Annales de l'institut Fourier

Zenjiro Kuramochi
 Analytic functions in a lacunary end of a Riemann surface

Annales de l'institut Fourier, tome 25, nº 3-4 (1975), p. 353-379

http://www.numdam.org/item?id=AIF_1975_25_3-4_353_0
© Annales de l'institut Fourier, 1975, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ANALYTIC FUNCTIONS IN A LACUNARY END OF A RIEMANN SURFACE by Zenjiro KURAMOCHI

Dédié à Monsieur M. Brelot à l'occasion de son 70e anniversaire.

Let R be a Riemann surface and $\left\{\mathrm{R}_{n}\right\}(n=0,1,2, \ldots)$ be its exhaustion. We suppose Kerékjártó-Stoilow's topology S is defined on $R+B$, where B is the set of all ideal boundary components. Also we suppose Martin's topology M is defined over $R-R_{0}+\Delta$ as follows:

$$
\operatorname{dist}\left(p_{1}, p_{2}\right)=\sup _{z \in \mathrm{R}_{1}-\mathrm{R}_{0}}\left|\frac{\mathrm{~K}\left(z, p_{1}\right)}{1+\mathrm{K}\left(z, p_{1}\right)}-\frac{\mathrm{K}\left(z, p_{2}\right)}{1+\mathrm{K}\left(z, p_{2}\right)}\right|:
$$

$p_{1}, p_{2} \in \mathrm{R}-\mathrm{R}_{0}+\Delta$, where $\mathrm{K}\left(p_{0}, p\right)=1, p_{0} \in \mathrm{R}_{1}-\mathrm{R}_{0}$ and Δ is the set of the ideal boundary points. We denote by Δ_{1} the set of all minimal boundary points in Δ. Let \mathfrak{p} be a boundary component. If there exists a sequence $\left\{z_{i}\right\}$ in $R-R_{0}$ such that $z_{i} \xrightarrow{s} p$ (convergence relative to S) and $z_{i} \xrightarrow{M} p$ (relative to M), we say p lies over p. We denote by $\nabla(p)$ the set of Martin's points over \mathfrak{p}. Let G be an end of a Riemann surface R with null boundary. Let

$$
\mathrm{F}_{i}(i=1,2, \ldots)\left(\mathrm{F}_{i} \cap \mathrm{~F}_{j}=0 \text { for } i \neq j\right)
$$

be a compact continuum in G such that $\left\{\mathrm{F}_{i}\right\}$ clusters nowhere in R and $\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}\left(\mathrm{F}=\sum_{i} \mathrm{~F}_{i}\right)$ is connected. We call G^{\prime} a lacunary end. Let \mathfrak{p} be a boundary component
of G. If there exists a determining sequence $\mathfrak{y}_{n}(\mathfrak{p})$ of \mathfrak{p} such that $\partial \mathfrak{v}_{n}(\mathfrak{p})$ is a dividing cut and

$$
\varlimsup_{n} \min _{z \in \delta_{\alpha_{n}(\xi)}} \mathrm{G}^{\prime}\left(z, q_{0}\right)>0: q_{0} \in \mathrm{G}^{\prime}
$$

we say F is completely thin at \mathfrak{p}, where $\mathrm{G}^{\prime}\left(z, q_{0}\right)$ is a Green's function of G^{\prime}. We proved.

Theorem 1 [1]. - Let G be an end of a Riemann surface R with null boundary. Let F be a completely thin set at a boundary component \mathfrak{p}. If there exists an analytic function

$$
\mathfrak{w}=f(z): z \in \mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}
$$

such that its palue falls on the \rightsquigarrow-sphere and

$$
\sup _{w} n(\propto)=n_{0}<\infty,
$$

then $\Delta_{1} \cap \nabla(\mathfrak{p})$ consists of at most n_{0} number of points, where $n(\rightsquigarrow)$ is the number of times \rightsquigarrow is covered by G^{\prime}. The purpose of the present paper is to extend Theorem 1.

Let $U(\varsigma)$ be a_{n} lower semicontinuous function and

$$
\mathrm{U}(\Phi) \leqslant \frac{1}{2 \pi} \int_{\partial \mathrm{O}} \mathrm{U}(\zeta) \frac{\partial}{\partial n} \mathrm{G}\left(\zeta, \omega^{\prime}\right) d s
$$

for any circle C in D, we call $U(\oiint)$ a quasisubharmonic in D , where $\mathrm{G}(\zeta, \Phi)$ is a Green's function of C .

Lemma 1. - Let Ω be a domain in R with a relative boundary $\partial \Omega$ consisting of at most countably infinite number of analytic curves. Let E be a compact set on $\bar{\Omega}$ of positive capacity. Let $\varphi=f(z)$ be an analytic function in $\Omega+\mathrm{E}$ and $\left\{\Omega_{n}\right\}(n=0,1,2, \ldots)$ be an exhaustion i.e. $\bar{\Omega}_{n}$ is compact in Ω and $\partial \Omega_{n}$ consists of a finite number of analytic curves. Let $n_{m}^{0}(\Phi)$ be the number of points in $f^{-1}(w) \cap \dot{\mathrm{E}}_{m}: \dot{\mathrm{E}}_{m}=\{z:$ dist $\left.(\mathrm{E}, z) \leqslant \frac{1}{m}\right\}$. Suppose there exists a number m_{0} such that $\sup n_{m_{0}}^{0}(ゆ)=\mathrm{N}<\infty \quad$ and $\operatorname{dist}\left(f\left(\Omega_{n}-\dot{\mathrm{E}}_{m_{0}}\right), f(\mathrm{E})\right)>0$ for any n. Let $u(z)$ be the harmonic measure of E relative to Ω and put $\mathrm{U}(w)=\sum_{i} u\left(z_{i}\right): f\left(z_{i}\right)=w$. Then $\mathrm{U}(w)$ is quasisubharmonic in $\mathrm{C}(f(\mathrm{E}))$ and $\mathrm{U}(\rightsquigarrow) \leqslant \mathrm{N}$.

Proof. - Let $\mathrm{E}_{m}: m=1,2, \ldots$, be a closed set such that $\mathrm{E}_{m} \subset \dot{\mathrm{E}}_{m}, \quad \operatorname{dist}\left(\partial \mathrm{E}_{m}, \mathrm{E}\right)>0, \mathrm{E}_{m} \downarrow \mathrm{E} \quad$ and $\quad \partial \mathrm{E}_{m} \quad$ consists of a finite number of analytic curves. Let $\left\{\Omega_{n}^{\prime}\right\}: n=1,2, \ldots$ be an exhaustion of $\Omega-\mathrm{E}$ in the direction of $\partial \Omega-\mathrm{E}$ satisfying conditions.
a) $\partial \Omega_{n}^{\prime}-\mathrm{E}_{m}$ is compact in Ω and $\left(\Omega_{n}^{\prime} \cap \mathrm{E}_{m}\right)$ consists of a finite number of components for any n and m and $\Omega_{n}^{\prime} \nearrow \Omega-\mathrm{E}$ as $n \rightarrow \infty$.
b)

$$
\partial \Omega_{n}^{\prime} \cap \partial \Omega=\partial \Omega \cap E
$$

and $\partial \Omega_{n}^{\prime} \cap \Omega \cap E=\Omega \cap E$ for any n.
c)

$$
\partial \Omega_{n}^{\prime}-\dot{\mathrm{E}}_{m_{0}}^{0}=\partial \Omega_{n}-\dot{\mathrm{E}}_{m_{0}}^{0}
$$

for any n. Since $f(z)$ is analytic on $\overline{\Omega_{n}^{\prime}-\mathrm{E}_{m}}$ by a)

$$
\infty>\stackrel{*}{n}=\sup n(\aleph)
$$

in $f\left(\Omega_{n}^{\prime}\right)-f\left(\mathrm{E}_{m}\right)$, where $n(w)$ is the number of points in $\Omega_{n}^{\prime}-\mathrm{E}_{m}$ lying over w. Let $u_{n}(z)$ be harmonic measure of E relative to Ω_{n}^{\prime}. Then $u_{n}^{\prime}(z) \nearrow u(z)$. Let Ω^{\prime} be a domain such that $\Omega^{\prime} \subset \Omega_{n}^{\prime}, \quad \Omega^{\prime} \cap \mathrm{E}_{m}=\Omega_{n}^{\prime} \cap \mathrm{E}_{m}$. Let $\Omega^{\prime} \nearrow \Omega_{n}^{\prime}$. Then $\sup \left|u_{n}(z)-u^{\prime}(z)\right|$ on $\Omega^{\prime}-\mathrm{E}_{m} \leqslant \sup u_{n}(z)$ on $\partial \Omega^{\prime}-\mathrm{E}_{m} \rightarrow 0$, where $u^{\prime}(z)$ is a harmonic measure of E relative to Ω^{\prime}. Hence for any $\varepsilon>0$ we can find a domain $\Omega^{\prime} \subset \Omega_{n}^{\prime}$ such that $\left.\left.a^{\prime}\right) \Omega^{\prime} \cap \mathrm{E}_{m}=\Omega_{n}^{\prime} \cap \mathrm{E}_{m} . b^{\prime}\right) f\left(\partial \Omega^{\prime}-\mathrm{E}_{m}\right)$ intersects itself at a finite number of points $\varphi_{1}, w_{2}, \ldots, w_{k}$ $\left.c^{\prime}\right)$. Any subarc of $f\left(\partial \Omega^{\prime}-\mathrm{E}_{m}\right)$ is covered only once by $\partial \Omega^{\prime}-\mathrm{E}_{m}$ except $\sum_{1}^{k} x_{i}$ and

$$
\left|u_{n}(z)-u^{\prime}(z)\right|<\frac{\varepsilon}{n^{*}} \quad \text { in } \quad \Omega^{\prime}-\mathrm{E}_{m}
$$

Hence by $\left.\left.a), b^{\prime}\right), c^{\prime}\right) f\left(\partial \Omega^{\prime}-\mathrm{E}_{m}\right)$ divides $\mathrm{C}\left(f\left(\mathrm{E}_{m}\right)\right)$ into a finite number of domains $\omega_{1}, \omega_{2}, \ldots, \omega_{l}$. Let $n(w)$ be the number of points in $\Omega^{\prime}-\mathrm{E}_{m}$ lying over w. Then $n(\propto)=n_{i}$ in ω_{i} and $n(\varphi)$ jumps 1 in crossing $f\left(\partial \Omega^{\prime}\right)$. Let D be a circle in $\mathrm{C}\left(f\left(\mathrm{E}_{m}\right)\right)$.

Case 1. D is contained in ω_{i}, then

$$
\mathrm{U}^{\prime}(\aleph)=\Sigma u^{\prime}\left(z_{i}\right) \quad(\aleph)=f\left(z_{i}\right)
$$

is harmonic in D.

Case 2. $\mathrm{D}=\left(\omega_{i}+\omega_{i+1}+f\left(\partial \Omega^{\prime}\right)\right) \cap \mathrm{D}$. Suppose

$$
n_{i+1} \geqslant n_{i} .
$$

Then $n_{i+1}=n_{i}+1$. There exists a domain G^{\prime} (or sum of domains denoted by G^{\prime} also) of n_{i} leaves of disks and another domain $G^{\prime \prime}$ of one leaf such that $f\left(\mathrm{G}^{\prime \prime}\right)=\omega_{i+1} \cap \mathrm{D}$. Put $\mathrm{U}^{\prime \prime}(\propto)=\Sigma u^{\prime}\left(z_{i}\right): f\left(z_{i}\right)=w: \quad z_{i} \in \mathrm{G}^{\prime}$. Then $\mathrm{U}^{\prime \prime}(w)$ is harmonic. Put $U^{\prime \prime \prime}(w)=u^{\prime}(z): w=f(z): z \in \mathrm{G}^{\prime \prime}$ and $\mathrm{U}^{\prime \prime \prime}(w)=0$ on $D-\omega_{i+1}$. Then since $u^{\prime}(z)=0$ on $\partial \Omega^{\prime}$ and $U^{\prime \prime \prime}(\nless x)=0$ on $\partial \omega_{i} \cap \mathrm{D}$ by $\left(\partial \omega_{i+1} \cap \mathrm{D}\right) \subset f\left(\partial \Omega^{\prime}-\mathrm{E}_{m}\right)$ and

$$
\partial \omega_{i} \cap f\left(\mathrm{E}_{m}\right)=0
$$

$\mathrm{U}^{\prime \prime \prime}(\Phi)$ is continuous and subharmonic in D and

$$
\mathrm{U}^{\prime}(w)=\mathrm{U}^{\prime \prime}(w)+\mathrm{U}^{\prime \prime \prime}(\varphi)
$$

is continuous and subharmonic in D.
Case 3. D - $f\left(\Omega^{\prime}\right)$ consists of a finite number of domains, in this case similarly as before $U^{\prime}(w)$ is continuous and subharmonic. Put $\mathrm{U}^{\prime}(\rightsquigarrow)=0$ in $\mathrm{C}\left(f\left(\mathrm{E}_{m}\right)\right)$. Then $\mathrm{U}^{\prime}(\propto)$ is continuous and subharmonic in $\mathrm{C}\left(f\left(\mathrm{E}_{m}\right)\right)$. Now

$$
0 \leqslant \mathrm{U}_{n}(w)-\mathrm{U}^{\prime}(\propto) \leqslant \Sigma u_{n}\left(z_{i}\right)-u^{\prime}\left(z_{i}\right) \leqslant n^{*} \cdot \frac{\varepsilon}{n^{*}}=\varepsilon
$$

in $f\left(\Omega^{\prime}\right)-f\left(\mathrm{E}_{m}\right)$. Let $\varepsilon \rightarrow 0$. Then $\mathrm{U}^{\prime}(\aleph)$ uniformly $\rightarrow \mathrm{U}_{n}\left(\mathscr{(x)}\right.$ in $f\left(\Omega_{n}^{\prime}\right)-f\left(\mathrm{E}_{m}\right)$ and $\mathrm{U}_{n}(x)$ is continuous and subharmonic in $\mathrm{C}\left(f\left(\mathrm{E}_{m}\right)\right)$ by putting $\mathrm{U}_{n}(\Phi)=0$ in $\mathrm{C}\left(f\left(\mathrm{E}_{m}\right)\right)$. For any given number n by (c) there exists a number $m(n)$ such that

$$
\operatorname{dist}\left(f\left(\partial \mathrm{E}_{m}\right)-f(\mathrm{E})\right)<\operatorname{dist}\left(\left(f\left(\Omega_{n}-\stackrel{\circ}{\mathrm{E}}_{m_{0}}\right), f(\mathrm{E})\right): m>m(n)\right.
$$

Then $f^{-1}(凶) \cap \Omega_{n}^{\prime} \quad\left(\right.$ for $\propto \in \overline{f\left(\mathrm{E}_{m}\right)}$ and $\left.m>m(n)\right)$ consists of only points in $\dot{E}_{m_{0}}$, whence $f^{-1}(w): w \in \overline{f\left(\mathrm{E}_{m}\right)}: m>m(n)$ consists of at most N number of points. By $u(z) \leqslant 1$, $\mathrm{U}(w) \leqslant \mathrm{N}$ in $\overline{f\left(\mathrm{E}_{m}\right)}$. Since $\mathrm{U}_{n}(w)$ is continuous and subharmonic in $\mathrm{C}\left(f\left(\mathrm{E}_{m}\right)\right)$, by the maximum principle $\mathrm{U}_{n}(\varphi) \leqslant \mathrm{N}$ in $\mathrm{C}\left(f\left(\mathrm{E}_{m}\right)\right)$. Let $m \rightarrow \infty$. Then $\mathrm{U}_{n}\left(w_{p}\right)$ is continuous and subharmonic and $\leqslant \mathrm{N}$ in $\mathrm{C}(f(\mathrm{E}))$. Let $n \rightarrow \infty$. Then
$\mathrm{U}_{n}(\Phi) \not \subset \mathrm{U}(\Phi)$ by a) and $\mathrm{U}(\Phi)$ is lower semicontinuous and $\leqslant \mathrm{N}$ in $\mathrm{C}(f(\mathrm{E}))$. Evidently

$$
\mathrm{U}(w) \leqslant \frac{1}{2 \pi} \int_{\partial \mathrm{C}} \mathrm{U}(\zeta) \frac{\partial}{\partial n} \mathrm{G}(\zeta, w) d s
$$

for any circle C in $\mathrm{C}(f(\mathrm{E})$). Hence $\mathrm{U}(w)$ is quasisubharmonic and $\leqslant \mathrm{N}$ in $\mathrm{C}(f(\mathrm{E}))$.

Lemma 1 is very simple but interesting. For example we apply it to the theory of value distribution. Then we have

Proposition. - Let $\rightsquigarrow=f(z)$ be an analytic function in $(0<) r<|z| \leqslant 1$ such that $|f(z)| \leqslant 1$ and $f\left(e^{i \theta}\right)$ covers $|\propto|=1 \quad n_{0}$ times as θ saries from 0 to 2π. Then $f^{-1}(\Phi)$: $|\infty|<1$ consists at most $m\left(\leqslant \frac{n_{0}}{\alpha}\right)$ number of points in
$r^{1-\alpha}<|z|<1$.

In fact, let $\Omega=\{1>|z|>r\}$ and $\mathrm{E}=\{|z|=1\}$. Then $u(z)=1-\frac{\log |z|}{\log r}$. Let $z_{i}(i=1,2, \ldots)$ be a point in

$$
r^{1-\alpha}<|z|<1
$$

such that $w=f\left(z_{i}\right)$. Then $u\left(z_{i}\right)>\alpha$ and

$$
\mathrm{U}(\wp)=\Sigma u\left(z_{i}\right) \leqslant n_{0} .
$$

Hence we have the proposition.
Lemma 2. - Let Ω be a domain in $\mathrm{R}-\mathrm{R}_{0}$ and let

$$
\mathrm{F}_{i}(i=1,2, \ldots)
$$

be a compact set clustering nowhere in R. Put

$$
\Omega^{\prime}=\Omega-\mathrm{F}: \mathrm{F}=\Sigma \mathrm{F}_{i} .
$$

Let $\varphi(\zeta)$ be a non negative continuous function on $\partial \Omega-\mathrm{F}$. Let $\mathrm{U}(\mathrm{z})$ be the least positive harmonic function in Ω^{\prime} such that $\mathrm{U}(\zeta)=\varphi(\zeta)$ on $\partial \Omega-\mathrm{F}$. Then

$$
\mathrm{U}(z)=\frac{1}{2 \pi} \int_{\partial \Omega-\mathrm{F}} \varphi(\zeta) \frac{\partial}{\partial n} \mathrm{G}(\zeta, z) d s
$$

where $\mathrm{G}(\zeta, z)$ is a Green's function of Ω^{\prime}.

Put $\Omega_{n}^{\prime}=\left(\Omega^{\prime} \cap R_{n}\right)-F$. Let $\mathrm{U}_{n}(z)$ be a harmonic function in Ω_{n}^{\prime} such that $\mathrm{U}_{n}(z)=\varphi(\zeta)$ on $(\partial \Omega-\mathrm{F}) \cap \mathrm{R}_{n},=0$ on $(\mathrm{F} \cap \partial \Omega)+\left(\partial \mathrm{R}_{n} \cap \Omega\right)+(\mathrm{F} \cap \Omega)$. Then $\mathrm{U}_{\mathrm{n}}(z) \nearrow \mathrm{U}(z)$. Let $\mathrm{G}_{n}(\zeta, z)$ be a Green's function of Ω_{n}^{\prime}. Then

$$
\mathrm{U}_{n}(z)=\frac{1}{2 \pi} \int_{(\partial \Omega-\mathrm{F}) \cap_{\mathrm{R}}} \varphi(\zeta) \frac{\partial}{\partial n} \mathrm{G}_{n}(\zeta, z) d s
$$

Since $\frac{\partial}{\partial n} \mathrm{G}_{n}(\zeta, z) \nearrow \frac{\partial}{\partial n} \mathrm{G}(\zeta, z)$ on $\partial \Omega$, we have Lemma 2.
Let $\mathrm{D}_{1} \supset \mathrm{D}_{2}$ be two domains. Let U be a positive harmonic function in D_{1}. We denote by $r \mathrm{U}$ the greatest subharmonic function in D_{2} vanishing on $\partial \mathrm{D}_{2}$ not larger than U . Let V be a positive harmonic function in D_{2} vanishing on $\partial \mathrm{D}_{2}$ except at most a set of capacity zero. We denote by $s \mathrm{~V}$ the least positive superharmonic function in D_{1} larger than V . Then the following are well known.
$r \mathrm{U}$ and $s \mathrm{~V}($ for $s \mathrm{~V}<\infty)$ are harmonic and $r s r \mathrm{U}=r \mathrm{U}$ and $s r s \mathrm{~V}=s \mathrm{~V}$.

Let U be minimal in D_{1}. Then if $r \mathrm{U}>0, s r \mathrm{U}=\mathrm{U}$ and $r \mathrm{U}$ is minimal in D_{2}.

Let V be minimal in D_{2}. If $s \mathrm{~V}<\infty, r s \mathrm{~V}=\mathrm{V}$ and $s \mathrm{~V}$ is minimal in D_{1}.

If $\mathrm{U}_{n} \nearrow \mathrm{U}, r \mathrm{U}=\lim r \mathrm{U}_{n}$.
In the sequel we suppose R is a Riemann surface with null boundary and Martin's topology M is defined over $\mathrm{R}-\mathrm{R}_{0}+\Delta$ by $\mathrm{K}(z, p)=\frac{\mathrm{G}(z, p)}{\mathrm{G}\left(p, p_{0}\right)}$, where p_{0} is a fixed point in $\mathrm{R}_{1}-\mathrm{R}_{0}$ and $\mathrm{G}(z, p)$ is a Green's function of $\mathrm{R}-\mathrm{R}_{0}$. We remark there exist consts. M and N such that $\mathrm{M}>\mathrm{G}\left(z, p_{0}\right)>\mathrm{N}>0$ in $\mathrm{R}-\mathrm{R}_{2}$. Let G be an end in $R-R_{0}$ and let G^{\prime} be a lacunary end such that

$$
\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}: \mathrm{F}=\Sigma \mathrm{F}_{\mathrm{i}} .
$$

Degree of irregularity $\delta(p)\left(p \in \mathrm{G}+\Delta_{1}\right)$ at p. Let $\mathrm{G}^{\prime}\left(z, q_{0}\right)$ (q_{0} is a fixed point in $\mathrm{G}^{\prime} \cap \mathrm{R}_{n_{0}}$) be a Green's function of G^{\prime}. We define $\delta(p)$ as follows:

$$
\delta(p)=\varlimsup_{z \rightarrow \mathcal{M}_{p}} \mathrm{G}^{\prime}\left(z, q_{0}\right): q_{0} \in \mathrm{G}^{\prime} \cap \mathrm{R}_{n_{0}} .
$$

We see at once $\delta(p)>0$ for $p \in \mathrm{G}^{\prime}$ and $\delta(p)>0\left(p \in \Delta_{1}\right)$
if and only if there exists a sequence $\left\{z_{i}\right\}$ such that $\mathrm{G}^{\prime}\left(z, z_{i}\right) \rightarrow$ a positive harmonic function. Let $\delta^{\prime}(p)$ the one defined with respect to $\mathrm{G}^{\prime}\left(z, q_{0}^{\prime}\right)$. Then since there exists an exhaustion $\left\{\mathrm{R}_{n}\right\}$ such that $\partial \mathrm{R}_{n} \cap \mathrm{~F}=0$, there exists a const. K such that

$$
\frac{1}{\mathrm{~K}} \delta(p) \leqslant \delta^{\prime}(p) \leqslant \mathrm{K} \delta(p) \quad \text { for } \quad p \in \Delta_{1} .
$$

Let p^{1} and p^{2} in Δ_{1}. If there exists a sequence of curves $\left\{\gamma_{i}\right\} \quad(i=1,2, \ldots)$ with two end points p_{i}^{1} and p_{i}^{2} such that $p_{i}^{1} \xrightarrow{\mathrm{M}} p^{1}, p_{i}^{2} \xrightarrow{\mathrm{M}} p^{2}$ and γ_{i} tends to the ideal boundary of R and

$$
\varlimsup_{i=\infty} \min _{z \in Y_{i}} \mathrm{G}^{\prime}\left(z, q_{0}\right)>0,
$$

we say p^{1} and p^{2} are chained. Let p^{0} and $p^{n_{0}}$. If there exists $p^{1}, p^{2}, \ldots, p^{n_{0}-1}$ such that p^{j} and p^{j+1} are chained : $j=0,1,2, \ldots, n_{0}-1$, we say p^{0} and $p^{n_{0}}$ are kindred. It is clear if p^{i} and p^{j} are kindred, p^{i} and p^{j} lie over the same boundary component. Kindredness does not depend on the choice of q_{0}.

Definition of $\mathrm{G}(z, p)$ and $\mathrm{G}^{\prime}(z, p): p \in \mathrm{G}+\Delta_{1}$.
Lemma 3. - Suppose Martin's topology is defined on

$$
\mathrm{R}-\mathrm{R}_{0}+\Delta
$$

G is an end in $\mathrm{R}-\mathrm{R}_{0}$ and $\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}$ be a lacunary end. Let $\mathrm{G}\left(z, z_{i}\right)$ and $\mathrm{G}^{\prime}\left(z, z_{i}\right)$ be Green's functions of $\mathrm{R}-\mathrm{R}_{0}$ and G^{\prime} respectively. Then:

1) Let $\left\{z_{i}\right\}$ be any sequence such that $z_{i} \xrightarrow{\mathrm{M}} p \in \mathrm{G}+\Delta_{1}$. Then $\mathrm{G}\left(z, z_{i}\right)$ converges to a uniquely determined positive minimal harmonic function in $\mathrm{R}-\mathrm{R}_{0}$ denoted by $\mathrm{G}(z, p)$ and $\mathrm{G}(z, p)=\alpha \mathrm{K}(z, p)$, where $\alpha=2 \pi / \int_{\partial \mathbf{R}_{0}} \frac{\partial}{\partial n} \mathrm{~K}(z, p) d s$ and $\mathrm{N}^{\prime}=\min _{z \in \partial \mathrm{R}_{1}} \mathrm{G}\left(z, p_{0}\right)<\alpha<\mathrm{M}^{\prime}=\max _{z \in \partial \mathrm{R}_{\mathbf{1}}} \mathrm{G}\left(z, p_{0}\right)$.
2) Let $\left\{z_{i}\right\}$ be a sequence such that $z_{i} \xrightarrow{M} p \in \mathrm{G}+\Delta_{1}$ and

$$
\mathrm{G}^{\prime}\left(z, z_{i}\right) \rightarrow \mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right) .
$$

Then $\mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right)=\beta r \mathrm{G}(z, p)$, witi $0 \leqslant \beta<1$ and where the operation r concerns domains $\mathrm{R}-\mathrm{R}_{0}$ and G^{\prime}. Let $\left\{z_{i}\right\}$
be a sequence such that $z_{i} \xrightarrow{\mathrm{M}} p \in \mathrm{G}+\Delta_{1}$ and

$$
\mathrm{G}^{\prime}\left(z_{i}, q_{0}\right) \rightarrow \delta(p)>0
$$

Then $\mathrm{G}^{\prime}\left(z, \quad z_{i}\right) \rightarrow a$ uniquely determined positive minimal harmonic function denoted by $\mathrm{G}^{\prime}(z, p)$ and

$$
\mathrm{G}^{\prime}(z, p) \geqslant \frac{\delta(p)}{\mathrm{M}} r \mathrm{G}(z, p)
$$

where $\mathrm{M}=\max _{: \in J \mathbf{R}_{n_{0}}+1} \mathrm{G}\left(z, q_{0}\right)$
Proof of 1. - Let $\left\{z_{i}^{\prime}\right\}$ be a subsequence of $\left\{z_{i}\right\}$ such that $\mathrm{G}\left(z, z_{i}^{\prime}\right) \rightarrow$ a harmonic function $\mathrm{G}(z)$. Then

$$
\mathrm{G}(z) / \mathbf{M}^{\prime} \leqslant \mathrm{K}(z, p)
$$

By the minimality of $\mathrm{K}(z, p), \mathrm{G}(z)=\alpha \mathrm{K}(z, p)$. On the other hand, by the compactness of $\partial \mathrm{R}_{0} \int_{\partial \mathbf{R}_{0}} \frac{\partial}{\partial n} \mathrm{G}(z) d s=2 \pi$. Hence $\alpha=2 \pi / \int_{\partial \mathbf{R}_{0}} \frac{\partial}{\partial n} \mathrm{~K}(z, p) d s$. Now $\left\{z_{i}^{\prime}\right\}$ is an arbitrary sequence for which $\mathrm{G}\left(z, z_{i}\right)$ converges. Hence $\mathrm{G}\left(z, z_{i}\right) \rightarrow$ a uniquely determined harmonic function denoted by $\mathrm{G}(z, p)$.

Proof of 2. - Let $\left\{z_{i}\right\}$ be a sequence such that $G^{\prime}\left(z, z_{i}\right)$ \rightarrow a harmonic function $\mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right)$. Then by 1)

$$
\mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right) \leqslant \mathrm{G}(z, p)
$$

and we have $\mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right) \leqq r \mathrm{G}(z, p)$. By the minimality of $r \mathrm{G}(z, p) \mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right)=\beta r \mathrm{G}(z, p): 0 \leqslant \beta<1$. Let $\left\{z_{i}^{\prime}\right\}$ be a subsequence of $\left\{z_{i}\right\}$ such that $G^{\prime}\left(z, z_{i}^{\prime}\right)$ converges and $\lim \mathrm{G}^{\prime}\left(z_{i}^{\prime}, q_{0}\right)=\delta(p)$. In this case β attains the greatest value β^{i} * given by

$$
\delta(p) / r \mathrm{G}\left(q_{0}, p\right)
$$

Now $\left\{z_{i}^{\prime}\right\}$ is an arbitrary subsequence with

$$
\lim \mathrm{G}^{\prime}\left(z_{i}^{\prime}, q_{0}\right)=\delta(p)
$$

Hence $\mathrm{G}^{\prime}\left(z, z_{i}\right) \rightarrow$ a uniquely determined positive minimal harmonic function in $\mathrm{G}^{\prime}-p$ denoted |by $\mathrm{G}^{\prime}(z, p)$. Now
$\lim _{i} \mathrm{G}^{\prime}\left(z_{i}, q_{0}\right) \geqslant \frac{\delta(p)}{\mathrm{M}} \mathrm{G}\left(q_{0}, p\right)$. Hence
$\mathrm{G}^{\prime}\left(q_{0}, p\right) \geqslant \frac{\delta(p)}{\mathrm{M}} \mathrm{G}\left(q_{0}, p\right) \geqslant \frac{\delta(p)}{\mathrm{M}} r \mathrm{G}\left(q_{0}, p\right) \quad$ and $\quad \beta^{*} \geqslant \frac{\delta(p)}{\mathrm{M}}$.
Thus we have 2).
We shall discuss the behaviour of Green's functions of a planar domain. Let Ω be a domain in the z-sphere such that Ω has a Green's function $\mathrm{G}(z, p)$. Let t_{0} be a fixed point in Ω and $\varphi\left(t_{0}\right)$ be a neighbourhood of t_{0} in Ω and put $\delta(p)=\varlimsup_{z \rightarrow p} \mathrm{G}\left(z, t_{0}\right): p \in \bar{\Omega}$. Then $\delta(p)$ is upper semicontinuous in $\bar{\Omega}$ and $\delta(p) \leqslant \max _{z \in \partial v\left(t_{0}\right)} \mathrm{G}\left(z, t_{0}\right)$. We see $\delta(p)>0: p \in \partial \Omega$ if and only if p is irregular. We introduce Martin's topology over $\Omega+\Delta$ by $\mathrm{K}\left(z, p^{\mathbf{M}}\right): p^{\mathrm{M}} \in \Omega+\Delta$ with $\mathrm{K}\left(t_{0}, p^{\mathrm{M}}\right)=1$. By Brelot's theorem [2] there exists only one point $p^{\mathbf{M}}$ on p for $\delta(p)>0$ and p^{M} is minimal. We denote by $p^{\mathrm{M}}=\varphi(p)$. Then also this implies $\varphi(p)$ is continuous at p with $\delta(p)>0$. Clearly $\mathrm{K}\left(z, p^{\mathbf{M}}\right)$ is continuous with respect to $p^{\mathbf{M}}$. Hence $\mathrm{K}(z, \varphi(p))$ is continuous at p with $\delta(p)>0$ and we denote p^{M} by p simply in the following. Let $\left\{z_{i}\right\}$ be a sequence such that $z_{i} \rightarrow p, \mathrm{G}\left(z_{i}, t_{0}\right) \geqslant \varepsilon_{0}>0$. Then there exists a subsequence $\left\{z_{i}^{\prime}\right\}$ with $\mathrm{G}\left(z, z_{i}^{\prime}\right) \rightarrow$ a harmonic function $\mathrm{G}(z)$. Then $\mathrm{G}(z) \leqslant \frac{\mathrm{M}}{\varepsilon_{0}} \mathrm{~K}(z, p): \mathrm{M}=\max _{z \in \mathrm{~d}\left(t_{0}\right)} \mathrm{G}\left(z, t_{0}\right)$. By the minimality of $\mathrm{K}(z, p) \mathrm{G}(z)=\alpha \mathrm{K}(z, p): 0<\alpha<\infty$. Let $\left\{z_{i}\right\}$ be a sequence such that $z_{i} \rightarrow p, \mathrm{G}\left(z_{i}, t_{0}\right) \rightarrow \delta(p)$. Then we see easily $G\left(z, z_{i}\right) \rightarrow a$ harmonic function $\tilde{\mathrm{G}}(z)=\bar{\alpha} \mathrm{K}(z, p)$ and $\bar{\alpha}$ is the maximal value and $\tilde{\mathrm{G}}(z)$ is the limit of $\left\{\mathrm{G}\left(z, z_{i}\right)\right\}$ such that $z_{i} \rightarrow p$ and

$$
\mathrm{G}\left(z_{i}, z\right) \rightarrow \varlimsup_{w \rightarrow p} \mathrm{G}(w, z)
$$

for any z. We make $\tilde{\mathrm{G}}(z)$ correspond to p and denote it by $\mathrm{G}(z, p): p \in \partial \Omega: \delta(p)>0$. Thus the domain of definition of p of $\mathrm{G}(z, p)$ is extended to $\Omega+\{p \in \partial \Omega: \delta(p)>0\}$: This fact means $\mathrm{G}(z, p)$ is upper semicontinuous sith respect to p. Let $p \in \bar{\Omega}$ with $\delta(p)>0$. Then by $K\left(t_{0}, p\right)=1^{\prime}$ we have $\mathrm{G}(z, p)=\delta(p) \mathrm{K}(z, p)$. Let μ be a positive mass distribution
over $\Omega+\{p \in \partial \Omega: \delta(p)>0\}:$ Then a potential

$$
\int \mathrm{G}(z, q) d \mu(q) \quad \text { and } \quad \delta(q) \mu(q)
$$

are defined well. Then we have
Lemma 4. - 1) Let $\left\{z_{i}\right\}$ be a sequence such that $z_{i} \rightarrow p$ and $\mathrm{G}\left(z, z_{i}\right) \rightarrow$ a harmonic function $\mathrm{G}\left(z,\left\{z_{i}\right\}\right)$. Then

$$
\mathrm{G}\left(z,\left\{z_{i}\right\}\right) \leqslant \mathrm{G}(z, p) .
$$

2) Let $v(p)$ be a neighbourhood of p, then there exists a const. L such that $\mathrm{G}(z, p)<\mathrm{L}$ on $\mathrm{C} \varphi(p)$.
3) Let $\mathrm{U}(z)$ be a potential $\mathrm{U}(z)=\int_{\bar{\Omega}} \mathrm{G}(z, q) d \mu(q)$ and $\int d \mu(q)<\infty$.

If $\mathrm{G}(z, p) \leqslant \mathrm{U}(z), \lim _{n} \int_{v_{n}(p)} d \mu(q) \geqslant 1$:

$$
\vartheta_{n}(p)=\left\{|z-p|<\frac{1}{n}\right\} .
$$

Proof. - 1) is evident. We shall prove 2). Let $\left\{z_{i}\right\}$ be a sequence such that $\mathrm{G}\left(z_{i}, t_{0}\right) \rightarrow \delta(p)$ and $z_{i} \rightarrow p$. Then $\mathrm{G}\left(z, z_{i}\right) \rightarrow \mathrm{G}(z, p)$. Let $g^{\prime}\left(t_{0}\right)=\left\{z:\left|z-t_{0}\right|<r^{\prime}\right\}$ such that $\rho^{\prime}\left(t_{0}\right) \in \Omega$. Let $\mathrm{G}^{\prime}\left(z, z_{i}\right)$ be a Green's function in $\Omega-\rho^{\prime}\left(t_{0}\right)$. Let $H_{i}(z)$ be the least positive harmonic function in

$$
\Omega-\varphi^{\prime}\left(t_{0}\right)
$$

such that $H_{i}(z)=\mathrm{G}\left(z, z_{i}\right)$ on $\partial \rho^{\prime}\left(t_{0}\right)$. Then

$$
\mathrm{G}\left(z, z_{i}\right)-\mathrm{H}_{\mathrm{i}}(z)=\mathrm{G}^{\prime}\left(z, z_{i}\right) .
$$

Since $\partial \rho^{\prime}\left(t_{0}\right)$ is compact, $H_{i}(z) \rightarrow H(z)$, where $H(z)$ is the least positive harmonic function in $\Omega-\rho^{\prime}\left(t_{0}\right)$ such that $\mathrm{H}(z)=\mathrm{G}(z, p)$. Whence $\mathrm{G}^{\prime}\left(z, z_{i}\right) \rightarrow \mathrm{a}$ uniquely determined function denoted by $\mathrm{G}^{\prime}(z, p)$. On the other hand, there exists no singular minimal point on planar domains (this is equivalent to there exists no bounded minimal positive harmonic function). Whence $\sup \mathrm{G}(z, p)=\infty$. But

$$
\sup _{z} \mathrm{H}(z) \leqslant \max _{z \in \partial v\left(t_{0}\right)} \mathrm{G}(z, p)
$$

Hence $G^{\prime}(z, p)>0$. Let $\varphi\left(t_{0}\right)=\left\{\left|z-t_{0}\right|<r\right\}$ such that $r>r^{\prime}$ and $\varphi\left(t_{0}\right) \subset \Omega$. Now

$$
\min _{z \in \partial \nu\left(t_{0}\right)} \mathrm{G}^{\prime}\left(z, z_{i}\right)=\mathrm{N}_{i}^{\prime} \rightarrow \mathrm{N}^{\prime}=\min _{z \in \partial v\left(t_{0}\right)} \mathrm{G}^{\prime}(z, p)
$$

and $\max _{z \in \partial v\left(t_{0}\right)} \mathrm{G}\left(z, z_{i}\right)=\mathrm{M}_{i} \rightarrow \mathrm{M}=\max _{z \in \partial v\left(t_{0}\right)} \mathrm{G}(z, p)$. Clearly

$$
\mathrm{M}_{i} \geqslant \mathrm{~N}_{i}^{\prime}, \mathrm{G}^{\prime}\left(z, z_{i}\right) / \mathrm{N}_{i}^{\prime} \quad \text { and } \quad \mathrm{G}\left(z, z_{i}\right) / \mathrm{M}_{i}
$$

have log singularities with coefficients $1 / N_{i}^{\prime}$ and $1 / M_{i}$ respectively and $\mathrm{G}^{\prime}\left(z, z_{i}\right) / \mathrm{N}_{i}^{\prime} \geqslant \mathrm{G}\left(z, z_{i}\right) / \mathrm{M}_{i}$ on $\partial \rho\left(t_{0}\right)$. Hence by the maximum principle and by letting $i \rightarrow \infty$ we have $\mathrm{G}^{\prime}(z, p) / \mathrm{N}^{\prime} \geqslant \mathrm{G}(z, p) / \mathrm{M}$ in $\mathrm{C} \rho\left(t_{0}\right)$. Let $\tilde{\Omega}=z$-sphere - $\varphi^{\prime}\left(t_{0}\right)$ and let $\tilde{\mathrm{G}}(z, p)$ be a Green's function of $\tilde{\Omega}$. Then

$$
\widetilde{\mathrm{G}}(z, p) \geqslant \mathrm{G}^{\prime}(z, p)
$$

Clearly there exists a const. L such that

$$
\mathrm{LN}^{\prime} / \mathrm{M} \geqslant \tilde{\mathrm{G}}(z, p) \geqslant \mathrm{G}^{\prime}(z, p)
$$

on $\mathrm{C} \rho(p)$. Hence $\mathrm{L} \geqslant \mathrm{G}(z, p)$ on $\mathrm{C} \rho(p)$ for any neighbourhood $\varphi(p)$. Hence we have 2).

Proof of 3). Case 1. $p \in \Omega$. Let $\varphi(p)=\left\{z:|z-p|<1 / n_{0}\right\}$ such that $\varphi(p) \subset \Omega$. Then $\mathrm{G}(z, q)=\mathrm{G}^{\prime}(z, q)+\mathrm{H}(z, q)$ or $\mathrm{G}(z, q)$ according as $q \in \varphi(p)$ or $q \notin \varphi(p)$, where $\mathrm{G}^{\prime}(z, q)$ is a Green's function of $\varphi(p)$ and $\mathrm{H}(z, q)$ and $\mathrm{G}(z, q)$: $q \notin \varphi(p)$ are least positive harmonic functions in $\varphi(p)$ such that $\mathrm{H}(z, q)=\mathrm{G}(z, q)$ and $\mathrm{G}(z, q)=\mathrm{G}(z, q)$ on $\partial v(p)$. Since for any q and any neighbourhood $\varphi(q)$ there exists a const. $\mathrm{L}(q, \varphi(q))$ such that $\mathrm{G}(z, q)<\mathrm{L}(q, \varphi(q))$ on $\mathrm{C} \varphi(q)$ and since $\partial \varphi(p)$ is compact, there exists a const. L such that $\mathrm{H}(z, q) \leqslant \mathrm{L}$ and $\mathrm{G}(z, q)(q \notin \varphi(p)) \leqslant \mathrm{L}$ on

$$
\varphi_{n_{1}}(p) \subset \varphi(p): n_{1}>n_{0}
$$

Hence :

$$
\begin{aligned}
\mathrm{G}^{\prime}(z, p) \leqslant \mathrm{G}(z, p) \leqslant & \mathrm{U}(z)=\int_{v(p)} \mathrm{G}^{\prime}(z, q) d \mu(q) \\
& +\int_{v(p)} \mathrm{H}(z, q) d \mu(q)+\int_{c v(p)} \mathrm{G}(z, q) d \mu(q) \\
& \leqslant \int_{v(p)} \mathrm{G}^{\prime}(z, q) d \mu(q)+\mathrm{L} \int d \mu \text { in } v_{n_{4}}(p)
\end{aligned}
$$

Let $\mathrm{H}_{n}(z): n>n_{0}$, be a harmonic function in $\varphi(p)-\varphi_{n}(p)$ such that $\mathrm{H}_{n}(z)=0$ on $\partial \varphi(p)$ and $=\mathrm{L}^{\prime}$ on $\partial \varphi_{n}(p)$: $\mathrm{L}^{\prime}=\mathrm{L} \int d \mu$. Then $\mathrm{U}(z) \leqslant \int_{v(p)} \mathrm{G}^{\prime}(z, q) d \mu(q)+\mathrm{H}_{n}(z)$ on $\partial \varphi_{n}(p)$. Since $G^{\prime}(z, p)=0$ on $\partial \rho(p)$,

$$
\mathrm{G}^{\prime}(z, p) \leqslant \int_{v(p)} \mathrm{G}^{\prime}(z, q) d \mu(q)+\mathrm{H}_{n}(z)
$$

on $\partial \varphi(p)+\partial \varphi_{n}(p) . \mathrm{G}^{\prime}(z, p)$ is harmonic and

$$
\int_{v(p)} \mathrm{G}^{\prime}(z, q) d \mu(q)+\mathrm{H}_{n}(z)
$$

is superharmonic in $\rho(p)-\rho_{n}(p)$. By the maximum principle and by letting $n \rightarrow \infty \quad \mathrm{G}^{\prime}(z, p) \leqslant \int_{v(p)} \mathrm{G}^{\prime}(z, q) d \mu(q)$. This implies $1 \leqslant \int_{v(p)} d \mu(q)$. Now $\varphi(p)$ is arbitrary and

$$
\lim _{n} \int_{v_{n}(p)} d \mu \geqslant 1
$$

Case 2. $p \in \partial \Omega$. In this case p is irregular. Let $q \in \partial \Omega$ and $\mathrm{G}(z, q)>0$. Then by definition

$$
\mathrm{G}(z, q)=\lim _{i} \mathrm{G}\left(z, q_{i}\right)
$$

where $\quad q_{i} \in \Omega, q_{i} \rightarrow q, \mathrm{G}\left(q_{i}, t_{0}\right) \rightarrow \delta(q)=\varlimsup_{z \rightarrow q} \mathrm{G}\left(z, t_{0}\right)$. Hence $\mathrm{G}(z, q)=\delta(q) \mathrm{K}(z, q): \mathrm{K}\left(t_{0}, q\right)=1$. Since the greatest subharmonic minorant of Green's potential (in ordinary sense) $=0$, we have by

$$
\begin{gathered}
\mathrm{G}(z, p) \leqslant \int_{\partial \Omega} \mathrm{G}(z, q) d \mu(q)+\int_{\Omega} \mathrm{G}(z, q) d \mu(q) \\
\mathrm{G}(z, p) \leqslant \int_{\partial \Omega} \mathrm{G}(z, q) d \mu(q) \text { i.e. } \\
\delta(p) \mathrm{K}(z, p) \leqslant \int_{\Delta_{1}} \delta(q) \mathrm{K}(z, q) d \mu(q)
\end{gathered}
$$

Now $\delta(q) \mu(q)$ is a canonical representation, hence

$$
\delta(p) \leqslant \delta(q) \mu(q)
$$

and $\delta(p) \leqslant \int_{v_{n}(p)} d(\delta(q) \mu(q))$. On the other hand, $\delta(q)$ is upper semicontinuous. Hence $\lim _{n} \int_{v_{n}(p)} d \mu(q) \geqslant 1$.

Suppose an analytic function in a lacunary end G^{\prime} :

$$
\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}
$$

of a Riemann surface R with null boundary such that

$$
\varphi=f(z): z \in \mathrm{G}^{\prime}
$$

falls on the w-sphere. We investigate the behaviour of $f(z)$ and the structure of Δ_{1}. Then

Theorem 2. - Suppose $f\left(\mathrm{G}^{\prime}\right)$ does not cover a set E of positive capacity. Then:

1) Let $\left\{z_{i}\right\}$ be a sequence in G^{\prime} such that $z_{i} \xrightarrow{M} p \in \Delta_{1}$ and $\varliminf_{i} \mathrm{G}\left(z_{i}, q_{0}\right)>0$. Then $f\left(z_{i}\right) \rightarrow a$ point not depending on the choice of $\left\{z_{i}\right\}$. We denote it by $f(p)$.
2) If $\Delta_{1} \cap \nabla(p)$ consists of at most countably infinite number of points $\left\{p_{i}\right\}$ and $\delta\left(p_{i}\right) \geqslant \delta>0$ for any i. Then $f\left(p_{i}\right)=f\left(p_{j}\right)$ for two kindred points p_{i} and p_{j} in $\Delta_{1} \cap \nabla(\mathfrak{p})$.

Proof of 1). - The complementary set of E relative to the φ-sphere consists of domains. Let Ω be the one containing $f\left(\mathrm{G}^{\prime}\right)$. Let $\mathrm{G}^{w}\left(x_{,}, \varphi_{0}\right)$ be a Green's function of Ω. Then $\mathrm{G}^{w}\left(f(z), f\left(z_{i}\right)\right) \geqslant \mathrm{G}^{\prime}\left(z, z_{i}\right)$. Consider a sequence $\left\{z_{i}\right\}$ such that $z_{i} \xrightarrow{M} p$ and $\underset{i}{\lim } \mathrm{G}^{\prime}\left(z_{i}, q_{0}\right)>0$. Assume $f\left(z_{i}\right)$ has two limiting points $t_{l}: l=1,2, t_{1} \neq t_{2}$ on $\Omega+\partial \Omega$. Then we can find two subsequences $\left\{z_{i}^{\prime \prime}\right)$ of $\left\{z_{i}^{l}\right\}$ such that $z_{i}^{\prime \prime} \xrightarrow{M} p$, $f\left(z_{i}^{l^{\prime}}\right) \rightarrow t_{l}, \quad \mathrm{G}^{\prime}\left(z, z_{i}^{\prime \prime}\right) \rightarrow$ a harmonic function $\mathrm{G}^{\prime \prime}(z)$ in G^{\prime} and $\mathrm{G}^{w}\left(w, f\left(z_{i}^{\prime}\right)\right) \rightarrow$ a positive harmonic function $\mathrm{G}\left(w,\left\{f\left(z_{i}^{\prime}\right)\right\}\right)$ in $\Omega-t_{l}$. Then by Lemma 4
(1) $0<\mathrm{G}^{\prime \prime}(z) \leqslant \mathrm{G}^{w}\left(\rightsquigarrow,\left\{f\left(z_{i}^{\prime \prime}\right)\right\}\right) \leqslant \mathrm{G}^{w}\left(\rightsquigarrow, t_{l}\right): \propto=f(z)$,
where $\mathrm{G}^{w}\left(\mathscr{y}, t_{l}\right)$ is the function defined in Lemma 4. Now by Lemma 3.2, $\mathrm{G}^{\prime \prime}(z)=\alpha_{l} l_{\mathrm{G}}^{\mathrm{R}}-\mathrm{R}_{\mathrm{o}} \mathrm{G}(z, p): 0<\alpha_{l}<\infty$, whence

$$
\begin{equation*}
\mathrm{G}^{1^{\prime}}(z)=b \mathrm{G}^{2^{\prime}}(z): 0<b<\infty . \tag{2}
\end{equation*}
$$

Let $\varphi\left(t_{l}\right)$ be a neighbourhood of t_{l} such that

$$
\overline{\varphi\left(t_{1}\right)} \cap \overline{\varphi\left(t_{2}\right)}=0 .
$$

Then by Lemma $4 \mathrm{G}^{w}\left(\rightsquigarrow, t_{l}\right)$ is bounded in $\mathrm{C} \rho\left(t_{l}\right)$. Whence by (2) and (1) $\mathrm{G}^{1^{\prime}(z)}$ and $\mathrm{G}^{2}(z)$ are bounded in G^{\prime} and $\mathrm{G}^{1^{\prime}}(z)=\mathrm{G}^{2}(z)=0$. This is a contradiction. Hence we have 1). Because the following fact is well known : Let ω be a domain
tn a Riemann surface with null boundary and let $\mathrm{U}(\mathrm{z})$ be a bounded harmonic function in ω with $\mathrm{U}(z)=0$ on $\partial \omega$, then $\mathrm{U}(z)=0$.

For the proof of 2) we use following:
Proposition 1. - Let $\left\{z_{i}\right\}$ be a sequence in G^{\prime} such that $z_{i} \xrightarrow{s} \mathfrak{p}, f\left(z_{i}\right) \rightarrow \wp^{*} \in \Omega+\partial \Omega$ satisfying.
a) $\mathrm{G}^{\prime}\left(z, z_{i}\right) \rightarrow a$ positive harmonic function $\mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right)$ in G^{\prime}.
b) $\mathrm{G}^{w}\left(\rightsquigarrow, f\left(z_{i}\right)\right) \rightarrow$ a positive harmonic function $\mathrm{G}^{w}\left(\rightsquigarrow,\left\{f\left(z_{i}\right)\right\}\right)$ in $\Omega-\aleph^{*}$. Let ${ }^{*} \mathrm{E}^{\prime}\left(z,\left\{z_{i}\right\}\right)$ be the least positive superharmonic function in Ω larger than $\mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right)$. Then

$$
\stackrel{*}{E}^{\prime} G^{\prime}\left(z,\left\{z_{i}\right\}\right)
$$

is minimal in $\Omega-\aleph^{*}$ and $=\alpha \mathrm{G}^{w}\left(\varsigma, \aleph^{*}\right): 0<\alpha \leqslant 1$.
In fact by Lemma 4

$$
\mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right) \leqslant \mathrm{G}^{w}\left(f(z),\left\{f\left(z_{i}\right)\right\}\right) \leqslant \mathrm{G}^{w}\left(f(z), w^{*}\right)
$$

and by the minimality of $\mathrm{G}^{w}\left(\rightsquigarrow, w^{*}\right) \stackrel{*}{E} \mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right)=\alpha \mathrm{G}^{w}\left(w, \aleph^{*}\right)$ and $\stackrel{*}{E}^{*} \mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right)$ is minimal in $\Omega-\wp^{*}$.

Proposition 2. - Let $\left\{z_{i}\right\}$ be a sequence $z_{i} \xrightarrow{\mathrm{M}} p \in \mathrm{G}^{\prime}+\Delta_{1}$ such that $\mathrm{G}^{\prime}\left(z_{i}, q_{0}\right) \rightarrow \delta(p)>0$. Then by Lemma 3

$$
\mathrm{G}^{\prime}\left(z, z_{i}\right) \rightarrow \mathrm{G}^{\prime}(z, p), \mathrm{G}\left(z, z_{i}\right) \rightarrow \mathrm{G}(z, p)
$$

By 1) of Theorem $2 f\left(z_{i}\right) \rightarrow f(p)$ and by Lemma 4

$$
\begin{gathered}
\mathrm{G}^{\prime}(z, p) \leqslant \varlimsup_{i} \mathrm{G}^{w}\left(\rightsquigarrow, f\left(z_{i}\right)\right) \leqslant \mathrm{G}^{w}(w, f(p)): \\
p \in \Delta_{1}+\mathrm{G}^{\prime}, \delta(p)>0, f(z)=\propto
\end{gathered}
$$

Proof of 2) - By 1) of Theorem $2 f\left(p_{i}\right): p_{i} \in \Delta_{1} \cap \nabla(\mathfrak{p})$ is defined. Let p_{1} and p_{2} be two points chained. Assume $f\left(p_{1}\right) \neq f\left(p_{2}\right)$. We can find a circle

$$
\mathrm{C}=\left\{\propto:\left|\mathscr{\omega}-f\left(p_{1}\right)\right|<\frac{1}{2}\left|f\left(p_{1}\right)-f\left(p_{2}\right)\right|\right\}
$$

and $\mathrm{C} \cap \sum_{i=1}^{\infty} f\left(p_{i}\right)=0$. By the definition there exists a sequence of curves γ_{n} with endpoints z_{n}^{1} and z_{n}^{2} such that
$z_{n}^{1} \xrightarrow{\mathrm{M}} p_{1}, z_{n}^{2} \xrightarrow{\mathrm{M}} p_{2}$ and $\mathrm{G}^{\prime}\left(z, q_{0}\right) \geqslant \delta_{0}>0$ on γ_{n}. Whence $f\left(z_{n}^{1}\right) \rightarrow f\left(p_{1}\right), f\left(z_{n}^{2}\right) \rightarrow f\left(p_{2}\right)$. Consider $f\left(\gamma_{n}\right)$. Then $f\left(\gamma_{n}\right)$ intersects C for $n>n_{0}$. Let w_{n} be one of intersecting points with $f\left(z_{n}\right)=w_{n}$ and $z_{n} \in \gamma_{n}$. Since C is compact, there exists a limiting point \aleph^{*} of $\left\{\wp_{n}\right\}$:

$$
\aleph^{*} \in \Omega+\partial \Omega, w^{*} \cap \sum_{i=1} f\left(p_{i}\right)=0
$$

Hence we can find a subsequence $\left\{z_{m}\right\}$ of $\left\{z_{n}\right\}$ such that $z_{m} \subset \gamma_{m}, z_{m} \xrightarrow{\mathrm{~s}} \mathfrak{p}, f\left(z_{m}\right) \rightarrow \wp^{*} \quad$ and $\quad \mathrm{G}^{\prime}\left(z, z_{m}\right) \rightarrow$ a positive harmonic function $G^{\prime}(z) \leqslant G^{w}\left(f(z), w^{*}\right)$ by Proposition 1) and $\mathrm{G}\left(z,\left\{z_{m}\right\}\right) \rightarrow$ a positive harmonic function $\mathrm{G}(z)$ in $\mathrm{R}-\mathrm{R}_{0}$ by $\int_{\partial \mathbf{R}_{0}} \frac{\partial}{\partial n} \mathrm{G}(z) d s=2 \pi$.

Suppose Martin's topology is defined over $R-R_{0}+\Delta$ by $\mathrm{K}(z, p): \mathrm{K}\left(p_{0}, p\right)=1$ and $p_{0} \in \mathrm{R}_{1}-\mathrm{R}_{0}$. Then $\mathrm{G}(z)$ is represented by a canonical distribution over $\Delta_{1} \cap \nabla(\mathfrak{p})$, i.e. $\mathrm{G}(z)=\sum_{i} a_{i} \mathrm{~K}\left(z, p_{i}\right), \quad$ where $\quad \sum_{i} a_{i}=\mathrm{G}\left(p_{0}\right)<\infty$. By Lemma $3 \mathrm{~K}\left(z, p_{i}\right)=\mathrm{G}\left(z, p_{i}\right) / \alpha\left(p_{i}\right)$ and

$$
\mathrm{G}^{\prime}(z) \leqslant \mathrm{G}(z)=\sum_{i}\left(a_{i} / \alpha\left(p_{i}\right)\right) \mathrm{G}\left(z, p_{i}\right) \leqslant \mathrm{N}^{\prime-1} \sum_{i} a_{i} \mathrm{G}\left(z, p_{i}\right)
$$

where $\mathrm{N}^{\prime} \leqslant \alpha\left(p_{i}\right)$ and $\mathrm{N}^{\prime}=\min _{z \in \partial \mathrm{R}_{4}} \mathrm{G}\left(z, p_{0}\right)$. Put

$$
\mathrm{U}_{n}(z)=\sum_{i=1}^{n}\left(a_{i} / \alpha\left(p_{i}\right)\right) \mathrm{G}\left(z, \quad p_{i}\right) .
$$

Then $\mathrm{U}_{\mathrm{n}}(z) \not \subset \mathrm{G}(z)$. By proposition 2

$$
\begin{aligned}
0<\mathrm{G}^{\prime}(z) & \leqslant r \mathrm{G}(z) \leqq \sum_{i} \frac{a_{i}}{\mathrm{~N}^{\prime}} r \mathrm{G}\left(z, p_{i}\right) \\
& \leqslant\left(\mathrm{M} / \mathrm{N}^{\prime}\right) \sum_{i}\left(a_{i} \delta\left(p_{i}\right)\right) \mathrm{G}^{\prime}\left(z, p_{i}\right) \leqslant\left(\mathrm{M} / \mathrm{N}^{\prime} \delta\right) \sum_{i} a_{i} \mathrm{G}^{\prime}\left(z, p_{i}\right) \\
& \leqslant\left(\mathrm{M} / \mathrm{N}^{\prime} \delta\right)^{i} \sum_{i} a_{i} \mathrm{G}^{w}\left(w, f\left(p_{i}\right)\right),
\end{aligned}
$$

where $\mathrm{M}=\max _{z \in \partial \mathrm{R}_{\mathrm{R}_{0}+1}} \mathrm{G}\left(z, q_{0}\right): \propto=f(z)$.
By proposition 1

$$
\mathrm{E}^{*}(z)=\alpha \mathrm{G}^{w}\left(w,\left(w^{*}\right) \leqslant\left(\mathrm{M} / \mathrm{N}^{\prime} \delta\right) \sum a_{i} \mathrm{G}^{w}\left(z, f\left(p_{i}\right)\right)<\infty .\right.
$$

Now $\propto^{*} \in \mathrm{C}$ and $\mathrm{C} \cap \sum_{i} f\left(p_{i}\right)=0 . \mathrm{G}^{w}\left(\propto^{\prime}, \varphi^{*}\right)$ has mass at
\wp^{*}, on the other hand, the term on the right hand has no mass at w^{*}. This contradicts 3) of Lemma 4. Hence

$$
f\left(p_{1}\right)=f\left(p_{2}\right) \quad \text { and } \quad f\left(p_{i}\right)=f\left(p_{j}\right)
$$

for kindred points p_{i} and p_{j}. Thus we have 2).
Theorem 3. - If the spherical area of $f\left(\mathrm{G}^{\prime}\right)<\infty$, then:

1) Let $\left\{z_{i}\right\}$ be a sequence in G^{\prime} such that $z_{i} \xrightarrow{m} p$ and $\underline{\underline{l i m}} \mathrm{G}^{\prime}\left(z_{\mathrm{i}}, q_{0}\right)>0$. Then $f\left(z_{\mathrm{i}}\right) \rightarrow a$ point not depending on the choice of $\left\{z_{i}\right\}$. We denote it by $f(p)$.
2) Let p^{1} and p^{2} be two chained points. Then $f\left(p^{1}\right)=f\left(p^{2}\right)$. Hence $f\left(p^{i}\right)=f\left(p^{j}\right)$ for two kindred points p^{i} and p^{j}.

At first we define \tilde{R} and \tilde{G} as follows. Since spherical area of $f\left(\mathrm{G}^{\prime}\right)<\infty$, we can find a number n_{0} such that spherical area of $f\left(\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)\right)<\frac{\pi}{4}$ and $\partial \mathrm{R}_{n_{0}} \cap \mathrm{~F}=0$. Evidently $f\left(G^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)\right)$ does not cover a set E of positive capacity. Now $f(z)$ is analytic on $\partial R_{n_{0}}$,

$$
\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)
$$

consists of a finite number of components $\mathrm{G}_{1}^{\prime}, \ldots, \mathrm{G}_{k}^{\prime}$ and $\partial R_{n_{0}}$ consists of $\partial R_{n_{0}}^{1}, \ldots, \partial R_{n_{0}}^{k}$. We can find an arc Γ_{j} on $\partial R_{n_{0}}^{j}$ such that $f\left(\Gamma_{j}\right)$ is a simple arc,

$$
f\left(\Gamma_{i}\right) \cap f\left(\Gamma_{j}\right)=0: i \neq j
$$

and $\sum_{j} f\left(\Gamma_{j}\right) \cap \mathrm{E}=0$. Let \mathscr{F} be the whole φ-sphere. Put $\quad \mathscr{F}^{\prime}=\mathscr{F}-\Sigma f\left(\Gamma_{j}\right)$. Connect $\mathscr{F}^{\prime} \quad$ with $\quad \mathrm{G}_{1}^{\prime}, \ldots, \mathrm{G}_{k}^{\prime}$ at an adequate side of $f\left(\Gamma_{j}\right)$ with Γ_{j} of G_{j}^{\prime} so that

$$
\mathscr{F}^{\prime}+\sum^{k} f\left(\mathrm{G}_{j}^{\prime}\right)
$$

may be a connected covering surface. By deforming $R_{n_{0}}$

$$
\mathscr{F}^{\prime}+\sum^{k} \mathrm{G}_{j}^{\prime}
$$

can be considered a domain and $\mathscr{F}^{\prime}+G \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)$ can be considered an end $\tilde{\mathrm{G}}$ of another Riemann surface $\tilde{\mathbf{R}}$ with null boundary. Now $\partial \tilde{\mathrm{G}}$ consists of $\partial \mathrm{R}_{n_{0}}-\sum^{k} \Gamma_{j}$
and the other side of $f\left(\Gamma_{j}\right)(j=1,2, \ldots, k)$ where \mathscr{F}^{\prime} and G_{j}^{\prime} are not connected. Put $\tilde{\mathrm{G}}^{\prime}=\mathscr{F}^{\prime}+\left(\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)\right)$. Then $f(z)$ can be continued analytically into \mathscr{F}^{\prime} by putting $f(z)=$ projection of z over w-sphere, which we also denote by $f(z): z \in \tilde{\mathrm{G}}^{\prime}$. Let \tilde{p}_{0} and \tilde{q}_{0} be points in $\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)$. Then Martin's topology M will be defined over \tilde{G}. Then $\tilde{\mathrm{M}}$-top. and M -top (given originally on $\mathrm{R}-\mathrm{R}_{0}+\Delta$) are isomorphic on $\left(R-R_{n_{0}}\right)+\Delta$ and the minimality does not change. Also let $\tilde{\mathrm{G}}^{\prime}\left(z, q_{0}\right)$ be a Green's function of $\tilde{\mathrm{G}}^{\prime}$: $\partial R_{n} \cap F=0$, there exists a const. K such that

$$
\mathrm{G}^{\prime}\left(z, q_{0}\right) / \mathrm{K} \leqslant \tilde{\mathrm{G}}^{\prime}\left(z, \tilde{q}_{0}\right)<\mathrm{KG}^{\prime}\left(z, q_{0}\right)
$$

in $\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)$ and $k^{-1} \delta(p)<\tilde{\delta}(p)<\mathrm{K} \delta(p)$ for $p \in \Delta_{1}$, where $\tilde{\delta}(p)$ is defined in $\tilde{\mathbf{G}}^{\prime}$ relative to \tilde{q}_{0}. Put

$$
{ }^{*} \tilde{\mathrm{G}}^{\prime}=\tilde{\mathrm{G}}^{\prime}-\mathrm{E}_{\tilde{F}},
$$

then $f\left({ }^{*} \tilde{\mathrm{G}}^{\prime}\right)$ does not cover a set E of positive capacity, where $\mathrm{E}_{\mathscr{F}}$ is the set of \mathscr{F} over E .

Proof of 1). - So long as we investigate $f(z)$ in a neighbourhood of the ideal boundary of R, we can consider ${ }^{*} \widetilde{\mathrm{G}}^{\prime}$ instead of G^{\prime}. Then we have at once 1) by 1) of Theorem 2.

Proof of 2). - For the purpose we consider only

$$
\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)
$$

such that spherical area of $f\left(\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{n_{0}}\right)\right)<\frac{\pi}{4}$.

$$
\mathrm{G} \cap\left(\mathrm{R}-\mathbf{R}_{n_{0}}\right)
$$

consists of a finite number of ends. Let ${ }^{\circ} \mathrm{G}$ be one of them and put ${ }^{\bullet} \mathrm{G}^{\prime}={ }^{\bullet} \mathrm{G}-\mathrm{F}$. Let ${ }^{\bullet} \mathrm{G}^{\prime}\left(z, q_{0}^{\prime}\right)$ be Greens function of ${ }^{\circ} \mathrm{G}^{\prime}$. Then there exists a const. K such that

$$
\begin{equation*}
\frac{1}{\mathrm{~K}} \mathrm{G}^{\prime}\left(z, q_{0}\right) \leqslant{ }^{\bullet} \mathrm{G}^{\prime}\left(z, q_{0}^{\prime}\right) \leqslant \mathrm{KG}^{\prime}\left(z, q_{0}\right) \tag{3}
\end{equation*}
$$

in $\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{m_{0}}\right)$, where q_{0} and $q_{0}^{\prime} \in \mathrm{G}^{\prime} \cap \mathrm{R}_{m_{0}-1}$.

Hence $\varlimsup_{n} \min _{z \in \gamma_{n}}{ }^{\circ} \mathrm{G}^{\prime}\left(z, q_{0}^{\prime}\right)>0$ for $\left\{\gamma_{n}\right\}$ defining chainedness of points. Hence for simplicity we denote ${ }^{\circ} \mathrm{G}$, ${ }^{\bullet} \mathrm{G}^{\prime}$, ${ }^{\bullet} \mathrm{G}^{\prime}\left(z, q_{0}^{\prime}\right)$ by $\mathrm{G}, \mathrm{G}^{\prime}$ and $\mathrm{G}^{\prime}\left(z, q_{0}^{\prime}\right)$.

By Evans's [5] theorem there exists a positive harmonic function $\mathrm{U}(z)$ in $\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}$ such that

1) $\mathrm{U}(\mathrm{z})=0$ on $\partial \mathrm{G}+\mathrm{F}, \mathrm{D}(\min (\mathrm{M}, \mathrm{U}(z))=2 \pi \mathrm{M}$,

$$
\int_{\partial \Omega_{\mathrm{L}}} \frac{\partial}{\partial n} \mathrm{U}(\mathrm{z}) d s=2 \pi
$$

for almost $\mathrm{L}<\infty$, where $\Omega_{\mathrm{L}}=\left\{z \in \mathrm{G}^{\prime}: \mathrm{U}(z)>\mathrm{L}\right\}$.
2) $\mathrm{U}(z) \rightarrow \infty$ as $z \rightarrow B$ in any

$$
\mathrm{G}_{\delta \delta}=\left\{z \in \mathrm{G}^{\prime}: \mathrm{G}^{\prime}\left(z, q_{0}\right)>\delta\right\}:
$$

$\delta>0$. Ω_{L} consists of at most countably number of domains. Let $\Omega_{\mathrm{L}}^{\prime}$ be one component of Ω_{L}. Then $\Omega_{\mathrm{L}}^{\prime}$ is a domain in a surface with null boundary, whence $\sup _{z \in \Omega_{\mathrm{L}}} \mathrm{U}(z)=\infty$. Since spherical area of $f\left(\mathrm{G}^{\prime}\right)<\frac{\pi}{4}$, by 1) we see by length and area's method there exists a sequence $\mathrm{L}_{i}: i=1,2, \ldots$ such that $\mathrm{L}_{i} \nearrow \infty$ and spherical length of

$$
f\left(\partial \Omega_{\mathrm{L}_{i}}\right)=\varepsilon_{\mathrm{i}} \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

Let $\left\{\gamma_{n}\right\}$ be a sequence of curves defining the chainedness of p_{1} and p_{2}. Then $\varlimsup \lim \min \mathrm{G}^{\prime}\left(z, q_{0}\right)>0$, and there exists a subsequence $\left\{\gamma_{m}\right\} \quad \stackrel{n}{\text { of }} \underset{\substack{z \in \gamma_{n} \\\left\{\gamma_{n}\right.}}{ }$ such that

$$
\min _{z \in \gamma_{m}} \mathrm{G}^{\prime}\left(z, q_{0}\right)>\delta>0 .
$$

Since $\gamma_{m} \rightarrow$ boundary of R, by 2) for any given L_{i}, there exists a number $m\left(\mathrm{~L}_{i}\right)$ such that $\mathrm{U}(z)>\mathrm{L}_{i}$ on

$$
\gamma_{m}: m>m\left(\mathrm{~L}_{\mathrm{i}}\right) .
$$

Hence for any L_{i} there exists $m\left(\mathrm{~L}_{i}\right)$ such that

$$
\Omega_{\mathbf{L}_{i}} \supset \gamma_{m}: m>m\left(L_{i}\right)
$$

and there exists only one component $\Omega_{i}^{\prime}\left(\gamma_{m}\right)$ of $\Omega_{\mathbf{L}_{i}}$ such that $\Omega_{i}^{\prime}\left(\gamma_{m}\right) \supset \gamma_{m}$ where $\Omega_{i}^{\prime}\left(\gamma_{m}\right)$ depends on γ_{m}.

By Evans's theorem there exists a harmonic function $V(z)$ in G such that

1) $\mathrm{V}(z)=0 \quad$ on $\quad \partial \mathrm{G}, \mathrm{D}(\min (\mathrm{M}, \mathrm{V}(z))=2 \pi \mathrm{M}$,

$$
\int_{\partial \mathbf{p}_{\mathbf{x}}} \frac{\partial}{\partial n} \mathrm{~V}(z) d s=2 \pi
$$

for M , where $\mathrm{D}_{\mathrm{M}}=\{z \in \mathrm{G}: \mathrm{V}(z)<\mathrm{M}\}$.
2) $V(z) \rightarrow \infty$ as $z \rightarrow$ boundary of R. Similarly as $U(z)$, there exists a sequence M_{j} such that spherical length of

$$
f\left(\partial \mathrm{D}_{\mathbf{M}_{j}} \cap \mathrm{G}\right)=\varepsilon_{j} \rightarrow 0
$$

as $j \rightarrow \infty$. Since $\Omega_{i}^{\prime}\left(\gamma_{m}\right)=\lim _{j} \Omega_{i}^{\prime}\left(\gamma_{m}\right) \cap \mathrm{D}_{\mathbf{M}_{j}}$, there exists a number M_{j} such that $\Omega_{i}^{\prime}\left(\gamma_{m}^{j}\right) \cap \mathrm{D}_{\mathrm{m}_{j}} \supset \gamma_{m}$. Put

$$
\Omega_{i, j}^{\prime}\left(\gamma_{m}\right)=\Omega_{i}^{\prime}\left(\gamma_{m}\right) \cap D_{\mathbf{M}_{j}} .
$$

Since $\Omega_{i, j}^{\prime}\left(\gamma_{m}\right)$ is compact boundary of

$$
f\left(\Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right) \subset f\left(\partial \Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right)
$$

and the spherical length of $f\left(\partial \Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right)<\varepsilon_{i}+\varepsilon_{j} . f\left(\partial \Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right)$ divides the φ-sphere into a number of domains $\mathrm{G}_{1}^{w}, \mathrm{G}_{2}^{w}, \ldots$ Since the spherical length of $f\left(\partial \Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right)<\varepsilon_{i}+\varepsilon_{j}<\frac{1}{4}$, there exists only one domain with spherical area

$$
\geqslant 4 \pi-\left(\varepsilon_{i}+\varepsilon_{j}\right)^{2}
$$

We denote such domain by $\stackrel{*}{\mathrm{G}}$. Then since spherical area of $f\left(\Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right)<\frac{\pi}{4}, \quad f\left(\Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right) \cap \stackrel{*}{\mathrm{G}}=0 \quad$ and $\quad f\left(\Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right)$ is contained in a semisphere and the spherical diameter of $f\left(\gamma_{m}\right) \leqslant$ spherical diameter of $f\left(\Omega_{i j}^{\prime}\left(\gamma_{m}\right)\right)<\varepsilon_{i}+\varepsilon_{j}$.

$$
\text { Let } j \rightarrow \infty .
$$

Then spherical diameter of $f\left(\gamma_{m}\right)<\varepsilon_{i}$. Let z_{m}^{1} and z_{m}^{2} be endpoints of γ_{m}. Then $f z_{m}^{1} \rightarrow f\left(p_{1}\right)$ and $f z_{m}^{2} \rightarrow f\left(p_{2}\right)$ as $m \rightarrow \infty$. Let $m \rightarrow \infty$ and then $i \rightarrow \infty$. Then $f\left(p_{1}\right)=f\left(p_{2}\right)$ for chained points p_{1} and p_{2}. Thus we have 2).

Theorem 4. - Let $\tilde{\mathrm{G}} \supset \mathrm{G}$ be two ends of a Riemann surface R with null boundary and let $\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}$ be a
lacunary domain. Let E_{z} be a compact set of positive capacity in $\tilde{\mathrm{G}}$ - G. Suppose an analytic function $f(z)$ in $\tilde{\mathrm{G}}-\mathrm{F}$ and there exists a neighbourhood $\varphi\left(\mathrm{E}_{z}\right)$ of E_{z} with the property: $f(z)$ is unisalent in $\varphi\left(\mathrm{E}_{z}\right), f\left(\tilde{\mathrm{G}}-\mathrm{F}-\varphi\left(\mathrm{E}_{z}\right)\right)$ does not cover $\mathrm{E}=f\left(\mathrm{E}_{z}\right)$ (clearly E is of positive capacity). Let $u(z)$ be a harmonic mesure of E_{z} with respect to $\tilde{\mathrm{G}}-\mathrm{F}-\mathrm{E}_{z}$. Suppose Martin's topology M is defined over $\mathrm{R}-\mathrm{R}_{0}+\Delta$. Let $\mathrm{G}^{\prime}\left(z, q_{0}\right)$ be a Green's function of G^{\prime} and let

$$
\delta(p): p \in \mathrm{G}^{\prime}+\Delta_{1}=\varlimsup_{z \xrightarrow{M} p} \mathrm{G}^{\prime}\left(z, q_{0}\right): q_{0} \in \mathrm{G}^{\prime} \cap \mathrm{R}_{n_{0}} .
$$

Then by theorem $2 f\left(z_{i}\right) \rightarrow f(p)$ for $z_{i} \xrightarrow{M} p$ and

$$
\underline{\lim } \mathrm{G}^{\prime}\left(z_{i}, q_{0}\right)>0
$$

Then

1) Let $\left\{z_{i}\right\}$ be a sequence such that $z_{i} \xrightarrow{M} p \in \Delta_{1}$ and $\varliminf_{\mathrm{lim}} \mathrm{G}^{\prime}\left(z_{i}, q_{0}\right)>0$. Then $f\left(z_{i}\right) \rightarrow f(p)$ and there exists a uniquely determined connected piece ω over $|\omega-f(p)|<r$ such that $f\left(z_{i}\right) \in \omega$ for $i \geqslant i_{0}$ and $f\left(z_{i}\right) \rightarrow f(p)$.
2) Let $u(p)=\varlimsup_{\lim } u(z) p \in \Delta_{1}$. Let $\left\{z_{i}\right\}$ be a sequence such $\Rightarrow \xrightarrow{M} p$
that $z_{i} \xrightarrow{M} p$ and $u\left(z_{i}\right) \rightarrow u(p)>0$. Let $G^{\omega}\left(z, z_{i}\right)$ be a Green's function of ω. Then $\mathrm{G}^{\omega}\left(z, z_{i}\right) \rightarrow a$ unique positive minimal harmonic function $\mathrm{G}^{\omega}(z, p)$ and

$$
u(p)=\int_{\partial^{+} \omega} u(\zeta) \frac{\partial}{\partial n} G^{\omega}(\zeta, p) d s
$$

where $\partial^{1} \omega$ is the part of $\partial \omega$ such that

$$
f\left(\partial^{1} \omega\right) \subset\{\varphi:|\varphi-f(p)|=r\} .
$$

3) Let \propto be a point and let $p_{i} \in \Delta_{1}$ with $\delta\left(p_{i}\right)>0$ and $f\left(p_{i}\right)=\propto$. and let $q_{j} \in \tilde{\mathrm{G}}^{\prime}=\tilde{\mathrm{G}}-\mathrm{F}-\mathrm{E}_{z}$ with $f\left(q_{j}\right)=\propto$. Then

$$
\Sigma u\left(p_{i}\right)+\Sigma u\left(q_{j}\right) \leqslant 1 \quad \text { for any } \quad \varphi .
$$

Case 1. $\omega_{0} \in$ E. Let $0<r<\operatorname{dist}\left(\omega_{0}, f\left(\mathcal{O} \rho\left(\mathrm{E}_{z}\right)\right)(>0\right.$ by the univalency of $f(z)$ in $\left.\varphi\left(\mathrm{E}_{z}\right)\right)$. The part of $\tilde{\mathrm{G}}-\mathrm{F}-\mathrm{E}_{z}$ over $\left|\omega_{-}-\omega_{0}\right|<r$ consists of a most countably infinite
number of domains (connected pieces). Let $\left\{\omega^{\prime}\right\}$ be the set of connected pieces contained in $\varphi\left(\mathrm{E}_{z}\right)$ and let $\omega_{i}: i=1,2, \ldots$ be pieces except $\left\{\omega^{\prime}\right\}$. Then $\omega_{i} \cap \rho\left(\mathrm{E}_{z}\right)=0$. By the assumption, there exists no point z in $\tilde{\mathrm{G}}-\mathrm{E}_{z}-\mathrm{F}$ such that $f(z)=\Phi_{0}$. Further let $p \in \Delta_{1}$, then for any sequence $\left\{z_{i}\right\}$ with $z_{i} \rightarrow p$, there exists a number i_{0} such that $z_{i} \notin \varphi\left(\mathrm{E}_{z}\right)$ for $i>i_{0}$. If there exists a point $p \in \Delta_{1}$. such that $\delta(p)>0, \quad f(p)=\psi_{0}, \quad$ there exists a certain ω_{j} containing z_{i} (in this case clearly \propto_{0} is an irregular point of the domain $=\omega$-sphere $-f\left(\tilde{\mathrm{G}}-\mathrm{F}-\mathrm{E}_{z}\right)$. Let ω be
 larly as Lemma $1 \mathrm{U}^{\omega}(\Phi)=\Sigma u\left(z_{i}\right): f\left(z_{i}\right)=\rightsquigarrow, z_{i} \in \bar{\omega}$.

Case 2. $\mathscr{w}_{0} \notin \mathrm{E}$. The part of $\tilde{\mathrm{G}}-\mathrm{E}_{z}-\mathrm{F}$ over

$$
\left|\varphi_{0}-\varphi_{0}\right|<\operatorname{dist}\left(E, \varphi_{0}\right)
$$

consists of connected pieces $\omega_{i}(i=1,2, \ldots)$. In this case ω_{i} does not tend to E_{z} by the univalency of $f(z)$ in $\varphi\left(\mathrm{E}_{z}\right)$. In both cases it is sufficient to consider only $\omega_{i}: i=1,2, \ldots$ Let ω be one of $\left\{\omega_{i}\right\}$. Then ω is compact or non compact in $\tilde{\mathrm{G}}-\mathrm{E}_{z}-\mathrm{F}$ and $\partial \omega$ consists of $\partial^{1} \omega$ and $\partial^{2} \omega$ such that $f\left(\partial^{1} \omega\right) \subset\left\{\omega^{\prime}:\left|\omega-\varphi_{0}\right|=r\right\}$ and $\partial^{2} \omega=\partial \omega-\partial^{1} \omega$. Then $u(z)$ is harmonic on $\partial^{1} \omega$ and >0 on $\partial^{1} \omega-\mathrm{F}$ and $u(z)=0$ on $\partial^{2} \omega$ and $\mathrm{U}^{\omega}(\varphi)$ is quasisubharmonic in $\left|\varphi-\varphi_{0}\right|<r$ and by Lemma 1.

$$
\sum_{i} \mathrm{U}_{i}^{\omega}(\varphi) \leqslant \mathrm{U}(\varphi) \leqslant 1 .
$$

Proof of 1). - There exists a const. K such that

$$
\mathrm{KG}^{\prime}\left(z, q_{0}\right)>u(z)>\frac{1}{\mathrm{~K}} \mathrm{G}^{\prime}\left(z, q_{0}\right)
$$

in $\mathrm{G}^{\prime} \cap\left(\mathrm{R}-\mathrm{R}_{l}\right): \mathrm{R}_{l} \rightarrow q_{0}$.
Hence without loss of generality we can suppose

$$
u\left(z_{i}\right) \geqslant \delta>0
$$

and $\left|f\left(z_{i}\right)-\omega_{0}\right|<\frac{r}{2}$. Suppose a connected piece $\omega \rightarrow z_{i}$.

Then by Lemma 2

$$
u\left(z_{i}\right)=\frac{1}{2 \pi} \int_{\partial^{+} \omega} u(\zeta) \frac{\partial}{\partial n} G^{\omega}\left(\zeta, z_{i}\right) d s,
$$

where $G^{\omega}(\zeta, z)$ is a Green's function of ω.
Let $G^{w}(\varsigma, \eta)$ be Green's function of $\left|\propto-\aleph_{0}\right|<r$. Then by $\mathrm{G}^{w}\left(f(z), f\left(z_{i}\right)\right) \geqslant \mathrm{G}^{\omega}\left(z, z_{i}\right)$

$$
\begin{equation*}
\frac{\partial}{\partial n} \mathrm{G}^{w}\left(f(\zeta), f\left(z_{i}\right)\right) \geqslant \frac{\partial}{\partial n} G^{\omega}\left(\zeta, z_{i}\right) \geqslant 0 \tag{4}
\end{equation*}
$$

on $\partial^{1} \omega$. Let $\omega_{n}=\omega \cap R_{n}$, then $\omega_{n} \nearrow \omega$. Hence by considering ω_{n} we have similarly as Lemma 2

$$
\begin{aligned}
\int_{\partial^{+} \omega} u(\zeta) \frac{\partial}{\partial n} G^{w}\left(f(\zeta), f\left(z_{i}\right)\right) d s & \\
& =\int_{\left|w-w_{0}\right|=r} \mathrm{U}^{\omega}(\eta) \frac{\partial}{\partial n} \mathrm{G}^{w}\left(\eta, f\left(z_{i}\right)\right) d s .
\end{aligned}
$$

On the other hand, there exists a const. K^{\prime} such that

$$
\begin{equation*}
\frac{\partial}{\partial n} \mathrm{G}^{w}\left(\eta, w^{\prime}\right) \leqslant \mathrm{K}^{\prime} \frac{\partial}{\partial n} \mathrm{G}^{w}\left(\eta, \mathscr{w}_{0}\right) \tag{5}
\end{equation*}
$$

on

$$
\left|\eta-\varphi_{0}\right|=r \quad \text { for } \quad\left|\varphi-\varphi_{0}\right|<\frac{r}{2} .
$$

Hence
(6) $\delta<u\left(z_{i}\right)=\frac{1}{2 \pi} \int_{\omega^{\prime} \partial} u(\zeta) \frac{\partial}{\partial n} G^{\omega}\left(\zeta, z_{i}\right) d s$

$$
\leqslant \frac{\mathrm{K}^{\prime}}{2 \pi} \int \mathrm{U}^{\omega}\left(\varphi_{0}+r e^{i \theta}\right) d \theta \leqslant \mathrm{~K}^{\prime}
$$

Assume there exist $m\left(>\frac{\mathrm{K}^{\prime}}{\delta}\right)$ number of connected pieces $\omega_{i}: i=1,2, \ldots, m$ containing at least one z_{i} of $\left\{z_{i}\right\}$. Then by (6) and $1 \geqslant \sum_{i} \mathrm{U}^{\omega_{i}\left(\omega^{\prime}\right)}$

$$
m \delta \leqslant \frac{1}{2 \pi} \mathrm{~K}^{\prime} \sum_{i} \int \mathrm{U}^{\omega_{i}\left(\aleph_{0}+r e^{i \theta}\right) d \theta \leqslant \mathrm{~K}^{\prime}}
$$

This is a contradiction. Hence there exists at least one ω containing a subsequence $\left\{z_{i}^{\prime}\right\}$ of $\left\{z_{i}\right\}$. Let $\left\{z_{i}^{\prime \prime}\right\}$ be a
subsequence of $\left\{z_{i}^{\prime}\right\}$ such that $u\left(z_{i}^{\prime \prime}\right) \rightarrow a(>0), \mathrm{G}^{\omega}\left(z, z_{i}^{\prime \prime}\right) \rightarrow \mathrm{a}$ harmonic function $\mathrm{G}^{\omega}\left(z,\left\{z_{i}^{\prime \prime}\right\}\right)$.

Then by (4), (5), (6) and by Lebesgue's theorem
(7) $0<\delta \leqslant \lim _{i} u\left(z_{i}^{\prime \prime}\right)=\lim _{i} \frac{1}{2 \pi} \int_{\partial \omega} u(\zeta) \frac{\partial}{\partial n} G^{\omega}\left(\zeta, z_{i}^{\prime \prime}\right) d s$

$$
=\frac{1}{2 \pi} \int_{\partial \omega} u(\zeta) \frac{\partial}{\partial n} \mathrm{G}\left(\zeta,\left\{z_{i}^{\prime \prime}\right\}\right) d s
$$

and

$$
\mathrm{G}^{\omega}\left(z,\left\{z_{i}^{\prime \prime}\right\}\right)>0 .
$$

Put $\quad \omega^{\prime}=\omega \cap\left(R-R_{0}\right)$. Then $\omega^{\prime} \subset \omega$. Since $\omega-\omega^{\prime}$ is compact and $\mathrm{G}^{\omega}\left(z, z_{i}^{\prime \prime}\right) \leqslant \tilde{\mathrm{G}}\left(z, z_{i}^{\prime \prime}\right)$ is uniformly bounded on ω - ω^{\prime} for $i \geqslant i_{0}$, the convergence of $\left\{\mathrm{G}^{\omega}\left(z, z_{i}^{\prime \prime}\right)\right\}$ implies $\mathrm{G}^{\omega^{\prime}}\left(z, z_{i}^{\prime \prime}\right) \rightarrow$ a positive harmonic function $\mathrm{G}^{\omega^{\prime}}\left(z,\left\{z_{i}^{\prime \prime}\right\}\right)$ and

$$
G^{\omega}\left(z,\left\{z_{i}^{\prime \prime}\right\}\right)=\int_{\omega^{\prime}}^{\omega} G^{\omega^{\prime}}\left(z,\left\{z_{i}^{\prime \prime}\right\}\right)>0,
$$

where $\mathrm{G}^{\omega}\left(z, z_{i}\right)$ and $\tilde{\mathrm{G}}\left(z, z_{i}\right)$ are Green's function of ω^{\prime} and $\tilde{\mathrm{G}}$ respectively. We suppose Martin's is defined over $\overline{\mathrm{R}}-\mathrm{R}_{0} \supset \mathrm{G}$. Now $\omega^{\prime} \subset \mathrm{R}-\mathrm{R}_{0}$ and by Lemma 4

$$
\mathrm{G}^{\omega^{\prime}}\left(z,\left\{z_{i}^{\prime \prime}\right\}\right)=\alpha r \mathrm{~K}(z, p): 0<\alpha<1 .
$$

Hence $0<\mathrm{G}^{\omega}\left(z,\left\{z_{i}^{\prime \prime}\right\}\right)=\alpha s r \mathrm{~K}(z, p)$ and $r \mathrm{~K}(z, p)$ and $\mathrm{G}^{w}\left(z,\left\{z_{i}^{\prime \prime}\right\}\right)$ is minimal (where r is relative to $R-R_{0}, \omega^{\prime}$; s relative to $\left.\omega, \omega^{\prime}\right)(8)$. Assume there exists another connected piece ω^{*} containing a subsequence $\left\{z_{j}\right\}$ of $\left\{z_{i}\right\}$. Then as above we can find a subsequence $\left\{z_{j}^{\prime}\right\}$ of $\left\{z_{j}\right\}$ such that (for r, s relative to $\mathrm{R}-\mathrm{R}_{0}, \omega^{* \prime}$, ω^{*}, with

$$
\left.\omega^{* \prime}=\omega^{*} \cap\left(\mathrm{R}-\mathrm{R}_{0}\right)\right)
$$

(9) $0<\mathrm{G}^{\omega *}\left(z,\left\{z_{j}^{\prime}\right\}\right)=\operatorname{srK}(z, p)$ and $r \mathrm{~K}(z, p)>0$,

It is well known for minimal function $V(z)$ in $R-R_{0}$ if $r \mathrm{~V}>0$ (relative to $\mathrm{R}-\mathrm{R}_{0}$ and D) $r \mathrm{~V}(z)=0$ (relative to $R-R_{0}$ and $C D$ for any domain D in $R-R_{0}$). Hence (8) contradicts (9). Thus there exists only one connected piece ω contains z_{i} for $i \geqslant i_{0}$.

Proof of 2). - Let z_{i} be a sequence such that $z_{i} \xrightarrow{M} p$, $\lim _{i} u\left(z_{i}\right)=u(p)$. Then $\frac{\lim }{i} \mathrm{G}\left(z_{i}, q_{0}\right) \geqslant \frac{u(p)}{\mathrm{K}}>0$. Hence by
(1) of this theorem z_{i} is contained in the only one connected piece ω and by (8)

$$
\begin{equation*}
u(p)=\frac{1}{2 \pi} \int_{\partial^{\prime} \omega} u(\zeta) \frac{\partial}{\partial n} \mathrm{G}^{w}\left(z,\left\{z_{i}\right\}\right) d s \tag{10}
\end{equation*}
$$

and $G^{\omega}\left(z,\left\{z_{i}\right\}\right)$ is the function when the value

$$
\mathrm{G}^{\omega}\left(z,\left\{z_{i}\right\}\right) / s r \mathrm{~K}(z, p),
$$

(with r relative to $\mathrm{R}-\mathrm{R}_{0}, \omega^{\prime}$ and s relative to ω, ω^{\prime}) attains the maximal value and the function $\mathrm{G}^{\prime}\left(z,\left\{z_{i}\right\}\right)$ is uniquely determined. We denote it by $\mathrm{G}^{\omega}(z, p)$. Thus we have 2).

Proof of 3. - For $p \in \Delta_{1}$ and $u(p)>0$, there exists a uniquely determined connected piece $\omega($ over $|\Phi-f(p)|<r)$ containing a sequence $z_{i} \xrightarrow{M} p$ and $\underline{\lim } u\left(z_{i}\right)>0$. In this case we say ω contains p.

Case 2. $\varsigma_{0} \notin$ E. Let ω be a connected piece over

$$
\left|\varphi-\varphi_{0}\right|<\frac{1}{2} \operatorname{dist}\left(\varphi_{0}, \mathrm{E}\right) .
$$

Let $p_{i} \in \Delta_{1}: f\left(p_{i}\right)=\omega_{0}$ be a point contained in ω. Then $\mathrm{G}^{\omega}\left(z, p_{i}\right)$ is minimal and $\leqslant \mathrm{G}^{w}\left(f(z), w_{0}\right)=\lim \mathrm{G}^{w}\left(f(z), f\left(z_{i}\right)\right)$. Let q_{j} be a point in ω such that $f\left(q_{j}\right)=\omega_{0}$. Then $\mathrm{G}^{\omega}\left(z, q_{j}\right)$ is minimal in ω and $\leqslant \mathrm{G}^{w}\left(f(z)\right.$, $\left.\omega_{0}\right)$. Hence

$$
\mathrm{G}^{w}\left(f(\zeta), \omega_{0}\right) \geqslant \sum_{i} \mathrm{G}^{\omega}\left(\zeta, p_{i}\right)+\sum_{j} \mathrm{G}^{\omega}\left(\zeta, q_{j}\right) .
$$

Clearly $\quad u\left(q_{j}\right)=\frac{1}{2 \pi} \int u(\zeta) \frac{\partial}{\partial n} G^{\omega}\left(\zeta, q_{j}\right) d s$. Hence by (10)

$$
\begin{equation*}
\int_{\left|\mathrm{w}-\mathrm{w}_{0}\right|=r} \mathrm{U}^{\mathrm{w}}(\zeta) \frac{\partial}{\partial n} \mathrm{G}^{w}\left(\zeta, \mathscr{W}_{0}\right) d s \geqslant \sum_{i} u\left(p_{i}\right)+\sum_{j} u\left(q_{j}\right) . \tag{11}
\end{equation*}
$$

Summing up over all connected pieces over $\left|\Phi-w_{0}\right|<r$. Then by $\sum_{i} \mathrm{U}^{\omega} i(w) \leqslant \mathrm{U}(w) \leqslant 1$ we have

$$
\begin{equation*}
1 \geqslant \sum_{i} u\left(p_{i}\right)+\sum_{j} u\left(q_{j}\right) . \tag{12}
\end{equation*}
$$

Case 1. $\varphi_{0} \in \mathrm{E}$. In this case there exists no point q_{j} in ω such that $f\left(q_{j}\right)=\varphi_{0}$. It is sufficient to consider $\omega_{1}, \omega_{2}, \ldots$, remarked at the top of Theorem 4. Hence similarly as case 2) we have

$$
\begin{equation*}
1 \geqslant \sum_{i} u\left(p_{i}\right) . \tag{12}
\end{equation*}
$$

Thus we have 3).
Theorem 5. - Let G be an end of a Riemann surface spith null boundary. Let G^{\prime} be a lacunary end: $\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}$. Let $f(z)$ be an analytic function in G^{\prime} and on dG. If $f\left(\mathrm{G}^{\prime}\right)$ does not cover a set E of positive capacity, or spherical area of $f\left(\mathrm{G}^{\prime}\right)<\infty$, then there exists a const. K not depending on \rightsquigarrow such that

$$
\Sigma \delta\left(p_{i}\right) \leqslant \mathrm{K}
$$

where $f\left(p_{i}\right)=ゅ$ and $p_{i} \in \Delta_{1}$.
Proof. - Suppose $f\left(\mathrm{G}^{\prime}\right)$ does not cover a set E of positive capacity. Let y be \wp-sphere. Let Γ be an arc on ∂G such that $f(\Gamma)$ is a simple arc and $f(\Gamma) \cap \mathrm{E}=0$. Put $y^{\prime}=y-f(\Gamma)$. Then we can connect y^{\prime} with G^{\prime} at Γ (at adequate side of $f(\Gamma)$) so that we may have a prolonged surface $\tilde{G}=\boldsymbol{y}^{\prime}+(\mathrm{G}-\mathrm{F})$ and $\mathrm{G}+\boldsymbol{y}^{\prime}$ may be an end of another Riemann surface $\tilde{\mathrm{R}}$ with null boundary. Let E_{y} be the set of y over E and put

$$
\tilde{\mathrm{G}}^{\prime}=\tilde{\mathrm{G}}-\mathrm{E}_{\boldsymbol{y}}: \mathrm{E}_{\boldsymbol{y}} \subset \boldsymbol{y}^{\prime} .
$$

For the case [spherical area of $f\left(\mathrm{G}^{\prime}\right)$] $<\infty$, we can define $\tilde{\mathrm{G}}$, $\tilde{\mathrm{G}}^{\prime}$ and $\tilde{\mathrm{R}}$ as above (see the proof of Theorem 3). Hence $f(z)$ can be continued analytically into $\tilde{\mathrm{G}}$. Then since $f(z)$ is univalent in neighbourhood $\varphi(\mathrm{E} y), 1 \geqslant \mathrm{U}(\varphi)=\sum_{i} u\left(z_{i}\right)$:

$$
f\left(z_{i}\right)=w: z_{i} \in \tilde{\mathrm{G}}^{\prime},
$$

where $u(z)$ is a harmonic measure of Ey relative to $\tilde{\mathrm{G}}^{\prime}$. Since $\partial R_{n} \cap F=0$, there exists a const. K such that $\frac{1}{\mathrm{~K}} \mathrm{G}^{\prime}\left(z, q_{0}\right) \leqslant u(z) \leqslant \mathrm{KG}^{\prime}\left(z, q_{0}\right)$ in $\left(\mathrm{R}-\mathrm{R}_{m_{0}}\right) \cap \mathrm{G}^{\prime}:$

$$
\mathrm{G}^{\prime} \cap \mathrm{R}_{m_{0}} \rightarrow q_{0}
$$

where $\mathrm{G}^{\prime}\left(z, q_{0}\right)$ is a Green's function of $\mathrm{G}^{\prime} \subset \tilde{\mathrm{G}}^{\prime}$. Now $f\left(\tilde{G}^{\prime}\right)$ does not cover E. Hence by Theorem 4 we have Theorem 5.

Corollary 1. - Suppose spherical area of $f\left(\mathrm{G}^{\prime}\right)<\infty$.

1) Let p_{1}, p_{2}, \ldots be kindred points of p_{1}. Then there exists a const. K (defined in Theorem 5) such that $\sum_{i} \delta\left(p_{i}\right) \leqslant \mathrm{K}$.
2) If $\mathrm{F}=\Sigma \mathrm{F}_{i}$ is completely thin at \mathfrak{p}, then $\Delta_{1} \cap \nabla(\mathfrak{p})$ consists of at most m points (with:

$$
m \leqq \frac{\mathrm{~K}}{\delta}: \quad \delta=\varlimsup_{n} \min \mathrm{G}^{\prime}\left(z, q_{0}\right)
$$

on $\left.\partial \mathfrak{y}_{n}(p) \leqslant K\right)$.

1) Is evident by Theorem 3 and 4.

Proof of 2). - Let $p \in \Delta_{1} \cap \nabla(\mathfrak{p})$. Then there exists a path Γ tending to $p . \quad \Gamma$ must intersect $\partial \mathfrak{r}_{n}(\mathfrak{p})$, where $\mathfrak{r}_{n}(\mathfrak{p})$ is a determining sequence of \mathfrak{p} and $\partial \mathfrak{r}_{n}(\mathfrak{p})$ is a dividing cut such that $\varlimsup_{n} \min _{z \in \partial \approx_{n}(p)} \mathrm{G}^{\prime}\left(z, q_{0}\right)>\delta_{0}>0$. Whence $\delta(p) \geqslant \delta_{0}$. Also any two points in $\Delta_{1} \cap \nabla(\mathfrak{p})$ are clearly chained. Hence by Theorem 3 and 1) of corollary 1 we have 2).

Corollary 2. - Suppose $f\left(\mathrm{G}^{\prime}\right)$ does not cover set E of positive capacity and $\Delta_{1} \cap \nabla(\mathfrak{p})$ consists of at most countably infinite number of points p_{i} with $\delta\left(p_{i}\right)>\delta_{0}>0$.

1) Let $p_{1}, p_{2}, \ldots, p_{m}$ be a set of kindred points. Then there exists a const. K such that $m\left(\leqslant \frac{\mathrm{~K}}{\delta_{0}}\right)$.
2) If F is completely thin at \mathfrak{p}, then $\Delta_{1} \cap \nabla(\mathfrak{p})$ consists of at most m points, where m is the integer given in Corollary 1.

By corollary 1 and 2, we have at once :
Corollary 3. - Let G be an end of a Riemann surface with null boundary. Suppose F is completely thin at \mathfrak{p}.

1) If the harmonic dimension of \mathfrak{p} is countably infinite (this is equisalent $\Delta_{1} \cap \nabla(\mathfrak{p})$ consists of countably infinite number of points) and $\delta\left(p_{i}\right) \geqslant \delta_{0}>0$, then there exist no
analytic functions in $\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{F}$ such that $f\left(\mathrm{G}^{\prime}\right)$ does not cover a set of positive capacity.
2) If the harmonic dimension of \mathfrak{p} is infinite, then there exist no analytic functions in G^{\prime} with spherical area of

$$
f\left(\mathrm{G}^{\prime}\right)<\infty .
$$

Remark. - The ameliorations of this paper appear [6].

BIBLIOGRAPHY

[1] Z. Kuramochi, On minimal points of Riemann surfaces, II, Hokkaido Math. J., II (1973), 139-175.
[2] M. Brelot, Sur le principe des singularités positives et la topologie de R. S. Martin., Ann. Unir. Grenoble, 23 (1948), 113-138.
[3] Z. Kuramochi, Mass distributions on the ideal boundaries of abstract Riemann surfaces, 1., Osaka Math. J., 8 (1956), 119-137.
[4] M. Nakar, Green potential of Evans type on Royden's compactification of a Riemann surface, Nagoya Math. J., 24 (1964), 205-239.
[5] Z. Kuramochi, On the existence of functions of Evans's type, J. Fac. Sci. Hokkaido Uniヶ., 19 (1965), 1-27.
[6] Z. Kuramochi. Analytic functions in a neighbourhood of boundary, Proc. Japan Acad., 51 (1975), 320-327.
[7] Z. Kuramochi. Analytic fonctions in a neighbourhood of irregular boundary points, Holkado Math. J., V (1976).

Manuscrit reçu le 23 décembre 1974.
Zenjiro Kuramochi,
Département de Mathématiques
Université de Hokkaïdo
Sapporo (Japon).

