JOHN C. TAYLOR

On Deny's characterization of the potential kernel for a convolution Feller semi-group

Annales de l'institut Fourier, tome 25, nº 3-4 (1975), p. 519-537 http://www.numdam.org/item?id=AIF_1975_25_3-4_519_0

© Annales de l'institut Fourier, 1975, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 25, 3 et 4 (1975), 519-537.

ON DENY'S CHARACTERIZATION OF THE POTENTIAL KERNEL FOR A CONVOLUTION FELLER SEMI-GROUP (¹)

by J. C. TAYLOR

Dédié à Monsieur M. Brelot à l'occasion de son 70^e anniversaire.

Introduction.

Let G be an abelian locally compact group and let $\overset{\times}{\times}$ be a positive Radon measure with the property that the kernel V defined by $Vf(x) = (f * \varkappa)(x) = \int f(xy^{-1})\varkappa(dx)$ satisfies the domination principle. In [1] Deny characterized those measures \varkappa for which $V = \int_0^\infty P_t dt$ where (P_t) is a convolution semigroup such that $(x, t) \rightarrow P_t(x, \Phi)$ is continuous for all $\Phi \in C_c(G)$. In particular, if V satisfies the complete maximum principle, his result characterizes the convolution Feller semi-groups.

The purpose of this article is to extend Deny's result, when V is assumed to satisfy the complete maximum principle, to the case where G is replaced by a homogeneous space E = G/K with G an arbitrary locally compact group and K a compact subgroup of G. Specifically, the following is proved (see theorem 3.10):

THEOREM. — Assume that G is σ -compact. Let (\mathbf{P}_i) be a Feller semigroup on E that commutes with the action of G

(1) This work was materially supported by NRC Grant No. A-3108.

on E. Assume that for any compact set $A \subset E$,

$$\mathrm{V1}_{\mathbf{A}} = \int_{\mathbf{0}}^{\infty} \mathrm{P}_{t} \mathrm{1}_{\mathbf{A}} \, dt$$

is finite. Let x be the K-invariant measure on E defined by $\langle x, \Phi \rangle = V \Phi(0)$.

Then x satisfies the following condition:

D) There is a base \mathscr{B} for the neighbourhood filter of 0 such that for each $B \in \mathscr{B}$ there exists $\sigma \in M^+(E)$ with

- (1) $\sigma * \varkappa \leq \varkappa$;
- (2) $\sigma * \varkappa \neq \varkappa$, $\sigma * \varkappa = \varkappa$ on $\int B$; and
- (3) $\lim \sigma * \varkappa^n = 0.$

Conversely, if \varkappa satisfies D) and the kernel $Vf = f \ast \varkappa$ satisfies the complete maximum principle then there is a unique convolution Feller semi-group (P_t) with

$$\mathbf{V} = \int_{\mathbf{0}}^{\infty} \mathbf{P}_{l} \, dt.$$

The condition of σ -compactness is not essential but for the sake of simplicity the detailed proofs are given under this assumption. The measure-theoretic complements needed to permit arguments to carry over in the general case are outlined in the appendix.

Let X be a locally compact space. Then \mathscr{X} denotes the σ -ring generated by the compact subsets of X and $f \in \mathscr{X}^+$ if $\{f > 0\} = A \in \mathscr{X}$ and f|A is measurable and non-negative relative to $\mathscr{X}|A$. The set of non-negative Radon measures is denoted by $M^+(X)$ and $C_c^+(X)$ (resp. $C_0^+(X)$) denotes the set of non-negative continuous functions with compact support (resp. vanishing at infinity).

A kernel is viewed as an operator on functions as in [2] rather than as an operator on measures as in [1].

1. The resolvent defined by a convolution kernel.

Let G be a locally compact group whose topology is σ compact and denote by K a compact subgoup. Let E denote the locally compact quotient space G/K of right cosets and

denote by π the projection of G onto E (let $\pi(t)$ be also denoted by [t]). Let 0 = [e], e the identity of G.

Denote by \varkappa a positive Radon measure on E and let *m* be the left-invariant probability measure on K. Define the measure $\tilde{\varkappa}$ on G by setting

$$\langle \tilde{\mathbf{x}}, f \rangle = \int \left[\int f(tx^{-1})m(dx) \right] \mathbf{x} (d[t]),$$

for $f \in \mathscr{G}^+$ (note that $t \to f^{\#}(t) = \int f(tx^{-1})m(dx)$ is constant on each right coset since a compact group is unimodular).

Define the translation kernels T_t and S_t by the formulas $(T_t f)(x) = f(t^{-1}x)$ and $(S_t f)(x) = f(xt^{-1}), f \in G^+$. A Radon measure α on G is said to be K-right-invariant if

$$\langle \alpha, S_t f \rangle = \langle \alpha, f \rangle$$

for all $t \in K$ and $f \in \mathscr{G}^+$. The measure $\tilde{\varkappa}$ is then the unique K-right invariant measure α on G whose image $\pi(\alpha) = \varkappa$ and the map $\varkappa \to \tilde{\varkappa}$ identifies $M^+(E)$ with the set of K-right-invariant measures on G (note that $\langle \tilde{\varkappa}, f \rangle = \langle \varkappa, \bar{f} \rangle$, where $f^{\#} = \bar{f} \circ \pi$ and $(\overline{S_t}f) = \bar{f}$ if $t \in K$).

If $f \in \mathscr{E}^+$ let $\tilde{f} = f \circ \pi$. Then $g \in \mathscr{G}^+$ is of the form $g = \tilde{f}, f \in \mathscr{E}^+$, if and only if $S_t g = g$ for all $t \in K$. Consequently, if $g \in \mathscr{G}^+$ and $\varkappa \in M^+(E)$ the function h defined by $h(x) = (g * \tilde{\varkappa})(x) = \int g(xt^{-1})\tilde{\varkappa}(dt)$ is of the form $h = \tilde{l}, l \in \mathscr{E}^+$. As a result, if $f \in \mathscr{E}^+$ there is a unique function $g \in \mathscr{E}^+$ with $\tilde{g} = \tilde{f} * \tilde{\varkappa}$. Define g to be $f * \varkappa$. Clearly $f \to f * \varkappa$ defines a kernel N such that $NT_t = T_tN$ for all $t \in G$ and $f \in \mathscr{E}^+$ (note that $T_t f([x]) = f([t^{-1}x])$). Such a kernel will be called a convolution kernel.

A measure μ on E is said to be K-invariant if

$$\langle \mu, f
angle = \langle \mu, \, \mathrm{T}_t f
angle$$

for all $t \in K$ and $f \in \mathscr{E}^+$. This is equivalent to requiring that $\langle \tilde{\mu}, g \rangle = \langle \tilde{\mu}, S_t g \rangle = \langle \tilde{\mu}, T_t g \rangle$ for all $t \in K$ and $g \in \mathscr{G}^+$, i.e. $\tilde{\mu}$ is K-bi-invariant.

LEMMA 1.1. — Let N be a convolution kernel on E. Then there exists a unique K-invariant measure α on E such that $Nf = f * \alpha$ for all $f \in \mathscr{E}^+$. In case $Nf = f * \varkappa$ the measure $\alpha = \pi((\tilde{\beta})^{\check{}})$, where $\beta = \pi((\tilde{\varkappa})^{\check{}})$.

Proof. — Define
$$\langle \beta, f \rangle = Nf(0)$$
. Then, if $t \in K$,

$$\langle \boldsymbol{\beta}, f \rangle = \mathrm{N}f(0) = (\mathrm{T}_{t}\mathrm{N}f)(0) = \mathrm{N}(\mathrm{T}_{t}f)(0) = \langle \boldsymbol{\beta}, \mathrm{T}_{t}f \rangle.$$

Hence, β is K-invariant.

Clearly, $N([x], f) = \int \tilde{f}(xs)\tilde{\beta}(ds)$ if $x \in G$ and $f \in \mathscr{E}^+$. Further, $\tilde{\beta}$ is K-biinvariant and so $\alpha = \pi((\tilde{\beta})^*)$ is K-invariant. Hence, $\tilde{\alpha} = (\tilde{\beta})^*$ and so

$$\mathbf{N}([x], f) = (\tilde{f} * \tilde{\alpha})(x) = (f * \alpha)[x].$$

The uniqueness of α is clear as is the fact that $N = * \varkappa$ implies $\beta = \pi((\tilde{x})^*)$.

Let $\varkappa \in M^+(E)$ be such that the kernel V defined by $Vf = f \ast \varkappa$ satisfies the complete maximum principle (note that \varkappa is not assumed to be K-invariant). Since \varkappa is Radon, V is proper and so, as remarked in [3], it is reasonable to define $u \in \mathscr{E}^+$ as excessive if $u = \sup_n Vf_n$ with $(f_n) \subset \mathscr{E}^+$ and (Vf_n) increasing. Also, $u \in \mathscr{E}^+$ is said to be supermedian if, for all f and $g \in \mathscr{E}^+$, $u + Vf \ge Vg$ on $\{g > 0\}$ implies $u + Vf \ge Vg$.

If $\alpha, \beta \in M^+(G)$ and β is K-right invariant then an easy calculation shows that $\alpha * \beta$ is also K-right-invariant. Hence, if $\mu, \nu \in M^+(E)$ the Radon measure $\tilde{\mu} * \tilde{\nu}$ (when defined) equals $\tilde{\eta}$ where $\pi(\tilde{\mu} * \tilde{\nu}) = \eta \in M^+(E)$. The measure η is defined to be $\mu * \nu$.

Remark. — If N is a convolution kernel on E and

$$\mu \in M^+(E)$$

then $\mu N = \mu * \beta$ where $\beta = \pi((\tilde{\alpha})^*)$ if $Nf = f * \alpha$. In the case of a group the convolution kernels are associated with β rather than α so that the formula $\langle \mu N, f \rangle = \langle \mu, Nf \rangle$ holds.

Assume that the following condition is satisfied by \varkappa :

 (D_1) there is a compact neighbourhood B of 0 and $\sigma \in M^+(E)$ such that

(1) $\sigma * \varkappa \leq \varkappa;$

(2) $\sigma * \varkappa = \varkappa$ on $\int B$; and

(3) $\sigma^n * \varkappa$ tends to zero weakly (where σ^n is the *n*-fold convolution of σ with itself).

PROPOSITION 1.2. — Let $\Phi \in C_c^+(E)$, $x_0 \in E$ and $\varepsilon > 0$. Then there exists an excessive function s and a compact set $K \subset E$ with

- (1) $s(x_0) < \varepsilon$; and
- (2) $s \ge V\Phi$ on $\int K$.

In other words, $\nabla \Phi$ vanishes at the natural boundary of E in the sence of [3].

Proof. — If $\psi \in C_c^+(G)$ then there exists $\Phi \in C_c^+(E)$ with $\psi \leqslant \tilde{\Phi}$. Hence, in view of D_1) (3) it suffices to prove that, for each $n \ge 0$, for all $\Phi \in C_c^+(E)$ and for all $\varepsilon > 0$, there exists an excessive function $\varphi = \varphi(n, \Phi, \varepsilon)$ and a compact set $L_n = L_n(\varphi, \Phi, \varepsilon)$ with (a) $\Phi * (\sigma^n * \varkappa) + \varphi \ge \Phi * \varkappa$ on $\int L_n$ and (b) $\varphi(x_0) < \varepsilon$. Let P(n) denote this statement. First, let n = 1. From D_1) (2) it follows that if $\Phi \in C_c^+(E)$

then $\Phi * (\sigma * \varkappa) = \Phi * \varkappa$ on $\int D, D = \pi(\tilde{A}\tilde{B})$, where

 $\mathbf{\tilde{A}} = \pi^{-1} (\mathrm{supp} \ \Phi)$

and $\tilde{B} = \pi^{-1}(B)$. Since D is compact, P(1) is established with v = 0.

Assume P(n). Let $\sigma = \sigma' + \tau$ where σ' has compact support and $(\Phi * (\tau * \varkappa))(x_0) < \varepsilon/2$. Then,

 $\Phi \, \ast \, (\sigma^{n+1} \ast \varkappa) \, \geqslant \, (\Phi \, \ast \, \sigma') \ast \, (\sigma^n \ast \varkappa)$

and $\Phi * \sigma' \in C_c^+(E)$. If $w = v(n, \Phi * \sigma', \varepsilon/2)$ then $\Phi * (\sigma^{n+1} * \varkappa) + w \ge (\Phi * \sigma') * \varkappa$

on $\int L_n(\nu, \Phi * \sigma', \epsilon/2) = \int L_n$. Hence, if $\nu = \omega + \Phi * (\tau * \varkappa)$

it follows that $\nu + \Phi * (\sigma^{n+1} * \varkappa) \ge \Phi * (\sigma * \varkappa)$ on $\int L_n$ and $\nu(x_0) < \varepsilon$.

In view of P(1) this establishes P(n + 1).

LEMMA 1.3. — Let V and T be proper kernels on a measurable space (E, \mathscr{E}) such that VT = TV. If $V = \lim_{\lambda \neq 0} V_{\lambda}$, where (V_{λ}) is a sub-Markovian resolvent of kernels V_{λ} , then $TV_{\lambda} = V_{\lambda}T$ for all $\lambda > 0$, providing $TI < \infty$.

Proof. — Let $f \in \mathscr{E}^+$ be such that f, ∇f , Tf and ∇Tf are all finite. Now $\nabla_{\lambda} f$ is the unique function h such that $(I + \lambda \nabla)h = \nabla f$. Hence,

$$VTf = TVf = T(I + \lambda V)h = (I + \lambda V)Th$$

implies that $V_{\lambda}(Tf) = T(V_{\lambda}f)$. Since each $f \in \mathscr{E}^+$ is of the form $f = \sum_{n} f_n$, where each f_n satisfies the above hypotheses, the result follows.

THEOREM 1.4. — Let V be the kernel defined by $Vf = f * \varkappa$, $\varkappa \in M^+(E)$. Assume that V satisfies the complete maximum principle. If \varkappa satisfies D_1) then there is a unique family (\varkappa_{λ}) of K-invariant measures \varkappa_{λ} such that the kernels

 $\mathbf{V}_{\lambda}f = f \ast \varkappa_{\lambda}$

form a sub-Markovian resolvent (V_{λ}) of kernels V_{λ} on E with $V = \lim V_{\lambda}$.

Further, if \tilde{V} is the kernel defined by $\tilde{V}g = g * \tilde{x}$ (where x also denotes the K-invariant measure for which Vf = f * x), the kernels \tilde{V}_{λ} defined by $\tilde{V}_{\lambda}g = g * \tilde{x}_{\lambda}$ form the unique sub-Markovian resolvent (\tilde{V}_{λ}) on G with $\tilde{V} = \lim_{\lambda \neq 0} \tilde{V}$.

Proof. — From Proposition 1.1 and Theorem 2 in [3] it follows that there is a unique sub-Markovian resolvent (V_{λ}) with $V = \lim_{\lambda \neq 0} V_{\lambda}$. From Lemma 1.3 it follows that each V_{λ} is a convolution kernel. For all $\lambda \ge 0$, let \varkappa_{λ} be the unique K-invariant measure on E such that $V_{\lambda}f = f * \varkappa_{\lambda}, f \in \mathscr{E}^+$.

The resolvent equation, $0 \ge \lambda \ge \mu$,

$$\varkappa_{\lambda} = \varkappa_{\mu} + (\mu - \lambda) \varkappa_{\lambda} \ast \varkappa_{\mu} = \varkappa_{\mu} + (\mu - \lambda) \varkappa_{\mu} \ast \varkappa_{\lambda}$$

holds when each measure η is replaced by $\tilde{\eta}$. Define

$$ilde{\mathrm{V}}_\lambda g = g * ilde{\mathtt{x}}_\lambda, \qquad g \in \mathscr{G}^+.$$

Then (\tilde{V}_{λ}) is a sub-Markovian resolvent and $f \in \mathscr{E}^+$ implies $\tilde{V}_{\lambda}\tilde{f} = V_{\lambda}f)^{\tilde{}}$. Also, $\tilde{V}g = g * \tilde{\varkappa} \ge \tilde{V}_{\lambda}g = g * \tilde{\varkappa}_{\lambda}$ for all $g \in \mathscr{G}^+$ and since $V = \lim_{\lambda \neq 0} V_{\lambda}$, $\tilde{V} = \lim_{\lambda \neq 0} \tilde{V}_{\lambda}$ (note that if $\psi \in C_{\epsilon}^+(G)$ there exists $\Phi \in C^+(E)$ with $\tilde{\Phi} \ge \psi$).

Remark. — Since \times is K-invariant it can be directly verified that \tilde{V} satisfies the complete maximum principle (note that $\tilde{V}f = \tilde{V}f^{\#}$, for all $f \in \mathscr{G}^+$).

2. The existence of a Feller semigroup.

The measure \varkappa on E will be assumed to satisfy the following condition:

 D_2) there is a base \mathscr{B} of compact neighbourhoods of 0 such that for each $B \in \mathscr{B}$ there exists $\sigma \in M^+(E)$ with

- (1) $\sigma * \varkappa \leq \varkappa$;
- (2) $\sigma * \varkappa \neq \varkappa$; and

(3)
$$\sigma * \varkappa = \varkappa$$
 on [B.

Remark. — If, in addition, one requires in D_2) that each $\sigma^n * \varkappa$ converge weakly to zero as $n \to \infty$ and that each σ is carried by $\int \overline{B}$ then there is a family associated with \varkappa in the sense of Deny [1].

Since the resolvent (V_{λ}) maps $C_0(E)$ into itself the Hille-Yosida theorem can be applied if $D = \overline{V_{\lambda}(C_0(E))} = C_0(E)$.

This fact is established by the following sequence of lemmas and propositions.

LEMMA 2.1. — Assume $\alpha \leq \beta$. Then $\alpha = \beta$ if $(\Phi * \alpha)(0) = (\Phi * \beta)(0)$ for all $\Phi \in C_c^+(E)$.

Proof. $(\Phi * \alpha)(0) = (\Phi * \beta)(0)$ for all $\Phi \in C_c^+(E)$ implies that $\tilde{\alpha}(\tilde{A}^{-1}) = \tilde{\beta}(\tilde{A})^{-1})$ for every compact set $A \subset E$.

If $B \subset G$ is compact then $B^{-1} \subset \tilde{A}$ where $A = \pi(B^{-1})$ is compact. Hence, $B \subset \tilde{A}^{-1}$. Since $\tilde{\alpha} \leq \tilde{\beta}$ if follows that

 $\tilde{\alpha}(B) = \tilde{\beta}(B)$ for all compact sets $B \subset G$. Consequently, $\alpha = \beta$.

LEMMA 2.2. — If $\sigma * \varkappa \leq \varkappa$ then $V(\Phi * \sigma) = \Phi * (\sigma * \varkappa)$ is continuous and excessive whenever $\Phi \in C_c^+(E)$.

Proof. — Let $\varepsilon > 0$, $x_0 \in E$ and $\Phi \in C_c^+(E)$. Let O be a compact neighbourhood of e such that $t \in O$ implies $||T_i \Phi - \Phi|| < \varepsilon$. If $\pi(t_0) = x_0$ then $\pi(Ot_0)$ is a neighbourhood U of x_0 .

Let $\psi \in C^+_c(G)$ be such that

$$\{\psi=1\} \supset \bigcup_{\iota \in O} \{T_{\iota} \tilde{\Phi} \neq \tilde{\Phi}\}.$$

Then, if $x \in U$, where $x = [tt_0]$ with $t \in O$,

$$\begin{split} |V(\Phi * \sigma)(x) &- |V(\Phi * \sigma)(x_0)| \leq \int |\tilde{\Phi}((tt_0s^{-1}) \\ &- \tilde{\Phi}(t_0s^{-1})|(\tilde{\sigma} * \tilde{\varkappa}) \ (ds) \leq \varepsilon \int \psi(t_0s^{-1})(\tilde{\sigma} * \tilde{\varkappa}) \ (ds). \end{split}$$

Since there exists $\theta \in C_c^+(E)$ with $\tilde{\theta}(s) \ge \psi(t_0 s^{-1})$, for all $s \in G$, the last integral is finite.

PROPOSITION 2.3. — Let U be a neighbourhood of 0. Then there exists $\psi \in C_c^+(E)$ such that:

(1) $\psi = u - v$, u and v both continuous excessive functions;

(2)
$$0 \neq \psi(0) = ||\psi||;$$
 and

(3) supp $\psi \subset U$.

Proof. — There exists a compact neighbourhood D of 0 such that $\tilde{D}^{-1}\tilde{D} \subset \tilde{U}$. Further, there exist compact neighbourhoods A and B of 0 with $A = \operatorname{supp} \psi, \ \psi \in C_c^+(E)$, $B \in \mathscr{B}$ and $\tilde{A}\tilde{B} \subset \tilde{D}$.

Let σ be a measure satisfying the conditions in D_2) relative to B. Then, if

$$\mathbf{X} = \operatorname{supp} \, (\mathbf{x} - \mathbf{\sigma} \ast \mathbf{x}), \qquad \Phi \ast \mathbf{x} - \Phi \ast (\mathbf{\sigma} \ast \mathbf{x}) \in \mathbf{C}^+_{\mathbf{c}}(\mathbf{E})$$

(its support lies in $\pi(\mathbf{\tilde{A}\tilde{B}})$) and attains its maximum at a point

 $x_{\mathbf{0}} \in \pi(\{\tilde{\Phi} > 0\}\tilde{\mathbf{X}}) \subset \pi(\tilde{\mathbf{A}}\tilde{\mathbf{B}}) \subset \mathbf{D}.$

Choose $s_0 \in \{\tilde{\Phi} > 0\}\tilde{X}$ with $\pi(s_0) = x_0$ and let $\theta = T_{s_0}\Phi$. Then $\psi = \theta * \varkappa - \theta * (\sigma * \varkappa)$ is a function that satisfies (1), (2) and (3) above.

COROLLARY 2.4. — The functions $V_{\lambda}\Phi$, $\lambda > 0$ and $\Phi \in C_{c}^{+}(E)$ separate the points of E.

Proof. — If u is lower semicontinuous and excessive then $u = \sup \{\lambda V_{\lambda} \Phi | \lambda > 0 \text{ and } \Phi \in C_{c}^{+}(E) \text{ with } \Phi \leq u\}$. Hence, the functions $V_{\lambda} \Phi$ separate 0 from any other point $x \in E$. Since $V_{\lambda}T_{s} = T_{s}V_{\lambda}$, for all $s \in G$, the result follows.

. Remark. — As pointed out by Faraut and Harzallah, given Corollary 2.4. the theory of Ray semigroups can be applied (in the metrisable case) to give a proof of the fact that (V_{λ}) is the resolvent of a Feller semigroup. For example, Corollary 2.4 implies that the hypotheses of Theorem 1.7 in [4] are verified. Hence, (V_{λ}) is the resolvent of a semigroup (P_t) of kernels P_t . The set D of non-branching points is nonvoid (corollary 2.6 in [4]) and since one can show that, for all $s \in G$ and t > 0, $T_s P_t = P_t T_s$, D = E. From this it follows, since $C_0(E)$ is invariant under (P_t) , that (P_t) is a Feller semigroup.

A direct proof of this fact (which does not use metrizability or σ -compactness) continues with the following result.

COROLLARY 2.5. — If U is an open Baire neighbourhood of 0 then $\lim_{\lambda \to \infty} \lambda V_{\lambda}(0, U) = 1$.

Proof. — Let $\psi \in C_c^+(E)$ satisfy conditions (1), (2) and (3) of Proposition 2.3. Then, since $\lim_{\lambda \to \infty} \lambda V_{\lambda}(0, \psi) = \psi(0)$ the result follows as $\lambda V_{\lambda}(0, \psi) \leq \lambda V_{\lambda}(0, U)\psi(0)$.

COROLLARY 2.6. — Let u and φ be two lower semicontinuous excessive functions. Then $w = u \land \varphi$ is also excessive.

Proof. — If $x_0 \in E$ and $\varepsilon > 0$ let $U = \{w > w(x_0) - \varepsilon\}$. Then, U is open and $\lim_{\lambda \to \infty} \lambda V_{\lambda}(x_0, U) = 1$. Hence,

$$\hat{w}(x_0) \geq w(x_0) - \varepsilon.$$

PROPOSITION 2.7. — Let $A \subseteq E$ be compact. Then there is a compact neighbourhood O of A and $\lambda_0 > 0$ such that, for $\varepsilon > 0$,

$$\lambda V_{\lambda}(x, A) < \varepsilon$$
 if $x \notin O$ and $\lambda \ge \lambda_0$.

Proof. — Let $\varepsilon > 0$ and let U be a compact neighbourhood of 0. Let $\lambda_0 > 0$ be such that

$$1 - \varepsilon < \lambda V_{\lambda}(0, U) = \lambda (1_{U} * \varkappa_{\lambda})(0) \quad \text{for} \quad \lambda \ge \lambda_{0}.$$

Let $O = \pi(\tilde{A}\tilde{U})$.

Denote by β any one of the measures λx_{λ} , $\lambda \ge \lambda_0$. Then, if $x = \pi(t)$

$$\begin{aligned} (\mathbf{1}_{\mathbf{A}} * \boldsymbol{\beta})(x) &= \int \mathbf{1}_{\mathbf{\tilde{A}}}(ts^{-1})\mathbf{\tilde{\beta}} \ (ds) \\ &= \int \mathbf{1}_{\mathbf{\tilde{A}}}(ts^{-1})\mathbf{1}_{\mathbf{\tilde{U}}}(s)\mathbf{\tilde{\beta}} \ (ds) + \int \mathbf{1}_{\mathbf{\tilde{A}}}(ts^{-1})\mathbf{1}_{\mathbf{\tilde{U}}}(s)\mathbf{\tilde{\beta}} \ (ds) \\ &\leqslant \int \mathbf{1}_{\mathbf{\tilde{U}}}(s)\mathbf{\tilde{\beta}} \ (ds) < \mathbf{\varepsilon}, \quad \text{if} \quad t \notin \mathbf{\tilde{A}}\mathbf{\tilde{U}}. \end{aligned}$$

COROLLARY 2.8. — Let u, v, be two continuous excessive functions on E with $u - v \in C_c^+(E)$. Then,

$$\lim_{\lambda \to \infty} \|\lambda V_{\lambda}(u - v) - (u - v)\| = 0.$$

Proof. — Let A = supp(u - v) and let $\varepsilon > 0$. Denote by O a compact neighbourhood of A such that

$$\lambda V_{\lambda}(x, A) < \varepsilon$$
 if $x \notin O$ and $\lambda \ge \lambda_0$.

Then $|\lambda V_{\lambda}(x, u - \nu)| \leq \varepsilon ||u - \nu||$ if $x \notin O$. Since $\lambda V_{\lambda}u$ $\lambda V_{\lambda}\nu$ are lower semicontinuous, $\lambda V_{\lambda}(u - \nu)$ converges uniformly to $u - \nu$ on O. The result follows.

The above results imply that $\overline{V_{\lambda}(C_0(E))} = C_0(E)$ and hence the following result.

THEOREM 2.9. — Let G be a locally compact group (that is σ -compact) and let K \subset G be a compact subgroup. Let V = *x be a convolution kernel on the homogeneous space E = G/K, $x \in M^+(E)$. Assume that V satisfies the complete maximum principle.

If x satisfies D_1 and D_2 then there is a unique Feller semigroup (P_t) on E with $V = \int_0^{+\infty} P_t dt$.

Proof. — Let u_i , v_i for i = 1, 2 be continuous excessive functions such that $\psi_i = u_i - v_i \in C^+_{\epsilon}(E)$. Then

$$\psi_1 \wedge \psi_2 = (u_1 + v_2) \wedge (u_2 + v_1) - (v_1 + v_2)$$

is of the same form. Hence, the vector space generated by functions $\psi \in C_c^+(E)$, which are differences of continuous excessive functions, is dense in $C_0(E)$.

Corollary 2.8 implies that $D = \overline{V_{\lambda}(C_0(E))} = C_0(E)$. The result then follows from the Hille-Yosida theorem (c.f. [2]).

As an immediate corollary one has the following restricted version of a result of Deny [1].

COROLLARY 2.10. — Let G be a locally compact abelian group (that is σ -compact) and let $V = * \times$ be a convolution kernel on G that satisfies the complete maximum principle. Then, V is the potential kernel of a Feller semigroup if the following condition is verified:

D) for a base \mathscr{B} of compact neighbourhoods of the identity e of G there is, for each $B \in \mathscr{B}$, a measure $\sigma \in M^+(E)$ with

(1) $\sigma * \varkappa \leq \varkappa$ and $\sigma * \varkappa \neq \varkappa$;

(2)
$$\sigma * \varkappa = \varkappa$$
 on $\int B$; and

(3)
$$\lim_{n\to\infty} (\sigma^n) * \varkappa = 0$$
 (weakly).

Remarks. — Deny's result is more general. He not only did not require G to be σ -compact (a hypothesis that can be removed from all the above results as indicated in the appendix) but also did not assume that the kernel $*\varkappa$ satisfied the complete maximum principle. Further, while in the commutative case it is immaterial whether one writes $\sigma *\varkappa$, or $\varkappa *\sigma$ it seems to be necessary in general to have $\sigma *\varkappa \leq \varkappa$ if the kernel V commutes with the left action of G on E.

3. The characterization of convolution Feller semi-groups.

Let (P_t) be a Feller semigroup on E that commutes with the action of G on E, i.e., if $s \in G$ and t > 0 then

$$\mathbf{T}_{s}\mathbf{P}_{t}=\mathbf{P}_{t}\mathbf{T}_{s}.$$

Further, assume that if $A \subseteq E$ is compact,

$$\mathrm{V1}_{\mathbf{A}} = \int_{\mathbf{0}}^{\infty} \mathrm{P}_{t} \mathrm{1}_{\mathbf{A}} dt$$

is finite.

Denote by \check{x} the unique K-invariant measure on E defined by $\langle \check{x}, \Phi \rangle = V\Phi(0)$. Then $Vf = f * \varkappa$ and $\mu V = \mu * \check{x}$ (note that $(\check{x})^{\sim}$ is K-biinvariant and so $((\check{x})^{\sim})^{\sim}$, being K-right invariant, is of the form \check{x} for a unique $\varkappa \in M^+(E)$). It will be shown first that \check{x} satisfies conditions D_1) and D_2).

Note that $\mu \to \mu P_t$, $\mu \in M_c^+(E)$, defines a continuous Hunt semigroup in the terminology of Deny [1]. Hence, all the results of paragraphs 3 and 4 in [1] hold.

To begin with it is proved that 1 is an excessive function.

LEMMA 3.1. $-\lim_{t \ge 0} P_t 1 = 1.$

Proof. — Obviously, it suffices to show that $\lim_{t \to 0} P_t(0, 1) = 1$. Choose $\Phi \in C_c^+(E)$ with $\Phi(0) = 1$ and $\Phi \leq 1$. Then $1 = \lim_{t \to 0} P_t(0, \Phi) \leq \limsup_{t \to 0} P_t(0, 1) \leq 1$.

COROLLARY 3.2. — Let $\sigma \in M^+(E)$ be such that $\sigma * \check{x} \leq \check{x}$. Then $\langle \sigma, 1 \rangle \leq 1$.

Proof. — Since by Lemma 3.1 1 is excessive there exists $(f_n) \subset E$ with $(f_n * \varkappa)$ increasing to 1. Hence, $\langle \sigma, 1 \rangle = \lim \langle \sigma, f_n * \varkappa \rangle = \lim \langle \sigma * \check{\varkappa}, f_n \rangle$

$$\lim_{n} \langle \mathfrak{s}, \mathfrak{r} \rangle = \lim_{n} \langle \mathfrak{s}, \mathfrak{r}, \mathfrak{s} \rangle = \lim_{n} \langle \mathfrak{s}, \mathfrak{r}, \mathfrak{r} \rangle = \lim_{n} f_n \ast \varkappa(0) = 1.$$

LEMMA 3.3. — Let (α_i) and $(\beta_j) \subseteq M^+(E)$ be two nets that converge weakly to α and β respectively. Assume

$$\langle \alpha_i, 1 \rangle \leq 1$$
 and $\langle \beta_j, 1 \rangle \leq 1$

for all i and j. In addition assume that each β_j is K-invariant. Then,

$$\alpha * \beta = \lim_{i} \lim_{j} \alpha_i * \beta_j = \lim_{j} \lim_{i} \alpha_i * \beta_j.$$

Proof. — Let $\Phi \in C_c^+(E)$. Then $\langle \alpha_i * \beta_j, \Phi \rangle = \langle \alpha_i, \Phi * \check{\beta}_j \rangle$ implies $\lim_i \alpha_i * \beta_j = \alpha * \beta_j$. Further, since $(\tilde{\alpha}_i)^* * \tilde{\Phi} = \tilde{\psi}$,

with $\psi \in C_0(E)$, it follows from $\langle \alpha_i * \beta_j, \Phi \rangle = \langle \tilde{\beta}_j, \tilde{\psi} \rangle$ that $\lim_j \alpha_i * \beta_j = \alpha_i * \beta$. Applying both these arguments to $\alpha_i * \beta$ and $\alpha * \beta_j$ respectively gives the result.

COROLLARY 3.4. — If β is K-invariant and $\langle \beta, 1 \rangle \leq 1$ then $\lim_{i} \alpha_i * \beta = \alpha * \beta$. If $\langle \beta, 1 \rangle \leq 1$ and each α_i is K-invariant then $\lim_{i} \beta * \alpha_i = \beta * \alpha$.

Proof. – Let $\beta_i = \beta$ for all j.

COROLLARY 3.5. — Let μ be a weak accumulation point of $\{\sigma^{n|} n \in \mathbf{N}\}$, where $\sigma * \check{\mathbf{x}} \leq \check{\mathbf{x}}$ and σ is K-invariant. Then $\mu * \sigma = \sigma * \mu$.

Proof. — Let
$$\sigma^{n_i} = \alpha_i$$
 be a net converging to μ . Then
 $\mu * \sigma = \lim_i \alpha_i * \sigma = \lim_i \sigma * \alpha_i = \sigma * \mu$.

A Radon measure ξ is said to be *excessive* if it is ≥ 0 and $\xi * \lambda x_{\lambda} \le \xi$ for all $\lambda > 0$. It is said to be a *potential* if $\xi = \gamma * \check{x}$ for some $\gamma \in M^+(E)$.

PROPOSITION 3.6. – Let (ξ_i) be a net of potentials

$$\xi_i = \gamma_i * \check{x}$$

each dominated by a potential $\beta * \check{x}$ with $\langle \beta, 1 \rangle < \infty$. Assume that ξ is the weak limit of (ξ_i) .

Then ξ is a potential $\gamma * \check{x}$ and $\gamma = \lim_{i} \gamma_i$ if $\langle \gamma_i, 1 \rangle \leq 1$ for all n.

Proof (cf. the proofs of Theorem 6.1 and Lemma 7.1 in [1]). — The measure ξ is excessive and since $\xi \leq \beta * \check{x}$ its invariant part is zero (see [1]). Let $\mu_{\lambda} = \lambda \xi * (\delta - \lambda \check{x}_{\lambda})$. Then

Then,

Hence, by Lemma 3.3, if γ is a weak accumulation point

of $\{\mu_n | n > 0\}$ and equals $\lim_j \mu_{n_j}$, where $j \to \mu_{n_j}$ is a net, then $\lim_j \mu_{n_j} * \check{x}_{\lambda} = \gamma * \check{x}_{\lambda}$.

Deny's argument in [1] is now used to show $\xi = \gamma * \check{x}$ (see proof of his Theorem 6.1). Specifically, since for any $\lambda > 0 \lim_{j} \mu_{\lambda} * \check{x}_{n_{j}} = 0$ (the net $j \to n_{j}$ is unbounded) it follows that

$$\mu_{\lambda} * \check{\mathbf{x}} = \lim_{j} \mu_{\lambda} * (\check{\mathbf{x}} - \check{\mathbf{x}}_{n_{j}}) = \lim_{j} \mu_{n_{j}} * (\check{\mathbf{x}} - \check{\mathbf{x}}_{\lambda}) = \xi - \gamma * \check{\mathbf{x}}_{\lambda},$$

since $\lim_{\lambda \to \infty} \lambda(\xi * \check{x}_{\lambda}) = \xi$ follows from the fact that for all $\Phi \in C_c(E) \lim_{\lambda \to \infty} \lambda(\Phi * \varkappa_{\lambda}) = \Phi$.

Following Deny, let $\lambda \rightarrow 0$ in this identity. Since

$$\mu_{\lambda} st \check{x} = \xi st \lambda\check{x}_{\lambda}$$

implies $\lim_{\lambda \to 0} \mu_{\lambda} * \check{x} = 0$ (the invariant part of ξ is zero) it follows that $\xi = \gamma * \check{x}$.

It remains to show that $\gamma = \lim_{i} \gamma_i$. Since

$$\xi_i * \lambda \check{\varkappa}_{\lambda} = \xi_i - \gamma_i * \check{\varkappa}_{\lambda},$$

by lemma 3.3, $\lim \gamma_i * \check{x}_{\lambda}$ exists and equals

$$\xi - \xi * \lambda \check{\mathtt{x}}_{\lambda} = \gamma * \check{\mathtt{x}}_{\lambda}.$$

Let $j \to \gamma_{n_j}$ be a net converging to α . Then

$$lpha st \check{lpha}_{\lambda} = \lim_{j} \gamma_{n_{j}} st \check{lpha}_{\lambda} = \gamma st \check{lpha}_{\lambda}.$$

Hence, as $\overline{V_{\lambda}(C_{\mathfrak{c}}(E))} = C_0(E)$, $\alpha = \gamma$ and so (γ_i) converges weakly to γ .

COROLLARY 3.7. — If $U \subseteq E$ is open and $\beta \in M_{\delta}^{+}(E)$ there exists a measure $\beta' \in M^{+}(E)$ with (1) $\beta' * \check{x} \leq \beta * \check{x}$; (2) β' carried by \overline{U} and (3) $\beta' * \check{x} = \beta * \check{x}$ on U.

Proof. — The argument used by Deny to prove Lemma 7.2 in [1] applies without change once it is noted that

$$\mu * \check{\varkappa} \leq \beta * \check{\varkappa} \quad \text{and} \quad \langle \beta, 1 \rangle = b$$

implies $\langle \mu, 1 \rangle \leq b$ (see the proof of Corollary 3.2).

COROLLARY 3.8. — Assume $\sigma * \check{x} \leq \check{x}$. The excessive measure $\xi = \lim_{n \to \infty} \sigma^n * \check{x}$ is a potential $\mu * \check{x}$ and $\mu = \lim_{n \to \infty} \sigma^n$.

Proof. — Let $\xi_n = \sigma^n * \check{\varkappa}$.

From these results one can quickly deduce the following key fact.

PROPOSITION 3.9. — Let $\sigma \in M^+(E)$ be such that $\sigma * \check{\varkappa} \leq \check{\varkappa}$ and $\sigma * \check{\varkappa} \neq \check{\varkappa}$. Then, $\lim \sigma^n * \check{\varkappa} = 0$.

Proof (cf. the proof of Theorem 7.1 in [1]). — Let

$$\xi = \lim_{n \to \infty} \sigma^n * \check{\varkappa}$$

Then $\sigma * \xi = \xi$ and $\xi = \mu * \check{x}$ where $\mu = \lim_{n} \sigma^{n}$ (see Proposition 3.6). Hence,

$$\mu * \xi = \lim_{n \to \infty} \mu * \sigma^n * \check{x} = \lim_{n \to \infty} \sigma^n * \mu * \check{x} = \lim_{n \to \infty} \sigma^n * \xi = \xi$$

(note that the first equality holds by monotonicity).

Since $\sigma * \check{x} \neq \check{x}$ the positive measure $\check{x} - \xi$ is not zero. Hence, $\mu * (\check{x} - \xi) = 0$ implies $\mu = 0$ and so $\xi = 0$.

Deny's Proposition 3.3 in [1] states that if $\mu, \nu \in M^+(E)$ are such that $\mu * \check{x}, \nu * \check{x} \in M^+(E)$ and $\mu * \check{x} = \nu * \check{x}$ then $\mu = \nu$. Hence, Corollary 3.7 (applied to $\beta = \delta$) and Proposition 3.9 imply that $\eta = \check{x}$ satisfies the following condition :

D) for a base \mathscr{B} of compact neighbourhoods B of 0 there is, for each $B \in \mathscr{B}$, a measure $\sigma \in M^+(E)$ with

(1) $\sigma * \eta \leq \eta$ and $\sigma * \eta \neq \eta$; (2) $\sigma * \eta = \eta$ on $\int B$; (3) $\lim_{n \neq \infty} (\sigma^n) * \eta = 0$ (weakly).

One can now state and prove the following characterization of Feller semigroups on E whose potential kernel is proper and which commute with the action of G on E.

THEOREM 3.10. — Let G be a locally compact group (that is σ -compact) and let E be the homogeneous space G/K

of right cosets of K, a compact subgroup of G. Denote by \varkappa a positive K-invariant Radon measure on E.

The following conditions are equivalent:

(1) there is a family $(\alpha_t)t > 0$ of K-invariant Radon measures α_t on E such that $\varkappa = \int_0^\infty \alpha_t dt$ and $(\ast \alpha_t)_{t>0}$ is a Feller semigroup;

(2) the kernel $*\times$ satisfies the complete maximum principle and \times satisfies D);

 (2^{*}) the kernel $* \mathbf{\check{x}}$ satisfies the complete maximum principle and $\mathbf{\check{x}}$ satisfies D).

Further, if D' denotes the condition obtained from D by reversing all the convolutions then (1) implies:

(3) the kernel $*\times$ satisfies the complete maximum principle and \times satisfies D'); and

(3) the analogue of (2) with D) replaced by D').

Proof. — Theorem 2.9 states that $(2) \rightarrow (1)$.

 $(1) \longrightarrow (2)$. As noted above the measure \check{x} satisfies D). Further, if $\varkappa_{\lambda} = \int_{0}^{\infty} e^{-\lambda t} \alpha_{t} dt$, the family $(\ast \check{x}_{\lambda})$ of convolution kernels is a sub-Markovian resolvent family. Lemma 3.11 shows that $\ast \check{x} = \lim_{\lambda \neq 0} \ast \check{x}_{\lambda}$ and so $\ast \check{x}$ satisfies the complete maximum principle. Hence, from Theorem 2.9 and the above remark $\varkappa = (\check{x})^{\check{x}}$ satisfies D).

The statement (1) is equivalent to the statement obtained by replacing each measure η by $\check{\eta}$. Hence, (1) \iff (2^{*}).

LEMMA 3.11. — Assume $(* \times_{\lambda})$ is a sub-Markovian resolvent family of convolution kernels $V_{\lambda} = * \times_{\lambda}$ with each \times_{λ} a K-invariant measure on E and $\lim_{\lambda \to 0} V_{\lambda} = * \times$. Then,

$$* \varkappa = \lim_{\lambda \neq 0} * \varkappa_{\lambda} \iff \varkappa = \lim_{\lambda \neq 0} \varkappa_{\lambda}.$$

Proof. — Since $\langle \beta, g \rangle = \langle \tilde{\beta}, \tilde{g} \rangle$, it suffices to show that * $\varkappa = \lim_{\lambda \neq 0} \ast \varkappa_{\lambda}$ if for all $g \in \mathscr{G}^+$, $\lim_{\lambda \neq 0} \langle \tilde{\varkappa}_{\lambda}, g \rangle = \langle \tilde{\varkappa}, g \rangle$.

One implication is obvious. Now assume that, for all $f \in \mathscr{E}^+$, $\lim_{\lambda \neq 0} f * \varkappa_{\lambda} = f * \varkappa$. Let $g_1 \in \mathscr{G}^+$ be bounded and vanish

outside a compact set. Then there exists $\Phi \in C^+(E)$ with $(\tilde{\Phi})^{\check{}} \geq \tilde{g}_1$. Since $\Phi * \varkappa_{\lambda}(0) = \langle \tilde{\varkappa}_{\lambda}, (\tilde{\Phi})^{\check{}} \rangle$ and $\tilde{\varkappa}_{\lambda} \leq \tilde{\varkappa}$, for all $\lambda > 0$ if follows that $\lim_{\lambda \neq 0} \langle \tilde{\varkappa}_{\lambda}, g_1 \rangle = \langle \tilde{\varkappa}, g_1 \rangle$. Since $\tilde{\varkappa}$ is a Radon measure this implies that $\lim_{\lambda \neq 0} \langle \tilde{\varkappa}_{\lambda}, g \rangle = \langle \tilde{\varkappa}, g \rangle$ for all $g \in \mathscr{G}^+$.

Lemma 3.12. — Let $\sigma \in M^+(E)$ and set

$$\langle \mathsf{v}, f \rangle = \int \langle \sigma, \operatorname{T}_{s} f \rangle m \ (ds).$$

Then $v \in M^+(E)$ is a K-invariant measure. Further, if

$$\alpha \in M^+(E)$$

and $\alpha * \sigma \in M^+(E)$ so too is $\alpha * \nu$ and $\alpha * \nu = \alpha * \sigma$. If, in addition, α is K-invariant then $\nu * \alpha = \sigma * \alpha$ when $\sigma * \alpha \in M^+(E)$.

Proof. — Clearly \vee is K-invariant. Let $f \in \mathscr{E}^+$. Then $\langle \nu, f \rangle = \langle \tilde{\nu}, \tilde{f} \rangle = \iint \tilde{f}(s^{-1}z)\tilde{\sigma} (dz)m (ds)$. Hence, $\langle \alpha * \nu, f \rangle = \langle \tilde{\alpha} * \tilde{\nu}, \tilde{f} \rangle$ $= \iint \left[\int \tilde{f}(xy)\tilde{\nu} (dy) \right] \tilde{\alpha} (dx) = \iint \left[\iint \tilde{f}(xs^{-1}z)\tilde{\sigma} (dz)m (ds) \right] \tilde{\alpha} (dx)$ (because the function $y \to \tilde{f}(xy) = \tilde{g}(y), g \in \mathscr{E}^+$) $= \iint \left[\int \tilde{f}(xs^{-1}z)\tilde{\alpha} (dx) \right] \tilde{\sigma} (dz)m (ds)$ $= \iint \left[\int \tilde{f}(xz)\tilde{\alpha} (dx) \right] \tilde{\sigma} (dz)m (ds)$

(because $s \in K$ and $\tilde{\alpha}$ is K-right invariant)

$$=\langle ilde{lpha}* ilde{\sigma}, ilde{f}
angle =\langle lpha*\sigma,f
angle.$$

The calculation that proves $v * \alpha = \sigma * \alpha$ when α is K-invariant is entirely similar.

COROLLARY 3.13. — Let $\varkappa * \sigma \leq \varkappa$ and $\lim_{n \neq \infty} \varkappa * \sigma^n = 0$ where $\varkappa, \sigma \in M^+(E)$ and \varkappa is K-invariant. Then the Kinvariant measure \lor of Lemma 3.12 is such that $\varkappa * \lor \leq \varkappa$ and $\lim_{n \neq \infty} \varkappa * \lor^n = 0$. Further, if $\varkappa * \sigma = \varkappa$ on A then $\varkappa * \lor = \varkappa$ on A. The corresponding results hold if the convolutions are done in the reverse order.

Proof. — For the first statement if suffices to note that

$$lpha st \sigma^n = (lpha st \sigma^{n-1}) st \sigma = (lpha st \sigma^{n-1}) st \gamma$$

and so $\varkappa * \sigma^n = \varkappa * \nu^n$. For the second one note that if

$$\nu^{n-1} \ast \varkappa = \sigma^{n-1} \ast \varkappa = \alpha$$

then α is K-invariant and so $\nu^n * \varkappa = \sigma * \alpha = \sigma^n * \varkappa$.

The proof of the theorem is now completed by the above lemmas and corollary.

Remarks. — The conditions (3) and (3^{*}) do not appear to imply condition (1). By considering the situation on the space F of left cosets one could show (3) \rightarrow (1) providing that the kernel $\times \ast$ on F satisfies the complete maximum principle. However one only knows that $\check{\times} \ast$ has this property.

To prove the last statement it suffices to show that \varkappa satisfies D') whenever \varkappa satisfies D).

First of all if \mathscr{B} is a neighbourhood base for 0 satisfying D) the measures σ can, by corollary 3.13 below, be assumed to be K-invariant. Now $(\sigma * \varkappa)^* = \varkappa * \check{\sigma}$ and so since the sets of the form $\pi((\tilde{A})^*)$, $B \in \mathscr{B}$, also from a base for the neighbourhoods of 0 it follows that $\check{\varkappa}$ satisfies D').

Appendix.

In the non σ -compact case the complications arise because theorem 2 of [4] no longer applies and has to be replaced by theorem 3 of [5]. In the terminology of [5] if $V = * \varkappa$ then every Baire set is σ -bounded. This condition replaces the hypothesis that V is a proper kernel in the σ -compact case.

In proposition 1.2 « excessive » should be replaced by « supermedian » as defined in [5]. Now, as V is sub-Markovian, 1 is supermedian and so, in view of theorem 3 in [5], theorem 1.4 holds. Note that in lemma 1.3 « proper » should be replaced by « every Baire set is σ -bounded ».

BIBLIOGRAPHY

- [1] J. DENY, Noyaux de Convolution de Hunt et Noyaux Associés à une Famille Fondamentale, Ann. Inst. Fourier, 12 (1962), 643-667.
- [2] P. A. MEYER, Probability and Potentials, Blaisdell Publishing Company, Waltham, Mass., 1966.
- [3] J.-C. TAYLOR, On the existence of sub-Markovian resolvents, Invent. Math., 17 (1972), 85-93.
- [4] J.-C. TAYLOR, Ray Processes on Locally Compact Spaces, Math. Annalen. 208 (1974), 233-248.
- [5] J.-C. TAYLOR, On the existence of resolvents, Séminaire de probabilité VII, Université de Strasbourg (1971-1972), Springer, Lecture Notes, 321, 291-300, Berlin, 1973.

Manuscrit reçu le 16 octobre 1974.

J.-C. TAYLOR, Department of Mathematics McGill University P.O. Box 6070. Station A Montreal, Canada H3C 3G1.