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THEORY OF CAPACITIES (')
by Gustave CHOQUET (*)(®).

INTRODUCTION

This work originated from the following problem, whose
significance had been emphasized by M. Brelot and H. Cartan :

Is the interior Newtonian capacity of an arbitrary borelian
subset X of the space R’ equal to the exterior Newtonian
capacity of X?

For the solution of this problem, I first systematically
studied the non-additive set-functions, and tried to extract
from their totality certain particularly interesting classes,
with a view to establishing for these a theory analogous to
the classical theory of measurability.

I succeeded later in showing that the classical Newtonian
capacity f belongs to one of these classes, more precisely : if A
and B are arbitrary compact subsets of R? then

f(AUB) +f(ANB)=f(A) + f(B).
It followed from this that every borelian, and even every

analytic set is capacitable with respect to the Newtonian capa-
city, a result which can, moreover, be extended to the capa-
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cities associated with the Green’s function and to other clas-
sical capacities.

The above inequality, which may be called the inequality of
strong sub-additivity, is equivalent to the following :

Vi(X; A, B)=f(X)—f(XUA)—f(XUB) +f(XUAUB) 0.
Now, this relation is the first of an infinite sequence of inde-

pendent inequalities, each of the form V,;(X; AL A,,...,A)X0,
which expresses the fact that the successive differences — in
an obvious sense — of the function f are alternately positive
or negative.

Thus, the Newtonian capacity is seen to be an analogue of
the functions of a real variable whose successive derivatives
are alternately positive and negative.

It is known from a theorem of S. Bernstein that these
functions, termed completely monotone, have an integral
representation in terms of functions ¢ “. Likewise, the set
functions which are « alternating of order infinity » possess
an integral representation in terms of exponentials, that is,
of set functions {(X) which satisfy

0<¢<1 and YXUY)=X).Y).

These exponentials take values in [0, 1] only, and this makes it
possible to give a remarkable probabilistic interpretation of
the functions which are alternating of order infinity.

More generally, a detailed study of several other classes of
functions justifies the interest in the determination of the
extremal elements of convex cones of functions, and in the
utilization of the corresponding integral representations.

Cuaprer 1. — Borelian and analytic sets in topological
spaces. — In this chapter, borelian and analytic subsets of
arbitrary Hausdorff spaces are redefined and studied. " In
fact, a mere adaptation of the classical definitions would
lead to sets of an irregular topological character for which
an interesting theory of capacitability could not be construc-
ted. Therefore, we designate as borelian and analytic sets
the sets which are generated by beginning with the compact
sets and using the operations of countable intersection and
union, and continuous mapping (or projection) only. Thus
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the operations of « difference » or « complementation » are
not used.

The role which the G; sets play in the classical theory is here
played by the Kg; sets.

Cuarter II. — Newtonian and greenian capacities. — In
this chapter, the Newtonian and Greenian capacities of
compact sets and, thereafter, the interior and exterior capa-
cities of arbitrary sets, are defined. An equilibrium poten-
tial A(X), and a capacity, f(X), are associated with each
compact subset X of a domain. The successive differences

(— 1)"V,,(X; A, ..., A, are defined for each of these func-
tions; it is shown that each V,,,is non-positive, and the condi-

tions for the vanishing of the Vn are determined.

It 1s shown that the sequence of these inequalities for the
capacity f is complete in the sense that every inequality
between the capacities of a family of compact sets obtained
from p arbitrary compact sets by the operation of union is a

consequence of the inequalities V,<0. A more penetra-
tlng analysis shows that this result remains valid for the capa-
cities of the sets which are obtained from p arbitrary compact
sets by means of the operations of union, intersection, and
difference.

From the relation V, <0, the following important inequality
1s obtained :

F(UA)—F(Ua) < DIFA) (@),

for every finite or countable family of couples of compact sets
a; and A, satisfying the relation a;C A; for each i.

Furthermore, from the relation V, <0, we deduce a result
concerning the capacity of certain compact sets, relative to
domains which are invariant under a one-parameter group of
euclidian motions.

The chapter ends with the study of the differential of f(K)
with respect to suitable increments AK of K, and with the
derivation of a formula which shows that the Green’s function
G(P,, P,) of a domain is a limit of the function

G(K“ K,) = f(K’>+f(Kj))—f-(fI:£§i U Kz).
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Cuaprer III. — Alternating and monotone functions. Capa-
cities. — This chapter introduces several classes of func-
tions and certain basic concepts as follows: alternating
(monotone) functions of order n or oo which are mappings
from a commutative semi-group' into an ordered commu-
tative group and which satisfy inequalities of the form
Ve<0 (\7,=0); the concept of conjugate set functions,
connected by the relation

¢ (X') + ¢(X) =0, where X' = [: X 1s the complement of X

the concepts of capacity on a class of subsets of a topological
space, of interior capacity (f,) and exterior capacity (f*), of
alternating and monotone capacities, of a capacity which is
the conjugate of another capacity.

Cuaprer IV. — Extension and restriction of a capacity. —
The extension f, of a capacity f,, defined on a class &, of
subsets of a space E, to a class & properly containing §&,,
by means of the equality f,(X) = f{(X), can often be used
as a means for regularizing the class 8, and also as a means of
simplifying proofs of capacitability.

On the other hand, the operation of restriction will some-
times make it possible to replace the space E by a simpler
space.

Furthermore, the preservation of various classes of capa-
cities (alternating or monotone) under these operations of
extension and restriction is studied; for instance, let &, be the
class of all compact subsets of a Hausdorff space E; then, if
fi is alternating of order n, the same is true for every exten-

sion f, of f,.

CuarTer V. — Operations on capacities and examples of
capacities. — First, several operations which leave certain
classes of capacities invariant are studied: for instance, if
a capacity g(Y), alternating of order n, is defined on the class
X (F) of all compact subsets of a space F, and if Y = ¢(X)
denotes a mapping from R(E) into H(F) such that
(X, u X,) =¢(X,)vu¢(X,) and which satisfies, in addition,
a certain requirement of continuity on the right, then the
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function f(X) = g(Y) is also a capacity which is alterna-
ting of order n. The projection operatlon is such an operation
and will play an essential role in the study of capacitability.

The remainder of the chapter is devoted to the study of the
following important examples of functions and capacities
which are alternating of order o : the operation sup on a
group lattice; increasing valuation on a lattice (for example,
a non-negative Radon measure); functions derived from a
probabilistic scheme; exponentials; energy of the restriction
of a measure to a compact set; and others.

Cuarrer VI. — Capacitability. Fundamental theorems. —
First, the alternating capacities are studied: we establish
conditions, to be imposed on E, §, and f, which will suffice
to insure the preservation of capacitability under finite or
denumerable union, and which will imply the validity of the
relation

(UJA.) = lim f*(A,)  (where A,cA,.,).

It then follows from a general theorem that every Kg;
contained in a Hausdorff space E is capacitable with respect to
every alternating capacity f defined on H(E). In order to
pass from these K, sets to arbitrary borelian and analytic
sets, we use the fact that every analytic subset of E is the
projection on E of a K,; contained in the product space
(E X F), where F is an auxiliary compact space; and we asso-
ciate with f the capacity g on K(E X F), where g is defined by

8(X) = f(prsX).
It is then easily proved that every g-capacitable subset of
(E X F) has a projection on E which is f-capacitable. Now, g
is alternating as well as f; hence, every Ky of (E X F) is
g-capacitable. From this follows the f-capacitability of all
analytic subsets of E.

A number of counter-examples show that it is impossible to
improve on the results obtained: in particular, by using a
result of Goedel we prove that it is not possible to esta-
blish the capacitability of all complements of analytic sets.

After giving several applications of these results to measure
theory, we investigate monotone capacities. Their study is
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reduced to that of alternating capacities by means of the
concept of conjugate capacity. From the general theorems
obtained in this way, special cases such as the following are
derived : :

If E is a complete metric space, and if f 1s a monotone
capacity of order 2 on R(E), (f(AuB)+f(AnB)=f(A B)),
then all borelian subsets of E and all complements of analytlc
.sets are capacitable.

CraapTeEr VII. — Extremal elements of convex cones and inte-
gral representations. Applications. — In this chapter, we study
several convex cones whose elements are functions; we deter-
mine their extremal elements and employ them to obtain inte-
gral representations of these functions. The basic tool for
these representations is the theorem of Krein and Milman
concerning convex and compact subsets of locally convex
spaces, and its immediate consequences. This theorem enables
us to state the existence of such a representation in the case
of a cone such that its base and also the set of extremal point
of the base are both compact. Uniqueness of this represen-
tation implies that the cone under consideration is a lattice;
but it has not been proved that this condition is sufficient to
insure uniqueness.

We study in this manner the positive increasing functions
defined on an ordered set, the increasing valuations on a
distributive lattice, and, in particular, the simply additive
measures defined on an algebra of sets; for these we use the
compact spaces which Stone associates with these algebras.

The study of the cone of all positive functions which are
alternating of order infinity on an ordered semi-group S illus-
trates the significance of the exponentials | defined on a
semi-group (0<¢ <1, and {(aTbd) = {(a).{(d)). When
S=R, or S= R", theorems analogous to those of S. Bernstein
are obtained; when S 1s an additive class of subsets of E, then
we find extremal elements each of which is characterized by
a filter on E.

In seeking a way to study the cones whose elements are
capacities on Ji(E) we are led to the introduction of a « vague
topology » on the set of all positive increasing functions f
defined on H(E): this 1s achieved by the use of the extension
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of f to the set Q, of all numerical functions defined on E
which are non-négative, continuous, and zero outside of a
compact set.

It is then proved, for instance, that if E is compact, the set
of all capacities f which are positive and alternating of order
oo on K(E), and which satisfy the relation f(E) =1, is compact
in the vague topology, as 1s also the set of its extremal points.
This leads to a remarkable probabilistic interpretation of
these capacities, and makes it possible to prove that the class
of these capacities is the least functional class containing all
positive Radon measures, which is stable in a certain sense,
with respect to continuous mappings.

Thereafter, we take up the study of those classes of func-
tionals on Q, which may be obtained from the primitive
functions f, defined by the relation f,(¢) = ¢(a) by means
of the following operations: superior envelope, inferior enve-

lope, and integration (g-——- /ﬁ du (X)).
The chapter ends with the study of the relations between

the pseudo-norms defined on a vector lattice V and the func-
tions f which are strongly sub-additive on V.



CHAPTER 1

BORELIAN AND ANALYTIC SETS IN TOPOLOGICAL SPACES

1. Introduction. — There are difficulties in extending to
an arbitrary topological space E the classical results concer-
ning the parametric representatlon of borelian sets. For
example, in a general setting each subset of E is the continuous
and 1-1 image of an open set of a suitable compact space; for
one can easily construct a compact space which contains an
open set of a given cardinal and each of whose points is iso-
lated. ’

In order to obtain theorems of interest, one is, therefore,
led to modify the classical definitions. In particular, we shall
have to eliminate the open sets and begin with the compact
sets, which possess topological characteristics invariant under
continuous mappings. Therefore, we shall be led to replace
the sets G, whose role is fundamental in the study-of classical
borelian and analytic sets, by the sets K;; which we shall
define in terms of compact sets.

1. 1. DeriniTioN. — A class B of subsets of a set E whwh
contains the intersection and the union of any denumerable
family of elements of B will be called a borelian field on E.

1. 2. DerinttioN. — If E is a Hausdorff topological space,
the smallest borelian field on E which contains each compact set of
E will be called the K-borelian field of E and denoted by $B(K).
The members of B(K) will be called K-borelian sets.

2. Classification of K-borelian sets. — One can show, as in
the classical theory, that the K-borelian field of E is the
increasing union of a transfinite sequence of type () of classes

Koy Ky ooy Ry ooy gy ooy (2 Q)
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where

(1) &, designates the class of compact sets of E;

(i) H, designates the set -of denumerable intersections
(unions) of elements belonging to Jig where § <C a if a is even
(odd), the limit numbers « being considered as even.

We shall designate in general the classes with finite indices
by R, K,, Res, ..., and we shall say, for example, that a set is
a K, if 1t belongs to the class K.

2. 1. Immediate consequences.

(1) Each finite union or intersection of sets of one class %,
belongs to that class. Each denumerable intersection (union)
of sets of M, belongs to X, if « is even (odd).

(i1) A simple argument by transfinite induction shows that
each K-borelian set of E is contained in a K, of E. It follows
that if E is a separable and complete metric space which is
nowhere locally compact, not all borelian subsets of E, in the
classical sense, are K-borelian; on the other hand, we shall see
later that all classical borelian subsets of a separable and
complete metric space are K-analytic.

If E 1s such that each open set G of E is a K;, each closed
set F of E is, of course, also a K ; then the field of borelian sets in
the classical sense is identical with the K-borelian field (°).
This 1s the case when, for example, E is a separable and locally
compact metric space or, more generally, when E is a metric
space which is a K,.

3. K-analytic sets. — We shall now define a class of sets ana-
logous to the classical analytic sets.

3. 1. DerinitioNn. — In a Hausdorff topological space,
each subset which is the continuous tmage of a K contained
in a compact space will be called a K-analytic set.

3. 2. Tueorem. — Each subset of a Hausdorff space which
is the continuous image of a K-analytic set is also K-analytic.
The class of K-analytic subsets of a Hausdorff space ts a bore-

lian field.

(6) It would be interesting to see, if, conversely, this identity entails that each
open set of E is a K.
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Proof. The first part of the theorem follows immediately
from the transitivity of continuity.

In order to establish the second part of the theorem, let
AL A, ..., A, ..., be a sequence of K-analytic sets of E,
where A, is the image, under the continuous mapping f,,
of the set B, CF,, where B, is a K5 and F, is a compact space.

Let us show first that A°=UA,, 1s K-analytic. Let F

be the compact space obtained by the compactification of
the topological sum-space EF,, by the addition of the point

at infinity; let B= UB,,_; the set B is by definition a subset
of F.

We shall designate by f the mapping of B into E whose
restriction to B, is identical to f,; this mapping is clearly
continuous and we have A; = f(B).

It remains only to show that B is a K;3. Now by definition

we can set B, = nB,,,i (t=1,2,...,) where each B,; is
a K, of F,. Since the F, of F are mutually disjoint we have

B=UB,,=n<UB,,,,). Since UBM is a K;, B is indeed
n i n n
a K.

Finally, let us show that A; = nA,, is- K-analytic. Let

F = [ F,, the product space of the F,, and designate by C
the subset of F defined by C = [|B,. The set C is the inter-

section of the cylinders b, of F where b,=B, X 1;[ Fp;
each b, is a Kg;, and therefore the same is true of C.  °7"

Furthermore, we shall designate by f, the canonical exten-
sion to b, of the given mapping of B, into E; f, is therefore
defined at each point of C. The set of points of C at which
fi = f. is closed relative to C, for each n, since f, and f, are
continuous; therefore the set of points of C at which f;, = f;
for all ¢ and j is the intersection of C and a closed subset of F.
This intersection is therefore a Ky3 which we shall designate
by B.

We shall designate by f the restriction of the f, to B. This
restriction is continuous on B and since f,(B) C A, for every n,
we have f(B)C A;. On the other hand A;cf(B). For let
y € A;; for every n there exists an z,e B, such that f(z,) = y.
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The point z = (x,) of F belongs to B and we have therefore
f(z) =y. Thus Ay = f(B) and Aj; is the continuous image
of a Kg;.

3. 3. Soulin's operation A. — Suppose that A, 1s a class
of subsets of a set E where A denotes a finite sequence
(ny, ny, ..., n;) of positive integers. For every infinite sequence
s =(n, n,, ..., n ...) of positive integers, set

A.\' = ﬂAn,, e g
The set A = UAS is called the nucleus associated with the

class {Ay}; it is also referred to as the set obtained from this
class by Souslin’s operation.

Let S denote the topological space of all sequences s, lexi-
cographically ordered with the topology induced by that
order; then it can be easily shown that A 1s the canonical pro-

jection on E of a set AC(E X S), with A =nJlo,. where

each &;(t=1,2,...) 1s a countable union of element'ary sets of
the form (A, X ¢)), with &, denoting an interval of S. An
immediate consequence of this is the following theorem :

Taeorem. — If a subset of a Hausdorff space E is obtained
by Souslin’s operation from a class of K-analytic sets, then that
subset itself 1s K-analytic.

DerintTioN. — Every subset of a Hausdorff space E, obtained
by Soulin’s operation from a class of compact subsets of E is
called a K-Soushn set.

It is easily shown that, if fis a continuous mapping from a
compact space E into a Hausdorff space F and if Bc F, then
the set A = f~'(B) is a K-borelian set of class K, (respectively,
K-Souslin, K-analytic), if B is of class K, (respectively K-Sous-
lin, K-analytic).

3. 4. DeriniTioNn. — A subset A of a Hausdorff space is
called a set of uniqueness if A is the continuous and 1-1 image
of a Kg5 of a compact space.

3. 5. Turorem. Every denumerable intersection of sets of
uniqueness is a set of uniqueness. Every denumerable union
of disjoint sets of uniqueness is a set of uniqueness.
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Proof. For the first part we may refer to the end of the
proof of Theorem 3. 2 and remark that if the f, are 1-1, then
there exists in B a single point z = (z,) such that f(z) = y.
The same remark applies to the second part.

4. The K-borelian sets. — Later in this work we shall use
the fact that the K-borelian sets are K-analytic. More pre-
cisely, the following theorem holds.

4. 1. Tueorem. — Every K-borelian set is K-analytic.
Furthermore, if the Hausdorff space E has the property that
each subset of the form KNG is a K;, (where G is open), then
each K-borelian subset of E is a set of uniqueness.

Proof. The first part is an immediate consequence of the
fact that each compact set 1s K-analytic. The field of K-bore-
lian sets is therefore a subfield of the field of the K-analytic
sets.

We shall prove now the second part of the theorem. Assume
at first that E is compact. Then each open set G of K is a
K, by hypothesis. The borelian field generated by the open
sets of E is identical with the increasing union of a transfinite
sequence of type Q of classes

G, ©, ... Sp.-.h G,.... . v (e<<Q)
where

(i) @©, denotes the set of open sets of E;

(i1) @, denotes the set of denumerable unions (intersec-
tions) of elements belonging to the G&g where § << a if « is
even (odd) with the same convention as above for the limit
ordinals a.

We shall designate the classes with finite indices by
®, ©;, ©s; ... Since each G is a K; we have @, CX,.
Likewise, by taking complements, we have %, @,. By trans-
finite induction it follows that for each a < Q we have &, C %, ,
and K, C®,.,. Moreover, &, is identical with the set of
complements of elements of X,.

Let us suppose then that for an even o we have shown that
each element of &, and of %, is a set of uniqueness; the
same is true of the elements of &, , because the class of sets of
uniqueness is closed under the operation of denumerable
intersection. Then let K, ., be an element of i, ,. By defi-
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nition we have K,_, ZUK; where K} e, and we can
n

always suppose that the K’ form an increasing sequence.

We have therefore KM,__K’U<U Ky*' K;)) Now
Kn'—Ki= K"”ﬂ[: = K2*'NG2 This set is the inter-

section of two elements of ®,.,; hence it is a set of uniqueness.
Therefore K, ,, which is a denumerable union of disjoint sets
of uniqueness, is a set of uniqueness.

It can be shown similarly, by interchanging the roles of &,
and &, that if, for « odd, the elements of &, and X, are
sets of uniqueness, the same is true of the elements of ®,,,
and X, _,.

Now if « 1s a limit number (and therefore even), and if for
each § << « the elements of &g and of Jig are sets of uniqueness,
the same is true of the elements of &, and of %,.

This is obvious with regard to &, since it is true of denume-
rable intersections; for @&, this follows from the fact that
each &, can be written in the form of a denumerable union of
disjoint elements of classes &g with < a. By transfinite
induction each element of a &, (or K,) is therefore a set of
uniqueness.

Consider now the case where E is not necessarily compact.
If A is a K-borelan set of E, it is contained in a K; = UK"

where the K, are compact and increasing with n. Therefore A
is the union of thesets ANK, and AN(K,,,—K,)forn=1,2,..
Each of these sets is a K-borelian set and is contained in a
compact set. They are therefore sets of uniqueness. Since
they are disjoint their union is again a set of uniqueness.

4. 2. Remark. — If E is a separable complete metric space,
we have already observed that a subset of E which is borelian
in the classical sense i1s not necessarily K-borelian. On the
other hand, since such a space is homeomorphic to a G; of a
compact metric space, we can assert that a subset of £ which
is borelian in the classical sense 1s homeomorphic to a K-bhore-
lian set. Such a set is therefore always K-analytic. This
remark will allow us to apply our theory of capacities to the
subsets of separable complete metric spaces which are borelian
or analytic in the classical sense.
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4. 3. Remark. — We have not obtained in the prece-
ding all the results parallel to those concerning the borelian
sets in the classical sense. We shall state here a few of
these in the form of problems.

4. 4. ProBLEM. — If a subset A of a compact space E is
homeomorphic to a K-borelian set of class Ji, (respectively
K-Souslin), is A a K-borelian set, and if it is, is A of the class
Jo (respectively K-Souslin)?

The results of Sneider [1 and 2](*) show that the answer to this
question is affirmative whenever E is such that the union of
every class of open subsets of E is union of a countable subclass
of that class of open subsets.

4.5. ProBLEm. — If E is compact, is each subset of uni-
queness (or more generally, each continuous image (8%, —1)(°)
of a Kg; of a compact space F) a K-borelian set?

4. 6. ProBLem. — If E is compact, is every K-analytic
subset of E also a K-Souslin set?

5. The operation of projection. — In the classical theory of
analytic sets one shows that each analytic subset of a Eucli-
dian space R" is the orthogonal projection of some G; of a
space R**' containing R". We shall need later the following
analogous theorem.

5. 1. Tueorem. — If E is a Hausdorff space, then each
K-borelian subset of E (and more generally each K-analytic set
which is a subset of a K;) is the canonical projection on E of
a Kg; of the product space of E and a compact auxiliary space.

Proof. The proof will be given first under the assumption
that E is compact. If the set ACE is the continuous image
under the mapping f of a set B, which is a K5 in the compact
space F, the set A is the projection on E of the graph [' C(E X F)
of the function y = f(z) defined on B.

Now the continuity of f implies that I' is identical with the

intersection of I' and the product E X B, that is to say, [ is the

(*) Numbers in square brackets refer to the bibliography given at the end of this
report.

(5) An application is (N, — 1) if the inverse image of every point is at most enu-
merable.
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intersection of a compact set with a K ;. Therefore I' is a
K3, which proves the theorem.

More generally, if E 1s a Hausdorff space and if A is K-ana-
lytic and contained in the union LJK,1 of compact sets K, of E,

then A is the continuous image, by means of the function f, of

. . . . Q
some B, which 1s a K5 contained in the sum LF,, of compact

spaces F,, such that f(BNF, CK,. If we take for F the
compact space obtained by the Alexandroff compactification

of EF,,, then the graph of fin E X F 1s still a K and 1its
projection on E is identical with A.



CHAPTER II

NEWTONIAN AND GREENIAN CAPACITIES

6. Newtonian and Greenian capacities. — Let D be a
domain in RY which possesses a Green’s function. (For v > 3
any domain D possesses a Green’s function, but for v =2 there
are domains D which are not « Greenian »).

Let G(P, Q) be this Green’s function, and let u be a Radon
measure on a compact subset KCD. The potential of u for
‘this kernel G(P, Q) is by definition

U¥(Q) = [ G(P, Q) du(P).

If  is positive, this potential is positive and superharmonic
on D;itis harmonic on (D —K) and tends to 0 whenever Q tends
toward a point on the boundary of D, with the exception of
the so-called irregular frontier points, which form a rare set
in a sense defined in modern potential theory (see, for example,
M. Brelot [1]).

Let us say that a positive measure w on K is admissible if

U*(Q) < 1 everywhere on D. The total mass of w is the
integral [ du. The supremum of the total masses of admis-

sible measures on K is called the capacity of K (relative to D).
For example, the capacity of K is zero if the potential of each
non-zero positive measure on K is unbounded on D.

For a fixed domain D, this capacity is denoted by f(K).
The following properties of f(K) are well known.

6. 1. f(K)=0 and is an increasing function of K, that is,
f(K)<f(K) it K CK,
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6. 2. f(K) is subadditive, that is,
f(K,UK,) < f(K)) + f(K,).

For let u. be an admissible measure on (K, U K,) whose total
mass m differs from f(K, U K,) by less than ¢. If u, and u, are
the restrictions of . to K, and K, respectively, and if m, and
m, are their total masses, then m < m, + m, and u, and u, are
admissible. Then m < m, + m, < f(K,) + f(K,), and the
inequality stated above follows.

We shall soon see, in fact, that f(K) satisfies much sharper
inequalities which, in a certain sense, cannot be improved.

6. 3. f(K) is continuous on the right.

This means that for any compact set K and any number
¢ >0, there exists a neighborhood V of K such that for every
compact set K’ satisfying the relation KCK'CV, we have
0=f(K') —f(K)<<e The proof of this property will be
omitted.

6. 4. Interior and exterior capacities. Capacitability. — We
shall associate with every subset A of D an interior capacity
and an exterior capacity.

We define the interior capacity of A to be sup f(K) for KT A
and denote it by f,(A). In particular, the interior capacity
of every open set G C D is defined. This fact enables us, then, to
define the exterior capacity of A to be inf f(G) for AT G; the
exterior capacity of A is denoted by f*(A). Thus, for every
open set G we have f,(G) = f*(G). More generally we shall
say that the set A is capacitable if f,(A) = f*(A), and we shall
designate the common value of the two capacities by f(A); the
notation f(A) will not lead to confusion since, as will be shown
later in the general theory of capacities, f,(A) = f*(A) = f(A)
whenever A is a compact set. (This result follows easily from
the continuity on the right of f.)

We say that a property holds quasi everywhere (nearly
everywhere) if it holds at each point of D except at the points
of a set of exterior capacity (interior capacity) zero.

When the set of exceptional points is capacitable, the two
notions coincide; we shall see in the following chapters that
this situation occurs when the set of exceptional points is
borelian or analytic.
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We now prove the following property, which will soon be nee-
ded : The union of a finite number of sets of exterior capacity
zero is a set of exterior capacity zero.

For if f*(A,) = f*(A,) = 0, there exists, for every &> 0,
open sets G, and G, containing A, and A, respectively whose
capacities are less than e. But f(G UG)< <G + f(G,) < 2
indeed, each compact set K contained in G U G, 1s the union
of two compact sets K, and K, such that K, CG, and
K,C G, (). Then f(K)=<f(K,)+ f(K)<F(G)+f(G): since
f(G, UG,) —f(K) can be made arbitrarily small, the subad-
ditivity for open sets follows. Since f(G,U G,) can be made
arbitrarily small, we have f(A,UA,) =0. The proof is
complete.

6. 5. Equilibrium potential. — It 1s shown in potential
theory that for every compact set K D there exists one and
only one admissible measure u defined on K such that its
potential U* is quasi everywhere in K equal to 1. Its total
mass is equal to the capacity f(K) of K. This measure is the
equilibrium distribution of K and its potential is the equilibrium
potential of K. The equilibrium distribution is the only
admissible measure on K whose total mass is equal to f(K).

6. 6. Fundamental principles. — We recall the following
two assertions which we shall need presently.

Let U* be the potential of a Radon measure u defined on a
compact set KC D and such that U* is bounded on D.

6. 7. If U* =0 quasi everywhere on K, then the same inequa-
lity holds everywhere on D.

The property stated in 6. 7 is an immediate consequence of
the general mazimum pnnczple We shall not state this
principle however, because it involves the notion of energy
which we shall not use.

6. 8. If U*=0 everywhere on D, then the total mass of 1 is
positive; it is zero only when U*=0.

It follows readily from these two properties that, if Ur=0
quasi everywhere on K, then the total mass of w is positive;
it is zero only when Ut=0.

(?) For a proof of this fact see 17.4, Chapter 1v.
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1. Successive differences. — If ¢(z) is a real function of
the real variable =0 the fact that p if increasing may be
expressed by stating that A,(z, a) =2(x+a) —p(z) =0 for
all @ >0. Similarly, the fact that it is convex may be expres-
sed by stating that

Afz; a, b) =A(z+ b, a)—A(z, a)
=¢(@+a+b)—o(z+a)—3(z+b) +¢(z)=0

for all @, b=0. More generally, if 3 has a derivative of order n
and if this derivative has constant sign, then this fact may be
stated by saying that the difference A, of order n always has
this same sign. .

The successive differences of 3 then furnish a means of
studying the nature of the increase of . This method is of
interest because it can be extended to the study of functions
not necessarily of a number z, but of a set, or more generally
of elements of a commutative semi-group, addition being
replaced by the semi-group operation.

It will be shown presently that the successive differences
relative to the capacities f(K) are alternately positive and
negative; therefore, it will be convenient to so alter the sign
that the final expressions all have the same sign.

7. 1. Successive differences relative to equilibrium potentials
and to capacities. -—— For every compact set KCD we desi-
gnate by h(K) the equilibrium potential of K, and by f(K) the
capacity of K. If X, A, A,, ..., are compact subsets of D,
we define

Vi(X; A)=h(X)—h(XUA,)

and, in general,
V)A+I(X; AI’ sy A:x+|)lz=Vn(X; An ooy A-n>h
’ —V,,(XU An+1; Au SERL) A")‘i'

The differences V,,(X; A, ..., A); are defined in the same
way.

The index f or h will be omitted when no ambiguity 1s
possible.
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Functional properties of the differences V,,-

7. 2. V(X;A, ..., A,) is a symmetric function of the
variables A,. This property is a consequence of the following

development of V.:
V. =h(X)—2h(XUA)+2h(XUAUA)—- -
+ (—1)A(XUAU---UA,).
This symmetry permits V, to be written in the form

V,,(X; fA,}) The index n may as well be omitted since it is
determined when the family {A,} is determined.

7.3. V(X5 {A)=V.(X;§A)) it XUA=XUA
for all :. This follows from the fact that the A; always occur
in the development of V., in a union with X. In particular,

V,=0if A,c X for all i.
7.4 Vau(X; {A])=Va(g; {A})— Vo, (55 (A, X))

where the expression §A;, X{ denotes the family of sets consis-
ting of X and the A, This formula is easily derived from

the expression that defines V,,,,,(yi; (A, X}) in terms of the V,.

It shows that V, is the sum of two functions, each of which
is a function symmetric in all its variables.

7.5. Vu(X; A, ..., Au_y, AbUa)—Va(X; A, ..., A
=ViXUA; A, .. Ay, a,).
In order to verify this relation it is sufficient to express each

of the V,. in terms of V,,_,. The six terms thus obtained
cancel pairwise.

Fundamental properties of h(X) and f(X).

7. 6. THEOREM.
(i) For every X and {A,} it is true thatOg—V,,(X; (A W1
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The potential (———V,,),, is equal to 0 quast everywhere on X,
and it ts an increasing function of each of the A,.

(i) This potential is a decreasing function of X, and more-
over it is a decreasing function of n in the sense that

_"V<X: gAi;.iEl>§'—'v<X; gA.,'},‘e]) whenever 12 J.

Proof. This theorem is proved by induction on n and by
using the functional properties of the V,. To simplify the

notation, let Vl= ——V,,. )
Consider first (1) in the case n=1. The function V (X5 A)
is the potential of a measure defined on XUA, since

VX, A)=h(XUA,)—hX). Now 0<hXUA)<1 and
0L h(X)< 1, with A(X) =1 quasi everywhere on X and
h(XUA,) = 1 quasi everywhere on (XUA,)).

Thus V:éi; V: =00 quasi everywhere on X and V:_z_o

quasi everywhere on A,.
Hence V1 =0 quasi everywhere on X U A,; and, by virtue
of the fundamental principle 6. 7, Vl = 0 everywhere. Moreover,

Vi(X; A)) i1s an increasing function of A,. This fact is an
immediate consequence of the functional property 7. 5:

Vi(X;AUa)—V.(X;A)=V (XUA,; a)>0.
Consider next (i) in the general case. We suppose the first
part of the theorem to be true for all p < n and show that it is
true for p =n + 1. Since
Vi (X5 A, o Arl)
=V(X; A, .., A)—V.(XUA,..; Ay ...y A,
VI is the (bounded) potential of a measure defined on

xu(U A,-).
For each V:_ of the second member, 0_£_V:_S_1 everywhere,

so that V,I,H§1 everywhere. Each of the V: is zero quasi
everywhere on X, and therefore similarly for V:‘ﬂ. OnA,.,
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!
the first V is positive and the second is quasi everywhere
zero; thus \/n+ , 1s quasi everywhere positive there. Because

of the symmetry of V:M with respect to the variables A, the
preceding result holds for all A,. Then, since the potential

VM, is quasi everywhere positive on the union of X and the A,
!
V,,., =0 everywhere. Also, we have on X:

V. (X;A, .. AL
=V.(X; Ay ooy A)—V(XUA,.; A, ..., A)
=0 — 0 = 0 quas1 everywhere on X.

This completes the proof of our assertion that (—V,,),, is
equal to 0 quasi everywhere on X for every n.

That V , is an increasing function of each of the A, is an
immediate consequence of property 7. 5, just as in the case

of V.

Consider next the proof of (i1). Clearly

V.XUa; {AD—V(X; {A)=—V..(X; fa, A})Z0

. ! .
which shows that Vn- is a decreasing function of X.
From this same relation we see that

V (X; {a, Ai§)§V;(X’ {Aif),

?

n+1q

that is, V' decreases whenever an element is adjoined to the

family of the A;; therefore whenever any number of elements
1s adjoined.

Complement of theorem 7. 6.

7.7. DeriniTion. — The essential envelope K of a compact
set K C D s the closure of the set of points of D on which h(K)=1.
The set K is compact and (K—K) is a set of exterior
capacnv zero; the relatlonshlp of K to K is expressed by
saying that K is quasi contained in K. Since h(K)= h(K),

we have K =K. blmllarly, (K,cK,) implies K, C K,; and,
moreover, K UK, = (f( Uf(_) for any choice of K, and K..
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7. 8. Restrictive hypothesis on D. — We suppose that for
all K< D the open set (D— K) is connected; this will be the
case if the frontier of D is connected (this frontier contains
the point at infinity if the dimension of D is greater than 2
and if D is unbounded).

When the condition « (D—K) connected for every Kc D»
is satisfied, we will say that D is simple.

7. 9. Statement of the complement of theorem 7. 6. —
When D is simple, a necessary and suffictent condition that

V(X; $A =0 on D is that there ewists an i, such that
A,cX. When V(X; {A;})=EO0, the set of points of D where

V =0 is contained in X and differs from X by a set of exterior
capacity zero.

Proof. We shall use the following fact: if AcB and if
A=£B, then at every point of [:.:X we have h(A) < h(B).

For let m e [:A There exists a point m,e (B — A) such

that all' spheres S with center m, intersect (B— A) in a
compact set b of non-zero capacity. If S is taken sufficiently

small so that D— (BU®) is connected and meb, then
h[A U b] — h[A] is harmonic and strictly positive on l: (AU B)
We have, a fortiori, A(B) > h(A) since BO A U b.

Consider first the case n=1. V,(X;A)=h(X)—h(XUA)
is identically zero if AUX = X, which is equivalent to
A C X; otherwise \/1 =0 at each point of [: X. Moreover, we

know that Vl =0 quasi everywhere on X.
Consider next the general case. We now assume the asser-
tion true for p <\ n and prove that it holds also for p = n + 1.

If one of the A, is such that A, © X, then V,.,=0. Other-

wise, consider
V. (X5 A, .. A, )
= V;(x; Ay ooy A=V (XUA.; Ay ..., A
The first term of the difference is greater than O on (A, ., — X,
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and the second term of the difference is zero quasi everywhere;
then the difference i1s greater than 0 quasi everywhere on that

set. At every point of [: ((JA\,)\D/X) ) , the difference V:_ﬁ(X)

1s positive and harmonic; it is therefore greater than 0. Thus

V'H 1s quasi everywhere greater than 0 on [;5{ In fact,

this strict inequality holds everywhere on Ei( The proof
is entirely analogous to the above. We replace each A; with
X U b, where each b;is compact and small enough so that we
may conclude that a certain harmonic function is greater
than 0. Finally, the theorem follows from the fact that, as

/
we have already seen, v

n+

, =0 quasi everywhere on X.

7. 10. COROLLARY OF THEOREM 7.6. — If(V,,),designates the
differences associated with the capacity f, we have (V,, )_,§0 and
(V,,), possesses the same monotonic properties as (Vn) A

Proof. The potential (V"),,is a linear combination of poten-
tials h(k), and the total mass of the measure which generates
it is the sum of the total masses of the equilibrium distribu-
tions of the compact sets K, with the same coefficients, 4 1
or— 1, as the corresponding potentials A(K). Moreover,
according to the second fundamental property 6. 8 of poten-

tials, since (Vn) »= 0 everywhere, the total mass of the measure
which generates it i1s negative. Thus (Vn ) =0.
The monotony properties of (Vn) ; follow, as in the case of

the (Vn) », from the functional properties of the V, and from

the fact that all the (Vn)f are negative.

n

7.11. ComPLEMENT OoF COROLLARY 7.10. — We deduce imme-
diately from the complement 7. 9 of Theorem 7. 6 that, under
the hypothests that D is simple, a necessary and sufficient condition

thatV(X; {A;})=0 is that for some i = i,, we have K,-DC X.

7. 12. Remark -— Whenever a function ¢(z) of a real
variable z satisfies inequalities analogous to those shown for
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the capacity f, it i1s increasing, concave,... and possesses
derivatives of all orders, alternately positive and negative.
The opposite — ¢ of such a function is said to be completely
monotonous although the term is not especially descriptive.
It 1s known that such a function is analytic. The capacity
thus appears as an analytic set function, with derivatives
alternately positive and negative. We shall say that a capa-
city 1s a set function which is alternating of infinite order.

8. The inequality (Vg)fg 0. — This inequality can be
written as follows :

8. 1. f(X)—f(XUA)—Ff(XUA,)+f(XU AUA)<O.

If A and B are any two compact sets, let X=ANB, A, =A
and A, = B. Then the inequahty 8. 1 implies

8. 2. f(AUB) +f(ANB)=f(A) +f(B).

Since f = 0, the capacity satisfies an inequality stronger than
subadditivity. This inequality plays an important role in
the following.

We remark here that ordinary subadditivity is sometimes
wrongly called convexity. In fact, the preceding inequality,
which is stronger than subadditivity, is, as we have seen above,
analogous to a condition of concavity.

We shall proceed to give another form to the condition

V2 < 0. Let a, k, A, be three compact sets with a CA.
Setting X = a, A, = k, A, = A, 1t follows that

8. 3. f(AUk)—f(A)=f(aUk)—f(a).

In other words, when a fixed compact set, k, is adjoined to a
compact set X, the smaller the X, the greater the increase in
the capacity of X.

ArprLicaTioN. — Let (A) and (a), 1 =1, 2,..., n, be two
families of compact sets such that a;C A; for all i. Then

8.4  f(UA)—rF(Ua) Z2(F(A) —f(a)).
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Proof. According to the inequality 8. 3. above, we may
write

f(A;UA,) —fla,UA)=f(A)—f(a),
f(A,Ua)—f(a,Ua,) Sf( ) —f(ay),

from which, adding termwise;

8.5. f(AUA)—f(aUa)< D (flA)—f(a))
i=1,2
If the inequality 8. 4 is satisfied for order n, 1t is suflicient
to apply inequality 8. 5. to obtain 8. 4. also for order n + 1.

8. 6. Geometric application of the inequality V,< 0.

We shall suppose D to be invariant under a one parameter
continuous group of motions T;, where the parameter A is
chosen so that T, .T,, =T, .. For every compact set K,
in D and all pairs of values a, B, of A let K 5= U Ty (K,)
and K = Kor aSASh
In other words K,g is generated by the motions of K, for A
varying between e and B.

Because of the invariance of D with respect to the Tj,

clearly f(K.) = f(Kg_a). Let f(Kz) = ¢(B) and

Kua, =A; K:.(a.+m) = X; K(U.|+ar)((1,.,,a!.,.x) = A,, where a,, a,, 2
are positive numbers. Then the inequality V, <0 becomes
$(2) —o(z + o) —¢(z + @) + 9@ + o, + 2,) 0.

Hence, the second differences relative to ¢(z) are negative,
that is, p(z) is a concave function.
Thus the capacity of Kg is an increasing concave function of B.
This property can be easily verified for the solids of R’
whose capacity can be explicitly calculated.

ExampLe. — If the T, represent translations in D = R’
the K¢ are unions of parallel segments of length 8.

9. Complete system of inequalities. — We have obtained a

system of inequalities V.<0 which are satisfied by the
function f(K). We shall show that in a certain natural sense
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there are no others, that is, that every inequality identically

satisfied by fis a consequence of V,,§O.

Let (A} (I=1{1, 2, ..., n}{) be a family of n compact
subsets of D. For each Jc I let

B,=|J A, and = ={£(B)) for J4,
i€J ’

There are N = 2" — 1 subsets J of I. We may then associate
with each family {A,;}. the point of the Euclidean space R,
whose coordinates are (z;);ci- Our object 1is to characte-
rize the locus of this point in R® when D and I remain fixed
but the family { A} is allowed to vary.

9. 1. DeriniTioN. — We denote by C, the set consisting of
the points (z;)ic1 of R™ when the family {A, }iel vartes, I and D'
remaining fized. We denote by L., the set consisting of the points
of RY defined by the following N inequalities :

.__7\}1 = V(Bl—-H; {A,-},-eu)é() where H C I and H#}Z‘.

We have omitted, in this definition, the index of V which is
obviously equal to H.
The second part of this definition requires an explanation.

Each V is a linear combination (with coefficients + 1 or — 1)
of terms of the form f(B,); if we then replace each f(B;) by
z; we have a form which is hnear with respect to the z;. The
set of points of RY for which V <0 is then a closed half-space
in RY.  More explicitly,

—a= Y, (—1)z; where p;=J—(I—H).
Io(—H) '
9. 2. Tureorem. — (1) The set L, is a convex cone of

dimension N; it can be represented parametrically in the form
OM= Y auVu (2a=0)
Hel

where the vector Vy of R™ has the componenis x}' defined as follows :

=0 if HNI=v, and 2= if HNJ=£4.
(ii) C.cL, and C,=L.(").

(!} The notation A means the interior of A.



158 GUSTAVE CHOQUET

9. 3. Proof of (1). We shall use the expression of — Ay as
a function of the z; obtained above and calculate

— M M fora  JclL
HNJoz£o
The coefficient of z;, is

N(—1)"=0=1 where (I—H)cJ, and HNJ,#g.

H

It follows that this coefficient 1is
[—14+ (1 —1)%]=—1.
Similarly the ceefficient of z; for J £ J, is

};(—1)176:5 where (I—H)cJ and HNJ,=4.

By examining first the case where J,cJ and then the case

where J, ¢ J, we find that the coefficient of z; is always 0. Thus,
—
Xy, = 2‘ )\H-
HNJo#o

This gives the solution of the system of equations

—ha= ) (—A)a
JoI—-H

The second members of these equations are thus linearly

independent forms, and the vectors -\7}1 are also linearly inde-
pendent.

The formula OM = YAaVu follows immediately from the
expression of the z; as functions of the Ay.

9. 4. Proof of (i1). The relation C,CL, is an immediate

consequence of the fact that, for every point of C, the Vv
associated with this point are all negative, according to

corollary 7. 10. The relation C, = L,, which expresses the
identity of the interiorof C, and the interior of the cone L,, is
much less obvious. :

We present here a general outline of the proof. Let us suppose
for a while that for every system of numbers Azx=0 (with
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Hc 1 and H=¢) there exists a family of compact sets Kgy
with f(Kg) = Ay, which are additive in the sense that for
every subfamily {Kg,} of this family, we have

F(UKs,) = D (Kup) = D hne

For this family of compact sets and for each i el, let
A= UK“ In the space R¥, the point M representative

H3i

of the system of sets A, is then defined by OM = Z)‘“V“

For we have here, with the notation already introduced,

@) =1 A Now
f(U A:)xf( U K)-——%x

i€J HNI#o

We have then, x,= E Au. Thus, under the initial
HAJ£o

hypothesis of additivity we see that every point of the cone L,

i1s a point of C,.

As a matter of fact, this hypothesis is realized only approxi-
mately, in a sense which we shall make precise, for the capa-
cities considered here.

We shall use a hypothesis a little different, and, in fact, weaker
than that of additivity, and attempt to show that it is realized
for our capacities.

We shall suppose that for any given number ¢ >0, there
exists a family offcompact sets Ky D (HCI and H=£g)
such that

9. 5. for each of these we have f(Ky) =1;

9.6. f(UKy)=Df(Ku)—n=N—1 where 0<y=<c¢;

9.7. for every A such that 0 <A <1 and for every H,
there exists’afcompact Kq(A) such that

(a) [(Ku(R)) =14,

(b) Ku(W)C Ku(h)  if W<,
(C) Ku(’l) = :ﬂ
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For every system of numbers Ayz=>0 such that XAz <1 and
for every 1 e, let

A= |J Ku (M)

H3i

We designate by m the point of L, defined by

= DV
The set of these points, under the condition Elngl,
1s a simplex S of dimension N. The definitions above of A,
associate with each m the point M = ®(m) representing in R"
the family of the A, If the Ky(A) formed an additive
family, the mapping ® would be an identity. We shall see
that with our hypothesis, ¢ is a continuous mapping which

differs arbitrarily little from an identity if ¢ i1s taken suffi-
ciently small.

9. 8. @ is continuous. — It is sufficient to show that
each f(BJ) 1s a uniformly continuous function of m; since f(B;)
i1s an 1ncreas1ng function of Ay, it is enough to give to the Ag
positive increments Adg. From the inequality

FUK) —F(Uk) < X(K,) —

it follows, since the Kg(A) increase with A, that

f(B;) — f(By) < ¥ A,

where the B; and B; are associated respectively with the
points m = (Ag) and m + Am = (Ax + Akg). This inequality
proves the required continuity.

9. 9. ¢ differs arbitrarily little from an identity. — It is
sufficient to show that each f(B,) differs arbitrarily little from
' An. More generally, given any family (K,),er of compact
HNJs#£ o
sets such that, Zf f(UK,,)< ¢, the same inequality

PEPR]
holds when we replace each K, by a compact subset of K,.
This follows from the inequality used above by writing it in
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the form (¥ f(k,))—f (U k) < (D F(K)) —F(UK,) where
k,cK,

Now it is a well known fact that,if M = ®(m) is a continuous
mapping of the N dimensional simplex S of R" into RY such
that Mm <"y, for all m, the image ®(S) of S contains all
points of S at a distance = 7 ,from the boundary of S. Since 7,
tends to 0 with ¢, it follows that each interior point of S is a
point M which represents a family (A;) of compact subsets of D.

Finally, if we notice that in our second hypothesis the
constant which occurs in the definition of S, that is, in the

condition Z)\néi, can be replaced by an arbitrary positive
constant a, we get immediately é,, = L,.

9. 10. Proof of the second hypothesis. — We shall prove this
hypothesis for the case 1n whlch the constant a has the
value 1.

It 1s sufficient to show that for every integer N and for

every e>0 there exists a family of compact regular sets
K, t =1, 2, ..., N), such that f(K;) =1 for every i and
(U K‘) = N — 1, with 0= <|¢, where a compact subset of
D is called regular when it is the union of a finite number
of cubes. Forif C is a cube and if Cg, denotes the cube
concentric with C and obtained from C by a homothety of
ratio =0, then f(C;) is a continuous increasing function
of . More generally, let K = U C,, where each C, is a cube
and ]et K, = UC,,(Q) Then, recalling the inequality (8. 4), it
follows that f(K.,) is an increasing and continuous function
of p with f(K,) = 0 and f(K,) = 1. The third part of the
second hypothesis i1s thus satisfied whenever the compact
sets K, are regular.

Let G(P,, Q) be the Green’s function for D with pole P,.
If S(P,, o) denotes the open Green’s sphere defined by

G(P,, Q)=¢, it is well known that its capacity is —10—

The procedure will now be as follows; we shall ;uppose the
N points P,z =1, 2,..., N, so chosen that the restriction
of G(P, Q) to S(P;, 1/2) is < & for all couples i, j withi =]

(8 will be determined later as a function of ¢). Since for each
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¢ we have f(S(P;, 1/2)) = 2, we can find a regular compact set
of capacity > 3/2 in the open set S(P;, 1/2). Starting with
this compact set, we can construct a compact regular subset
K; of S(P, 1/2) with capacity = 1 by a procedure already
used.

Now, the equilibrium potential i(K;) satisfies the relation
h(K) < inf[1, 2G(P, Q)] everywhere on D since

inf[1, 2G(P, Q)
is the equilibrium potential of S(P, 1/2) and K, S(P, 1/2).
Forevery pair i, j with i =% j, therestriction of h(K,) to K;is <23}
then Eh ) is, on each K, less than (1 -+ 2¢N). Then Eh(K")
1 428N

is on D the potential of a positive admissible measure (see

Thus

the beginning of this chapter) of total mass

I
1+28NS]"(UK)£V hence, \—f<UK)§ 23N For

given ¢ and N, ¢ can always be chosen small enough so that
this quantity does not exceed ¢

It remains to choose, for every ¢ >0, the N points P; so
that the restrictions described above are satisfied. When D
has a boundary D which is sufficiently regular, we designate
by §=! a family of N distinct points of D* and by |V}
mutually disjoint neighborhoods of these points. For every
i there exists a neighborhood W; of =; such that for every
P,e W; and every QeV,, G(P, Q) <. If moreover ¢ < 1/2,
then S(P;, 1/2)cV, Thus G(P,,Q) on S(P, 1/2) for
LE ]

In the general case, a proof has been kindly given by
M. Brelot (°) at my request.

9. 11. Study of the frontier of C,. — We have proved the
relations C,C L, and é,, = f,,,, but 1t remains to determine
which frontier points of the cone L, belong to C,. This depends
essentially on the topological nature of D and probably on its
homology group. We shall give a complete determination of

(") M. Brelot. Existence theorem of n capacities, in these Annals, tome 5.
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C, only when D is simple (see 7. 8). We shall not give a proof
here; it would be analogous to the proof of the second part of
Theorem 9. 2. and would follow essentially of the result stated
i 7. 11.

We shall call the set of points of L, defined by a set of
equalities of the form (Ag, = 0) a face of L.. If this set
contains r equalities, the dimension of the face is N —r.

The first essential fact is that if a point interior to a face of
L, belongs to C,, then each point interior to this face also
belongs to C,. Such an open face willbe called an open face of C,.

9. 12. Determination of the open faces of C,.

RuLe. — Let ‘Agp = 0} be the set of equalities which determine
a face of L, Its interior is an open face of C, if and only
if $im, = 0} ishereditary in the following sense: if it contains
an equality Ay = 0, it must also contain all its descendents
relative to at least one index v e H.

For a better understanding of this rule, recall that we had
set 7\H=V'(B1_H; §A;}ier) for any system of sets (A,).

With the hypotheses made on D, if Az = 0, there exists an
i,e H such that A, cB;_y. It follows that the equality Ag =0
implies that Ay = 0 for every H’ such that ; e H and H' < H.
It is this fact that leads to the definition and the preceding
result. More precisely, a set & of equalities Ay, =0 defines
an open face of L, if for every p there exists an i, € H, such that
for every H' which satisfies i,e H' < H,,, the equality Az =0
belongs to &; these b’ are the descendents of H, relative to i,

9.13. Exampre. Let [=1,2,3 so that N=2'—1=7.
The open face A, ,=0, A, =0 belongs to C,.
The open face A,,=0,2,,=0,A,=0 belongs to C,.
The open face A,,=0, 4, ,=0,A, =0 does not belong to C,.

9. 14. Canonical parametrization of the set of open faces. —
Every open face is characterized by a set of independent relations
of the form A,cB,_x where i e H. Conyersely, to each set
of such relations corresponds a face whose equations are all the
Aw =0 where i e H' < H and i and H are indices relative to one
of the given relations.

As an example, we shall now give the set of all the systems of
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relations which define the faces of C,. For brevity of notation
we indicate the relation A,cB,_x by writing (i|(I— H))
It is necessary to add to the systems listed those which follow
from them by permutations of the indices.

Systems including a single relation.
(128 (112, 3)4
Systems including two relations.

(A[2), 43)] {(12), @D} 1(412), 2[3)]
{(112), 312)§  §(112), 213, D)f {112, 3), (2[3, 1)§

Systems including three relations.

§(112), (1]3), (2]1)] £(112), (2[3), (3[1)]
1(112), (32), (2B,1)f  1(112,3), (2[3,1), (3]1,2).

There is no system of four relations.
Observe, for example, that the system
£(112,3), (213,1), (3i1,2)]

determines the face A, = A, = A, = 0.

9. 15. Conséquences of theorem 9. 2.
CoroLLarY. — If an equality of the form Zauf(Bn):Z__O

Hcl

holds for every family §A}e of compact subsets of D, there
exist N constants B; =0 such that the linear form Zaﬂxﬂ s a
linear combination with coefficients B; of the linear forms A; as

follows :
Z oAgly = 2 BJ)\J.

Hcl Jcl

In fact, the linear form Zanxﬂ is positive on the cone L,.
Then it is a linear combination with positive coefficients of the
linear forms which define L,.

An equivalent statement is obtained by replacing the capa-
cities f(Bg) by the potentials 2(By) and the linear forms A; of
Zy by the corresponding linear combinations of A(By).
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10. Inequalities concerning all operations of the algebra of sets.

— The inequalities V(B,_g; fA;! ien) <0 concern only unions
of the sets A;. We have already seen that it is possible to
deduce other inequalities from them which involve intersec-
tions; the following is an example:

f(AUB) +f(ANB)=f(A) +f(B).

If n compact sets {A;} are given, we can derive from
them a certain family of sets, in general distinct, by using the
operations of union, intersection, and difference of sets. More
precisely, we first form the N « atoms » as follows :

E..=(nA..>n( N(a.)

i€l \i€ET—1J

Then we take unions F, of any number of atoms. Thus we
obtain 1= (2% —1) = (2®"~Y—1) sets. -
Let q«(f §F,,_$>\£\;O be an identically true relation whatever

A, D may be, where qo({Y,,}) designates any continuous func-
tion of the positive variables Y, (p = 1,2,..., ).
We assert that this relation is a consequence of the inequa-

lities V <0.

This is equivalent to saying that, if we consider in the space
R" of dimension 96 the set €, of the points of coordinates
z, = f(F,) when the system of compact sets {A;! varies
arbitrarily, the closure €, of €, 1s identical to the cone ¢,

defined by the relations V=0 in which we understand now
as variables not the A, but the E; defined above.

More precisely, it can be shown that the interior of ¢, is
identical to the interior of 4,.

The fact that the F, are not compact sets is not disturbing.
In fact, each of these sets is a K;; 1t 1s capacitable, and we can

from now on apply to these sets the inequalities V<o.

The only difliculty arises from the fact that the E; (which
replace the A)) are not arbitrary capacitable sets, but are
mutually disjoint.

We have evidently €,C¥, In order to show that ¢, =1

~ny

. c . .
we show that for every point (z,) e{, there exists a family
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of mutually disjoint compact sets (E,;) to which is assigned in
R% a representative point identical with (z,).

In the procedure used to compare €, with L,, we used a
variable base of sets A; which were not mutually disjoint.
With the notation thus used we had

A,- —- U KH ()\H)

H3i

But we remark that, instead of considering the compact sets
Ky and their subsets Ky(An), we could just as well have used
the compact sets with two indices Ky, ;(As) with Ky Ky, ;=9
for i =~ j, and set A; = U Ku,;(An) with the condition that the

H3i
capacities of Ky, ;(An) and of U Ky, (Aa) should be still equal
to )\H

In fact, i1t 1s usually not p0551ble to subdivide a compact
set Kn(Ax) into n compact sets of the same capacity, but this
subdivision can be approximated as we shall now show.

It 1s sufficient to change as follows the construction of the
Ky. Instead of taking Ky(Ax) = a union of cubes, we shall
let Ky(An) = the boundary .of this union of cubes Then assu-
ming an =0 given, we shall set Ky, i(Ag) = K [(1 4 m)2u],
t=1, 2,...,n. In order to show that @ = J.,,, 1t 1s essentially
this 1dea that could be used. We shall not show the details of
the proof but give only the result.

10. 1. Tueorem. — Let ¢{{z,}) be a continuous function of
the positive variables (x, (p =1, 2, ..., T). Let us suppose
that for every index p, f(F,) designates the capacity of a set F,
defined in terms of compact sets A; (i = 1, 2, ..., n) by a given
sequence of operations U, N, «diﬁerence ».

If the relation 4({f(F,)})=0 is satisfied by any family (A,),

the relation ¢({z,})=0 is a consequence of the Mo relations

V<0 in which each V is considered as a linear form of the
variables x,.
More precisely, with the notations already introduced we have :

é,c4, and (09,, _—_-an.

11. Possibilities of extension of the preceding theorems. —
All the preceding results apply without modification to
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_potentials and capacities relative to Greenian spaces (see
Choquet and Brelot [1]). They apply equally well to plane
domains which are not Greeman and, more generally, to
Riemann surfaces, taking in the deﬁmtlon of the capacity
the following precautions: If we study the capacities of the
compact sets contained in a circle of diameter equal to or
less than d, take for kernel Log d/r and for capacity of a
compact set the supremum of the total masses of the admis-
sible measures on this compact set.

More generally, Theorem 7. 6. relative to the successive
differences of the potentials of equilibrium and its corol-
lary relative to the successive differences of the capacities
are extended without any difficulty in the proof, to every
capacity associated with a theory of potential in which the
two fundamental principles 6. 4 and 6. 5 are satisfied.
Such potentials can be defined on a space which i1s not
necessarily either R"or even a group ; exemples can be
constructed by replacing the domain D by any locally
compact space.

Differentiability of capacity. — Let D be a Greenian domain
in a Euclidean space, or more generally, let D be a Greenian
space. Let K be a compact subset of D such that f(K)=0
and let meD — K. Let AK be any compact subset of D
contained in the sphere B(m,p) and such that f(AK) 5 0.

11. 1. Taeorem. — If h, (K) denotes the value at m of the
equilitbrium potential h(K) of K, then

. f(KUAK) —f(K)

hm = AK)
Proof. We shall consider the restriction of the potential
h(KUAK) —h(K) on K and on AK. This is quasi every-

where 0 on K and quasi everywhere [(1 — h(K)] on AK, that is,
equal to [1 — h,(K)]| within ¢ (where ¢ — 0 with ¢g). Then

f(KUAK) —f(K)
1— ho(K)

is equivalent to the total mass of the measure on (KUAK)
whose potential is 1 on AK and 0 quasi everywhere on K.

= [1 fhm(K)]g’
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Now this last potential is [A(AK) — b(AK, K)| where b(AK, K)

equals 0 on AK and h(AK) on K. The potential b(AK, K) is
equivalent (for ;—0) on K to [f(K).b(m, K)], where b(m, K)
denotes the potential of the measure obtamed by the sweeping
out process (balayage) on K of the unit-mass at m. The total
mass of this measure on K is a function of m which is harmo-
nic on (D —K), and which is 0 on the boundary of D and 1 on
the boundary of K and is thus identical with A(K). Thus the
total mass of the measure which generates [h(AK)— b(AK, K)|
is equivalent to f(AK)(1— h,(K)); this fact proves the theorem.

11. 2. Extension of the Green's function. — Let P,and P, be
two distinct points of D and K,, K, two compact sets of
positive capacity contained in B(P,, g) and b(P,, p) respec-
tively. We shall study the behavior of

f(K)) + f(K,) —f(K,U K,)
when ¢—0.

We could use the preoedlng result, but it is quicker to prove
that this potential is the sum of two potentials U, and U, of
measures «, and w, each defined on (K, U K,), where the res-
trictions of U, on K, and K, are respectively 0 and A(K,) and
the restrictions of U, on K, and K, are respectively h(K,) and 0.
The restriction of h(K,) on K, can be approximated by
G(P,P,).f(K,). It follows easily that the total mass of w, is
equlvalent to G(P,, P,).f(K,).f(K,); the same is true of the

total mass of w,. Thus

2f(K)f(K,) G(P,, P,)

and the convergence is uniform when P, and P, belong to two
disjoint compact sets.
Thus the ratio,

K,) +f(K.) —f(K,UK
G, Ko = AT AR

defined on the set of pairs of compact sets of non-zero capacity is
a natural extension of the Green’s function. It is a positive and
symmetric function of K, and K, and can be extended by continu-

ity to the set of pairs of points of D, and is there identical with
G(P,, P,).

when ;—0,




CHAPTER III

ALTERNATING AND MONOTONE FUNCTIONS. CAPACITIES.

12. Successive différences of a function. — Let & be a
commutative semi-group (') and % a commutative group.
The operation in & will be denoted by + andin by +. Let
y = ¢(z) be a mapping from & into 4.

The successive differences of (x) with respect to the para-
meters a,, a,, ..., are defined as follows.

Vil®; a))g = (x) —3(r+a,), and in general,
et @301y oy @y @, )= ""0(T: @y ..oy @)
— U ®rtusr; iy ey g

In the above definition the element z and the elements a;
are, of course, assumed to be elements of &.

As in the special case treated in the preceding chapter, the
following properties of the function Yy, can be verified imme-
diately.

12. 1. Z.(=;a,, ..., a,) is a symmetric function of the a;
it is therefore possible to write this function in the concise
form v,,(a:; gai},-g), or, if I is a given fixed set, v(z; gaig).

12. 2. Y(z; {a,{)=<y(e; {ai|) whenever zya,=2z,d
for each i; moreover, v(x; gai§>=0 if, for at least one i,
we have (z+a;,)=z; (this case occurs when & contains a
zero element and when g, is this zero element).

12. 3. If & contains a zero element 0, we have
Vn(x; 3ai§)=—vn+1<0§ §az, $;>+v¢(0; M})-

(') This means that a mapping of the form ¢ = a= b is defined from &? into
&, with the operation < assumed commutative and associative.
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12. 4. (x5 @iy ooy @uyy Gop 0) —S70(T5 @y -y @)
ZVn(x'ran; Qry oovy Qp_y, an)'

13. Alternating functions. — We now make the additional
assumption that & and F possess an ordering compatible
with their algebraic structure, and that & contains a zero
element. The relations defining the two orderings are deno-
ted by < and < respectively.

13. 1. DerinitioNn. — A mapping ¢ from & into F will be
called alternating of order n, where n is an integer =1, if
V(23 fa;} ) =<0 for each pSn and for every finite family {a;}
which is positive, (that is, for which 0 S a; for each ©).

The mapping ¢ will be called alternating of order oo, if it
is alternating of order n for each n=1.

It is an immediate consequence that if 8 1s an 1dempotent
semi-group (ara=a for every a), then ¢ is alternating of
order n if and only if (’/,,( z; {aig)é() for every positive family
fa;}. In fact, 7u(z; ayy ..., @) =<Va_i(®; @y, - - -, @_y) Whe-
never a,=a,_,, since the equation [(#+4@,) v a_,= (Tra,)]
implies the equation [\/._,(T—4aw; @y ..., @p_y) =0]

13. 2. Immediate properties. — If 9 1is alternating of
order n, then every function \71,(;10; {a,-}) (where p < n) 1s
alternating of order (n—p).

When & is such that @ {b implies b=a~c where ¢ & 0,
every \/,(p <n) is an increasing function of z, and every <7,
(p=< n) is a decreasing function of each a;. Finally, /p 1s an
increasing function of p in the sense that

V(-’”; gaifie.l)§v<-’”; iaifsex)
for JCI and I<n.
The verification of these properties is analogous to that of
the same properties in the case of the Greenian capacities.

13. 3. Examples of alternating functions.

(i) If & is the positive half of the real axis (i. e. all points
z > 0) and F is the real axis, then the statement that the
function y3= ¢(z) is alternating of order o is equivalent to the
statement that ¢(z) possesses derivatives of all orders and
that (—1)¢™ <0 for each n>1.
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(1) If & 1s the class of all compact subsets of a Greenian
domain, and if the operation + is the union, then the capacity
f(x) of the element z is alternating of order o« ; the same is
true for the equilibrium potential A(z). (In thelatter case, J is
the vector space of all real-valued functions defined on D,
with the classical order structure.)

14. Set functions. — We shall not continue here the
general study of alternating functions, but shall restrict our
remarks to the case where & 1s a class of subsets of a set E,
where the operation 4 is either union or intersection, and
where & is the real axis. It should be remarked, however,
that some of the definitions and theorems could be easily
extended to the case where F is an ordered, commutative,
topological group.

14. 1. We shall continue to use the term «alternating » for
mappings ¢ when  1s union (U); but when + is intersection
(N), we shall use the term « monotone » for the function (— g).

More precisely, let & be a class of subsets of a set E and ¢(X)
a mapping from 8§ into the extended set of real numbers (con-
taining + oo and —o0)(""). & will then be called additive
(multiplicative), if from A, €6 and A, e& it follows that
(A UA,) €6((A,NA,)e8). For additive & , the differences <y

with respect to ¢ will be denoted by V; for multiplicative &

by A (these symbols are designed to recall the symbols U
and N).

A function ¢ defined on an additive class & is called alter-
nating of order n if its differences V of orders p = n are non-
positive (X 0).

A function ¢ defined on a multiplicative class & is called

monotone of order n if its differences A\ of orders p = n are non-
negative (= 0).

If we call a function ¢ defined on & increasing whenever
(A, CA,) —>¢(A) =< ¢(A,), it follows immediately from the defi-
nition that every increasing function which is defined on addi-
tive & is alternating of order 1, and conversely. Analogously,

() With the understanding that the expressions [(+ 0)—(+ °O)| and
[(— ) — (— )| may take arbitrary values.
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every increasing function which is defined on multiplicative
& 1s monotone of order 1 and conversely.

14. 2. Conjugate functions. — 1f 2 is a function defined
on a class & of subsets of E, we shall denote by ¢’ the function
which is defined on the class & of the complements X' = (E — X)
of all elements X of § by the relation,

¢(X') + 9(X) =0.
We have, obviously, (¢') =14, and (§') =& The two
functions ¢ and ¢’ are called conjugate functions.
It follows immediately that if ¢ is alternating of order n

on additive &, then & is multiplicative and ¢’ is monotone of
order n on &.

14. 3. Alternating functions of order 2. — If ¢ is alterna-
ting of order 2 on additive &, then ¢ is also increasing and

we have,
9(AUk)—p(aUk) < ¢(A) —3(a)

whenever a CA and a, A, k, €8 From this inequality it
follows that.

‘P( UAi) — ’P( Uai) = Z(?(Ai) — (@)

whenever a;CA; for every 1.

If & is additive and multiplicative, the two statements
below are equivalent.

(1) ¢ is alternating of order 2.

(i) ¢ is increasing and satisties.

#(A UA,) +9(A N A) S¢(A) + 5 (A)).
If ¢ is alternating of order 2 on &, and if 3 = 0, then 3 is also
sub-additive, that is ¢(A, U A,) <¢(A,) + ¢(A,). We shall not

prove these elementary properties which have in large measure
been proved in the preceding chapter.

14. 4. Monotone functions of order 2. — If ¢ is monotone of
order 2 on multiplicative &, then from the properties of its
conjugate, ', the corresponding properties for ¢ can be deduced.
We find that ¢ is increasing, and

$(ANk)—o(aNk)=¢(A)—2(a)
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whenever a CA, and

#(NA)—e(Nad = D (3(A)—¢(a)),

whenever a; CA,; for all i.

When & i1s both additive and multiplicative, the following
two statements are equivalent:

(1) 9 is monotone of order 2.

(ii) ¢ 1s increasing and satisfies

(A UA) +¢(A NA=g(A) + ¢(Ay).

If ¢ is monotone of order 2, and if ¢(¢) = 0, then ¢ is supra-
additive in the sense that ¢(A, U A,)=¢(A,) + ¢(A,) whenever
(A, NA,) =0.

14. 5. Alternating and monotone functions of order 2.

Tueorem. — If & is both additive and multiplicative, then
every function ¢(X) defined on &, which is both alternating
and monotone of order 2, is increasing and satisfies

?(A, U Az) + ?(Ai n As) = ?(As) + ‘P(As)

Conversely, if a function g defined on & is increasing and satisfies
the above relation, then, for every n=1,

V.(Xi{A}) =9(XNa)—¢(a) <0, where a=[)A,

A(X;§A}) =9(XUA)—¢(A) =0, where A=|JA.

The function g, which is thus seen to be alternating and mono-
tone of all orders, ts called additive.

Proof. 1If ¢ is both alternating and monotone of order 2,
then we obtain simultaneously,

¢(A UA)+9(ANA)S  and  =29(A) 4 ¢(Ay),

whence the equality of the two members. Let us assume now
that ¢ 1s increasing and that the above mentioned equality
holds. Clearly, this equality implies

P(X)—9(XUA)=¢(XNA)—g(A).
and hence V,(X; A)=¢(XNa)—¢(a), where a = A,.
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We now assume that the relation Vp = 9(XNa) —¢(a) holds
for all orders p <n and we prove it for p =n 4 1.
If a= n A, and o' = ﬂ A;, then

i§n i_S_n—*—i

Vn+i(X Al, LR ) An+1)

= [¢(X Na) —o(a)| — [¢((X U A,..) N a) — ¢(a)]
=¢(XNa)—e¢((XNa)Ua).

From the fundamental equality, the last expression is equal
to ¢(XNa’')—p(a’), which is indeed the desired quantity; it
is obviously non-positive.

The second relation for the A, is deduced by duality from
that for the V,,.

15. Capacities. — Let E be a topological space, é a class of
subsets of E, and 3 a mapping from & into the extended real

line [— o, 4 0].

15. 1. Continuity on the right. — We shall say that ¢ is
continuous on the right at A (A e8), if for every neighborhood
W of 3(A) there exists a neighborhood V of A in E, such that

o(X)eW whenever Xeb and AcXcV

Obviously this definition may be applied also to the case where
%(A)= + % or 9(A) = —20

If ¢ is continuous on the right at every A €&, we shall say
that ¢ 1s continuous on the right on &.

15. 2. Capacity on a class & of sets. — A function ¢ defined
on & is called a capacity on & if ¢ is increasing and continuous
on the right on &.

We shall now define the following functions of subsets A of E.

Intervor capacity of A = p(A) =sup p(X) (for X e& and
X cA). When there exists no element of & contained in A, we
set ¢,(A) = inf ¢(X) (for all X €8).

In particular, ¢ (w) is thereby defined for every open set w,
and we can now define for any A:

Eaxterior capacity of A = ¢*(A) =inf ?,(») (v open and A Co).
We have always 2,<¢" and ¢, ¢* are increasing functions.

A set A is called capacitable if ¢ (A) =9%(A). Itis a trivial
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conclusion that every open set is capacitable. We shall
consider only capacities for which every element A of 6 is
capacitable. This will occur in particular when 8 is absorbing :
A class & of subsets of E is called absorbing if for every open
subset w of E and for every pair (A, A,) of elements of & such
that A;Cow (1 =1, 2), there exists an element A, of 8, satisfying
(A,UA,)CA,Cw. For instance, § is absorbing when it 1s
additive.

For simplicity, let us assume that ¢(A) is fimte. For
every ¢ >0 there exists, by virtue of the continuity on the right
of ¢, an open set w such that A Cw, and 0 <¢(A') —@(A) Zcefor
every A’ satisfying A CA'Co.

Moreover, since & is absorbing, to every B e & and contained
in w, there corresponds a C e & suchthat (A U B) cCCw. Hence
¢(B) < ¢(C) < 9(A) + ¢, from which we deduce ¢ () <¢(A) +¢,
and therefore, ¢*(A)<¢(A). Clearly, since moreover¢*(A)=¢(A),
the element A of & is capacitable. Thereis therefore no contra-
diction, when for arbitrary capacitable sets A we define

2(A) = ¢.(A) = ¢*(A).

15. 3. Alternating capacities. ~— We shall introduce a scale
of classes of capacities.

A capacity 9 on & is called alternating of order &, if & s additive,
(@ restriction which is not essential for @, ,) and if ¢ satisfies
one of the following conditions @, :

&, .r If §A,} ts any increasing sequence of subsets of E,
then o*(A,)— ¢*(A), where A = UA-

@, ,: Given ¢ >0, there exists an vy >0 such that the inequa-
lity

o(A) —o(a) <7 (@ CA, a; and A;eé with 1 =1, 2) umplies
the inequality

(A, UAy) —ola, U a,) <ce.

&,: The function ¢ is alternating of order n (n=2, 3, ...,).
a_ : The function is alternating of order .

15. 4. Monotone capacities. — A capacity ¢ defined on & is
called monotone of order MW, if & is multiplicative, (a restric-
tion which is not essential for W, ,), and if ¢ satisfies one of
the following conditions W, :
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W, .: If {A,} is any decreasing sequence of subsets of E,
then ¢*(a,) — ¢ (a), where a = ﬂ A,

Adb, : Given ¢ > 0, there eusts an 1 >0 such that the inequa-
lity

¢(A) —9p(a;) <70 (@ CA, a; and A; €86, with 1 =1, 2)
implies
?(A, n Az_‘) — ?(a, n a,) < €.

M, : The function ¢ ts monotone of order n (n=2, 3...,).
Jdo_ : The function 3 ts monotone of order .

415. 5. Immediate consequences of the definitions.

a,,, =>a, and b, ==L, for n=2
(‘1 = C‘l" b and -'lﬂ')f! == t:'llb" be

The above relations are an immediate consequence of the
properties of functions which are alternating or monotone of
order n=>2 (studied at the beginning of this chapter). For
example, the relation .Ab,=.Ib, , derives from the inequality

‘P(ﬂ A") —¢ (n“i) é}:? (Ay) —g(a)-

An 1mportant theorem which will be proved in the sequel,
states that in very general cases the following relations hold :

.iz),,b=>.v{-’),'a and -I‘l‘l,'b=>r|fl),ya.

15. 6. Conjugate capacity of a capacity. -— If ¢ is a capacity
defined on a class &, which 1s assumed to be absorbing, then the
conjugate function g’ corresponding to ¢ is not in general a
capacity because, firstly, & 1s not in general absorbing, and
secondly, ¢’ 1s not in general continuous on the right.

However, if § is an absorbing class of closed subsets of E
then for every capacity ¢ defined on & another capacity @
may be associated with it which is also defined on &. This is

done by setting ¢(X) = -——q«( [: ) for every X e8. The defi-

nition 1s meaningful since [:}x is an open set and hence a set
for which 9 is defined.

The function g 1s obvious increasing. It is also continuous
on the right. This is due to the fact that by the definition
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of ,, every open set [:X contains closed sets belonging to &,

such that their capacity differs from that of [:X by an arbitra-
rily small value. Hence ¢(X) is a capacity.

Let us further assume now & is the class of all closed subsets
of E (E is additive, and. therefore absorbing). For every open
subset w of E we have,

() = sup ¢(X) = —inf ¢(G).
Xeg 65w
XCew G open

Clearly, inf 9(G) = qp( [:w) = —¢/(w),where ¢’is the conjugate
function corresponding to ¢, ¢’ being defined on the class & of
all open subsets of E. It follows that §(w) = ¢'(w).

‘As a definition, the function § will therefore be called the
conjugate capacity of ¢.

Moreover, for every X €& we have

F(X) =—§(\EX) =-——-q/(CX> = ¢(X).
It can also be immediately verified that for every A cE,

P+(A) 4 "?‘*( C A) =0 and ¢*(A) + 3 ( EA) =0.

Thus the operation [: (complementation) establishes a
canonical correspondence between the g¢-capacitable and the
g-capacitable sets.

15. 7. If ¢ is of order b, , (a,,), then p is of order a,,
(M, ,). This i1s an immediate consequence of the last two
equalities.

If gis of order lb, (for @ = (1,b) or e = n = 2), then g is of order
@,. For the proof of this correspondence it is sufficient to show
that the fundamental inequalities which define a class Jb, still
hold when the closed sets are replaced by open sets, a result
obtained without difficulty from the following lemma.

15. 8. Lemma.— Let {o} 1 be a finite family of open subsets
of E such that g{w)) is finite for each 1. T'o each ¢ > 0 there corres-
ponds a family $X{e of closed sets, with X,Cw; for every i,
and such that ¢ ( ﬂ w,-) —0 (ﬂ X‘\ <&, for every JCIL

i€J i€J
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In fact, for arbitrary J C1, consider a closed set

Xicwy = n ;
i€)

such that ¢ (w;) — ¢(X)) <e.

If we set X, = U X;, we obtain X;Cw,;. On the other hand,
i€l
n X;D X; and hence the sets X, satisfy the desired relation.
i€J

15. 9. If ¢ is of order Jo (e = 1,b or « = n=2), then g
1s not necessarily of order N,, except in the case when E is
a normal space.

In this case it can be shown (see next Chapter 17. 9. and
17.10.) that the inequalities defining a class Jv, are still valid
if the closed sets are replaced by open sets. The inequalities
which define the class Jb, are then obtained by complemen-
tation. Thus we see that a perfect duality does not exist bet-
ween the alternating and monotone capacities. This is due to
the fact that the definitions of ¢, and ¢" are not parallel; ¢ can
be defined only after ¢, has been defined.



CHAPTER 1V

EXTENSION AND RESTRICTION OF A CAPACITY

16. Extension of a capacity. — Let &, and &, be two classes
of subsets of a topological space E such that & C&,, and let f,
be a capacity on §,. We shall always suppose &, to be such
that each element of &, is f,-capacitable, which is the case, as
we have seen, when 8, is absorbing (for example, additive).

16. 1. DerinitioN. — The function f, on &, defined by
f:(X) = f¥(X) for each X €8, is called the extension of f, to &,.
It is indeed an extension in the ordinary sense for if X e§,,
we have f,(X) = f1(X) = f,(X).

This function f, is a capacity. First, it is obviously increa-
sing. On the other hand, for each A c E such that, forexample,
f: is finite, and for each & > 0, there exists an open set ©
containing A and such that f,(w) —fi(A) <e; hence, if
A e, we have the inequality f,(B) —f,(A) < ¢ for each
B €8, such that ACBCw. This fact shows that f, is conti-
nuous on the right.

Since 8, C8,, we have f, (X) <[, (X) for each set X. But
this inequality obviously becomes an equality for open sets.
It follows that fi(X) = f;(X) for each X. In particular we
have, for Ae§,, fi(A) = f.(A) =[f;(A), and it follows that
A 1s f,-capacitable, although we have made on &, no restrictive
hypothesis such as « &, 1s absorbing ».

It also follows from these relations that if an X CE is f,-capa-
citable, it is also f,-capacitable and we have f,(X) = f,(X).
In short :

16. 2. Tueorem. — The extension f, of a capacity f, is a
capacity and .
fuéfw fl=ft-

There are more f,-capacitable sets than f,-capacitable sets.
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An example of extension. — If we take for & the class of
all the subsets of E, each X C E becomes f,-capacitable. This
example shows clearly that it is not of interest to make exten-
sions to classes which are too large. Of course, extensions
enrich the class of capacitable sets, but we lose preciseness in
the process since now f, = {f3.

16. 3. Trreorem. — If X C E is such that each element of &,
contained in X is f,-capgcitable, or is contamed in an f i-capa-
citable subset of X, we have f,(X) = fo(X); thus, if this X is
fi-capacitable, it is also fi-capacitable.

In fact, if Ac Bc X with A €§, and f,,(B) =f7(B), we have
[AA) = Fid) < (1B) =1, (B [ (X). By comparing the
extremes it follows that [, (X)<f,(X). Since we have
already the inequality f,, < f,*, we have, indeed, the equality

fi*( fﬂ* )
16. 4. Applications of theorem 16. 3.

16. 5. First application. — Suppose that each element of
8, is f,-capacitable. The preceding theorem is applicable then
to each XC E. Therefore we have the identities f, =f,,
and fi=/f; In particular, the f,-capacitability is identical
to the f,-capacitability.

Examere 1. — If 8, is the class of f,-capacitable subsets
of E, it is the largest extension of f, which does not change the
capacitability. We shall say that it is the canonical extension

of f,.

- ExampLE 2. — Suppose that there exists a closed set NC E
whlch contains each element of &, and that, for each element
A €8,, the set ANN is f,- capacitable '

Then each element A eb is f,-capacitable.

In fact, we have f, (X)=f, (XNN) for each XC E. Fur-

thermore, for each open set w, we have f,(» f,(wU[ )
this shows that f}(X) = fi(XNN) for each XC E.

Thus each X such that XN N is f,-capacitable is also
fi-capacitable.

We have, for example, one such circumstance in taking for
&, the set of closed subsets of a closed N of E and for &, the
set of all closed subsets of E.
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16. 6. Second application. — Suppose that each element of &,
contained in an element of &, is an element of &,.

ExampLE. — Let &, and &, be hereditary classes of closed
subsets of E. Then theorem 16. 3. is applicable to each X
which is a subset of an element of §,, that is, f,, = f,, for
this X.

Special case. — If there exists a subset NCE which
contains each element of §,, and if each element of &, contained
in N is an element of &, the theorem is applicable to each
X c N. We obtain an example of this situation by taking &,
as the set of all compacts contained in a set N in a Hausdorff
space E and &, as the set of all compacts in the same space E.

16. 7. Transitivity of the extensions. — If §, C §,C §,,if f, 1s
a capacity on &, and f,, f, its extensions to &, and &, respec-
tively, it 1s obvious that f, is identical to the extension of f, to
§,. Indeed, the exterior capacity of a set remains invariant
in each extension. This amounts to saying that the extension
18 a transitive operation.

17. Invariance of the classes @, by extension.

17. 1. Classes @, , — From the identity f;=f{7 it follows
immediately that, if f, is in the class @, ,, then each extension
f. of f, is in the same class.

17. 2. Classes a, of order « greater than (1, a). — In order
to study these classes, we will need a new definition.

17. 3. DerinitioN. — A class & of subsets of E is rich if, for
each couple of open sets w,, v, of E and each element A of 6 such
that A C (0, U w,), there exist two elements A, and A, of & such
that A,C v, A,Cw,, ACA,UA..

17. 4. ExamprLe. — If E is a normal space, each heredi-
tary set of closed subsets of E 1s rich. In fact, by duality,
it is sufficient to prove the following: if F, and F, are two
closed sets of E, and if G is an open set such that GO F,NF,,
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then there exist two open sets G, and G, which contain G and
such that

G, DOF, G,DF,, and G=G,NG,.

Now the sets (F,—G) and (F,—G) are closed and disjoint;
the normality of E implies that they are respectively con-
tained in two disjoint open sets g, and g,. It is then sufficient
to take G,=GUg, and G,=GU g,; these open sets have
the desired properties.

17.5. ExampLe. — More generally, if 6 is a hereditary
class of closed sets of E such that each element of & is normal,
then & is rich. This example is a generalization of the pre-
ceding one. The preceding proof is applicable provided that
the passage to the complements is made with respect to the
closed set A of & which is to be covered by A, and A..

17. 6. ExameLE. — If § is a class of compacts of E such that,
for each Ke§, each compact k< K and each neighborhood
V of k, there exists an element X of & such that kCc X CV,
then & 1s rich.

In fact, when the open sets w,, w, are given as well as the
compact K e & such that KC (0, U ®,), we find immediately,
by using the information in Example 17. 5., two subcompactsk,
and k, of K such that ;,Cw,, k,;Cw,, and K=k Uk, By
virtue of the hypothesis, there exist K,e& and K, e & such
that K, C K,C w, and k;,C K,C w,. These compacts form the
desired covering. '

17. 7. Lemma. — Let f be a capacity on a class & of subsets
of E, and let { X} be a finite family of arbitrary subsets
of E with f*<U X, finite for each J C 1.

i€l :

For each € >0, there exists a family {o;{ of open sets of E

such that X;C w, for each i and

f(Uwi>—f*('UAi>ge foreach JC L

i€J i€J

In fact, for each J C I, there is an open ; such that

, .

(U A,.> Co,  and  flog)— f*( U A,ﬁ) <e

i€d \ 1€
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If we set w;=ﬂm,, the family {w;{.; obviously has the
J3i
desired properties.

17. 8. Lemma. — Let f be a capacity on an additive and rich
class & of subsets of a space E, and let {w,}ie be a finite family
of open sets of E, with f<U wi) finite for each JZ 1. For each

i€]
¢ >0 there exists a family (Al of elements of & such that
A;C o, for each 1 € 1, and such that for each J C I, we have

(o) —AA)<e

zEJ

(Note that the restriction that the f(®;) are finite is not essen-
tial; we would have an analogous statement if some of the
f(w;) were — 2 or 4+ ).

For each Jc I, let A; be an element of & such that

A U w; and such that ( ) )=e.
i€l

ieJ

By using the fact that & is rich we can, for each J, cover
A; by a family of elements {Ai 1{ies of & such that A, 1 C w;
for all teJ. The proof follows immediately if J contains
only two indices; in the general case we apply the same process

repeatedly (exactly (~ — 1) times, ). Then for each ie let
A,- = U A..”J-
330
It follows immediately that the family {A;} has the desired
properties.

17.9. Lemma. — Let f be a capacity on an additive and rich
class & of subsets of a space E. Let I be a finite set of indices
and O({x;{) a continuous real function of real variables z,(J C I).
If for each family A} of elements of & we have ®({z; j)=0
where v;=f (U A,->, we have the same inequality when we

i€
replace the sets A, by arbitrary subsets of E and each z; by

r{dn)
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In order to simplify the proof we shall assume again that the
capacities which occur are all finite. In order to include the
case where they are not, it would be necessary to give a pre-
cise definition of the continuity of ® at infinity. This defini-
tion is easy to formulate in the particular case (case of ¢ linear)
where we shall have to use it.

The inequality ®({z;{)=0 is satisfied when we take ele-
ments of & for the A, therefore also, by virtue of lemma 17. 7.
and the continuity of @, when the sets A; are open. Lemma
17. 9. then follows because of the continuity of ¢, from Lemma
17. 7. which asserts the possibility of approximating in a
suitable way each of the A, of a given family by an open set w,.

17. 10. Apprication. — Let E be a Hausdorfl space
containing a countable sub-set which 1s everywhere dense,
and let f be a positive, sub-additive capacity defined on the
class &€ = R(E) of all compact sub-sets of E such that f(X) =0
whenever X contains not more than one point.

Then there exists a sub-set A C E which is a Gj; everywhere
dense in E (hence A s a residual of E when E is a complete
metric space) and such that f,(A) = f*(A) =

For, let D = {a,, a,, ..., @y, ...{ be a countable sub-set
which is everywhere dense in E, and ¢ an arbitrary positive
number.

There exists, for each n, an open set w, such that f(w,) < ¢/2",
and a, € w,.

If we set Q, = U ; and Q = U ®,, then, from the above

lemma
F(,) < Zf

On the other hand, since the sequence (), is increasing, and
since each element of & is compact, it can be easily shown that
f(Q) = Lim f(C),) (see end of 28. 2., Chap IV).

It follows that f(O <. Vow Q is an open set which is
everywhere dense in E. Hence, there exists a sequence of
open sets G, which are everywhere dense in K, and whose
capacities tend to 0. Their intersection is the desired set A ("*).

(12) Mazurkiewicz [1] has proved a weaker result, concerning only the interior
capacity of A, whenever E is a compact sub-set of a Euclidean space, and f is the
Newtonian capacity.
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17.11. Taeorem. — Iffis a capacity of arbitrary order &, on
an additive and rich class 8 of subsets of a space E, each extension
of f to an additive family is also of order a,.

Proof. For the class @,, we have already seen that this
statement is satisfied, even without assuming that & is additive
and rich.

For a = (1, b) it is sufficient to remark that each class @, is
defined by a system of inequalities of the form ®=.0(**) where @

is a continuous function of capacities [ <U A,.>. These ine-

i€
qualities remain valid, according to Lemma 17.9., for the
exterior capacities [* U A;), where the A; are (for example)

i€J
elements of the set & on which the extension f, of f is defined.
Since fg(UA,->=f*<U A,-) by the definition of f,, thé ine-

i€ i€l
qualities @ 2> 0 remain true for f,.
17. 12. Cororrary.— If a capacity f on an additive and rich

class & is of order a,(n = 2), each o/' the Lnequahtzes V <0
(p = n) can be extended to the exterior capacities of arbttrary
subsets of E.

This corollary. is actually an immediate consequence of
Lemma 17. 9.

18. Invariance of the classes Jb, by extension.

18. 1. The class Jb, ,. If a capacity f, is of order Jb, , on &,
we have f, (A,)—f,, (ﬂA ) for each sequence A,. However,
since we know only that f, =>f,, we cannot show that
fa(An)— f,,*( ﬂ A ) Therefore, the order b, ,is not conserved
by extensmn

18. 2. Classes .lb, for « = (1, b).

18.3. Lemma.— Let f be a capacity on an additive and mul-
tiplicative class & of subsets of E, and let {X,}e1 be a finite

(*3) This statement is less obvious for the class @,,,. However, notice that the
condition which defines @,,, may be formulated as follows: for a,c A, and
a,C Ay, we have f(A,UAy) — f(a, U a)) < W(F(Ay) — (@), (F(As) —{(as))| where
P(u, v) >0 with u and v.
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family of subsets of E such that f, n Xi\ is finite for each

i€
JC 1. For each € > 0, there exists a family § A} of elements
of 8 such that AC X; for each i, and such that, for each JC 1,

we have
ZIRIR(AZYES

i€J i€)

Indeed, for each JC I let A; be an element of & such that
A;c[)X: and f(ﬂ X,)—flA)<e. Then let A=A,
i€ i€J re

for each ieJ. This family obviously satisfies the condition
stated.

18. 4. Lemwma.— Let f be a capactty on an additive and mul-
tiplicative class 6. With the same conventions as in Lemma

17. 9., if we have O({z;}) >0, with z = f(ﬂ A,-), for each
i€J

choice of the family {A;} of elements of &, we have the same

inequality when we replace the A; by arbitrary subsets X; of E

and each x, by f*( n Xi).
€]
This lemma is an immediate consequence of the continuity

of ® and of Lemma 18. 3.

18. 5. DeriniTioN. — A class F of subsets of a topological
space E s called G-separable if for each couple X, and X, of
disjoint subsets of E each of which is either an element of F or the
intersection of one such element with a closed set of E, there exist
two disjoint open sets v, and v, of E such that X, C v, and X, C w,.

The following are examples of G-separable sets #:
18. 6. Any class F of compacts in a Hausdorff space E.

18. 7. Any class 7 of closed sets in a normal space E.

It is obvious that, if {X,}.ris a finite family of mutually
disjoint sets each of which is either an element of & or the
intersection of such an element with a closed set of E, then
there exists a family jw;}, of open sets of E such that
X;C »; for each : and w,Nw,=a for 1 £ ;.
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18.8. LEemma. — Let f be a capacity on a set & of subsets of E,
and let {X;}er be a finite family of subsets of E such that
each *(Xs) is finite, where X; =[] X, (Jc D).

i€J - ’

When all the X; make up a G-separable set F, there exists for
each € > 0 a family of open sets {1 of E such that X;C w; for
each i and
flo)—f*(X;)<e¢ for each JcI, where w;=[)o.

i€J

Proof. We can easily construct a family of open sets (,
such that

XicQy;  fQ)—f1(X)<e
for each :
Jc I Q;, cQy, whenever J,CJ,.
This family plays a transitory role in the construction.

First let o; = Q. Then we suppose the ; defined for all J
of cardinal number J > p, and in such a way that for each
such J we have :

(1) X; C wy; (.t)JCQJ; W)= n wy.

I'oJ

For each J such that J = p, we then define

Y,=x,n(n er).

yoI

These Y, thus defined are mutually disjoint; they are therefore
separable by some open sets G, which one can in addition
restrict by the condition G;C ;. We then define w; as follows :

Wy = GJ U <U (.l)y).
ol
It is obvious that the family of w; thus increased (J=p)
possess the three properties stated in (1) above. We continue
the construction until we obtain the w; with T= 1; they are
the desired w,.

18. 9. CororrLaryY oF LEMMAs 18. 4. anD 18. 8. — Letfbe a
capacity on an additive and multiplicative class 8. Wiih the
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same conventions as in Lemma 18. 4, we have the inequality

D({2:}) =0, where z, = f*(X;) and X,;= ﬂ X, for each family
i€J
§ X} 1 such that the set of X, ts G-separable.
This corollary is an immediate consequence of lemmas 18. 4.
and 18. 8. and of the continuity of ¢ (we use Lemma 18. 4.
in the particular case where the X, are open sets).

18. 10. Tueorem.— If f is a capacity of order Mo, (o =1, b)
on an additive and multiplicative set §,, the extension of f to a
multiplicative set &, is also of order Jo, when the set &, is G- -sepa-
rable (for example if each element of &, is compact and E is a
Hausdorff space, or if each element of 8, 1s closed and E 1is
normal).

This theorem is an immediate consequence of corollary 18. 9.

19. Extension of a class &, by a limit procedure.

We are now going to study the extension of a capacity fin a
case where the set &, is deduced from & by a process inde-
pendent of the given capacity f.

19. 1. Tueorem. — Let 6, be a multiplicative class of
-compacts of a space E, and let &, be the set of arbitrary intersections
of elements of &,. If f, is the extension to &, of an arbitrary
capacity f, on &,, then for each A, «&,,

f2(A,) = inf f,(X) (A, cX; Xeb,).
If f, ts of order Mog (=1, b), then f, is of the same order.

If %, vs additive as well as multiplicative, &, has the same pro-
perty; if then f, is of order @, f, is of the same order.

Proof. We use the fact that, for each A €&, and for each
open set © containing X, there exists an element B e §, such
that ACB Cw. This statement is an immediate consequence
of the fact that A is the intersection of a filtering decreasing
family of compacts which are elements of &,.

It follows that for any finite family {A,{;; of elements of &,
and for any two families of open sets {w;} and {Q;}{ such that

n A Co, U A, cQ, for each Jcl,

i€l i€y
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there exists a family {B,} ¢ of elements of &, such that, for any
indices : and J
A,cB, [)Bico, |JBicOQ.
i€J i€l

These relations show that we shall be able to approximate
each finite family of elements of &, from above by elements
of &, in such a way that this approximation is preserved by the
operations of intersection and union. The formula

f.(A) =inf £,(X) (A, CX; Xeb)

follows from the fact that f, is continuous on the right, that
f1(X) = f,(X), and that we can approximate A, from above by
some X

Henceforth, for each inequality

(I)(ngg)go, where z =f<ﬂA,->,
i€J
which is valid for f,, it is sufficient to carry out a passage to
the limit in order to obtain the same inequality for f,. This
remark establishes the second assertion of the theorem.
When &, is additive, the additivity of &, follows immedia-
tely, and the process which we have just used for f (ﬂ Ai>
i€J
1s also vald for f ( U A‘->. This fact proves the last part of
the theorem. €l

20. Restriction of a capacity. — Let &, and &, be two classes
of subsets of a space E with &, C§, and let f, be a capacity
on §,.

The restriction of f, to &, is the function f, defined on &, by
the relation f,(A) = f,(A) for each A €§,.

It follows immediately that f, is a capacity. We suppose,
as everywhere else, that the given data are such that for f,
(and f,) every element of 8, (respectively &,) is capacitable, for
example, because &, and &, are additive or absorbing.

The following relations hold for each X CE:

(X)) =, (X) fi(X) = fi(X).

If f, 1s of order @, ,(b,,,), we cannot therefore conclude that
f, is of the same order. But, if 8, and &, are additive (multi-
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plicative), and if f, is of order @, (with « = (1, b) (or respec-
tively of order JMb,), it follows immediately that f, is of the
same order.

This operation is interesting in a special case.

20. 1. Special case. — Let N be a subset of E such that, for
each open set » C E, the set (NNw) is f,-capacitable (for example,
if N be open).

If we take for &, the set of elements of &, included in N, we have
for each X CN the equalities

[o(X)=fu(X)  FI(X)=F(X).

In particular, each subset X of N is simultaneously f, and
fs-capacitable or non-capacitable.

The first of these relations follows immediately. In order to
show the second, we shall suppose, for example, that f7(X)
is finite. For each ¢ > 0 there exists an open set w such
that XCw and f,(w) —f(X) <e. Now we have the follo-
wing sequence of inequalities :

fIX)=L(X)=i(NNw)=f,,(NNo) =f,,(NNo) = fi, () =f.(«).

It follows that f3(X)—/f1(X)< ¢ for each ¢ > 0, and the
desired result follows.

20. 2. Application of the preceding operations. — We shall
use these operations especially in the study of the capacita-
bility of sets. In fact, it is often convenient in this study
to suppose that the space E and set & possess a certain regu-
larity. The operation of restriction will permit us to
replace E by a subspace N; then the extension operation will
permit enrichment of the new class &, thus obtained, a step
which often proves useful.

20. 3. ExampreE. — Let E be a Hausdorff space, and let &
be an additive and hereditary class of compacts of E. Let f be
a capacity on &.

Let X be a subset of E such that every compact contained
in X is f-capacitable; and suppose that there exists a completely
regular set N such that XC NCE, and such that each
subset of N which is open relative to N is f-capacitable (if X
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possesses a completely regular neighborhood, we shall take
for N the interior of this neighborhood; if the element A of & is
metrizable, we shall take for N the set A if the capacity f is
such that each K, of E is capacitable).

We wish to show how we can replace the study of interior and
exterior capacities of X by the same study in a simpler case.

Let & be the additive and hereditary set of elements of &
contained in N. 1If f, i1s the restriction of f to &,, we have

fuX)=f(X) and fi(X)=f*X") forevery X CN.

Observe, on the other hand, that we can consider f, as a capacity
on the set &, of subsets of the space N; we obtain for each X' N
the same values for the interior and exterior f,-capacities when
we consider & as a class of subsets of E or of an arbitrary
space in which N is imbedded. This remark will allow us te
imbed N in a new normal space as follows :
Since N i1s completely regular, it can be imbedded in a compact
space F. Designate by &, the set of its compacts and by f, the
extension of f, to &,.

According to theorems 16. 2. and 16. 3, as every compact
included in X is f-capacitable, and then also f,-capacitable,

we have,
fia(X) = fo(X) fi(X) = fuX).

It follows that the interior and exterior capacities of X are the
same for f and for f,.

Now f, has the advantage of being a capacity defined on the
set of subcompacts of a compact space.

Let us show tn addition that if f is of any order &, or of order
Mo, with a = (1, b), the capacity f, is of the same order.

It is obvious that f, is of the same order as f. Then Theo-
rem 17. 11. shows that if f, 1s of order @, f, is also. And
Theorem 18. 10. shows that if f, is of order M, with o= (1, b),

then f, 1s of the same order.



CHAPTER V

OPERATIONS ON CAPACITIES AND EXAMPLES OF CAPACITIES

In this chapter we shall study first some operations which
transform capacities of a given class into capacities of the same
class, and then several examples of capacities, some of which
are important and will be used in the following chapters.

21. Operations on the range of capacities.

21.1. If @({x,}) is a continuous, increasing function of the
real variables z; (e I), and if (f;)i denotes a finite family of
capacities defined on a class & of subsets of a space E, then

the function f(X), defined by f(X)=®({f(X)}{)is a capa-

city on &, and we have

f.=2({f.}) and  f*=0({fi}).
If each of the f; i1s of order @, (b, ,) then thesame holds for f.
If ® is a linear form with non-negative ccefficients, and if

each f; is of arbitrary order @,(.lb,), then the same is true for f.

21. 2. If (f,) 1s a sequence of capacities defined on the same &,
and if the f, converge uniformly on & to a function f, then this
function is a capacity. The f,, converge uniformly to f,, and
the f, converge uniformly to f*. If each f,1is of order a,(/b,),
then f1s of the same order.

21. 3. If (f,) 1s a decreasing sequence of capacities defined
on the same &, then the limit f of this sequence is a capacity.

We have f,<limf,,, but not necessarily: f, = limf,,.

If each £, 1s of class a.(b,), with « = (1, b), then the same
holds for the limit f.
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We shall not give the very easy proofs of these statements.

21. 4. If ®(u) is an increasing concave function of the real
variable u, and if f is a capacity of order @, on an additive class &,
then the function g = ®(f) ts also a capacity of order a,.

Proof. The assumptions on ¢ imply its continuity ; hence g
is a capacity. Let us show that VZ(X; A, B),<0. We know
that \/2 (X; A, B),<0 and that the 77, and Y/, with respect

to the function ¢ are non-positive since P is increasing and
concave. If we set

ViX; A, By=—hu  V(XUA; B)y=—2,

Vi(XUB; A)g=—h,  —f(X)=—1,
then the A,, Az, A, are non-negative and we have
f(X) = 7\01

f(XUA) = 7\0 + 7\A + 7\_-\1;,
f(XUB) =4, + Ap + Asn,
f XUAUB) == )\0 + 7\;\ "l‘ 7\1; + >\AB-

If we add the two relations

Va(Ae; Ay A+ Aap)p <0  and  S/,(A, + Ax; M) =0
term by term, we obtain
Do) — DX+ Aat Aan) —P(Ao+ AstAan) + (A4 Au+ Ap+ Aan) <O,

which may be written also as follows :
Vi(X; A’ B),,:_<0

21. 5. Generalization. — An analogous result is obtained if @
is replaced by a function of several real variables whose Y/,
and \/, are non-positive.

More generally, one could show that by composing two alter-
nating functions of order n (in the sense of Chapter 111), the
resulting function is alternating of the same order. The proof
of this last result is not stmple; we shall not give it here.

21. 6. If ®(u) ts an increasing, convex function of the real
vartable u, and if f is a capacity of order M, on a multiplicative
class &, then the function g = ®(f) is also a capacity of order M,.
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This statement is equivalent to the preceding one, for observe
that, if we set ®(u) = —®(—u) and f = —f, then the
function @’ is increasing and concave, and f is alternating of
order 2 on the multiplicative semi-group &.

An extention analogous to that of 21. 4, can be obtained in this
case also.

21. 7. If  a capacity of order @,(n=3) on an additive class
&, then V,(X, A,) s a capacity of order a,_, on & for every
A eb.

The continuity on the right of V,(X; A)) 1s obvious. On
the other hand, every difference of order (n—1) of this diffe-

rence V, is a difference V,. of f; 1t is therefore non-positive.
An analogous statement concerning the capacities of order

db,(n=3) on a multiplicative class & is obtained if V, 1s

replaced by A..

22. Change of variable in a capacity.

22. 1. Let E and F be two topological spaces and & and ¥
two classes of subsets of E and F respectively. A mapping
Y = ¢(X) from & into F will be called increasing and continuous
on the right if.

a) (A, CA,)=>(9(A,) C¢(A,), for any elements A, and A,
of &;

b) for every neighborhood V, of ¢(A,), there exists a neigh-
borhood U, of A, such that the relation ¢(X)C V, holds for every
X eb such that A,cCU,.

If f s a capacity on &, then the function e(X) = f(Y), where
Y = ¢(X) with X e &, s oboiously a capacity on 6. We shall
say that e is derived from fby the change of variable Y = ¢(X).

22. 2. ExawpLE. — Let y = ¢(z) be a continuous mapping
from E into F. For any class & of subsets of E, we shall still
denote the extension of ¢ to & by ¢, and let & be the image of
& by p. This mapping ¢ from & onto # is increasing and
continuous on the right.
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If f1s a capacity on &, then for every BC F we have
e,(¢7'(B) =1£(B) and ¢ (¢7'(B))=f*(B)

and the last relation is an equality if the mapping ¢ from E
into F is an open mapping, that is, if it maps open sets on open
sets.

More generally, the following relations hold for every ACE:

A)=f.(39(A)) and (A)=f"(¢(A))

An important special case is the following :

For E we take the product space of two Hausdorff spaces F
and G; and let ¢ be the canonical projection from E on F. Let
us suppose that every element of & is compact, that & = ¢(§),
and that the condition ¢(K) e Fimplies K e & for every compact
subset K of E. Using the notation employed in the preceding,
we assert that the relation e(w) = f(¢(»)) holds for every open
subset © of E.

Indeed, for every compact subset B C ¢(w), there exists a
compact subset A Cw such that B=¢(A); this statement is
easily deduced from the fact that B is compact. If we take,
for the sets B, elements of & whose f-capacity approaches that
of ¢(w), we obtain e(w) = f(9(w)); but we know already that
e(w) < f(¢(w)), hence the equality.

It follows that e*(X) = f*(¢(X)) for every subset X CE.
Since we know already that e, (X) < f,(¢(X)), the e-capacita-
bility of X, that 1s, the condition e, (X) = e*(X), implies
F(4(X) < £.(¢(X)), whence f*(¢(X)) = £,(5(X)).

22. 3. TueoreM. — The e-capacitability of X unplies the
f-capacitability of its projection ¢ (X), andwe have e(X) = f(¢(X

23. Study of U-homomorphisms continuous on the right.

We shall now suppose that & vs additive. We shall say that the
mapping ¢ from & into F s a U-homomorphism continuous on
the right if it is continuous on the right in the previously defined
sense, and if ¢(AUA,)=0¢(A,)Uz(A,) whenever A, and A, <.

Such a mapping is clearly increasing.
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23. 1. General examples of |U-homomorphisms continuous on
the right.

(x) Let E = F and let § be an additive class of subsets
of E.

(1) For every A CE, let &, be the class of those subsets of E
which are of the form (XUA), where X € 6. Then the mapping
X — (XUA) from & onto %, 1s a U-homomorphism continuous
on the right.

(11) For every closed subset A of E, let #, be the class of those
subsets of E which are of the form (XNA), where Xe&.
Then the mapping X —~ (XNA) from & onto %, has the desired
property.

(B) Let E=F. If 8 1is the class of all subsets of E, and if &
1s the class of all closed subsets of E, then the mapping ¢
from & onto  which 1s defined by ¢(A) = A has the desired
property.

(y) Let 2 = {(y) be a continuous mapping from a compact
space F into a Hausdorff space E. Then for every class & of
subsets of E, the mapping ¢ = ¢~ from & into the class of
all subsets of F has the desired property.

Indeed, for any A e§ let B=g¢(A)=1{7'(A). Let V be an
open neighborhood of B. For every point z € A there exists
an open neighborhood u, of z such that {~'(u,)CV. If
U=qu, then U 1s an open neighborhood of A such that

ZEA

¢~'(U) CV, which proves the continuity on the right of ¢.

(8) More generally, let E be an arbitrary topological space,
F a compact space,and A a closed subset of (EXF). Forevery
X CE, let Y = ¢(X) be the set of those points y of F for which
(z, y) € A for at least one z € X. Then the mapplng A—g(A)1s

again a U-homomorphism which i1s continuous on the right.

To these results there corresponds a reciprocal proposition
which shows, in an 1mportant special case, how every U-homo-
morphism which 1s continuous on the right can be obtained.

Let & be an additive, hereditary class of compact subsets of a
topological space E, and let Y = ¢(X) be a U-homomorphism,
continuous on the right, from & onto a class F of compact subsets
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of a Hausdorff space F. Then there exists in (EXF) a closed
subset A which satisfies the following relation :

For every X e 6, ¢(X) is the set of all points y of F such that
(x, y) € A for at least one z e X.

An equivalent statement is the following: if prg(m) and
pre(m) denote the projections of a point m of A on E and
F, respectively, then ¢(X) = pre(prz'(X)).

We leave the verification of this proposition to the reader.

(¢) Let y = ¢(x) be a continuous mapping from E into F;
then the extention of ¢ to an additive class & of subsets of E has
the desired property. We have already used this example and
stated an important special case of it in 22. 2.

23. 2. Preservation of the class a,(a=(1, b)) by the U-homo-
morphisms continuous on the right. — Let E and F be two
topogical spaces, § and F two additive classes of subsets of E
and F, respectively, and let ¢ be a U-homomorphism, conti-
nuous on the right, from & into 4.

If f is a capacity of order @y (= (1, b)) on &, then the capa-
city ¢(X) = f(¢(X)) on & is also of order @,. This result is an
immediate consequence of the fact that the definitions of the
classes @, involve the operation U only.

24. Study of \-homomorphisms continuous on the right.

Let us suppose that & vs multiplicative. We shall say that
the mapping ¢ from & into F 1is a (-homomorphism
continuous on the right if it is continuous on the right, and if

¢(A, NA,) =¢(A,) Ng(A,) whenever A, and A, are elements of &.

Such a mapping is obyviously increasing.

24. 1 General examples of ()-homomorphisms continuous on
the right.

() Under the conditions specified in example 23. 1. (a), the
mappings X—-XUA and X—XNA are N-homomorphisms,
continuous on the right, whenever & is multiplicative.

(B) Let E==F. If & is the class of all subsets of E,and f F
is the class of all open subsets of E, then the mapping ¢ from &
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onto ¥ defined by zp(A.):A (interior of A) has the desired
property.

(Y) The mapping ¢ = {~' defined in example 23. 1. (y), has
the desired property. Thus, this mapping is both a U-and a
N-homomorphism, continuous on the right, whenever & is
both additive and multiplicative.

(¢) Let y =g(x) be a continuous, one-to-one mapping from
E into F, or more generally, let ¢ be continuous and such that
(A, NA,) =¢(A,)Ng(A,) whenever A, and A, are elements of &.
Then the extension of ¢ to & has the desired property.

(¢) Suppose that E is a Hausdorff space and that every
element of & is compact.

(i) If F 1s the topological space of all compact subsets of
E, and if, forevery A e &, wedefine ¢ by ¢(A) =% (A), where 5 (A)
is the class of all compact subsets of A, then the mapping ¢ has
the desired property. For, on the one hand,

$(A N A, = ¢(A,) Na(A,)

and, on the other, the continuity on the right follows from the
definition of the classical topology of F.

(11) Let I be any set of indices, and F the topological space E.
If, for every A 8, we set B=¢(A) = A', then the mapping ¢
has the desired property.

24. 2. Prosrem. It would be interesting to find a simple
method for the construction of every N-homomorphism,
continuous on the right, from the class § of all compact
subsets of a compact space E into the class  of all compact
subsets of another compact space F.

24. 3. Preservation of the classes Jb,(z=(1, b)) by the
N-homomorphisms continuous on the right. -— Since there is a
perfect analogy with the proposition concerning the preservation
of the classes @, by the U-homomorphisms (see 23. 2.), the
results will not be stated in detail.

24. 4, Study of other changes of variables. — There are
other changes of variable, such as for instance those which
transform a capacity of order @, into a capacity of order..lb,,
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or conversely. They are of particular interest when the classes €
and 7 to which they apply are classes of compact sets.

In this connection, it would be interesting to find a simple
method for constructing every mapping ¢ of the following types:
E and F are two compact spaces, & and F the classes of all
compact subsets of E and F, respectively, and ¢ 1s a mapping
from & into F which satisfies either

(A UA,) =29(A)Ng(A,)

The first of these two functions may be called an exponential
and the second a logarithm. Both are decreasing; it 1s,
therefore, no longer possible to speak of their continuity on the
right. In each particular case one should impose the type of
continuity which is the most suitable.

or

ExaMpLE oF AN EXPONENTIAL. — For a given E let T be an
auxiliary compact space, F a compact topological space of
continuous mappings from E into T, and A a compact subset
of T. For every compact subset X of E, we denote by Y = ¢ (X))
the class of all continuous mappings from E into T which
belong to F and which map X into A. "Then Y is compact,
and obviously satisfies the relation (X, U X,) = ¢(X,) N ¢(X,).

25. Construction of alternating capacities of order 2.

Although the most interesting capacities to study are those
of order a_ or Jb_, the fact that the capacities of order a,
and Jb, lead to a complete theory of capacitability induces us
to investigate the operations which lead to such capacities.
We shall study here an operation which leads to functions
which are alternating of order 2.

25.1. Study of the Greenian capacity by means of the Dirichlet
integral. — Let D be a Greeman domain of R". Let ) be the
set of absolutely continuous functions which are : non-negative
on D, zero on the boundary of D, and possess a finite

Dirichlet integral
f(¢) = [ (grad 9)*da.
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It can be shown that if ¢, and ¢, € @, ¢, — ¢, and ¢, ~g,are also
in ¥, and that

f(@0= ) + (3.~ 92) = F(5:) +f(g2)-
Then let K be a compact subset of D. If we set
cap (K) =1nff(¢) for all =1 on K,

it can be shown that, within a constant factor, this capacity is
precisely the Greenian capacity of K that we have studied in
Chapter I1. Let us show that cap(K) is an alternating capacity
of order @, (which we know already, but this new proof can be
extended to new cases).

The fact that it is increasing and continuous on the right is
immediate. Then let K, and K, be two compacts of D and let
e > 0. Let ¢, ¢, be two elements of 9 such that:

f(3) —cap(K)<e¢ and ¢i(z)=1 on K, (=1, 2).
We have therefore
f(@i=9s) + (@ ~9:) Scap K, + cap K, + 2.

Now )
(?iv?aéi on (Ki U Ks)

and )
(g1~ps)=1  on  (K,NK,).

It follows that
f(K,UK,) + f(K, N K;) Zf(K,) + f(K,).

Since this inequality is sufficient to obtain the most precise
results of the theory of capacitability, it is interesting to try to
apply the above reasoning to a more general case.

N. Aronszajn [1] in his study of functional completion
and of exceptional sets associates a set function to each nor-
med space ¢ of real functions on a given set E, in the follo-
wing way : Let ||¢{| be the norm on €. For each X CE we set

F(X) =inf||¢|| for all ¢ which are =1 on X.
If there exists no ¢ which is = 1, on X, we set F(X) = 4 oc.

In the case where ¢ is the linear space generated by the set
9 introduced above, the Greenian capacity of a compact set X
is in fact the square of the expression F(X) corresponding to
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the norm ||¢|| =V f(¢); but this difference is not trouble some
for the theory of capacity.

The following contains a theorem which leads to some gene-
ral cases where the above function F(X) i1s alternating of order 2.

25. 2. Alternating functions associated with a subvaluation on
a lattice. — Let L be a lattice, L' a sublattice of L such that each
a e L is majorated by an a' € L', and f a real function on L such

that
f(a—b) + fla~b) < f(a) + f(b).

We say that f is a sub-valuation on L.

When L' = L is a distributive lattice and when f is an
anreasmg valuation on L, we shall see (26. 4. ) that f 1s alter-
nating of order o on L, relative to the operation —.

If f is not an increasing valuation, this is no longer true in
general. However, we shall see how we can still associate. to
each valuation and likewise to each sub-valuation on L’ an
alternating function of order 2 on L, even if L. and I." are not
distributive.

For each z € L, we set

cap (z) = inf f(a) for all a such that xt S aandael .

Tueorem. — The function cap (x) is an alternating function
of order 2 on L, relative to the operation —.

Proof. That cap (z) is increasing i1s immediate; and the
inequality

cap (a—b) + cap (a~b) < cap (a) + cap (b)

is proved exactly as in the case where fis the Dirichlet integral.
of o.

ExampLEs. — Usually, the sub-valuation f will be a valuation
Here are some examples.

If D is a domain of R" we take L =SS, “¥ and take for L’
the set of real positive functions ¢ which are : continuous on D,
zero outside of a compact set, and Lipschitzian. If we set

(**) SS. denotes the cone of all positive and upper semi-continuous functions
on D which vanish outside of some compact.
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¢, 3 9. when ¢,(z) < 9,(x) for every z, L is a lattice and L' is
a sublattlce

Let @( z, ¢, > be a continuous function of x, ¢, and of the

partial derlvatlves of the first order of ¢, such that { 9 (z,0,0)dp
(where u is the Lebesgue measure or any other fixed abso-
lutely continuous measure on D) has a sense. We set

fl) = jqfl)<a;, %, j)du for each ¢elL'
D
It 1s immediate that if ¢, < ¢,, we have

f(@0~s) + F(9: ~ 92) = f(#1) + F()-

The fact that this relation holds wheng, and ¢, are arbitrary
15 due to the following facts:

(a) the set of points of D where ¢,5~¢, 1s a denumerable
union of partial domains in each of which we have either

P13 or 9393
(b) the set of points of D where ¢, = ¢, is the union of two
borelian sets A and B such that on A the functions ¢, and ¢,
have equal differentials, and B has Lebesgue measure zero.
It is often useful to notice that for each ¢ > 0, and for each
nelghborhood V of the support of any ¢ e L', there exists a
function ¢’ indefinitely differentiable, zero outside of V, with

g—¢l<e and  |f(e)—f(¢)|<e.

These conclusions would no longer hold if in the function ¢
some partial derivatives of ¢ of order = 2 occurred.

Special cases.

(a) ® = ¢” leads to the norm of the spaces L’.
(b) ® = (grad ¢)* leads to the Dirichlet integral.
(¢) ®=(1+ grad® ¢)"” leads to the «area» of the graph of g.

When @ is homogeneous of degree o with respect to ¢ and
O_CE

» the function [cap (¢)]"* is homogeneous of degree 1 and, if
« > 1, the fact that ¢ = u"* i1s then an increasing and concave
function implies that [cap(¢)]"* is alternating of order 2
whenever f(¢) 1s = 0 and alternating of order 2 (see 21. 4.).
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25. 3. Equilibrium. — The definition given above of the
function cap (z) 1s more general, even in the setting of the
classical Greenmian capacity, than the ordinary definition,
since it defines not only the capacity of the characteristic
functions of compacts, but also the capacity of any element
eSS,

We could associate to every element ¢ € SS_ a sub-harmonic
function analogous to an equilibrium potential. We shall
show, in the general scheme introduced above, how we can
define such an equilibrium in very general cases.

Let us use the notations introduced in the above theorem.
For each a,e L, let L(a,) be the set of elements a of L such
that @, < a and cap (a) = cap(a,). L(a,) ts a sub-lattice of L;
in fact, if a,, a, € L(a,), we have

a,3a,~a,3a, a,
so that since cap (z) is increasing, we have

cap (a, ~a,) = cap (a,),
and hence
a,~a, < L(a,).

On the other hand,

cap (a,— a,) + cap (a, ~a,) < cap (a,) + cap (a,);

hence
cap (a,—a,) < cap (a,);

and since cap (z) is increasing, it follows that
a,—a, € L(a,).

The lattice L(a,) possesses a smallest element, which is q,;
1t can have only one largest element; when the latter exists,
we shall denote it @; it is the equilitbrium element associated
with a,.

A case where @, always exists whenever a, 1s such that
L(a,) is bounded above is when
(a) L=L;

b) eachsubsetof Lbounded above possesses an upper bound;
¢) f(z) 1s lower semi-continuous on the left, which means
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that for each subset (a;) of L, filtering on the right, and having
an upper bound a,,, we have

f(a,) < himinff(a).
This semi-continuity occurs, for example, when f(p) is the
integral on D of a function (I)<a:, , Zi?> which is >0 and has,

ox
in a certain sense, a convex indicatrix when considered as a

function of g- (Example: ® = grad®g or ® = (1 4 grad®¢)'?.)

It can happen that for some a,e L, L(a,) is not bounded
above, but that by introducing a convenient notion of excep-
tional set, L(a,) possesses a quasi-upper bound. This happens
for example in the classical potential theory.

26. Examples of alternating capacities of order a..

In all of the following examples, the capacities under
consideration are always tacitly assumed to be defined on the
class § = H(E) of all compact subsets of the space E in question
unless otherwise indicated. We shall give here only examples
of capacities of order @_. Let us notice here that many
capacities which occur naturally in analysis are obtained from
Radon measures by a small number of operations such as N,

U, [:, max, min, and that in general, the capacities obtained
in this way either fail to be of any order @, or .Wb, or they
are of order a_or Jb_.

26. 1. Alternating family of elements of a commutative ordered
group. — Let G be a commutative ordered group, and I
a finite set. Every function, alternating of order oc, which
is defined on the class & = 2' of all subsets of I and whose
values are in G is called an alternating family (z;);c1 of ele-

ments of G. Thus, if z; = f(J), all the V, are supposed to
be non-positive. Let us set, conforming to a notation already
used before,

VII—0); ] =—A (I, with J==6)(A, = 0).
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By an already familiar computation we deduce from these
relations the following :

Zy = T, + 2 Ax.
KNJ#o
If 2, 1s not defined, an arbitrary value such that A; is non-
negative 1s assigned to X,; this assignment is always possible.
Conversely, it is easily verified that every family 2; which 1s
defined by equalities of this form with numbers Az >0 1is
indeed an alternating famly.

ExamprLe. — If I contains two elements 1, 2, then every
alternating family on I is of the following form :

371=$0+7\1+)\1,2;\ x‘2=w6+>\2+x1,2
Xy, =To+ A+ A4 Ay

26. 2. Operation « sup » in a commutative lattice group (**). —
Let G be a commutative lattice group and I any set. Also, let
i — z; be a mapping ¢ from I into G.

Set f(X) = sup (x;) for every finite X CI. The function f

i€

is thus defined on the additive class & of finite subsets of I.

We wish to prove that the V, are non-positive and more
precisely, that

V(X; {A,4)=inf[f(X), {f(A)}]—inf[{f(A,)}].
It is equivalent to prove that for arbitrary elements z, a, of G
(p=1, 2, ...), we have

V(“’; $a,.§)mp=inf(x, a)—a  where a=inf gap;,

We recall the following identity : inf (u, ¢) + sup (u, v) = u + ¢.
It follows that V,(x; a,) = z—sup (z, a,) =1nf (2, a,)—a,.
The general formula follows from this one by induction: the
proof is entirely analogous to that of 14. 5. for functions which
are both alternating and monotone of order 2. Thus, we can
state that the operation « sup » in a commutative lattice group
1s an alternating function of order infinity.

(1) A commutative lattice group G is an ordered group such that any two ele-
ments X, and X, of G always have a least upper bound, sup(X,, X,), and a greatest
lower bound, inf(X,, X,), sometimes denoted by X, — X, and X, ~X,, respectively.



206 GUSTAVE CHOQUET

For the operation inf there is a formula which is the dual of

the preceding one; hence, the V.., will be non-negative. Thus,
if for every X C I we set
o(X) = [sup (z;) —inf (z;)],
iex i€ex
the oscillation w(X) 1s an alternating function of order infinity.

If G is in addition a complete lattice (*°), these results may be
extended to additive classes & of subsets X of I such that every
9(X) is bounded from above (and also bounded from below if
o(X) is being considered).

AppricaTiON. — Let ¢(z) be a real-valued continuous func-
tion on a topological space E. For every XCE we shall
denote by f(X) and w(X) the least upper bound and the oscilla-
tion of ¢ on X. These two functions are alternating capaci-
ties of order @ _ on each additive class & of subsets of E (on
which they are assumed to be finite, for simplification). When
o(z) is only upper semicontinuous on E, f(X) only is a capacity
of order a_.

Exampre. — If 3(X) denotes the diameter of a compact
subset X of the real line, then since ¢(X) is the oscillation of
the function z on X, this diameter is a capacity of order a_ of X.
(It should be remarked that if one wants to assign a value to &(g),
this value should be — ).

On the other hand, the diameter of a compact set X in an
arbitrary metric space E is not of order @_. This diameter is
equal to the maximum of a function which is defined on E*
and not on E. We therefore have only ¢(X) = f(X*) where f
1s a capacity of order &_ on J(E”).

26. 3. Generalization: valuation on a distributive lattice. —
Let L be a distributive lattice and f a mapping from L into a
commutative ordered group G. We shall say that f is a valuation, if

fla—b) + fla~b) ={f(a) +f(b).
26. 4. Turorem. — If f is an increasing valuation (that is, if

(@ 3 b)=>f(a) < f(b)), and if we set g(X)= f(sup X) for every

(16) A lattice G is said to be complete if and only if every subset of G which is
bounded from above possesses a least upper bound (and likewise for the greatest
lower bound).
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finite subset X of A, then the function g(X), which is defined on
the additive class & of all finite subsets of L, is alternating of
order o, and

V(X; {A}), = inf (g(X), {g(A)}) —inf{g(A)}.

An analogous statement holds in the case where L is a complete
distributive lattice and where & is the class of all bounded
subsets of L.

CoroLLary. — With the same notations, the function f(z) is
alternating of order o on the ordered semi-group L with the ope-
ration sup.

26. 5. Examples of such valuations.

(1) The dimension of a variety in projective geometry or
in Von Neumann’s continuous dimensional projective geometry.

(1) For L we take the set of all positive integers, ordered
by the relation a 4 b if b is a multiple of a and we set :

f(2) = Log (#) )
g(X) =Log[l.e.m.(X)] forevery XcCUL, withX finite.

26. 6. Non-negative Radon measures. — If E is a locally
compact space, a function f defined on R(E) defines a non-
negative Radon measure if and only if

(1) f is finite for every K e R(E).
() flg) = 0. .
(11)  f 1s increasing and continuous on the right.

These conditions are equivalent to stating that fis a capacity
on R(E) of orders @a_ and JAb_ which is finite and such that
£(9) = 0.

More generally, if E is any Hausdorff space, any function f
which is defined on an additive and hereditary class & of
compact subsets of E, and which satisfies the conditions (1),
(i1), (m), (1v), will be called a generalized non-negative Radon
measure on 6. Here again, these conditions are equivalent to
the statement that fis a capacity on & of orders a_ and Jb_
which is finite and such that f(g) = 0.

We further remark that, since the class & is rich (see
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Chapter 1v, 17. 3.) the extension of f to the class K(E) of all
compact subsets of E 1s still of order @_ by virtue of Theorem
17. 10. of Chapter 1v. Since, on the other hand, R(E) 1s
G-separable (see definition 18. 5.), this extension is also of
order Jdb_, by Theorem 18. 11. of Chapter 1v. Thus, this
extension to K (E) is a capacity of order @_ and JAb_ such that
f(#) = 0. But it may happen that for this extension
f(K) = + % for certain compact sets K.

Let us show that if f ts any function which is defined on an
additive, hereditary class & of compact subsets of E, and which
satisfies conditions (1), (ii), and (1), the condition (1v) is equi-
valent to the following condition :

') f(K,UK,) Zf(K,) + f(K,), and this inequality becomes
an equality whenever K, NK, =0¢ (K, and K, are elements
of ).

Indeed, since f = 0 and f(¢) = 0, (iv) implies (iv’). Conver-
sely, let us suppose that (iv') i1s satisfied. We wish to show
that, if K, and K, are elements of §, then

f(Kl U Ka) + f(K! n K?) = f\/K1> + f(Kz)

If K,NK, =g, the desired relation obviously holds. If
K,NK, 5 4, let ¢ be an arbitrary non-negative number, and
let V be a compact neighborhood of (K,NK,) in (K,UK,)

such that
f(V)—Ff(KiNK,) <

Set(K,— V) =k, (i =1, 2). The compact sets k; and (K,NK,)

are disjoint and

(KiNK,)Uk)CSK.C(VUk) (=1, 2).
Hence, by virtue of property (iv'),

flk) + f(K,NK,) < F(K) < fki) + f(V),

and
f(k) + f(k,) + f(K,NK,) < (K, UK,) < flk) + fik) + f(V).
Therefore,
f(K) +1(K,) = f(k.) + f(k:) + 2f(K N K.) + 7,
where 0<n=< 2,
and  f(K,UK) = f(k,) + f(k) + (K, NK.) + 7,
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where 0L
Thus  f(K,UK,) + f(K.NK,) =F(K,) + f(K,) + 7,
where 0 1" < 2.
Generalization. — There exist functions of compact sets

which are closely analogous to the generalized Radon measures
but which are not continuous on the right. For instance,
the linear measure of Caratheodory, defined on the class of all
compact subsets of the Euclidean plane, is such a function.
In this connection, it is of interest to introduce the following
definition.

We shall call any function f, defined on an additive hereditary
class & of compact subsets of a Hausdorff space E a Caratheodory
measure if for every element K of & its restriction to the class
of all compact subsets of K ts a non-negative Radon measure

on K.

26.7. Newtonian or Greenian capacity. — If E i1s a domain in
the Euclidean space R", or more generally, if E is a conformal or
locally Euclidean space which possesses a Green’s function (see
Brelot and Choquet [1]), then the capacity of a compact
subset K C E with respect to this Green’s function is of order
@_. We have studied these capacities in detail in Chapter I1.

26. 8. Fundamental scheme of the capacities of order a . —
Let E and F be two sets (without topologies), A a subset of
(E X F), and . a non-negative additive function defined on
a ring (") F of subsets of F. For every subset X of E, let
¢(X) be the projection on F of the set of those points of A
whose projection on E lies in X. In other words

o(X) =prr[AN(X X F)|.
The mapping X —¢(X) 1s a U-homomorphism.
Let & be an additive class of subsets of E such that ¢(6) C #.

{(17) A set which is closed under finite union and under difference, hence also
under finite intersection.
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The function p. 1s alternating of order o on J (see Chapter III,
14. 5.). Hence if we set

f(X) = p(9(X)) for evéry Xeé,

the function f is alternating of order oc on &.

For instance, if E is a Hausdorff space, F a locally compact
space, A" a closed subset of (E X F), u. a non-negative Radon
measure on F, and & the class 5 (E) of all compact subsets of E,
then it 1s easy to show that ¢ (X) is closed for every X &, hence
measurable with respect to the measure v, and the preceding
definition is applicable. If one canshow in addition that f(X) is
continuous on the right, one can then state that f(X) is a capa-
city of order @_. This case will be realized, for instance, if the
set A i1s compact, or more generally, if ¢(X) is compact for
every compact X CE.

We shall say that fis the function (or the capacity) obtained
by the fundamental scheme (E, F, A, ).

It is clear that in this scheme the additive function . could be
replaced by any alternating function of order oo, but this
generalization is not of great interest; on the other hand, we
shall see that the importance of this scheme lies in the fact
that it provides a canonical representation of every capacity
of order o on E, provided only that this capacity satisfies
some conditions of regularity.

26. 9. Game of « Heads or tails ». — Let E be a finite set of
throws in a game of «heads or tails ». For every KCE, let
f(K) be the probability of the event that tails occurs at least
once on K. The function f(K) may be obtained by the following
scheme : let F = 2° be the class of all subsets of E (including g),
and let AC(EXF) be the set of all points (z, X) such that
re X.

If u i1s the measure on I defined by the condition that the
measure of each of the 2" points of F be 1/2") then f is the
function obtained by the scheme (E, F, A, n). Thus f is
alternating of order @ .

We remark that f(K) depends only on the number of
elements of K; if that number is n, then f(K) = ¢(n).

Now if X, A,, ..., A, are subsets of E which are mutually
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disjoint, with cardinal numbers n, a,,..., a,
then we have obviously

V(X5 {A})=(n; {ai} ),

and this equality shows that ¢ is a function of n which is alter-
nating of order infinity. This can be verified by using the
following explicit expression of ¢: ¢(n) = (1—27").

, respectively,

26. 10. Geometrical probability. — Let E be a plane, D a
line in the plane, and 1. a non-negative Radon measure on D;
for every compact subset K of E, let f(K) be the p-measure
of the orthogonal projection of K on D.  Then f(K) is obvi-
ously a capacity of order @, on J(E). (As an analogous
example, we can consider the «angle» f(K) under which a
compact set K, assumed to be contained in (E — 0), is seen
from a fixed point O of the plane.)

From this remark we might deduce that the measure (here
assumed to be the classical invariant measure) of the set of all
lines of the plane which meet a compact set K is a capacity of
order @_. But it is more convenient and more interesting to
prove this by means of the fundamental scheme as follows.

Let F be the topelogical space (which is locally compact)
of all lines D of the plane; let w be the invariant classical
measure on F, and A the closed subset of (E X F) which consists
of the pairs (z, D) for which z e D.

The function f(z) which is obtained by means of the scheme
(E, F, A, 1) is obviously the measure of the lines D which meet
the compact set D. (If K is convex, then f(K) is, moreover,
equal to twice the length of the boundary curve of K.)

Now let us consider only those compact sets K which are
f(K)
f(T)
function p(K) represents the probability of the event that a line
which meets [' also meets K. As in the preceding example we
have here exhibited a probability whichis a capacity of order @ _.
We shall return to this investigation in the last chapter.

contained in a fixed circle [. If we set p(K)= > then the

26. 11. Let 1 be a non-negative Radon measure defined on a
compact metric space E, and let h(u, m), (u=0, me E), bea
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continuous function of the point (u, m), which i1s decreasing in
u for every m.
For every compact subset X of E, set

F(X) = | h(un, m) ditcu.

where u,, denotes the distance from m to X.

We shall show that fis a capacity of order a_ on R(E).
Indeed, f is obtained by means of the fundamental scheme
[E, R(E), Ag, ps), where R(E) denotes the compact topological
space of all closed subsets of E, Ag 1s the closed subset of all
points (z, X) of (E X X(E)) such that ze X, and y, is a non-
negative Radon measure on that subset B of J(E) which
consists of all closed solid spheres B(m, u) of E, with w, defined
by the elementary measure dh.dp.(m).

For every X e i(E) the class of the compact sets which meet
X has p,-measure zero with the exception of those which are
closed spheres; and the spheres B(m, u) which meet X are
those for which u > wu,. Hence the result.

26. 12. Harmonic measure. — Let E be a Greenian domain,
and for every me E and every compact subset X of E, let
h(X, m) be the harmonic measure of X with respect to the
point m for the domain (E—X). (When m e X, we shall set
h = 1, by definition.) We have already used the fact that this
function is quasi-everywhere equal to the equilibrium potential
of X for the Green’s function of E. (See 11. 2.) Moreover, we
have shown (see 7. 5.) that the equilibrium potential of X

considered as a function of X, has all its differences (V),,
non-positive. Thus A(X, m) is an alternating function of X,
of order oo, for every m. It is continuous on the right. This
fact is obvious if me X, and, if me X, then A(X, m)=1;
hence, we have also A(X’, m)=1 for XD X. Thus h is
indeed a capacity of order a_. '

More general capacities of order @_, may be derived from

this one by setting f(X) ='f h(X, m)dpi(m), where p. is a non-
negative Radon measure on E of finite total mass.

We have given this example immediately after example
26. 11. because of their great similarity.
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26. 13. Construction of Cantor-Minkowski and regularization
of a capacity. — Let E be a metric space such that every
closed sphere in it is compact. For every compact subset K
of E, and for every number p >0, let K., be the set of all
points of E whose distance from K is at most p.

The mapping K— K, is a U-homomorphism, continuous
on the right, from X(E) into R(E). Hence, if g is a capacity of
order @, on X(E), then the same is true for f,, where f, is
defined by fo(K) = g(K,). Moreover, f, decreases to g as a
limit, as p— 0.

For example, in E=R", f, may denote the Euclidean
measure of K,

This construction may be used to show that every capacity g
of order a_ on K(E) us the limit of a decreasing sequence of
capactties of order a_ on K(E), each of which is a continuous
function of its variable X.

For simplification, let us suppose that g=>0. Let ¢ = ¢(u)
be a real-valued function of the real variable u, defined and
continuous on [0, 1], decreasing, vanishing at z =1, and such

that folcpdu—-zl For every A >0, we set
= [ f.(K)Ap(hu) du.

K) =£‘ fa(K)o(t) dt

which shows that g,(K) is a decreasing function of A. The
function g)(K) 1s on the other hand, clearly an alternating
function of order o of K since this is the case for f,(K) for every
u. And since for 0 < ¢ < 1, {5 (K) tends uniformly to g(K) as
A— oo, it follows that gl(K) — g(K).

It remains to show that g,(K) is, for every A, a continuous
function of K considered as an element of the classical topo-
logical space of the compact subsets of E. If we use the
classical metric & for this space, the distances of any point of
E to K, and K, differ by at most ¢ whenever §(K,, K,) <,
which implies that K,(p) CK,(p +¢) and K,(p) T K, (p + ¢).

ThllS fp( <f0+s( 2) and fP(K2)_g.fp+s(Ki)’ S0 that

K) <[ fu.e(K Np?\u)du
=g (Ky) + [, [fure(Ks) — fua(K)Ap (Au) du.

We may also wrlte
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But
S Fawe(Ka) — Fu(K)] ¢ (Au) due

=0 (KM g (M — €)) — 9 ()] du— [ fu(Ko) Mg () du
so that

g (K)) — e (Ko) <[ fu(K) A (g (M(u—€) — ¢ (Aw)| du.

Let M = f(K) for

e~ [s(3+ N M o
where ¢, > 0. / '

For every £ < a(,, we have

and an analogous 1nequahty by mtelchangmg K, dlld K
Thus

18 (K) — g (K,)| <J e t)dt for every e <g,,
which shows that g, (K) 1s continuous.

Note that any alternate capacity on K (E) 1s upper semi-
continuous on the topological space J(E). We have just
shown that it is a decreasing limit of continuous capacities of
the same order.

26. 14. Elementary capacities of order @ . — Let E be a
Hausdorff space and f a capacity on Ji(E) which is sub-additive
and whose range contains at most the values 0 and 1.

Every element A € Ji(E) such that f(A) =0 has an open
neighborhood ® such that, for every compact X Cw we have
f(X) = 0. LetQbe the union of the open sets .

Every compact BcQ is covered by a finite family () of
these open sets w; therefore that compact B 1s the union of a
finite number of subcompacts each of which is contained
in one of the w; (see, for instance, 17. 4. in Chapter 1v).

Therefore f(B) = 0. In other words, for every X e R (E),
the necessary and sufficient condition that f(X) = 0 is that

XcQ. Let T= [:O

0 if XNT=u.
We have f(X)=§1 i XQT;&Z:.
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Consersely, if T i1s any non-empty closed subset of E, the func-
tion fr(X) defined by the preceding relations 1s obviously a
subadditive capacity on R (E).

We shall prove in Chapter vir as a special case of a general
theorem that every fr(X) 1s a capacity of order @  and that
these capacities are the extremal elements of the convex cone
of positive capacities of order a_ on R (E).

The function f{(X) will be called the elementary capacity
(with index T) of order @_ on J(E).

27. Examples of capacities which are monotone of order .lb_.
— We shall give here fewer examples than for capacities
of order @a_, at first because monotone capacities do not occur
as often as altelnatmg capacities and also because they seem
to be less useful.

27.1. Every non-negative additive set function 1s monotone
of order . Thus each non-negative Radon measure on a
locally compact space E is a capacity of order (b, on X (E).

27. 2. The fundamental scheme of alternating capacities
1s replaced here by a scheme that we shall indicate 1n a special
case.

Let E be a locally compact space, F the topological space
of its compact subsets, and w a non- negative Radon measure
on F. If, for every K CE we set f(K) = w(%(K)) where % (K)
denotes the subset of F consisting of all the %ubcompacts of K,
then f(K) 1s a capacity of order .1b_.

The interest of this scheme lies in the fact that it leads to a
canonical representation of all positive capacities of order .lb_
on B (E), as we shall see in Chapter vir.

27. 3. Let v be a non-negative Radon measure on a locally
compact space E, and let 4 (P, Q) be a non-negative continuous
real-valued function of the couple (P, Q), or more generally
a Baire function (with, if necessary, the restriction that
P-£ Q).

The function f(K) / h(P, Q)du(P)du(Q)is a capacity of

order Mb_ on K(E), f01 thc mapping K->K? 1s a N-homomor-
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phism continuous on the right, and (P, Q) du.(P)dp.(Q) defines
a Radon measure on E’ {with possible value 4+ ).

Let us remark that f(K) can be interpreted as the energy of
the restriction of & to K for the kernel A (P, Q).

There are analogous statements for a function & of n variables

defined on E™.

27. 4. On E=R", if we define f(K) to be the Euclidean
measure of the set of centers of circles of radius 1 contained
in the compact K, f1is of order .lb_.

27. 5. On E=R" we set f(K)=~"m(p(K)), where p(K)
denotes the radius of the largest sphere with center 0 contained
in K, and k(u) a function of the real variable u >0 which is
non-decreasing and continuous on the right.

The function f can be obtained by the scheme of 27. 2. above
where w 1s the Radon measure defined by dh(u) on the set of
spheres with center 0. Then f is a capacity of order JMb_.

27. 6. Let E be a finite set of throws in a game of heads or
tails. For every KCE, let f(K) be the probability that tails
occur nowhere except possibly on K.

This probability is within a constant the conjugate function
of the probability that tails occurs at least once on K

Itisthenoforderdb,. IfK =n and E =a, thenf(K) = 2"/2°;
and it can be verified that f(K) is a totally monotone funotlon
of n in the classical sense.

27. 7. Elementary capacities of orders db_. — Let E be a
Hausdorff space and f a capacity on % (E) which is of order b,
and whose range contains at most the values 0 and 1. If
f(X,)=f(X,) =1, we havealso f(X,N X,) = 1 and unless f==1,
we have X,N X, 5~ ¢. Therefore the set of elements X € K(E) for
which f(X) = 1 does not contain ¢ and is multiplicative.

Let T be the non-empty intersection of those compacts; as T
1s also the limit of that decreasing filtering set of compacts and
since f i1s continuous on the right, we have f(T)=1.

In other words, in order that f(X)=1, it is necessary and
sufficient that T CX.
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Conversely, for every compact T CE, let

_\ if TcX.
RX)=l & Tex
It is obvious that f;(X) satisfies the identity :
fr (XN X,) =Fr(X)) . fr(Xy)-
It follows from this (and it will be a particular case of a theo-
rem of Chapter vir) that fr(X) is of order Jb_, and that these
capacities are the extreme elements of the convex cone of
positive capacities of order db_ on R(E).

The function fr(X) will be called the elementary capacity
(with index T') of order M_ on R (E).



CHAPTER VI

CAPACITABILITY. FUNDAMENTAL THEOREMS.

28. Operations on capacitable sets for capacities of order @,. —
In this chapter we shall study the invariance of capacitability
under the operations of denumerable union and intersection,
as well as capacitability of analytic sets. We shall see that we
can obtain subtantial results for capacities which satisfy suffi-
ciently strict inequalities, for example, those which define the
classes @, or fb,. In order to avoid some complications of
terminology we shall suppose always that o is an element of
every class . of sets.

28. 1. Tueorem. — Let & be an additive and rich set of
subsets of a topological space E, and let f be a capacity of order @,
(= (1, b)) on &.

(1) Each finite unton of f-capacitable sets of capacity < — x
is also f-capacitable.

(i1) If f vs such that for each increasing sequence {w,} of open sets
of E we have f(w,) — f (Uco,,) (for example, if each element of &

s compact), then

(a) f is of order &, ,; in other words, f*(A,) — f*(UA,,) for
each increasing sequence of sets A, CE such that f*(A,) = — = ;
and

(b) each denumerable union of capaciiable sets of capacity
=%+ — 2 s also f-capacitable.

Proof. Notice that if f1s of order @, (n = 2), f1s also of
order @,. On the other hand, the inequality which defines the
class a,,, 1s highly analogous to the inequality

f(ANA) —f(aVUa) < [f(A) —fla)] + [f(As) —f(a)],
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which is satisfied for the class @,. Thus, in order to simplfy
the notations, we shall give the proof only for the class a,.

We recall first that, when fis of order @, and is additive and
rich, by virtue of the inequality in 14. 3. and by Lemma 17. 9.,

we have

8. 2. (UA)—F(Ue)< D (F(A) —r(a),
where a;,c A, CE for each 1.

Proof of (i). It is obviously sufficient to prove the theorem
for the union of two sets A, and A,. Moreover, if one of these
sets, say A,, has a capacity f(A,) = + o, the set A, u A, has
an interior capacity equal to 4 o ; therefore, it is capacitable.
We shall suppose therefore that f(A,) and f(A,) are finite.

For each ¢>>0, there exists a set X;e8 and an open set
w; CE such that X;CA,;Cuw, and f(0,) —f(X,) <e(fori=1, 2).

We have therefore, by applying the above inequality 28. 2.,
floy U o) —f(X, U X)) Z[f(o0) — F(X)] + [f(0:) — (X, )1 /25
Since (X, U X,)c(A,UA,) C(w, Uw,) and (X, UX,)eb, and
since (w,U w,) 1s open, the set (A, U A,) is capacitable.

Proof of (11) The proof of (a) will be given first. Let {A,}
be an increasing sequence of subsets of E such that f*(A,) £ —x
for every n.

If for n=n, we have f*(A,)= 4+ o, it is obvious that

(A —F*(UAn)-

Otherwise for each ¢ > 0 and for each n there exists an open
set w, such that A,Cw, and f(w,) — f*(A,) <e/2"
We have, therefore, by applying the inequality 28. 2. above,

and by remarking that U A=A,

FQ)—FANS 5+ +grse where O,={Jo.

Now if we set Q= U Q,= Uw,,, we know by hypothesis
that f(Q,) —f(Q). Therefore, f(Q) <limf*(A,) 4 ¢, and, since
UA,ICQ, we have a fortiori

lim f*(A,) < (| An )< lim f*(A,) +
Since ¢ 1s arbitrary, we have lim f*(A f*(U A,,)
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The proof of (b) will be given next. Let {A,} be an arbi-
trary sequence of capacitable sets such that f(A,) % — .

Let B, = U A, We have U B, = U A,, and moreover each B,

1
is capacitable according to the first part of the theorem. Since
the sequence B, is increasing we have

lim f*(B,) = lim f+(B,) = f*(|J B.).

On the other hand we have
limf.(B,) <f (L B.)
Hence, f"(U B,,)éf*(U B,); the capacitability of (U B,,) fol-

lows from this inequality.
We shall now show that if each element of & 1is compact,

the condition lim f(w,) = (U w,,) is satisfied.

We have at once that limf(w,) < f(Q), where Q= U Oy
On the other hand, if f(Q) << 4 o, for each ¢ <0 there exists
a compact K, € 8 such that f(w) —f(K;) <e. NowK.C U .}

therefore, since K, is compact and since the sequence w, is
increasing, there exists an n = n, such that K,Cw,. It
follows that f(w) —f(w,) < e. Therefore, f(0) <limf(0,); hence
the equality.

In the case where f(Q) = + oo, the proof is similar to that
given. '

We remark that this result about open sets is valid for any
capacity on a class & of compacts.

28. 3. Cororrary. — Let & be an additive and hereditary
set of compacts of E.

If f is a capacity of order a,(a=(1, b)) on & with f> -—o0,
each denumerable union of capacitable sets is capacitable, and
for each increasing sequence of sets A,CE, we have

lim £*(A,) = *(|JA»)-
If f is of order &, then for arbitrary finite or infinite sequences
of subsets (A,) and (a,) of E, with a,CA, for each n, we have

F(UA) —r(Ua) < DAY —F ().
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29. A capacitable class of sets. — We shall introduce first
a convenient terminology.

29.1. DeriniTiON. — Let 8 be a class of subsets of a set E. We
shall let &, denote the class of sets A C E where A is a denumerable,
unton of elements of &.

We shall let 6,5 denote the class of sets A CE where A is a denu-
merable intersection of elements of &,.

We want to show, that under certain hypotheses each
element of &;; 1s capacitable. We cannot use for the proof the
fact that each denumerable intersection of capa(ntable sets 18
capacitable, for this fact is already false for finite intersections
as we shall show later. We will therefore have to use in a
precise way the fact that &5 1s constructed from elements of &.
the set & satisfying in addition certain restrictions.

29. 2. Taeorem. — If &, additive and denumerably multi-
plicative, is such that, for each decreasmg sequence § A} of elements

of & and every neighborhood V of A = ﬂ A,, we have A, CV for n

sufficiently large, and if f is of order @&,,, each element of &5 is
f-capactitable.

Proof. Let A e8;;. Then A = n A,,where A, € &;;in other
p=o
words, A, = U A2 where Areé.

p=1

We can always suppose, since & 1is additive, that A#
increases with p.

Set f*(A)=10l. I l=-—o, we have f,(A)=—o also
and A is capacitable. Otherwise it is finite or equal to + oo.
We shall give the proof in the case in which [ is finite; the case
in which ! = 4 o could be treated in an entirely analogous
manner.

(Besides, the case in which /= 4 o« can always be reduced
to the case where [ is finite by replacing f by g=—e¢7/. The
function (—e ") is continuous and strictly increasing; hence if f
is a capacity of order @,, , g is also. Furthermore, f-capa-
citability is equivalent to g-capacitability.)

Let ¢ be any positive number. The set a?= ANA? is

increasing with p, and we have A = Ua” Therefore, since
f1s of order @, ,, we have f*(A) = lim f"‘(a”)
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Therefore there exists an index p, say p,, such that
FA) —f(ar) <<

Suppose that the sets aPi have been defined for each i<n
in such a way that for each ¢, f*(af) is finite and that afi CA.
Set af,, =al»N Af,. This set is increasing with p, and we
p:oo
have a{,’n=| laﬁ*,, from which it follows that
p=1
(@) = lim f*(aZ...).
p>®

There exists therefore an index p, say p,., such that
€
fHake) —f*(ahnrt) <gpe:
If we add the first n inequalities thus obtained, we get

29. 3. fHA)—f*(abn) <.
The af» constitute a decreasing sequence of sets, all contained

in A. Set a. = ﬂ a». We can also write a.=AN [ﬂAﬁn].
Now A CA,, so that n A CA; hence, a, = ﬂ Abn,

If we set B,= n A, the B, constitute a decreasmg sequence

of elements of & and a. = n B.. Now a, i1s again an element
of &; therefore, according to the continuity on the right of
f and the given hypothesis on the mode of convergence of
decreasing sequences of elements of 8, we have

f(a;) = hm f(B,).

n-—>oo

Since a. Caf»CB,, we have also f(a.) = lim f*(af). The above
inequality 29. 3. becomes f*(A) — f(a.) <e. Since a. €8, we
have therefore f*(A) <f,(A) 4 ¢ for each c. Hence f*(A)=f,(A).
29. 4. CoroLrLARY. — If & is an additive and hereditary set
of compacts of E, and if f is of arbitrary order @, on &, with
f>— o, each element of &5 ts f-capacitable.
In fact, according to the Corollary 28. 3. of Theorem 28. 1., f

is then of order @, , and on the other hand, since each element
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of & is compact, each decreasing sequence of elements of &
satisfies the exact conditions of Theorem 29. 2. Therefore,
this theorem can be applied.

Notice that in this case each element of &;; 1s a Ky But
it is not true that each Ky; of E 1s always f-capacitable. We can
indeed construct examples where there are some compacts
of E which are not f-capacitable, even if f1s of order a .

The following is rather instructive as an example. Let E
be the Euclidean plane R®, € the set of compacts K of the plane
such that K is contained in a finite union of straight lines
parallel to a given fixed line A. For each Ke& we set

f(K) = linear measure of the projection of K on A.

It is immediate that f is continuous on the right on § and
alternating of order @_; on the other hand, § is additive and
hereditary.

Now for each compact KCE we have f*K) = linear
measure of the projection of K on A; and if K is such that
each intersection of K with a line parallel to A has a zero linear
measure, we have f(K) = 0.

For example each arc of a circle is non-capacitable for f.
Here the elements of &5 are the denumerable unions of sets
each of which is located on a line parallel to A and is any Kg;
on such a lne.

30. Capacitability of K-borelian and K-analytic sets. — We
shall extend Corollary 29. 4. to the K-borelian and K-analytic
sets.

30.1. Taeorem. — If & is an additive and hereditary class of
compacts of a Hausdorff space E, and if f is of arbztrary order
&y, on & and f>— 0, any K- analytw set A of E is f-capa-
citable in each of the followmg two cases.

(1) A CB where B e 6; (example : A is an element of the borelian
field generated by 6).

(1) A Cw where » 1s a completely regular open set; and in
addition X(A) Ck,, that ts, each compact K CA is an element
of 6,

Proof. In each of the two cases considered, A 1s such that
each compact K contained in A is an element of &;, and hence
is f-capacitable.
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Therefore, according to Theorem 16. 3. it is sufficient, in
order to show the f-capacitability of A, to prove that A is capa-
citable for the extention f, of f to the set A(E) of all compacts
of E.

Now & being additive and rich and X(E) being additive
(E is Hausdorff), this extension f, is, according to Theorem
17. 10. of class @,.

Thus Theorem 30. 1. will be established if it is proved in the
simpler case where & = R (E).

We shall now simplify case (i1). It is sufficient to remark
that, since A is contained in a completely regular open set, we
can apply the method explained in Example 20. 3. to reduce the
problem immediately to the case where the space E 1s compact.

In short, the two cases (1) and (i1) are both reduced to the
following simpler case : A is containedina K;of E and é =% (E).

Now according to Theorem 5. 1. there exists a compact space
F and a set [ CE X F such that [' is a K3, and such that its
projection on E is identical with A.

Let us designate then by g the capacity defined on A(E X F)
by the equality g(X) = f(prgX), where (prgX) means the
projection of the compact X on E.

According to 22.2 and -23. 2.1n Chapter v, the capacity g is of
order @,; since in addition g > — oo, according to Corollary
29. 4., I' is g-capacitable. Therefore according to Theorem
22. 3. in Chapter v, its projection A on E is f-capacitable.

30. 2. Cororrary. — If E is a space which is homeomorphic
to a borelian or analytic subset (in the classical sense) of a sepa-
rable complete metric space, and if fis a capacity >>— o, defined
on the set K(E) of the compacts of E and of arbitrary order @,,
each borelian or analytic (in -the classical sense) subset A of
E s f-capacitable.

In fact, Theorem 30. 1. 1s applicable to A since A is contained
in the open set E which is completely regular, and since A
1s K-analytic (according to the classical theory A is the continu-
ous image of the set of irrational numbers of [0, 1], which 1s a

Kes)-

31. Capacitability for the capacities which are only subaddi-
tive. — We shall now construct an example of a capacity
f=0, sub-additive, defined on the set of all compacts of the plane
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E = R?, and for which there exists a closed subset A in E (hence
A is at the same time a K, and a G;) which is not capacttable.

For each compact K CR? denote by Ax(y) and &k(y) the
respective diameters of the sets KN Dy and KNdy, where
Dy and dy designate respectively the half-lines (x>0, y) and
(<0, )

Let ¢(u) be a continuous. and increasing real function,
defined for v >0, and such that ¢(0) =1 and ¢(+x)=2.
(For example, ¢(u) =2 —e™").

Set  Yx(y) =¢(dx(y).%x(y)) and  f(K)= o, VXY Y5
the integral being taken on the projection P( K) of K on the
y-ax1s This integral has a sense, for Yx(y) is upper semi-
continuous. Since 1 < ¢ <2, f(K) 1s clearly sub-additive;
1t is on the other hand increasing and continuous on the right;
and we can add that f(K) = 0 for each compact K whose

projection on Oy is of linear measure zero.
Now let A be the closed set (z=>0; 0=y=<1).

We have f.(A) =1 and f(A) = 2.

In fact, Jx(y)=1 for each KCA, from which follows
fA(A) =1 and on the other hand we have f(w) = 2 for each
open set o containing A, for there exist compacts K Cw such
that {x(y) > 2—¢ for each arbitrarily given > 0.

32. Capacitability of sets which are not K-borelian. — In this
section we shall give two examples.

32. 1. ExamprLe. — The following is an example of a capa-
city f =0, alternating of order a_, defined on the set % (E) of all
sub-compacts of a compact space E, for which there exists a
non-capacitable set A CE which is at the same time a KNG
and a Gj.

Let X be the compact space obtained by adding the point of
Alexandroff w to a discrete space of cardinal number 28, LetY
be the segment [0, 1] and let E= X X Y. For each compact
KCE, let

f(K) = the linear measure of the projection of K on Y.
Then f is indeed a capacity of order @ _.

Now by hypothesis there exists a 1-1 correspondence given
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by y = ¢(z) from (X —w) onto Y. Designate by A the graph
of ¢ (that is, the set of points (z, ¢(z)) where ze (X —0)).
This setis of the form K N G; onthe otherhand, for each ¢ > 0, the
set A, of points (z, y) such thatly—o¢(z)|<<ecand ze (X —ow)
is open and so A = n A, is also a Gg.

Now each sub-compact of A is discrete, and hence finite,
from which it follows that f,(A)=0. Each open set
containing A projects onto Y ; it follows that f*(A) = 1.

Hence, A is not f-capacitable.

32.2. ExampreE. — We shall now present an example of a
capacity f =0, alternating of order & defined on the set X (E) of
compacts of a locally compact space E and for which there
exists a closed set A CE which is not f-capacitable.

It suffices to modify the preceding example by designating
by X a discrete space of cardinal number 2®. The space
E=X XY is locally compact and the graph A of ¢ is the
required closed set.

32. 3. Remark. — These two examples show that the
statements of the preceding theorems cannot be extended,
without some restrictive hypothesis on the space E, to every
element of the borelian field generated by the open and closed
sets of E even when we impose on f the greatest regularity
possible; examples of restrictive hypotheses on E which
would be sufficient are the following; E is a complete, sepa-
rable metric space; or E 1s compact and such that each open
set G of E 1s a K,. Examples 32. 1. and 32. 2. justify the use
of the K-borelian and K-analytic sets.

33. Capacitability of sets CA. — It 1s well known that, for
each Radon measure i, which i1s defined, for example, on the
plane R’} each set CA (that is to say the complement of an
analytic set) is w-measurable. We cannot state the same
result for capacities however regular they may be. More
precisely, we have the following theorem.

33.1. Taeorem. — If E=R’ and & = K(E), the statement
« there exists a capacity f=0 of order a_ on §, and a CACE
which ts not f-capacitable » is not in contradiction swith the ordi-
nary axioms of set theory.
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Proof. According to a result of Novikov [1] which appears
to have been previously stated without proof by Goedel, the
statement « there exists on the real line R a projective set of
class P, which is not measurable in the sense of Lebesgue » is
not in contradiction with the ordinary axioms of the theory
of sets (being admitted that these axioms are consistent).

Now let A be a straight line of E = R and B a subset of A
which is projective of class P, and is not measurable in the
sense of Lebesgue. For each compact K CE, set f(K) equal to
the linear measure of the projection of K on A. It is a
capacity which is >0, and it is of order &_ on K (E).

There exists('*) a subset A CE whose projection on A is
identical to B, and which is of class C,, that is, the complement
of an analytic set.

This set A cannot ‘be f-capacitable, otherwise the set B
would be measurable in the sense of Lebesgue, according to
Theorem 22. 3. of Chapter v.

In what follows we shall make use of the fact that there even
exists (**) in R® a set CA of interior f-capacity zero and whose
orthogonal projection on A is identical to A:

Indeed, the projective set of Novikov is of class B,; that is,
the projective set and its complement are of class P,. It
follows easily that there exists a partition of A into two sets
of class P, each of which has its interior measure zero and its
exterior measure infinite.

Each of these two sets i1s the projection of a set, say A,
(t =1, 2), of R* which isof class CA, and we can always make
them such that A, and A, are contained in two disjoint open
sets. Asaresult of this precautionandsince f,(A,) = f.(A,)=0,
we also have f.(A,UA,) =0. The set (A,UA,), which is
still of class CA, possesses the required property.

33.2. Consequence. — It follows immediately that if,
in E = R® for example, a set is measurable for each positive
Radon measure, it is not necessarily capacitable for each capa-
city which is > 0 and is of order @ .

In the same line, we can set the following problem.

(1% 19) The words « there exists » are a convenient abbreviation for « there is
no contradiction in supposing that there exists ».
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33. 3. Problem. — If A is a subset of the plane E = R? (for
example) which is of measure zero for each Radon measure

without point masses, is A capacitable for each capacity
f=0 and of order @_ on % (E)?

34. Construction of non-capacitable sets for each sub-additive
capacity. — Let & be an additive and hereditary set of com-
pacts of a Hausdorff space E, and let f be a sub-additive capa-
city (hence = 0) on 6. (For example, fis > 0 and of order
a, with n > 2.

According to Lemma 17. 9., we have, for any A, BCE:

34. 1. fFAUB)<f"(A) + *(B).
Furthermore, let K be such that KC(AUB) with Ke &, For
each open set ® such that B Cw, we have

K=(K—o0)U(KNwo), with (K—w) eé.
Therefore

FIK) < F*(K— o) + f*(KNo)
= F(K—0) + (KN w) <f.(A) + f*(0).

We can find a sequence (K,, ®,) such that f(K,) — f.(AUB)
and f(w,) - f*(B). Passing to the limit, it follows that

34. 2. Fo(AUB) <fu(A) + f*(B).

We have, of course, an analogous formula by interchanging A
and B.

Then let C be an f-capacitable set with f(C) > 0. If there
exists a partition of C into two sets A, B such that
fx(A) = f«(B) = 0, the inequality 34. 2. gives f(C) < f*(B); and
since BCC, we have fi(B) = f(C) > 0.

Similarly f*(A)=f(C) > 0.

The sets A and B are therefore not f-capacitable.

Suppose now that C is a metrizable compact having the
cardinal 28, By using the aziom of choice, we can easily
partition C into two sets A and B such that each subcompact
of C having the cardinal 2% intersects A and B. In other
words, each subcompact of A or B wmill be at most denume-
rable.
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Now if fis such that f(K) = 0 for each compact containing
only one point, the sub-additivity of f implies f(X) = 0 for
each X which is at most denumerable. Then if f(C) > 0, we
have the following for the sets A and B:

f+(A)=Ffu(B)=0 and f (A)=7*B)=F(C)>0.

They are therefore not capacitable.

35. Intersection of capacitable sets. — We have stated pre-
viously, that for the capacities f of order @,, the intersection
of two f-capacitable sets need not be f-capacitable. The
reason for this is as follows. Let A be a set which is not
f-capacitable and let B,, B, be two disjoint sets such that
(AUB,) and (AUB,) are f-capacitable; their intersection 1is
1dentical to A, which 1s not f-capacitable.

Here are two examples where this construction is apph-
cable.

35. 1. ExamprLe. — Let f denote the Newtonian capacity
in the space E = R®. We shall designate by A a bounded
non-capacitable set (there exists such according to section 34)
and by B,, B, two disjoint concentric spheres each of which
contains A. We have f,(AUB) = f*(AUB,) = f(B,) accor-
ding to the classical theory of potential; hence, (A UB,) and
(A UB,) furnish the required example.

35. 2. Exampre. — Let f(K) be defined on the set of
compacts of the plane E = R’ as follows: f(K) = linear
measure of the orthogonal projection of K on a straight line
A of R*. Let A again denote a bounded non-capacitable set
(construct A by the method of section 34 or by using Theo-
rem 33. 1.). This time B, and B, are two disjoint concentric
circumferences containing A. It is immediate here that

f(AUB)=f"AUB)=fB) (=1, 2).

36. Decreasing sequences of capacitable sets. — In spite of
the fact that for the capacities of order @_, the intersection of
two capacitable sets is not always capacitable, we could hope
that the intersection A of a decreasing sequence of capacitable
sets A, i1s capacitable and that limf(A,) = f(A). Let us show
that neither of these two results is correct.
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Recall, for instance, Example 35.2. The set A will still
denote a bounded non-capacitable set. Let B, be the cir-
cumference of a circle of radius p containing A and let B, be
the circumference of a circle concentric to B, and of radius
(p + =) where 2> 0. Denote by C, the open annulus bounded
by B, and B,.

If we set A,=(AUC,,) we have A = n A, since ﬂ Cp=29.

Now each of the sets A, is f-capacitable, the sequence of
A, is decreasing, but their intersection is not f-capacitable.

On the other hand, we have f(Cy.) = 2( o+ %> and £(9) =0.

Hence it is not true that imf(C,,) ={ (ﬂ C,,,,) although the
C,» constitute a decreasing sequence of plane open sets, that
is, sets of very regular topological structure.

We could easily construct an analogous example for the
Newtonian capacity f in the space R®.

37. Application of the theory of capacitability to the study
of measure. — We shall give three examples of the application
of the theory of capacitability to the study of measure.

37.1. Exampre. — Let A be a borelian or analytic set in
the plane E = R’ and let A be a straight line in the plane.
Let us suppose that the projection (praA) of A on A has a non-
zero linear measure. Since A is analytic, it is f-capacitable for
the capacity f defined in Example 35. 2.

-Therefore, for each e >0, A contains a compact K such that

mes pra A — mes pra K < e.

This result can easily be improved in the sense that we can
choose the compact K such that it contains at most one point
on each straight line perpendicular to A; the projection then
defines a homeomorphism between K and (pra K).

Notice that the same property cannot be demonstrated if we
replace A by a set which is the complement of an analytic
set, even if its projection on A is identical to A. This follows
from the second example studied in section 33.

37.2. ExamprLE. — More generally let A be a K-analytic
and completely regular space, and let ¢ be a continuous map
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of A into a locally compact space F on which there is defined
a positive Radon measure .

There exist some compacts K< A such that u(¢(K)) approai-
mates 1.(¢(A)) arbitrarily closely.

The p100f 1s entirely analogous to that of the preceding
example.

37.3. ExamprLe. — Let A be a K-analytic subset of a
compact space E, and let X be a set of subcompacts of E each
of which intersects A. Let us suppose that %, in the topolo-
gical space F of subcompacts of E, 1s p-measurable for a cer-
tain Radon measure . = 0 on this space F, and that p(®) > 0.
Then for each ¢ > 0 there exists a subcompact K c A such that,
if )V denotes the set of elements of ;& which intersect K, we
have (%) — p(W) <e.

The very simple proof uses the fundamental scheme of
capacities of order a_.

38. The study of monotone capacities of order .b,. —
We shall not make a direct study of capacities of order JAb,, but
we shall use the properties already established for the capa-
cities of order @,. Thanks to the notion of conjugate
capacities which we introduced at the end of Chapter 1
{see 15. 6.), to each of the properties of capacities of order @,
there corresponds a dual property for capacities of order Jb,.
This duality gives some substantial results only for capacities
defined on a set of closed subsets of the space E, but this par-
ticular case appears to be sufficient for the study of capacities
of order .lb,.

38.1. Tueorem. — Let E be a completely regular Hausdorff
space, let & be an additive and hereditary class of sub-compacts
of E, and let f be a capacity of order W, (a =1, b) defined on
& with (sup ) < + .

(i) Each A CE such that (E — A) is K-analytic for one of the
compact extensions (**) E of E, and such that K (A) C &, is f-capa-
citable.

(%) It would be interesting to find general cases where this property (that (E —A)
is K-analytic) would be independent of the considered compact extension E. We

find in Sneider [1], [2], some theorems in this sense, when the considered compact
extensions have a certain character of denumerability.
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(1) If in addition & us identical to the set X(E) of compacts of
E, we have f, ( ﬂ A,,) =lim f, (A,) for each decreasing sequence of
subsets A, of E (property @, ,); and each denumerable intersec-
tion of f-capacitable sets is f-capacitable.

Proof of (1). Let us designate by f, the extension of f to the
set K(E) of compacts of E. According to Theorem 16. 3.,
for each A C E such that H(A) C §, the f-capacitability of A
is equivalent to its f,-capacitability. In order to study the
f-capacitability of such sets A, we can therefore suppose hence-
forth that § = R(E).

The hypothesis on the class of f remains the same because
according to Theorem 18. 11., since K(E) is G-separable and
multiplicative, the extension of f is still of class Jb, and we
still have (sup f) < .

Let £ be a compact extension of E. According to the
remarks at the end of section 20, the extension of f to the set
K (E) is still of order M, since « > (1, b), and the character
of capacitability of the sets A which were considered remains
unchanged in this new extension; their interior and exterior
capacities also remain unchanged.

We are therefore brought back to the study of the much
simpler case where the space E 1s compact and where & = K(E).
(We now use the notation E in place of E)

Then let f be the conjugate capacity of f which was defined
at the end of Chapter 11 (see 15.6.). This capacity is of
order @, and is >—oo. Therefore, according to Theorem
30. 1. above, if (E—A) is a K-analytic set, (E—A) is f-capa-
citable, and thus A is f-capacitable.

Proof of (11). If & = H(E), we need only the second exten-
sion used above in order to reduce the proof to the case where
E is compact. Now if A, is an arbitrary sequence of subsets of
E, their interior and exterior capacmes and those of A = n A,
remain unchanged in this extension.

We can therefore suppose that E is compact, and the conju-
gate capacity f allows us to interpret Corollary 28. 3. and to
obtain the second part of the theorem.

38.2. Cororrary. — If E is homeomorphic to a borelian
(in the classical sense) subset of a complete, separable metric space,
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and if f s a capacity of order Moy (& = (1, b)) which is defined
on the set R(E) of compacts of E, with (sup f) < oo, then each
borelian subset of E or each set whose complement is K-analytic
s f-capacitable.

Indeed, there exists in this case an extension E of E such
that B is compact and metrizable. If A is borelian in E, or

has a complement EA which is analytic, the same holds in

~

E. Hence, we can apply Theorem 38. 1.

38.3. Remark. — Since the CA sets, whose topological
nature is not well known, are those which are capacitable of
order JM,, 1t follows that the capacities of order JAb, are in a
certain sense less « natural » than capacities of order a,.

Starting with these two classes, one can construct capaci-
ties with curious properties. For instance, if f is the sum of a
capacity of order @, and a capacity of order JAb, on the set of
subcompacts of E = R? for example, every borelian set A C E
1s f-capacitable, but it is possible to construct fin such a way
that « there exist » analytic sets and sets CA which are not
f-capacitable.

38. 4. Remark. — The following will show that the res-
triction (sup. f)< oo s essential in the preceding theorem.

Let E = R? and let 'z, y'y be two perpendicular axes in
E. For each compact KCE, let u,(K) and wu,(K) be the
linear measure of the intersection of K with 2’z and y'y res-

pectively.
Set f(K) = pa(K).uy(K).

Then f1s a capacity of order Mo_. The continuity on the
right is obvious. Let us now set K,=K M (zz) and
K,= KN (yy). The applications K — K, and K — K, are
1 -homomorphisms and so is the application K— K, x K,.

Now if v denotes the Lebesgue measure in R®, we have

f(K) = o(K). 1, (K) = v(K X K,).

Since v 1s of order Jb_, then f is also.
Now if A is the straight line 2'z, we have f,(A) = 0.

However, for each open set & containing A, we have f(w) =+ o,
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and hence f*(A) = + «. Then A is not capacitable, although
A and its complement are very simple borelian sets.

Observe that if E i1s a compact space, if § =R (E), and
if f(K)=£ 4+ o for each K € &, we have (sup.f) < f(E)<< + .

38. 5. Remark. — For capacities of order @,, we do not
have f, ( ﬂ A,,) =lmf, (A,) for each decreasing sequence of
sets A,. Similarly, we do not have f* (U A,,) =f*(A,) for every
increasing sequence of A, when f is of order Jb,.

The following is an example in which the capacity f and the
class & are, however, exceptionally regular. The set E is the
segment [0, 1] and &§=KH(E). We set f(K)=0 -except
when K=E (f(E)=1). This capacity is of order b and
every subset of E 1s capacitable. However, if A, is a strictly
increasing sequence of compacts of E such that UA,, =E, we
have

imf(A,)=0 and f(JA.)=1.



CHAPTER VII

EXTREMAL ELEMENTS OF CONVEX CONES AND INTEGRAL
REPRESENTATIONS. APPLICATIONS

39. Introduction. — We propose to study some convex
cones whose elements are real-valued or vector-valued functions,
to find their extremal elements, and to use these for integral
representation of the elements of these cones.

These representations will furnish in certain cases a simple
geometric interpretation of the elements being studied, and they
will enable us to show their relations with other problems.

Throughout this chapter the vector spaces under conside-
ration are assumed to be spaces over the real field R, and this
fact will not be mentioned again. The same assumption is
made for all cones.

Let us first recall a few classical definitions and results

(see also Bourbaki [4]).

39. 1. Extreme points and extremal elements. — Let £ be a
vector space and C a convex subset of 4. We shall say that
a € C 1s an extreme point of C1if no open segment of C contains a.

Now let € be a convex cone in & which contains no straight
line passing through the origin. If # 1s an affine subspace
of £, which does not contain 0 and which meets every ray of €,
then a € CN ¥ is an extreme point of CN ¥ if and only if the
equation

a=a,+a, with a, and a,€C,
1mplies
a, = \a and a, = \a,

where A, and A, are non-negative.
Such an element aeC is called an extremal element of the
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cone C; obviously every Aa (A >>0) 1s then also an extremal
element of C.

39. 2. TueoreM oF KREIN AND MiLmam. — If the vector space
¢ is a locally convex Hausdorff space, and C a convex, compact
subset of 4, then the set e(C) of all extreme points of C has
a convex hull whose closure is C.

In other words, if z € C, then there exists for every neigh-
borhood V of z a finite number of positive point masses located
at extreme points of C and having their center of gravity in V.

The set ¢(C) is not necessarily compact, If it is compact,
then the preceding theorem can be sharpened as we shall see.

39. 3. Center of gravity. — Let C be a convex compact
subset of a space 4, and w a positive Radon measure on C.

It is possible to find an ultra-filter, weakly converging to p,
on the set of all elementary positive Radon measures y; defined
on C, each of which consists of a finite number of point masses.
The centers of gravity G(w;) of these measures are in the com-
pact set C; hence, they converge with respect to the given
ultra-filter to a point G of C. -

Let us show that G is unique. We have, for every continuous
linear functional l(z) on ¥,

Z(G(P‘«'))‘/‘d."'t=./'l(x) dy.i

Since [(z) is continuous, we obtain

(1) UG) [ du.= /'l(a:)dy..
Now, if |(G')=1[(G) for every I, then G'=G. Thus G 1s

well-defined by (1), which is sometimes written as
G [du= f zd .

In particular, let us suppose that £ i1s the space of all real-
valued functions z = 2(t) defined on a set E. We shall
topologize £ by means of the topology of simple convergence;
that is, the point £ = 0 is assumed to possess a neighborhood
basis of the form V(e, ¢, ..., t,) consisting of all points z for
which jz(t)l<<e(i=1, 2,..., n). This space ¢ is a locally
convex Hausdorff space.
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For every teE, the function l(z) =z(t) is a linear con-
tinuous function on 4. Hence, with the preceding notations,
and designating by z,(t) the center of gravity of a measure v on
C, we have

xn(t)./'dy.z'/jx(t) dy.  for every teE.

39. 4 TuaroreMm. — If the vector space & is a locally convex
Hausdorff space, and if C s a convex compact subset of &,

then for every x,eC there exists a measure u,=>0 on ()
whose center of gravity is xz,.

Proof. For every neighborhood V of z, there is a measure
w; on e(C) of total mass 1, which consists of a finite number
of point masses, and which has its center of gravity G(p;) in V.
Hence, there exists an ultra-filter on the set of these w; such
that the associated G(w;) converge to x,. But, on the other
hand, the measures y; converge weakly to a measure @, whose
support i1s ¢(C). The total mass of u, is 1, and its center of
gravity is indeed z,.

If ¢(C) is closed, e(C) 1s obviously the support of .

39.5. Remark. — It would be interesting to know whether
it 1s always possible to impose on the measure @, the condition
that its support be ¢(C), in other words, that [C—e(C)| have
,-neasure zero.

It should be observed that if £ is a normed vector space,
then ¢(C) 1s a G;. In the general case, little i1s known concer-
ning the topological character of ¢(C).

39. 6. AppricaTiON. — Suppose that £ is the vector space
of all real-valued functions defined on a space E, with the
topology of simple convergence.

Let C be a convex cone of ¥, and assume that there exists a
point ¢, € E such that z(¢,) >>0 for every zeC.

We designate by C, the set of all normalized elements of
C, that 1s, the set of all z € C for which z(t,) = 1. We further
designate by ¢(C,) the set of all extreme points of C,.

If €, is compact, then the above theorem shows that for

every z € there exists a measure .. =>0 on ¢(C,) such that

a(t) = f:ve(t) dp. (e) for every te E.
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In almost all the cases which we shall study, ¢(C,) will be a
compact set.

39. 7. Uniqueness of the measure p associated with an
element e C. — Suppose again that ¢ is locally convex, € a
convex cone in ¢ which contains no straight line passing
through the origin, and # a closed linear variety in £ which
does not contain 0 and meets every ray of C.

Let us assume that €, =C N % is compact and has the property
(even in the case where ¢(C,) is not compact) that there exists,
for every z e C,, one and only one measure of total mass 1
whose support is ¢(C,) and whose center is z.

Then there exists, for every x € C, one and only one measure

v. on e(C) for which z= fa:,,d}k (e). We shall denote this
integral by z(w). '

This correspondence between the measures w.=>0 on ¢(C)
and the points of € is one-to-one, and since, moreover,

oo+ pa) = () + o), and a(hw) =Aa(w) for A0,
this correspondence is an isomorphism between the order
structure of the set of the u >0 defined on ¢(C,) and the order

structure of € associated with
Clasbif b=a+c).

Since the ordered set of the . =>0 1s a lattice, the ordered
cone C is also a lattice. We can therefore state the following
result :

39. 8. Tueorem. — If there exists a unique integral repre-
sentation of the points of C by means of a measure on e(C,),
then the ordered cone C is a lattice.

The fact that Cis a lattice may be interpreted geometrically
as follows : if | and C] are the sets obtained from €, by means
of two positive homotheties, (with arbitrary centers) then the
set €[N C} is either empty or homothetic to €, under a positive
homothety.

The necessary condition for uniqueness given in the prece-
ding theorem makes it often possible to determine a priori
cases where uniqueness is lacking. It would be very interes-
ting to know if the above condition is both necessary and suffi-
cient for the existence and uniqueness of the integral repre-
sentation.
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39. 9. Examples of cones which are lattices. — (1) Let E be
an ordered set, and J the cone of all non-negative increasing real-
valued functions defined on E. For any two elements f, and f,
of J, the set of all feJ such that f;,3f and f,<3f has a
smallest element f, in the sense that f,(z) < f(x) for every
z e E, but in general it is not true that f, < f, so that J is
not a lattice.

But when E is totally ordered, J 1s a lattice.

(2) E 1s a Greenian domain of R" and € is the cone of real
positive functions which are super-harmonic in E.  The cone C
1s a lattice. It follows immediately that the sub-cone of €
which consists of the positive and harmonic functions is also
a lattice. The extremal elements of € are the multiples
AG(P,, Q) of the Green’s function with pdle P, and certain
limits of AG(P, Q) obtained by letting P, tend toward the
frontier of E.

The set of normalized extremal elements is not compact
in  general; nevertheless, the integral representation by
means of extremal elements exists and is unique (see

Martin [1]).

(3) When n =1 in example (2), € 1s identical to the set of
positive and concave functions on an interval (a, b) of R. We
might believe, more generally, that if E is a convex set
of R* and C is the set of all positive and concave functions
on E, then € 1s a lattice. This 1s not true.

For example, let E be the circle 2° 4 y* <1 of R? and let
fi=1—z, fi=1+=a I f,—f, did exist, we should have
fi~f.<f=1nf. (linear functions greater than f, and f,on E).
Now we have also f = inf. (elements of C greater than f, and
f.on E.). We would therefore have f,~f,=/f. But then for
each linear function ! e € such that f,, f, <[, since this implies
fif231, we would have l = f+ g where ge €. Since f is not
linear, this equality is impossible.

Then the integral representation for C 1s not unique, as
will be verified in the following particular case : It is immediate
that the functions (1-—=z), (14 z), (1—y), (14 y) are extremal
elements. Now2=(1—a)+ (1+2)and 2=(1—y)+ (1 +y).
This proves the non-uniqueness of the representation of the
function f=2.
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40. Extremal elements of the cone of positive increasing func-
tions. — If E and F are two ordered sets, each homomorphism
of E into F is called an increasing application of E into F.  If
we wish to define the sum of two such applications and the
product of one of these applications by a real constant, we are
led to suppose that F is a vector space on the field R.

In order to obtain substantial results, we shall suppose
moreover that F 1s a vector lattice on the field of reals, and that
E 1s filtering on the right. We then have the following
statement.

40. 1. TueoreM. — Let J be the convex cone of the positive
and increasing applications f of a set E, which is ordered and
filtering on the right, into a vector lattice F. The set of extremal
elements of J is vdentical with the set of elements f of 3 which,
besides the value 0, take at most only one value which is == 0 and
is extremal on F_; any such function f is of the form fy ,(x)
where A is a subset of E which is hereditary to the left (*'), and b
is an extremal element on the cone F, of elements >0 of F, with

foola) (0 for zeA,
) =
e gb for ze [ A.

Proof. It is immediate that the set of positive and increa-
sing applications f of E into F is a convex cone. It is ikewise
immediate that there is identity between the elements fed
such that f(E) contains besides 0 only one extremal element of
F, and the set of f, ;.

Then let f be a function of the form f, ,(z).

Suppose that f=f, +f,, where f, and f,eJ.

For each x€ A, we have 0=f,(x) + f.(z) and thus

fi(z) = fy(x) = 0.
Let u and ¢ e {:(A); for each w > u we have
fi(®) +fa(u) = b={f,(w) + f.(w),

and thus

[fi(w) —F(w)] + [folw) —F.(u)] = 0.

(#) That is, such that (¢’ < z and ze A) => (z'e A).
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It follows that

fiw)=Fi(w) and fi(u)=fi(w).

Now since E 1s filtering on the right, there exists a w greater
than u and ¢. It follows therefore that |

fi(w)=fi(v) and f,(u)=f,(v).

In other words, f, and f, on [:A take constant values b, and b,
with b = b, + b,. Moreover, since bis an extremal element of
F., we have b, = A,b and b, = A,b where A, and A, are two
real numbers > 0. We have therefore f, = A,f and f,=A,f
which shows that f is extremal.

Conversely, suppose now f is an extremal element of /.
If f(E) contains besides 0 only a single element b=£ 0, it is
clear that f cannot be extremal if b is not extremalon F,. Let
us show that if f(E) contains at least two elements b and c
different from zero, f is not extremal.

We can always suppose b < ¢; for if f(u) and f(v) are two
distinct elements of f(E), there exists w e E such that u and
¢ < w and hence f(u) and f(¢) < f(w). In other words, f(E)
contains two distinct comparable elements, (f(u), f(w)) or
(F(9), F()).

Then let f,=1nf (f, b); f,=sup (f, b) —b.

We have f={, + f, by virtue of the identity

inf (y, b) 4+ sup (y, b) =y + b.

Now inf (y, b) and sup (y, b) are two increasing functions of
y; therefore f, and f, belong to J. Since sup (¢, b) — b =~ 0,
f. is not identically zero. But we cannot have f, = A,f since
we have f,=0 when f=0b. Hence the decomposition
f==1f, + f, shows that f is not extremal.

40. 2. Remark. — It 1s suflicient to reverse the order in E
1 order to obtain a characterization of the extremal elements
of the set of positive and decreasing applications into F of a set
£ which is ordered and filtering on the left.

40. 3. Remark. — If there exists on E a topology compa-
tible with its structure of ordered set filtering on the right,
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and on F a topology compatible with its structure of vector
lattice, we can, instead of studying the cone J, study the sub-
cone J of applications f which are also continuous on the
right on E (in an obvious sense). A reasoning formally iden-
tical to the preceding furnishes as extremal elements of J' the
elements fy,, which are continuous on the right, that is, those
for which A 1s a subset of E which is open on the right and
hereditary on the left.

40. 4. Integral representation of real-valued positive and
increasing functions. — We shall now suppose that E possesses
a largest element w, and that F is the real line R. Let J, be
the set of elements f of J such that f(w)=1. It is seen
immediately that J, is, in the vector space of real valued func-
tions on E (with the topology of simple convergence) a
convex and compact subset. On the other hand, the subset
e(3,) of extreme points of J, isidentical with the set of extremal
elements f= fi , of J such that f(w) = 1; hence e(J,) is
compact. According to the Application in 39. 6., it follows
that for each f ed, there exists a positive Radon measure u. on
e(d,) such that

f(@) = [fu (@) du (A).

We can easily extend this result to the case where E does not
possess a largest element, when we limit the study to the ele-
ments f of J which are bounded on E. It is sufficient to extend
these functions f to the set E which results from E by adding to
it a largest element w.

40.5. Exampre. — If E 1s the interval [0, 1] of the real line,
with the usual order, the extremal elements of J, are of the
form fi,, with A = set of x <Ca orsetof £ < a, (0<a<1).
It is easy to sec that e(J,) 1s homeomorphic to the set of all A
with the topology of order (the order here being defined by the
relation of inclusion, A, CA,).

40. 6. Interpretation of the formula f(z) = f fa(z)dp. —
The class of the f,,, can be identified with the class of subsets
A of E which are hereditary on the right or with the class of
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their complements A’ which are indeed the hereditary on the
right subsets of E. Now

o= 1 when ze A,
41790 when zeA.

Therefore, f(z) is just the p-measure of the compact set of those
A’ which contain z. If the set of A’ is ordered by inclusion,
and if we denote by A’(z) the set A’ of points of E greater
than z, we can still say that f(z) is the p-measure of the set of
all A’ & A/(z).

40.7. Uniqueness of the measure w.. — When E is the
interval [0, 1] the cone J 1s a lattice and it is well known
that there is a unique measure u. determined by an increasing
fonction f on E.

When E is the ordered set R it is no longer true. For
instance let f,(§, n) =0 if £ <1 and f,=1 elsewhere; let
fo(8, 1) =0 if <1 and f,=1 elsewhere. Those functions
are extremal elements of J; however the function f=/f, + f,
has another representation in terms of extremal elements :
f=f+f where f,=01if £<<1 and n <1 and f,=1 else-
where; f,=0 if £<<1 or y<<1 and f,=1 elsewhere.

41. Extremal elements of the cone of positive and increasing
valuations on a distributive lattice. — Let E be a distributive
lattice and F an ordered vector space. Recall that a valuation f
of E into F is an application of E into F such that

fla—b) + f(a~b) =f(a) + f(b).

It 1s clear that these valuations constitute a vector space. We
shall designate by ¥ the convex cone of valuations of E into F
which are positive and increasing.

41.1. Treorem. — The set of extremal elements of U 1is
udentical with the set of functions of the form fo ), where P denotes
a partition of E into two sub-lattices E,(P) and E,(P) with E,(P)
hereditary on the left, E,(P) hereditary on the right, and where .
is an extremal element of the cone F . of positive elements of F,
with

0 if rzel,
feal@) =iy it azeL,
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Proof. (a) We easily demonstrate at once the identity
between the functions fe U which take only the values 0 and A,
and the functions of the form fp ;. Then, exactly in the same
manner as in the preceding theorem, we show that each
element f; ) 1s extremal for V.

(b) Conversely, suppose that fis an extremal element of V.
If f(E) contains, other than zero, only one element A =~0, it
is clear that f cannot be extremal if f is not extremal on F .
Let us show that if f(E) contains at least two elements A
and w which are different from zero, then fis not extremal. As
in the proof of Theorem 40. 1. we can always suppose A < .
Let a and b be two points of E such that f(a) = A and f(b) = u.

Let
fi@)=flz—a)—fla); [i(z)=f(z~a).

We clearly have f, and f,=>0 and f,, f, increasing. On the
other hand, since E is distributive, we verify easily that f,
and f, are two valuations. We have therefore f, and f,e?
and f=f,+f..

Now, f,(a)=0 and f,(b)5~0. Since f(a)5~0, we cannot
have f, = A,f where A, is a constant. This fact shows that f1is
not extremal.

41.2. Remark. — We can remark, as for the theorem
of 40. 1., that if E and F possess topologies compatible with
their structures, the extremal elements of the sub-cone ¢'CC
made up of the continuous on the right elements of C are
those of the functions f;, ;3 which are continuous on the right.
In fact, in the preceding proof f, and f, are continuous on the
right if f is continuous on the right.

41. 3. Integral representation and interpretation. — When F
is the real line R, we obtain for the integral representation of the
elements of U results quite analogous to those relative to the
cone J, either when E possesses a greatest element or more
generally when the function f that we wish to represent is
bounded on E. This integral representation results from the
fact that the set of normalized extremal elements f» , of U is
compact for the topology of simple convergence. The formula

f(@)= [ fo,.(x) du(P),
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valid for each x, shows that f(z) is equal to the u.-measure of the
set of partitions P such that z e L,(P).

It would be interesting to know whether VU is a lattice and
whether the integral representation of the elements of U is
unique.

42. Application to the integral representation of simply additive
measures. — Let E be an algebra of subsets of a given set A;

that is, if X, € E and X, € E, we have X, U X, € E and [: (X,) e E.
The set E is a distributive lattice when E is ordered by the
inclusion relation on A.

Let .1, be the set of positive and simply additive measures
on E. Each of these measures is clearly a positive and in-
creasing valuation on E. Conversely, each positive valuation f
on E is of the form f(¢) 4 (a measure); in fact, [f— f(¢)] = g is
a positive valuation on E with f(d) = 0. Now

g(XUY)+g(#) =g(X)+g(Y) when XNY=4;

it follows that.
g(XUY)=g(X)+ g(Y).

The extremal elements of .lb, are, therefore, within a posi-
tive factor, the measures f on E which take only the values 0
and 1.

The set lb, of measures f on E such that f(A) =1 and its
subset e(Jb, ) of measures with values 0 or 1 are compact for
the topology of simple convergence.

Therefore, to each fe.b, 1is associated a Radon mea-
sure . > 0 on e(.lb,) such that

ff ) d(e) for each XeE.

Let us study the extremal elements of .Wb,. For each
feelly,) let B(f) be the set of elements of E such that
f(X) = 1. This set constitutes a base of a filter on A such
that if XeB(f), then whenever two elements X,, X, of E
form a partition of X, one of them belongs to B(f).

Conversely, if B is a base of a filter on A, made up of ele-
ments of E and possessing this last property, we say that B is
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saturated relative to E. To each B we can associate a function

fs on E by placing

£(X) = 1 when X belongs to the filter of base B,
{0 otherwise.

It is seen immediately that f5ee(db,), and that B(fs) = B.
We have then established a canonical and one-to-one correspon-
dence between the normalized extremal measures on E and the
bases of filters on A which are saturated relative to E.

42.1. Remark. — The property which defines the satu-
ration of B resembles the property which characterizes the
ultra-filters, and it 1s actually identical to it when E £ 2.
However, if E == 24, there exists some bases of filter B satu-
rated relative to E and which are not bases of ultra-filters.

We are now going to make a more detailed study of I,
when E = 24,

42. 2. Extremal elements of the cone of positive measures on
E =2 — By using a method of Stone [1], [2], [3] with
a shghtly different language, we are going to show how one
can interpret the extremal elements of .lb, and represent each
element f of .lb,. ’

The following could be extended to the case where E is an
arbitrary algebra of subsets of A, but with a more complicated
formulation.

(1) Extremal elements of .Ab,. The bases of filters on A
satured relative to E are identical with the ultra-filters on A.
Therefore, the extremal elements of A, are the functions
f.(X) where u 1s an ultra-filter on A, with

~y__ \1 when Xeu,
folX)= 30 when X ¢ u.

\

For example, for each z, e E, the ultra-filter u,, of the sets
containing z, corresponds to the point measure fuxo= €y

(2)  Topology on the space U of ultra-filters. By defini-
tion this topology would be the topology of simple conver-
gence on the set of associated measures f,, The space U is
therefore compact. For each X C A, let w(X) be the set of
ultra-filters on X. It is immediately seen that for each u, e U
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the set of w{X), where X e u,, constitutes a base of neigh-
borhoods of u,.

In particular, for each z,e A the ultra-filter u,, possesses
a base of neighborhoods formed by u,, itself. Hence Uy, 18
1solated in U; conversely, each isolated element of U is of this
form.

For each X C A, the set of ultra-filters on X 1s compact;
hence, »(X) is compact and so is ®(A—X). Now each ultra-
filter on A 1is supported by either X or (A — X); therefore
o(X) and (A —X) constitute a partition of U. Hence, the
sets w(X) are both open and closed.

In particular, each point of U possesses a base of neigh-
borhoods of the form w(X), and hence both open and closed.
It follows conversely that each subset of U which 1s both open
and closed can be written uniquely in the form w(X).

For each open set Q C U, let I be the set of isolated points
of Q. Since each point of U is the limit of isolated points,

we have i_: ﬁ_. Now let X, be the canonical image of I'in A.
We have Q = I=w(X,). Therefore, the closure of each open

set i1s an open set.

The points of U represent the ultra-filters on A. Let us
see how the filters on A are represented in U. Let F be a
filter on E; there corresponds to it the filtering decreasing set

of open and closed sets w(X) where X e &. Set o= ﬂ w(X)

xe
We therefore have associated to F the closed, non-emgty o)
of U. Conversely let ¢z be any closed, non-empty set of U.
The set of its open and closed neighborhoods has a canonical
image in E which is clearly a filter which we denote by J(«)
It is seen immediately that F(¢(%,)) = F, for each filter ¥,
on A. We have therefore estabhshed a canomcal and one-to-
one correspondence between the filters on E and the closed sets
of U.

In this correspondence, the intersection of a family of filters
on A corresponds to the closure of the union of the corres-
ponding closed sets in U; the upper bound of a family of filters
on A corresponds to the intersection (assumed to be non-
empty) of the corresponding closed sets in U.



248 GUSTAVE CHOQUET

We shall see later, in the study of capacities of order a_,
which topology it is natural to define on the set of filters on E.

42. 3. Integral representation of a measure on E =24 —
According to the general theorem 39. 4., there exists for each
measure f e.lb, a positive Radon measure « on U such that

= [fuX)dw(u) for each XCE.

In other words, for each X we have

f(X) = w-measure of the set of u supported by X; that is,
f(X) is the measure w[w(X)] of the image in U of the filter of
the supersets of X.

This Radon measure on U is well defined for each open and
closed set; since these sets constitute a base of open sets in U,
this measure . is unique.

Conversely, to each Radon measure u on U is associated a
measure f, which i1s simply additive on E, by the relation
F(X) = wlw(X)]

Each measure f on E can be extended to the set of filters
on A by setting

f(#) = inf [(X) = inf p[(X)] = p[¢(3)]

for each filter 7 on A. Then f(%) is just the w-measure of
its image (%) in U.

In this interpretation the fact that an additive measure f on
E 1s not completely additive follows from the fact that when
©, ..., ®, ..., 1s a sequence of not empty open and closed
subsets of U which are mutually disjoint, we always have

Um,ﬁ&Umn and hence, in general, different v.-measures for
these two sets.

We have defined on the space of measures f on E the topo-
logy of simple convergence on E = 2% Now these measures
are 1n one-to-one correspondance with the positive Radon
measures on U; hence, there exists a topology on the set of
these measures . As the images w(X) of the elements of E
constitute a base of open and closed sets of U, this topology
on the space of Radon measures on U is identical with the
classical topology of vague convergence (see Bourbaki [3]).
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43. Extremal elements of the cone of positive functions alter-
nating of order oo on an ordered semi-group. — We have
already emphasized the analogy between the capacities of
order @_ and the functions of a real variable which are
completely monotone. We are going to see that this analogy
is not only formal, but also that these two types of functions
belong to the same very general class of functions in which
exponentials and additive functions play an essential role.

43.1. Derinitions. — Let E be an ordered commutative
semi-group with a zero, all of whose other elements are greater
than zero. Let F be an ordered vector space, and let @ be the
convex cone of the functions which are defined on E and take
values'in F_, and which are alternating of order x (see 13. 1.,
Chapter 111).

We shall suppose F such that each X © F_ which is bounded
from above and which is filtering on the rlght( *) has an upper
bound.

43. 2. DEerFiNiTION. — Any application f of E into F such
that f(a+ b) = f(a) + f(b) will be called linear.

It is obvious that any linear and positive f belongs to & ; the
set of those functions is a sub-convex cone of @, which we will
denote by .

43. 3. DeriniTioN. — We say that a function ¢ on E is an
exponential when 1 is a real-valued function such that

0<¢<1  and  Yarb)=4(a).Ub).

To each real, linear, and positive f on E corresponds the expo-
nential Y =e™/ and, conversely, to each exponential 1 which
does not assume zero values on I corresponds the positive
linear function f= Log 1/{.

43. 4. TuEOREM. — In order that an element f of the cone a
be exiremal, it is necessary and sufficient that it be of one of the
two followmg forms.

(1) [ s an extremal element of the cone & of linear elements
of a.

(32) We say that X' is filtering on the right if for every a, be X, there is an ele-
ment ¢ e X such that a,b e
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(2) f= (1—4)V, where { is an exponential on E and V
s an extremal element of the convex cone F .

Proof. Let f be an extremal element of a.

(1) If f(E) contains at most two elements 0 and V=40, we
can set f=(1—1¢)V, where { i1s a function which takes only the
values 0 and 1 and is such that (X/,)y =0 for each n.

I {(a) = 0, it follows from </,(a; b) =0 that Y(a+b)=0
for each b.

If Y(a)=1V(b)=1, it follows from 5/,(0; a, b)=0 that
Y(aTb)=1. We have therefore

WaTb)=1(a).Y(b),

and hence { 1s an exponential.
In order that such an f be extremal, it is clearly necessary
that V be extremal on F,.

(2) If f(E) contains at least two distinct elements A, u such
that A, =0, we can clearly suppose that they are comparable
mF. I f(a)=2X and f(b) = u, with A <, set

f(@) =f(zra)—{(a),

f«(2) = f(a) + Vi(z; a);=f(a) + f(x) —f(zTa)
Then, f=f,+f..

The function f, belongs to @ since the operation z — (2t a)
1s a homomorphism of E into itself and since f(z+a)—f(a)=0.
Also f, belongs to @& since on the one hand (X/,), = (N/,. ), <0
and on the other hand f,=> 0 since the inequalities (/,), <0
and f =0 imply f(a) + f(z) —f(z+a) ==0. Now

f()=f(arb)—fla) =2 A —u>0;

hence f, 1s not identically zero.

If f is extremal, we have f,=A4,f where A, 1s a real
number such that 0 <<2,<1; (this fact implies in particular
that f(0) = 0 since f,(0) = 0). We can then write

f(z T+ a) — f(a) = Af(a).

Two cases are then possible.
(@) First assume that f 1s not bounded above on S, that is,
assume that there exists no v € G such that f(z) <v for each 2.

and
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Now f(2) < f(z + a), and hence f(z) — f(a) < A f(x). We
cannot have A, 1, otherwise

f _fla)

and f would be bounded. Therefore A, = 1, and hence
f(z T a) = f(z) + f(a).

This equality is true for any . It is true also for any a; indeed,
the proof above shows that itis true for each 2 such that f(a) >0
since, f being not bounded, f takes values &> A; on the other
hand if a is such that f(a) = 0 the relations

Vi )0,  Vi0:a, )0, f(0)=0
give

f@=f@zva) and [f(@)=f(zTa)
fzra)=f(z) = f(z) + f(a).

Then fis linear. 1If fis extremal on &, f1is a fortiori extremal
on 4.

(b) Now suppose that f1s bounded above on E. Let V beits
upper bound (5 0), which exists since the set f(E) s filtering on
the right in G. Set g = V—f. We have the identity

g(a) —gzTa)=A(V—g())
or

1) g(a) + Ag(2) = glzra) + A.V.
By the definition of V, we have

and so

inf g(z) =0 and mfg(zra)=0.
By taking the lower bound of the two sides of (1) we obtain

(2) gla) = A, V.
This relation is valid for each a such that 0 <<f(a) < V. If
f(a) = 0, we have g(a) ; 1if f(a) =V, we have g(a) =0. We

can therefore set f(z )_9( ).V, where 3 i1s a real function
such that 0 < ¢ < 1. Also let us set ¢ =1-—¢g, and so
glz)=19.V.

The relations (1) and (2) can be written now as

M@ =dara)  and  Ya)=1,
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hence

(3) Y@ra) = (). 4(a).

This relation is valid for each a such that 0 <f(a)<<V. If
f(a) = 0, we have as in the preceding case f(z+ a) = f(x);
thus, ¢(x + a) = Y(z) and, since ¢(a) = 1, the identity (3) is
again satisfied.

If f(a) = V, we also have f(a + ) = V. Therefore
Y(@ra)={(a) =0,

and the identity (3) is again satisfied. In other words,
f=(1—14)V, where { is an exponential.

Since [ is supposed to be extremal, 1t is clear that V must be
also an extremal element of the cone G,.

ConvERrsE. -— We now have to show that the functions f on E
that we have just studied are indeed the extremal elements
of a.

(1) If fis an extremal element of 4, and if f = f, + f, with
fi, =@, the f, and f, necessarily belong to 4.

In fact, f(0) =0 and (X/,),=0, which imphes that f;(0) =0
and (\/,)f,i=0 (1 =1, 2).
Thus the relation <7,(0;a, b), = 0 is

fila+ b) = fi(a) + fi(b) (=1,2).

Therefore, since f i1s extremal on 4, f, and f, are proportional
to f; thus f1s extremal on a.

(2) Let f=(1—1)V where ¢ is an exponential on S and
where Ve G_. We first have to show that we have fea.
Now f=0since 0<¢ < 1; in order to show that (7,),<0,
it is sufficient to establish the equivalent relation (7,)y = 0.

Now \7,2; a)y = Y(2) —Y(z + a) = Y(z) (1 — $(a)) and more

generally, ]
Un(#; fad) = 4@ [[(1 —$(a)) 0.

Finally, it remains to show that f is also an extremal element
of @. We shall be able to do so only after having introduced
a suitable topology on @ (see section 44 below).

43. 5. ExamprLe. — E = R", that is, the set of elements of
the group R* with positive coordinates. Each positive linear
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function f on E is of the form Xaz; (2;,=>0). The extremal
elements of £ are then the positive multiples of the n functions
=z

Every exponential f which does not vanish on E is, accord-
ing to a previous remark, of the form e™** where a.z denotes
the scalar product of the elements a and z of R".

More generally, each exponential {((z;))can be written
Y ((z))) = () where §; denotes the restriction of J to the
Z-axis.

The restriction ¥, is again an exponential function of a real
variable. Now if §;(a) = 0 for @ > 0, then {;(na) == 0 for every
n; thus §; cannot take the value zero. If {;(a) =0 for all a >0,
then §¢(0) =1 or 0; it is easily seen that conversely, each
of these functions is an exponential.

Thus each exponential ¢(z) on S can be written as

q’(x) =1I \]h(x,\ where
$i(w) = e (a;=20) or i(x)=e"  or =0,

where
oy V1 ifx,=0

¢ 0 if z,> 0.

43. 6. ExamprLe. — E is idempotent, that is, z + = = z for
every z € E.

Each linear function on E is identically zero since
fl) = flx+z) = f(z) + f(x) 1mplies f(z) =0.

If ¢ is an exponential on E, then

$(@) = d(@ + ) = $(2). d(2);

hence {(z) = 0 or 1. The set of elements x of E, for which
{(z) =1 is a sub-semigroup ¢ of E, hereditary on the left (that
is, ¥ < x and zeo implies 2’ es). For if {(a) = {(b) =1,
then ¢(a+b)=1. If $(b)=1 and a << b then, since
a+b=0>b,y(b)=1Y(a).(b) and hence Y(a) = 1.

Conversely, for every sub-semigroup o of E which is
hereditary on the left, let {(z) =1 if zes and {(z) = 0 if

z¢c. Then if {(a) =1 (b) =1, is follows immediately that
$(axb) = $(a). $(b).
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If (@) = 0and $(b) =1, then a > b and therefore
arb=a; thus  Y(arb)= (@) = (). $(b).

If{(a) = $(b)=0, then{(a 4 b) =0, since a and b=ua,b;
hence again, {(ayb) = q»(a)q»(b)

There i1s thus a one-to-one canonical correspondence between
the exponentials on E and the sub-semigroups of E which
are hereditary on the left.

The extremal elements of @ are the functions f, v(z) on
E defined by

if xeo
fo. v(2) = 3\/ if z & o,

where o is a sub-semigroup of E which is hereditary on the left
and V is an extremal element of F..

43.7. ExamprLe. — E is an additive class of sets. Let Ebe
an additive class of subsets of a set A, the operation + being
union and the order on E being inclusion.

To every exponential  on E there is a canonically associated
sub-semigroup o which is hereditary on the left. Let ¢"

be the set of complements [:X of elements X of 5; except for
the case where AeE and where ¢ = 1, ¢*is a base of a
filter.

Conversely, to each filter F on A having a base consisting
of elements of E* there is associated the exponential on E

defined by f(X) = 1 if [:Xeﬂ and f(X) = 01f [:Xefi.

Thus exponentials, filters and extremal elements of the cone a
are in this example three aspects of the same mathematical
object.

The preceding interpretation of exponentials in terms of
filters now permits a better study of the normalized extremal
elements f of @ whenever F is the additive group R, and an
extension of the definition of f to the set of filters on A.

For such an element f= (1 —4{), let T be the filter on A
associated with ¢. Then

f(z) = 0 if for some YeT, XNY =4,
IR | if for every YeT, XNY #¢
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More generally, let T, and T, be two filters on A, and let

{0 if T, T, does not exist,
f(T, Ty) = 1 if T, T, exists;

that 1s, f(T,, T,) equals

\0 if there exists two elements of T, and T, which are disjoint,
/1 otherwise.

For each fixed T, it is easily seen that the function
fr.(T) = f(T,, T) is an alternating function of order o on the
semigroup of the filters T on A, with the operation 4 deno-
ting the intersection, that is, T + T denoting the filter each
of whose elements is the union of an element of T and an
element of T'.

When T denotes the filter of supersets of a set XC A, the
function fr,(T) is identical with the function fr,{X) considered
earlier. The function fr,(T) = f(T,, T) 1s called the elemen-
tary function alternating of order o and of index T,.

43.8. Special case. — If E 1s the set of compact subsets of a
Hausdorff space A, and if fis continuous on the right, the
filter T associated with f is just the filter of neighborhoods of
a closed subset of A. This was shown above (see section

26. 14., Chap. v).

44, Topology of simple convergence on @&. Application. — Let
us come back to the general case assuming simply that F is
identical with R, and introduce on @ the topology of simple
convergence on E.

The set of exponentials on E is clearly compact in the
topology of simple convergence; the same is true of the set of
elements of & of the form (1 — ), where { is an exponential.

We shall now show, by using this compactness and the rate
of the decrease of the exponentials ¢ on E, that each element
(1 —¢) 1s extremal on a.

We use the fact, which is easy to show, that if € denotes
a convex and compact subset of a locally convex Hausdorff
linear space, for each non-extreme point m e C, there is a mea-

sure # >0 of total mass 1 which is supported by [e(C) — {m}]
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and whose center of gravity is m [where ¢(C) denotes the set of
extreme points of CJ.

(1) We suppose first that E has a largest element w. Each
f € @ 1s then bounded and the set @, of the elements of @ such
that f(o) = 1 1s compact. The set of extreme points of @, 1s
identical with the set of extremal elements f of @ such that
flw)=1. Now if ¢ is an exponential not=1 on E, then
inf L =0 (since {(na)= (Y(a)"); hence, sup (1 —1{)=1.
Then the set e(@,) of extreme points of &, is contained in the
compact set 8, of the elements (1-—{¢) where {=£1. We
shall show that e(@,) = &,.

Otherwise, suppose f = (1 — ) is an element of [6,—e(w,)].
There is a measure g on the compact set (8, — {f}) such that

Sdp=1 and  (1—§)= [ (1—d)dp);
hence ;[;:fq;,dy(t).

For every ae E and for every ¢ > 0, the closed set of ¢ for
which {,(a) > {(a) + ¢ is of w-measure zero. For let wu(e) be
its measure. Then

V(@) = Y(na) = [ Yu(na)dp(2)
= [ (@] dp(8) = x(e) (Y (@) +¢)",

hence u(e) < W%%{—Ey: a quantity which tends to 0 as n— x.
Then {,(a) < {(a) for almost all ¢ e &,.

From the relation

[ (V@) — (@) dp(t) =0, since  ($(a)—y(a)) =0

almost everywhere, i1t follows that {(a) = {,(a) for almost
every L.

By passing to the limit, this equality holds at each point of
the compact support of . In other words, ¢ is identical with
each {, for which ¢ belongs to the support of . Then p is a
point mass supported by the representative point of (1 — ¢),
contrary to hypothesis.

(2) If E does not possess a largest element, denote by E
the semi-group obtained by adjoining to E an element w, by
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definition greater than each element of E and such that
a 4+ © = o forevery ae E.

Let @ be the set of applications which are alternating of
order x of @ in F_; then obviously, in order that fea, it is
necessary and sufficient that the restriction of f to E be an
element of @ such that sup flx) < f(w).

According to the prccedmg, the extremal elements of a
are, within a factor, just the functions (1 — {), where { is an
exponential on E. Now if ¢ 1s an exponential on E such that

Y= 1, then infy(v Also, if § is the extension of

to E obtained by settmg ,J( ) = 0, then 7,]: 1s an exponential on

E. Then (1 — {)is extremal on@. This implies that (1 — ¢)
is extr emal on & ; otherwise (1 — ¢§) = f, + f, with f, and fz ea
and f,, f, not proportlonal to (1 —1¢).

We have sup (1—9) =1 =supf,+ supf, (on E). Theniff;
denotes the extension of f; to E obtained by setting f;(w) = sup f;
on S, we have (1——@:;‘:—}—72 with f, and f,e & and fof:

not proportional to (1——:];).
Thus the theorem is proved when F = R.

We now suppose F to be arbitrary. Let us prove that each
[f=(1—1)V (¢ exponential, V extremal on F_) is an extremal
element of a.

Assume that f=f,+f, (f, foea).

For any ze E, if f(z)=0, then f,(z)+ f.(z) =0; hence
£1(@) = f.(2) = 0.

If f(x) 20, (1—¢)V is extremal on F, so that f,(z) and f,(z)
are colinear to V. In other words, we may set f,=¢,V
and f,=¢,V, where ¢, and g, are two real, positive functions;
it follows immediately that ¢, and ¢, are alternating of order
infinity. But we know that the relation (1—¢)=g¢,+ ¢,
implies that ¢, and ¢, are proportional to (1—1¢); hence f
1s indeed extremal on a.

44.1. Remark.— When Eisidempotent, each exponential §
takes only the values 0 and 1, so that the elements (1 —1¢) of @
are increasing functions on E (ordered by the convention
that @ < b if b=a 4 ¢) which take only the values 0 and 1.
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Since E thus ordered is filtering on the right, these functions
are extremal on the cone of real, positive, increasing functions
on E; they are, a fortiori, extremal on the cone a.

Thus the proof that the functions (1-—1{) are extremal on a
1s very simple in this particular case.

45. Integral representation of the elements of @. — Let us
suppose at first that I£ has a greatest element . We suppose
here that F = R. With the notations used above, for each
fea there exists a measure w. >0 on the compact set of
extremal elements (1 —{) of @ (with ¢ =£1) such that

f(z) = f(i — () dp.(2) for every z e E.

When E does not possess a greatest element, there still is such
a representation whenever the given function fis bounded on E,
f being considered as the restriction to E of a function defined on

E = (ENw).

We shall not consider in the general case, the question of
uniqueness of the measure w associated with the given f.

45. 1. The case E = 2*. — We shall assume that E is the
additive set of subsets of a set A, the order on E being inclusion;
assume also that F = R.

The normalized extremal elements of & are the eleinentary
alternating functions f1(X) associated with some filter T on A.
We shall use the space U of the ultra-filters on A which has
already been introduced.

With each filter T on E there is associated in U a closed
set that will be denoted by w(T) or simply by T. Thus

0 i e(MnNe(X)=9
fo(X)=31 w(T)Nw(X) £d.

With each element f of @ there is associated the capacity ¢ of
order @ _ defined on the set of open and closed subsets of U by
the relation ¢(w(X))={f(X). This capacity g can be extended
to the set of all the closed sets of U by setting

¢(W) = inf (u(X))

Wcu(X)
for each such closed W.
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This extension is equivalent to extending the function f to
the ordered semi-group of all filters on E.

Conversely, each capacity $=>0 of order a_on X(U)
1s characterized by its restriction to the set of open and closed
subsets w(X); in other words, there corresponds to ¢ an element
f of a.

Summarizing, we have established a canonical one-to-one
correspondence between the capacities =0 and of order @ _ on
J%(U) and the functions f >0 and alternating of order oo on 2*.

The topology of simple convergence on the set of elementary
functions f;(X) is identical with the classical topology on the
space of closed sets T of U. This follows simply from the fact
that such a closed set has a base of neighborhoods consisting of
the sets o(X).

To each element f of @ there corresponds a Radon measure
u=> 0 on the space JX(U) such that

fX)= [f(X)dw(T) for every XCA,

and, more generally, for each filter on A.

The uniqueness of w will be proved later on when we study
capacities of order @, on an arbitrary locally compact space.
Let us add that the topology of simple convergence on & is
1dentical with the vague topology (which we shall define also)
on the set of capacities ¢ associated with the elements f of a.

45. 2. The case E=R". Let @ be the cone of real
functions = 0 and alternating of order «© on R?. For a given
fea, if f((1)) = 0 (where (1) denotes the point each of whose
coordinates 1s 1) then f=0 since each f is decreasing and
concave on R".

Thus for each f==0, there is a A > 0 such that Af((1)) =1.
In other words, the closed hyperplane f((1)) =1 of the vector
space of real functions on R” intersects each ray of @ at one and
only one point. Let @, be the set of elements f of @ such that
f(1) = 1.

Since F is increasing and concave on R, each fe @, has the
property that f(z) <<sup[1,z]. Then @, is compact in the
topology of simple convergence.
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Now the extremal elements of @, are the »n functions f=u;
and the normalized functions
1 — ¢~ Zhi
N —e 3’

where the t; are =0 or + oc, and X, +0.
It follows that each f ea which is continuous on R has
an integral representation of the form

f@) =a.atr+ [0 dui),

where p is a positive measure of finite total mass, on the set
of non-zero vectors ¢ of R".

The functions fe @ which are not continuous have formully
the same representation but with suitable definitions to take
care of vectors ¢t with infinite coordinates.

When n =1, this expression can be simplified and can be
written, for every fea, as

f@=r+ [1=5

where @ is supported by the compact [0, 4 o], with the con-
vention that

P
11_68_,_:1: when t=0.

46. Extremal elements of the cone of monotone functions of
order oo on an ordered semi-group. — Let E and F once more be
a semi-group and an erdered vector space respectively, which
have the same properties as in section 43. Denote by L the
convex cone of functions from E to F,_ which are monotone of
order oo, (that is, the </, are =>0).

For everyfe b, we have/,(0; @) =>0; hence, (f(0)—f(a)) = 0.
Then the functlon g(z) =f(0)—f(z) 1s go and (vn)ggo
Thus, g is a bounded element of a.

Conversely, for each bounded element g of @, if g(o0) denotes
its upper bound, the function f= g(o) —g(x) is an element
of .

It follows easily that the extremal elements of b are the
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functions f = {.V, where { is an exponential on E and V an
extremal element of F,.

46. 1. ExampLe. — Let E = 2* be the set of subsets of a
set A, the order on E being the inverse of that defined by
inclusion, and the operation in E being intersection. Let F
be identical with R.

The extremal elements of b are identical with the functions
fr(X) associated with some filter T on E, where

0 if XeT
MX)=}1 i XeT.

46.2. ExamprLe. — Let E be the semi-group R, and F = R.
The non-zero extremal elements are the exponentials e,

where 0t < .

46. 3. appricaTION. — The introduction of the topology of
simple convergence on Jb leads to applications analogous to
those obtained by considering the cone a. For example
every continuous function f(z) of the real variable x>0 such
that (—1)"f™(z) >0, for all >0, that is, every completely

monotone function of z, has a representation of the form

f(z) = [e=dy(b),

where u 1s defined on [0, o [ and has a finite total mass. This
result is the classical Bernstein theorem.

There exists obviously an analogous representation for
continuous completely monotone functions on R* :

fl@)= fe=dp(t)

where . a 1s positive measure, with a finite total mass, on R".

Similarly, we could state integral representations for positive
completely monotone functions defined on the open positive
half-line >0, or, more generally, on the interior of R*. But
these generalizations are merely special cases of a more general
result concerning functions defined on an arbitrary semi-group,
which we shall now study briefly.

47. Alternating or monotone functions of order o on an arbi-
trary commutative semi-group. — Let E be any commutative
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semi-group, and let F be a vector space satisfying the same
conditions as above. A function f from E to F, is alterna-
ting (respectively, monotone) of order oo if all its differences
V,,(a:; ga,-}) are < 0 (respectively, = 0) for any z and «; in E.

The convex cone of these functions is again denoted by a
(respectively b).

If a and be E, we shall write a <b if a=bor if b=a-~c.
This relation 1is reflexive and transitive.

If a3 b and b<a, we shall write a~ b; this relation is an
equivalence relation p compatible with the relation <.

Moreover, if a~b and a'~b then (a+d)~(a' 1)
Then the quotient set E/p is an ordered semi-group in which
the relation z 4y is equivalent to z =y or y = z + z; that
is, it 1s an ordered semi-group which we shall call regular.

In E, if a4 b and if fea, then f(a) < f(b); thus if a~b,
fla) = f(b).

Then with the function f on E there is canonically associated
on E/p a function alternating of order . We obtain an
analogous reduction when f e Jb. Then in studying @ and .lb
it may always be supposed that E is a regular ordered semi-
group; this assumption will be made henceforth.

If E possesses a neutral element 0, we have 0 S0 + z or
0 ] z for every z. Then this case has been studied in the
preceding.

If not, we may embed E in the semi-group E obtained by
the addition of a neutral element 0 to E such that 0 < = for
all z; the study of the elements f of @ and .lWb associated with
E is then equivalent to the study of functions defined on the
set of non-zero elements of a regular ordered semi-group with
azero. This remark simplifies sometimes the study of @ and Jb.

47. 1. DeriniTiONs. — (1) An element a of a regular semi-
group E without O is called extremal if the equality a = b + ¢
is tmpossible.

(2) For every a which is extremal, the function ¢, defined by
¢.(x) =0 if x#~a and g,(a) =1 is called the singular function
with the pole a.

(3) An exponential on E is again a function {(z) such that

0§ <1 and Y(atb) = (a).4(b).
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47. 2. Tueorem. — Let E be a regular ordered semi-group.
In order that an element f of b be extremal, it ts necessary and
suffictent that it be of one of the following forms:

f=9V —or  f[=4V,
where V is an extremal element of F_, o a singular function,
and Y an exponential.

Proof. When E has a zero, no element of E is extremal and
the theorem is a consequence of section 46. We assume,
therefore, that E has no zero and suppose that f is extremal. For
every aeE,

f=1f +1f» where f(z)=f(zra),

f:(2) = f(®) —f(z Ta) =\\(z; a).
The functions f, and f, belong to Jb so that
1 f(x)=f(xra)=2A[f(z), where 02, 1.

Case 1. If there i1s an a € E such that f(z + a) =0, then
e = 0.
Now A,f(z) = A.f(a); hence, f(z)/A, = f(a) /7\ =some V == 0.

Then (1) can be written as V.A, .= 2A,.V.A,; hence,
Aerz= A, for every a such that f(a Tx) =£ 0.

But if a such that f(a +z) =0, the identity (1) shows
that A, = 0 and also A,,= 0. Then again A, = AA,.

Thus f = ¢V, where { is an exponential. If ¢V is extremal,
then V is obviously extremal on F .

Conversely, if ¢ 1s an exponential on E, it is easily verified
that f = {/V belongs to .lb for every Ve F .

When, moreover, V 1s extremal on F_, it can be shown as
before, by introducing the topology of simple convergence, that
each f= 1V is an extremal element of .lb.

and

Case 2. If f(x +a) =0 for every a, f(z) is zero at every
non-extremal point of E.

Now every function f from E to F_ which 1s 0 at every
non extremal point of E 1s an element of {b. Forin V(z, fa:}),
all the terms are zero except possibly the first, f(z), whichis >0.
Then in order for such an f to be extremal, it is necessary and
sufficient that the set of points z where f(z) 0 cannot be
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partitioned ; in other words, that this set consists of a single
extremal point of E and that the value of f at this point be an
extremal element of F,. Then f=9¢V where ¢ is a singular
function and V an extremal element of F _.

47. 3. Remark. — There is an analogous theorem concer-
ning the extremal elements of &.

47. 4. ExampLE. — Let E be the additive semi-group of
real numbers z>a > 0.

The extremal points of E are the points z of the interval [, 2a].
It is immediate that an exponential { on E other than ¢{=0
is not zero at any point of E; then Log1/{ is a positive
linear function on E. Now it is elementary to prove that such
a function has the form tz. Thus, each exponential not =0
on E is of the form e™".

If we remark, on the other hand, that f(z 4+ a) < f(a), then
we deduce that f 1s bounded on [2a, .

We can then prove easily that for every f ea there exists

a measure u. on [0, co[ such that fe"“‘dy(t)<oo, and a

function s(z) =0 defined for x > a, with s(z) =0 for > 2a
such that

flz)= fe"‘zdpt(t) + s(z) for every x> a.

This result i1s rather remarkable since it implies that f is
analytic on [2a, + o[ although the conditions \/,=> 0 imposed
on f have no local interpretation (since the parameters g,
appearing in </, are all > a).

An analogous study of the semi-group E of real z > o
(which contains no extremal point) would lead to the classical
representation of positive and completely monotone functions
on ]0, oof.

48. Vague topology on the cone of increasing functions. —
Let E be a locally compact space and J the convex cone of real,
non-negative, and increasing functions f defined on the class
R(E) of compact subsets of E. We have already introduced
on J the topology of simple convergence. However, this
topology is not satisfactory for investigation of the subcone
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of o consisting of positive capacities f (that is, the elements f
of J which are continuous on the right).

We shall therefore introduce a weaker topology by associating
with each feJ a suitable functional defined on the convex
cone Q, of functions ¢(z) defined on E, real and >0, and 0
outside of a compact set.

48. 1. Functional on Q, associated with an element feJ. —
LetfeJ,andleto e Q,. Forevery number A > 0let Ey be the
set of points z of E such that ¢ (z) =A.

The set E, 1s a compact set which decreases when A increases,
with E, C support of ¢. Then f(E,) is a positive, bounded
decreasing function of A. Set

F(#)= Jie,f(E2)dh where I(g) is the interval ]0, maxg).

When f(¢) =0, this integral can be written as

Flo) = ). f(Baydh =— [ ndf.
In particular, when f is a Radon measure, f(¢) is simply the
integral [j& du..

48. 2. Immediate properties of the functional ﬁ'g).

(1) Clearly f(z)=0.

(2) f(f,)<f(%) if ¢, < 9,; 1n other words f(?) 1S increasing.

(3) For every a>>0, flaz) = af(3)

But conversely, each functional defined on Q, and possessing
these three properties is not necessarily the functional associated

with some element fed. We shall see later interesting exam-
ples of this fact.

48. 3. Regularization of elements f of J. — Denote by J the
convex cone of functions f associated with elements f e J.
The mapping f— fof J into J is linear. We shall investigate
the inverse image of an element f in this mapping.

For every f ed, the regularized function associated with f
1s the function f,. on Ji(E) defined by

f(K) =1nf f(X) (K and X eX(E)).

KcX
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If W denotes any « proximity » of the uniform structure of
E (associated with any of its compactifications), and if Kw
denotes the neighborhood of order W of any compact subset
of E, then the above may be written

fr(K)=lim f(Kw).

This form enables us to show that many properties of f are
preserved by regularization. For example, if fis sub-additive,
or alternating or monotone of order n or =, the same is true
of f,.

It 1s immediate that f. 1s > 0, increasing, continuous on
the right and 1s the smallest of the functions larger than f and
possessing these propertles In particular, for every f eJthe
condition f=/{, is equivalent to the condition that f be
continuous on the right.

An essential property of regularization is the equality f = f,
for every f e J.

Indeed, for any A >0, we have f(E;) < f.(E)); and
[(EDSF(E,) for A <A, since E), cE,.

Then if we set uy =f(E;) and u,(A) = f.(E,), it follows that
u,(A) = lim sup u(}") or u,(A) = the smallest decreasing func-

i A .
tion greater than u(A) and continuous on the left.

Thus [f(Ey)dA= [f.(Ex)dA.

The set of elements f of J which are continuous on the
right is clearly a convex cone, which will be denoted by J,.
The preceding shows that the canonical mapping of J, into 9
is a mapping onto J.

Let us show that the canonical mapping f —>fof 3, onto D
is one-to-one.

It is sufficient to show that for every f eJ, and for every
K e K(E), f(K) may be determined when [ is known.

Now let {/(K) be the characteristic function of K; then

()= it flg)
YK ?
Indeed, f( )<f(<p) for every ¢ > ¢(K), and since f is conti-
nuous on the right, for every ¢ > 0 there 1s a compact neigh-
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borhood V of K such that (f(V) K)) < e. Now, since E
is locally compact, there exists a functlon eeQ, such that
0oL, m—Oout51de of V, and ¢ =1 on K.

Then f() < f(K) + ¢, which proves the equality.

48. 4. Vague topology on J. — The set of elements f of J
which have the same image Fin J is identical with the set of
elements f whose regularized function is the element f, of J,
which corresponds canonically to f In other words, if H,
IS the canonical map of J onto J, and H that of J onto J, then
H=H-H,

Let ©s be the topology of simple convergence on J and
s the topology of simple convergence on J. The inverse
image Oy under H of the simple topology ©s on J is called the
vague topology on J.

In other words, a filter on J converges vaguely to an element
f, of J whenever, for every ¢ e Q_, the values f(¢) converge
to f,(p) relative to this filter.

Or again, for every f,e I, a base of vague neighborhoods
of f, consists of the V (¢, (¢;)) where this symbol denotes the set
of ; € J such that

@) —Fe)|<e¢ (¢20; 0,cQ. with iel and T finite).

The map H of Gy Into fo's i1s continuous by construction. Let
us show that the map H of s 1nto ‘Gs 1s also continuous.

This result follows immediately from the fact that, for every
filter on J which converges simply to an element f0 of J, for
every ¢ and every A, the f(E;) converge to f,(E,); then if
u(A) = f(E,), the u(A) converge to u,(A). Now u(A) is decreasing

and thus .
‘/I(Q) u()\) - ﬁ(@ uo()\).

This statement is equivalent to saying that the f(¢) converge to

fol®)-

The restriction of H to J, being a one-to-one map of J,
onto J, H defines a homeomorphism between J, with the vague

topology and J with the simple topology. But it must be
noticed that the restrictions of 0s and of Gy to J, are not iden-
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tical (except for very special cases). To prove this statement
it is sufficient to take a sequence f, of Radon measures on
E =10, 1] each consisting of a point mass + 1 at the point
z=1/n; this sequence converges vaguely to f,=the point
mass + 1 at z=0, but it does not converge simply to any
function f,.

The space J with the topology v 1s not a Hausdorff space;
the associated Hausdorff quotient space is homeomorphic
with J or with J, with the vague topology.

It can be proved, but we shall not do so here, that with the
topology ©s, J, 1s everywhere dense in J; and that, similary,
if a (respectively Jb) denotes the convex closed subcone of J
consisting of the alternating (respectively monotone) functions
of order o, then (J,Na)=a (respectively (J.N )= db).

48.5. Study ofthe case where Eis compact. — For every k>0,
the set J(k) of all those feJ for which f(E)< ks 0bv1ously
compact with the topology of simple convergence Thus since
for every f,eJ, the set of those ffor which f(E) < 2f,(E) is
obviously a neighborhood of f,, J1s locally compact with the
topology of simple convergence.

Now since the mapping H from s into By is continuous, the
image HQ (k)) is compact; but, since for every fed, f(E )ﬁ———f(i),
the set H(J(k)) is identical with the set of all those feJ for
which f(1) < A; moreover, every f,(5=0) has as neighborhood
in the topology ©s the set of all those ffor which f(1)<2f,(1).

Hence, J is locally compact.

It follows that J, is locally compact in the vague topology.
The same holds for the sub-cones @, (and {b,) of J, consisting
of all positive alternating (monotone) capacities of order a_
(M ) on K(E).

In J, @, and b, the subsets consisting of all functions f(f==0)
which take no values other than 0 and 1 are obviously compact
(since f(E)=1); the same is true for the canonical image of
these sets into J,, @, and JAb,. Now, if fed, andif f takes
no values other than O or 1, the same holds for the regularized f..

Thus, since these functions are the same, within a constant
factor, as the normalized extremal elements of J,, @, and b,
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those sets e(J,), e(a,), e(JAb,) are compact in the topology of
vague convergence.

48. 6. Study of the case where E is locally compact. — The
topology ©s on J is not locally compact in this case, but it 1s
easily shown that J is complete under the uniform structure
associated with the topology of simple convergence. The
same 1s true for the closed sub-cones @ and .lb.

Likewise, J,, @, and .lb, are complete under the uniform
structure associated with the topology of vague convergence.

It may be useful to remark that, for every f,eJ, the set
of all f<f, i1s compact under the topology of simple conver-
gence. (The same holds for @ and .lb). This would still be
true if f, were replaced by an arbitrary non-negative function
defined on X (E).

The same 1s true on J, (also on @, and .b,) with the vague
topology.

The following 1s another restriction which leads to compact
sets.

Let us set f(®)=supf(3) (3Q.) for every real-valued
°>d

non-negative function ® which is continuous on E. Then the
set of all f € J for which f(®) <k is compact in the topology
of simple convergence, for every constant k > 0. (The same
holds for @ and Jb).

The above proposition holds also on J, (and &, Jb,) with the
vague topology.

~

48. 7. Extension of f(¢) to non-negative, upper semi-continuous
functions which vanish on the complement of a compact set. — We
have associated f(3), defined on Q_, with every f e a.

Let us designate by SS_ the set of all positive upper semi-
continuous real-valued functions ¢(z) defined on E which
vanish outside of some compact set.

Furthermore, for each ¢,eSS,, set

~

f(3)=1inff(3) (p=Q.).
SoL?

The notation f(¢,) is consistent since, if ¢, € Q_, the extended
function f takes the same value as the function which was
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originally defined on Q,. Thus, we have indeed obtained
an extension of f.

We shall henceforth assume that f is continuous on the
right, that is, f € J,; in other words we shall assume that f is
a positive capacity on K(E). Then wehave f(¢) = f(cg) whene-
ver o is the characteristic function of a compact set.

More generally, it is easily verified that, for every 2 eSS,

F(9) = frg f(Bn) dh,

where E, again denotes the compact set of all points z for
which ¢ (z) > A.

The lower integral of every positive function defined on E
(velative to f) can then be defined by the classical procedure.

In particular, this lower integral is defined for every positive
lower semi-continuous function defined on E. The upper inte-
gral of every positive function ¢ on E can then be defined as
the infimum of the upper integrals of all lower semi-conti-
nuous functions greater than 9 on E.

Hence we have a concept of a capacitable function. It
would not be very difficult to extend this concept to functions
of arbitrary sign on E.

In order to obtain significant theorems, it would be necessary
to place certain restrictions on the function f, such as, for
instance, that f be alternating of order 2.

49. Integral representation of the non-negative capacities of
order @_ on K(E). — We make the initial assumption that E
is a compact space. The cone @, of all positive capacities of
order @_ on K(E) is therefore locally compact in the vague
topology, and the set of its normalized extremal elements is
compact. Let us recall that these normalized extremal
elements are the functions f;(X) defined by

X) — 0 for XNT =g, where T is an arbitrary
fr(X)= 1 for XNT=+£4 compact subset of E.

Let &, be the set of these elements fr(X) (6, c a,).
The vague topology on &, (distinct from the topology ¥,
even on this subset of @,), which may be considered as a
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topology on the set of all elements T of K(E), i1s identical
with the classical topology of R(E).
For we have for every T e A(E), and each 9 Q

fi(g) = max (5) on T.

It follows immediately that for every filter on X(E) which
converges to T, in the classical topology, f;((p) converges for
every ¢ to ’fTo(q)). R
Conversely, assume that for some filter on % (E) the fr(¢)
converge to ]T’q(,,), and that (w;) 1s a fimte covering of T, by
open sets each of which meets T,.
There exists 9, Q. with 0<"¢9,<1, such that ¢,=1 on

[ (U(w,)) and ¢,=0 on T,. For every i, there exists 9, Q>
with 0<9,< 1, such that ;=0 on [:(u)i) and max (p;) on
T, 1s 1.

Hence there exists a set belonging to the given filter such
that every element T of this set is contained in U (w;) and meets

each o, Thus this filter converges to T, in the classical
sense.
Hence, in view of the general theorem (see 39.4.) there

exists for every f ea, a non-negative Radon measure @+ on
RK(E) such that

o) = [Fr(¢)dp(T) for every ¢<Q..

This formula may be extended to every ¢, SS,. For, such a
¢, 1s the limit of a decreasing filtering set of functions 9 € Q.

Hence, f(,) is the limit of the f(¢) with respect to this filte-
ringset. On the other hand, fx(3,) = (max (g,) on T) is the limit
of (max(g) on T) with respect to this filtering set. This
function fr(%) is upper semi-continuous on % (E), and its inte-
gral [ fr(p.)dp(T) is indeed the limit of [ fr()du(T).

In particular, if for ¢ we choose the characteristic function
of a compact set X CE, then

f(X)= ffr(X) du(T) for every compact set XCE.

In other words, f(X) is the p-measure of the set of all compact
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sets T which meet X. Thus, the capacity f(X) may be obtained
from the fundamental scheme (E, F, A, u), where E is the
given space, F' = K (E) with the classical topology, A is the
set of all points (z, X) of (E X F) for which e X, and u. is
the Radon measure on X (E) which we have introduced above.

We had previously established that the set functions obtained
from a Radon measure by means of a finite number of U-ho-
momorphisms are capacities of order @_. We have now pro-
ved the converse.

More precisely, we can state the following theorem.

49.1. Tueorem. — Suppose that X ts the smallest class of
all real-valued functions f each of which is defined on the set Ji(E)
of all compact subsets of some compact space K, such that the fol-
lowing conditions are satisfied :

(1) A contains every non-negative Radon measure defined on
any compact space E.

(2) If E and F are two compact spaces, if Y = ¢(X) is a
U -homomorphism which ts continuous on the right from K (E)
into R(F), and if f € b isdefined on R(F), then we have e(X) e &
where e(X) is the function defined on 3 (X) by e(X) = f(¢(X)).

This class Jo ts identical with the class of all positive capacities
of order @a_ defined on the sets R (E) relative to any compact
space E.

49. 2. Probabilistic interpretation of this result. — We have
already, in particular cases, interpreted the scheme (E, F, A, u)
as a probabilistic scheme.

More generally, let such a scheme be given, in which E and
F are two abstract sets, u a simply additive positive measure
defined on an algebra & of subsets of F with w(F)=1; and
let us denote by & an additive class of subsets of E such that
for each X € & the set Y = {(X) obtained from X by means of
the construction of 26. 8, Chapter v, belongs to R.

We know that the function f(X)=w®(Y) is alternating of
order o on R.

Now let us consider u. as an elementary probability on the
set F of events. Let us consider E as another set of events,
and A as the set of all favorable encounters (z,y) with z e E and
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yeF. Then f(X) 1s obviously the probability that such a
favorable encounter occurs at least once on the subset X E.

Conversely, the preceding theorem shows that, if sufficient
conditions of regularity are imposed on E, &, f (compactness,
continuity on the right), then every positive function of X
which is alternating of order infinity expresses the probability
that a favorable event occurs at least once on X.

Actually, the regularity need not be of such strong form.
And the fact that the set of all non-negative functions which
are alternating of order infinity on an additive class of sets has,
as extremal elements, functions whose values are 0 and 1,
shows that one could certainly always interpret such a function
as a probability; but it would undoubtedly be necessary in
this case to generalize the notion of additive measure p
on F.

Whenever one can prove that any function defined on the set
K(E) of compact subsets of a compact space is a positive
capacity of order @_, one is sure that it could be interpreted
in terms of probabilities.

In the most interesting cases (such as the theory of poten-
tial), the space E is not in general compact, but only locally
compact, and the function fis not bounded from above; hence
it is not possible to give a direct probabilistic interpretation
of f.

However, the brief study of the case where E is locally
compact which follows in section 49. 5. will show that the fun-
damental scheme still exists in this case, and that it is therefore
possible to give « locally » an interpretation of f in terms of
probability theory. If in particular f is bounded on % (E),
then it is sufficient to divide f by sup f in order to obtain the
desired probabilistic interpretation.

49. 3. Exampre. — If E is a Greenian domain in the space
R" and P a fixed point of D, we denote by f(X) the harmonic
measure, for the domain (D — X)), of the compact subset X
of D with respect to the point P. (f(X) =1 if P e X).

We know (26. 12, Chapter v) that f(X) is a capacity of
order @_ on h(E), and that 0<f<1. Hence f must admit
an interpretation in terms of probability. That interpretation

is known (see Kac [1 and 2]); f(X) is the probability that a
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particle issuing from P and undergoing a Brownian motion
will meet X at least once before it meets the boundary of D.

The support of the measure v i1s in this case the set of all
supports of Brownian trajectories issuing from P and contained
in D.

In this particular case f(X) can be extended to the set of all
compact subsets of the boundary of D; its restriction to the
set of these compact sets 1s then a Radon measure, which is
identical with the ordinary harmonic measure. Obviously, the
boundary can be topologized by various topologies which lead
to diverse harmonic measures used in modern potential theory :
ramified, geodesic, and Greenian measures (see Brelot and

Choquet [1]).

49. 4. ExampLe. — The Newtonian or Greenian capacity
F(X) of a compact subset X of a domain E admits a less
simple interpretation; this situation i1s due to the fact that

f(X) is not bounded on X(E) (see Kac [2]).

49. 5. Integral representation in the case where E is locally
compact. — Suppose that the space E is locally compact,
but not compact, and that E is the compact space obtained
from E by adjoining the point w. The locally compact

topological space [#(E)— {w}], where {w]| is the element
of R(E) consisting of the simple point ®, i1s isomorphic
with the set F(E) of all non-empty subsets of E with a
suitable topology. When we shall talk of F(E), it will be
understood that that topology has been placed on #(E).

We have already shown that the extremal elements of the
cone &, of the capacities of order a_ on K(E) are the func-
tions fr(X), where T is a non-empty closed subset of I£, with

oy 80 i (TNX) =0
AX) =01 it (TNX) 4.

For every fe @, and each compact set KC E, let us denote
by fx the capacity defined on K(E) by fu(X) -—f(Xﬂ K).

There exists a measure u, defined on the compact subset
A(K) of F(E) and corresponding to fx, such that

f(X) = [f(XNK)dpx(T)= [ Fi(X)dpx(T).
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Using the facts that fx(X) < f(X) and that f(X) = lim fx(X)
with respect to the set, filtering on the right, of all compacts
K, one can show that the measures wi converge vaguely,
with respect to this same filtering set, to a measure . on HE),
and that

f(X)= [f(X)du(T), forevery XeX(E).

We have again in this case, for every ¢ eSS,

f(3)= [fr(z)dy.(T).

The relation .fd‘u._g_ o holds if and only if f1is bounded; in this

case the preceding formula is vald for every upper semi-
continuous non-negative ¢ on E.

50. Integral representation of the non-negative capacities of
order b_ on K(E). Uniqueness of this representation. — The
reasoning and the results in this case are closely analogous
to those pertaining to the capacities of order @_; when E is
locally compact, the proof and results are even simpler than in
the case of the capacities of order a_.

Let us first suppose that E is compaci. The extremal ele-
ments of M, are the functions fr(X) (where T 1s a compact

subset of E) defined by
_ 30 if Td-X,
fT<X>-§1 if TcX.
For every fe.ll,, there exists a measure * >0 on J(E)
such that

flo)= j‘fT(q/) du.(T) for every 2eSS..

In particular, if we take for ¢ the characteristic function of
a compact subset XC E, we see that f(X) 1s the u.-measure
of the set of all T for which Tc X.

Hence the following geometrical interpretation: K(E) is a
compact space, ordered by inclusion. For each X e K(E),
the set of all Tc X is a compact subset of K(E); we shall call
this set the negative cone with vertex X in J(E).

For every f e Jb, there existsa measure u. >0 on % (E) such
that we have, for every X e K(E).

f(X) = the u-measure of the negative cone of vertex X.
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We have thus in a particular case a new proof of a general
theorem obtained by A. Revuz [3], which furnishes a simple
integral representation of all «totally monotone » functions
defined on a partially ordered set S (here S=Ji(E)), when cer-
tain conditions of regularity are satisfied.

The functions studied by A. Revuz are identical with the
functions monotone of order o ({7,= 0), defined on a semi-
group consisting of an ordered set S on which the semi-group
operation 1s the operation (a—~b) which is assumed to be
always possible.

The general theorem of section 47. 2. shows that the cone of
these functions admits as its only extremal elements exponen-
tials (which take no values other than 0 and 1, since the semi-
group is idempotent), because there are no extremal elements
in S (we have z = 2 —~ z for every z).

Now the set of all points z1in S where a given exponential § ()
takes the value 1 is invariant under the operation —~, and it is
hereditary on the left; conversely, one may associate with each
subset of S having these properties an exponential whose value
is 1 on that subset and 0 elsewhere.

It can thus be foreseen that, if every negative cone of S is
compact, then it is possible to associate with each exponential ¢
a point P(}) of S such that {(z) equals 1 or 0 according as
z=>P () or not.

It follows that in cases of sufficient regularity there exists
a representation of totally monotone functions f on S by means
of measures u =0 defined on S and such that:

f(z) = the p-measure of the negative cone with vertex .

The very subtle analysis undertaken by A. Revuz enables

him to show the uniqueness of that measure i in general cases.
In particular, this measure is unique when S is the ordered

set Ji (E) associated with the compact space E, in other words,

if we are dealing with capacities of order W on K (E).
This uniqueness makesit possible to extend these results imme-

diately to the case where E is an arbitrary Hausdorfl space.
More precisely, we have the following theorem.

50. 1. Tueorem. — If E is an arbitrary Hausdorff space,
and f a non-negative capacity of order Mo_ on K (E), then there



THEORY OF CAPACITIES 277

exists one, and only one, generalized, non-negative Radon
measure & (see 26. 6, Chapter v) defined on K (E) with the classical
topology such that, for every compact set X C E, f(X) is the u-mea-
sure of the compact negative cone of vertex X in R (E).

To prove this extension, 1t is sufficient to observe that, for
every compact set XC E, the restriction of f to K(X) is asso-
ciated with a Radon measure whose support is R (X), and that,
if X,c X,, then the measures thus associated with X, and X, are
compatible on K (X,) because of the uniqueness of these
measures.

50. 2. Probabilistic interpretation of the elements f of lb.. —
We have already remarked that the probability f that a favo-
rable event occurs at least once on a set XCE is a function
of X which is alternating of order oo; thus, the function

g(X)=1 —/'([:(X)>, which expresses the probability that
this favorable event occurs never on the complement of X,
1s a function which is monotone of order oo.

Conversely, the above result shows that, under the condi-
tions of regularity which we have indicated, and if, moreover,
E is compact and f(E)=1, then each function f(X) which is
monotone of order oo expresses the probability that some favo-
rable event never occurs on the complement of X.

51. Uniqueness of the representation of a non-negative capacity
of order a_ on J(E). — Suppose that E is compact, and that
f is a non-negative capacity of order @_ on X(E), and let . be
one of the Radon measures on R (E) associated with f.

Let f, of order b_, be the conjugate capacity of f (see 15. 6.
Chapter 111). ~

If we set g = f(E) + f, then the capacity g is non-negative
and of order .Jb_; hence, a uniquely determined Radon
measure v >0 on R (E) is associated with g.

Now for every compact set X E we have

f(X)=the w-measure of the set of all T such that XNT=£0;
hence:  g(X) = f(E) + f(X) = f(E) — f(E — X)

1s the p-measure of the set of all T which do not meet (E — X)
and which are therefore contained in X.
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Since v is unique, we have w=yv, hence the following
theorem.

51. 1. Tueorem. — For every non-negative capacity f of
ordera_ on K (E), where E is compact, the measure p. on K (E)
associated with f ts unique; furthermore, if v denotes the measure
on K(E) associated with the non-negative capacity g of order Mb_,

defined by g = f(E) + [, then we have p.= .

We remark, without giving the proof, that this result can
be extended to the case where E is locally compact, in the
following form :

(1) w® s unique;

(2) w=v whenever g= (f(E)+f) is defined, that us,
whenever [ 1s bounded.

When f 1s not bounded it 1s still possible to define a function
g associated with f by using the following definition :

g(X) = the p.-measure of the set of all T C X.

It can be shown that g(X) i1s the limit, as K tends to D, of the
functions

gx(X) = f(K) + fx (X) = f(X) — f(K— X).

For example, suppose that f is the Greenian capacity relative
to a domain Dj; it can be easily shown that, for every X, we
have

[f(K) —f(K—X)]-~0 a K-—D.
It follows that g(X) = 0; this fact implies that the measure u
on F(E) has as its support the set of those closed subsets of D
which are not compact.

52. Functional study of the elements of & and .Ib. -— We have
defined, for every f € J and for every ¢ € Q,_,

F(#) =y (En) 2.

As we know, it follows that f is positive, increasing, and
positively homogeneous. _

We now seek to establish what can be said about f when
certain restrictive hypotheses are placed on f, such as, for
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instance, that f be sub-additive, or that f belong to @&_, or that
f belong to Jb_.

Let (E X R) be the product of E and the real axis; and for
every ¢, define [¢] as the set of all points (z, y) in
(E X R) such that y < ¢(x). Furthermore, let (A) be the set of
all points (z,y) in (E X R) such that y >=2A. We have,

obviously,
B, = pra([¢] N ().

Now the following two relations are true:

(31— ] = [2:]U [, [#1~ 9] = [9.] N [3:];
where — and ~ denote the operations sup and inf on the ¢.

These formulas make it possible to transform every relation
satisfied by f, which involves no operations other than inter-
section and union, into a relation satisfied by f(E;) and involving
the operations — and ~ on the ¢.

If these relations are linear, then it is possible to integrate

and to obtain relations satisfied by f. If, in particular, f is
sub-additive, then

~

flo—a)< flg.)+ flgs).

If fea_, then fis alternating of order o on Q. (relative to
the operation — on Q).

If fedb_, then f is monotone of order o on Q, (relative to
the operation ~on Q,.

But it is not true that every functional on Q_, which is non-
negative and increasing, and which satisfies one of the three
preceding conditions is identical with the f associated with
an feJ, where f is respectively sub-additive, of ordera_ or Jb_.

This will be shown by examples, in which we shall choose

E such that E = 2.

52. 1. Study of an example. — Let the points of E be z,
and z,. Every function ¢eQ, 1s defined by its values
yi=0o(z) (1=1,2). Thus Q, is isomorphic to the ordered
cone R’ of all couples (y,,y,). Every feJ such that f(g) =0
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1s characterized by the three values f(@), f(z,), and f(z,, 2,).
To say that feJ is the same as saying

f(x)=0,  f(z.) =0,
f(@, ) =sup (f(z,), f(2.)).

To say that fea i1s the same as saying

flz) =0,  f(z.) =0,
sup (f(x,), f(x) = f(2), 2.) <f(x) + f(=

To say that fe.db is the same as saying

f(®)=0, f(z) =0,
f(@) + f(2) < f(2, ).

In each of these three cases, the function f(¢) = f(y,, ) is a
linear function in each of the regions y, <y, y,<y,: it 1s
defined by its values on the lines y, =0, y,=0, y, =y, and
so 1t depends upon three parameters.

Each function which is not of this type cannot belong to .
The following are three such functions on R?* which are more-
over increasing and positively homogeneous and respectively
alternating of order oo for the operation — and monotone of
order o for the operation —~:

_Ttay+y % — ()t
= ety 8=ty O F (wy)""™.

53. Definition and properties of the classes [, A, M. — Let E
belocally compact. Wedenoteby [the cone of the functions f(¢)
defined on the lattice cone Q, which are (a) positive,
(b) increasing, and (c) positively homogeneous.

We denote by A (respectively M) the subcone of I made up
of the functions on _ which are alternating of order x for
the operation - (monotone of 01de1 o for the operation ~).

We know already that JCI ac A WM. When E is
compact, these cones I, A, M, are locally compact under the
topology of simple convergence.

We can easily extend the definition of each f belonging to
one of these classes to the lattice cone S5, with preservation
of the functional properties of f.

We shall now state without proof several results about the
structure of these cones.
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53. 1. Extremal elements of A. — The extremal elements of

A are the functions f = 0, positively homogeneous on Q ,, and
such that

(f(?‘i) = f(%)) = (f(?l ~ ?2) = f(?i) = f(%))‘

An equivalent condition to this is the following :

(9.~ :) = sup (f(@1), f(%s))-

It is immediate that each such function belongs to A, and
that it is an extremal element of this cone. The converse is a
little more difficult.

These extremal elements can still be characterized in an-
other way. Let (z))er be an arbitrary family of points of E, and
let (A;))er be some constants > 0. Thefunctionfi(¢) = sup Ag(z),

which is assumed < + oo for each ¢, is an extremal element;
and conversely each extremal element is of this form.
This last formula can also be written as

fo(y) = max (3(z). 2 (2)),

where ®(z) 1s any function = 0 and upper semi-continuous on
E. There is a one-to-one correspondence between the extremal
elements of A and the functions ¢ to which they are associated.

For example, if $==1, f¢(z) is the ordinary norm on Q,.

When E is compact, it is immediate that each f € A admits
an integral representation such that

() = [fo(3)du(®)  foreach  geSS,,

where . is a measure on the compact set of all ® normalized by
the condition

fo(l)=1 or max (P (z)) = 1.

The topology on the set of these ® is by definition the
topology of simple convergence on the corresponding fo.
This topology can be interpreted as follows: each @ is repre-
sented in E X R by the compact set [P] of points (z, y)
where 0 <y <®(z). The set of these [®] is a compact subset
of the space Ji(E X R) of subcompacts of E X R. The topo-
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logy thus induced on the set of normalized ¢ is identical
with the preceding topology.
The measure w associated to each f e A is unique.

Example of elements of A :

flo) = [fq;“dvT/a ;for each « > 1 and

each measure v=>0 on E.

53. 2. Extremal elements of M. — We obtain a characteri-
zation of the extremal elements of M analogous with the
preceding by changing the operation — to —~ and sup to inf.

We can write them in the form

file) = lgf A ().

(We will have f =~ 0 only if the (z;)e are taken on a compact
set.)

Or else, by designating by ¢ an element of SS_ (hence zero
outside of a compact),
fy(¢) = max. of numbers k > 0 such that k{ () < ¢(z) for each

z € E, which amounts to saying that

=minm
f4(%) mn

with the convention

#(z) =+ w0 when z) = 0.
There is a one-to-one correspondence between the $ eSS,
and the extreme elements of M.

For example, if E 1s compact and if $=1, we obtain
fy = minimum of ¢ on E.
Example of an element of M.

fo)=|fodv]"

for each a =1/p with p a positive integer, and for each
v=>0 on E.

The normalized set (by max ¢ =1) of eSS, is locally
compact by the topology of simple convergence on the corres-
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ponding f. For each feM there exists on this set one and
only one measure w such that

f@)= [fus)de(y) for each eSS,

In other words
fle)=[dp,
where u’ 1s the product of ». with the function of ¢ : min (—:l"";—>

which is == 0 only when ¢ has its support contained in the
support of ¢.

Let us remark that, since f(¢) 1s a function = 0, monotone
of order cc and continuous on the right on the lattice SS_,
there exists, according to the theorem of A. Revuz mentioned
previously, one measure v—=>0 and only one on the locally
compact space SS, such that

f(9) = v-measure of the set of ¢’ < ¢.
The measure w i1s obtained from v by the following relation :
w(A) = ¥(B)

where A is an arbitrary compact subset of the set of normalized

J and B is the set of {' € SS_ of the form
Y =0 where 061 and JeA.

Conversely, v is also determined as soon as w i1s known.

53. 3. Extremal elements of ANM. — The elements f of
A nM are characterized by the following relations:

(a) =20;

() (o) = Af(g) for A=0;

() f(e1— %) + fl3:~8) = f(3:) + (%)

The extremal elements of the cone A1 M are, up to a constant
factor, the f,(¢) = ¢(a), where a € E.
For each fe ANM there exists a unique measure &> 0 on E

such that )
(@)= [fu(3)du (@)= [o(a) dp.

In other words, the cone ANM is identical with the cone
of Radon measures on E.
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53. 4. Study of the cone I. — We want to show that the
elements of I are closely related to the elements of A and M and
more precisely with extreme elements of these cones.

53. 5. Tueorem. — (a) The superior envelope (supposed
finite) and the inferior envelope of any family of functions f(3)
belonging to I also belongs to 1.

(b) Any element of 1 is the superior (inferior) envelope of
a family of extremal elements of M (respectively A).

Proof. (a) The first part of the theorem is immediate since
homogeneity and monotony are preserved by the operations
sup and inf.

(b) Now let fe I; for each 3, e Q, where 4,550, the function

fols) = min (22

with the convention of section 53. 2. is an extremal element of
M; the same is true of

g = f(9o)fe.(%)-
Now, f(9) = f(9s)fs.(¢) for each ¢. In fact, if we set

A= fofe) = min (),

4

we have 2 > Ag, and hence f(2) = Af(¢,),which is exactly the
required relation.

Hence, not only is f(¢) the superior envelope of a family
of extremal elements of M, but for each g, there is one of these
elements, namely f(g,)fo,(3), Which is equal to f(z) for 9 = g,.

(c) For each ¢ >0 and for each g,€Q, (with ¢,550),
let ¢(z) be a continuous positive function on E such that
e(z) < ¢ and let 9. = sup (g,, (2)).

Let us show that

f(3) < max (it)ﬂm,

where

f(z:) =sup f(¢) for all ¢’ <g.
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In fact, if

A = max <i>,
Pe

we have g < Ag. and so f(9) < Af(¢) which is exactly the
required equality.
Now if ¢ 1s small enough,

max <-ﬁ> =1;
Pe

max (g)-f@e),

which is an extremal element of A, takes the value f(¢.) for
? = %o

Hence, if for each ¢, and each ¢ we can choose ¢(z) such
that (f(¢c)—f(g,)) 1s arbitrarily small — a restriction that we
have not indicated in the wording of the theorem in order not to
complicate it — we have proved the last part of the theorem.

This restriction, in the case where E is compact, concerns
only functions ¢ which can take zero values on E; it is equi-
valent in a way to the continuity on the right of f. Note here
that when E is compact, or more generally when E is the denu-
merable union of compacts, this restrictive condition is satis-
fied for each f e I which is sub-additive (for the operation ),
for example for each f e A.

hence,

53. 6. Extremal elements of I. — When E is finite, we can
give a complete characterization of the extremal elements of 1.
The study of an f, f = f(y,, Yo, - - Ya), of I amounts indeed to
the study of its trace on the simplex ¢ defined by y; > () and
Yy; = 1. This trace is locally Lipschitzian on the interior of
the simplex; in order that this be the trace of an extremal f, it
1s necessary and sufficient that almost everywhere the graph of
this trace has a tangent hyperplane which passes through
any one of the n faces of the simplex.

For example, and this is valid for any space E, each f which
is the superior or inferior envelope of a finite family of ele-
ments of A or M is an extremal element of I. From this it
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follows that the set of extremal elements of I is everywhere
dense on 1.

53. 7. Primitive elements of I and the operations sup, ini,
and f . — Let us call each multiple Af, (where A > 0) of
the function f,(9)=¢(a) a primitive element of 1.

The preceding shows that we can generate A, M, ANM,
and I by starting from the primitive elements and applying the
following operations: superior envelope and inferior enve-

lope of a family of functions f, and the operation L/‘f,dy.(t),

where u is a non-negative measure on a set of elements of I.
More precisely, let £ be the class of primitive elements
(which are indeed the extremal elements of A 1 M).

The class 4,,, of elements obtained from 4 by the operation
sup is made up of the extremal elements of A.

The class 4., is made up of the extremal elements of M.

The class ifis identical with A N M.

The classes Zy.p, iar aNd Ling, 4up are identical to I.

The classes < and £ __ .are identical respectively to A
l\lp,/ mf,f
and M. .
One could show that the class & (93 inf) 1s identical to

ey,

the class of positive, increasing, positively homogeneous and
V-sub-additive (V-super-additive) (*) functions defined on Q,.
It would be interesting to characterize also these classes in
terms of the operations — and ~.

For example, we can see easily thatif fed . , we always
have S

2f (91~ %2~ 93) (31~ 92) + (2~ 95) + (9~ 91)
as well as other inequalities of the same type.

Let us add that we cannot form, with our three operations,
classes other than those which we have pointed out above.

(') For the definition, see section 54.
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53.8. Remark. — We obtain an analogous classification
of the positive and increasing set functions by using the ope-

rations sup, inf, and /

For example, if we consider the functions f(X) defined on
the set 2% of all subsets of a set E, the primitive functions are
the functions f,(X), where u is an ultra-filter on E, with

£u(X) = (1 1if X eultra-filter u,

~ |0 otherwise.

Our three operations lead to the classes a.db, a, Jb, J,
and to other classes which we have not studied.

Various problems related to these operations could be consi-
dered. For example, if we apply the operation sup or inf to
a family of positive capacities on the set h(E) (where E is
compact), for which the K-borelian sets are capacitable, to
what extent 1s it the same for the function thus obtained?

54. Relation between the alternating functions of order 2 and
the pseudo-norms. — Let us first prove a lemma relative to
the V-sub-additive or V-super-additive functions on a cone.

Let C be a lattice cone, that i1s, a convex cone such that
1ts natural order structure 1s a lattice structure.

A real function f on € is called V-sub-additive (V-super-
additive) if

(a) f(rx) = Af(x) for each A > 0;
() f(+b)<f +f(b),
(respectively f(a+b) = f(a )+f (6)-

54.1. Turorem. — If the function f on C s positively
homogeneous and if it satisfies

(1) fla—b)+fla~b) = f(a) +f(b)
or

(2) fla—b)+fla~b)=f(a)+ f(b)

then f is respectively V-sub-additive or V-super-additive.

Proof. The proof is based on the proof of the special case
where € is finite dimensional (hence isomorphic to R%), and
where f possesses continuous second derivatives for = 5= 0.

Let flz)=f(=, ..., z,).
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’

(nx,. + h,)}, where h;=>0,
a—b= g(xc + hi)g,
a b == g(x,) } .
When h; — 0, condition (1) implies that
Nhihifrz<0;
o =0 - for 1+ 1,

and, more generally,
fee; =0 for L.

Now since f 1s homogeneous of order 1, we have

hence,

Ea: 2; for each:.

Therefore the terms F of second degree in the development of f
in the neighborhood of the point z satisfy

=N —wafl., [dz d“”] >o0.
i#J

It follows that fis locally convex on € and hence also globally,

and this 1s known to be equivalent to saying that fis V-sub-

additive. For the V-super-additivity, it is sufficient to change

f into — f.

Let us notice that the converse of that theorem is false.

For example, in € = R?, the function
f=2Ety)
z+y+z

i1s V-super-additive (and it is increasing also), but it does not
satisfy the inequality (2). The function
ety

f—x+y+z
is V-sub-additive and increasing, but it does not satisfy the
inequality (1).
In order to verify this, it is sufficient to take a = (0, 1, 1)
and b= (1, 0, 1).
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54.2. AppricaTioN. — Let E be a locally compact space, f
an element of J,, and fthe function on Q_ which is associated
to it. Recall that 7is said to be a pseudo-norm on Q. if we have

(1) Flo+ 3. <Flg:) + Flga)-

TaeoreMm. — In order that fbe a pseudo-norm on Q_, it is
necessary and sufficient that f be an alternating capacity of
order a,.

Proof. Since f is increasing, it is equivalent to say that f
is alternating of order @, or to say that we have

FX UX,) + XN X) S F(X) +F(X).

Now this relation is equivalent to

Flo0— 92 + 10~ 82) < Flg) + Fl50)-

According to the preceding theorem this relation implies that f
is a pseudo-norm. Conversely, let us assume that fis a pseudo-
norm. It is immediate that the relation (1) above can be
extended to the functions ¢ € SS,. Therefore, if ¢, and ¢, are

the characteristic functions of the compacts X, and X,, we
have

o+ 9 < flg) + flga) = F(X) + £(X).

Now (3,4 9.) =2 on (X,NX,), is =1 on X,UX,, and = 0
elsewhere. Hence by using the definition of section 48. 1.:

f(o, 4+ 2) =f(X,UX,) + f(X,N X,).

The desired relation follows immediately.
In the same way, we could prove that in order for a positive
capacity f to be monotone of order A, it is necessary and suffi-

cient that the associated function T satisfy the relation

flo + 9 =) + f(5s)-

An immediate application of this theorem is the following :

If a capacity f is only sub-additive, its extension f is not
necessarily a pseudo-norm.
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