
ANNALES DE L’INSTITUT FOURIER

NGUYEN PHUONG CÁC
The Dirichlet problem for a singular elliptic equation
Annales de l’institut Fourier, tome 26, no 1 (1976), p. 205-224
<http://www.numdam.org/item?id=AIF_1976__26_1_205_0>

© Annales de l’institut Fourier, 1976, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1976__26_1_205_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
26, 1 (1976), 205-224

THE DIRICHLET PROBLEM
FOR A SINGULAR ELLIPTIC EQUATION

by Nguyen Phuong cAc

1. Introduction.

Let G be a bounded domain with smooth boundary 8G. Suppose
that 8G consists of two connected parts S and S 9G = S U S , of
which S^ may be empty. In this paper we propose to study the
solvability of the Dirichlet problem for the elliptic operator K :

^^'"^^^^-^^^ in G (1)

U^G ^IBG (2)

with 0 ( x ) = 0 when x G Si. In (1) we have used the customary
summation convention : if an index is repeated then summation over
that index from 1 to n is to be understood, unless other limits of
summation are expressly indicated. Singular elliptic operators have
been studied extensively. Many authors, among them Morel [9],
Baouendi [ I ] , Kohn-Nirenberg [5], Murthy-Stampacchia [ I I ] , used
Sobolev's spaces, mostly weighted ones. This method has the elegance
of the Hilbert space approach although the mechanism for determining
the necessary estimates and the existence of the trace of a function in
a weighted Sobolev's space may be quite complicated to develop. On
the other hand, Schechter [12], using the Schauder estimates and
the maximum principle, proves a very interesting result on the
solvability of the Dirichlet problem for an equation similar to (1),
when the portion S^ of the boundary QG is contained in the hyperplane
x^ = 0. However, it seems to us that the method and result of
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Schechter cannot be applied immediately to the problem (1), (2) for
an arbitrary domain G ; moreover we feel that in general it is quite
difficult to ascertain whether a given singular elliptic operator actually
satisfies the condition of Schechter for the solvability of the Dirichlet
problem and this is the main reason for our carrying out the investiga-
tion in this paper. Recently, Lo [7], also using Schauder's estimates,
the maximum principle together with suitably constructed barriers,
again obtains conditions for the solvability of the Dirichlet problem
for a particular case of equation (1) : the portion S of 3G is contained
in x^ = 0, 0(x) = x^ and the coefficients b^x\ 1 < i < n - 1, are of
the form x^b^(x) with smooth 6*. Although Lo's result is apparently
weaker than that of Schechter as we shall see in Proposition 6 later on,
the barrier method is more readily adaptable to the general equation (1)
and general domain G. We would also like to point out that Jamet and
Parter [4] have also used barriers to study singular equations similar
to (1) with S^ contained in x^ == 0, by the method of finite difference
of numerical analysis. Finally we mention that the prototypes of
equation (1) are studied by Brousse and Poncin [2] and Huber [3].

In Section 3, our Propositions 1 and 2 give conditions for the
solvability of the Dirichlet problem (1), (2) whereas Proposition 3
gives conditions under which the Dirichlet problem is not solvable in
general. This proposition when applied to equations studied in [7]
seems to give a stronger result than that obtained there. Our conditions
for solvability and non-solvability do not exactly fit together, this
seems to point toward the shortcomings of the barrier method that
we use (or rather the special barriers that we construct). We also give
examples of equations to which our results can be applied.

Section 4 discusses the relationship between our results and
those of Lo [7] and Schechter [12].

2. Notations and basic assumptions.

For an integer m > 0 we denote by C (G) [C (G)] the set
of all real functions with derivatives up to and including order m
continuous in G[G]. For a non-negative integer m and 0 <a< 1,
let cm+</G) be the set of a11 functions in C^ (G) whose derivatives of
order m satisfy a Holder condition with a in G. We put
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•K,. = max 2 .D |̂ . 1: max iD^(p) - ̂ ^
G fc=o ^ P,QCG |P - Qi^

for functions uEC^^(G). C^^(G) denotes the_subspace of C (G)
consisting of all functions belonging i6 C ^ (03) for each domain
(D with 6DGG. m a

In the sequel c^ , c^, etc. . . denote various constants. For the
equation

^^'^a^^^.-^^^^ in G (1 )

^G = ^3G (2)

we put

_ , , . 92^ , bi(x) 9u^L[u] = a .(x) —— + —— ——
'/ Qx^x. 6(x) Qx^

and make the following assumptions concerning its coefficients and
nonhomogeneous term throughout the paper.

i )0(x)GC,(G) ;_ 0(x)\^ = 0 ; 0 (x )>0 in G - S ^ ;
Igrad 0| = |A0| > 0 in G - S ^ . l

ii) a^x) , b^x) , c(x) ,/(x) belong to C^(G) for a certain
0 < a < 1 and c(x) > 0 in G, (1 < ;, / < n).

iii) a .(x) ̂  ^. > v |^|2 in G for a constant v > 0 and for any
vector ? = ( ^ , . . . , ^ ) G R " .

iv)^EC,(G).
Some of the above hypotheses are unnecessarily restrictive. For

example, in Proposition 1 actually we only need to require that
a^ , b ^ , c , /, belong to C^(<D) for every domain (D with S> C G and
bounded away from S^ and that a^(x) ̂  ?. > 0 for x G G- S^ . But in
order not to complicate the statement of hypotheses we prefer not to
point out these variations which are not difficult to detect. The state-
ments of some results obtained in the next section might have been
simpler if we assume |A0| > 0 in G instead of |A0| > 0 in G - S .
However this assumption will exclude some interesting equations
from our study.
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3. Main results.

In contrast to the particular case where 9 Qc) = x and the portion
S^ of 3G is contained in x^ = 0 studied by Lo [7], for equation (1)
in general the condition for the solvability of the Dirichlet problem
(1), (2) is much simpler if ^p(x) is constant on S ^ . This case also has
interesting application. Accordingly, we prove

PROPOSITION 1. - Suppose that ^|g = <Pi == constant and suppose
also that there is a neighbourhood U of S such that in G Fi U the
condition

99 90
(I) (1 - P)a — ——-6^t[0]>c,0,11 9x^ 9x. l

where ft and c^ are positive constants with P < 1, is satisfied. Then the
Dirichlet problem (1), (2) has a unique solution u G C^(G) n C (G).

Proof. — The uniqueness of the solution is an immediate
consequence of the maximum principle (cf., for example, [10]).

We first consider the case when ^ E C (G).
For each n = 1,2, . . . , let G be

G^ = { ; c | x E G , d ( x , S,)>n-1}

Let u^(x) be the unique solution (cf. [6,8]) in C^(G^) of the
Dirichlet problem

^ ]= / . i nG^

u^ =^
(It may be necessary to smooth off small portions of the part of the
boundary of G^ contained in G to insure existence of u ).

We first show that the sequence {u^(x)}^^ is uniformly
bounded. (In Lo [7], proof of Theorem 2, it is just stated without
justification that the sequence u^(x) is uniformly bounded. However
it seems to us that this uniform boundedness is an immediate conse-
quence of the maximum principle only if / = 0 in G ; otherwise it is
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not obvious because 6~1 (x) is not bounded in G). If we can constmct
a function w(x)GC^(G) such that ^ [ w ] < — 1 in G then the
boundedness follows. In fact, choose k > 0 sufficiently large such
that

kS[w]<-\f(x)\

in G and let

JLI = max |^(x)| + k max \w(x)\
G G

Then

G[u^ + kw + JLI]< 0 in G^

^ + kw + ̂  > 0

since JLI > 0 and c(x) > 0. By the maximum principle

u -t" A:w -i- u ^ 0 in G
M M

i.e., u^> — kw - IJL in G^

Similarly,

^? [^ - A;w - JLI] > 0 in G^

u^-kw - ̂  < 0

and hence

u < A:w 4- fi in G

Construction of wOc)ECo(G) ^^/? ^a^ ^ [w]< — 1 m G.
Consider the function v(x) = exp{- \0^(x)} where j3 is the

constant in condition (I) of the hypotheses and X is a positive
constant to be determined later. By elementary calculation we
obtain

K [v] = \pe^2 S [\^ - (p - D] ^ 9e Qe- - ew]11 Qx^ a .̂ )
exp{- \e^} - c exp{- \Q^}
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By condition (I) of the hypotheses, since X^O^x) > 0,

e[v}> [X^e^OO -c(x)] exp{-X^(;c)} in G n U.

Since 0(x) is continuous in G, 0|g = 0, 0 < j3 < 1 and c(x) is
bounded in G, there is a neighbourhood L^ ofS^ and a constant c > 0
such that ^ [v] > c^ in G H U ^ . Now let V = G - U^ and

aa a^
M^ == max |(1 - P ) a _ , ( x ) — — - 001Z[0]| < ex.1 jcev l/ Qx^ Qx.

M. = max 6 (x) < ^°2 jc^v

m = min 0(jc) > 0
jcGV

Then

^[^IXX^M^-^X^m^lA^I2 - MJ-maxcOc)} exp (-XM^)
G

Since by hypothesis min IV9(x)| > 0, by choosing X sufficiently

large we obtain

S [v]> ̂  > 0 in V.

Thus

B- [v] > min (c^ , c^) > 0 in G

It then suffices to take w(x) == c exp{—X0^0c)} with c <0
sufficiently small to obtain K [w] < — 1 in G.

Proof that there is a solution u E C^^(G U S^) n C^G) o/
r/z^ Dirichlet problem (1), (2).

By the well known Schauder estimates up to the boundary [6,8]

11^ 11^<K(^) [|l/||̂  4- |M|̂ J

where K(^) is a constant depending on the ellipticity constant v of ^
as well as the ||.||^-norms of its coefficients in G^. From these
estimates and the diagonal process we can extract a subsequence of

{u } which for convenience we still denote by { u } which converges
in C^(G^) for each n to a function u(x). This function u(x) belongs
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to each C^(G^) and u(x}\^ = ^(x)|^. It remains to show that if ^
is the constant value of ^p(x) on Si then for every point x° E S, ,
u(x) -^ as x -> x°. It suffices to show that there is a neighbourhood
of S^ and a function co(x) continuous in G, belonging to C (G) such
that co(x)|s^ = 0 and o)(x) > 0, ft [cj] < - 1 in the intersection of
this neighbourhood and G. In fact, suppose that such a function a?
exists. For every 6 > 0, there is a neighbourhood of S^ in which

<^ - e < <p(x) < <^ + e

Thus there would exist a neighbourhood U (e) of S^ such that
o;(x)|^ = 0 and cj(x) > 0, e [a;] < - 1 in (L^ HG) - S^ and

<^ - e < ^(x) < <^ + e in U^ U G

Let S^ = 3G^ - S^. If ^ is sufficiently large then S^ will be
contained in this neighbourhood U^. Choose k positive, independent
of n such that

^[fe^(x)+^ + e - ^ ( x ) ] < 0 in G^ 0 U,

k^(x) + ̂  + e - ^(^)la(G^nu2) ̂  °

It is possible to find such a /^ because/(x) is bounded in G and on the
portion of 9\J^ contained in G, min oj(x) > 0, and the \u^(x)\ are
uniformly bounded in G ; and on the remaining portion of 3 (G^ H L^),
u^(x) = ̂ (x)< <^ + e by construction of the 1̂ 9. Thus by the
maximum principle

k^(x) + e - u^x) >0

i.e., u^(x) < fc^o;(x) + ^^ + e in G^ 0 U^

Similarly, by considering - k^(jj(x) + <^ - e — ^^(x) for a suitable
^ > 0 we deduce

-^o;(x) + <^ -e <^(x) in G^ 0 U^

Thus for all ^ sufficiently large so that S^ ^ is contained in U (e) we
have

- ̂ o;(x) + <^ - e< i^O:) < ^cj(x) + <^^ 4- e in G^ H U^

Let n -> oo and then x -^ x G S we obtain
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^ - 6< u(x^) <<^ + e

Since e > 0 is arbitrary, we deduce u^x^) = ^ for all x G S .
Construction of the function a; 00.
Let gOO = 0^(x) where 0 < j3 < 1 is the constant in condition (I)

of the hypotheses. Elementary calculation gives

W = ̂  05 - 1)^,00 ^6-<^- 0W] = c{x)6^
{ I J ^i ^f }

<-c^j30^- l(;c).

Since 6(x) is continuous in G, 0(x)|g = 0, Q(x) > 0 in G - Si and
0 < j3 < 1 we see that ^ [g] < — c < 0 in a small neighbourhood
of S^ . It then suffices to take a?(;c) = k^g(x) where k^ is a suitably
large positive constant.

Thus the Dirichlet problem (1), (2) has been solved in the
case (R E C^(G). We now consider the case ^ E C^CG).

We can find a sequence {^}^^ of functions of C^^(G) converg-
ing in C^(G) to ^. Let ^ G C^(G U S^) H C(G) be the solution of
the Dirichlet problem

^[u,]=f in G

ul^G ^ ^'BG

By the maximum principle,

max \u (x) - i^OOK max \^p - ̂ | -^ 0
G 3G

Thus{ u^x)}^^ converges uniformly in C^(G) to a function u G CQ (G)
and

^MI^G =^(X)I^G

Moreover, in each domain CD with 0 C G we have the Schauder
interior estimates (cf., e.g., [6]).

11̂ 11̂  <K((D) [||/||, + 1^11 J

where K(CD) is a constant depending on the ellipticity v of /?, the
|| . 11,-norms of its coefficients in CD and the distance from G) to 3G
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only. Since mjx \u^x) - u^x)\ ̂  0 we deduce ||̂  - u^ -^ 0.
Therefore ^(x) E C^(^), i.e., K^) G C^(G) and it is obvious
that K[u} = / in G. Thus we have shown that the Dirichlet problem
(1), (2) has a solution u E C^(G) 0 C^(G). Q.E.D.

Comments on the proof of theorem 1. - Besides our proof of
the uniform boundedness of the sequence {u^{x)}^ that we have
mentioned earlier, our "passing to the limit" for the sequence {u } is
different from that of [7], Theorem 2. It follows Schechter [12] instead.
In [7] it is done immediately for <p G C^(G). But it seems to us that the
estimate (inequality (9), page 340 in [7])

ll^iX <K^W + IHÎ
is not known for a domain G^ in such generality, and only known
if H^lL^a is ^P^c^ by \\u\\^ where CO is an interior subdomain
of G. If this is the case then it is not immediately clear that the limit
function u(x) of the sequence { u^} in [7] belong to C (G U S ).

Example. - Proposition 1 seems to be particularly suitable for
the following class of Dirichlet problem. Suppose without loss of
generality that the boundary 3G contains the origin 0. Consider,
where p == OM, the operator

ft r i ( \ yu , bi(x^ 9U

^^^^^^-^ W

Then S^ = { 0 } and ^p(x) is certainly constant on Si. In particular,
the following operator has been considered by Morel [9] :

W=Au^^=Au^x.^ (4)p a? p2 1 9 x , v /

where § is a constant. For it, condition (I) in Proposition 1 becomes

2p 2 [2( l -j3) -n - §]> c ^ p 2

2(1 -ft)-n- §> c, > 0

for some 0 < p < 1 and ^ > 0. This is satisfied if

8<2-n (5)

We thus reobtain a condition of Morel ([8], page 395).
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If the boundary function <^(x) in the Dirichlet problem (1), (2)
is not constant on S then we need an additional condition to those
of Proposition 1 to guarantee the solvability of the Dirichlet problem.

DEFINITION —Let P G S . A function w(M) is called a local
barrier for the operator K at the point P if there exists a small neigh-
bourhood No / P such that w(M) is twice continuously differentiable
in G U N , continuous in G 0 N and

a ) w ( M ) > 0 in ( G H N ) - { P } ,
b ) w ( P ) = 0,
c) J?[w]< - 1 in G U N .

PROPOSITION 2. - The Dirichlet problem (1), (2) has a unique
solution u E C^ (G) n C^ (G) if

(I) There is a neighbourhood U of S^ such that in G H U the
condition

06 99
(1 - P ) a ( x ) — — - 9 ^ t [ e ] > c ^ e ,11 ox. ox. l

where j3 and c are positive constants with j3 < 1, is satisfied.
(II) For every point PE S^ there exists a neighbourhood N(P)

and a unit vector jn(P) originating from P such that ifM is any point
in N H G and Q is the orthogonal projection of M on ^i(P) then
H M . b ( M ) < k6(M) where k is a constant independent of M and
b(M) is the vector (6^(M), . . . ,6^(M). It is also required that the
support line of ^(y) intersects 9G at a finite number of points in any
neighbourhood of P.

Example.— Although condition (II) above is cumbersome, it is
simple to check that it is verified in interesting cases. For example,
let G be the unit sphere in R". Consider the operator

82^ x, ou
^[u] === a (x) ———— + —— — - c(x)u17 ox. ox. 6(x) ox.

where 0(x) is any function satisfying i) in Section II. It satisfies
condition (II) of Proposition 2 : it suffices to take as jn(P) the unit
vector of the direction PO.



THE DIRICHLET PROBLEM 215

Proof of proposition 2. — We use the same notation as in the
proof of Proposition 1 : For each n = 1,2, . . . let u^ be the solution
of the Dirichlet problem

^ [ u ] =f(x) in G^

<^k
The passing to the limit of the sequence {u } is first carried out for
<pE C^(G) to obtain u E C^JG U S^). Ag^in, condition (I) of the
hypothesis guarantees that{i^(x)} is uniformly bounded in G. This,
together with the existence of a local barrier at every point PE S
are used to show that u\^ = ^Ig . Here we only show that conditions
(I) and (II) of the hypothesis enable one to construct a local barrier
at every point P G S ^ . For other details we refer the reader to Lo [7].

Let ^i(P) = (^ , j n ^ , . . . , ̂ ) and let
n n ^

e(x) = 6^x) + S x] - ( S ^,x, ) (6)
1=1 i=i

By elementary calculation

[ n n i
K [e(x)] = 2 S ^.(x) - S a ^ ̂

'=i i,/=i J

+^-2[^-l) S a.^^+0^[0]1
L l,;=l / Qx! bx, J

+ ̂  iiz?- [x•- tli (s. ̂ x-)]- c(x) '(x)
Thus there is a neighbourhood N of P such that in N H G,

ff[e(x)} < 2 [^ .̂00 - S ̂ 7 ,̂1 - c^0^-1 + 2k,
L ^ ^/ J

by conditions (I) and (II) and the fact that c(x) ̂ 0,e(x) > 0 in G.
Since the ^..(x), 1< i , j < n are bounded in G, |jLi| = 1, c^ > 0,
0 < j3 < 1 and 6 (P) = 0 so there exists a small neighbourhood of P
and a constant c such that in that neighbourhood

^[e(x)] < c^ < 0
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It then suffices to take as a local barrier at PE S ^ , w(x) = c ^(x)
where c > 0 is a sufficiently large constant.

Q.E.D.
Proposition 3 below when applied to the special case of equation

(1) considered in [7] gives what seems to us a stronger result than
that obtained in [7].

For Proposition 3, instead of assuming that a.., b., c , /G C (G)
we assume that a^.(x) , b.(x) and c(x) are continuous and c(x) > 0
in G. Otherwise the general assumptions made in Section II remain
unchanged.

PROPOSITION 3. — There is at most one solution of the equation

^[u] = f

belonging to C^(G) H C(G) and assuming given values on S- if there
exists a neighbourhood of S^ in \^hich the condition

90 90
(III) (1 - c 0^) a . ( x ) — —— < 0011 [0]

' t/ 9x^ 9x.

is satisfied for positive constants c and 7.

Before proving this proposition, perhaps it is worthwhile to
point out that condition (III) above and condition (I) in Propositions 1
and 2 cannot be satisfied simultaneously as can be seen without
difficultly. Thus, as it should be, Proposition 3 on one hand and
Propositions 1 and 2 on the other are mutually exclusive.

Proof of Proposition 3. - By using the maximum principle
on the homogeneous equation (for the detail we refer the reader
to the proof of Theorem 1 in Lo [7]), it suffices to show that
there is a barrier function w(x) which is

a) Twice continuously differentiable and nonnegative in G — S^ ;
b) For every given number A > 0, there exists a neighbourhood

N of S^ such that w(x) > A in G 0 N ;
c)/?[w(;c)]< 0 in G.

Our construction of this barrier function is significantly different from
that of Loin [7]. Let
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E = 2 max 6 (x)
G

and consider the function
T^

w(x) = log (log Q.-)- exp{X^ 2 ^)} ̂ k (7)

where X , k are positive constants to be determined later. By elementary
calculation,

/ 96 96 \ 96 96
(^ —— —— - 6^[e]) log (E/6) -a — —v / 9x. 9x, I IJ 9x. 9x.

ff[w} = ———l-——i——————___________l i
02 log2 ( E / 6 )

96 96 }
- 2X (2\62 + 1) a^ — —— + 6Wt[6] exp{\62}- cw (8)

dx^ 6x^ )

By hypothesis (III) of the Proposition, in a neighbourhood of S^

96 96 96 96
% — — + 6^C[6] ̂  (2 - c^) ^ — — ;11 9x^ 9x^ ' IJ 9x^ 9x.

since 6\^ = 0, there is a neighbourhood of S^ in which 2 - c Q^ > 0.
Then there is a neighbourhood of S in which

, ^^(EW-n'-.gg
elu}=————e'wtm '-^"w

Since 67 log(E/0) -> 0 as 0 -> 0 because 7 > 0, there is a neigh-
bourhood N' of Si in whichbourhood N' of Si in which

G[w} <— c(x) w(x)

Now let

( 96 96 ) 96 9e

a , —— —— - 6^t[6] [ log (E/6) - a — —
.. lf 9x, 9x. ^ 9x, 9x.M- = max ———-——/_______'-___________l ] < oo3 G-N' 62 log2 ( E / 6 )

, 96 96
m = mm 6~ a.. — — > 0

G-N' l} 9x. 9x.
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(because of condition i). Section II, on 6(x)),

M = max |001Z[0]| < oo
4 G-N'

We first choose X such that (cf. equation (8) above)

2Xm^ - M^ > 1, i.e., X > (M^ + l ) /2m^

Since e^2 > 1 in G, we have

^[w] < M ^ 2X - c(x) w(;c) in G - N'

So if we choose

X > m a x { ( M 3 / 2 ) , (M^ + \)/2m,}

then

e [w] < — cM w(x) in G- N'

Once X has been chosen we choose k such that w(x) > 0 in G, this is
certainly possible because (cf. expression (7) above)

log(E/0) > l o g 2

The function w(x) with X , k so chosen satisfies all the three require-
ments (a), (b) and (c) above.

Q.E.D.

4. A special case.

In this section we will show how our results can be applied to
the equations studied in [7]. Proposition 6 deals with the relationship
between the result of Schechter [12] and that of Lo [7].

Throughout this section, let G be a bounded domain with
smooth boundary, G is contained in the strip 0 < x^ < t^ and
a portion S of the boundary 3G is contained in the hyperplane
x = 0. Lo [7] considers the following Dirichlet problem.

y-u ^ , 9u h(x) 9u
w = ̂  ̂ ~^ + ^ b M r~ + r~11 Qx! a^ -1 ^i xn ^n

- c(x) u = f(x) in G (9)



THE DIRICHLET PROBLEM 3 j 0

^G -^G <10)

with the normalization a ^(x) = 1.
This equation is a special case of equation (1) with

b^x) = x^(x) (1 < i^n- 1) , b^x) = H(x) , 6(x) = ^/.

Thus

30 30
^r"^" 15 ^[^-W11 9x^ 9x.

and condition (I) in Proposition 2 becomes
(I'). For small ̂  > 0,

(1 - j3)- h(x)>c,x^

where j3 and (^ are positive constants with j3 < l . I f / z (x ) is continuous,
as assumed in [7], Theorem 2, this condition is satisfied if

1 - /?(^,...,;c^ ,0 )>0 for (^,...,^ ,0)ES,

Condition (II) in Proposition 2 is automatically satisfied with, for
any P^ S^ , jn(P) being the unit vector originating at P and parallel
to the x -axis. Our barrier function (6) is then reduced to that
constructed by Lo [7]. For reference we list the following result :

PROPOSITION 4 [Lo]. — Suppose that a^.(x) , b^(x) , h(x) , c (x)
belong to C^(G) and c(x) > 0 in G and <^e C (G). Then there exists
a unique solution u^ C^(G) Fi C^(G) o/ ̂  Dirichlet problem
(9), (10) y

/ z ( x ^ , . . . , ^ _ ^ 0 ) < 1

for all points (x , . . , , x _ ^ , 0) G S^ .
From Proposition 3 we deduce the following result for equation

(9) which is stronger than a similar result in [7] (Theorem 1).

PROPOSITION 5. - Suppose that a^.(x) , b^ (x), h(x) and c(x) are
continuous in G and c(x) > 0 in G. Suppose also that h(x) is defined
in B x [0, t ] wA^e B is the projection ofGon the plane x == Oanrf
is lipschitzian with the same Lipschitz constant at each point of B. Then
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equation (9) has at most one solution u E C (G) 0 C (G) taking given
values on S^ ifh(x^ . . . , x^, 0) > \for^ll(x^.0^ x^ , 0) E B.

Proo/ - It remains to verify that condition (III) in Proposition 3
is satisfied, i.e., that for x small we haveyi

l - / z00<c^ OcEG) (11)

for a constant c^. But for x G G, (;Cp . . . . ̂ _ ^ , 0) E B and

1 - h(x) = 1 - h(x ^ , . . . , ̂  , 0 ) + ^p...,x^ , 0 ) - / z 0 c )

< ^ i , . . . , ^ _ i , 0 ) - /zQc)

Because h(x) is uniformly lipschitzian at points of B, there exists a
constant c^ such that for all x C G

\ h ( x ) - h ( x , , . . . , x ^ _ , ,0[<c^

and (11) follows.

A^o^. - For the validity of Proposition 5, Theorem 1 of [7]
requires that h (x) be in C^ (G), even in x^ and h (x ̂  . . . , x^, , 0) > 1
which is more restrictive than our condition. We also wish to point out
that a careful reading of the proof of Theorem 1 of [7] seems to
indicate that there also, h(x) needs to_be defined not only in G but
in B x [ 0 , ^ ] instead, because x^G does not necessarily imply
( ^ , . . . , x ^ . O ) E S ^

We now prove that Theorem 2 of [7] which is listed as Propo-
sition 4 above can be deduced from a result of M. Schechter. In [12],
Schechter proves that the boundary value problem (with the normaliz-
ation a^ (^) = 1)

^ [u} = a^x) -^^- + a^x) -^- - c(x) u = / in G (12)

^G ^lac (13)
has a unique solution u G C^(G) 0 C^(G) if ^CC(G) and if in
any subset G' of G bounded away from S^ the operator ^ is uniformly
elliptic and a^ . a. , c , / belong to CJG'), c(x) > 0 in G and if the
following crucial condition is satisfied.
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(S) There are functions q(t) > 0, p ( t ) continuous in 0 < t ̂  t
such that

\a^\ ,|a.| ,|c| ,1/K^) (14)

^XP(^) (15)

and the integral

R ( p , q ) = f 0 exp{PO)} f ° e x p { - P ( s ) } q ( s ) d s d t (16)t o J!

exists where

P(0 = f ° ̂ ) ̂
•T

We prove

PROPOSITION 6. - // the coefficients of the partial differential
equation (9) satisfy all conditions of Proposition 4 then they satisfy
conditions (S) ofM. Schechter as applied to equation (9).

Proof. - For the function q(t) in condition (S) of Schechter we
take (cf. equation (9))

q(t) = max{ \a (x)\ , (1 < / , / < n) ;
G /

1^001 , (1 < i < ^ - 1), \c(x)\, |/(x)[}

We construct a function p(^) as follows : Since h ( x ^ , , , . ,^_ , 0) < 1
and /z(x) is continuous, there is T? > 0 such that if we denote

T^ = { ^ [ x G G , 0 < ^ < 2 r ? }

then we have

M = max h(x) < 1
^^r,

Let d be the diameter of the set G and r = d / r ] . Then for all

^ E G ^ = G - T ^

we have
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h(x) < Mg 4- ||/?||̂  / ̂  = Mg + 1|/2||^ . T^^ 7^

A(x)< M, + \\h\\^ . r^ - 7?)^

because if x G G then .x > 217.
We define a function 7r(0 as follows

7r(r) = Mg for 0 < t <T?

7r(t)=M, + ||A]|^2^ . r^^O- 7?^ fo r7?<r<^

Then 7r(r) is continuous in [0 , t^] and h(x) ̂  Tr(^) for all^: ̂  G.It
remains to show that condition (16) of Schechter is satisfied with

7r(0
q(t) == constant and p ( t ) = —— , i.e., to verify that

I = f exp{P(t)}f exp{-P(^)}^A<

where

• o , ^Q
^o

/^o ^o 7r(.y)
P(0 = / P(s) ds = / —— ^

't S^^ ^^ .<?

But

<*n ^
exp{P(0}/

^o ^
1= f exp{P(0}f e x p { - P ( s ) } d s d t

^o ^t

+ (^ exp{P(Q}^) ( J'0 exp{- P(5)}^)
^

^Q / v "T?

^^0 ^0
4- / exp{P(r)} ; exp{-P(s)}dsdt»n ^t

Now it is obvious that

f° exp{P(r)} C ° exp{-P(s)} d s d t . [ ° exp {- P(s)} ds < °o
T? t 11

Because of the fact that for 0 < t < 17, p ( t ) •= —s- <—, it can be

verified by elementary calculation that
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^ exp{P(r)} F e x p { - P ( s ) } d s d t , ^ exp{P(t)}dt< oo
Jo J t ^o

Q.E.D.
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