GUIDO STAMPACCHIA D. KINDERLEHRER A free boundary value problem in potential theory

Annales de l'institut Fourier, tome 25, nº 3-4 (1975), p. 323-344 <<u>http://www.numdam.org/item?id=AIF_1975_25_3-4_323_0></u>

© Annales de l'institut Fourier, 1975, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A FREE BOUNDARY VALUE PROBLEM IN POTENTIAL THEORY

by David KINDERLEHRER (*) and Guido STAMPACCHIA

Dédié à Monsieur M. Brelot à l'occasion de son 70^e anniversaire.

1. Introduction.

In this paper we shall describe the formulation and solution of a free boundary value problem in the framework of variational inequalities. For simplicity, we confine our attention to a problem in the plane which consists in finding a domain Ω and a function u defined in Ω satisfying there a given differential equation together with both assigned Dirichlet and Neumann data on the boundary Γ of Ω . Under appropriate hypotheses about the given data we prove that there is a unique solution pair Ω , u which resolves this problem and that Γ is a smooth curve.

Let $z = x_1 + ix_2 = \rho e^{i\theta}$, $0 \le \theta < 2\pi$, denote a point in the z-plane. Let us suppose, for the moment, that F(z) is a function in $C^2(\mathbb{R}^2)$ which satisfies the conditions

(1.1)

$$\rho^{-2}F(z) \in C^{2}(\mathbb{R}^{2})$$

$$\inf_{\mathbb{R}^{2}} \rho^{-2}F(z) > 0$$

$$F_{\rho}(z) \ge 0 \quad z \in \mathbb{R}^{2}$$

$$F(0) = F_{\rho}(0) = 0.$$

(*) The first author was partially supported by C.N.R. and ASOFR 71-2098.

These conditions will be weakened. Our object is to solve, in some manner, this

Problem 1. — To find a bounded Ω and a function u such that

(1.2)
$$-\Delta u = \rho^{-1} \mathbf{F}_{\boldsymbol{\rho}} \quad in \quad \Omega$$

(1.3)
$$\begin{cases} u = 0 \\ \frac{\partial u}{\partial v} = -F \frac{d\theta}{ds} \quad on \quad \Gamma \end{cases}$$

$$(1.4) u(0) = \gamma$$

where $\Gamma = \delta \Omega$, ν is the outward directed normal vector and s the arc length on Γ , F satisfies (1.1), and γ is given.

Supposing Ω , u to be a solution to *Problem 1*, the maximum principle for superharmonics implies that u > 0 in Ω since $-\Delta u \ge 0$ in Ω . We assume, consequently, that $\gamma > 0$ and that $u \in C(\mathbb{R}^2)$ with $\Omega = \{z : u(z) > 0\}$. Further, if Ω is a domain with smooth boundary Γ and u satisfies (1.2) in Ω and (1.3) on Γ then

$$\frac{\partial u}{\partial v}(z) < 0 \quad \text{for} \quad z \in \Gamma$$

in view of Hopf's well known maximum principle. Therefore

$$rac{d heta}{ds}\left(z
ight)=-rac{1}{\mathrm{F}(z)}rac{\partial u}{\partial v}\left(z
ight)>0\quad\mathrm{for}\quad z\in\Gamma,$$

or the central angle θ is a strictly increasing function of the arc length parameter on Γ . Interpreting this situation geometrically, we conclude if Γ is smooth and u satisfies (1.2) in Ω and (1.3) on Γ , then Ω is starshaped with respect to z = 0.

We shall solve *Problem 1* by means of a variational inequality suggested by the properties of a function g(z) which satisfies

$$(1.5) g_{\rho} = -\rho^{-1}u$$

The idea of introducing a new unknown related to the original one through differentiation is due to C. Baiocchi [1] who studied a filtration problem. It has subsequently been employed by H. Brézis and G. Stampacchia [5], V. Benci [2], Duvaut [6], and also in [12].

A characteristic of the present work is the logarithmic nature of a function g defined by (1.5) at z = 0. This difficulty will be overcome by considering an unbounded obstacle.

In the following section we transform our problem to one concerning a variational inequality. In § 3 we solve the variational inequality. With the aid of [4] we are able to show in § 5 that Γ is a Jordan curve represented by a continuous function of the central angle θ . In § 6 we use a result of [8] to conclude the smoothness of Γ and the existence of a classical solution to *Problem 1*.

2.

In this section we introduce a variational inequality and determine its relationship to *Problem* 1. We begin with some notations. Set $B_r = \{z : |z| < r\}, r > 0$, and $\binom{1}{r}$

 $\mathbf{K}_r = \{ \mathbf{v} \in \mathrm{H}^1(\mathrm{B}_r) : \mathbf{v} \ge \log \, \mathbf{\rho} \quad \text{in } \, \mathrm{B}_r \, \text{ and } \, \mathbf{v} = \log \, r \, \text{ on } \, \mathbf{\delta}\mathrm{B}_r \}.$

Define the bilinear form

$$a(v, \zeta) = \int_{\mathbf{B}_r} v_{x_i} \zeta_{x_i} \, dx = \int_{\mathbf{B}_r} \left\{ v_{\rho} \zeta_{\rho} + rac{1}{
ho^2} \, v_{\theta} \zeta_{\theta} \right\}
ho \, d
ho \, d heta,$$

 $v, \ \zeta \in \mathrm{H}^1(\mathrm{B}_r).$

We always depress the dependence of $a(\rho, \zeta)$ on r > 0. Let

 $f \in L^p_{loc}(\mathbf{R}^2)$ for some p > 2.

Problem (*). — To find a pair r > 1 and $w \in K_r$ such that

(2.1)
$$w \in \mathbf{K}_r : a(w, v - w) \ge \int_{\mathbf{B}_r} f(v - w) \, dx \quad v \in \mathbf{K}_r$$

(1) Usual notation is employed for function spaces.

325

and the function $\tilde{w}(z)$ defined by

(2.2)
$$\tilde{w}(z) = \begin{cases} w(z) & z \in \mathbf{B}_r \\ \log |z| & z \notin \mathbf{B}_r \end{cases} \text{ is in } \mathbf{C}^1(\mathbf{R}^2)$$

The existence and other properties of a solution to *Problem* (*) will be investigated in the next paragraph. We note here that the restriction of \tilde{w} to B_R for R > r will be a solution of (2.1) in B_R . Since this means that (2.2) will be automatically satisfied, so that $R, \tilde{w}|_{B_R} \in K_R$ is also a solution to *Problem* (*), we shall not distinguish between w and \tilde{w} in the sequel.

THEOREM 1. — Let Ω , u be a solution of Problem 1 where F satisfies (1.1) and $\gamma > 0$. Suppose that Γ is a smooth curve. Then there exists a solution r, $w \in K_r$ of Problem (*) for

$$f(z) = - rac{1}{\gamma
ho^2} \operatorname{F}(z)$$

such that

(2.3)
$$\Omega = \{z : w(z) > \log \rho\} \quad and \quad u(z) = \gamma(1 - \rho w_{\rho}(z)).$$

The theorem is based on the lemma below which also explains the role of the normal derivative condition in (1.3).

LEMMA 2.1. — Let Ω be a simply connected domain containing the origin and $\Gamma' \subset \partial \Omega$ a smooth arc. Let $F \in C^2(\mathbb{R}^2)$ satisfy (1.1). Suppose that u satisfies

$$\begin{aligned} -\Delta u &= \rho^{-1} \mathbf{F}_{\rho} \quad in \quad \Omega \\ \begin{cases} u &= 0 \\ \frac{\partial u}{\partial \nu} &= -\mathbf{F} \frac{d\theta}{ds} \end{cases} \quad on \quad \Gamma' \end{aligned}$$

Let $g \in C^{1}(\overline{\Omega} - \{0\})$ denote any function with the property $g_{\rho} = -\rho^{-1}u$ in $\overline{\Omega} - \{0\}$ and $\Delta g \in C(\overline{\Omega} - \{0\})$.

Let $\zeta\in C_0^{\infty}({\bf R}^2)$ vanish in a neighborhood of $\eth\Omega-\Gamma'$ and z=0. Then

$$\int_{\Gamma'} \zeta
ho^2 \Delta g \ d heta = \int_{\Gamma'} \zeta \mathrm{F} \ d heta - \int_{\Gamma'} g_{ heta}(\zeta_{
ho} \ d
ho + \zeta_{ heta} \ d heta)$$

Proof. — First we compute Δg in Ω . For this, observe that

$$\begin{split} - \mathbf{F}_{\rho} &= (\rho u_{\rho})_{\rho} + \rho^{-1} u_{\theta\theta} \\ &= - (\rho (\rho g_{\rho})_{\rho})_{\rho} - g_{\rho\theta\theta} \\ &= - \frac{\partial}{\partial \rho} \left\{ \rho (\rho g_{\rho})_{\rho} + g_{\theta\theta} \right\} \\ &= - \frac{\partial}{\partial \rho} \left(\rho^2 \Delta g \right). \end{split}$$

Hence

(2.4)
$$\frac{\partial}{\partial \rho} \left(\rho^2 \Delta g \right) = F_{\rho} \quad \text{in} \quad \Omega.$$

Let $\zeta \in C_0^{\infty}(B_r)$, where $\overline{\Omega} \subset B_r$, satisfy $\zeta = 0$ in a neighborhood of $\partial \Omega - \Gamma'$ and z = 0. Then observing that $-F d\theta = \frac{\partial u}{\partial \nu} ds = \rho u_{\rho} d\theta - \frac{1}{\rho} u_{\theta} d\rho$,

$$\begin{split} &-\int_{\Gamma'} \mathsf{F}\zeta \, d\theta \\ &= \int_{\Gamma'} \zeta \left(\rho u_{\rho} \, d\theta - \frac{1}{\rho} \, u_{\theta} \, d\rho \right) \\ &= \int_{\Omega} \zeta \left((\rho u_{\rho})_{\rho} + \frac{1}{\rho} \, u_{\theta\theta} \right) d\rho \, d\theta + \int_{\Omega} \left(\rho u_{\rho} \zeta_{\rho} + \frac{1}{\rho} \, u_{\theta} \zeta_{\theta} \right) d\rho \, d\theta \\ &= -\int_{\Omega} \zeta \mathsf{F}_{\rho} \, d\rho \, d\theta - \int_{\Omega} \left\{ \rho (\rho g_{\rho})_{\rho} \zeta_{\rho} + g_{\rho\theta} \zeta_{\theta} \right\} d\rho \, d\theta \\ &= -\int_{\Omega} \mathsf{F}_{\rho} \zeta \, d\rho \, d\theta - \int_{\Omega} \left\{ (\rho^{2} \Delta g - g_{\theta\theta}) \zeta_{\rho} + g_{\rho\theta} \zeta_{\theta} \right\} d\rho \, d\theta \\ &= -\int_{\Omega} \left\{ \zeta \mathsf{F}_{\rho} + \rho^{2} \Delta g \zeta_{\rho} \right\} d\rho \, d\theta + \int_{\Omega} \left\{ g_{\theta\theta} \zeta_{\rho} - g_{\rho\theta} \zeta_{\theta} \right\} d\rho \, d\theta. \end{split}$$

We evaluate the first integral by (2.4). Hence

$$\int_{\Omega} \left\{ F_{\rho} \zeta + \rho^2 \Delta g \zeta_{\rho} \right\} d\rho \ d\theta = \int_{\Omega} \frac{\partial}{\partial \rho} \left(\zeta \rho^2 \Delta g \right) d\rho \ d\theta \\= \int_{\Gamma'} \zeta \rho^2 \Delta g \ d\theta.$$

Turning to the second integral, we compute that

$$\begin{split} \int_{\Omega} \left\{ g_{\theta\theta} \zeta_{\rho} - g_{\rho\theta} \zeta_{\theta} \right\} d\rho \ d\theta &= \int_{\Omega} \left\{ (g_{\theta} \zeta_{\rho})_{\theta} - (g_{\theta} \zeta_{\theta})_{\rho} \right\} d\rho \ d\theta \\ &= \int_{\Gamma'} (g_{\theta} \zeta_{\rho} \ d\rho + g_{\theta} \zeta_{\theta} \ d\theta). \end{split}$$

Finally, we obtain that

$$\int_{\Gamma'} F\zeta \ d\theta = \int_{\Gamma'} \rho^2 \Delta g\zeta \ d\theta + \int_{\Gamma'} g_{\theta}(\zeta_{\rho} \ d\rho + \zeta_{\theta} \ d\theta). \quad Q.E.D.$$

LEMMA 2.2. — Let Ω , u be a solution to Problem 1 and suppose that $\Gamma = \partial \Omega$ is smooth. Set u = 0 in $\mathbb{R}^2 - \Omega$. Let r be large enough that $\overline{\Omega} \subset \mathbb{B}_r$ and choose

(2.5)
$$g(z) = \int_{\rho}^{r} t^{-1} u(t, \theta) dt, |z| = \rho, \quad 0 \neq z \in \mathbf{B}_{r}$$

Then

$$g \in C^1(\overline{\Omega} - \{0\}), \quad \Delta g \in C(\overline{\Omega} - \{0\}),$$

and

$$\Omega = \{z \colon g(z) > 0\}$$

and moreover

$$\Delta g = egin{cases} arphi^{-2}\mathrm{F} & in & \overline{\Omega} - \{0\} \ 0 & in & \mathrm{B}_r - \Omega. \end{cases}$$

Proof. — As we remarked in the introduction, smoothness of Γ implies that Ω is starshaped with respect to z = 0. Hence if g(z) = 0 for $z = \rho e^{i\theta}$, then the non-negative continuous integrand in (2.5) vanishes for $te^{i\theta}$, $t > \rho$, so that $g(te^{i\theta}) = 0$, $t > \rho$. Therefore, since u > 0 in Ω , we see that g(z) > 0 in $\Omega - \{0\}$ and g(z) = 0 in $B_r - \Omega \supset \Gamma$. Because u is smooth in Ω it is easy to derive that $g \in C^1(B_r - \{0\})$. On the other hand g attains its minimum on $B_r - \Omega$ whence

(2.6)
$$g_{\rho} = 0 = g_{\theta} \quad \text{on} \quad B_r - \Omega.$$

Since $g_{\rho} = - \rho^{-1} u$ in Ω , by (2.4),

(2.7)
$$\frac{\partial}{\partial \rho} \left(\rho^2 \Delta g \right) = F_{\rho} \quad \text{in} \quad \Omega.$$

We may integrate (2.7) in Ω since Ω is starshaped to obtain

$$ho^2\Delta g(z)={
m F}(z)+\psi(heta), \hspace{0.5cm} z=
ho e^{i heta}\in\Omega,$$

where ψ is a function of the central angle $\,\theta\,$ only. Now by Lemma 2.1

$$\begin{split} \int_{\Gamma} \zeta F(z) \, d\theta &+ \int_{\Gamma} \psi(\theta) \zeta \, d\theta = \int_{\Gamma} F\zeta \, d\theta - \int_{\Gamma} g_{\theta}(\zeta_{\rho} \, d\rho + \zeta_{\theta} \, d\theta) \\ \text{for} \quad \zeta \in \mathcal{C}_{0}^{\infty}(\mathcal{B}_{r} - \{0\}). \quad \text{Since} \quad g_{\theta} = 0 \quad \text{on} \quad \Gamma \subset \mathcal{B}_{r} - \Omega \\ (\text{cf. 2.6}), \\ \int_{\Gamma} \psi(\theta) \zeta \, d\theta = 0 \qquad \zeta \in \mathcal{C}_{0}^{\infty}(\mathcal{B}_{r} - \{0\}) \end{split}$$

$$\psi(\theta) = 0, \ 0 \le \theta < 2\pi.$$
 Q.E.D.

Proof of Theorem 1. — As we have observed, Ω is starshaped with respect to z = 0 so the function g(z) defined by (2.5) satisfies the conclusions of Lemma 2.2. Let r be so large that $\overline{\Omega} \subset B_r$ and define

$$w^{*}(z) = \frac{1}{\gamma} g(z) + \log \rho \quad 0 \neq z \in \mathbf{B}_{r}$$
$$= \frac{1}{\gamma} \int_{\rho}^{r} t^{-1}(u(t, \theta) - \gamma) dt + \log r$$

where $\gamma = u(0) > 0$. We shall show that $r, \ w^* \in K_r$ is a solution to. *Problem* (*). Clearly w^* is bounded in B_r and satisfies

(2.8)
$$-\Delta w^* = \begin{cases} f & \text{in } \Omega - \{0\} \\ 0 & \text{in } B_r - \Omega \end{cases} \text{ a.e.}$$

by Lemma 2.2 where $f(z) = -\frac{1}{\gamma \rho^2} F(z)$. Since $f \in C^2(\mathbb{R}^2)$, cf. (1.1), it follows from Riemann's Theorem on removable singularities that w^* is smooth in Ω . We observe that

 $w^*(z) \ge \log \rho$ since $g(z) \ge 0$

and $\Omega = \{z : w^*(z) > \log \rho\}$. Further, $\overline{\Omega} \subset B_r$ implies that, for |z| = r,

$$w^*(z) = \log r$$

 $w^*_{
ho}(z) = 1/r$ and $w^*_{ heta}(z) = 0$

Therefore, $w^* \in K_r$ and the function

$$\tilde{w}^*(z) = \begin{cases} w^*(z) & z \in \mathbf{B}_r \\ \log \rho & z \notin \mathbf{B}_r \end{cases}$$

is a $C^{1}(\mathbb{R}^{2})$ function. Hence (2.2) holds. It is easy to verify (2.1). Let $\nu \in K_{r}$. Then

$$a(w^*, v - w^*) = \int_{\Omega} f(v - w^*) \, dx$$

by (2.8) and an integration by parts, valid since $w^* \in C^1(\overline{\Omega})$. Indeed, $w^* \in C^1(\mathbb{R}^2)$, as noted above. Hence

$$a(w^*, v - w^*) - \int_{\mathbf{B}_r} f(v - w^*) \, dx = - \int_{\mathbf{B}_r - \Omega} f(v - w^*) \, dx.$$

 \mathbf{or}

Since $f \leq 0$ in B_r and $v \in K_r$ implies

 $0\leqslant v-\log\rho=v-w^*\quad\text{in}\quad B_r-\Omega,$

the last integral is non-negative so that

$$a(w^*, v - w^*) \ge \int_{\mathbf{B}_r} f(v - w^*) dx \quad v \in \mathbf{K}_r \quad \mathbf{Q}.\mathbf{E}.\mathbf{D}.$$

3.

This paragraph is devoted to the solution of the variational inequality *Problem* (*). According to a well known theorem [11], there is a solution to (2.1) for each r > 0. To establish its smoothness in B_r , we shall prove that it is bounded. For once this is known, the obstacle $\log \rho$ may be replaced by a smooth obstacle ψ which equals $\log \rho$ when

$$\log \rho > - \|w\|_{L^{\infty}(\mathbf{B}_{r})}$$

and (2.1) may be solved in the convex K_{ψ} of $H^{1}(B_{r})$ functions which exceed ψ in B_{r} and satisfy the boundary condition $v(z) = \log r$, |z| = r. The solution to this latter problem is known to be suitable smooth (cf. [10]) and is easily shown to be the solution of (2.1).

LEMMA 3.1. — Let
$$f \in L^p(B_r)$$
 for some $p > 2$ and satisfy
 $f \leq 0$ in B_r .

Then the solution w of (2.1) for f satisfies

$$\log r - c \|f\|_{\mathrm{L}^{p}(\mathrm{B}_{r})} \leq w(z) \leq \log r \quad in \quad \mathrm{B}_{r},$$

where c = c(r, p) > 0.

Proof. — Let w_0 denote the solution to the Dirichlet problem

$$\begin{aligned} &-\Delta w_0 = f \quad \text{in} \quad \mathbf{B}_r \\ &w_0 = 0 \qquad \text{on} \quad \partial \mathbf{B}_r \end{aligned}$$

We know that $w_0 \in H^{2, p}(B_r)$ and

$$(3.1) \|w_0\|_{\mathbf{L}^{\infty}(\mathbf{B}_r)} \leq c \|f\|_{\mathbf{L}^{p}(\mathbf{B}_r)}, c = c(r, p) > 0.$$

Consequently, for any $\zeta \in H_0^1(B_r)$,

$$a(w - w_0, \zeta) = a(w, \zeta) - \int_{\mathbf{B}_r} f\zeta \, dx.$$

We define $v = \max(w, w_0 + \log r) \in K_r$ so by (2.1)

$$a(w - w_0, v - w) \ge 0$$

Further, computing explicitly, we find

$$a(w - w_0, v - w) = \int_{\mathbf{B}_r} (w - w_0)_{x_i} (v - w)_{x_i} dx$$
$$= -\int_{\{v > w\}} (w - w_0)_{x_i}^2 dx \leq 0.$$

Hence meas $\{v > w\} = 0$ or $\log r + w_0 \le w$ a.e. This proves the lower bound in view of (3.1). The same argument may be employed to prove the upper bound, with

$$\nu = \min(w, \log r),$$

using that $f \leq 0$ in B_r . Q.E.D.

For general f, we observe that an upper bound for the solution of (2.1) is

$$\log r + c(r, p) \|\max (0, f)\|_{\mathbf{L}^{p}(\mathbf{B}_{r})}.$$

COROLLARY 3.2. — Let $f \in L^{p}(B_{r})$ for some p > 2, $f \leq 0$ in B_{r} , and let w denote the solution to (2.1) for f. Then $w \in H^{2, p}(B_{r})$. If $f \in C^{1}(\overline{B}_{r})$, then $w \in H^{2, \infty}_{loc}(B_{r})$.

Proof. — This is clear from the remarks preceding the proof of the lemma. In particular, that $w \in H^{2,\infty}_{loc}(B_r)$ follows by a result of Frehse [7] (cf. also [4]).

LEMMA 3.3. — Let
$$g \in H^1(B_r)$$
 satisfy

 $g \ge \log \rho$ in B_r

and

$$a(g, \zeta) - \int_{\mathbf{B}_r} f\zeta \ dx \ge 0 \quad for \quad 0 \le \zeta \in \mathrm{H}^1_0(\mathbf{B}_r).$$

Let w denote the solution of Problem (*) for $f \in L^{p}(B_{r})$, for some p > 2. Then $w \leq g$ in B_{r} .

Proof. — This is a familiar property of supersolutions. cf. [10], [11].

THEOREM 2. — Let
$$f \in L^p_{loc}(\mathbb{R}^2)$$
 for a $p > 2$ satisfy

$$\sup_{\mathbb{R}^*} f < 0.$$

Then there exists a solution $r, w \in K_r$ to Problem (*). In addition, $w \in H^{2, p}(B_r)$.

Proof. — We shall construct a supersolution $g(z) = h(\rho)$ to the form

$$a(w, \zeta) - \int_{\mathbf{B}_r} f\zeta \, dx,$$

for some r > 1, which satisfies

Indeed, suppose that

$$0 < \beta \leq - \sup_{\mathbf{R}^*} f$$
 and $\beta < 2e^{-1}$,

and define

$$h(\rho) = \alpha + \frac{1}{4} \beta \rho^2.$$

Then

$$-\Delta h = -rac{1}{
ho} (
ho h_{
ho})_{
ho} = -eta \, > \, \sup f$$

Assume for the moment that (3.2) and (3.3) are fulfilled. Then

 $w \leq h$ in B_r

by the previous lemma. Moreover, since $\log \rho \leq w \leq h$ we conclude from (3.3) that

$$w_{\varrho}(z) = \frac{1}{r}$$
 for $|z| = r$

and, since $w = \log r$ on |z| = r,

$$w_{\theta}(z) = 0$$
 for $|z| = r$.

Therefore \tilde{w} defined by (2.2) is in $C^1(\mathbb{R}^2)$.

It remains to find α and r from the conditions (3.2),

(3.3). One discovers that

$$r = \left(\frac{2}{\beta}\right)^{1/2} \ge 1$$

and

$$\alpha = \log r - \frac{1}{2} = \frac{1}{2} \left(\log \frac{2}{\beta} - 1 \right) > 0.$$

To verify that $h \in K_r$, i.e., to verify that $h(\rho) \ge \log \rho$ knowing that $h(r) = \log r$, note that $h(\rho) - \log \rho$ is strictly convex and attains its (unique) minimum at the ρ where $h_{\rho} = \frac{1}{\rho} = 0$. This $\rho = r$. Q.E.D.

We wish to point out here that ideas similar to those in the proof of Theorem 2 were also studies by H. Brezis [3].

COROLLARY 3.4. — Let $f \in L^p_{loc}(\mathbb{R}^2)$ for a p > 2 satisfy $\sup_{\mathbb{R}^4} f < 0$. Let $r, w \in K_r$ denote the solution to Problem (*) for f. Then for $\mathbb{R} > r$, the pair $\mathbb{R}, \tilde{w} \in K_{\mathbb{R}}$, where \tilde{w} is defined by (2.2) is a solution to Problem (*).

In view of this Corollary, we shall not distinguish between \mathscr{W} and $\widetilde{\mathscr{W}}$ in the sequel. Furthermore, we recall that $\mathscr{W} \in H^{2,\infty}_{loc}(\mathbb{R}^2)$ whenever $f \in C^1(\mathbb{R}^2)$.

Proof. — We need only verify (2.1) in B_R . Let $\zeta \in C_0^{\infty}(B_R)$. Then

$$\begin{aligned} a(\tilde{w}, \zeta) &= \int_{\mathbf{B}_{r}} w_{x_{i}} \zeta_{x_{i}} \, dx + \int_{\mathbf{B}_{\mathbf{R}}-\mathbf{B}_{r}} \frac{\partial}{\partial x_{i}} \log \rho \zeta_{x_{i}} \, dx \\ &= -\int_{\mathbf{B}_{r}} \Delta w \zeta \, dx + \int_{|z|=r} w_{\rho} \zeta r \, d\theta + \int_{\mathbf{B}_{\mathbf{R}}-\mathbf{B}_{r}} \Delta \log \rho \zeta \, dx \\ &- \int_{|z|=r} \frac{1}{r} \, \zeta r \, d\theta \end{aligned}$$

since ζ has support in B_R. Now $\tilde{w} \in C^1(B_R)$ implies, in particular, that $w_{\rho}(z) = \frac{1}{r}$ for |z| = r and the two integrals over |z| = r cancel. Hence

$$egin{aligned} a(ilde{w},\,\zeta) &= -\,\int_{\mathbf{B}_r}\Delta w\zeta\,dx \ &= \int_{\Omega_r}f\zeta\,dx, \qquad \Omega = \{z:w(z) > \log \, arphi\}. \end{aligned}$$

Now given $\varphi \in K_R$,

$$a(\tilde{w}, v - \tilde{w}) - \int_{\mathbf{B}_{\mathbf{R}}} f(v - \tilde{w}) \, dx = - \int_{\mathbf{B}_{\mathbf{R}} - \Omega} f(v - \tilde{w}) \, dx \ge 0$$

where the last integral is non-negative because $\tilde{\varphi} = \log \rho$ in $B_R - \Omega$ and f < 0. This verifies (2.1). Q.E.D.

4.

Here we show that the set where the solution to *Problem* (*) exceeds $\log \rho$ is starshaped under an assumption about f. First we prove a lemma which is useful also in the succeeding sections. It is a form of converse to *Lemma 2.1* with an analogous proof.

LEMMA 4.1. — Let $f \in L^p_{loc}(\mathbb{R}^2)$ for some p > 2 satisfy $\sup_{\mathbb{R}^4} f < 0$. Let $r, w \in K_r$ denote the solution to Problem (*) for f and define

and

$$u(z) = 1 - \rho w_{\rho}(z) \quad z \in \mathbf{B}_r$$

$$\Omega = \{z \in B_r : \mathscr{W}(z) > \log \rho\}.$$

i) Then $u \in H^{1,p}(B_r)$.

ii) Let $\omega \subset B_r$ be open and suppose that $-\Delta w = f$ in ω . Then

(4.1) $-\Delta u = -\rho^{-1}(\rho^2 f)_{\rho} \quad in \quad \omega$

iii) Suppose that $f \in C^1(\overline{B}_r)$ and that Γ' is a smooth (open) arc in $\partial \Omega$. Then

(4.2)
$$\frac{\partial u}{\partial v} = \rho^2 f \frac{d\theta}{ds} \quad on \quad \Gamma'$$

where ν denotes the outward directed normal vector on Γ' .

Proof. — Since $f \in L^p_{loc}(\mathbb{R}^2)$, p > 2, $\omega \in H^{2, p}(\mathbb{B}_r)$, so $u = 1 - \Sigma x_i \omega_{x_i} \in H^{1, p}(\mathbb{B}_r)$. The statement (4.1) will be understood in the sense of distributions.

Let $\zeta \in C_0^{\infty}(\omega)$. Then

$$egin{aligned} &\int_{\omega}u_{x_{i}}\zeta_{x_{i}}\,dx=\int_{\omega}\left(
ho u_{
ho}\zeta_{
ho}+rac{1}{
ho}\,u_{ heta}\zeta_{ heta}
ight)d
ho\,d heta\ &=\int_{\omega}\left\{
ho(1-
ho w_{
ho})_{
ho}\zeta_{
ho}+rac{1}{
ho}\,(1-
ho w_{
ho})_{ heta}\zeta_{ heta}
ight\}d
ho\,d heta\ &=-\int_{\omega}\left\{
ho(
ho w_{
ho})_{
ho}\zeta_{
ho}+w_{
ho heta}\zeta_{ heta}
ight\}d
ho\,d heta. \end{aligned}$$

We integrate by parts in the last term, first with respect to ρ and then with respect to θ , to obtain

$$egin{aligned} &\int_{\omega}u_{x_i}\zeta_{x_i}\,dx=-\int_{\omega}\left\{
ho(
ho w_{
ho})_{
ho}\zeta_{
ho}+w_{ heta heta}\zeta_{
ho}
ight\}\,d
ho\,\,d heta\ &=-\int_{\omega}
ho^2\Delta w\zeta_{
ho}\,d
ho\,\,d heta\ &=\int_{\omega}
ho^2f\zeta_{
ho}\,d
ho\,\,d heta \end{aligned}$$

since $-\Delta \omega = f$ in ω by hypothesis. Hence

$$\int_{\omega} u_{x_i} \zeta_{x_i} \, dx = - \int_{\omega} \frac{1}{\rho} \, (\rho^2 f)_{\rho} \zeta \rho \, d\rho \, d\theta.$$

We turn now to the proof of iii). Suppose that Γ' has a Hölder continuous tangent vector as a function of the arclength parameter. In Ω , that $w(z) > \log \rho$ implies

$$-\Delta w = f,$$

whence

$$-\Delta u = -\frac{1}{\rho} (\rho^2 f)_{\rho}$$
 in Ω .

Moreover, $w_{\rho}(z) = \frac{1}{\rho}$ for $z \in \partial\Omega$ so u = 0 on $\Gamma' \subset \partial\Omega$. From this and the fact $f \in C^{1}(\overline{B}_{r})$ we may conclude that $u \in C^{1, \lambda}(\Omega \cup \Gamma')$ for some $\lambda > 0$. Let $\zeta \in C_{0}^{\infty}(B_{r})$ with supp $\zeta \cap (\partial\Omega - \Gamma') = \emptyset$. Then

$$(4.3) \quad \int_{\Gamma'} u_{\nu} \zeta \, ds = \int_{\Gamma'} \zeta \left(\rho u_{\rho} \, d\theta - \frac{1}{\rho} \, u_{\theta} \, d\rho \right)$$

$$= \int_{\Omega} \zeta \left((\rho u_{\rho})_{\rho} + \frac{1}{\rho} \, u_{\theta\theta} \right) d\rho \, d\theta + \int_{\Omega} \left(\rho \zeta_{\rho} u_{\rho} + \frac{1}{\rho} \, u_{\theta} \zeta_{\theta} \right) d\rho \, d\theta$$

$$= \int_{\Omega} \zeta (\rho^{2} f)_{\rho} \, d\rho \, d\theta$$

$$- \int_{\Omega} \left\{ \rho (\rho w_{\rho})_{\rho} \zeta_{\rho} + w_{\theta\theta} \zeta_{\rho} - w_{\theta\theta} \zeta_{\rho} + w_{\rho\theta} \zeta_{\theta} \right\} d\rho \, d\theta$$

$$= \int_{\Omega} \left(\zeta (\rho^{2} f)_{\rho} - \rho^{2} \Delta w \zeta_{\rho} \right) d\rho \, d\theta + \int_{\Omega} \left(w_{\theta\theta} \zeta_{\rho} - w_{\rho\theta} \zeta_{\theta} \right) d\rho \, d\theta.$$

Since $-\Delta w = f$ in Ω , we evaluate the first integral to yield

(4.4)
$$\int_{\Omega} \left((\rho^2 f)_{\rho} \zeta - \rho^2 \Delta w \zeta_{\rho} \right) d\rho \ d\theta = \int_{\Gamma'} \zeta \rho^2 f \ d\theta.$$

On the other hand, $w_{\theta} = 0$ on $\Gamma' \subset B_r - \Omega$, therefore

$$\int_{\Omega} \left(w_{\theta \theta} \zeta_{
ho} - w_{
ho heta} \zeta_{ heta}
ight) d
ho \ d heta = \int_{\Omega} \left\{ \left(w_{ heta} \zeta_{
ho}
ight)_{ heta} - \left(w_{ heta} \zeta_{ heta}
ight)_{
ho}
ight\} d
ho \ d heta = - \int_{\Gamma'} w_{ heta} (\zeta_{
ho} \ d
ho + \zeta_{ heta} \ d heta) = 0.$$

Finally, from (4.3) and (4.4) we obtain that

$$\int_{\Gamma'} u_{\mathsf{v}} \zeta \, ds = \int_{\Gamma'} \rho^2 f \zeta \, ds, \ \zeta \in \mathrm{C}^\infty_0(\mathrm{B}_r), \ \mathrm{supp} \ \zeta \ \cap \ (\mathfrak{d} \Omega \ - \ \Gamma') = \emptyset.$$

THEOREM 3. — Let $f \in L^p_{loc}(\mathbb{R}^2)$ satisfy $\sup_{\mathbb{R}^4} f < 0$ and $\rho^{-1}(\rho^2 f)_{\rho} \leq 0$. Let $r, w \in K_r$ denote the solution of Problem (*) for f and set

$$\Omega = \{z: w(z) > \log \rho\}$$

Then Ω is starshaped with respect to z = 0.

Proof. - Consider, as in the preceding proposition,

 $u(z) = 1 - \rho w_{\rho}(z), \quad z \in B_r,$

and note that $u \in C^{0, 1-\frac{2}{p}}(B_r)$ and u = 0 on $\Gamma \subset B_r - \Omega$, $\Gamma = \partial \Omega$. By the hypothesis on f and (4.1),

$$\int_{\Omega} u_{x_i} \zeta_{x_i} \ dx = - \int_{\Omega} \rho^{-1} (\rho^2 f)_{\rho} \zeta \ dx \ge 0 \quad \text{for} \quad 0 \le \zeta \in \mathbf{C}_0^{\infty}(\Omega).$$

The maximum principle may now be applied to conclude that

$$u(z) \ge \min_{\Gamma} u = 0 \quad \text{for} \quad z \in \Omega.$$

Hence the function

$$g(z) = -\log \rho + w(z), \quad 0 \neq z \in B_r$$

is decreasing on each ray $\rho e^{i\theta}$, $0 < \rho < r$, because it has derivative

$$g_{\rho}(z) = -\frac{1}{\rho} \left(1 - \rho \varphi_{\rho}(z)\right) = -\frac{1}{\rho} u(z) \leq 0, \quad z \in \mathbf{B}_r, \quad z \neq 0.$$

Therefore, given $z = \rho e^{i\theta}$ with $w(z) > \log \rho$, then

$$w(te^{i\theta}) > \log t \text{ for } t \leq \rho.$$

This proves that Ω is starshaped. Q.E.D.

5.

In this paragraph we initiate the study of the free boundary determined by a solution to Problem (*). To begin, we fix an $f \in C^1(\mathbb{R}^2)$ which satisfies

(5.1)
$$\sup_{\mathbf{R}^2} f < 0 \quad and \quad (\rho^2 f)_{\rho} \leq 0 \quad in \quad \mathbf{R}^2$$

and let $r, w \in K_r$ denote the solution to Problem (*) for f. As before, set $\Omega = \{z : \varphi(z) > \log \rho\}$

and let

$$\mathbf{E} = \overline{\mathbf{B}}_{-} - \mathbf{\Omega}_{-}$$

Observe that, by Theorem 3, E is starshaped with respect to the point at ∞ in the sense that

$$z \in E, t \ge 1$$
 and $|tz| \le r$ implies $tz \in E$.

Define

(5.2)
$$\mu(\theta) = \inf \{ \rho : z = \rho e^{i\theta} \in \mathbf{E} \}, 0 \leq \theta < 2\pi,$$

Note that $\mu(\theta)$ is lower semicontinuous since E is closed. For given $z_n = \rho_n e^{i\theta_n}$, $\rho_n = \mu(\theta_n)$, and $z_n \to z = \rho e^{i\theta}$, we conclude that $z \in E$ and hence $\rho \ge \mu(\theta)$. In addition

(5.3)
$$\mathbf{E} = \{ z = \rho e^{i\theta} : \mu(\theta) \leq \rho \leq r \}$$

by the starshaped quality of E and Ω . In the next lemma, we utilize that the characteristic function of E, φ_E , is of $\mathbf{R^2}$ which follows from [4] bounded variation in (Corollary 2.1).

LEMMA 5.1. — Let f satisfy (5.1). Then $\mu(\theta)$ defined by (5.2) is a lower semi-continuous function of bounded variation.

Proof. — The characteristic function of E, $\varphi_E \in BV(R^2)$ as we have noted. This means that

$$\left|\int_{\mathbf{R}^{\mathbf{2}}} \varphi_{\mathbf{E}} \zeta_{x_{i}} \, dx\right| \leq \mathbf{C} \sup_{\mathbf{R}^{\mathbf{2}}} |\zeta|, \quad \zeta \in \mathbf{H}_{\mathbf{0}}^{\mathbf{1}, \infty}(\mathbf{R}^{\mathbf{2}})$$

for i = 1, 2 and some C > 0. Hence by Fubini's Theorem and (5.3)

$$\begin{split} \int_{0}^{2\pi} \int_{\mu(\theta)}^{r} \zeta_{x_{i}} \rho \, d\rho \, d\theta &= \int_{0}^{2\pi} \int_{0}^{r} \varphi_{\mathrm{E}} \zeta_{x_{i}} \rho \, d\rho \, d\theta \\ &= \int_{\mathrm{R}^{2}} \varphi_{\mathrm{E}} \zeta_{x_{i}} \rho \, d\rho \, d\theta \\ &\leq C \|\zeta\|_{\mathrm{L}^{\infty}(\mathrm{R}^{4})} \quad \text{for} \quad \zeta \in \mathrm{H}_{0}^{1, \infty}(\mathrm{R}^{2}). \end{split}$$

In particular, we choose $\zeta = \zeta(\theta) \in C^1(0,2\pi)$, periodic of period 2π , and $\eta(\rho)$ a function vanishing identically in a neighborhood of 0 in Ω , identically one in a neighborhood of E, and vanishing outside, say, B_{2r} . Applying the above to the product $\zeta(\theta)\eta(\rho)$ we see that

$$\int_{0}^{2\pi} \int_{\mu(\theta)}^{r} \left(\frac{1}{\rho} \zeta'\right) \rho \ d\rho \ d\theta = -\int_{0}^{2\pi} \zeta'(\theta)(r-\mu(\theta)) \ d\theta$$
$$= \int_{0}^{2\pi} \mu(\theta) \zeta'(\theta) \ d\theta$$

and hence, by the foregoing,

$$\left|\int_{0}^{2\pi} \mu(\theta) \zeta'(\theta) \ d\theta\right| \leq C \sup_{0 \leq \theta \leq 2\pi} |\zeta|, \qquad \zeta \in C^{1}(0, 2\pi).$$

We may invoke the Riesz Representation Theorem to the functional

$$\zeta
ightarrow \int_{0}^{2\pi} \zeta'(heta) \mu(heta) \ d heta$$

defined and uniformly bounded on the dense subset $C^{1}(0,2\pi)$ of $C^{0}(0,2\pi)$ to infer the existence of

$$g(\theta) \in BV(0,2\pi)$$

with the properties

$$\int_0^{2\pi} \zeta'(\theta) \mu(\theta) \ d\theta = - \int_0^{2\pi} \zeta(\theta) \ dg(\theta) = \int_0^{2\pi} \zeta'(\theta) g(\theta) \ d\theta.$$

In particular, $\mu(\theta) - g(\theta) = \text{const. a.e.}$, which we may take to be zero, so that

(5.4)
$$\mu(\theta) = g(\theta) \quad \text{a.e. in} \quad [0,2\pi].$$

We proceed to show that $\mu(\theta) = g(\theta)$ everywhere. We may assume that g is lower semicontinuous. Let us agree to further modify g so that

(5.5)
$$g(\theta) = \liminf_{t > \theta} g(t)$$

It follows that $\mu(\theta) \leq g(\theta)$. For suppose that $g(\theta) < \mu(\theta)$ and select $\theta_k \to \theta$ such that $g(\theta) = \lim_{k \to \infty} g(\theta_k)$. Since μ is lower semi-continuous given $\varepsilon > 0$, there is a $\delta > 0$ such that

 $\mu(\theta) - \varepsilon < \mu(t) \text{ for } |t - \theta| < \delta.$

Hence for k so large that

$$|g(\theta_k) - g(\theta)| < \varepsilon$$

we may find a neighborhood $I_k = (\theta_k - \delta_k, \ \theta_k + \delta_k),$

$$I_k \cap I_h = \emptyset \text{ for } h \neq k,$$

of θ_k with the property

by (5.4). Hence, by our choice of ε ,

$$\operatorname{Var}_{\mathbf{I}_{k}} g \geq \mu(\theta) - g(\theta) - 2\varepsilon > 0$$

Consequently, Var $g = +\infty$, a contradiction. Therefore once (5.5) is assumed, $\mu(\theta) \leq g(\theta)$ in $[0,2\pi)$. Observe that g satisfying (5.5) has no inessential discontinuities.

Consider the set

$$\mathbf{F} = \{ z : \rho e^{i\theta} : g(\theta) \leq \rho \leq r \} \subset \mathbf{E} \quad \text{since} \quad \mu \leq g.$$

Since the points θ in $[0,2\pi]$ for which $g \neq \mu$ have measure zero,

$$N = E - F = \{ z = \rho e^{i\theta} \colon \mu(\theta) \leq \rho < g(\theta) \}$$

satisfies meas N = 0. Furthermore F is closed by lower semi-continuity of g so $\overline{B}_r - F$ is open, $\Omega \subset \overline{B}_r - F$, and

$$\overline{\mathbf{B}}_r - \mathbf{F} = \mathbf{\Omega} \, \cup \, \mathbf{N}.$$

Recall here that $w \in H^{2,\infty}(B_r)$ since $f \in C^1(B_r)$ by Corollary 3.2. Inasmuch as $-\Delta w = f$ in Ω , we see that $-\Delta w = f$ a.e. in $\Omega \cup N$. Since $\Omega \cup N$ is open, we may deduce that

 $-\Delta w = f$ in $\Omega \cup N$

and

$$w \in C^{2,\lambda}(\Omega \cup N)$$
 for $0 < \lambda < 1$.

Now consider $u(z) = 1 - \rho w_{\rho}(z), z \in B_r$, which satisfies

$$\int_{\Omega \cup \mathbb{N}} u_{x_i} \zeta_{x_i} \, dx = - \int_{\Omega \cup \mathbb{N}} \frac{1}{\rho} \, (\rho^2 f)_{\rho} \zeta \, dx, \ \zeta \in \mathrm{C}^1_0(\Omega \ \cup \ \mathrm{N})$$

by Lemma 4.2 (ii). Hence $u \in C^1(\Omega \cup N)$ and

$$\int_{\mathbb{N} \cup \Omega} u_{x_i} \zeta_{x_i} \, dx \ge 0 \quad \text{when} \quad 0 \le \zeta \in C_0^1(\Omega \cup \mathbb{N})$$

so that by the strong maximum principle

$$u(z) > \min_{\mathrm{d}(\Omega \cup \mathbf{N})} u = 0$$

because $\delta(\Omega \cup N) \subset B_r - \Omega$ where $w_{\rho} = \frac{1}{\rho}$ and $w_{\theta} = 0$. In particular, u(z) = 0 for $z \in \delta(\Omega \cup N)$. However, if $z \in N$

$$w_{
ho}(z) = rac{1}{
ho} \qquad ext{and} \qquad w_{ heta}(z) = 0$$

so that

$$u(z) = 1 - \rho w_{\rho}(z) = 0,$$

a contradiction. Therefore $N = \emptyset$, and

$$\mu(\theta) = g(\theta), \qquad 0 \leq \theta \leq 2\pi. \qquad \text{Q.E.D.}$$

THEOREM 4. — Let $f \in C^1(\mathbb{R}^2)$ satisfy (5.1) and let $r, w \in K_r$ denote the solution to Problem (*) for f. Let

$$\Omega = \{z : w(z) > \log \rho\}.$$

Then the boundary Γ of Ω has the representation

$$\Gamma: \rho = \mu(\theta), \qquad 0 \leq \theta \leq 2\pi$$

where μ is a continuous function of bounded variation.

Proof. — Let $\mu(\theta)$ be defined by (5.2) so that the conclusion of Lemma 5.1 holds. Suppose that $\theta = 0$ is a discontinuity of μ . Then $\theta = 0$ is a jump discontinuity so that

$$\lim_{\theta \boldsymbol{\to} \boldsymbol{0}^{-}} \mu(\theta) = L \, > \, \lim_{\theta \boldsymbol{\to} \boldsymbol{0}^{+}} \mu(\theta) = \mu(0)$$

without any loss in generality. For $\varepsilon > 0$ sufficiently small, there is a $\delta > 0$ so that the segments

$$\{z = \rho e^{i\theta} : 0 \le \rho \le L - \varepsilon\} \subset \Omega \text{ for } -\delta < \theta < 0$$

and

$$\{z = \rho e^{i\theta} : \mu(0) + \varepsilon \leqslant \rho \leqslant r\} \subset \mathbf{E}.$$

Hence we may find a disc $B_{\eta}(z_0)$, $z_0 = \frac{1}{2} (L + \mu(0))$, such that

$$\mathbf{B}_{\eta}(z_{\mathbf{0}}) \cap \Omega = \{z \in \mathbf{B}_{\eta}(z_{\mathbf{0}}) : \mathrm{Im} \ z < 0\}$$

Let $\sigma = \{z \colon \text{Im } z = 0, z_0 - \eta < \text{Re } z < z_0 + \eta\}$ and set $u = 1 - \rho w_c.$

It follows that $u \in C^1(\sigma \cup \Omega \cap B_{\eta}(z_0))$ and u attains its minimum value zero at each point of σ by Hopf's maximum principle and Lemma 4.1 (ii). Therefore

$$\frac{\partial u}{\partial v}(z) < 0 \quad \text{for} \quad z \in \sigma.$$

But according to Lemma 4.1. (iii) with $\Gamma' = \sigma$

$$\frac{\partial u}{\partial v}(z) = \rho^2 f(z) \frac{d\theta}{ds}(z) = 0$$
 for $z \in \sigma$

since $\theta = 0$ on σ . This is a contradiction.

Q.E.D.

6.

In this paragraph we show that Γ has a smooth parameterization and that a solution to *Problem 1* exists in the classical sense. For this, we employ the results of [8]. In the case where f is real analytic, these questions may be treated by the results of H. Lewy [9].

THEOREM 5. — Let $f \in C^1(\mathbb{R}^2)$ satisfy $\sup f < 0$ and $(\rho^2 f)_{\rho} \leq 0$ in \mathbb{R}^2 . Let $r, w \in K_r$ denote the solution to Problem (*) for f and Γ the boundary of $\Omega = \{z : w(z) > \log \rho\}$. Then Γ has a $C^{1,\tau}$ parameterization, $0 < \tau < 1$.

Proof. — From Theorem 4 it is known that Γ is a Jordan curve. We now apply [8] (Theorem 1). Let $z_0 \in \Gamma$ and set $\omega = B_{\varepsilon}(z_0) \cap \Omega, \varepsilon < |z_0|$, and consider

$$g(z) = -\frac{1}{z} + \frac{1}{2} (w_{x_i}(z) - iw_{x_i}(z)) \ z \in \overline{\Omega} - \{0\}.$$

From the known regularity of w, $g \in H^{1,\infty}(\omega)$. Furthermore

$$g_{\overline{z}}(z) = \frac{1}{4} \Delta \omega(z) = -\frac{1}{4} f(z), \quad z \in \omega$$
$$g(z) = 0 \qquad \qquad z \in \Gamma \cap \overline{\omega}$$

Since $-\frac{1}{4}f(z) > 0$ in $B_{\varepsilon}(z_0)$, we may conclude that a conformal mapping φ of $G = \{|t| < 1, \text{ Im } t > 0\}$ onto ω which maps -1 < t < 1 onto $\Gamma \cap \overline{\omega}$ has boundary values in $C^{1,\tau}$ for every τ , $0 < \tau < 1$.

Theorem 6. — Let $F \in C^1(\mathbb{R}^2)$ satisfy $\rho^{-2}F \in C^1(\mathbb{R}^2)$ and

$$\inf_{\substack{\mathbf{F}_{\rho} \geq 0 \\ \mathbf{F}_{\rho} \geq 0}} F(0) = \mathbf{F}_{\rho}(0) = 0$$

Then there exists a domain Ω and a function $u\in H^{1,\infty}_{loc}(R^2)$ such that

(6.1) $-\Delta u = \rho^{-1} F_{\rho} \quad in \quad \Omega$ (6.2) (u = 0)

$$\begin{cases} (0.2) \\ (6.3) \\ (6$$

$$\begin{pmatrix} 0.5 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} u_v = -F \frac{1}{ds} \text{ a.e.} \\ 0 \end{pmatrix}$$

$$u(0) = \gamma$$

where ν is the outward directed normal vector and s is the arclength of Γ and $\gamma > 0$ is given.

Proof. — Given F, define
$$f(z) = -\frac{1}{\gamma p^2} F(z)$$
 and observe

that $\sup f < 0$ and $(\rho^2 f)_{\rho} \leq 0$ in \mathbb{R}^2 . Denote by $r, w \in \mathbb{K}_r$ the solution to *Problem* (*) for f and define

$$u(z) = \gamma(1 - \rho w_{\rho}(z)) \quad z \in \mathbf{R}^2.$$

Then, in view of Corollary 3.2, $u \in H^{1,\infty}_{loc}(\mathbb{R}^2)$ and satisfies (6.1) (by Lemma 4.1), (6.2), and (6.4). Moreover,

$$\Omega = \{z : u(z) > 0\}.$$

According to Theorem 5, Γ has a $C^{1,\tau}$ parameterization $t \to \varphi(t)$, t real, where we may assume that

$$\varphi: \{t: \operatorname{Im} t > 0\} \to \Omega$$

is a conformal mapping. It is known that $\varphi'(t) \neq 0$ a.e., $-\infty < t < \infty$. In a neighborhood of any t_0 for which $\varphi'(t_0) \neq 0$, the tangent angle to Γ is of class $C^{0,\tau}$. From this one checks that u_{ν} is continuous in a neighborhood of $\varphi(t_0)$ in $\overline{\Omega}$, e.g., by use of conformal mapping. Now Lemma 4.1 (iii) may by applied to verify (7.3) on this neighborhood of $\varphi(t_0)$ in Γ .

BIBLIOGRAPHY

- [1] C. BAIOCCHI, Su un problema di frontiera libera connesso a questioni di idraulica, Ann. di Mat. pura e appl., IV, 92 (1972), 107-127.
- [2] V. BENCI, On a filtration problem through a porous medium, Ann. di Mat. pura e appl., C (1974), 191-209.
- [3] H. BREZIS, Solutions with compact support of variational inequalities, Usp. Mat. Nauk, XXIX, 2 (176) (1974), 103-108.
- [4] H. BREZIS and D. KINDERLEHRER, The smoothness of solutions to nonlinear variational inequalities, *Indiana U. Math. J.*, 23,9 (1974), 831-844.
- [5] H. BREZIS and G. STAMPACCHIA, Une nouvelle méthode pour l'étude d'écoulements stationnaires, CRAS, 276 (1973), 129-132.
- [6] G. DUVAUT, Résolution d'un problème de Stefan (Fusion d'un bloc de glace à zéro degré), CRAS, 276 (1973), 1461-1463.
- [7] J. FREHSE, On the regularity of the solution of a second order variational inequality, Boll. U.M.I., 6 (1972), 312-315.
- [8] D. KINDERLEHRER, The free boundary determined by the solution to a differential equation, to appear in *Indiana Journal*.
- [9] H. LEWY, On the nature of the boundary separating two domains with different regimes, to appear.

- [10] H. LEWY and G. STAMPACCHIA, On the regularity of the solution of a variational inequality, C.P.A.M., 22 (1969), 153-188.
- [11] J.-L. LIONS and G. STAMPACCHIA, Variational Inequalities, C.P.A.M., 20 (1967), 493-519.
- [12] G. STAMPACCHIA, On the filtration of a fluid through a porous medium with variable cross section, Usp. Mat. Nauk., XXIX, 4 (178) (1974), 89-101.

Manuscrit reçu le 21 avril 1975.

D. KINDERLEHRER, University of Minnesota Minneapolis, Minn. 55455 (U.S.A.). G. STAMPACCHIA, Scuola Normale Superiore Istituto di Matematica Pisa (Italie).