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ON DENY'S CHARACTERIZATION
OF THE POTENTIAL KERNEL

FOR A CONVOLUTION
FELLER SEMI-GROUP Q)

by J. C. TAYLOR

Dedie a Monsieur M. Brelot a Voccasion
de son 70e anniversaire.

Introduction.

Let G be an abelian locally compact group and let K
be a positive Radon measure with the property that the
kernel V defined by V/*(^) ==(/** x)(^) = j/{xy-^^dx)
satisfies the domination principle. In [1] Deny characterized
those measures x for which V = f P( dt where (P()
is a convolution semigroup such that (^, () -> P((rc, 0) is
continuous for all 0 6 C<;(G). In particular, if V satisfies
the complete maximum principle, his result characterizes the
convolution Feller semi-groups.

The purpose of this article is to extend Deny's result, when
V is assumed to satisfy the complete maximum principle,
to the case where G is replaced by a homogeneous space
E == G/K with G an arbitrary locally compact group and K
a compact subgroup of G. Specifically, the following is proved
(see theorem 3.10) :

THEOREM. — Assume that G is a-compact. Let (P() be
a Feller semigroup on E that commutes with the action of G

(1) This work was materially supported by NRC Grant No. A-3108.
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on E. Assume that for any compact set A <= E,

VIA=J;"P.IA^
is finite. Let x be the K^-invariant measure on E defined by
<x, 0> == V0(0).

Then x satisfies the following condition:

D) TAere 15 a base 3S for the neighbourhood filter of 0
such that for each B e ̂  there exists a e M^E) with

(1) a * x ^ x;

(2) < r * x ^ x , < 7 * x = x on ^ B; aruf
(3) Km or * x" == 0.

n»-oo

Conversely^ if x satisfies D) and (Ae kernel V/*==/**x
satisfies the complete maximum principle then there is a unique
convolution Feller semi-group (P() with

V == J;°° P, d.

The condition of cr-compactness is not essential but for the
sake of simplicity the detailed proofs are given under this
assumption. The measure-theoretic complements needed to
permit arguments to carry over in the general case are outlined
in the appendix.

Let X be a locally compact space. Then ^ denotes the
o-ring generated by the compact subsets of X and fe^
it {/* > 0} = A. e ̂  and f\A. is measurable and non-negative
relative to ^|A. The set of non-negative Radon measures
is denoted by M-^X) and C^(X) (resp. Co"(X)) denotes
the set of non-negative continuous functions with compact
support (resp. vanishing at infinity).

A kernel is viewed as an operator on functions as in [2]
rather than as an operator on measures as in [1].

1. The resolvent defined by a convolution kernel.

Let G be a locally compact group whose topology is or-
compact and denote by K a compact subgoup. Let E denote
the locally compact quotient space G/K of right cosets and
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denote by TC the projection of G onto E (let n{t) be also
denoted by [t]). Let 0 == [(?], e the identity of G.

Denote by x a positive Radon measure on E and let m
be the left-invariant probability measure on K. Define the
measure x on G by setting

<x, f> = f [f fdx-^m {dx)] K {d[t]),

for fe ^+ (note that t -> f^(t} == f f{tx-l)m(dx) is constant
on each right coset since a compact group is unimodular).

Define the translation kernels T( and S< by the formulas
{Wx) == f^x) and {S/){x) = f(xt-1), / •GG+. A Radon
measure a on G is said to be aright-invariant if

<a, S,y> - <a, />

for all t e K and f E ^+. The measure x is then the unique
K-right invariant measure a on G whose image 7r(oc) == x
and the map x -> x identifies M^E) with the set of K-
right-invariant measures on G (note that <x, /*> == <x, jf>,
where f^=f on and (S^) = f if t e K).

If /"e^ let f==:fon. Then g e ^+ is of the form
g = f, f E ^+? if a.nd only if S^g == g for all ^ e K. Conse-
quently, if g e ^+ and x G M-^E) the function h defined
by h{x) = (g*x)(^) == J* g{xt-l)K {dt) is of the form h =I,
le^f+. As a result, if fe S^ there is a unique function
g e ^+ with g == /^ %. Define g to be /** x. Clearly
f-^f^y. defines a kernel N such that NT( = T(N for
all ( e G and fe^ (note that Ttf([x]) = /'([r1^])). Such
a kernel will be called a convolution kernel.

A measure [L on E is said to be K'inwriant if

<^ f> = <^ V>

for all t e K and fe^^+. This is equivalent to requiring
that <jl, g> - <?, S(g> = < j X , T,g> for all t e K and
g e ^+, i.e. jl is Vi-hi-in^ariant.

LEMMA 1.1. — Let N be a convolution kernel on E. Then
there exists a unique V^-invariant measure a on E such
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that N/' =f * a for all f e <^. In case N/* == /> * x ^
measure a == ^(((3)"), wAero |B == ^((x^).

Proof. - Define <(B, /•> =- N^O). Then, if ^ e K,

<p, /•> = NAO) = (T<N/*)(0) = N(^(0) == <?, V>.
Hence, (3 is K-invariant.

Clearly, N([^], f) == f f{xs)^) ds) it x e G and /'e^.
Further, (3 is K-biinvariant and so a^TC^p)^ is K-inva-
riant. Hence, a == (p)v and so

N ( M , f ) = = ( f * a ) ( ^ ) = ( f * a ) [ o ; ] .

The uniqueness of a is clear as is the fact that N = * x
implies P == <^((%)v).

Let K e M-^(E) be such that the kernel V defined by
Vy^/^x satisfies the complete maximum principle (note
that x is not assumed to be K-invariant). Since x is Radon,
V is proper and so, as remarked in [3], it is reasonable to
define u e S^ as excessive if u = sup V/*^ with (/*„) <= ^+

n

and (VfJ increasing. Also, u e <^+ is said to be supermedian
if, for all f and g e ^+, u + Vf ^ Vg on {g > 0} implies
^ + Vf ^ Vg.

If a, P e M^G) and (B is K-right invariant then an easy
calculation shows that a * (B is also K-right-invariant.
Hence, if (A, v e M-^E) the Radon measure pi * ^ (when defi-
ned) equals ^ where 7r({I * ^) = Y] e M^E). The measure T]
is defined to be (JL * v.

Remark. — If N is a convolution kernel on E and
[L e M+(E)

then piN == (JL * (B where (i == 7^((a)v) if N/* = /** a. In the
case of a group the convolution kernels are associated with (B
rather than a so that the formula <^N, /*> == <[JL, Nf>
holds.

Assume that the following condition is satisfied by x :
(Di) there is a compact neighbourhood B of 0 and

o e M^E) such that
(1) a * x ^ x;
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(2) <T * % = x on [B; and
(3) (T" * x tends to zero weakly (where (T" is the n-fold

convolution of <i with itself).

PROPOSITION 1.2. - Let 0 e C^(E), x^ e E and e > 0.
Then there exists an excessive function s and a compact set
K c E with

(1) s{xy) < e; and

(2) ^ ^ V<D on [K.

Jn other words, VO vanishes at the natural boundary of E in
the sence of [3].

Proof. — If i^ e C^(G) then there exists 0 e C^(E) with
4' < 0. Hence, in view of Di) (3) it suffices to prove that, for
each n ^ 0, for all 0 e C^(E) and for all e > 0, there
exists an excessive function v = v(n, C>, e) and a compact
set L,, = L,(P, 0, s) with (a) 0 * (d" * %) + p > 0 * n
on [L^ and (&) ^(a-o) < s. Let P(n) denote this statement.

First, let n = 1. From Di) (2) it follows that if 0 e C^-(E)
then <& * (a * x) = 0 * x on [ D, D == TC(AB), where

A == 7t-1 (supp 0)

and B = TC-^B). Since D is compact, P(l) is established
with v = 0.

Assume P(n). Let a = a' + T where d' has compact
support and (<& * (r * %))(a;o) < s/2. Then,

0 * (o"+1 * x) ^ (0 * <r') * (^ * ,()

and 0 * (T' e C^-(E). If w = v{n, 0 * a', s/2) then

0 * (a^ * x) + w > (0 * CT') * x

on [L,(^, O*(T ' , e/2) = [L,. Hence, if

P=W-) - < I ) * ( ' t • *x )

it follows that v + 0 * (<r»+i * % ) > € > * (cy * x) on f L
and P(a;o) < s.

In view of P(l) this establishes P(n + 1).
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LEMMA 1.3. — Let V and T be proper kernels on a measu-
rable space (E, €} such that VT = TV. If V == lim V^,

^o
where (V^) 15 a sub-Marko^ian resolvent of kernels V\, (Aen
TV^ ==== V\T for all \ > 0, providing Tl < oo.

Proo/'. — Let f e ^+ be such that />, V/*, T/* and VTf
are all finite. Now V^/* is the unique function h such that
(I + xV)A = Vf. Hence,

VT/^ T\f= T(I + XV)/^ = (I + XV)TA

implies that V^(T/1) = T(V^). Since each f e ^ + is of the
form /* == S /n? where each ^ satisfies the above hypotheses,

n

the result follows.

THEOREM 1.4. — Le^ V be the kernel defined by V/*== /** x,
x e M^E). Assume that V satisfies the complete maximum
principle. If x satisfies D^) (AeM tAere is a unique family
(^ °f K-in^ariant measures K\ such that the kernels

^f=f*^
form a sub-Markovian resolvent (V^) of kernels V\ on E
with V = lim V^.

x^o
Further^ if V 15 (/ie kernel defined by Vg == g * % (where %

al̂ o denotes the K-invariant measure for which V/*==/**x),
tAe kernels V\ defined by V^g === g * x^ /brw t/ie unique
sub-Marko^ian resolvent (V^) OTZ G with V == lim V.

XtO

Proof. — From Proposition 1.1 and Theorem 2 in [3]
it follows that there is a unique sub-Markovian resolvent (V^)
with V = lim V\. From Lemma 1.3 it follows that each V^

\^o
is a convolution kernel. For all X ^ 0, let x^ be the unique
K-invariant measure on E such that V^/* ===/** x^, /*e^+.

The resolvent equation, 0 > X ^ (JL,

^ == ̂  + ((1 —— X)X), * X^ == X^. + ([A —— X)X^. * X^

holds when each measure T] is replaced by ^. Define

Vxg = g * x^, g e ^+.
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Then (V^) is a sub-Markovian resolvent and / e S^ implies
Vxf-V^/y. Also, V g = g * x ^ y^==g*x^ for all g e ̂
and since V == lim V^, V == lim V^ (note that if ^ e C(T(G)

\^o ^o „
there exists 0 e C^E) with 0 > ^).

Remark. — Since x is K-invariant it can be directly
verified that V satisfies the complete maximum principle
(note that V/^V/^, for all fe ^-).

2. The existence of a Feller semigroup.

The measure x on E will be assumed to satisfy the follo-
wing condition :

D^) there is a base ^ of compact neighbourhoods of 0
such that for each B e ^ there exists cr e M^E) with

(1) a * x < x;
(2) or * x ^ x; and

p
(3) (T * x == x on ^ B.

Remark. — If, in addition, one requires in Dg) that each
a" * x converge weakly to zero as n -> oo and that each a

_
is carried by B then there is a family associated with x
in the sense of Deny [1].

Since the resolvent (V^) maps Co(E) into itself the Hille-
Yosida theorem can be applied if D == V^(Co(E)) == Co(E).

This fact is established by the following sequence of lemmas
and propositions.

LEMMA 2.1. — Assume a < p. Then a = (B if

( (D*a) (0) = ( 0*P) (0 )
for all 0 e C^(E).

Proof. — (0 * a)(0) = (0 * P)(0) for all $ e C?(E) implies
that a(A-1) == P(A)-1) for every compact set A c: E.

If B c G is compact then B~1 <= A where A == 7r(B~"1)
is compact. Hence, B <== A-1. Since a ^ p if follows that
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a(B) = p(B) for all compact sets B <= G. Consequently,
a==P.

LEMMA 2.2. — J/* cr * x ^ x t^M V(0 * a) === 0 * (cr * x)
15 continuous and excessive whenever 0 e C^(E).

Proof. — Let s > 0, ^o e E and 0 e C^(E). Let 0 be
a compact neighbourhood of e such that ^ e 0 implies
||T(O — 0]| < s. If TC(^) == a;o then 7c(0(o) is a neigh-
bourhood U of XQ.

Let ^ e C^(G) be such that

{ ^ = 1 } ^ U{T<0 ^ 0}.
teo

Then, if x e U, where x == [t^o] with t e 0,

IVrO * a){x) - V(0 * (r)(a;o)| ^ f\^({tt,s-1)

- ^(^-^KS * x) (^) ^ ^^(^-^(S * x) (ds).

Since there exists 6 e C?-(E) with 6(5) > ^(4^-1), for all
s e G, the last integral is finite.

PROPOSITION 2.3. — Let U be a neighbourhood of 0. Then
there exists ^ e C^~(E) such that:

(1) <p = u — P, u and v both continuous excessive functions',
(2) 0 ^ W= |H|; and
(3) supp ^ <= U.

Proof. — There exists a compact neighbourhood D of 0
such that D"1!) c U. Further, there exist compact neigh-
bourhoods A and B of 0 with A = supp 41? ^ e C<T(E),
B e ̂  and AB <= D.

Let (T be a measure satisfying the conditions in D2) relative
to B. Then, if

X == supp (x — o- * x), 0 * x — 0 * {a * x) e C^(E)

(its support lies in 7r(A.B)) and attains its maximum at a
point

^ e ^ ( { 0 > 0}X) <= TT(AB) <= D.
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Choose S Q E { ^ ) > 0}X with 7c(so) == XQ and let 6 == T,-<0.
Then ^ = = 6 * x - - 6 * ( ( 7 * x ) is a function that satisfies (1),° (2)
and (3) above.

COROLLARY 2.4. — The functions V^O, X > 0 and 0 e C^(E)
separate the points of E.

Proof. — If u is lower semicontinuous and excessive then
u = sup {XV^O|X > 0 and 0 e C^(E) with 0 ^ u}. Hence,
the functions V^O separate 0 from any other point x e E.
Since V^T, = T,V^, for all s e G, the result follows.

. Remark. — As pointed out by Faraut and Harzallah, given
Corollary 2.4. the theory of Ray semigroups can be applied
(in the metrisable case) to give a proof of the fact that (V\)
is the resolvent of a Feller semigroup. For example, Corollary
2.4 implies that the hypotheses of Theorem 1.7 in [4] are
verified. Hence, (V^) is the resolvent of a semigroup (P()
of kernels P(. The set D of non-branching points is non-
void (corollary 2.6 in [4]) and since one can show that, for all
s e G and ( > 0, T,P, = PJ\, D = E. From this it follows,
since Co(E) is invariant under (P(), that (P() is a Feller
semigroup.

A direct proof of this fact (which does not use metrizability
or (T-compactness) continues with the following result.

COROLLARY 2.5. — If U is an open Baire neighbourhood
of 0 then lim XV^(0, U) = 1.).>»

Proof. — Let ^ e C^-(E) satisfy conditions (1), (2) and (3)
of Proposition 2.3. Then, since lim XV^(0, ^) === ^(0) the
result follows as XV^(0, ^) ^ XV^O, U)^(O).

COROLLARY 2.6.—Let u and v be two lower semicontinuous
excessive functions. Then w = u A P is also excessive.

Proof. — If XQ e E and s > 0 let U = {w > w{xo) — e}.
Then, U is open and lim XV^o, U) == 1. Hence,

>.>00

W(x.o) ^ w(Xo) — £.
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PROPOSITION 2.7. — Let A c E be compact. Then there is
a compact neighbourhood 0 of A and \Q > 0 such that, for
s > 0,

XV^(rc, A) < e if x ^ 0 and X > XQ.

Proof. — Let e > 0 a.nd let U be a compact neighbour-
hood of 0. Let \ > 0 be such that

1 - e < X V), (0, U) == X(lu * x^)(0) for X ^ Xo.
Let 0 == 7r(AtJ).

Denote by (S any one of the measures Xx^, X ^ \. Then,
if X == 7T(()

(IA * (B)(^) = f IA^-^ W
== J11^1)!^)? W + / lA(^-l)lCu(^P {ds)
^ f lCu(5)P (^) < s, if t^ AU.

COROLLARY 2.8. — Let u, ^, be two continuous excessive
functions on E with u — v e Q"(E). Then,

lim||^(u-^) - (u-^)l| ==0.>.><»

Proof. — Let A == supp (u — ?) and let s > 0. Denote
by 0 a compact neighbourhood of A such that

XV^, A) < s if x f 0 and X ^ Xo.

Then [XV\(n;, u — ^)[ ^ £J |u — |̂| if re ^ 0. Since XV\u
XV^ are lower semicontinuous, XV\(u — p) converges uni-
formly to u — ^ on 0. The result follows.

The above results imply that V^(Co(E)) = Co(E) and
hence the following result.

THEOREM 2.9. — Let G be a locally compact group (that
is a-compact) and let K c G be a compact subgroup. Let
V == * x be a convolution kernel on the homogeneous space
E = G/K, x e M/^E). Assume that V satisfies the complete
maximum principle.

If x satisfies Di) and D^) then there is a unique Feller semi-
group (P() on E with V = f^ P( dt.
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Proof. — Let u^ ^ for i = 1, 2 be continuous excessive
functions such that ^ = u^ — ^ e C^(E). Then

^1 A ^2 = (^1 + ^2) A (Ug + ̂ ) — (^ + ̂ )

is of the same form. Hence, the vector space generated by
functions ^ e C^(E), which are differences of continuous
excessive functions, is dense in Co(E).

Corollary 2.8 implies that D = V^(Co(E)) = Co(E). The
result then follows from the Hille-Yosida theorem (c.f. [2]).

As an immediate corollary one has the following restricted
version of a result of Deny [1].

COROLLARY 2.10. — Let G be a locally compact abelian
group (that is a-compact) and let V = * x be a convolution
kernel on G that satisfies the complete maximum principle.

Then, V is the potential kernel of a Feller semigroup if the
following condition is verified:

D) for a base ^ of compact neighbourhoods of the identity
e of G there is, for each B e ̂ , a measure a e M^E) with

(1) a * x ^ x and a * % ^ x;

(2) a * x == x on B; and
(3) lim (o") * x = 0 (weakly).

r*>oo

Remarks. — Deny's result is more general. He not only did
not require G to be (7-compact (a hypothesis that can be
removed from all the above results as indicated in the appen-
dix) but also did not assume that the kernel * x satisfied
the complete maximum principle. Further, while in the commu-
tative case it is immaterial whether one writes a * x, or x * o-
it seems to be necessary in general to have a * x < x if the
kernel V commutes with the left action of G on E.

3. The characterization
of convolution Feller semi-groups.

Let (P() be a Feller semigroup on E that commutes with
the action of G on E, i.e., if s e G and ( > 0 then

T,P, == PT.
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Further, assume that if A <= E is compact,

VI,, == f; P^ dt
is finite.

Denote by x the unique K-invariant measure on E defi-
ned by <x, 0>^= V(D(0). Then V/ '==/ '*x and ^V = ̂  * x
(note that (xT is K-biinvariant and so ((x)^, being
K-right invariant, is of the form x for a unique x e M-^E)).
It will be shown first that % satisfies conditions Di) and Dg).

Note that pi ->- txP^, (A e M^(E), defines a continuous
Hunt semigroup in the terminology of Deny [1]. Hence, all
the results of paragraphs 3 and 4 in [1] hold.

To begin with it is proved that 1 is an excessive function.

LEMMA 3.1. — lim P(I == 1.
t^O

Proof. — Obviously, it suffices to show that lim P((O, 1) = 1.
Choose 0 e C^(E) with (&(0) = 1 and t! ^ 1. Then
1 = lim P<(0, $) ^ lim sup P,(0, 1) ^ 1.

t->0 t->0

COROLLARY 3.2. — Let a e M^E) be such that a * x ^ x.
Then <cr, 1> ^ 1.

Proof. — Since by Lemma 3.1 1 is excessive there exists
(/*„) <= E with (/^ * %) increasing to 1. Hence,
<(T, 1> == lim <CT, /^ * x> = lim <<? * x, /^>

n ^ lim <x, /,> = lim /, * x(0) = 1.
n n

LEMMA 3.3. — Let (a;) anrf (py) c: M^E) 6e ^wo n<°̂
that converge weakly to a and (3 respectively. Assume

<a,, 1> < 1 and <(^, 1> ^ 1

/or all i and j . In addition assume that each ^ is K-inva-
riant. Then,

a * (3 == lim lim a/* JB .̂ == lim lim a^ * .̂.
i J J i

Proof. — Let 0 e C^(E). Then <a, * ̂ , 0> = <a,, 0 * p^>
implies lim a, * [B^ == a * (B,. Further, since (a^ * 0 == ip,
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with ^ e Co(E), it follows from <a, * (^, $> = <^., $>
that lim o^ * (By == a, * p. Applying both these arguments to

o^ * (B and a * (^ respectively gives the result.

COROLLARY 3.4. — If p 15 V^-iwariant and <((3, 1 ) ^ 1
</^n lim a^ * P = a * (3. J/* < (B, 1) ^ 1 and each â . 15 K-

i
invariant then lim (3 * a^ == [3 * a.

i

Proof. — Let {3, == P for all /.

COROLLARY 3.5. — Let [L be a weak accumulation point of
{ c r ^ n e N } , where o-* x ^ x and a is K-iwariant, Then
p. * (T == <y * (A.

Proof. — Let a71* == a^ be a net converging to (JL. Then

,̂ * CT == lim o^ * a = lim (T * o^- == (T * (A.
i i

A Radon measure S is said to be excessive if it is ^ 0 and
^ * Xx^ ^ ^ for all X > 0. It is said to be a potential if
^ == y 4' x for some y e M^E).

PROPOSITION 3.6. — Let (^) &e a ne( of potentials

^ == Y» * ^

eac/i dominated by a potential (B * x wit/i <?, 1) < oo. A55um^
(Aa( S 15 ^e wea/c limit of (^i).

Then S ^ a potential y * x amf y == I1211 Yi ^ ^Yi? 1) ^ 1
/*or aM n. l

Proof (cf. the proofs of Theorem 6.1 and Lemma 7.1 in [1]).
— The measure ^ is excessive and since ^ ^ (B * x its inva-
riant part is zero (see [1]). Let ^\ = X^ * (8 — ^x^).

Then,

<^,1> < X < p * x * ( 8 ~ X , x ) , l >
= < P * X x ^ , l > ^ <(B ,1> < 0).

Hence, by Lemma 3.3, if y is a weak accumulation point
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of {(Ajn > 0} and equals lim (JL^., where / -> ^. is a net,
then lim ̂ . * x^ = y * x^.

Deny's argument in [1] is now used to show ^ == Y * x

(see proof of his Theorem 6.1). Specifically, since for any
X > 0 lim (JL^ * Kn. == 0 (the net / -> n^ is unbounded) it

follows that

^ * x === lim ̂  * (x — x^.) == lim (x^. * (x — x^) == S — Y * ̂

since lim X(S * x^) == ^ follows from the fact that for all

<& e C,(E)°lim X(0 * x;,) == 0.
X>00

Following Deny, let X -> 0 in this identity. Since
^ ^ x == ^ 4; Xx^

implies lim (JL^ * x == 0 (the invariant part of ^ is zero)
x^o

it follows that S === Y * %*
It remains to show that y == lim Yr Since

i

^ * X x ^ == ^ — Y,*^,

by lemma 3.3, lim y^ * K\ exists and equals

S -- S * ^X = Y * ^X-

Let / -^ Yn. be a net converging to a. Then

a * ̂  == lim Yn, * ̂  == T * ̂ -

Hence, as V\(Cc(E)) == Co(E), a == y anc! so (Yi) converges
weakly to y.

COROLLARY 3.7. — If U c: E 15 ope^ anc? p e M^(E)
^ere e.r^5 a measure ^f e M+(E) with (1) (B' * x < ? * x;
(2) P7 cam^ fey U an^ (3) ^ * x = ? * x <m U.

Proof. — The argument used by Deny to prove Lemma
7.2 in [1] applies without change once it is noted that

pi *x ^ (B *x and <(B, 1> == &

implies <((JL, 1> ^ 6 (see the proof of Corollary 3.2).
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COROLLARY 3.8. — Assume a * x ^ x. TTi^ excessive
measure ^ == lim ff" * % i5 a potential pi * x and pi == lim a".

n>oo n

Proof. — Let ^ = a" * x.
From these results one can quickly deduce the following

key fact.

PROPOSITION 3.9. — Let a e M-^E) be such that a * x ^ x
and a * x ^ x. Then, lim o" * x == 0.

n>oo

Proo/* (cf. the proof of Theorem 7.1 in [1]). — Let

S == lim a" * x.
n->oo

Then cr * ^ == ^ and ^ == (JL * x where pi == lim a'1 (see
Proposition 3.6). Hence, n

p. * ^ == }im (A * cr" * x = lim (^ * [L * x == lim a-'1 * ^ == ^
n->oo n>oo n>»

(note that the first equality holds by monotonicity).
Since cr * x 7^ x the positive measure x — i; is not zero.

Hence, [L * (x — ^) == 0 implies pi == 0 and so ^ === 0.
Deny's Proposition 3.3 in [1] states that if pi, v e M-^E)

are such that pi * x, v * x e M-^E) and [L * x == v * x then
(A = v. Hence, Corollary 3.7 (applied to (3 = S) and Propo-
sition 3.9 imply that T] === x satisfies the following condition :

D) for a base ^ of compact neighbourhoods B of 0
there is, for each B e ^, a measure cr e M^E) with

(1) a * T] ^ 7) and (T * T) ^ 73;
p

(2) (T * Y] == Y] on (^B;
(3) lim (CT") * 73 == 0 (weakly).

n>oo

One can now state and prove the following characterization
of Feller semigroups on E whose potential kernel is proper
and which commute with the action of G on E.

THEOREM 3.10. — Let G be a locally compact group (that
is a-compact) and let E be the homogeneous space G/K
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of right cosets of K, a compact subgroup of G. Denote by x
a positive K-invariant Radon measure on E.

The following conditions are equivalent:
(1) there is a family (a^ > 0 of K-invariant Radon

measures a^ on E such that x = C°° a^ and (* a^)^
15 a Feller semigroup',

(2) t/ie kernel * x satisfies the complete maximum principle
and K satisfies D);

(2^ the kernel * x satisfies the complete maximum principle
and K satisfies D).

Further, if D7) denotes the condition obtained from D)
by reversing all the convolutions then (1) implies:

(3) ^ kernel * x satisfies the complete maximum principle
and x satisfies D ' ) ; azzrf

(3") the analogue of (2^ with D) replaced by D').

Proof. — Theorem 2.9 states that (2) —^ (1).

(1) ==^ (2). As noted above the measure x satisfies D).
Further, if x^ == J^ e-^ 6?(, the family (* K\) of convo-
lution kernels is a sub-Markovian resolvent family. Lemma
3.11 shows that * x === lim * K-^ and so *x satisfies the

)^o
complete maximum principle. Hence, from Theorem 2.9
and the above remark x == (x^ satisfies D).

The statement (1) is equivalent to the statement obtained
by replacing each measure ^ by ^. Hence, (1) ^-> (2^.

LEMMA 3.11. — Assume ( * x>J is a sub-Markovian resolvent
family of convolution kernels V\ == * x^ with each x^ a
K-invariant measure on E and lim V\ == * x. Then,

\-^o
* x == lim * x^ -<^=^ x = lim x^.

xto x^o

Proof. — Since <(B, g> == <p, g>, it suffices to show that
* x = Urn * x^ if for all g e ^+, lim <x^, g> === <x, g>.

.̂ ° . . . . ^°
One implication is obvious. Now assume that, for all f e <?+,

lim /** X;, = /** x. Let gi G ^+ be bounded and vanish
^to
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outside a compact set. Then there exists 0 e C^E) with
((ky ^ g^. Since 0 * x^(0) == <x^, (0^) and x^ ^ x, for
all X > 0 if follows that lim <x^, gi> == <x, gi>. Since x

w

is a Radon measure this implies that lim <x^, g> == <x, g>
for all g e ^+. w

LEMMA 3.12. — L^ cr e M+(E) anrf 6?^

<^ f> = / <<^, V>m (^). .

TA^n v G M^E) i5 a K-iwariant measure. Further, if

a e M+(E)

and a * or e M^E) 50 too is a * v anrf a * v == a * cr. If,
in addition, a î  V^-iwanant then v * a === (T * a when
a *a eM+(E).

Proof, — Clearly v is K-invariant. Let fe^^. Then
<^ f> = <^, f> = ff f(^1^ (dz)m (^). Hence,

<a * v, /*> == <a * 7, ^>

= /[/ fe)^ (^)]^ W == /[JJ f(^-^)5 (^)m (^)]a (drr)

(because the function y -> f{xy) == g{y), g e ^+)

== f f[f f{xs-1^ (dx)]a (dz)m {ds)

== ff[f A^)01 W]5 (^^ W

(because 5 e K and a is K-right invariant)

= < a * G , f > == < a * ( T , / ' > .

The calculation that proves v * a == o- * a when a is K-
invariant is entirely similar.

COROLLARY 3.13. — Let x * a ^ x oTzd? limx * (7^ == 0
n>oo

where x, o- e ^{^(E) OTZ^ x £5 K.-iwariant. Then the K-
iwariant measure v o/* Lemma 3.12 i5 5i^c/i </ia^ x * v ^ x
and lim x * v" == 0. Further, if x * (T == x on A ^en x * v == x

n»oo

on A.
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The corresponding results hold if the convolutions are done
in the reverse order.

Proof. — For the first statement if suffices to note that

x * CT" == (x * o^1) * a == (x * cr^1"1) * v

and so x * cr" == x * v\ For the second one note that if

v71"1 * x == G71"1 * x == a

then a is K-invariant and so ^n * x == o- * a == a^ * x.

The proof of the theorem is now completed by the above
lemmas and corollary.

Remarks. — The conditions (3) and (3^ do not appear to
imply condition (1). By considering the situation on the
space F of left cosets one could show (3) ====»-(!) providing
that the kernel x * on F satisfies the complete maximum
principle. However one only knows that x * has this property.

To prove the last statement it suffices to show that x
satisfies D^) whenever x satisfies D).

First of all if ^ is a neighbourhood base for 0 satisfying D)
the measures or can, by corollary 3.13 below, be assumed to
be K-invariant. Now (o- * x^ == x * G and so since the sets
of the form ^((A.)^, B e ̂ , also from a base for the neigh-
bourhoods of 0 it follows that x satisfies D7).

Appendix.

In the non cr-compact case the complications arise because
theorem 2 of [4] no longer applies and has to be replaced
by theorem 3 of [5]. In the terminology of [5] if V = * x
then every Baire set is or-bounded. This condition replaces
the hypothesis that V is a proper kernel in the cr-compact
case.

In proposition 1.2 « excessive » should be replaced by
« supermedian » as defined in [5]. Now, as V is sub-Markovian,
1 is supermedian and so, in view of theorem 3 in [5], theorem
1.4 holds. Note that in lemma 1.3 « proper » should be replaced
by « every Baire set is o-bounded ».
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