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ON DEFINITIONS
OF SUPERHARMONIC FUNCTIONS

by Seizo ITO

Dedie a Monsieur M. Brelot a V occasion
de son 70s anniversaire.

1. Introduction.

The classical definition of superharmonic functions by
F. Riesz [3] (see also M. Brelot [1]) can be generalized in natu-
ral way to the case of the elliptic differential operator A of
second order with variable coefficients (§ 2 of the present
paper). On the other hand, L. Schwartz [4] has defined the
superharmonicity with respect to the general elliptic diffe-
rential operator in view-point of the theory of distribution
and given an elegant proof to Riesz decomposition theorem.
One may easily prove that the superharmonicity with respect
to A (abreviated to A.-superharmonicity) of the Riesz-
Brelot sense implies that of Schwartz sense in case A is the
ordinary Laplacian.

However, in the case of the elliptic differential operator A
with variable coefficients, it seems not to be evident that the
theory of distribution is applicable to A-superharmonic
functions in the classical sense; in fact, even the local summa-
bility of an A-superharmonic function in the classical sense
seems not to be trivial.

The purpose of the present paper is to prove that any A-
superharmonic function in the Riesz-Brelot sense is locally
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summable and satisfies the A-superharmonicity in the sense
of Schwartz distribution. The A-superharmonicity in Schwartz
sense implies the Riesz decomposition formula as shown in
[4], while one may easily see that any function represented
by the Riesz decomposition formula is A-superharmonic in
the Riesz-Brelot sense. Thus we may conclude the equivalence
of the A-superharmonicity in the Riesz-Brelot sense, that of
Schwartz sense and the Riesz decomposition formula for
arbitrary elliptic differential operator A of second order
with variable coefficients.

2. Main results*

Let ft be a subdomain of an orientable m-dimensional
C^-manifold (m ^ 2), and A be an elliptic differential
operator of the form :

Au(.r) == div [^u{x)] + (b{x). Vu{x}) + c{x)u(x)
.-, 1 & r r~r~\ nf \ ^u(x)'~\ . v, L,/ \ ^u(x) , / \ / \= § v7 )̂ ̂  [va(x^ ̂ r| + S ̂ ) ̂ J + cW.),

where H^1'̂ )!! is a contra variant tensor of class C2 in ft
and is symmetric and strictly positive-definite for any x e ft,
a{x) == det]|ay(a;)[[ == det lla1^)!!-1, b{x) s ||6i(^)l| is a contra-
variant vector of class C2 in n, and c{x) is a Holder-
continuous function satisfying c{x) < 0 in ft. We shall
denote by dx and dS{x) respectively the volume element and
the m — i dimensional hypersurface element with respect
to the Riemannian metric defined by the tensor l|ay(rr)||.
The formally adjoint operator A* of A is defined by

A.*u{x) == div [Vu(rc) — b{x) u(x)] + c{x)u{x).

By definition, a function u{x) is said to be A.-harmonic
in ft if it satisfies Au == 0 in ft, and is said to be A-
superharmonic in ft if it satisfies the following three condi-
tions :

i) — oo < u{x) < oo and u[x) ̂  oo in ft,
ii) u{x) is lower semi-continuous in ft,
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iii) if D is a domain with its compact closure D c Q,
and if w[x) is continuous on D, A-harmonic in D and
satisfies w{x) ^ u{x) on ^)D, then w{x) ^ u(x) holds
in D.

We shall prove the following two theorems in § 4.

THEOREM 1. — Any A.-superharmonic function in Q. is
locally summable in Q.

THEOREM 2. — Any A'superharmonic function u(x) in Q
satisfies Au ^ 0 in 0, in the sense of distribution,

3. Preliminary lemmas.

We shall use some properties of fundamental solutions of
parabolic equations. The following facts are implied by the
results of one of the author's previous papers [3].

For any subdomain D of Q with compact closure D c: Q
and with boundary oD of class C3, there exists one and
only one fundamental solution UD^, x, y) of the initial-
boundary value problem :

(3.1) — = A.U in (0, oo) X D, u\t=o = Uo, u\^r> === 9.
0 ti

The function Unf^, x, y) satisfies that

(3.2)
Un(<, x, y) ^ 0 for any __ _

<( , r c , i /> e(0, oo) x D X D;
the equality holds if and only if at least one
of x and y belongs to oD

and that
(33^ 6Un(^ x, y) ^ Q ̂  any ( > 0, y G oD

6n(y)

and x e D — fu} where —-— denotes the exterior normal
bn^derivative at y e &D. For any continuous functions Uo{x)

on D and ^{t^x) on [0, oo) x ^>D, there exists one and only
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one solution u((, x) of the initial boundary value problem
(3.1) and it is given by

(3.4) u((, x) = f^ Un(^ x, y)uo{y) dy
C 1 i r ^UD^ — T, x, y} , . ,-./ .

-J .^L^nto)———^' 1 "^ '

In particular, if w{x) satisfies Aw = 0 in D and w\^ = ̂
where ^ ls continuous on ^D, then

(3.5) w{x} = f^ Uo(t, x, y)w{y) dy
_ r ^ r bU.(T . x y }

Jo J^ ^D(2/) • v ' / v ' /

LEMMA 1. — Let Q.Q be a subdomain of Q. with its compact
closure ^o c: ^ anclf with boundary b0.o of class C3, u{x)
be an A-superharmonic function on 0. such that u{x) > 0
on t2o o^nd P(rc) be a continuous function on £2o such that
0 ^ v[x) < u{x) on QQ' Then j U (̂(, rr, y)^{y) dy < u(x)
on (0, oo) X Co-

Proof. — The function ^((, .r) = J UQ^, x, y)^{y) dy is
the solution of the initial-boundary value problem (3.1)
with D == QQ? ^o = ̂  and y == 0. Suppose that

,̂ ̂ ) ^ u(.r)

at some point <(, rc> e (0, oo) X t2o? ^d P111

^ === inf {(; ^((, a;) ^ u(a;) for some x e Q,o}.
Then

(3.6) 0 ^ ^(r, x) < u{x) whenever 0 < T < t^

and x E 0.0. By means of the continuity of ^((, x), lower
semi-continuity of u{x) and by the fact: ?((, x) = 0 for
any x e Otio? we i^ay find a point x^ e Q() such that

(3.7) ^, ^i) = u(^) < oo.,

Since u(x) — v{x) is positive and lower semi-continuous on
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O.Q, there exists a positive number S such that

(3.8) 0 < ^x) + 38 < u{x) on ^o.

Further we may find a domain D with boundary oD of
class C3 such that x-^ e D <= Dy and that

^{x) < ^(^i) + 8 and u[x) > u(x^) — S on D.

Combining these inequalities with (3.8), we get

(3.9) v{x) + 8 < inf u{x) on D.
a;eD

Let {u^} be a monotone increasing sequence of continuous
functions on <)D such that Km u^(y) = u(y) on &D. Then
we may easily show that n>00

(3.10) l i m r i n f u^= inf u{y).
n->w \_ye^ J ^e^D

Let w^ be the solution of elliptic boundary value problem :
Kw^ = 0 in D, wJ^D === ^n. Then w^{x) ^ u{x) in D by
means of the A-superharmonicity of u, and the sequence
{w^} is monotone increasing. Hence

w{x) === lim w^{x){ ̂  oo)
n->oo

exists and w{x) < u{x) in D. Since w^{x) ^ inf u^(y)
in D, we obtain from (3.10) and (3.9) that y€s()D

(3.11) w(x) ^ inf u(y) ^ ^x) + S in D.
ve6D

On the other hand (cf. (3.5))

^n(^) == ̂  U^t, o;, y)w,(y) di/
i r 1 ? r ^ bUD(T,^,^/)) , v ,^, \+ ( dr ( ~ w^ Mn(y) ^s(y)>

Jo JbD ( on^2/) )

Let n -> oo, and we obtain

(3.12) u(.r) ^ w(o;) == f^ V^t, x, y)w{y) dy

i r 1 j r { ^UR^,^,?/)) / \ Tc/ \+ 1 ^ 1 - w^ u{y) ds{y)f
Jo JbD ( ^[y) ;

13
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Applying (3.4) to ?((, x] restricted on (0, oo) X D, we get

'̂ x) == JD u^' •r' y)^) ̂+ rdr r I-^^-T.,^)
Jo JOD ( My) ^ ' ̂  w

< jD^^^^My)-8]^+r^r h6111^^^^^)
Jo J^D ( on(!/) )

(from (3.11) and (3.6))

^ u{x) - 8 ̂  UD(t, ^, y) ̂
(from (3.12)).

In particular v(t^ x^) ^ u{x^) — 8 Lv^{t^ x^ y) dy, this

contradicts (3.7) since C UD(^, ^i, y) dy > 0 by (3.2).

-Remark. -— Even the fact that {a;|u(a;) ==00} has no
interior point is not guaranteed before Theorem 1 is proved.
So, for instance, each term in (3.12) might be oo (where we
use the usua.1 convention rule : oo ^ oo, oo > any real num-
ber). However we do not have to care for such situations in

the above proof since V^t, x, y} ^ 0 and — ̂ (^ ̂  V) ^ Q.
My)

LEMMA 2. — Let Q.Q and u[x) be as in Lemma 1. Then

f^ UQ/(, x, y)u{y) dy ^ u{x) on (0, oo) X H).

Proof. — Let y be a positive number less than min u[x),
a-eQo

and {^} be a monotone increasing sequence of continuous
functions on O.Q such_that ^(rc) ^ y {n = I? 2, . . . ) and
lim ^n{x) = u(x) on QQ. For every n > y~1, we apply
n>oo

Lemma 1 to the function v{x) = ̂ ^(x) — n~1 and obtain
JQ ^o(^ x'> y)^^) ~~ ^~1] dy ^ u{x). Let n -> oo, and
we get the conclusion of Lemma 2.
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4. Proof of Theorems.

Let u{x) be an arbitrary A-superharmonic function on 0.
For any given subdomain Oo of 0 with compact closure
Oo <= 0 and with boundary OQo of class C3, we may assume
in proofs of Theorems 1 and 2 that u(x) > 0 on Do because,
if inf u{x) = a ^ 0, we may replace u(x) by

a-eQo
u{x) + (1 — ^)uo{x)

where UQ is the solution of the elliptic boundary value
problem : A^o ==0 in t^o, ^ol^Qo = ^*

Proof of Theorem 1. — Let D be an arbitrary subdomain
of 0 with compact closure D. By the A-superharmonicity
of u, we may find a point Xy e 0' where u(xo) < oo. Let
O.o be a subdomain of 0 such that D U {xo} <= Oo, ^o
is compact and ^O.o is of class C3. Then, as we have noticed
above, we may assume that u{x) > 0 on Oo. Hence

(4.1) u{x) ^ f^ U^((, x, y)u(y) dy on (0, oo) X Qo

by Lemma 2. We fix a positive number to. Then, since
UQ^O» x, y) > 0 on O.o X O.o and (B = min U^(<o, Xo,y) > 0

^eD
by (3.2), it follows from (4.1) that u(xo) ^ ^ (Bu(t/) dy,
which implies j^ u{y) dy ^ u(xo}l^ < oo, q.e.d.

Proof of Theorem 2. — Let <p(;r) be an arbitrary non-
negative valued function of class C2 and with compact
support in 0, and O.o he a subdomain of 0. containing
the support of <p and such that Oo ls compact and ^Oo
is of class C3. It suffices to prove that

C u(;r).A*<p(;r) dx ^ 0.
i/ L2o

We may assume that u{x) > 0 on Oo as we have noticed
above. Hence we have by Lemma 2

(4.2) J^ u(y) \f^ <p(^)U^(f, x, y) dx - 9(17) \ dy

Ja<p^ iJL UQ^9 ̂  y^y^v ~ u^ S ̂  ^ °-
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On the other hand, since

-^ f ?(^)U^(t, x, y) dx =C ^x) ̂ u^^) dx
ot^Qo J Qo ot

= f^ ?(^) •AJJQ/(, x, y} dx = f^ A*cp(a;). UQ^, a;, y) ̂

(the subscript re to A indicates to operate A to UQ^, x, y)
as a function of x), we get

lim — ( <pCr)U^((, a;, y) dx = A*<p(i/)
^0 0( JQ^0 Ot JQ^

boundedly in y e tlo; accordingly

1 ( F )lim — ] ^(x)V^(t, x, y} dx — ^(y)[
t^o t (JQ, }

\. ^t { ^ r )= lim — I ]— 9(^)U^(r, ^, y) dx[ dr = A*9(t/)
(^o t J o ( O T J^ )

boundedly in y. Combining this result with (4.2), we obtain

r A*^{y}.u{y)dy ^ 0,
«/ ft^O

q.e.d.
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