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INVARIANT SUBSPACES
ON OPEN RIEMANN SURFACES. II

by Morisuke HASUMI

The purpose of the present paper is to describe a few remarks
on our previous work [4]. In the paper [4] we determined
the closed invariant subspaces of the L^ spaces with respect
to a harmonic measure on the Martin boundary of a hyperbo-
lic Riemann surface R under three hypotheses (A), (B)
and (C). These hypotheses will be stated later for ease of
reference. In the course of getting the main result we showed
in [4] that almost all Green lines on our surface R are con-
vergent in its Martin compactification, which implies coinci-
dence of fine limits and limits along Green lines for certain
classes of analytic or harmonic functions on R, and we
also obtained an extended version of Cauchy-Read theorems.
The first thing we shall mention in this paper is an observation
of Harold Widom which says that the hypothesis (C) is a
consequence of the hypothesis (B) or of a much weaker
one, which we shall call (B^. Next we shall show that the
hypothesis (A) is redundant, so that most results in [4]
hold under a single hypothesis at most as strong as (B).
As we shall see later, every Riemann surface R satisfying
( B ' ) can be completed to a regular Riemann surface R4'
satisfying (B') by filling up an at most countable number
of isolated holes of R. Once we get this, the redundance of
the hypothesis (A) becomes quite clear. In fact, problems
concerning the Hardy classes on R can be reduced to cor-
responding ones for the extended surface R4'. In this way,
we see that our invariant subspace theorems in [4] continue
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274 MORISUKE HASUMI

to hold for any Riemann surface satisfying (B). We shall
add a little more information to Widom's observation men-
tioned above. In section 4, we shall state a proof of Lemma
5.5, (a) in [4], because the proof suggested there is rather
misleading. In the final section, we shall collect miscellaneous
remarks, inclusing corrections of the paper [4].

We wish to thank Professor H. Widom for his permission to
incorporate his result in this paper, Professor L. Carleson for
helpful suggestions, and Mr. M. Hayashi for simplification
of some arguments.

Notations and basic hypotheses.

We shall denote by R a hyperbolic Riemann surface
and by G(a, z) the Green function for R with pole at a
point a e R. For a positive number a and a point a e R,
we put R(a; a) == {z e R : G(a, z) > a} and

ClR(a; a) = { z e R: G(a, z) ^ a}.

We shall denote by B(a; a) the first Betti number of the
region R(a; a). For a point a e R, let

Z ( a ; R ) = {zj=z,{a): j = 1, 2, . . . }

be an enumeration of the critical points of the function G(a, .)
which we repeat according to multiplicity. For 1 ̂  p ^ oo,
H^R) will denote the Hardy classes of analytic functions
on R in the sense of Rudin [9]. We finally state the hypo-
theses mentioned above.

(A) R is regular in the sense that Cl R(a; a) is compact
for any a > 0.

(B) Let Hi(R; Z) be the integral first singular homology
group of R and II (R) the group of multiplicative charac-
ters of the group Hi(R; Z). Then, there exists a family of
outer l.a.m.'s (l.a.m. stands for locally analytic modulus;
cf. [4]) {8 (6 ) : 6 e n ( R ) } such that (a) S(l) = 1$ (fc) 8(9)
has character 6 for each 6 e II(R); (c) 0 < 8(6) ^ 1 for
each 6 e II(R); (rf) if a sequence of the form

{8(6J: 6 , e n ( R ) , M = l , 2 , . . . }
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is pointwise convergent to a function of the form \f] with
f G H°°(R), then f is (B exterior in the sense that /Tl^R)
is dense in H°°(R) with respect to the strict (or (3) topology.

(B7) For each 6 e n(R), there exists an l.a.m. 8(6) such
that 8(6) ^ 1,8(6)^0, and 8(6) has character 6.

(C) There exists a point a e R for which

S{G(^., z) : Zj e Z(a; R)} < oo on R - Z(a; R).

1. Widom5 s result.

We shall begin with stating Widom's observation, together
with his proof, concerning the hypotheses (B') and (C).

THEOREM 1 (H. Widom). — For any hyperbolic Riemann
surface R, the hypothesis (B') implies the hypothesis (C).

Proof (H. Widom). — As is easily seen, the hypothesis (B7)
is equivalent to the fact that every flat complex line bundle
over R has a non-trivial bounded holomorphic section. And
the latter is equivalent, by the main theorem of Widom [II],
to the hypothesis (B") : j B(X; a) d\ < oo for some a e R

*/ 0

(and hence for all a e R). Let {S^ : n = 1, 2, . . . } be
a sequence of Jordan subregions of R such that (i) each S^
is bounded by a finite number of analytic Jordan curves;
(ii) R ^ S^ has no compact components; (iii) Cl S^ c S^+i

00

for each n; and (iv) R = I J S,. Let a e Si be fixed
n==l

a.nd let G^(a, z) be the Green function for the region S^
with pole at the point a. Let

Z ( a ; S J = { z ^ : /=1, . . . ,^ )}

be an enumeration of the critical points of G^(a, .) which
we repeat according to multiplicity. Let

Sn(a; a) = {z e S, : G,(a, z) > a}

for each a > 0 and B^(a; a) the first Betti number of
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S^(oc; a). Then, by the formula (7) of [II], we have

S{G,(^, a) : z^ e Z(a; SJ} = ^ B,(X; a) dX.

Since G^(a, z) and 8G^(a, z) = b^G^(a, z) dz converge almost
uniformly on R to G(a, z) and 8G(a, z), respectively,
the argument principle shows that every critical point of
G(a, .) is a limit of critical points of G^(a, .) and, in fact,
that the total order of the critical points of G(a, .) lying in
a given relatively compact region in R is equal to that of
G^(a, .) tor all sufficiently large n. Thus,

iw
S{G(^, a) : ^ e Z(a; R)} ^ lim inf S G,(^,, a)

n>oo ^=1

= lim inf f°° BJX; a) d\ = f°° B(X; a) dX,
n>oo ^ ° J °

the last equality being true because the sequence {B^(X; a ) :
n == 1, 2, . . . } is monotonically increasing with limit B(X; a).
As we already know the finiteness of the last integral, we
have obtained the desired result.

Remark. — We shall give later an explicit evaluation of the
integral 1°°B(X; a) rfX.

2. Regularization of hyperbolic Riemann surfaces.

We first prove the following

LEMMA 2. — If R is a hyperbolic Riemann surface for
which B(X; a) < oo for all X > 0 and a e R, then there
exists a regular hyperbolic Riemann surface R"1" and a discrete
subset S of R"^ such that R is conformally equivalent to
R+ ^ S. The regular surface R4' is determined uniquely by
R up to conformal equivalence.

Proof. — (i) First we assume that the first Betti number
of R is finite. Then, there exist a finite number of open
subsets Ui, . . . , U ^ of R satisfying the following: (a)
the closures Cl U; are mutually disjoint non-compact
subsets of R; (&) for each i, the boundary &U; of U; is
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a simple closed analytic curve, say J», and there exists a
conformal homeomorphism ^ of U; onto the annulus
{w e C: r; < \w\ < 1} (0 ^ r; < 1) such that ^ is con-
tinuously extendable to a homeomorphism of Cl U onto
[w e C: 7*1 < \w\ ^ 1} which maps J^ onto the unit

- m

circle; (c) R ^ I J Ui is a compact bordered Riemann sur-
face. i==l

If 7\ > 0 for all i, then R itself is easily seen to be
regular. So we may assume that r; = 0 for some i. For
the sake of simplicity, we assume that r; == 0 for i = 1, . . ., s
and 7*1 > 0 for i == s + I? . . ., m. Take a set of s elements,
say B == { & ( ! ) , . . . , &(«)}, and form a formal union

R+ == R u B.

To each point p in R we assign a parametric disk (Up, 4'p)?
which is compatible with the given conformal structure of R.
For each i = 1, . . ., 5, we put U^) = U; u {b{i)} and

J,*/,\ ^ ^iO5) for z e U,?

• l v / ( 0 for z= b{i).

We regard (LJ^), ^) as a parametric disk about the point
&(i). It follows from our construction that these parametric
disks define a conformal structure on R4' which induces on R
the original structure of R. As is well known, every bounded
harmonic function on the punctured unit disk

{w e C: 0 < \w\ < 1}

can be continuously extended to the full open unit disk so as
to have a harmonic function. So the Green function G(z', z)
of R with pole at z' e R can be extended by continuity
to the Green function of R^ This function clearly vanishes
on the ideal boundary of R+. We may thus conclude that
the surface R4" is regular.

(ii) We now consider the general case. Let us fix a point
a e R. Take any a > 0 and put Ea == R(a; a). Since
the first Betti number of the surface Ea is equal to B(a; a)
and so is finite. As we have shown in (i), Ea can be completed
to a regular surface E^ by adding a finite number of points
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to Ea. It is not difficult to show that, if a > (B > 0, the
surface E^ may be canonically identified with the sub-
region of the surface Eg" defined by

{ze^: Gp(a,z) > a - (B},

where Gp(a, z) denotes the Green function of Eg with pole
at a. With this identification for all a, (3 with a > (3 > 0,
we put R4- = u{E^ : a > 0}. If we give R+ the conformal
structure induced from those of E^, then R+ is a regular
hyperbolic Riemann surface which satisfies the property
of the lemma.

(iii) It is a routine matter to show the uniqueness of the
pair (R+, S). The proof is thus omitted. Q.E.D.

By means of the preceding lemma, we can easily find a
simple relation between the Martin compactification of R
and that of R+. Before doing this, we shall fix some nota-
tions. Let E* be the Martin compactification of a hyperbolic
Riemann surface E and A(E) = E* ^ E the Martin ideal
boundary of E. Take a point Oo = Oo(E) in E, which is
fixed throughout the discussion, and let (XQ == oco(E) be a
fixed positive number so large that {z e E : GE(O(), z) > a^}
is a parametric disk on E, where GE(O, z) denotes the
Green function for E with pole at a. Let 0 be an infinitely
differentiable real function on [— oo, +00] such that
<&(() ^ (, 0(() = t for ( ^ 0, 0 is constant for ( ^ 1,
and cPO(()/^2 ^ 0 and put $o(^) = ̂  — ao) + ao. Then,
we define k^{b, z) = G^{b, ;S)/<I>()(GE(&, Oo)) for &, z e E.
The function b ->• k^b, .), & e E, is then extended by
continuity to E* and we get the Martin function k^b, z)
for (&, z) e E* X E. In the following we shall refer to the
point OQ as the base point for the Martin function /CE. The
point b is called the pole of the Martin function z -> k^{b, z).
The Martin compactification E* of E can be characterized
as the smallest compactification of E to which every function
b -> k^(b, z) (z e E) can be extended by continuity. Further-
more, let Ai(E) be the set of points b e A(E) for which the
function z —> k^(b, z) is a minimal harmonic function on E.
We shall denote by dj^. the harmonic measure, supported by
Ai(E), for the point OQ. We call a function on Ai(E) inte-
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grable if it is so with respect to the measure d^. For a.ny
b e Ai(E), let ^&(E) be the family of nonempty open sets D
in E such that kj^(b, .) ^ (A*E(&, . ) )E^D? where (^)E^D? tor
a positive function u on E, is the greatest lower bound of
the positive superharmonic functions which are not smaller
than u quasi-everywhere on the set E ~ D. Let f be any
function from E into a compact space X. For b e Ai(E),
put f(&) = n{Cl(/*(D)): De^(E)}. Let ^(f) be the
set of be Ai(E) for which /*"(&) is a singleton and define
f{b), for each b e ^(/*), as the point in /"(6). If b e 2(f),
then we say that f has a fine limit f(b) at 6. When f
is a numerical function, we take as X the complex sphere.
A detailed discussion on these concepts may be found in [2].

THEOREM 3. — Let R be a hyperbolic Riemann surface for
which B(X; a) is finite for any X > 0 and a e R. Then,
the regular hyperbolic Riemann surface R4" obtained in Lemma
2 can be constructed as follows. Let S be the subset of the
Martin ideal boundary A(R) of R such that a point b e A(R)
belongs to S if and only if lim sup {G(a, z ) : z e R, z ->• b} > 0.
Then, the set 2 is at most countable and independent of the
choice of a, and, for each b e S, there exists a neighborhood
V of b in the Martin compactification R* of R with
V n A ( R ) = { 6 } . On the union R+ = R u S there exists
a uniquely determined structure of hyperbolic Riemann surface,
compatible with the relative topology of R4' as a subspace of
R*, which satisfies the following:

(i) R4" is a regular hyperbolic surface and the conformal
structure of R4' induces on R the original structure of R;

(ii) if V is a neighborhood of b e S in R* such that
V n A(R) == {&}, then every bounded harmonic function u
on V n R can be extended by continuity to the point b so
as to get a harmonic function on V with respect to the conformal
structure of R4';

(iii) the Green function G^z7, z) of R4' {resp.y the Martin
function /r^, z) of R4" with pole at b and base point Oo{e R))
is obtained by extending, by continuity in the topology of R*,
the Green function G(^', z) (resp^ the Martin function k{b^ z)
of R with the same base point Oo) to the points in S ;
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(iv) the Martin compactification of R+ can be identified
with R* and Ai(R) == Ai(R+) u 2;

(v) the harmonic measure rf%+, supported on Ai(R+), for
the point OQ {in R) with respect to R+ is nothing but the
restriction, to the set Ai(R+), of the harmonic measure d-^
on Ai(R) for the point OQ with respect to the surface R;

(vi) if R satisfies the hypothesis (B) (resp., (B7)), then
R4" also satisfies (B) (resp., (B7)).

Proof. — Let (R+, S) be a pair given by Lemma 2. Then,
the properties (i) and (ii) are clearly satisfied. So we prove
here that R+ has the remaining properties.

(iii) The property (ii) implies that, for each fixed z e R,
the Green function z ' -> G(z', z) of R with pole at z e R
is extended by continuity to the Green function z ' -> G+(z', z)
of R+. So the definition of the Martin functions shows that,
for each fixed z e R, the function b ->• k+{b, z) on R+
is obtained by extending, by continuity, the function
b -> k(b^ z) on R to the points in S.

(iv) For each fixed z e R, the function b -> /c+(&, z}
on R+ can be extended to a continuous function on the
Martin compactification, say R'421, of R+ and therefore the
function b -> /c(&, z) on R can also be extended to a con-
tinuous function on R^. Since the family of functions
b -> /c+(&, z+) with ;s+ e R+ separates points of R^ and
since R is dense in R+, the subfamily of functions

b -^ /c+(&, z}

with z e R also separates points of R^. Hence, R^ can be
identified with the Martin compactification of R, i.e., R*==R^.
In particular, we have S = A(R) ^ A(R+). Since R+ is
regular, we conclude that b e A(R) belongs to S if and
only if

lim {G(a, z) : z e R, z -> b} = G+(a, b) > 0.

If b e S, then the function z -> /c(6, z) is equal to a constant
multiple of G+(&, z) and so is a minimal harmonic function
on R. We thus have S c Ai(R) and therefore

Ai(R) = Ai(R+) u S.
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(v) This is clear from the above observation.
(vi) Let B^X; a) be the first Betti number of the region

R-^X; z) = {z e R4": G+{a, z) > X}, where we assume a e R.
Then, B-^X; a) ^ B(X; a) for all X > 0 and therefore
f°°B+(X; a)^X < f ° ° B ( X ; a ) ^ X . So R^ satisfies (B') when-

Jo Jo
ever R does. Now, suppose that R satisfies (B). Since
R c R4^ we have a natural homomorphism of Hi(R; Z)
onto H^R"^; Z). So, we have a natural homomorphism of
n(R+) into n(R), which is injective. For any 6+ e II (R4-),
let 6 be the element in II (R) corresponding to e+ under
this homomorphism. Then, we have ^(y) == 1 ^or ^y
cycle Y e Hi(B; Z) which is null-homologous in R^ We
put u == — log 8(6). Since R satisfies (B), u is an outer
harmonic function on R. Namely, u is harmonic and
lim {u /\ n) === u on R. Since u f\ n is a bounded harmo-
n>oo
nic function on R, it can be extended, by continuity, to a
harmonic function ?„ on R4" in view of the property (ii).
So, lim v^ say ^, exists and is a continuous extension of

n>oo
u to R4". The function v is clearly outer, so that exp (— v}
is an outer I.a.m. with character 64-. Putting v = 8(e4"),
we see that R4" satisfies the properties (a), (fc) and (c)
of the hypothesis (B). Let f be a function in H^R^-)
such that there exists a sequence {S"^) : n == 1, 2, . . . }
in n(R+) with lim 8(6+(M)) == |/'| pointwise on R+. Then,

n>oo
the above construction says that 8(6(n)) is the restriction
of 8(6+(7^)) to R. So, if we define h to be the restriction
of f to R, then S(Q(n)) converge to \h\ pointwise on R.
By the property {d) of (B) for the surface R, /iH°°(R)
is strictly dense in H°°(R). Then, it is easy to see that fH^R4-)
is also strictly dense in H^R^"). Hence, R4" is shown to
satisfy the hypothesis (B).

The theorem is now clear from these observations.

Remark. — In the author's original proof of Theorem 3,
the existence of a regular surface R4' was shown via the
Martin compactification R* of R. The present proof
using Lemma 2 is due to Mikihiro Hayashi.
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3. Applications of regularization.

In this section, we shall apply the regularization process
given by Theorem 3 (or Lemma 2) to surfaces satisfying the
hypothesis (B) or (B^ and obtain certain improved ver-
sions of our results in [4].

a) Invariant subspace theorems for R. — For 1 ̂  p ^ oo,
the mapping h -> h gives an isometric linear injection of
the Hardy space H^(R) into L^(^), where H>(R) for
1 ^ p < oo (resp., for p = oo) is normed by

H/11, = (L.H.M.(lfh(ao))1^

for f e HP(R) (resp., HfL = sup {\f{z)\ : z e R} for
fe H°°(R)). By use of this mapping we can identify, for
each p, the space H>(R) with a subspace of LP(^), which
we denote by H^(d^). In particular, H°°(d/) forms a subal-
gebra of the algebra L°°(^) and each L^(d^) can be seen
as a topological module over H°°(d)c)- We suppose that the
surface R satisfies the hypothesis (B). By applying Theo-
rem 3 to R, we construct a regular hyperbolic surface R4"
which also satisfies (B). The space L^(d/) can be identified
with L^d!^") by Theorem 3, (v). On the other hand, every
bounded harmonic function on R can be continued to the
points in S so as to be harmonic on R4'. From this follows
that every outer harmonic function can be continued to S
so as to get an outer harmonic function on R4". Since the
least harmonic majorant u of \f\P for fe H^(R) with
1 ^ p < oo is outer by [4; Proposition 2.7, (a)], we see
that every f e H^R) can be continued to S so as to get an
analytic function f+ e H>(R+) and that L.H.M.df^) is
precisely the continuous extension of u to R4'. The space
H^R) is thus seen to be isometrically isomorphic to H^(R+)
and consequently H^^) is identified with H^ri^4'). Since
the surface R-^ satisfies the hypotheses (A) and (B), all the
results in [4] hold for R4" in view of Theorem 1. Using the
above correspondence between function spaces on R and
those on R4', we conclude that the same results hold for the
surface R as for R^. Hence we have the following
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THEOREM 4. — The invariant subspace theorems for L^^)
and for H>(R) {namely, Theorem 7.1 and Corollary 7.2 of [4])
Ao^ /or any hyperbolic Riemann surface R satisfying the
hypothesis (B).

6) TAe Cauchy-Read theorems. — Our Cauchy-Read theorems
[4$ Theorems 5.3 and 5.12] should be amended to meet with
the present situation. By considering the surface R+ as in (a),
we get the following

THEOREM 5. — Let R he a hyperbolic Riemann surface
satisfying the hypothesis (B) and let a G R. Let f be a
meromorphic function on R such that {f^g^ has a harmonic
majorant, where

g(a)(^) == exp (-- ^{G-^w; z) : w e Z(a; R+)}) for z e R.

Then, the fine boundary function f for f exists a.e. on
Ai(R), is integrable and

f^ = Jl.w AW' a) W-

THEOREM 6. — Let B. be a hyperbolic Riemann surface satis-
fying the hypothesis (B7) and let a e R. Let u* e L1^/)
and suppose that

f^h{b)u*{b)k{b, a] d^(b) == 0

for each function h, meromorphic on R such that [Ajg^
is bounded on R and h{d) == 0. Then, there exists an f
in H^R) such that f = u* a.e. on Ai(R).

That the latter theorem holds under the weaker hypothesis
(B7) can be easily seen by looking into the proof of our earlier
theorem in [4].

c) Fine limits and limits along Green lines. — An intimate
connection between fine limits and limits along Green lines
was found and played an important role in [4]. In view of
Theorem 3, the same relation holds for surface satisfying (B').
We shall use the following notations. Let G == G(R; a) be
the totality of Green lines L issuing from a given point a.
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Then, G is parametrized with (o e [0, 2-n;) in a natural
way as L = L^, so that the usual topology of the circle can
be transferred to G. The Green measure dm on G is
defined by rfm(L) == dm{u) === d^l2n with L == L^. A
Green line L e G is called regular, if inf {G(a, z} : z e L} = 0.
Let L == L(R; a) be the totality of regular Green lines
issuing from a. Then, L is a G§ subset of G of Green
measure one. For a Green line L e L(R; a), let z(L; a) be
the point z on L where G(a, z) == a. We consider the
following condition C : For a point a e R, almost all Green
lines L in L(R; a) are convergent to a point in A, i.e.,
z(L$ a) converges to a point in A as a -> 0 in the Martin
topology.

We shall denote by A(R; a) the totality of convergent
Green lines L in L(R; a) and by b^ for each L e A(R; a),
the limit point of L in A.

THEOREM 7. — Let R be a hyperbolic Riemann surface
satisfying the hypothesis (B'). Then, the following hold:

(i) The pair (R, R*) satisfies Brelot-Choquet's conditions
A, B in [1$ p. 249] (cf. also [6]) as well as the condition C
mentioned above.

(ii) Let a e R be fixed. Then, the function L ->• b^ from
A(R; a) into A(R) is measurable and is measure preserving
with respect to the Green measure dm on A(R; a) and the
harmonic measure k{b, a) d-^{b) on A(R) corresponding
to the point a.

(iii) Let f* be a bounded measurable function on Ai(R)
and let f == h[f*] be the solution of the Dirichlet problem for
R with the boundary data /**. Then, the limit

/ • (L)=l imf(z(L;a))
a->o

exists for almost all L e A(R; a) and /*(L) == f*{bj) rfm-a.e.
on A(R; a).

(iv) Under the same assumption as in (iii), we have

fW == r{b) = f(L) a.e.on Ai(R)

where b = b^ with L e A(R; a).
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d) Evaluation of the function P (a ,a / $z) . — We put, as
in [4], P(a, a1; z) == 80(0', z)/8G(a, z). For this we have

PROPOSITION 8. — Let R be a hyperbolic Riemann surface
satisfying the hypothesis (B'). For a given pair of points
a, a' in R, there exists a constant c > 0, depending only
on a, a' and R, such that

^(z) exp (- G(a', z))|P(a, a'; z)| ^ c on R.

Moreover, P(a, a7; 2;) /ia5 the fine boundary values a.e. on
Ai(R) ayid we We P(a,a7 ; 6) == /c(&, a')//c(6, a) a.e. OM
Ai(R).

e) Evaluation of the integral r ° ° B ( X ; a ) d X . — Finally
we wish to see the difference between the hypotheses (B')
and (C). We have the following

PROPOSITION 9. — Let R be a hyperbolic Riemann surface
satisfying the hypothesis (B7) and let a e R. Then, the set
Z(a; R) of critical points of the function G(a, .) consists
of those elements of the set Z(a; R4-) that lie in R and we
have

f'B^; a)d\ ̂ r 'B+^a)^ + S{G+(a, w} : w e S }
== S{G+(^ z) : w E Z(a; R+)} + S{G+(a, w) : w e S}.

Proo/* (M. Hayashi). — Let S == {^i, Wg, . . .} and put
Rn ^ R4" - {^i, ^2, . . ., wj for n = 1, 2, . . .. Denote by
BJa; a) the first Betti number of the subregion

R^(a ;a )= { ^ e R , : G+(a, z) > a}.

Since R^ == R^i ^ {^n}? we have

B(^ a}= ̂ -^ a) for a > G+^ ^n)
^ ? / (B^(a ;a )+l for a < G+(a, ^).

So we have

pB,,(a; a) rfa = f-B^.^a; a) rfa + G+(a, ̂ )
»/ 0 /̂ 0

= f°°B+(a ; a )da+ S G+(a, ^).1/0 i=i
Since B^(a; a) converges monotonically to B(a; a) as
n -> oo, we get the desired result.
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4. Proof of [4; Lemma 5.5, (a)].

The suggestion which I made for the proof of Lemma 5.5 (a)
in [4] looks quite misleading, for the theorems in Sario and
Nakai [10] cited there do not deal with arbitrary bounded
analytic functions. So we wish to describe an explicit proof
of the lemma. For convenience's sake, we restate our asser-
tion.

PROPOSITION 10 ([4$ Lemma 5.5 (a)]). — Let R he a hyper-
bolic Riemann surface which satisfies the hypotheses (A), (C)
and let G' = G^R; a) == u{L : L e G(R; a)} u {a} be the
Green star region with center at a point a e R. Then, every
hounded analytic function f on G' possesses a radial limit a.e.
on G and the limit function /*(L) is m-measurable on G. f
vanishes identically whenever jf(L) vanishes on a set of positive
measure.

Proof. — Let O.o be the set of angles co e [0, 27r) for
which the Green line L^ is singular, i.e., L^ ends in a
critical point, say z(co), of the Green function G(a, .). It
is known that, if a critical point has order c, there exist
exactly c + 1 singular Green lines, issuing from a, which
end in that point. We know also that the function

z -> r(js) exp (ico(z)),

defined in [4; Section 5], maps the Green star region G'
conformally and univalently into the open unit disk. Its
image, say D, is equal to U\u{S^: co e Qo}, where U
is the open unit disk and S^, co e i^o, denotes the slit

{re^: exp (— G(a, z(<o))) ^ r < 1}.

The usual topological boundary of D is clearly the union
of the unit circumference and the slits S^, in view of the
hypothesis (C). But we regard D somewhat differently.

For ^i, ^2 e D, let ^(^i, ^2) be the infimum of the lengths
of curves joining ^i and ^2 m D. Then, d is a metric in D
which induces there the usual Euclidean topology. Let D*
be the completion of D with respect to the metric d. We
consider each slit S^, co e Qo? as ^e union of its two edges
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S^ and S^ where S^ = {z+ = {z, +) : z e S^} and
s^ == {^~ == (z? — ) : 2; e S^}. We regard z+ (resp., z~)
with z e S^ as in the closure of [w e D : Im(ws-1) > 0}
(resp., {w e D : Im(ws-1) < 0}) with respect to the Eucli-
dean topology of the complex plane. So, z+ = z- when
and only when z = exp (— G(a, z(co)) + ico). We put

L == u {S; : co e Qo} ^ U {S,;: <*) e ^0} ^ {^ : ^ ^ ^o}.

Then, the completion D* can be identified in a natural way
with D U L, so that L can be seen as the boundary of D
in the space D*. It should also be noted that L can be
identified with the set of prime ends for the domain D. The
boundary L is rectifiable because the hypothesis (C) implies
that S{1 — exp (— G(a, z(co))) : <o e O.o} < oo. By a theo-
rem on prime ends or by a slight modification of a well-known
result on conformal mappings of Jordan domains, we have

LEMMA. — Any one-to-one conformal mapping of the domain
D onto the open unit disk {\w\ < 1} can be extended by
continuity to D U L so as to have a homeomorphism between
D U L and the closed unit disk {\w\ ^ 1}.

For the proof, see for instance Golusin [3; Chapter n,
Section 3].

Let f be a univalent conformal mapping of the domain D
onto the open unit disk and let z = g{w) be the inverse of f.
Then, the continuous extension of g to the closed unit disk,
denoted by the same symbol g, maps {\w\ ^ 1} onto the
disk {\z\ ^ 1} and {|w| == 1} onto

{N ==1} ^ U {S,: c o e O o } .

The extended function g is not necessarily one-to-one on
{\w\ = 1} but is of bounded variation in view of the above
lemma and the fact that L is rectifiable. By F. and M.
Riesz's theorem (cf. Privalov [8; Chapter m, Section 1]),
g is absolutely continuous on the unit circumference and
therefore g' belongs to the Hardy class H1 on the unit
disk [\w\ < 1}. If a subset e of {\w\ = 1} is mapped
under f-1: {[w| = 1} -> L to a subset E U L, then the
linear measure of E is equal to the integral fig^e19)] dQ.
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On the other hand, Lavrentiev's theorem (cf. [8; p. 125])
says that there exists a constant K such that

1.1 ^ K/(j log|E| |+l) ,
where \e\ and |E| denote the linear measures of e and E,
respectively. Hence, the mapping f preserves the null sets
on the boundaries.

Finally we wish to prove that, at almost every point e16

with 6 ^ Qo, L has a tangent which coincides with that to
the unit circumference. Since g' e H1, it admits nontangen-
tial boundary values h(w) = (^g/^w)(w) almost everywhere
on {|w| == 1}. The limit exists at every w === e10 for which

(3) lim r1 pl/i^C^)) - /^6)| dt = 0.
t->o Jo

Let WQ = e^ be such a point with h{wo) -^ 0. Draw a curve
I which, except the initial point ^o, lies in {[w[ < 1} and
has a tangent at Wo. We suppose that this tangent does not
coincide with that to the circle. Let w, w^ be two points
on I distinct from Wo. We have

gW-g(^= Fg'Wdt.j "'*
Fix w and let w-^ tend to the point WQ along L Sogw-g^o)- r^wdt.

JVSQ

Since g ' { t ) tends to h{wo) as t e l tends to WQ by our
hypothesis on WQ, we have shown that the derivative of g
at WQ along the curve I exists and is equal to A(wo). So
the tangent to I at WQ is rotated by arg h(wo) under the
mapping w —> g(w), and therefore g preserves the angle
between two curves ^ and Zg? each being non-tangential
at WQ to the circumference {|w[ == 1}. As

^o) == (^gM(^o) + o,
the boundary L has a tangent at ZQ = g(wo), which is
obtained from the tangent to [\w\ == 1} at WQ under a
rotation by the angle arg/i(wo). Hence, the angle between
the circle {\w\ == 1} and the curve I is equal to that between
L and g(Z).
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Now we take any o) e [0, 2n) and any e > 0. Since Qo
is countable, the set {e^: |6 — coj < e, 6 ^ i^} contains
a closed set E of positive measure. Let e be the subset
of the circumference {[w| = 1} such that E = g{e). Since
the mapping f preserves the sets of measure zero, we see
that \e\ > 0 and so there exists a null set <?i c: e such that,
tor every e19 6 e\e-^y the relation (3) holds with /i(e19) ^ 0.
Let us take any e19 e e\e^ and put e191 = g((019), where 6
and a belong to [0, 2n). Then

(4) li.nSCM-1
e19' ———— e19

exists and is equal to /i(e19). Since we have g(^19) == ^ia,
we can find a sequence {Q{n) : n == 1, 2, . ..} in such a
way that Q{n) -> 6 and e10^) -> ̂  with e1^ = g{e1^}.
It follows from this observation that the number defined
by (4) has the same argument as e1^"^ and therefore that
the tangent to L at the point e191 is the same as that to the
unit circumference. This is true of every point in the set
E\g(^i), where g(^i) is a null set. We thus conclude that,
at almost every point in {e19-: a ^ QoL L has a tangent
which is the same as that to the unit circumference at that
point. In other words, the radius vector {re191: 0 ^ r < 1}
is orthogonal to the boundary curve L for almost all a ^ Q.o.
Hence the Fatou theorem implies the following

PROPOSITION 11. — Every bounded analytic function f on
D has a limit along the radius {re11^: 0 ^ r < 1} as r -> 1
for almost all angles a ^ Q.Q. The limit function is measurable
with respect to a, and vanishes on a set of positive linear mea-
sure only when f vanishes identically on D.

In view of the correspondance between the region D and
the Green star region G', the last proposition is equivalent
to what we wished to prove.

5, Miscellaneous remarks.

a) Correction to the paper [4]. — In Section 2 of [4], we
called a meromorphic function f on R of bounded charac-
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teristic when it is a quotient of bounded analytic functions.
But this gives a correct definition only for simply connected
surfaces. For an arbitrary hyperbolic surface R, a (multi-
plicative) meromorphic function f on R is, by definition,
of bounded characteristic if the function log4' \f\ admits
a superharmonic majorant on R (cf. [10; p. 270]). This is
equivalent to saying that log|f |eSP(R) in the notation
of [4 : Section 2]. The paper [4] remains valid with this change
of definition.

Secondly, the last statement of [4; Theorem 7.1, (6)] should
read : « The i-function Q is determined uniquely by 9% up
to equivalence and a constant factor of modulus one ». There
is no change in the proof.

V) Wiener compactification. — We shall reformulate a few
of our results in [4] in terms of the Wiener compactification
of our surface R. Let Y be a class of continuous functions
on R with values in the extended real line I = [— oo, oo]
and let Co(R) be the set of all continuous real-valued func-
tions on R with compact support. Then, the topological
direct product n{I^ : fe Y u Co(R)}, which we denote
by F, is compact, where I/== I tor all /*eY u Co(R).
We define an injection iy of R into P by

W={f^)'' /^Y ^Co(R)}.
ly is a homeomorphism of R into P. Let Ry be the
closure of the image of R under ly. The compact space Ry
thus obtained is called the Y-compactification of the surface
R. The Y-harmonic boundary, Fy, of R is then defined
as the set of all point b e R^\R such that

lim inf {p{z) : z e R, z -> b} = 0

holds for any potential p on R. If we have two classes Y
and Y' with Y £ Y7, then we have a natural projection
from P' onto P, which induces a continuous mapping,
say ^y», y, from Ry. into Ry (resp., from Fy. into Fy).
When the mapping iy., y (resp., the restriction of iy», y to
Fy,) is a homeomorphism of Ry. with R^ (resp., Fy,
with Fy), then we identify Ry» with R^ (resp., Fy, with
Fy) and write Ry. = Ry (resp., Fy, == Fy). We denote
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by W, BW, HB, and HP the classes of continuous Wiener
functions on R, bounded continuous Wiener functions on R,
bounded harmonic functions on R, and functions that are
expressed as difference of two nonnegative harmonic functions
on R, respectively. Then, HB c BW c W, HB c HP c W,
and it is seen that Rw = RSw and FHB == Few = FW == FHP
(cf., [2; Abschnitt 9]). We call R'w (resp., Fw) the Wiener
compactification (resp., the Wiener harmonic boundary) of
the surface R. Every function u e HB (resp., HP) can
be extended uniquely to a bounded real-valued (resp., exten-
ded real-valued) continuous function on Rfv, whose restric-
tion to Fw is denoted by u. We know that the continuous
extension of any harmonic function u 6 HB attains its
maximum on F^y and that the set of functions u with
u e HB coincides with the space Ci^r^r) of all real-valued
continuous functions on Fyv. In fact, the correspondence
u -> u is a vector lattice isomorphism of HB onto Ci^Fw).
Since HB is conditionally complete,' C^r^v) is also condi-
tionally complete with respect to the pointwise operations
max and min, so that F^ is a Stonean space (cf., [2$ Satz
9.6]). For each yeCi^Fw), let H^ be the function in HB
such that (Hy)^ = /*. Then, for each fixed a e R, the map-
ping /*-> H/a) is a positive linear functional on Ci^Fw),
so that it determines a positive measure, say rfco^, on F^y.
It is known that the closed support of the measure rfco^
is equal to Fw and also that, for any a, a' 6 R, the mea-
sures dco^ and dc^a. are mutually boundedly absolutely conti-
nuous. Fix a point OQ e R once for all and let rfco denote
the harmonic measure corresponding to the point OQ. For
each f e L^(JO)), a —> I- fd(^a defines a harmonic function,
again denoted by Hy. The mapping f-> H^ is a vector
lattice isomorphism of LK(^) with the class HB7 of qua-
sibounded (or outer) harmonic functions on R and coin-
cides on Ci^Fw) with the mapping f —> H^ defined before.
We also see that f = (H^ rfco-a.e. for any /'eL^(dco).

Now we suppose that the surface R is hyperbolic and
consider its Martin compactification R*. Using the nota-
tions explained in Section 2 or in [4; Section 3], we see that
the correspondence u -> u is a vector lattice isomorphism
from HB (resp., HB') onto the space L^d^) (resp.,
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LR^X)) °^ all (equivalence classes of) real-valued bounded
(resp., integrable) Borel functions on the Martin boundary
AI == Ai(R) equipped with the measure rf^. The space
LS(^X) 1s known to be isometrically isomorphic with the
vector lattice C^F) of all real-valued continuous functions
on a compact Hausdorff space F, which turns out to be
equal to the set of maximal order-ideals of the lattice L^(c^).
Let ^ be the canonical vector lattice isomorphism of L^(^x)
onto C^r). Combining three vector lattice isomorphisms
Cn(r^) -> HB, HB -^ Lg(dx) and Ls(dx) -> C^F) given
respectively by f -^ Hp u -> u and ^, we get a vector
lattice isomorphism, say TC*, from C^F^) onto C^F),
which preserves the norm. This isomorphism then gives
rise to a homeomorphism TT from F^ onto F such that
n*(f) =fa n-1 for every feC^(F^) (cf., [5; Chapter 7,
Section 45]). For each a e R and h e C^r), we have

(5) W-f^W^^^W
where f=hon. If we define a measure d\L^ (resp., d(i)
on r by the right-hand side of (5) (with a = Oo), then the
mapping n is an isomorphism of the measure space (F^y, rf<x>J
(resp., (r^, ^co)) with the measure space (F, rfpij (resp.,
(F, d[L)). Since the space F as well as the measure d^
with a e R are determined by the Martin functions /c(6, .)
and the measure d^ we conclude that the Wiener harmo-
nic boundary and the harmonic measures associated with
it are determined by the Martin compactification up to an
isomorphism. So, certain formulae related to the Martin
compactification can be translated into the ones related to
the Wiener compactification. By composing two canonical
isometric vector lattice isomorphisms L^(dcx>) -> HB7 and
HB' -> I4(d/) given respectively by f -> H .̂ and u -> u,
we get a vector lattice isomorphism, /R, of L^(^O)) onto
LK(^X)? which preserves the constants and the norm.

PROPOSITION 12. — (a) The mapping j^ is an isometric
sector lattice isomorphism of L^(du) onto L^(d%) for each p
with 1 ̂  p ^ oo.

b) /R is multiplicative in the following sense: for any
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f e L^(d(o) and g e L^(d<o) with i ^ p, q ^ oo and

p-i + q-i = 1,

^ We /R(/g) = J\{f)j\{g).
c) For any fe L^(dco) we have

(6) f^f{b) d^{b) = fj^f){b)k{b, a) dy.{b).

Proof. — As it is easy to see the parts (a) and (c), we shall
prove here only the part (&).

Let E be any measurable subset of F^y and let CE be
its characteristic function, which we regard as an element in
Lg(rf(x)) or in L^do). Put E7 == r^\E. Since

^•E T~ ^E9 == ^E V ^*E' == x

and CE A CE» == 0, we have

/R(CE) + /K(CEO = /K(CE) V /R(CEO - 1

and /'R(CE) A ^(CE.) = 0 as elements in L^(dx) or L^(^x)*
This shows that /R(CE) corresponds to the characteristic
function of some measurable subset of A^. For any two
measurable subsets E and F of r^y, we clearly have
CE A Cp = CEFIF == CE.CF and therefore

/R(CE.CF) = /R(CE A Cp) = /R(CE) A /R(CF) = /R(CE)./R(CF).

We thus see that j^{s) is a simple function whenever s is
and that /p^i .53) == /p^) ./R^) for any simple functions
5i and 5g in Lg(dco). Since the simple functions are uni-
formly dense in L^(d!co), we see that j^(fg) = /R^/R^) for
any /*, g e Lg(dco). Since L^(6?co) is norm-dense in each
L^(do)) with 1 ̂  p ^ oo, the desired result follows at
once by making use of the Holder inequality. Q.E.D.

Remark. — Clearly, the mapping /p is then extended to
a complex linear isomorphism of L^dco) onto L^d^), which
is also denoted by the same symbol /p. It is easy to see that
the mapping /p maps the space L^Ao) onto L^dl^) iso-
metrically for all p with 1 ̂  p ^ oo, is multiplicative in
the sense explained in the preceding proposition, and satis-
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fies (6) for any fe L^co). If we set

H^co) = {he LP(Ao): h e H^(R)}

and H^7) = {h e LP(^) : A e H^(R)}, then ^ maps
?(^(0) isometrically onto H^(d%).

We now define the boundary values of certain meromorphic
functions on R. Let A be a meromorphic function on R.
We suppose that there exists a nonzero bounded analytic
function F on R such that Fh is bounded on R. Then,
both F and FA can be extended as continuous functions
to the whole R^ and define their boundary functions F
and (F/i)^ on F^. Since F can vanish only on a set of
measure zero by Riesz's theorem, (F/i)^/F is defined dco-a.e.
If there exists another bounded analytic function, G( ^ 0),
on R such that Gh is bounded, then we have

f{Ghy = {FGhy = G(Fhy

on F^ and so (FA)'/F = (G/i)'/G Ao-a.e. Thus, (FA)'/F
is determined by h uniquely up to equivalence. We define
the boundary values Jz of h on F^ as the (equivalence
class of) function (FA^/F. On the other hand, considering
the Martin compactification, we have the boundary functions
F and (FA)', and therefore h == (FA)'/F rfx-a.e. As we
have F = / K ( F ) and (F/i)-== ^((F/i)'), so

h={FhnF=j^Fhr)lH{F).

If Jz is bounded (or, more generally, integrable), then, by
the remark after Proposition 12, ^((FA)') == j^{F)j\{h) and
consequently h = J\{K).

Now suppose that R satisfies the hypothesis (B') and h
is a meromorphic function on R such that \h\^ is bounded,
where the function g^) was defined in Theorem 5. Then, by
use of the hypothesis (B7), there exists a bounded analytic
function Fo such that

|Fol =^W^)-1}

where 6 (§<")) denotes the character of the l.a.m. ^ Foh
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is bounded and analytic on R, and therefore h and h are
defined as above. Since

— log gK^z) == S{G+(w, z) : w e Z(a$ R+)}

is a continuous Wiener potential on R, it vanishes every-
where on r^v and so (g^)^ ' (V) = 1 for every b e F^. By
our assumption that \h\f^ is bounded, Ji should be boun-
ded on r^. Hence, we see that h == J^K) and h is bounded,
too. As a conterpart of Theorem 6 (or [4; Theorem 5.12])
we have the following

THEOREM 13. — Let R be a hyperbolic Riemann surface
satisfying the hypothesis (B') and let a e R. Let u^ e L^rfco)
and suppose that

f^W^W d^{b) = 0

for each function h, meromorphic on R such that \h\^ is
bounded on R and h{a) == 0. Then, there exists an f e H^R)
such that f= u^ rfco-a.e. on F^y.

Proof. — As we have remarked above, Jz exists and is
bounded on F^y. If we define a function u* on A^ by
setting u* == /R^), then u* e L^rf^) and

ku* = J^h)i^) == j^hu^).

By use of (6), we have

f^h{b)u^b)k{b, a) d^b) = f^{hu^{b)k(b, a) d^b)
- f^W^W d^{b) = 0.

So, by Theorem 6, there exists a function f e HP(R) such
that f = u* rf^-a.e. on A^. By applying the operation
/R1? we see that f= u^- dco-a.e. on r^y. Q.E.D.

Next we shall deal with invariant subspace theorems. In
order to avoid any complication concerning multiple-valued
functions, we shall proceed somewhat differently. Let R
satisfy the hypothesis (B) and fix a family {8(6)} satis-
fying the conditions in (B) throught our discussion. Since
log 8(6), for each 6 e II(R), is a quasibounded (== outer)
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harmonic function, it admits well-defined boundary functions
on the Martin boundary A^ as well as on the Wiener boun-
dary r^ of R. We denote by 8(6)" and 8(6)' the boun-
dary functions for 8(6) on A^ and I\y, respectively. We
call a function w* e L^rf^) (resp., w^ e L^Ao)) a rigid
function on Ai (resp., F^) if there is a character 6 e II (R)
such that |w* |==8(6) A (resp., \w^\ = 8(6)'). For each p
with 1 < p ^ oo, we set

H^co)o = {he HP(AO) : J* Uco == A(ao) = 0},

and, as in [4], H^x)o = { A e HP(^) : f Ux = ^o) = 0}.
Then, we have the following

PROPOSITION 14. — L^ B. be a hyperbolic Riemann sur-
face satisfying the hypothesis (B) and let 9% be a closed (weak-
ly* closed, if p == oo) subspace of LP(^). Then, ^ is
simply invariant if and only if there exists a rigid function w*
on AI such that

m = [^HW], = [^HWL,
where [ ]p denotes the norm closure (the weak* closure, if
p = oo) in L^(d/). The function w* is determined by ^
uniquely up to a constant factor of modulus one.

Proof. — In this proof, we shall use the notations given in
[4; Section 7] without further explanation. Suppose first
that a% is simply invariant. Then, by [4; Theorem 7.1, (6)]
which we know is valid under the hypothesis (B), there
exists an i-function Q of some character 6 such that

(7) m = {r ^ LW :
/•*/Q ^ h for some h e MH^(R)}.

We take an h^ e MH^R) with \ho\ == 8(6-1) and define
w* by putting w*(b) == Q(6; 0)Ao(&$ 0) for b e A^. Then,
w* belongs to L^c^c) n 3% and therefore

^H°°(rfx) c ^HP(JX) c s%.

In order to prove the inclusion 9% c [w*H°°(^)] , take
any f* e 3%, so that /'*/Q = A for some /i e MH^(R).
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Let hi e MH°°(R) be such that |̂ | = 8(6); so h^h^ e H°°(R)
and is outer. We have

r.(Ui) = (QA)(Ui) == w*.(U) <= ̂ HW.
It follows from this that

r.(UiHW) c ^H^H^x) c [^H00^)]?.

Since hohi is outer, the invariant subspace theorem for
H00 (d/) (cf., [4; Corollary 7.2], which is also valid under (B))
shows that the weak* closure of AoAiH°°(^) is exactly
H°°(^). This implies that f* e [^H^)^ and conse-
quently that g% coincides with [w*HOC(d)c)]p.

Suppose conversely that 3% == [w*H°°(^)]p for some
rigid function w* on A^. So there exists a character 6 e II (R)
such that l^j^^O)' on A^. Take an Ao e MHOO(R)
such that \ho\ = 8(6) on R and define an i-function Q
by Q(&; a) = ^Wlh^b9, a) with & e A^ and a e H^R; Z).
Then, it is easy to see that [w*H°°(^)]p is equal to the
subspace of the form (7) and consequently that 9% is simply
invariant.

To see the uniqueness of the expression, suppose that we
have [^H00^)]? = [^H°°(^)]p for rigid functions w^
and w^ on ^ We take characters 6^ and 63 in such a
way that \w^ = S(6i)' and |w*| = 8(62)'. We also choose
Ai, h^ e MH°°(R) such that \h^\ = 8(6^) and |/^| = 8(63)
on R. If we put Q^ == w^h, for i == 1, 2, then we see that
Qi and Qg are i-functions on A^ and the invariant subspaces
of the form (7) corresponding to Qi and to Q2 are the
same. By [4; Theorem 7.2, (6)] (cf., the subsection (a) of this
section), Qi and Qg differ only by a constant factor of
modulus one. This shows that 61 == 63, and so h^ and h^
differ only by a constant factor of modulus one. Hence,
w^ and w^ differ only by a constant factor of modulus one.
Q.E.D.

As a counterpart of Theorem 4 (or [4; Theorem 7.1)], we
have the following.

THEOREM 15. — Let R be a hyperbolic Riemann surface
satisfying the hypothesis (B) and let 1 < p ^ oo. Let 9t
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he a closed (weakly* closed, if p = oo) subspace of 1̂  (du)
such that H00 (^Q))% c ^.

a) 9^ 15 doubly invariant, i.e., H°°(dco)o9i 15 dense (weakly*
dense, if p = oo) m 9^, i/* and only if there exists a measu-
rable subset E of I\y such that ^ == C^L^co), where
C^ denotes 'the characteristic function of 5. 77^ 5^ 5 ^5
determined by 9? uniquely up to a null set.

b) 91 ^ simply invariant, i.e., H^co^)? ^ not dense
(weakly* dense, if p = oo) IM 9?? if c^^d only if there exists
a rigid function w^ on F^ such that

^ = [w^(d^ == [w^HP(d^)],.

The function w^- is determined by 91 uniquely up to a constant
factor of modulus one.

Proof. — We put 9)? == 7^(91)- In view of the remark
after Proposition 12, 9}? is a closed (weakly* closed, if p==oo)
subspace of L^^) such that H°°(^)9K c 9Jt. Moreover,
9JI is doubly invariant (resp., simply invariant) if 9? is.
Thus, in order to get the desired result, we have only to
transform [4; Theorem 7.1, (a)] and Proposition 14 by means
of the mapping j~^1. Q.E.D.

Remark. — In Proposition 14 (resp., Theorem 15, (6)),
it is not always possible to replace [^H^J/)]^ (resp.,
[w^HP(d<^)]p) by w*HP(d^) (resp., w^RP(d^)). For this,
see [7; Chapter 7].

c) A comment on the hypothesis (B). — We are not satisfied
with our hypothesis (B), because it is not quite intuitive. One
may ask how restrictive this hypothesis is, compared with,
for instance, the hypothesis (B') of H. Widom. We do not
have, at this moment, any satisfactory answer to this pro-
blem.
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