality &° = 3lc tor a large category of functional classes,
described by property (6. 3) below and for a wide class of
(p-capacities c^. In a later paper it will be shown that all
usual functional classes arising in application to differential
problems satisfy property (6. 3).
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(6. 3) POSITIVE MAJORATION PROPERTY. — The basic set can
be written as 8 == US^ and constants M^ can be
chosen so that for every f^9 and every n there
exists a function f'n e 9 such that \\fn\\ ̂  ^ln\\f\\
and Re fn(x} ̂  \f{x)\ for x e S)^exc. 81.

THEOREM III. — If 9 satisfies (6. 3) and the capacity c=c^
is formed with a function 9 satisfying limsupp/9(p) < oo
then^=^ ^°

PROOF. — We have to prove that if B e 8lc then B e 8 .̂
00

Put B^ = BFI^, hence B = (J B^. Take positive constants a
n==l

and C such that p/9(p) < C for <p(p) <; a. For every positive
00

£ < a we can find a covering of B^, B^ C: (J B^\ such that

^y(S(Br))<£; hence ^(B^XCe. Take'then functions

t'^9 such that |M<6'(Br)+^ and \fn,^)\^l for

x e Bj^ exc. 81. By property (6. 3) we have a function fn k
such that rjl^M^II/,,1] and Ref^{x) ̂ \f^ ,{x)\ for

m

x e &n exc- 21- I1 follows that the partial sums V f^ ^ form
a Cauchy sequence \gm\ with the properties /c=i

00

lim inf Re g^x) > 1 for x e B^ C: |j B^ exc. 81,
/c==l

w so oo r ~i
|^|l^y|l/-^||^M,V||/-,,||^M^ S(B^)+- ^M»(C+I)£.

k=l k==l k= lL - J

Hence ^B^) ̂  M,'(C + 1)£ for all s < a and thus ̂  e 8°

and B == Q B^ e ~^.
n=l

REMARK 5. — For particular classes 9 with property (6. 3)
Theorem III may be true for larger classes of ^-capacities.
In all investigated cases where the norm in 9 was quadratic
(i.e. 9 an incomplete Hilbert space) it turned out that 8^ == 8lc
with c == c^ 9(p) == p2. It would be interesting to know if
this is true for all functional classes with quadratic norm.



FUNCTIONAL SPACES AND FUNCTIONAL COMPLETION 153

REMARK 6. — Often a strengthened version of (6. 3) holds,
namely:

(6. 4) GLOBAL MAJORATION PROPERTY.— There is a constant
M so that for every function f in 9 there exists a
function f in 9 such that Re f\x) ^|/^)[exc. 81
an<I||f||^M||/"||.

It is easy to see that if (6. 4) does hold, then B e § whenever

Ci(B) < oo, and for such B, ^ ( B ) > ~ S ( B ) . The spaces I/

and the spaces of M. Riesz potentials form important examples
in which M == 1 is a satisfactory constant. The case M = 1
is worth special notice. The property (6. 4) becomes then.

(6. 5) STRONG MAJORATION PROPERTY. — For every func-
tion f in 9 there exists a function f in 9 such that
Rer{x}>\f(x)\exc.^ and \\f\\^\\f\\.

If this property holds, Ci(B) == §(B) (provided c<(B)< oo),
as it is always true that ^(B)^S(B).

§ 7. Proper functional completion. — The complete functional
spaces occuring in analysis arise most often as functional
completions of more elementary functional classes which con-
sist of functions defined everywhere and which are in fact
proper normed functional classes. This is not to say, however,
that the complete space is proper, for in the process of com-
pletion it usually happens that some sets become exceptional.
We show in this section that non-empty sets cannot become
exceptional if the initial proper functional class is a proper
functional space. In discussing proper functional completion
we will use the notations : for each x in 8, My; is the bound of
the continuous linear functional f{x), and Ca. is the set function
which takes the value 1 on any set containing x and 0 on any
other ets.

1) If 9 is a proper functional space, then for each x in 8
and each set B in 8^, c^.(B)^Ma;Ci(B) {where, as always, c^ is
the ^-capacity defined by ^ (()==() . In particuair, 81̂  == (0).

Proof. — Since the left side of the inequality is 0 whenever B
does not contain x, it is possible to assume that [x\ belongs
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to ^y and therefore to &, and that xeB. Given £ > 0, let
f^9 be such that \f(x)\^l and H/l) ̂  SQ^) + £. Then

^(B)=l^|^)^M,|^||^M^(|r.O+£]
==M,[c,(^0+£]^M^(B)+<l.

THEOREM I. — If a proper functional space 9 has any func-
tional completion, then it has a proper functional completion,
A necessary and sufficient condition that a proper functional
space S have a functional completion is that ||/^||—^0 whene-
ver t/^j is a Cauchy sequence in 9 converging to 0 at every point.

PROOF. — Theorems I and II, Section 6.

REMARK. — There are simple examples of proper functional
spaces which do not have a functional completion, but they
are somewhat artificial. Indeed, non-existence of a functional
completion of a proper functional space can be ascribed to
an awkward choice either of the basic set or of the norm in
the functional class. It is always possible to redetermine either
of the two in such a way as to obtain a proper functional
space with a completion.

In order to modify the basic set 8 we consider the abstract
completion V of the normed vector space 9. Each point
x e= 8 corresponds to a unique continuous linear functional X
on V; X is defined by the equation X(/*) === f[x) for all /*e5<.
We will think of K as a subset of the set V* of all continuous
linear functionals on V, and in order to use notation in harmony
with the notation for 9 we will write v{X.) for X(^) whenever
v e V and X <= V. Then each v in V is a function defined
not only on S but on all of V*. In this notation the condition
stated in the theorem is that v=0 whenever v(\) = 0 for
all x e g. When the original basic set ^ does not have this
property, additional X from V* can be added to it so as to
obtain a new basic set £/, which does. The functions ^(X)
for v e V restricted to the new basic set ^/ form a complete
proper functional space which can be called a « quasi-comple-
tion » of <?.

A similar process can be carried through when 5 is a
functional space rel. ?(<; for some ^-capacity c = c.. In
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this case S is not a normed vector space in the proper
sense of the term, but V can be taken as the abstract comple-
tion of the normed vector space V which corresponds to 9
through the equivalence relation f^ g if f= g exc. Sic- There
is no way to think of 8 as a subset of V*; nevertheless a sui-
table new basic set ^/ can be obtained in the form ^ == 8 U 6*,
where £* is any total subset of V*. The manner of defining
the /*e 9 as functions on £' is obvious. Let c' be the ^-capacity
in ^ corresponding to the same function o. It is not difficult
to provide an argument similar to the argument following
proposition 1 to show that SIc^Slc. Nor is it difficult to
use Theorem I, section 6, to show that 9 as a functional space
on the basic set ^ has a functional completion rel. Sic. Such
a completion can be called a « quasi-completion )> rel. 3lc.
It would seem that there is considerable arbitrariness involved
in the selection of ^*. Oftentimes natural choices present
themselves, however, and the idea is important in connection
with measurable spaces and pseudo-reproducing kernels, sub-
jects which will be discussed in a separate paper.

The procedure for modifying the norm in the functional
class, on the other hand, is unique. We will suppose that
9 is a proper functional space, and we will use the same nota-
tions as before for the abstract completion, the linear functio-
nals, etc. Let Vo be the set of all ^ e V such that v[x) = 0
for every x e K. Being the intersection of closed subspaces
of V, VQ is itself a closed subspace. Therefore the quotient
space V/VQ is a complete normed vector space when the norm of a
quotient class C is defined by the usual formula ||C[| ==inf|[^ |
taken over all v e C. For every x e ^, v{x) is constant over
each quotient class C in V/Vy, so that every such x determines
a unique linear functional, which we continue to call x on V/Vo.
Each x e ^ is continuous on V/Vo, for if M is the bound of
x as a linear functional on V, and if C and £ > 0 are given,
then there is a P e= C such that

^(C)|-i^)|^M|lpi|^M[||Cl|+£j;

and also |{C|[ = 0 if a;(C) == 0 for every a;e6. If we write,
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as before, C(.r) instead of ^(C), then V/Vo appears plainly
as a complete proper functional space over the basic set 8$
and it contains 9. Therefore, if 9 is re-normed with the norm
of V/Vo, then, as a subspace of a complete proper functional
space, it has a proper functional completion. It is clear
from the definition of the norm in V/Vo that the new norm
of a function f e 9 is less than or equal to its original norm.

By a somewhat more complicated argument it is possible
to prove a similar result for functional spaces rel. 3lc* We
state the result but omit the proof.

2) Let 9 be a normed functional class rel. 31, and let c be an
admissible capacity on $g. If 9 is a functional space rel. 8lc,
then it is possible to define another norm, \}f\\\ on 9 so that:
{1) 11/1 F =^11/1 I'? (u) ^ wtt^ ^ norm \\f\\ ts a functional space
rel. 3le and has a functional completion rel. Sl̂



CHAPTER II

EXAMPLES

§ 8. EXAMPLE 1. Analytic functions. — We take as the basic
set 8 the closed unit circle in the complex plane, and we
consider the class 9 of complex-valued functions continuous
in the whole of £ and analytic in its interior. We define
the norm in S by the formula 11/11=1 f^f(x)\2dx^/\ S is a
proper normed functional class. (13).

Let ^8 denote the boundary of 8. Each of the functions
f^x) = x^ is 1 in absolute value everywhere on b8. Therefore
as \\fn\\=V^~+^)-^O^W = 0, and ^ e &°. Bythecorol-
lary at the end of section 5, any exceptional class relative to
which 9 is a functional space must contain 68. In particular,
S is not a proper functional space.

With respect to the points in the interior of 6, though,
9 acts as a proper functional space. Each of these points
determines a continuous linear functional. Consider the
9-capacity Ci (determined by ^(t) = (). Proposition 1, section 7,

1shows that if x is not a boundary point, then C^\X\)^L-^
^x

where M^ is the bound of the linear functional determined
by x (u). From this and the last paragraph we deduce that

(13) This space is the simplest case of spaces considered extensively by S. BERGMAN
(see [9]). Its completion, restricted to the open circle has a reproducing kerne],
Bergman's kernel function,

^ y) = ̂ -^ (see w' M)-
(14) The exact value of M^ is given by the reproducing kernel:

1M,=^'K(a^)
\-.(i—xx)
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Sic, == 8° = 8^ == the class of all subsets of 6£. There is no
difficulty in seeing from Theorem I, section 6, that there is
a completion, necessarily perfect, relative to this class.

§ 9. EXAMPLE 2. L^ spaces. — The Lebesgue spaces L^
are so thoroughly familiar now that the theory of functional
completion cannot be expected to provide essentially new
information about them. By reason of their familiarity,
however, they provide an example which illustrates well the
concepts which have been introduced here, especially the capa-
cities. Reciprocally, by focusing attention at an unusual point,
the theory of functional completion underscores an interes-
ting peculiarity of I/.

We are concerned here with obtaining Lp as a functional
completion of a subspace composed of elementary functions.
In the case of a measure on an abstract set there are no new
problems coming specifically from the functional completion
point of view. The natural choice for the space of elementary
functions is the space of linear combinations of characteristic
functions of measurable sets of finite measure. The passage
from this space to its completion with respect to the L^ norm
is completely standard. The proof that the perfect completion
is the usual L/ requires nothing (beyond the definition of
« perfect ») from the theory of functional completion.

The situation is different in the case of a measure on a topo-
logical space. Here the natural choice for the space of ele-
mentary functions is usually a space of continuous functions.
Since the continuous functions are defined everywhere (not
almost everywhere), it is not at all evident that the sets of
measure 0 form the exceptional class for the perfect completion.
Indeed this is not true in general, as we shall show in the suc-
ceeding paragraphs.

We take as the basic set S an arbitrary locally compact
Hausdorfl space. The two o'-rings used in topological-measure
theoretic investigations in locally compact spaces are the
Borel cr-ring, which is generated by the compact sets, and the
Baire cr-ring, which is generated by thee ompact Gg's f1 5). In
all ordinary topological spaces, for example separable spaces

(15) We use the terminology of HALMOS [18].
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or metric spaces, these two a-rings are identical, but in general
they are distinct. The measures usually considered are regu-
lar Borel measures, those defined on the Borel sets and having
the additional properties : (i) the measure of each compact
set is finite; (ii) (regularity) the measure of each Borel set is
the infimum of the measures of the open Borel sets contai-
ning it (16). We suppose given such a measure on 8, and we
call it UL. We denote by C the class of continuous real valued
functions on ^ which vanish outside a compact set. For each
real number p > 1 we define \\f\\p == j f| f{x) f dpi j l / p , and
we denote by Cp the class C with this expression as pseudo-
norm. It is well known that relative to the exceptional
class Sip. of subsets of Borel sets of pi-measure 0, Cp is a functional
space, and that it posesses a functional completion, L/^a),
relative to 2lu.. We shall illustrate some of the general theo-
rems of this paper by re-proving the existence of L/, by fin-
ding the perfect completion, and by computing some of the
capacities.

Because the capacities themselves are outer measures, and
because the classes with which they are associated, the Sic, &^,
etc., are all hereditary classes, there is some advantage
in extending the measure a so that it is an outer measure
too, defined on the hereditary T-ring &g on which all capaci-
ties are defined.

Cp is a proper normed functional class if and only if there
is no open Baire set in 8 of measure 0. In general the smallest
exceptional class relative to which Cp is a normed functional
class is the class of subsets of open Baire sets of mesure 0.
We call this exceptional class 81, and we consider Cp as a normed
functional class rel. 21. In this case S is the class of sets
which are contained exc. 21 in a compact set, (or, equivalently,
in a compact Baire set) and &<j is the hereditary cr-ring gene-
rated by the compact sets (or, compact Baire sets.) We
effect the extension of m. to 8g by the standard device of setting
pi(B') equal to the infimum of the numbers a(B) taken over
all Borel sets B containing B'.

If 11/̂ | [p —^ 0, then fn-^0 in measure, and each sequence

(1€) For example, BOURBAKI considers only measures of this type in its presenta-
tion of integration theory [10].
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which converges to 0 in measure contains a subsequence which
converges to 0 almost everywhere. Therefore Cp is a functional
space rel. Sip., and we can apply the corollary at the end of
section 5 to conclude that S^C:^.

Let K be any compact set in 8. Then K e &, as we have
mentioned above. We prove now that S(KY = pi.(K). First
let f be any function in Cp which is ̂  1 on K exc. 31. Then
/IA^I^^^K). As §(1̂  is the infimum of the num-
bers on the left side, ^(K^^^K). On the other hand, it
is possible to find a function f e Cp which is ^ 1 on K and
which is such that ^i(K) ̂  [{fW^d^—£ for arbitrarily
small £ > 0. Therefore ^K)^ pi(K), and so 5(1^ = p.(K).

Suppose that B is any set in &. It is easy to see that
there is a decreasing sequence of non-negative functions
fn e Cp such that fn^=_ 1 on B exc. 81 and such that [j/^||p-^ S(B).
Let K, = E [fnW > 1] and let K == Q K,. Then K =3 B exc. 81,

/i==i
and we can write

W= lim|!/^>limpL(K,) == p.(K) == W^B)/-,

so equality holds throughout. We have proved the following
statement.

1) For each set B e § there is a compact G§, K, such that
K=) B exc. 81 and such that ^(B^ = ofK^ = a(K) > ;ji(B).

From this it follows that p. is an admissible capacity on §3.
We can use Theorem I section 6, to prove that there is a
functional completion rel. Sty.. Suppose that ^f^ is a Cauchy
sequence which converges pointwise to 0 exc. Slu.- By
Fatou's lemma, fl/'^l^a^liminf f|/>J^)—/>^)|pc?uL, and

m^oo •y v

the right side can be made arbitrarily small by a suitable
choice of n. Therefore ||/^||p—^0 and this is the condition of
the theorem.

Now we can employ Theorem III of section 6 to obtain the
existence of a perfect completion, for Cp has the strong majo-
ration property: a majorant for an arbitrary function f(x)
is the function \f(x)[ We obtain also from Theorem III
the exceptional class for the perfect completion, the class
8^. As we have mentioned, the completion rel. ^ is not
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necessarily perfect; that is, it is not necessarily true that
^ === ^. According to Remark 4, section 6, the existence
of a completion rel. 31̂ . implies the existence of a completion
rel. (31 .̂ ft 9l(j8a)A. The latter class does give the perfect
completion and may be smaller than 3lu. itself, as we shall
see. In this example the class 9?, which is composed in general
of all sets of the type E [a < Re/'(a;) < p exc. 81] for a > 0,

x

P > 0, is the class of sets equal exc. 81 to a bounded open
Baire set (17).

It is possible to identify the perfect completion itself, as
well as its exceptional sets. The standard device which we
used to extend the original Borel measure pi to an outer measure
serves to extend any measure defined on a o"-ring to an outer
measure defined on the class of all subsets of sets in the cr-ring.
Let (Jio denote first the restriction of a to the cr-ring of Baire
sets, then its own extension by this scheme to an outer measure
on Sg. In general the outer measures (JL and pio are different (18).

By the general theory of Baire measures it can be proved
without any difficulty that 31̂  = (Sl^FI %<j8o)A; and most of the
rest of this section will be given to proving that &!y = 81̂ , that
the perfect completion of Cp is L^m-o), and that for any set
B e S^, pi.o(B) == ^p(B), where Cp is the y-capacity defined by the
function (p(() == (p.

Let B be an arbitrary set in So, and let |Bn| be a sequence
00

of sets in S such that Be I J B^ exc. 31 and such that
n=l

Cp(B)>SW'- -£.

By 1) there is a sequence j K^ of compact G^s such that for
each n, K^B, exc. 21 and S(B^ == S(K^ = a(K,) = ̂ (KJ.
It follows easily that Cp(B)^ao(B).

(17) A set is bounded if it is contained in some compact set. Hence every bounded
set is in Y.

(18) It is obvious from the construction that [^.(B) == p.o(B) for all Baire sets and for
all compacts sets, that (i(B) <^ ^o(B) for all sets, and that the class S(^ is exactly
the class of subsets of Baire sets of pi-measure 0. All compact sets are measurable
with respect to the outer measure {A, but this is not necessarily true of U.Q (see
HALMOS [18]).
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Next we establish the opposite inequality, and in addition
we prove that p•o(B)^S(B)p for bounded sets B. From the
latter will follow the relation Stu^C:^.

Let G be an arbitrary bounded open Baire set and let
00

G == M K^ be a representation of G as a union of increasing

compact sets (19). For each n choose a function fn in Cp with
the properties :

(i) fn{x)=l if ^eK,;
(ii) M=0 if a^G;

(iii) O^fnW^i.

The sequence |/n| is a Cauchy sequence since it converges
pointwise and is dominated by the characteristic function
of G which is integrable. As lim/^(rc) === 1 for every a?eG,
^(^^limll^il^^G)^^ Thus ^o(G)>a(G)>S(G)/>>c,(G)(20).
By a passage to the limit in which the regularity of pio 1s used
we get p-o(B) ^S(B)P^Cp(B) for every bounded set B. In
the light of this fact the relation 31̂  C!̂  is obvious. Fur-
thermore, an arbitrary Baire set B can be written as a disjoint
union of bounded Baire sets B^. Therefore

c,{B)^c^^^{B^=^(B).__ ^P ̂ n; == ̂ j t^o ̂ n) — ^o \
n==l n=l

Combining this with the inequality Cp(B) ^(Jio(B) already
proved, and with the regularity of pio we obtain finally
Cp(B) == p.o(B) for any set B e ̂ y. The one remaining assertion,
that I-^^o) ls the perfect completion of Cp, is now clear.

It can be proved that the capacity Cp is identical with (c^.
In fact, we know from the strong maj oration property that
B e & if and only if c, (B) < oo ; and if B e §, then c, (B) = S(B).
Using the lemma in section 5 it is easy to show that because
the strong majoration property is present S is identical with o,

(19) It is known that every open Baire set is a countable union of compact sets,
and that conversely every open set which is a countable union of compact sets is
a Baire set. See HALMOS [18].

(20) For any set BeY, S(B)P^Cp(B). This general property of capacities is a
simple consequence of Remark 3, section 6.
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the S-function for the complete space; and 8 is identical with &.
In this example the composition of 8 is evident. It is the
class of all sets of finite Rio-measure. The function S is easy
to calculate too: if Be§, then S^ == pio(B). Thus, if
Ci(B) is finite, then B e 8 == & and c, (B^ = S(B)P = S^P = pio(B);
while if Ci(B) = + oo then B « 8 == 8 and pio(B) = + oo.

The following theorem gives a summary of the main points
of interest in this example.

THEOREM I. — The space L/^o) is the perfect functional
completion of the space Cp. The exceptional sets are the sets
of ^'measure 0; equivalently they are the subsets of Baire sets
of ^.-measure 0. The class 8<y is the hereditary a-ring generated
by the compact sets. (c,)?, Cp, and pi.o are identical outer measures
on 8g. S == & is the class of sets of finite ^-measure. On this
class IP =SP = pio.

REMARK 1.—We have stated in an earlier part of the paper
that the classes S^ and 8^ are different in general. For arr
example take the space Cp with S the interval 0 <^ x <j \
and pi Lebesgue measure. 8^ is the class of all sets of Lebesgue
measure 0; S^ is the class of all subsets of sets F<r of Lebesgue
measure 0. As each subset of an F<j of measure 0 is of first
category, and as there are sets of measure 0 which are not of
first category, the example is established.

§ 10. EXAMPLE 3. Some spaces of harmonic functions and
Fatou's theorem. — In the first part of this section tho
basic set 8 is the closed sphere with center 0 and radius R
in n-dimen- sional space En$ b8 is its boundary; 0, <p etc.,
refer to points on the boundary; rfO, c^p, etc., to the Tz-1-dimen-
sional measure on the boundary, co^ is the area of the sur-
face of the unit sphere in E^. A(0, x) is the Poisson kernel
for 6:

, / . , R2—!^2

^^ju-Lr-
The functional class which is to be considered is the class 9
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of all complex-valued functions continuous in 8 and harmonic
in the interior of 8. The norm in 9 is defined by

ii/u=S/j/w^,
where p is fixed and satisfies 1 ̂  p <^ oo (21).

The object of the section is to show how the well known
theorem of Fatou on the boundary values of harmonic func-
tions can be proved by means of capacities. In the course
of the development of capacities it was shown that each
convergent sequence in a functional space contains a subse-
quence which converges pointwise uniformly outside a set
of arbitrarily small capacity. Thus each function in the com-
pletion of a space composed of continuous functions is conti-
nuous outside a set of arbitrarily small capacity. Once the
sets of small capacity are identified in the example at hand,
it becomes clear that each function in the completion has
non-tangential boundary values almost everywhere.

If /'(O) is a continuous function defined on 6^, then the Pols-
son formula f(x) = |.e^(0? x)f(Q)dQ defines a function f{x) in
the interior of S. f[x) is harmonic there, and if it is extended
to the boundary by assigning/'(O) as boundary values, the resul-
ting function f is continuous throughout 8. Thus the class 9
is exactly the class of functions f(x) obtained as follows:
f is determined by a unique continuous function /'(O) by the
equations f{x) == e /i(0, x)f{Q) dQ if x e interior of &; f(x) = /'(O)

it x = 0.
Consider the class 9 of functions determined in the same

way by functions /*(0) defined almost everywhere and in I^
on b8. With the norm \\f\\p =\j^ glA0)!^0^ 9 is a complete
functional space relative to the exceptional class 81 of subsets
of ̂  of n-1-dimensional measure 0. It is clear that 3fi is contained
in 9 and that -9 is dense in ^ Thus 9 is a functional comple-
tion of 9.

We can use Theorem III of section 6 on positive majorants
to prove the existence of a perfect completion. For each

(31) The case p = x? has no interest here, for || /1|» == sup |/(9)| = sup \f(x), and
^ is already a complete proper functional space. e6^ aB6^
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function f e 9 the function /*" (^) == ^h{Q,x) \f(Q) \dQ belongs to 9<
and is a positive majorant for /*. In addition, \\f\\p= \\f^\\p.
Therefore, by the theorem quoted, 81̂  == &^, and since it is
established that there is some functional completion, there
is a completion, necessarily perfect, relative to ^ = &Ij.
It is easy to show that ̂  = 31: if Ac: 68 is a set of n-1-dimen-
sional measure 0, then there is a sequence |/*n(0)i of continuous
functions on 68 such that f^\fnW 1^0-^0 and /^(O)-^ oo for
each 0 e A$ the sequence fn{x) == ^(0, x)f^)dQ is such that
IIAUp— 0 while fnW-^ oo f o r e a c h O e A , so Ae^,and&^Sl.
The opposite inclusion is trivial. We can conclude that S is
the perfect completion of 9,

The connections between the values on 68 of a function
feS and the values in the interior of 8 form the subject
of Fatou's theorem. Actually the assertion of Fatou is that
f{x)-^f{Q) pointwise a.e. under suitable conditions. For the
sake of completeness, we proceed to show first the well known
fact that a certain convergence in mean takes place. Define
^(9) == T,/*(9) = 7^(0, r9)y(0) rfO = f[r^} for each function /•(0)
belonging to if on ^)8, and each r < 1. The mean convergence
which takes place is that \im\\f—fJ] =0.

r-^l

The proof is a classical one which we will reproduce only
in brief. Since 1 is harmonic, the Poisson formula gives
y^A(0, x}dQ= 1. Since /i(0, x) is a harmonic function of x,
the mean value theorem gives /p^(0? r^)df= 1. These two
facts in conjunction with Holder's inequality give

^1^(9)IP^=^|^^(0^?)AO)^P^

^^Jo^^^l^Wl^o^^^i^i^o,
from which it follows that the transformations T,. are a uni-
formly bounded family of linear transformations from L/" on
68 to Ly on 68. In order to show that Trf-^ f in 17 for each
f e Lf it is enough to show that this happens on a dense set
of f. For the dense set take the continuous functions.
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The functions in the complete class S can be characterized
in another way. Suppose that f is a function defined only
in the interior of 8. According to the preceding paragraph
there is at most one function in 9 which coincides with f in
the interior of 8 (at most one function up to equivalence in «^,
that is). It is therefore clear how the phrase « f belongs
to S » should be interpreted when f is defined only in the
interior of S.

1) //* p > 1, then S consists of all harmonic functions f
defined in the interior of 8 and having the property that

sup L\fWdQ<^.
Q<r<i^

2) If P ̂  I? ^en 9 consists of all harmonic functions f
defined in the interior of S and having the property that there
exists a sequence r^ /f 1 such that the functions /^(O) == f{r^)
converge weakly in L/" on ^)6.

PROOF. — If an /"satisfies the condition in 1), then it satisfies
the condition in 2), for bounded sets are weakly compact
in L^ p > 1.

Suppose that the condition in 2) is satisfied for a certain
function f and some sequence T\ /< 1, and let g be the weak
limit of /^. Since g e L/" on ()8, when we have shown that
f{x)= /^g/i(0,^)g(0)d0 it will follow that /*ei?. Let x be
a fixed point in the interior of £. Then /i(0, x) is a continuous
function of 0. Thus ^ / i ( 0 ,o ; )g (0 )d0= l im^ / i (0 , x)f(r^)dQ.

»7^C> p -^.li/'^b

On the other hand, f(r^x)^ r^ fixed, is a function harmonic in
the interior of 8 and continuous in £; that is, f{r^x} is a func-
tion in 3<. Therefore f{r^x) == f,/i(0, x)f{r^)dQ. Finally, as f
is continuous at x, f{x) = lim/^r^).

'•n-1

In the statement and proof of the fundamental proposition
which comes next, and in the rest of the section, we shall
use the following terminology. The set C of points 0 in ^
satisfying |6—9|^p is the circle with center 9 and radius p;
I C J and p(C) denote the /z-l-dimensional measure of C and the
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•D
radius of C. For each ^ =/=(), Oa. is the point T—^X. If C is

\x\
a circle on ^8 and a; is a point interior to li and on the normal
to b6 through the center of C, then the cone with vertex x
and base C is the set generated by joining x to each point
of C. The axis of the cone is the normal to ^> through the
center of C. The angle of the cone is the maximum angle
between the axis and any line joining re to a point of C.

3) To each angle a, 0 < a < -^? corresponds a constant
JL

k > 0 such that for every f ̂  0 in ^ and every x in the interior
of& there is a cone with vertex x and angle ]>_ a with the property
that the average of f(Q) over the base of the cone is ^A'/*(^)(22).

PROOF. — For each p > 0, write Cp for the circle with cen-
ter Oa. and radius p, and put I(p) = C / '(O)rfO. Let po be such»y c^
that Cp^ is the base of the cone with vertex x and angle a,
and set m(x) = sup Up)/?""1. Since the ratio ICI/p^)'1"1

P ̂  Fo
is bounded above and bounded away from 0 by constants
depending only on the dimension, the inequality to be proved
takes the form m(x) ̂  kf(x).

If pi is an arbitrary number ̂  po, then

./ , w—\x? r /•(0) ,.^)-^,.RJc„l^-i^•'i().^-i^rr -AOL^I + i
+ co.R J^-cJO-^-0- '11^12-

Using the majoration |0—^|^R— \x, we obtain

^^(H^^^.tel)-^-
Using the maj'oration |6—;r|^l/2|0—O.c|, we obtain

j^2-'(R-H) r^dUs)
8—— "n Jp. P"

(22) The calculation of the best possible constant will be given elsewhere. The
constant which appears below in formula (10.2) has the correct order of magnitude
for a -̂ - TC/2.
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Now,

r^M^M"^,, r^^^M".. „„,,-,, r^r^=M''+^rM^M ••+„„,(„ pe.
^P. P P F. <°. i5 P F< ^pi P

Thus
, ^"-'(R—lrcl) fI(2R) I(p,) mn(a;) nOT(g)1
^ (o, L(2R)» p? r p. 2R J

/?. P P IF. <°. P P IF, ^p,
Thus
, ^"-'(R—lrcDr^R) I(p,) nm{x]
^= (o, L(2R)» p? -r p.

so
(IO.D ^^^-^^-^(R-M^^

(O-R^^^. ^y *1 1 -2== -D

j-2 r/—£i V~1 on/R—l^l\1I(pi) , 2'-ln/R—a;|\ , .+^KR-|.|) -2(-p-)Jp-+^^(^}m(')•O),,L\R-W \ p. /Jp,"-1 • (o,
To complete the evaluation we use the simple geometric

inequality sina^ t o <^tana. Putting pi = po in (10. 1),
Jrx. — 3?

and dropping the obviously negative terms, we obtain

(10. 2) f{x) ̂  Ii + l2^-2- ftan"-1 a+ 2nn-~\ m{x).
(Oyi L sin oc J

A different evaluation of (10. 1) is better when a is not too

large. If a^arctan 2, then r o , .5^2, and it is possible
L\ "— \3C\

to choose p, ̂  po so that rl . == 2. Using this pi, we obtain
from (10. 1) ^—1^1

2"n
(10. 3) f(x) ̂  Ii + la^— 1n{x) whenever a^arctan2.

In the course of the next proposition we shall use a general
covering theorem not unlike a part of the Vitali theorem.
It has some intrinsic interest, so we shall present it as a lemma
separate from the present line of discussion.

LEMMA 1. — Let II he a family of spheres in a metric space.
For each sphere S e II let S' denote the sphere whose center is
the center of S and whose radius is four times the radius of S.
If II has the two properties listed below, then there is a disjoint

00

sequence, perhaps finite, ^S,j C: II such that (J sc: U sn- The

properties are the following: s6!! "=i



FUNCTIONAL SPACES AND FUNCTIONAL COMPLETION 169

(i) The radii of the spheres in II are bounded, and all are =/= 0.
(ii) If a sequence of spheres in II is disjoint, then the sequence

of radii converges to 0.

PROOF. — The sequence |S^ is defined inductively. LetM^
be the least upper bound of the radii of the spheres in II, and
let S, be a sphere in II whose radius is larger than (2/3)Mo.
If Si, ..., S/c have already been defined, let M^ be the least
upper bound of the radii of the spheres in II which do not
meet any of S,, ..., S^ and let S/^i be a sphere in II which
does not meet any of Si,..., S/c and whose radius is larger than
(2/3)M,.

Suppose that the point x lies in a sphere S e II which meets
the sphere S^ but no sphere S» with i < k. If r is the radius

3of S, and if r^ is the radius of S^, then r^M^_i<^-7 \ .
Zi

Thus, if y is a point common to S and S^, and if x^ is the center
of S^, then d(x, x^) ̂  d{x, y) + d{y, Xk) ̂  2r + ̂  < 4r^ and so
x e SL On the other hand, every point x e M S lies in a sphere

sen
which meets some S^. In fact, two cases arise. If the induc-
tive procedure for defining S/r cannot be continued beyond some
finite /Co, then all spheres in II must meet one of Si, ..., S^.
If the inductive procedure can be continued, then there are
infinitely many S^ and their radii y\ -^ 0. But we have seen

3above that if S does not meet one of Si, ..., S^_i, then r<—y\ .A
Turning once again to the harmonic functions we provide

a notation for use in the next proposition. Given a set B C: 8
and an angle a we write Ba for the set of points 0 e ̂  which
lie either in B itself or in the base of some cone of angle a with
vertex in B.

TC4) To each angle a, 0 < a < — ? corresponds a constant k
2t

such that for every set Beg, BJ ̂  kc^Y, where Ba denotes
the n—1-dimensional measure of Ba.

PROOF. — For sets in ^)8 the present capacities are the same
as the capacities determined by the functional space I/
on b£. By virtue of the discussion we have made of the
latter spaces we can write for any set Bc^g, |B|== ^(B)^ It
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follows easily that for the remainder of the proof we can assume
that B lies entirely in the interior of 6.

From the fact that the strong maj oration property holds
it follows that the set functions Ci and o are equal (23). In
addition^ we have seen earlier that S is essentially the S-tunc-
tion for ^(24). Hence, if m is an arbitrary number larger than
Ci(B), then there is a function f^O in 9 such that m > \\f\\
and such that f{x) ̂  1 for every x e= B. Let A*, be the cons-
tant of proposition 3), and for each xeB let B(x) be the
base of a cone with vertex x, with angle ^> a, and with the mean
value property of proposition 3). Let V be a constant such
that lS'1 ̂  A^SI whenever S and S7 are circles in 08 with
the same center and with p(S') == 4p(S). Let B(x) be the
circle with the same center as B{x) and with p^^o;)] ==4p[B(a;)].
By virtue of the covering theorem there is a disjoint sequence

ao

^B(a;,)| such that B,C (jB'(a;,,). Therefore

|B,|^SlB/(a;'•)l^/c/SlB(a;'•)l=/c/IAI'n=l n=l
00

where A = (J B(x^).
n= l

Furthermore, the mean value of f over A is ^/c,, since the
mean value is ^/^ over each B(o^), and these are disjoint.
From this it follows by Holder's inequality that

IAI^WW
and hence that |Ba ^/^(l/A'JW'. As mis any number > Ci(B), 4)
results.

It is simple now to derive Fatou's theorem. Let a be a
given angle, 0 < a' < — • For each point 6 e b6 let Ke,a be a

2i
closed cone extending into fi from the vertex 0 and touching
^ only at 0; let KQ, a' have angle y! and axis the normal to ^
through 0. Fatou's theorem asserts that if f is a function in
^7, then for almost every 0, f is continuous in Ko,a- It is
proved as follows.

Let A be the set of points 0 for which f is not continuous in
(23) Remark 6 at the end of section 6.
(24) The lemma and remark 1 in section 5.
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Ko,a. For each £ > 0 let B6 be a set such that c^)<i
and such that f is continuous outside B6. Then for each £ > 0,
and each 0 e A, B8 contains points of Ke,a'? arbitrarily close
to 0. This implies that Ac^B^a for every a satisfying
a^o^-^-. Therefore \^\^\{W}^^kc^WY^k^, so finally
|A|==0: 2

The results which we have described are not restricted to
the sphere. They are valid, and large parts of their proofs
as well, for all closed domains with sufficiently smooth boun-
daries. A brief discussion of the situation follows.

We shall suppose that the basic set 8 is a closed bounded
domain in Euclidean space E^, and we shall suppose that the
boundary 68 is a C1 hypersurface (25). This ensures that at each
point of 68 there is a tangent plane to 68, and that the tangent
plane turns continuously. Also there is a normal to 68 at
each point <p of 68; n<p denotes the unit vector in the direction
of the exterior normal at 9. It x is any point of E^, there is at
least one point 0 on 68 which minimizes the distance |<p—x\,
9 e 68, The line determined by x and any minimizing point (=/= x)
is normal to 68. In case there is only one minimizing point
we shall call it 0^. Oa. is a continuous function of x on the set
where it is defined. In general 0, 9 etc., refer to points on
68; cK), rfy, etc. refer to the n-1-dimensional measure which
is definable on 68 in the classical manner; JE | where E
is a set C68 refers also to this measure. If C is any circle
on 68, and circles are defined as they were before, p(C) denotes
its radius.

Furthermore, we shall restrict 68 to be a C1 '1, hypersurface,
i. e. one whose normals are Lipschitzian :

fAf\ /\ A i sin(l/2neri9) .
(10. 4) 1/ro = SUp 1 N / -M < 00,^ 1/2|0-9| ' ?

where noUy denotes the angle between MQ and n^ (26). The
(25) To say that b8 is a C1 hypersurface is to say that each point of 08 has an

yi-dimensional neighborhood V which can be mapped in 1-1 fashion on an n-dimen-
sional cube by a transformation T such that: ff) T and T-1 are both C1 trans-
formations with non-vanishing Jacobians; b) T(58nV) is the intersection of the
cube with one of the coordinate hyperplanes.

(!M) The usual definition is that sup —n1ylB— = M < oc ; this is obviously equiva-
lent to (10. 4). i 0 — ^
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constant 7*0 will be called the radius of b8. We list here the
essential properties of such boundaries. Proofs will be given
in a separate note.

a) The number r^ and the two numbers r'o and r'^ defined
below are all equal.

(10. 5) r'Q == sup p taken over p ̂  0 such that for any two points
<p =^= 0 on ^ the normal segments [<p — pny; <p -(" P^y]
and [0—priQ; 0 -)- p^e] ^^ disjoint.

(10. 6) rj == 5up p taken over p ̂ 0 5uc/i ^a( /or eac/i 6 e b8
(A^ tangent spheres of radius p wi^A centers at
0 + pne and 0 — pne Aa^e no points in the interior
and exterior of 6 respectively.

It is the exterior tangent sphere of radius 7*0 which inter-
venes in most subsequent calculations. When we speak sim-
ply of the tangent sphere at 0 we mean this one. We write
ye for its center 0 + r^.

b) Ifv. (<p, 0) denotes the angle between n<p and the direction 96 then

for any two points <p and 6 on ^6, |cos 0(9,0)|;<I1-1———L-
Zr^

c) -For every point x e 8 within distance r^ of ̂  and every
point 0 on ^)6 (/ie following inequality is satisfied:

(10. 7) 0^—yel—ro— x—^^-~^

The significance of the inequality will appear upon exami-
nation of g) below and the proof which is given after this list
of properties.

For each number r, 0 ̂  r <^ r^, and each point 0 on ^8
we define z(r, 6) to be the point 9—me. For each number r,
0^ r < ro, we define the parallel hypersurface to ̂  at distance r,
for which we write ^? to be the set of all points z(r, 6).
^ is the boundary of a closed domain 8,. contained in the
interior of 8.

d) Each hypersurface 66^ is of class C1'1 with radius ^> rp—r.
For fixed r the transformation 0 -^ z(r, 0) is a 1 -1 continuous trans-
formation of ^8 onto .̂ /( possesses a Jacobian which is
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bounded and bounded away from 0, and these bounds are
uniform with respect to r for r^r'<^ r^; the Jacobians converge
uniformly to 1 as r —^ 0.

e) There are constants K, and Kg such that for every circle
C on ^ K^Cy-^ICI^K^C^-1. J7'r'<r, is fixed, the
constants can be chosen so that the same inequality is valid on
each ̂ , r ^ r ' .

f) The Greeks function G(y, x) for the domain 8 exists.
For each fixed x in the interior of 8 the function G{y, x) as a func-
tion of y has a normal derivative —A(0, x) at every point 0 of 66.
J/*0 is fixed, h is harmonic in x, ifx is fixed, h is continuous in 0.
The Poisson formula holds with respect to the kernel h:
f(x) = f Q /i(0, ^)/*(0) c?0 for every function f continuous in 6

and harmonic in the interior.

f) If h^, x) denotes the kernel for the domain 6,., then for
fixed x the functions hr[z(Q, r), x\ converge uniformly as r—^Q
to A(0, x) (").

g) A(0, x) satisfies the following inequality, obtained by the
method of comparison domains

O^A(O^)^'^^12^.
— v ) / — roCoJO—^

The function on the right is the Poisson kernel for the exterior
of the tangent sphere at 0. (Note the inequality in c)).

We consider the functional space 9 of all complex valued
functions continuous in 8 and harmonic in the interior of 8;
we define the norm by H/'llp:^ /el/Wl^^s , where p is fixed
and satisfies l^p< oo.

It is obvious that there is no difficulty in showing that the
perfect completion of 9 is the space 9 of Poisson integrals of
functions L^ on 66. This goes as it did before.

The various assertions about the manner in which the func-
tions in 9 assume boundary values require some comment.

The first step is to define the analogues of the transforma-

(27) Both properties /) and //) are obtained by constructing h and hr by the clas-
sical method of integral equations. See for example KELLOGG [19].
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tions Tp. For each r, 0 ̂  r <; ro, and each function /'(O)
in I/ on ^ we put TrfW = frW = /,gA[0, ^(r, 9)]AO)^.
It must be established that there is a constant K' such that
for every f^ I/, f^fr^d^ ^ K^gl/WdO. Once this
is done it follows by the argument we have used before
that lim \\f—f^\\p = 0. In other words, the values of f on

r->0

the parallel surface to ^ at distance r converge in mean
of order p to the values of f on ̂ .

It is true, and for the same reason as before, that

^A(0,^0==l.

It is no longer true that / c h[Q, z(r, 9)] d^ = 1, but the inte-
gral is <_ K" for some K" independent of r and 0, and this is
just as good; however, proof is required.

We will continue to use the notations we have used through
the section. For example, if we are considering a given point
0 on the boundary, then for any number r we write C,. for the
circle with center 6 and radius r; etc.

Let r and 6 be fixed. Then by property g),

fWzfr.T^^f^——^L-^TJa8 Jcr t«Vo|('—z(r, ip)|c, (ri,,r,,| 0—2(^9)1"
r \y,-z{r, <p)12-^

•J^-cr co^|0—z(r,9)|" T I. + I..

Now, if |0 — y| ̂  r, then \y^ — z(r, y)| — ro ̂  2r, and in any
case lye — z(r, y)| + r^ ̂  D + 2ro where D is the diameter
of 8. Therefore,

T <2(D+2r,,) 1 F ^ 2(D+_2r,)
1!^———————————~,^~i\^'r -^————————— lYa-— ovo r" " — (ri,r,

To evaluate la we write

I < D+^o f |t/9-z(r,9)l-''o .j-
2= "^ J,8_c. |0-z(r,9)|" •
^ D+2r, /- l^,y)-y|. ^ 1 D±2r, /- lO-^L.̂
— cVo J68-cJO—z(r,y)|'' ' ro (»,r, J6g_c,|0—z(r,<p)|'' '

if we make use of c).
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Since 10—91^^ implies | 0—z( r , (p) |^t |0—9l/2, the two
last integrals are maj orated by

r F 2, ̂ -l and F 2-4C^1 respectively.

Integration by parts shows immediately that these expres-
sions are indeed bounded by bounds independent of r and 0.

The proof of proposition 2) was entirely special to the sphere.
A proof which will yield the statement of 2) in this more general
case can be based upon f} in the following way. Let f be
a harmonic function for which the functions /^(y) = f[z{r^ 9)]
converge weakly for some sequence T\—^O. If g(<p) is the weak
limit, and if x is fixed in the interior of 6, then

f^ A(0, x}gW rfO = lim f^ A(0, ̂ (0) dO.

On the other hand, if ^ denotes the variable on ^8^, then

^)=^Vk, ̂ )/"(k)^k=^gM^ o), ̂ WJr^,
where J^ is the Jacobian of the transformation 0—^z(rn, 6).
Now because of the weak convergence of the /^ and the uniform
convergence of the Jacobians to 1, and of the h^ to h, we deduce
that f(x) ==^/i(0, o;)g(0)d0, and hence fe^.

There is nothing at all to impede the extension of the key
proposition 3). We shall not repeat the proof, for with the
original proof and the calculations used to show HT^/H
bounded as a model, the reader will not find it difficult. One
remark will suffice: 3) should be proved only for x within
distance Fo of ^, but as each set of small capacity is included
within this strip, the restriction is harmless. Proposition 4)
is valid as it stands, as is Fatou's theorem.

§ 11. EXAMPLE 4. Potentials of order a of M. Riesz. — In this
last example we shall discuss the potentials of order a of
Marcel Riesz. Among the many papers on the subject
especially relevant to our needs are those of 0. Frostman
[17], M. Riesz [23], H. Cartan [12, 13] and J. Deny [15]. The
paper of Deny even gives explicitly several of the functional
space properties of the spaces of potentials, but through most
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of the paper the prevailing interest lies in measures or in dis-
tributions, and not in their potentials.

In the course of the discussion we shall prove that our
9-capacity Cg, formed with the function f(t) = t\ is exactly
the classical outer capacity. This can be taken as justifi-
cation of our use of the term capacity.

The basic set 6 is Euclidean M-dimensional space, n ̂  2.
We designate by Ka the kernel of order a of M. Riesz :

(11. 1) K^x) = K^(rr) = ———,\x\ct-n for 0 < a < n,
"n(a)

^2-r(^-\
(11. 1Q H.(a)= V^.

p / n — a \
V^)

Fundamental in the theory of potentials with respect to these
kernels is the composition formula established by Riesz :

(11.2) K^^x—y)=fK^x—z}K^z—y)dz if a+P<n .

Let us write Q^ for the class of all positive Borel measures
p. on 8 with the property:

(11. 3) \\^=ffK^x-y}d^y}d^x)<^,

and let us write Qa tor the class of differences of measures
in Q^. It can be shown that the integral (11. 3), which is
called the energy integral, is finite and strictly positive for
every non-zero measure pi e Q^ (see 0. Frostman [17] and
H. Cartan [12]). The value of the integral is called the energy
of pi. A measure in Qa is said to be of finite energy. With the
usual definitions of addition of measures and of multiplication of
a measure by a real number the class Qa is a (real) vector space.
On it the function || pi || defined by the integral (11. 3) is a
quadratic norm. The space Qa is not complete in this norm.
However, an important theorem of H. Cartan (for 0 < a ̂  2)
and of J. Deny (for the remaining a) asserts that the subset
Q^, which is a convex cone in Qa? is complete (28).

(28) Deny's proof is based upon the theory of the Fourier transform in the space
of distributions of L. SCHWARTZ [24]. It is possible to obtain through direct ana-
lysis of the energy integral (11.3) a proof which does not make use of distributions.
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Now we define the corresponding space of potentials, the
actual functional space in which we are interested. First,
the exceptional class 3la is to consist of all sets A for which
there is a measure (JL e Qa' such that the integral j Viy.{x—y) d^(y)
is infinite for every x e A. Given a measure (JL e Q^ we
define its potential of order a as follows.

(11.4) K^{x)^fK^x-y)d^(y).

for every x for which the integrand is integrable. It is obvious
from the definition of 8la that Kop^) is defined exc. 3la- We
write ^a tor the functional class rel. 3la consisting of all func-
tions Kap-(^) for pi e Q^- It is not difficult to prove that every
function of class C°° vanishing outside of a compact is equal
everywhere to the potential of order a (0 <^ a <^ n) of a
measure pia belonging to all Qp, 0 < (3 < yz(2 9).

We shall make use of an exceptional class, to be called 31̂
and to consist of all subsets of the G§-sets which have measure
0 for every measure v e Q^- Although this class seems to
be different form the class 8la? we shall finish by showing
that the two are identical. The proof is difficult, however,
and for the moment we are content to observe that Sla^ Slo •
The argument for the latter proceeds as follows. If pi and v
belong to Q,? then the potential K^{x) is lower semi-continuous
and the integral (a, v) == j Kap.(^) dv is finite. Therefore the set
of points at which Ka^(^) is infinite is a set Gg of v-measure 0.

From 8la c: Slo follows that K^(x) == 0 exc. 8la it and only
i f [ ] p L [ | = = 0 . Therefore if we define |[ Ka^|[ == |1^||, ^a becomes
a normed functional class with quadratic norm. We shall see
presently that 3^ is a functional space rel. 3la and that it has a
functional completion rel. 3la-

For an arbitrary closed set Ad 6 let I\ denote the convex
cone of measures in Qa which are supported by A. l\ is
closed in Q^ and hence complete. By arguments standard in
the theory of Hilbert space it can be shown that correspon-
ding to any UL e Qa there is a unique a' <= FA which minimizes
the distance from p. to elements of [\;i.e. ||pi—pL'|| = min||ui—v||

(29) The measure ;JL» is given by a density f^(x) of class C00 and O d a ; ) — " — " )
for \x\ ->• oo.
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over all v e [^. pi' is called the result of sweeping the measure a
onto A. It can be shown that K^{x) = K^(x) a.e. (a'), and
that K^(x) ̂  Kapt.(rc) for x e A exc. Slo,. Since Q^ contains
each restriction of Lebesgue measure to a compact set, a
particular consequence is that Ka^(^) ̂  Ky,u.{x) a.e. in the
Lebesgue sense. It can be shown further that ||^'||:^|H|) in
addition, if m/' is the result of sweeping —a onto A, then
l l i^+^I I^ IN (30)- Consider the special case A==8. We
have || K^a' + ̂ )||^ ||K |̂|, and also

K^+^)(x}^\K^{x)\ exc. 3tQ..

In the next paragraph we shall see that the inequality
holds exc. 3la, and this will yield the strong maj oration pro-
perty.

From a lemma of Frostman ensues the fact, that if a
belongs to Q^, then at every point x the mean value of Ka[A
over the sphere with center x and radius r converges as r—^0
to Ka^(^) (whether the latter is finite or infinite). From this
it is clear that it a e Qa then at every point x exc. Sla the
mean value of Ka[^ over the sphere with center x and radius r
converges as r—^0 to Kapt.(^). Hence, if a and vbelong to Qa>
and if Kyy{x) ̂  K^u.(x) almost everywhere with respect to
Lebesgue measure, then Kyy{x) ̂  K^u.{x) exc. 3la- The strong
maj oration property in 3^ results.

With the aid of the strong maj oration property it is easy
to show that 3^ is a functional space rel. 3la- Let |p^| be a
sequence of measures converging to 0 in norm. For each n
let pi/, be such that K^ is a positive majorant for Ka^n with
the same norm, and from the sequence \y-n\ pick a subse-

(30) We make use of the following result which is valid in abstract Hilbert space.
If P is a closed convex cone with vertex at the origin, and if [A' and p^ are respectively

the points of F at minimum distance from (JL and — [A, then ||[JL' -4- ̂ '|| ̂  ||{A||, whatever
be the vector {JL.

PROOF. — Since y. — ;JL' is orthogonal to \^' and since — [JL — ̂  is orthogonal
to ;JL", the inequality to be proved takes the form

||;x||2 (cos2 9 + cos2 y + 2 cos 6 cos y cos ^) ̂  \\y.\\2,

where 0, <)/, 9, are the angles between u and [J/, y.' and y.", ^ and — [JL respectively.
Since 0 5^ 0, o <j 7C/2 and r. ̂  8 -|- ^ + ?» it is sufficient to prove that

cos2 0 + cos2 y — 2 cos 0 cos 9 cos (9 4" ?) ̂  !•

The left side of this inequality is = sin'2 ? -|- ?)•
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quence tp^J such that ^jll^J^00- As Q^ is complete there
/ f==1 00

is a pi €E 0^ such that p. == ^jp^. It can be shown that if (D^

belongs to Q^ and if the sequence \^n\ converges to co, then
for every x, Ky,^(x) <^ lim inf K^co^) (31). If the sequence \ co^
is increasing, then for every x, K^{x) ̂ sup KaCOn(rc), so that
Kaco(rr) = lim KaCDn(rc). Applied to the partial sums of the

00 00

series ^ UL^, this gives K^{x) === ̂  KaU^(rc) for every re (where
k=l k=i

the value + ̂  must be admitted, of course). Finally, therefore,
exc. Sla we have |Kaa^(a;)|^Kapi^(^)--^0.

We are prepared to show that the functions S and S are
identical. One consequence of this will be that 8 == 8 and
§^==^. Let tp in j be a Cauchy sequence of measures such
that for a given set B e &, lim inf [ KaUt.n(a?) | ̂  1 on B exc. 8la
and lim||pi^[|^S(B) + £. Let a^ and uJ'n denote the results of
sweeping ?.„ and — pin, respectively, on K. Then each of the
sequences pin and ^ is Cauchy, so the sequence u^ === p^+ ^n is
Cauchy, and because of the completeness of 0^ it has a limit pi.
As <?a is a functional space rel. 8la? l ^n l contains a subse-
quence ^p.nj such that Ka^(rc) == lim Ka^(^) exc. Sla- There-
fore we have exc. Sla? Kapt. (re) ̂  lim inf | Kap-n(^) | ̂  i and at
the same time S(B) ̂ ||^||^lim||aJ|^(B) + £.

If A is any set in 6, then the measures (x e Q^ such that
Kapi-(rc) ̂  1 on A exc. Stta form a closed convex set. Call it fl.
A closed convex set in a Hilbert space necessarily contains
a point at minimum distance from the origin (or from any
other point). Thus the infimum, inf || a |[ taken over p. e Ft,
is a minimum, ie. is assumed $ for each A e & there is a measure
aeQ^ such that K^{x) ̂  1 on A exc. 2la and such that
11 pi 11 = S (A). An immediate consequence is that 3la = ̂ °s (== 8S).
r^ will be used again later.

The next step is to obtain the relation between our capaci-
ties and the classical capacity (of order a). One of the many
common definitions of the classical capacity is as follows.

(31) See H. CARTAN [13]. The simple proof is based upon the (act that Ka i?
lower semi-continuous.
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(11. 5) If C is a compact set, then y(C), the capacity of C,
is the number [|^c||2? where pie minimizes the
expression 1 1 pi | [2 — 2m (C) among all measures pi e Q^
supported by C. pie 15 called the capacitary distri-
bution of C. If A is an arbitrary set, then^i(A.),
the inner capacity of A, is the supremum of the
numbers y(C) over all compact sets Cd A. If A
is an arbitrary set, then Yo(A), the outer capacity
of A, is the infimum of the numbers Yf(G) over all
open sets G ̂ 3 A.

It is well known that the capacitary distribution exists
for any compact set C and is uniquely determined by C.
(Jic is the result of sweeping onto C an arbitrary measure v
whose potential is equal to 1 everywhere on C. Consequently,
the potential of u-c is ̂  1 on C exc. 81̂  and is equal to
1 a.e. (pk;)- It ^ 1s ̂ y measure in Q^ such that KgV (x) ̂  1
on C exc. 31̂ , then

ll^c|||H|>(|^ v)==/K,v^)^>jK,ac(^)^c=|!p.c!r,

so || v 11^11 pk;!!? and we have the following formula.
(11. 6) y(C) == inf ||v||2 taken over all v e Q^ suc/i (W

Kav(*y) ̂  1 on C ercc. Slo . The minimizing mea-
sure is pic.

It is convenient to express the capacity also as the square
of the distance from a certain convex set to the origin. The
measures a e Q^ such that Ky,u.{x) ̂  1 on C exc. 21̂  form
a closed convex set similar to 1̂ ;. Call this new set F^*.
By virtue of (11.6) it is plain that y(C) is the square of the dis-
tance from r^* to the origin, and that [Xc is the point in Hi*
closest to the origin.

Suppose that an open set G is written as the union of an
increasing sequence |C^ of compact sets, and suppose that
the sequence ^p.c,J ot capacitary distributions is bounded
(as they must be if G has finite inner capacity). Then there
exists a subsequence ^picn j converging weakly to a measure
a e Q^. For each /c, all p-c^. with i^k belong to F*:^, so,
as r^* is closed and convex, a belongs to F^ . Hencen/c » <-» nff



FUNCTIONAL SPACES AND FUNCTIONAL COMPLETION 181

KaL<.(*r)^l on C^ exc. Sl ,̂ and so Ka^(^)^l on G exc. 8(0^.
By taking mean-values it follows that KaUt.(rc)^l on G every-
where^ Now, ll^ir^liminfllac.JI^Y^G); and HaH^y^G)
is obvious from (11. 6). We have proved :

1) If Y((G) < oo for an open set G, then there is a u. e Q^
such that Kap.(^) ̂ 1 on G everywhere and such that

T.(G)=Y.(G)=[|a||2.

The same argument (up to the point where the mean-values
are taken) applied to S and 3la gives a similar result which
will be important.

2) If A is the union of an increasing sequence of sets A.n
then S(A) = lim S(A^) whenever A e §; A e ̂  whenever each
An e & and lim S (An) < oo.

It is plain from (11. 6) that y(C)^S(C)2 for any compact
set C. It follows immediately from 2) that To(G) =Y,(G)^S(G)2

and from 1) that Yo(G) == y,(G) ^tS(G)2 whenever G is an
open set in &; and it follows also that G e= & whenever
Y((G) <^ oo. An immediate consequence is that if A is any
set with Y o ( A ) < o o , then A <= & and ^(A)2^^). To
obtain the converse, let A e &, and let UL e Q^ be such that
K.a^(x)^i on Aexc.3la and such that ||UL|[ == S(A). For each
YI < 1, let G^ = E [Ka^(a0 > Y)]. Then for each Y] < 1, G^ is

an open set, G^ =) A exc. 8la, and S(G^)^m l j• If Ao is any

set in 8la? then there is a measure v e Q^, |[v[ | == 1, such
that KaV (re) == + oo at every point x of Ao. Setting

G, = E [KaV [x) > ̂ -1 we have G, :D Ao, and § (G,) ̂  £.
a; L £ J

Now, taking, Ao == A—Gyj we obtain an open set G^ U G7,

containing A and such that S(G^ U GO^S(G^) + S(GO^^+ £,

a number as close as we please to o(A)(32). It follows that
if Ae=S, then S(A) == infS(G), the infimum being taken over
all open sets in & containing A. And from this and the
previous discussion follows immediately the next statement.

(32) The sub-additivity of 8 results from the fact that 8(A) = 8 (A) = c, (A)
whenever c,(A) < oo. The second equality conies from the strong maj oration
property.
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3) A 6 & if and only i/*yo(A) < oo. IfK e &, ^M o(A)2 = yo(A).

4) yo(A) == ^(A) /or c^en/ set A {where c^ is the (^-capacity
formed with the function f (t) = (2.

00

Proof. — Suppose that A C: H A^ with A^ e Ss1. Then
_- - _ n==l

To(A)^ Jj Yo(AJ = ̂  o(A,)2, and because {A^ is any
n = = l n= l

sequence covering A, Yo(A)^C2(A). Now, if Yo(A) is finite,
then A e 8 and yo(A) == o(A)2 > c,(A).

The natural question to approach next is that of the rela-
tionship between the inner and outer capacities. A necessary
preliminary result is the following, obtained directly from 2)
and 3).

5) If A is the union of an increasing sequence of sets A^,
then Yo(A) = limyo(An).

With the aid of 5) and a theorem of G. Choquet we are
able to state ( 3 3) :

6) If A is any analytic set, then Y((A) == Yo(A). In parti-
cular ^IQ, == Sla-

It has not been proved explicitly yet that the space ^?a has
a functional completion. We bring the example to an end
by doing that and by exhibiting a representation of the func-
tions in the perfect completion.

With the aid of the Riesz composition formula, (11. 2),
it is easy to see that if pi e Q^, then for every x, K^^{x) = K^f{x),
where f= Ka/a^? and where Kpg for any function g signifies
the potential of order p of the measure whose density with res-
pect to Lebesgue measure is g. Furthermore, H^l]^ ( ^{x^dx.
It follows that for any a e Q^, and for f == K^u., we have

(11. 7) K^{x) == K^f{x) exc. 31,, and M2 =f\fWdx.

(88) G. CHOQUET has developed an abstract and very general theory of capacity
in topological spaces. The crucial properties of the present set functions y, Y(,
and Yo by virtue of which Choquet's theorem is applicable are the following: (see
Choquet [14 a].

a) Y is an increasing non-negative set function defined on all compact sets.
b) Given a compact set C and an s > 0 there is an open set G D C such that

T(C') ̂  f(C) + £ whenever C c C' c G.
c) •yi ^d To ape constructed from y as in (11. 5).
d) fo satisfies 5).
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Let A be the set of points where K^f{x} = + oo for some
non-negative square integrable function /*. Because of the
lower semi-continuity of Ka/a^rc), A is a set Gg. It is imme-
diately seen that if ^ e Q^ then the integral J"K^f{x) du.{x)
is finite. It follows that y.(A) = 0. In other words,
A €E ̂  == 8la. The class of subsets of sets where the poten-
tials Ka/a/^)? /*±i=0 and square integrable, become infinite is
exactly the class 8la. It can be proved easily by methods
we have already used that the class 3a of functions K^f{x),
f square integrable, is a functional space rel. ?la when given
the norm \\^f\\=\j'\fWdx^\ It is evident that this
class is complete, and by (11.7) it contains ^a as a subclass.
Indeed, <?a is the perfect completion of 3a; the only remaining
point, that of the density of «^a in ^a? is easy to settle with the
aid of the fact that every infinitely differentiable function
which is 0 outside a compact set is the potential of order
a/2 of a measure p. e= Qa. This is a fact we have mentioned
before (see the paragraph after (11. 4)).
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