
ANNALES DE L’INSTITUT FOURIER

PETER SJÖGREN
Harmonic spaces associated with adjoints
of linear elliptic operators
Annales de l’institut Fourier, tome 25, no 3-4 (1975), p. 509-518
<http://www.numdam.org/item?id=AIF_1975__25_3-4_509_0>

© Annales de l’institut Fourier, 1975, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1975__25_3-4_509_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
25, 3 et 4 (1975), 509-518.

HARMONIC SPACES ASSOCIATED
WITH ADJOINTS

OF LINEAR ELLIPTIC OPERATORS
by Peter SJOGREN

Dedie a Monsieur M. Brelot a V occasion
de son 70e anniversaire.

1. Introduction.

The object of this paper is to improve the author's results
in [7] about the distribution adjoint of an elliptic linear ope-
rator L and the associated potential theory. Under weaker
hypotheses on the coefficients than in [7] we obtain again a
connection with M™® Herv^s construction of the adjoint of a
given harmonic sheaf in axiomatic potential theory. The
first step in the proof of this is a regularity theorem for distri-
bution solutions of the equation L*a == 0, which we prove
in a more general setting. Results of this type can be found
in Agmon-Douglis-Nirenberg [1, p. 722] and Browder [4,
p. 188]. Our regularity hypotheses are slightly weaker than
theirs, and we assume a priori only that u is locally inte-
grable, which seems to be the most natural hypothesis.

Our further results are entirely analogous to those of [7],
concerning the adjoint harmonic measure and the Dirichlet
problems for L a,nd L*.
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2. The regularity theorem.

We assume that L is an elliptic differential operator of order
r with complex coefficients, defined by

L= S ^D01
|a|^r

in a domain Do of R", n ^ 2. (Here a is a multi-index.)
The top-order coefficients of L are supposed to be locally
Dini continuous in Qo- This means that for each compact set
K <= Q.Q, there exists an increasing function w : R4' -̂  R4'
such that

\a^{x) — aa(i/)| ^ w(\x — y\)

for re, y e K and [a| = r, and satisfying

/^

Jo ^

^(()
^ < 00.

For |oc| < r we assume a^ e L^c(^o)- The adjoint of L is
defined by

L*u= S (- l̂ 'D^u)
|a|^r

for any locally integrable u, where the derivatives are taken
in the sense of distributions.

THEOREM 1. — Let (o be a subdomain of tlo? an(^ assume
that u is defined and locally integrable in co and satisfies

L*u= S D^ w.
|a|^r

in the sense of Q' ((*)), w^re /a ^5 locally Dini continuous in <o
^ [a| == r and /a e Lfoc(^) /^ ^^^ p ^ 1 satisfying
p > n / ( r—|a [ ) i/* |a| < r. TAen u coincides a.e. in <o
wi^/i a continuous function.

To prove this theorem we need the following lemma, whose
proof is based on an idea of Prof. L. Carleson.
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LEMMA. — Let 1 < p ^ oo. If u e L1, K e L1, and
f e L? + L00 are ^r^ non-negative functions in R" and

(2.1) u ^ K * u + /> a.e.,

then u 6 1̂  + L".

Proof. — Take M < oo so large that

(2.2) f K^x) dx < i

where K^ == K^ and ^ is the characteristic function of
the set [x: K(x) > M}. Then we see from (2.1) that

u < KI * u 4- g a.e.,

for some g e L^ + L°°. By induction it follows that

(2.3) u ^ KW * u + S1 Ki1) * g + g
i

for m == 1, 2, . . ., where K^ is the m — th power of K^
with respect to convolution. Letting m -> oo, we conclude
from (2.2) that K^ * u -> 0 in L1. Hence, we have almost
everywhere convergence for some subsequence. Similarly,
since

L1 * (LP + L00) <= L^ + L00

with a corresponding inequality for the norms, the series in
(2.3) converges in Lp + L°°. Choosing another subsequence,
we see that u is dominated a.e. by a function in Lp + L°°,
which proves the lemma.

Proof of Theorem 1. — Assume n is odd, and for y e co
and x e R" let F(y, x — y) be a fundamental solution in B^
of the operator

s ^w.
|a|==r

whose coefficients are constant, as constructed e.g. in Browder
[4, Lemma 8].

For any 9 G ^(co) we have

(2.4) f uLcp dx = S (- I)11011 f AD^ ̂ •
J lal^r J
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Take a non-negative ^ e ^(o) and let y e supp ^ be a
Lebesgue point of u. For p > 0 we put

W == W{i - w{(x - t/)/p)),

where w e ^(R") has its support in {\x\ ^ 1} and equals 1
in {|.r| ^ 1/2}. Now apply (2.4) to

<p(^) = ^(x)F{y, x - y).

The left-hand side of (2.4) will then be

fu{x) S a^xW^(x)¥{y,x-y))dx
J |a|<r

+ f u(x) S (^) - a,(y))DS(^F) ̂
l/ |a)==r

+ f <^) S ^a(!/)DS(?:oF) ̂  = Ii + l2 + Is.
J Ia|=r

Since we have precise estimates of the derivatives of ^p — ^
and F, we easily find that

I, + I, = C u(x) S a,(x)D^¥) dx
J |a|<r

+ f u{x) S (^(^) - a,(y))DS(^F) ̂  + o(l)
€/ |a|=r

as p -> 0, where the integrals are absolutely convergent
because of the Lebesgue property of u at y and the Dini
continuity of the a^ for |a] = r.

Setting Bo = {x: \x — y\ < p}, we have

13 = f u(x) S a,(y)DS(?:F) dx
J Ia|=r

+ FB ^) S ^a(2/)DS((?:p - ^)F) dx = 14 + Is.
? |a|=r

These integrals are absolutely convergent, because the terms
involving D^F cancel. Further,

(2.5) I, - u{y) C S ^) S . .a ' ^ ,
JB, |a|==r 8<a P ^a — P) I

DS-i^p - ̂ )D!F ̂  + o(l)

as p -> 0, where a ! == 11 a^! , etc. It is easily seen that this
integral, restricted to Bp/g, tends to 0 with p. Due to the
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definition of F, we get

JB, ̂  ̂ (ym^ - S)F dx = - Uy}.

Hence, (2.5) implies

Is = (- lYu(y)ny) + o(l),

if we integrate by parts in Bp\Bp/2 and use the equation

y (_ jMpI a ' =^ (— ly+i
^ 1/ ?!(a-p)! ^ 1/

for |a| === r, which follows from the binomial theorem.
(For this argument, cf. [7, proof of Lemma 1].)

Using a similar technique, we see that the right-hand side
of (2.4) with our 9 equals

(2.6) f s (- irWW dx + S ^y')WUy} + o(l)
l/ |al^r |a|=r

as p -> 0, where the c^ are continuous functions and
*
\ dx = lim j dx.
J ^^ l^4|>-n

The terms in (2.6) for which |a| < r are absolutely convergent
integrals and depend continuously on y. For |a| = r, the
Dini continuity of the /a implies that the corresponding
integrals in (2.6) are continuous in y, since DSF(?/, x — y)
is a variable Calderon-Zygmund kernel.

Collecting terms and letting p -> 0, we get (cf. [1, p. 722])

(2.7) u{y)ny) = (- 1)̂  f u{x) ^ a^)D^F) dx
v |a|<r

+ (- l)^ f u{x) S {^{x) - a^{y))WF) dx
J |a|=r

+ (- l)^ f ^(^ S ^a(2/)DS(^F) dx
* la l=r

+ f s (- ir^'A^D^^F) ̂
J |a|^r

+ (- l)7' 2 c.Wy)Uy)
|a|=r

for a.a. y in supp ^. Due to the properties of the convolution
21
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product and the behaviour of F, the first and third integrals
in (2.7) are in Lfoc(co) for p < nj{n — 1). The same is true
of the second integral, except possibly for the term

f u{x)Ux} ^ {a^x) - a,(i/))DSF(y, x - y) dx.
|a|==r

But this is a function of y which is dominated by a convo-
lution | u^| * K where K e L1 and K ^ 0 in R\ Hence,
our Lemma implies that u e Lfoc(^) tor p < n/(n — 1),
since ^ is arbitrary. Then we can improve the estimates of
the terms in (2.7), and after repeated applications of our
Lemma we get that u e L^c(<^). Using (2.7) again, we then
see that u coincides a.e. in co with a continuous function.

If n is even, there may occur a logarithmic term in F,
which we avoid in the following way. Take XQ e co, write
D, == ^/^, and let the polynomial

P(D)=P(D,, . . . ,DJ

be the principal part of L at XQ. Then

P(D)-P(-D,,D,, . . . ,DJ

is an operator with constant coefficients in R% and the
composition LP(D) is elliptic and of order 2r. Further, the
principal part of LP(D) at XQ is a polynomial

Q(Di,D2, . . . ,DJ.
It is easily seen that

(2.8) (LP(D))*u = (- 1)- S WWf.
|a|^r

in the distribution sense. We now identify R'1 with the hyper-
plane rr^i ==0 in R"4'1 and denote points in R"4'1 by
(^r, ^+1).

Then put

L == LP(D) + Q(Df + D^,, D,, . . . . DJ
-Q(Di, D,, . . . . DJ,

which is an operator in R"+1 of order 2r whose restriction to
R'1 is LP(D). It is elliptic at (XQ, 0) and thus in a neigh-
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bourhood U of (xo, 0) in R714-1. Further, we can write

L - LP(D) + D^R(D, D,^),
where R is a polynomial in n + 1 variables. Putting

v[x, .r,+i) = u{x) and ga(^ ^n+i) :== /a(^

we conclude from (2.8) as in [7, proof of Lemma 1] that

(L)*^ = (- 1Y S D'^D)^
lal^r

in the sense of distributions in U. For |a| < r the ga
do not quite satisfy the regularity assumptions made in the
proof of the odd case, but since ^ and the ga are independent
of ^4.1, we still get the necessary estimates of the terms in
(2.7), and the proof carries over. It follows that ^ and thus
also u coincide a.e. wdth continuous functions, and Theorem 1
is proved.

3. Second-order operators.

From now on we assume that

L = SaW/O^.O^. + Sa^/o^ + a

is an elliptic second-order operator in O.o with real coeffi-
cients satisfying the regularity assumptions of Section 2.
As to notions from potential theory, we follow the terminology
used in [7].

For any subdomain co cz O.o, the Sobolev space W^^o)
consists of those functions which belong to L^co) together
with their derivatives of order 1 and 2. For p > n, any
function in Wfo^co) coincides a.e. in co with a function of
class C^. A continuous function u is called L-harmonic
in G) if u e W?o^(<*>) with n < p < oo and Lu = 0 a.e.
in <o. As Bony [3] has shown, we then get a harmonic sheaf
satisfying the axioms of Brelot.

Let Q cz O.o be a subdomain in which there exists a posi-
tive L-potential. In [2, Chap. 4], Boboc and Musta^a construct
for any given y e Q. an L-potential Py in Q. of support {y}
in the case when the coefficients of L are Holder continuous.
Their proof will carry over to our case, since the minimum
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principle and the existence and uniqueness theorems for the
Dirichlet problem still hold there, as shown by Bony [3].
Boboc and Musta^a assume that the coefficient a is non-posi-
tive, but this is no restriction because of a well-known argu-
ment found e.g. in [7, proof of Lemma 2]. Theorem 4.4 in [2]
will also generalize, showing that, locally, L-potentials with
supports consisting of one given point are proportional.
Because of Theorem 16.4 in Herve [5], this is then also true
globally in 0.. If £2 is of class O^, it follows, e.g. from an
argument involving approximation of the coefficients of L,
that G^{x, y) = Py{x) is the Green's function of L in Q
(cf. [7, proof of Lemma 2]). For any Q, the function Py
defines a fundamental solution.

Using this Py, we introduce the sheaf of L*-harmonic
functions as defined in Herve [5]. It satisfies the axioms of
Brelot. Since the behaviour of Py{x) as x —> y is similar to
that of the Newtonian kernel, the results of Herve [5, p. 568]
will carry over. This means that thinness of subsets of 0. and
regularity of boundary points of open subsets in the L-
or L*-theory will coincide with the same notions in classical
potential theory.

We then have the following results.

THEOREM 2. — Let <o <== 0. be an open set. A function u
is locally integrable in co and satisfies L*u === 0 or L*u ^ 0
in the sense of Q1'(co) if and only if u coincides a.e. in co
with a function which is L^-harmonic or L^-superharmonic,
resp.y in co.

THEOREM 3. — Let co be a relatively compact subdomain
of 0. of class C^. Then the L*-harmonic measure o$°,
y e CA), of co is given by

j <o/ \ oG^o;, y) ^d^[x) = — ——x ' J l dSa.

for x e c)co. The density — bG^rr, i/)/^v,c is continuous and
strictly positive on <)co.

Here G^ is the Green's function of L in co, and b/bv
is the exterior conormal derivative on ^u. Finally, dS is
the area measure of b(x).
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THEOREM 4. — Let <o be a relatively compact subdomain
of Q.Q of class C^. Consider the problems

(3.1) u e W^co), Lu == /" a.e. in co, u == 0 on OG),

and

(3.2) P e Ltoc^)? L*^ ̂  §' in the sense of ^((o), p.== cp

on 0(0, where ^eL^co) wi(A p > n,geL^((o) with q > n/2,
and 9 is continuous on o<o. TAen either (3.1) and (3.2) ar^
both uniquely solvable, or else the corresponding homogeneous
problems have the same finite number of linearly independent
solutions Ui and ^, i = 1, . . ., m. In the second case (3.1)
is solvable if and only if

j^fvidx = 0, i = 1, . . ., m,

and (3.2) if and only if

[ gUi dx + / ? —' dS == 0, i = 1, ..., m.
Jco Jbco <^

Under these hypotheses, any function in W^'^co) has a
well-defined trace on oco, so the boundary value condition
in (3.1) makes sense, and so does that in (3.2), because any
solution of L*^ = g is continuous in (x) if g is as in (3.2).

Indications of proof. — Using Theorem 1, we prove
Theorem 2 by a method which is quite analogous to that of
[7, Theorem 1]. The necessary Schauder estimates for Sobolev
spaces can be found e.g. in Miranda [6, Sec. 37], and they are
also used to prove the formula in Theorem 3, following the
method of [7, Sec. 5]. The continuity of dcr^/dS is also obtai-
ned in this way, and to show that this density is strictly posi-
tive, we observe that Theorem 3, IV of [6] and its proof
generalize to functions in W2^ for p > n. As to Theorem 4,
finally, we can repeat the argument of [7, Sec. 6].
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