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ON THE REPRESENTATION
OF DIRICHLET FORMS
by Lars-Erik ANDERSSON

Dedie a Monsieur M. Brelot a Ifoccasion
de son 70s anniversaire.

This article is an abbreviated version of [2] in the reference
list.

1. Introduction*

The purpose of this article is to complete and generalize
certain results on the representation of Dirichlet forms obtai-
ned by A. Beurling and J. Deny (see [3] and [5]) and, recently,
by G. Allain (see [1]).

First let us introduce some notations and definitions.
X denotes a locally compact Hausdorff space.
V is a vector space of realvalued functions defined on X.
Q and N will denote bilinear forms defined on V.

w == w, /•)•
Q is said to be positive if Q(f) ^ 0 for all f in

the domain V.
Coo(X) is the set of all continuous realvalued functions on X,

with compact support.
Q c: R/* will denote an open set.
Qo(Q) is the set of all realvalued, once continuously diffe-

rentiable functions on Q, with compact support.
A^o(D) is the set of all realvalued Lipschitz functions of

order one with compact support.
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K always denotes a compact subset of Q. <= R/1.
Hgrad /'[I „ == sup |grad f{x)\, where f e Cio(O) and | .| is

x

the ordinary Euclidean norm.

DEFINITION 1.1. — A bilinear form N 15 said to be local if
N(/*, g) == 0 whenever f is constant on a neighbourhood of
supp g and pice versa.

DEFINITION 1.2. — A normal contraction T 15 mapping T :
C -> C (or T : R -> R) suc/i that TO == 0 and

|T^-T^| < |^-^|

/or aM Zi, Zg in C (or R).
If u and v are real or complex valued functions then u

is said to be a normal contraction of v if

\u{x)\ ^ \v{x)\ and \u{x) — u{y)\ ^ \v(x) — v{y)\

for all x, y in the domain.
It can be shown that u is a normal contraction of v if

and only if there exists a normal contraction operator T
such that u === TP (sufficiency is trivial).

DEFINITION 1.3. — Ta will denote the normal contraction
operator^ which projects C (or R) onto the line segment [0, a],
a > 0.

T\ is called the fundamental contraction operator. Thus
T^x = min (a^, 1) if x is real.

DEFINITION 1.4. — A normal contraction T is said to
operate on the positive bilinear form Q (with domain V) if
fe V => Tfe V and Q(Tf) ^ Q(/*).

A central problem in potential theory is the following:
Find all positive, symmetric, bilinear forms defined on a
subspace V of Coo(X), on which all normal contractions
operate (see [I], [3] and [5]).

In [I], essentially, the following theorem is proved.

THEOREM 1.1. — If Q is positive, symmetric and defined
on V, which is dense in Coo(X) (in the sup-norm topology)
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and if Ti operates on Q then

Wg)-ffWg(x)d^x)

+ -I ff (/N - f{y)){gW - g(?/)) ^(^ i/) + N(/; g).
Here, [i is a uniquely defined positive Radon measure on X,
a{x, y) is a positive, symmetric Radon measure on X X X
which is uniquely defined (except of course on the diagonal)
and N is a uniquely defined positive symmetric form of local
type. Moreover Ti operates on N.

The following problem arises naturally: Characterize the
local part when X = Q. c: R/^ Q open.

2. Statement of results.

The following theorems are valid.

THEOREM 2.1. — If, in theorem 1.1, we make the additional
assumption that all normal contractions operate on Q, then
also all normal contractions operate on the local part N.

This theorem has earlier been discovered by P. Roth.
The proof can be found in [2].

THEOREM 2.2. — Assume that N is a local, positive, sym-
metric bilinear form defined on V == Qo(Q) {or on V,

Qo(D) <= V c: ASo(Q)

where V is closed in the sense that

/ ^eV. supp / , c= K, l lg rad^-grad/ 'U. -^O^^/ ' eV) .

Then there exists a locally finite point set E <== Q with the
following property: If we restrict N(/*, g) to functions /*,
g e V which are affine on some (arbitrarily small) neighbour-
hood of each point of E then N is bounded in the sense
that for each compact set K c Q. there exists a constant
CK such that

|N(/-,g)| ^ CKllgrad/IIJgradgJL
whenever supp f and supp g <= K.
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Moreover, for functions /*, g e V which have continuous
derivatives at every point of E, we have a partition

N(A g) = No(f, g) + W, g).

Ni is a focaZ positive bilinear form which is hounded in the
sense described above.

No has the following properties :
(i) No(/*, g) == 0 if for every point x e E, either f or g is

constant in some (arbitrarily small) neighbourhood of x.
(ii) No(f, g) = 0 if both f and g are affine in a neigh-

bourhood of each point of E.
(iii) No is unbounded (unless No s= 0), meaning that

inequalities like those for N^ do not hold.
Furthermore, No and N1 are symmetric.
With the aid of theorem 2.2 it is possible to prove.

THEOREM 2.3. — If N is a local, positive, symmetric bili-
near form on V => Qo(n), on which all normal contractions
operate, then N is bounded in the sense described in theorem
2.2. when restricted to functions f, g e Cio(t2).

THEOREM 2.4. — If N is a local, symmetric, bilinear form
defined on V ^ Qo(Q), which is bounded in the sense of
theorem 2.2, then there exists a symmetric family {(T^}^,^
of Radon measures on Q such that for f, g e CSo(Q)

^-s/l^-
The measures (T^ are uniquely defined, provided we demand
symmetry, cry == cr^. Moreover, if N is positive then

S M/^v
ij

is a positive measure for all h^ e Coo(^), ^ = = 1 , 2, . . . , n
(this is equivalent to saying that the matrix {<jy(B)}y is
positive semidefinite for all compact Borel sets B <= Q).
We also have

/il^ul < CK



ON THE REPRESENTATION OF DIRICHLET FORMS 15

and
|i I ̂ yl ^ ^CK for i ^ /'.

If N is positive then

j^\d(5^\ ^ CK tor all i, /.

(K is the interior of K).

COROLLARY 2.5. — If Q is a positive, symmetric, bilinear
form defined on V ^ Qo(^) such that all normal contractions
operate on Q then for /*, g e C^o(Q) we have

W, s)=ffe iiv-W + -j- Jj" (/•(») - /•(i/))(g(»)

-»(")) *'(^)+sJ'^<fc,,.
(Notations as above.)

3. Proofs of the stated results.

Proof of theorem 2.2. — Using an idea of J. Peetre (see [7])
we introduce the point set E defined by E == {x e ft;
for every neighbourhood o>a; 9 re, 39 e V, supp 9 c: o^,

HgradyL < 1 and N(9) > 1}.

LEMMA 3.1. — E is locally finite^ i.e. every compact set
contains at most finitely many points of E.

Proof. — Suppose E is not locally finite. Then E has an
accumulation point x^ e Q and there exists a sequence
{x^ of distinct points in E, ^ + x^ converging to x^.
Now choose neighbourhoods o^ 9 x^ such ^that co, C\ ^j == <p
if i ^ j and all o, c= K for some compact K. By the
definition of E we can find functions 9, e V with supp
y^. c: (o^ Ijgrad yd] „ ^ 1 and N(9,) ^ 1. If we take

00 1
9 = S -7, ?h then 9 e V.

i V1
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N is local and positive, which implies

N ( < p ) = i 4 - N ( ^ ) + N ( / i l < p ^ > s 4 - - ^ o o as /c^oo.
1 l \k+l\/l / l Z

This is a contradiction since 9 e V.
Thus the lemma is proved.

LEMMA 3.2. — If K <= D\E ^ compact, then there exists
a constant CK 5uc/^ that

|N(Ag) | ^ CKJ grad/1IJ grad g[L

whenever supp /* anrf supp g <= K.

Proof. -- For every re e K, 3 neighbourhood ^^3 x
such that

supp 9 <= (^.=^N(9) < ||grad(p||^.

K, being compact, can be covered by finitely many such
neighbourhoods co,, v = 1, 2, . . . , n. We can also find a
partition of unity,

n

S <Pv = 1 on K, 0 ^ 9, ^ 1,
v=l

supp 9, c: o,^ cp, e Qo(^).
n

/"= S /9v if supp 7 <= K.
v=l

0 < N(^) = N (i /-y,) = i N(/-v,) + S N(/y,, /•y,).
\ 1 / 1 V^pL k

|N(M < llgrad(/-v,)||^ <s ()|grad f\\^ + ll/'IIJIgrad y,||̂

R"1- ll/'ll^, < CiHgrad /')[ „ for some constant Ci (depending
only on K). Therefore N(/y,) < C^lgrad/•||2., where

Ca == (1 + Ci max flgrad ̂ h)2.

Schwarz' inequality gives

|N(/Vv,/^)| < Wf^yWW112 < C^lgrad/'ll^.
••• N(n < n2^]! grad f\\^ = CK | grad f\\^.

Next, by Schwarz' inequality

W, g)| < (N(/-))^(N(g))^ < CKllgrad/'IIJIgradgll,.
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LEMMA 3.3. — If K <= Q ^ compact then there exists a
constant CR ^uc/i ^Aa^

|N(Ag)| ^ CK|| grad/1J grad g|L

whenever f and g are affine in some neighbourhood of each
point of E and the supports are contained in K.

The proof of this lemma is fairly straightforward but
lengthy and is therefore omitted. The details can be found
in [2].

To define the forms No and N^ we need only observe
that

Fi(K)= {f:feV,snppf^ K,

f affine on a neighbourhood of each point of E} is dense in
¥(K)={ff' / 'eV, s u p p / ' c K and grad f is continuous

at every point of E}

under the norm ||grad/1]^.
Now if /*, g e F(K) are given we can take /,, g, e Fi(K)

such that

Hg^ fn — grad /'|L -> 0, ||grad g, - grad gL -> 0 as n -> oo.

DEFINITION. - N,(y, g) = lim N(^, g,)
n>ao

N O - N - N I .
It easily follows that the definition is independent of the

particular sequence and that we have the properties :

INi^g)! ^ CK|| grad f\\ J grad g|L.
Ni(/1) ^ 0 for all f.

NO^A g) = 0 ^ f and g are affine in a neighbourhood of each
point of E.

Property (i) of No is proved in the following way : First,
it suffices to consider the case when E consists of a single
point, for example 0. Then, if f is constant on a neighbour-
hood U of 0, we have No(/1, g) = N(/, g) - lim N(/; g,)
where g^ e F^K) can be chosen such that

^PP (gn - g) c: U (and || grad g, - grad g|L -> 0)
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consequently No(/*, g) == lim N(f, g — gj == 0 by the locality
of N.

Finally, if No were bounded in the sense described, we
could redefine N1 = N, No == 0.

This completes the proof of theorem 2.2.

Remark. — It should be noted that N^f) ^ 0 but not
necessarily No(/*) ^ 0. With the aid of a suitably chosen
Hamel basis it is possible to construct an example showing this.

Proof of theorem 2.3. — We will prove that in the partition

N(f, g) = W, g) + W, g)
deduced in theorem 2.2 we have

No(A g) == 0 for all f, g e 0^(0).

LEMMA 3.4. — Let /*e Qo(t2) have the following properties:
(i) f = 0 on E,
(ii) grad f == 0 on E,
(iii) /* ^ 0 on some neighbourhood of E.

Then No(f) == 0.

Proof. — By the locality properties of No it is enough to
carry out the proof for the case that f > 0 everywhere. Let h:
R4- ~> R+ have the following properties :

(i) AeC^tO, <x>[), ji
(ii) /i(a;) == x for 0 < x < -^-»

(iii) /i(a;) == i for x > 2,
(iv) 0 < /i'(a;) ^ 1 for all a;.
Take /i,(a;) = sh ̂ \ e > 0. Then /. = ^(y) is a nor-

mal contraction of f such that
a) A e Qo(Q).
fc) /* == /e on some neighbourhood of E.
c) f{x) > 0 and f,{x) ^ 0 for aU x.
d) for all a;, y f(x) — f{y) has the same sign as f^{x) —- /e(y).
e) Hgrad/,11,^0 'as s-^ 0+.
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Now we can choose a sequence e, tending to zero fast
enough to ensure that

g = S /s. e %(Q).
1=1

n

By c) and d) it follows that ^ /£, ls a normal contraction
of g. i-i

6) Implies that
No(/^ /e,) == No(/1)

and

No(s/..)=^No(n.
Hence

N(g) ^ N (i /,) = N, (i /•„) + N, (i /•.)
\ l / \ 1 / \ 1 /

> No(i/,,)=n2N^).
\ 1 /

Thus No^) ^ 0. Suppose No^) < 0. Then

No(/'J = No(n < 0.
0 ^ N(4.) == No(/,,) + N,(4.) == No(y) + N,(/,.) ̂  No(n < 0

as e, -> 0 which is a contradiction. Therefore No(/') = 0.
Next we want to get rid of the condition (iii) in the previous

lemma.

LEMMA 3.5. — Let feC^{0.) satisfy the conditions /*== 0,
grad/*= 0 on E. Then there exists a function 0 e C^(Q)
such that

a) 0 == 0 on E;
b) grad 0 = 0 on E;
c) 0 ^ 0 on some neighbourhood of E;
rf) O — /* ^ 0 <m 5ome neighbourhood of E.

Proof. — It is enough to carry out the proof for the case
that E n supp /* consists of one single point, say 0.

Let^(r) ==sup jgrad f{x)\.
(a;«r
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4' is nondecreasing, continuous and lim ^(r) = 0. Take
r->o

<D(:c) = @(x) f^ ^(r) ̂

where © e Qo(n) and © = 1 in a neighbourhood of 0.
Hence, for small enough x, we have

1/^)1 = J '̂J^ < ^ W dr - ̂

which proves the lemma.
Next let us study N()(XO — f) when f and 0 are as in

the previous lemma. For X ^ 1 we have X$ — f ̂  0
in a neighbourhood of E. Consequently lemma 3.5 gives

0 = No(XO -/•)== ^No(O) - 2XN<,(<D, /•) + No(/-).

But X ^ 1 was arbitrary, so the polynomial must vanish
identically. Therefore No(/') = 0 whenever f === 0, grad f = 0
on E.

Next if g is any function in Qo(i2) we can write

g=^ +/*

where 9 is affine on a neighbourhood of E and f = 0,
grad/*== 0 on E. We are going to show that No(g) = 0.
It is no restriction to assume that supp g 0 E === {0}. Let

. , \ __ (1 tor |^| ^ 1,
rw ~~ (0 for \x\ ^ 2,

0 ^ ^ ^ 1, + e C1.

^)=+(fV
Then if /g = ̂  we have ||grad /g||^ ->• 0 as s -> 0.

Hence Ni(/g) -> 0 and Ni(/g, h) -> 0 as e -> 0 for every
A e C^tl). Now

No(g) - No(H + N0(9) + 2No(<p, U = 2No(9, f) = 2No(9, /s).

But according to Schwarz9 inequality we have

|No(y, A) + Ni(.<p, /.)| = |N(<p, /•,)! ^ (N(9))^(N(/-,))^
= (N(<p))l/2(No(/•,) + N^))^ = (N^))1/^^^,))1/2 ̂  0

as e —'• 0.
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Thus

No(g) = 2(No(9, Q + N,(y, /*,)) - 2N,(q), ^) -> 0

as s —^ 0.
Hence No^) == 0 for all g e CSo(n). To complete the

proof of theorem 2.3 we observe that

No(A g) - {- (W + g) - W - g)) = o
for all /•, geCSo(Q).

Proof of theorem 2.4. — If we restrict N to D(Q), the
space of all infinitely differentiable realvalued test functions
on 0. with compact support, then N is a continuous bili-
near functional. We use the kernel theorem (see for example
[6]) to conclude that N(/", g) = <f{x)g{y), T(^, y)>, where
/, g e D(2Q), f(x)g{y) e D(Q X 0.) and T(a;, y) is some distri-
bution in D^D X 0-). Furthermore, the locality of N implies
that supp T c: diag (Q X t2) = {{x, y) e 0. X ^ : rr == y}.

Now let K c Q be compact. K is the interior of K.
If supp f, supp g c K, then we have

</^)g(y), TQr, y)> = ^ <DSD^(/'(^g(2/)), ^P(^, y)>
a,^

laj-t-I^Km(K)

where (T^P are measures on K X K, m(K) denotes the order
of T when restricted to D(K X K). Furthermore, it is
possible to choose the measures a^'P such that

supp CTK'^ c: diag (K X ^1).

This follows from the general fact that if a distribution T
on R" has support on a linear subspace of R/1, then the
measures « representing » T can be choosen to have
supports on that same linear subspace (see [8], chapter 3,
§ 10).

Thus we have

N(A g) = 2 <Da/•(^DPg^), o^)>
a,(?

ja|+lp|^m(K)
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where G^'P are measures on K. We assumed that

|N(/-,g)| ^ CK||grad/-|L||gradgL,

when supp f, supp g (=- K.

LEMMA 3.6. — If N 15 symmetric, local, and if
(i) N(f, g) == S <Da/•(^DPg(^), Tl^)>, T^ distribu-

tions On K, |aj+|^m(K)

(ii) |N(/,g)| ^ CJgrad/tJgradgL ^^ /-, g e D(K) ^n
</iere erci^t uniquely defined distributions Ty K (o^ K) 5McA
(Aat T^K == T^K and

^o-?^^/^1)^6^-
The fact that Ty K are uniquely defined, implies that we
obtain distributions Ty on D(t2) such that

^ î̂ )
for all f, geDW (Ty,K = Ty]i).

Proof. — To simplify notations let us write T'P, Ty, w
instead of T ,̂ Ty^, m(K) and let all functions f, g be
supported in K.

Let 9 6 C" be any fixed function with supp 9 <= K.
Take f{x) == (p^e-^, g{x} == ^(a;)^-^.
(So far we have assumed that the bilinear forms act on

real functions, but by linearity we can of course extend them
to complex valued functions.) Then

D'/" )̂ = (— ^'"'X^^e-^ + 0(| Xjl'1!-1),
DPg(a;) == iWy.^{x}e1^^ + 0(|ti|IPl-1),

for large values of | X| and [ [ji[.

llgrad/IL < [|grad9l|,+ \\<?\U\\
llgradgH, < ||grad9||,+ MM

N(/', g} = S (- l)lal+lpl(- l)^^^-^-^'^2, T^) + • • -,
|a|+|p|<m

where the dots stand for terms containing derivatives of 9.
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Let X — (A == T, (A == x — T and let T be fixed. Then

N(A g) = S (- ^)'"(- 1)"̂  - T)^-1^^, T'P)
(a|-+-|ft|=w

+0(|x|"-i).
N(A g) = S (- t)'"(- l)1131^ - ̂ (T-PyTM + 0(H"-i).

|aH-lp|=m
W, g)| < CKllgrad/'IJJgradgIL =0(1X|2), as |X| -> oo.
The first expression shows that N(/*, g) is a polynomial

in X (for fixed r) and the last that this polynomial is of
degree at most two.

Thus, if m > 2 and if v, with |v| == m, is a fixed index
then the coefficient of ^v must vanish.

The coefficient of 7^ is
(_ iyn ^ (T^T^X-l)'^.

a-+-p==v

(A denotes the Fourier transform.)
... ^ (- i^T^T^) == 0.

a-i-p=v
... ^ (_ l)!?!!^2^) = 0.

a-+-{B=v

.-. ^ (— 1)IP^T<XP == 0, as 9 was arbitrary.
a-+-p==v

Now we make repeated partial integrations in the repre-
sentation

N(A g) = S <Da/•(.r)DPg(,r), T-P^))
lal+lpl^m

and in each step we use the relations
^ (- I)IPIT«P = 0

a-+-p==v

for the terms of the highest order. Then we can reduce the
expression to the form

N(A g) = S <Da/>DP^ T^>
|a|-Hpl<2

(with abuse of notations).
A few more fairly simple manipulations (the symmetry of

N(/*, g) must be used, the details are in [2]) show that we
can actually write this

wf ^ — v /K ii, T \^v/? &/ — 2j \ s^., s ^ ' ^-ij / J
tj \OXi OXf /
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where Ty == T^ are distributions on K. The uniqueness
of Ty follows from the following relation, which is easily
verified

2<y, Ty> = N(^, ^,9) + N(^,/1, a,9) - N(/*, ̂ 9).

Here 9 is a function such that 6 == 1 on a neighbourhood
of supp /*. Thus lemma 3.6 is proved.

LEMMA 3.7. — The distributions Ty in lemma 3.6 are Radon
measures on Q.

Proof.

^-a®^-''"
and

|N(Ag) | ^ CKllgrad/IUgradgIL
when supp/1 and supp g <= K.

In these formulas we now let f(x) = f^(x)ei^vi and
g(x) == e-i^Q(x)

where 9 = 1 on a neighbourhood of supp /*, supp f <= K.
We can also have 0 ^ 9 ^ 1 and supp 9 <= K

llgrad/IL ^ lgrad/,| |,+|X|||AII..
llgradgL ^ l lg rad9L+ |^ | l | 9L= ||grad9||,+|X|.

Then
N ( A g ) = ^ < / , 9 , T u > + 0 ( | X | )

for large X(/^ and 9 fixed). Also

|N(/-,g)| ^ CK{^|IA|| +0(|X|)}.
.•.l^</i8, Tu> + 0(X)| ^ C^{\W^ + 0(X)}.

Divide by X and let X -> oo. Then

\<fi^n>\ < CKHAL
which proves that T^ is a Radon measure a^ and that

J^l^nl ^ CK.

For the same reason T^ are measures (?„. That also Ty
are measures follows after a change of coordinates. The
details are omitted.
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LEMMA 3.8. — If N is also positive, then ^ h^a^ is
. i j

a positive measure for all continuous functions h^ e Coo(^)?
i == 1, 2, . . ., n. T/i^ 15 equivalent to saying that the matrix
{cTy(B)}y ^ positive semide finite for every compact Borelset
B c n.

The proof is based on a similar technique as earlier and is
omitted. For details see [2].

This completes the proof of theorem 2.4.
Corollary 2.5 is an immediate consequence of theorems 2.1,

2.3 and 2.4.
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