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THEORY OF CAPACITIES (l)
by Gustave CHOQUETOQ.

INTRODUCTION

This work originated from the following problem, whose
significance had been emphasized by M. Brelot and H. Cartan :

Is the interior Newtonian capacity of an arbitrary borelian
subset X of the space R3 equal to the exterior Newtonian
capacity of X ?

For the solution of this problem, I first systematically
studied the non-additive set-functions, and tried to extract
from their totality certain particularly interesting classes,
with a view to establishing for these a theory analogous to
the classical theory of measurability.

I succeeded later in showing that the classical Newtonian
capacity f belongs to one of these classes, more precisely: if A
and B are arbitrary compact subsets of R3, then

AAU^+AAflB^/^+AB) .
It followed from this that every borelian, a^rid even every
analytic set is capacitable with respect to the Newtonian capa-
city, a result which can, moreover, be extended to the capa-
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cities associated with the Green's function and to other clas-
sical capacities.

The above inequality, which may be called the inequality of
strong sub-additivity, is equivalent to the following:
V.(X; A, B)=f{X)—f(X[jA)—f{X[jB)+f{X[j^B)^0.
Now, this relation is the first of an infinite sequence of inde-
pendent inequalities, each of the form Vn(X; Ai,A2,...,AJ^O,
which expresses the fact that the successive differences — in
an obvious sense — of the function f are alternately positive
or negative.

Thus, the Newtonian capacity is seen to be an analogue of
the functions of a real variable whose successive derivatives
are alternately positive and negative.

It is known from a theorem of S. Bernstein that these
functions, termed completely monotone, have an integral
representation in terms of functions e~^. Likewise, the set
functions which are « alternating of order infinity » possess
an integral representation in terms of exponentials, that is,
of set functions ^(X) which satisfy

0^;^1 and ^(XUY)==^(X).4(Y).
These exponentials take values in [0,1] only, and this makes it
possible to give a remarkable probabilistic interpretation of
the functions which are alternating of order infinity.

More generally, a detailed study of several other classes of
functions justifies the interest in the determination of the
extremal elements of convex cones of functions, and in the
utilization of the corresponding integral representations.

CHAPTER I. — Borelian and analytic sets in topological
spaces. — In this chapter, borelian and analytic subsets of
arbitrary Hausdorff spaces are redefined and studied. In
fact, a mere adaptation of the classical definitions would
lead to sets of an irregular topological character for which
an interesting theory of capacitability could not be construc-
ted. Therefore, we designate as borelian and analytic sets
the sets which are generated by beginning with the compact
sets and using the operations of countable intersection and
union, and continuous mapping (or projection) only. Thus
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the operations of « difference » or « complementation » are
not used.

The role which the G§ sets play in the classical theory is here
played by the K^ sets.

CHAPTER II. — Newtonian and greenian capacities. — In
this chapter, the Newtonian and Greenian capacities of
compact sets and, thereafter, the interior and exterior capa-
cities of arbitrary sets, are defined. An equilibrium poten-
tial A(X), and a capacity, /*(X), are associated with each
compact subset X of a domain. The successive differences
(—l^V^X; Ai, . . . ,AJ are defined for each of these func-
tions; it is shown that each Vn is non-positive, and the condi-
tions for the vanishing of the Vn are determined.

It is shown that the sequence of these inequalities for the
capacity f is complete in the sense that every inequality
between the capacities of a family of compact sets obtained
from p arbitrary compact sets by the operation of union is a
consequence of the inequalities Vn ̂  0. A more penetra-
ting analysis shows that this result remains valid for the capa-
cities of the sets which are obtained from p arbitrary compact
sets by means of the operations of union, intersection, and
difference.

From the relation V2^:0, the following important inequality
is obtained :

f( U A') -f( W ̂  S^A-) -^a-')]'
for every finite or countable family of couples of compact sets
Of and Ai satisfying the relation a,C:Af for each i.

Furthermore, from the relation Va^O, we deduce a result
concerning the capacity of certain compact sets, relative to
domains which are invariant under a one-parameter group of
euclidian motions.

The chapter ends with the study of the differential of f ( K )
with respect to suitable increments AK of K, and with the
derivation of a formula which shows that the Green's function
G(Pi, Pa) of a domain is a limit of the function

G(K K,-fW+f(K,}-f(K,[}K,)^K.,K,)- 2f(K,)./-(K,)
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CHAPTER III. — Alternating and monotone functions. Capa-
cities. — This chapter introduces several classes of func-
tions and certain basic concepts as follows: alternating
(monotone) functions of order n or oo which are mappings
from a commutative semi-group1 into an ordered commu-
tative group and which satisfy inequalities of the form
Vp^O(Vp^O); the concept of conjugate set functions,
connected by the relation

P
^(X7) + y(X) = 0, where X' == I X is the complement of X

the concepts of capacity on a class of subsets of a topological
space, of interior capacity (/*J and exterior capacity (/**), of
alternating and monotone capacities, of a capacity which is
the conjugate of another capacity.

CHAPTER IV. — Extension and restriction of a capacity. —
The extension jfa of a capacity /\, defined on a class 81 of
subsets of a space E, to a class §3 properly containing §1,
by means of the equality /*a(X) == /^(X), can often be used
as a means for regularizing the class §1 and also as a means of
simplifying proofs of capacitability.

On the other hand, the operation of restriction will some-
times make it possible to replace the space E by a simpler
space.

Furthermore, the preservation of various classes of capa-
cities (alternating or monotone) under these operations of
extension and restriction is studied; for instance, let 84 be the
class of all compact subsets of a Hausdorff space E $ then, if
/*i is alternating of order n, the same is true for every exten-
sion jfi of /a.

CHAPTER V. — Operations on capacities and examples of
capacities. — First, several operations which leave certain
classes of capacities invariant are studied: for instance, if
a capacity g(Y), alternating of order n, is defined on the class
3?(F) of all compact subsets of a space F, and if Y = y(X)
denotes a mapping from ?t(E) into 3t(F) such that
y(X, u Xg) ̂  y(Xi) u y(Xa) and which satisfies, in addition,
a certain requirement of continuity on the right, then the
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function /'(X) == g(Y) is also a capacity which is alterna-
ting of order n. The projection operation is such an operation
and will play an essential role in the study of capacitability.

The remainder of the chapter is devoted to the study of the
following important examples of functions and capacities
which are alternating of order oo : the operation sup on a
group lattice; increasing valuation on a lattice (for example,
a non-negative Radon measure); functions derived from a
probabilistic scheme; exponentials; energy of the restriction
of a measure to a compact set; and others.

CHAPTER VI. — Capacitability. Fundamental theorems. —
First, the alternating capacities are studied: we establish
conditions, to be imposed on E, 8, and /*, which will suffice
to insure the preservation of capacitability under finite or
denumerable union, and which will imply the validity of the
relation

/-((J A,) = limf(A,) (where A, c A,,,).

It then follows from a general theorem that every K<y§
contained in a Hausdorff space E is capacitable with respect to
every alternating capacity f defined on .^(E). In order to
pass from these K^ sets to arbitrary borelian and analytic
sets, we use the fact that every analytic subset of E is the
projection on E of a K^ contained in the product space
(E X F), where F is an auxiliary compact space; and we asso-
ciate with /*the capacity g on ?t(E X F), where g is defined by

g(X)=f(pr.X).

It is then easily proved that every g-capacitable subset of
(E X F) has a projection on E which is /'-capacitable. Now, g
is alternating as well as /*; hence, every Ka§ of (E X F) is
g-capacitable. From this follows the ^-capacitability of all
analytic subsets of E.

A number of counter-examples show that it is impossible to
improve on the results obtained : in particular, by using a
result of Goedel we prove that it is not possible to esta-
blish the capacitability of all complements of analytic sets.

After giving several applications of these results to measure
theory, we investigate monotone capacities. Their study is
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reduced to that of alternating capacities by means of the
concept of conjugate capacity. From the general theorems
obtained in this way, special cases such as the following are
derived :

If E is a complete metric space, and if f is a monotone
capacity of order 2 on 3t(E), (/•(A u B) + /'(A n B) ̂ /*(A) + /'(B)),
then all borelian subsets of E and all complements of analytic

-sets are capacitable.

CHAPTER VII. — Extremal elements of convex cones and inte-
gral representations. Applications. — In this chapter, we study
several convex cones whose elements are functions; we deter-
mine their extremal elements and employ them to obtain inte-
gral representations of these functions. The basic tool for
these representations is the theorem of Krein and Milman
concerning convex and compact subsets of locally convex
spaces, and its immediate consequences. This theorem enables
us to state the existence of such a representation in the case
of a cone such that its base and also the set of extremal point
of the base are both compact. Uniqueness of this represen-
tation implies that the cone under consideration is a lattice;
but it has not been proved that this condition is sufficient to
insure uniqueness.

We study in this manner the positive increasing functions
defined on an ordered set, the increasing valuations on a
distributive lattice, and, in particular, the simply additive
measures defined on an algebra of sets; for these we use the
compact spaces which Stone associates with these algebras.

The study of the cone of all positive functions which are
alternating of order infinity on an ordered semi-group S illus-
trates the significance of the exponentials ^ defined on a
semi-group (0 ̂  ^ ^S: ^-? anc^ ^(^T &) == ^(a). ^(&)). When
S == R^ or S == R^, theorems analogous to those of S. Bernstein
are obtained; when S is an additive class of subsets of E, then
we find extremal elements each of which is characterized by
a filter on E.

In seeking a way to study the cones whose elements are
capacities on «1?(E) we are led to the introduction of a « vague
topology » on the set of all positive increasing functions f
defined on ?t(E): this is achieved by the use of the extension
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of f to the set Q^ of all numerical functions defined on E
which are non-negative, continuous, and zero outside of a
compact set.

It is then proved, for instance, that if E is compact, the set
of all capacities f which are positive and alternating of order
oo on «Tt(E), and which satisfy the relation /*(E) == 1, is compact
in the vague topology, as is also the set of its extremal points.
This leads to a remarkable probabilistic interpretation of
these capacities, and makes it possible to prove that the class
of these capacities is the least functional class containing all
positive Radon measures, which is stable in a certain sense,
with respect to continuous mappings.

Thereafter, we take up the study of those classes of func-
tionals on Q^ which may be obtained from the primitive
functions /y defined by the relation fa(^) = 9(^) by means
of the following operations : superior envelope, inferior enve-
lope, and integration (§== //^;Jl•(^))•

The chapter ends with the study of the relations between
the pseudo-norms defined on a vector lattice V and the func-
tions f which are strongly sub-additive on V,



CHAPTER I

BORELIAN AND ANALYTIC SETS IN TOPOLOOICAL SPACES

1. Introduction. — There are difficulties in extending to
an arbitrary topological space E the classical results concer-
ning the parametric representation of borelian sets. For
example, in a general setting each subset of E is the continuous
and 1-1 image of an open set of a suitable compact space; for
one can easily construct a compact space which contains an
open set of a, given cardinal and each of whose points is iso-
lated.

In order to obtain theorems of interest, one is, therefore,
led to modify the classical definitions. In particular, we shall
have to eliminate the open sets and begin with the compact
sets, which possess topological characteristics invariant under
continuous mappings. Therefore, we shall be led to replace
the sets G§, whose role is fundamental in the study of classical
borelian and analytic sets, by the sets K^ which we shall
define in terms of compact sets.

1. 1. DEFINITION. — A class 9) of subsets of a set E which
contains the intersection and the union of any denumerable
family of elements of % will be called a borelian field on E.

1. 2. DEFINITION. — I f E is a Hausdorff topological space,
the smallest borelian field on E which contains each compact set of
E will be called the K-borelian field of E and denoted by ^(K).
The members of %(K) will be called K-borelian sets.

2. Classification of K-borelian sets. — One can show, as in
the classical theory, that the K-borelian field of E is the
increasing union of a trans finite sequence of type Q of classes

^o, ̂  ...,^, ...,^ ..., (a<Q)
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where
(i) KQ designates the class of compact sets of E;
(ii) 3ta designates the set of denumerable intersections

(unions) of elements belonging to 3tp where (? < a if a is even
(odd), the limit numbers a being considered as even.

We shall designate in general the classes with finite indices
by <Tt, 3t<y, 3tg§, ..., and we shall say, for example, that a set is
a K^§ if it belongs to the class K<^.

2. 1. Immediate consequences.
(i) Each finite union or intersection of sets of one class 3^

belongs to that class. Each denumerable intersection (union)
of sets of ^a belongs to «^a it a is even (odd).

(ii) A simple argument by trans finite induction shows that
each K-borelian set of E is contained in a K<y of E. It follows
that if E is a separable and complete metric space which is
nowhere locally compact, not all borelian subsets of E, in the
classical sense, are K-borelian; on the other hand, we shall see
later that all classical borelian subsets of a separable and
complete metric space are K-analytic.

If E is such that each open set G of E is a K<j, each closed
set F of E is, of course, also a K(;; then the field of borelian sets in
the classical sense is identical with the K-borelian field (G) .
This is the case when, for example, E is a separable and locally
compact metric space or, more generally, when E is a metric
space which is a K<j.

3. K-analytic sets. — We shall now define a class of sets ana-
logous to the classical analytic sets.

3. 1. DEFINITION. — In a Hausdorff topological space,
each subset which is the continuous image of a K<y§ contained
in a compact space will be called a K-analytic set.

3. 2. THEOREM. — Each subset of a Hausdorff space which
is the continuous image of a K-analytic set is also K.-analytic.
The class of K-analytic subsets of a Hausdorff space is a bore-
lian field.

(6) It would be interesting to see, if, conversely, this identity entails that each
open set of E is a K-^r.
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Proof. The first part of the theorem follows immediately
from the transitivity of continuity.

In order to establish the second part of the theorem, let
A,, As, . . . , A^, . . . , be a sequence of K-analytic sets of E,
where A^ is the image, under the continuous mapping /*„,
of the set B^CF^, where B^ is a K^§ and Fn is a compact space.

Let us show first that Ag = I J A^ is K-analytic. Let F
n

be the compact space obtained by the compactification of
the topological sum-space ^.F^ by the addition of the point
at infinity; let B== [ j B / » ; the set B is by definition a subset
of F.

We shall designate by f the mapping of B into E whose
restriction to B/, is identical to /*„; this mapping is clearly
continuous and we have A<j == /'(B).

It remains only to show that B is a K<j§. Now by definition
we can set B^ == QB^ (i === 1, 2, . . . , ) where each B^( is
a K<j of F,. Since the F^ of F are mutually disjoint we have

B=[jBn=r\f\jB^\ since UB^ is a K^ B is indeed

a K<jg.
Finally, let us show that A§ == f ] A n is K-analytic. Let

F = JJ Fn, the product space of the Fn, and designate by C
the subset of F defined by C == JjB,. The set C is the inter-
section of the cylinders &„ of F where & n = B / » X II ^P 5
each &, is a K<j§, and therefore the same is true of C.

Furthermore, we shall designate by f ^ the canonical exten-
sion to bn of the given mapping of B/, into E; f n is therefore
defined at each point of C. The set of points of C at which
jfi == f n is closed relative to C, for each n, since f ^ and f n are
continuous; therefore the set of points of C at which /*, == f ,
for all i and / is the intersection of C and a closed subset of F.
This intersection is therefore a K<j§ which we shall designate
by B.

We shall designate by f the restriction of the f n to B. This
restriction is continuous on B and since /n(B) C A^ for every n,
we have f { B ) C: A§. On the other hand AgC^B). For let
y e Ag$ for every n there exists an a^e B^ such that /n(^) == y.
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The point x = {Xn) of F belongs to B and we have therefore
f ( x ) = y. Thus Ag == f ( B ) and A§ is the continuous image
of a Kgo.

3. 3. Soulin's operation A. — Suppose that A^ is a class
of subsets of a set E where X denotes a finite sequence
(n!? n^ • • • ? 7 ^ ) °f positive integers. For every infinite sequence
s == (rii, yia, ..., n^ ...) of positive integers, set

A^fK...".
i

The set A == \\ A, is called the nucleus associated with the
s

class | A.\ j ; it is also referred to as the set obtained from this
class by Souslin^s operation.

Let S denote the topological space of all sequences s, lexi-
cographically ordered with the topology induced by that
order; then it can be easily shown that A is the canonical pro-
jection on E of a set Jbc:(E X S), with A> = QA)^ where

i

each Jlo^i == 1, 2,...) is a countable union of elementary sets of
the form (A^ X S^), with S\ denoting an interval of S. An
immediate consequence of this is the following theorem :

THEOREM. — I f a subset of a Hausdorff space E is obtained
by Souslins operation from ^a class of K-analytic sets, then that
subset itself is K-analytic.

DEFINITION. — Every subset of a Hausdorff space E, obtained
by Soulin^s operation from a class of compact subsets of E is
called a K-Souslin set.

It is easily shown that, if f is a continuous mapping from a
compact space E into a Hausdorff space F and it B c F, then
the set A == /^(B) is a K-borelian set of class K.a (respectively,
K-Souslin, K-analytic), if B is of class K.a (respectively K-Sous-
lin, K-analytic).

3. 4. DEFINITION. — A subset A. of a Hausdorff space is
called a set of uniqueness if A is the continuous and 1-1 image
of a K<j§ of a compact space.

3. 5. THEOREM. Every denumerable intersection of sets of
uniqueness is a set of uniqueness. Every denumerable union
of disjoint sets of uniqueness is a set of uniqueness.
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Proof. For the first part we may refer to the end of the
proof of Theorem 3. 2 and remark that if the f n are 1-1, then
there exists in B a single point x == (x^) such that f ( x ) = y.
The same remark applies to the second part.

4. The K-borelian sets. — Later in this work we shall use
the fact that the K-borelian sets are K-analytic. More pre-
cisely, the following theorem holds.

4. 1. THEOREM. — Every K-borelian set is K-analytic.
Furthermore, if the Hausdorff space E has the property that
each subset of the form KFIG is a K<j, (where G is open), then
each K-borelian subset of E is a set of uniqueness.

Proof. The first part is an immediate consequence of the
fact that each compact set is K-analytic. The field of K-bore-
lian sets is therefore a sub field of the field of the K-analytic
sets.

We shall prove now the second part of the theorem. Assume
at first that E is compact. Then each open set G of K is a
K<j by hypothesis. The borelian field generated by the open
sets of E is identical with the increasing union of a trans finite
sequence of type Q of classes

©o, ^o • • • • - ®——— ®a,.... , (a<Q)

where
(i) ®o denotes the set of open sets of E;
(ii) (9a denotes the set of denumerable unions (intersec-

tions) of elements belonging to the (^p where p < a if a is
even (odd) with the same convention as above for the limit
ordinals a.

We shall designate the classes with finite indices by
®, ®8, ©So? • • • Since each G is a K<j we have ®oC:^.
Likewise, by taking complements, we have ^oC:@i. By trans-
finite induction it follows that for each a < Q we have ©a ̂  3?a+1
and 3?aC:®a+r Moreover, @a is identical with the set of
complements of elements of 3ta.

Let us suppose then that for an even a we have shown that
each element of ©a ^d of 3tia is a set of uniqueness; the
same is true of the elements of ®a^r because the class of sets of
uniqueness is closed under the operation of denumerable
intersection. Then let Ka^ i be an element of3ta-,r Bydefi-
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nition we have K^i === ( I K^ where K^ e3ta and we can
n

always suppose that the K'^ form an increasing sequence.
We have therefore K^, = K^U ((J (K;" —K^)Y Now

K^—K^Kr'nCK^Kr'riGS. "This set is the inter-
section of two elements of (8a+i; hence it is a set of uniqueness.
Therefore Ka+i, which is a denumerable union of disjoint sets
of uniqueness, is a set of uniqueness.

It can be shown similarly, by interchanging the roles of (̂ a
and 3ta that if, for a odd, the elements of ®a and 3ta are
sets of uniqueness, the same is true of the elements of (^a-n
and 3^a^r

Now if a is a limit number (and therefore even), and if for
each p < a the elements of @p and of 3tp are sets of uniqueness,
the same is true of the elements of (Soi and of 3i*a.

This is obvious with regard to 3t^ since it is true of denume-
rable intersections; for @a this follows from the fact that
each @a can be written in the form of a denumerable union of
disjoint elements of classes @p with p < a. By trans finite
induction each element of a ©a (or 3ta) is therefore a set of
uniqueness.

Consider now the case where E is not necessarily compact.
If A is a K-borelian set of E, it is contained in a Ky= [ JK^
where the K/i are compact and increasing with n. Therefore A
is the union of the sets AD Ki and An(K^i --K/,) forn== 1, 2,...
Each of these sets is a K-borelian set and is contained in a
compact set. They are therefore sets of uniqueness. Since
they are disjoint their union is again a set of uniqueness.

4. 2. REMARK. — I f E i s a separable complete metric space,
we have already observed that a subset of E which is borelian
in the classical sense is not necessarily K-borelian. On the
other hand, since such a space is homeomorphic to a G§ of a
compact metric space, we can assert that a subset of E which
is borelian in the classical sense is homeomorphic to a K-bore-
lian set. Such a set is therefore always K-analytic. This
remark will allow us to apply our theory of capacities to the
subsets of separable complete metric spaces which are borelian
or analytic in the classical sense.
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4. 3. REMARK. — We have not obtained in the prece-
ding all the results parallel to those concerning the borelian
sets in the classical sense. We shall state here a few of
these in the form of problems.

4. 4. PROBLEM. — If a subset A of a compact space E is
homeomorphic to a K-borelian set of class ??a (respectively
K-Souslin), is A a K-borelian set, and if it is, is A of the class
3i^ (respectively K-Souslin)?

The results of Sneider [1 and 2] (*) show that the answer to this
question is affirmative whenever E is such that the union of
every class of open subsets of E is union of a countable subclass
of that class of open subsets.

4. 5. PROBLEM. — If E is compact, is each subset of uni-
queness (or more generally, each continuous image («o—1)(°)
of a K(J§ of a compact space F) a K-borelian set?

4. 6. PROBLEM. — If E is compact, is every K-analytic
subset of E also a K-Souslin set?

5. The operation of projection. — In the classical theory of
analytic sets one shows that each analytic subset of a Eucli-
dian space R" is the orthogonal projection of some G§ of a
space R"^ containing R\ We shall need later the following
analogous theorem.

5. 1. THEOREM. — I f E is a Hausdorff space, then each
K-borelian subset of E (and more generally each K-analytic set
which is a subset of a Ky) is the canonical projection on E of
a K(J§ of the product space of E and a compact auxiliary space.

Proof. The proof will be given first under the assumption
that E is compact. If the set A C;E is the continuous image
under the mapping f of a set B, which is a Kj§ in the compact
space F, the set A is the projection on E of the graph F C:(E X F)
of the function y = f { x ) defined on B.

Now the continuity of f implies that F is identical with the
intersection of F and the product E X B, that is to say, F is the

(4) Numbers in square brackets refer to the bibliography given at the end of this
report.

(5) An application is (K(|— 1) if the inverse image of every point is at most enu-
merable.
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intersection of a compact set with a K^g. Therefore F is a
K^g, which proves the theorem.

More generally, if E is a Hausdorff space and if A is K-ana-
lytic and contained in the union HK« of compact sets K^ of E,
then A is the continuous image, by means of the function jf, of
some B, which is a K<j§ contained in the sum V,F,, of compact
spaces F^, such that /'(BOF,,) CK». If we take for F the
compact space obtained by the Alexandroff compactification

of ^Fn, then the graph of f in E X F is still a K^ and its
projection on E is identical with A.



CHAPTER II.

NEWTONIAN AND OREENIAN CAPACITIES

6. Newtonian and Greenian capacities. — Let D be a
domain in R^ which possesses a Green's function. (For ^ > 3
any domain D possesses a Green's function, but for v = 2 there
are domains D which are not « Greenian »).

Let G(P, Q) be this Green's function, and let pi be a Radon
measure on a compact subset KcD. The potential of a for
this kernel G(P, Q) is by definition

U^(Q)=/G(P, Q)rfa(P).

If a is positive, this potential is positive and superharmonic
on D; it is harmonic on (D — K) and tends to 0 whenever Q tends
toward a point on the boundary of D, with the exception of
the so-called irregular frontier points, which form a rare set
in a sense defined in modern potential theory (see, for example,
M. Brelot [1]).

Let us say that a positive measure a on K is admissible it
U^(Q) ̂  1 everywhere on D. The total mass of u. is the
integral f rfa. The supremum of the total masses of admis-
sible measures on K is called the capacity of K (relative to D).
For example, the capacity of K is zero if the potential of each
non-zero positive measure on K is unbounded on D.

For a fixed domain D, this capacity is denoted by /'(K).
The following properties of/*(K) are well known.

6. 1. f { K ) ̂ 0 and is an increasing function of K, that is,

f ( K ^ f ( K , ) ifK,c=K,.
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6. 2. f { K ) is subadditive, that is,

AK.UK^^KO+AK.).
For let a be an admissible measure on (Ki U Kg) whose total

mass m differs from/'(K^ U Kg) by less than s. If a, and u^ are
the restrictions of [JL to K^ and K^ respectively, and if w^ and
w^ are their total masses, then m ̂  m, + ^2 and .̂i and a, are
admissible. Then m ̂  m, + m, ̂  /'(K,) + /'(K,), and" the
inequality stated above follows.

We shall soon see, in fact, that jf(K) satisfies much sharper
inequalities which, in a certain sense, cannot be improved.

6. 3. jf(K) is continuous on the right.
This means that for any compact set K and any number

£ > 0, there exists a neighborhood V of K such that for every
compact set K' satisfying the relation KCTK/CTV, we have
O^/TO—^K)^. The proof of this property will be
omitted.

6. 4. Interior and exterior capacities. Capacitability. — We
shall associate with every subset A of D an interior capacity
and an exterior capacity.

We define the interior capacity of A to be sup /*(K) for K C: A
and denote it by ^(A). In particular, the interior capacity
of every open set G C: D is defined. This fact enables us, then, to
define the exterior capacity of A to be inf ^(G) for AC:G; the
exterior capacity of A is denoted by /**(A). Thus, for every
open set G we have ^(G) = /**(G). More generally we shall
say that the set A is capacitable if ^(A) == /**(A), and we shall
designate the common value of the two capacities by /YA); the
notation f (A . ) will not lead to confusion since, as will be shown
later in the general theory of capacities, /*^(A) == /**(A) = /YA)
whenever A is a compact set. (This result follows easily from
the continuity on the right of /*.)

We say that a property holds quasi everywhere {nearly
everywhere) if it holds at each point of D except at the points
of a set of exterior capacity (interior capacity) zero.

When the set of exceptional points is capacitable, the two
notions coincide; we shall see in the following chapters that
this situation occurs when the set of exceptional points is
borelian or analytic.
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We now prove the following property, which will soon be nee-
ded : The union of a finite number of sets of exterior capacity
zero is a set of exterior capacity zero.

For if /'*(A,) =/^(Aa) === 0, there exists, for every c > 0,
open sets G, and Gg containing A, and A., respectively whose
capacities are less than £. But f ( G ^ U Ga) ̂ f{G,) + f{G^} ̂  2&;
indeed, each compact set K contained in G, U G.̂  is the union
of two compact sets K, and K, such that Ki C: G. and
K,C=G,0. Then f ( K ) ^ f ( K ^ + /YK^/YGJ + /•(G,);1 since
jf(Gi U G g ) — f ( K ) can be made arbitrarily small, the subad-
ditivity for open sets follows. Since /*(Gi U Gg) can be made
arbitrarily small, we have f{A., \J Ag) = 0. The proof is
complete.

6. 5. Equilibrium potential. — It is shown in potential
theory that for every compact set K C: D there exists one and
only one admissible measure pi defined on K such that its
potential U^ is quasi everywhere in K equal to 1. Its total
mass is equal to the capacity f ( K ) of K. This measure is the
equilibrium distribution of K and its potential is the equilibrium
potential of K. The equilibrium distribution is the only
admissible measure on K whose total mass is equal to /'(K).

6. 6. Fundamental principles. — We recall the following
two assertions which we shall need presently.

Let W be the potential of a Radon measure p. defined on a
compact set K C D and such that LH1 is bounded on D.

6. 7. J/'U^^O quasi everywhere on K, then the same inequa-
lity holds everywhere on D.

The property stated in 6. 7 is an immediate consequence of
the general maximum principle. We shall not state this
principle however, because it involves the notion of energy
which we shall not use.

6. 8. I f U^^O everywhere on D, then the total mass of y. is
positive', it is zero only when U^^O.

It follows readily from these two properties that, if U^^O
quasi everywhere on K, then the total mass of pi is positive;
it is zero only when U^^O.

(1!) For a proof of this fact see 17.4, Chapter iv.
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7. Successive differences. — If y(a?) is a real function of
the real variable x^O the fact that y if increasing may be
expressed by stating that A^, a) = ̂ (x+ a) —y(a?)^0 for
all a > 0. Similarly, the fact that it is convex may be expres-
sed by stating that

A^; a, b)=^(x+b, a)—^(x, a)
= ^(x + a + b) — ̂ {x + a) — 9^ + fc) + ?(^) > 0

for all a, 6^0. More generally, if y has a derivative of order n
and if this derivative has constant sign, then this fact may be
stated by saying that the difference A^ of order n always has
this same sign.

The successive differences of y then furnish a means of
studying the nature of the increase of 9. This method is of
interest because it can be extended to the study of functions
not necessarily of a number x, but of a set, or more generally
of elements of a commutative semi-group, addition being
replaced by the semi-group operation.

It will be shown presently that the successive differences
relative to the capacities f ( K ) are alternately positive and
negative; therefore, it will be convenient to so alter the sign
that the final expressions all have the same sign.

7. 1. Successive differences relative to equilibrium potentials
and to capacities. — For every compact set KdD we desi-
gnate by h{K) the equilibrium potential of K, and by f ( K ) the
capacity of K. If X, A,, A,, ..., are compact subsets of D,
we define

V.(x; A,),=A(X)—A.(XUAO
and, in general,

V^,(X; A,, ..,A^,),==V.(X;A,, ..., A,),
-Vn(XUA,^; A., ...A,,),.

The differences V,,(X; A^, ..., A^)y are defined in the same
way.

The index f or h will be omitted when no ambiguity is
possible.



150 GUSTAVE CHOQUET

Functional properties of the differences V/r

7. 2. V»(X; A,, ..., AJ is a symmetric function of the
variables A^. This property is a consequence of the following
development of Vn s

Vn=A(X)—S/i(XUA,)+^(XUA,UA,)—...
+(—IWXUA,U---UA,).

This symmetry permits Vn to be written in the form
Vn(X$ ^A^). The index n may as well be omitted since it is
determined when the family ^A(| is determined.

7.3. Vn(X; |A4)==Vn(X; jA;0 if X U A , = = X U A '
for all i. This follows from the fact that the A, always occur
in the development of Vn in a union with X. In particular,
V n = = O i f A , C : X f o r a l l i .

7. 4. Vn(X; |A,0=Vn(^; tA,J)-Vn.^; {A, XQ

where the expression ^A,, X^ denotes the family of sets consis-
ting of X and the A,. This formula is easily derived from
the expression that defines Vn-o/^; |Ai, X ^ ) in terms of theVn.
It shows that Vn is the sum of two functions, each of which
is a function symmetric in all its variables.

7. 5. Vn(X;A,,...,A^,A»U^n)—Vn(X; A,,....A,)
=Vn(X IJA^; A,, ..., A^_i, a^).

In order to verify this relation it is sufficient to express each

of the Vn in terms of V,,_r The six terms thus obtained
cancel pairwise.

Fundamental properties of A(X) and /'(X).

7. 6. THEOREM.
(i) For every X and \K,\ it is true that 0^—Vn(X; \ K,\ )^ 1.
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The potential (—Vn)^ is equal to 0 quasi everywhere on X,
and it is an increasing function of each of the A,.

(ii) This potential is a decreasing function of X, and more-
over it is a decreasing function of n in the sense that

—V(X:iA^,ei)^—V(X;^A^ej) whenever I=)J.

Proof. This theorem is proved by induction on n and by
using the functional properties of the Vn. To simplify the
notation, let V,.=—Vn. ,

Consider first (i) in the case n== 1. The function V (X; AJ
is the potential of a measure defined on XL) A, since
V l ( X , A , ) = = / i ( X U A O — A ( X ) . Now O^A(XUA0^1 and
O^A(X)^1, with h{X) = 1 quasi everywhere on X and
A ( X U A i ) = 1 quasi everywhere on (XIJA,) .

Thus V ^1; V, == 0 quasi everywhere on X and V,^0
quasi everywhere on A,.

Hence V ̂  0 quasi everywhere on X U A,; and, by virtue
of the fundamental principle 6. 7, V, ̂ 0 everywhere. Moreover,
V^(X; A,) is an increasing function of A^. This fact is an
immediate consequence of the functional property 7. 5:

V / ,(X;A.Ua)—V^X;A,)==V / ,(XUA,;a)>0.

Consider next (i) in the general case. We suppose the first
part of the theorem to be true for all p ̂  n and show that it is
true for p == n + 1. Since

V;,.(X;A, .... A^,)
=V;(X; A,, .., A,)-Vl(XUA^; A,, .., A,),

V is the (bounded) potential of a measure defined on

XU(UA.).

For each V^ of the second member, O^V^^l everywhere,
so that V^ < 1 everywhere. Each of the V^ is zero quasi
everywhere on X, and therefore similarly for V,̂  • On A^i
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the first V^ is positive and the second is quasi everywhere
zero; thus V^, is quasi everywhere positive there. Because
of the symmetry of V,̂  with respect to the variables A(, the
preceding result holds for all A,. Then, since the potential
V,̂  is quasi everywhere positive on the union of X and the A,,
V^,^0 everywhere. Also, we have on X:

V;,.(X;A, .., A^)
=Vl(X; A,, ..., AJ--V;(XUA^; A, ..., A,)
==0 — 0 == 0 quasi everywhere on X.

This completes the proof of our assertion that (—Vn)^ is
equal to 0 quasi everywhere on X for every n.

V t
That is an increasing function of each of the A, is an

immediate consequence of property 7. 5, just as in the case
of -V..

Consider next the proof of (ii). Clearly

V;(XUa; ^)-Vl(X; ^)=-VL.(X; {a, A,Q^O,

which shows that V^ is a decreasing function of X.
From this same relation we see that

V;,,(X; |o,A.O^V;(X, ^A,0,

V t

that is, decreases whenever an element is adjoined to the
family of the A(; therefore whenever any number of elements
is adjoined.

Complement of theorem 7. 6.

7. 7. DEFINITION. — The essential envelope K of a compact
set K C: D is the closure of the set of points o f D on which h{K) = 1.

The set K is compact and ( K — K ) is a set of exterior
capacity zero; the relationship of K to K is expressed by
saying that K is quasi contained in K. Since h(K.) = h(K.)y
we have K = K. Similarly, (KiCK,) implies Kid Kg; and,

moreover. KiljTC> = (KiLltC) tor any choice of K, and K^.
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7. 8. Restrictive hypothesis on D. — We suppose that for
all KC: D the open set (D— R) is connected; this will be the
case if the frontier of D is connected (this frontier contains
the point at infinity if the dimension of D is greater than 2
and if D is unbounded).

When the condition « (D—K) connected for every KC:D»
is satisfied^ we will say that D is simple.

7. 9. Statement of the complement of theorem 7. 6. —
When D is simple^ a necessary and sufficient condition that
V(X; jA.p/t^O on D is that there exists an i^ such that

A^C X. When V(X; |A^)^0, the set of points of D where

V == 0 is contained in X and differs from X by a set of exterior
capacity zero.

Proof. We shall use the following fact: if A C: B and if

A=^B, then at every point of L A we have A(A)<A(B).
f - ' . . - '-For let m e I A. There exists a point rrio e (B — A) such

that all spheres S with center m^ intersect (B — A) in a
compact set b of non-zero capacity. If S is taken sufficiently
small so that D — (B U b) is connected and m ̂  b, then

r -h[A U b]—h[A] is harmonic and strictly positive on I (A U B)
We have, a fortiori, A(B) > h{A) since B Z> A U &.

Consider first the case n = 1. V, (X; A) == h(X) — h(X U A)
is identically zero if A (JX == X, which is equivalent to

A C: X; otherwise V^ ̂ 0 at each point of L X. Moreover, we
know that V, ==0 quasi everywhere on X.

Consider next the general case. We now assume the asser-
tion true for p^n and prove that it holds also for p = n + 1.
If one of the A( is such that A,oC: X, then V,,^i=0. Other-
wise, consider

V;,,(X;A,...,A,,.)
=V;(X; A,, .., A,)-Vl(X.yA^; A,, . . . , A,).

The first term of the difference is greater than 0 on (A^, — X),
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and the second term of the difference is zero quasi everywhere;
then the difference is greater than 0 quasi everywhere on that

set. At every point of I (((JA,)UX)), the difference V^(X)
is positive and harmonic; it is therefore greater than 0. Thus

V^ is quasi everywhere greater than 0 on L X. In fact,
P .

this strict inequality holds everywhere on L X. The proof
is entirely analogous to the above. We replace each A, with
X U bi, where each bi is compact and small enough so that we
may conclude that a certain harmonic function is greater
than 0. Finally, the theorem follows from the fact that, as
we have already seen, V^==0 quasi everywhere on X.

7. 10. COROLLARY OF THEOREM 7. 6. — I f [V ^.designates the
differences associated with the capacity /*, we have (V^)r^O and

\^ n ) f possesses the same monotonic properties as (V^.
Proof. The potential (V,,)/,18 a linear combination of poten-

tials h(k)^ and the total mass of the measure which generates
it is the sum of the total masses of the equilibrium distribu-
tions of the compact sets K, with the same coefficients, + 1
or—1, as the corresponding potentials h(K). Moreover,
according to the second fundamental property 6. 8 of poten-
tials, since (V^)^^O everywhere, the total mass of the measure

which generates it is negative. Thus (Vj.<Q.
The monotony properties of (Vjy follow, as in the case of

the (V^, from the functional properties of the V,, and from
the fact that all the (V,Jy are negative.

7.11. COMPLEMENT OF COROLLARY 7.10. — We deduce imme-
diately from the complement 7. 9 of Theorem 7. 6 that, under
the hypothesis that D is simple, a necessary and sufficient condition
that V (X; t A,̂  ) = 0 is that for some i == i^ we have A,, C: X.

7. 12. REMARK "— Whenever a function y(a?) of a real
variable x satisfies inequalities analogous to those shown for
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the capacity /*, it is increasing, concave,.. . and possesses
derivatives of all orders, alternately positive and negative.
The opposite — y of such a function is said to be completely
monotonous although the term is not especially descriptive.
It is known that such a function is analytic. The capacity
thus appears as an analytic set function, with derivatives
alternately positive and negative. We shall say that a capa-
city is a set function which is alternating of infinite order,

8. The inequality (Vj^^O. — This inequality can be
written as follows :

8. 1. ^(^—/•(XUAO—^XUA^+AXUA.UA^^O.

If A and B are any two compact sets, let X == A D B, A, == A
and A.^ == B. Then the inequality 8. 1 implies

8. 2. AAU^+AAnB^/^+AB).

Since f ^ . 0, the capacity satisfies an inequality stronger than
subadditivity. This inequality plays an important role in
the following.

We remark here that ordinary subadditivity is sometimes
wrongly called convexity. In fact, the preceding inequality,
which is stronger than subadditivity, is, as we have seen above,
analogous to a condition of concavity.

We shall proceed to give another form to the condition
Va ̂  0. Let a, ky A, be three compact sets with a a A.
Setting X = a, A, == fr, Aa == A, it follows that

8.3. f { ^ ^ k ) — f { A ) ^ f { a \ J k ) — f ( a ) .

In other words, when a fixed compact set, k, is adjoined to a
compact set X, the smaller the X, the greater the increase in
the capacity of X.

APPLICATION. — Let (A,) and (a»), ^ == 1, 2,... , n, be two
families of compact sets such that a, C A, for all i. Then

8. 4. /-(UA,)- /•(LN^AA.)-/^.)).
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Proof. According to the inequality 8. 3. above, we may
write

/•(A, U A,) -f(a, U A,) ̂ /•(AO -f{a^
f{A, U a,) —/•(a, U a,) ̂ (A.) —A^

from which, adding termwise;

8. 5. /•(A, U A,) -/^. U a,) ̂  ̂  ^(A,)-/^.)).

If the inequality 8. 4. is satisfied for order n, it is sufficient
to apply inequality 8. 5. to obtain 8. 4. also for order n + 1-

8. 6. Geometric application of the inequality Va^O*
We shall suppose D to be invariant under a one parameter

continuous group of motions T\, where the parameter X is
chosen so that T^.T^ == T\^^. For every compact set Ky
in D and all pairs of values a, (3, of A let Kap = M T\(Ko)
and Kp == Kop. ^x^(s
In other words, Kap is generated by the motions of Ko for X
varying between a and P.

Because of the invariance of D with respect to the T^
clearly f { K ^ ) = /•(K^)). Let f ( K ^ = ̂ ) and

Koa. == A,; Ka,(a,-^.c) = X$ K^a. ^a-)(a. ̂ -a,-.^ ===== A,, where a^ a^, x

are positive numbers. Then the inequality V.̂  ̂  0 becomes

y(rc) — 9(0; + a,) — y(x + a,) + f(x + a, + a,) ̂  0.

Hence, the second differences relative to y(o?) are negative,
that is, y(a?) is a concave function.

Thus the capacity of K^ is an increasing concave function of P.
This property can be easily verified for the solids of R3

whose capacity can be explicitly calculated.

EXAMPLE. — If the T\ represent translations in D == R3

the Kp are unions of parallel segments of length j3.

9. Complete system of inequalities. — We have obtained a
system of inequalities Vn^O which are satisfied by the
function /\K). We shall show that in a certain natural sense
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there are no others, that is, that every inequality identically
satisfied by f is a consequence of Vn^O.

Let SA^ei (I== ^1, 2, . . ., np be a family of n compact
subsets of D. For each J c I, let

Bj=(jA, and x,=f(Bs) for J=^,
i€J

There are N = 2" — 1 subsets J of I. We may then associate
with each family tA^ei the point of the Euclidean space R^,
whose coordinates are (rpj)jci. Our object is to characte-
rize the locus of this point in R^ when D and I remain fixed
but the family |A^er is allowed to vary.

9. 1. DEFINITION. — We denote by Cn the set consisting of
the points (xj)sci of R^ when the family ^Ai^ei varies, I and D
remaining fixed. We denote by L^ the set consisting of the points
of R" defined by the following N inequalities:

— A H = V ( B I _ H ; |A,^6ii)^0 where Hd and H=^.

We have omitted, in this definition, the index of V which is
obviously equal to H.

The second part of this definition requires an explanation.
Each V is a linear combination (with coefficients + i or —1)
of terms of the form /*(Bj)$ if we then replace each /*(Bj) by
X j we have a form which is linear with respect to the x j . The
set of points of R^ for which V^O is then a closed half-space
in R^ More explicitly,

— ^g === V (— 1)̂  where pj =-- J — (I — H).
jDO-m

9. 2. THEOREM. — (i) The set Ln is a convex cone of
dimension N; it can be represented parametrically in the form

OM==^XHVH (XH^O)
Hcl

where the vector Vn of R^ has the components x^ defined as follows :

^=0 if Hnj=o, and x^=l if HnJ^0.
(ii) C,C:L« and C,==L,(8).

(8) The notation A means the interior of A.
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9. 3. Proof of (i). We shall use the expression of —AH as
a function of the x^ obtained above and calculate

— ^. \u for a Joc I.
nnwe

The coefficient of x^ is

^(_l)3^^n) where (I—H)C:J, and HdJo^.
H

It follows that this coefficient is

|—1+(1—1)?";|=—1.

Similarly the coefficient of X j for J =^= J(, is

V^—l)^^) where (I-H)cJ and HfUo^.
H

By examining first the case where Joc J and then the case
where J« <t J, we find that the coefficient of xs is always 0. Thus,

^Jo== ^ ^H.
HnJo^o

This gives the solution of the system of equations

-^H= S (-l)^.
JDI-H

The second members of these equations are thus linearly
independent forms, and the vectors VH are also linearly inde-
pendent.

The formula OM=-==SXHVH follows immediately from the
expression of the xj as functions of the ^n.

9. 4. Proof of (ii). The relation C,,C:L» is an immediate
consequence of the fact that, for every point of C,, the V
associated with this point are all negative, according to
corollary 7. 10. The relation C,, == L,,, which expresses the
identity of the interior of €„ and the interior of the cone L,,, is
much less obvious.

We present here a general outline of the proof. Let us suppose
for a while that for every system of numbers ^H^O (with
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H C: I and H =^= ^) there exists a family of compact sets KH
with /*(KH) == XH, which are additive in the sense that for
every subfamily | KH \ of this family, we have

/'(U^-SAK^S^
For this family of compact sets and for each i e I, let

A, === ^J KH. In the space R^, the point M representative
H3i __^ _^

of the system of sets A, is then defined by OM==^XHVH.
For we have here, with the notation already introduced,
fW=f(\J^i\ Now

f(U^-f( U Kn)- 2 XH.
\ f€J / VnnJ^o / HnJ^o

We have then, .r, === ^ AH. Thus, under the initial
nnJ^o

hypothesis of additivity we see that every point of the cone L/(
is a point of C,,.

As a matter of fact, this hypothesis is realized only approxi-
mately, in a sense which we shall make precise, for the capa-
cities considered here.

We shall use a hypothesis a little different, and, in fact, weaker
than that of additivity, and attempt to show that it is realized
for our capacities.

We shall suppose that for any given number £ > 0, there
exists a family ofjcompact sets KHC:D(HC:I and H^^)
such that

9. 5. for each of these we have /'(Kn) == 1$

9. 6. f(UK^=^Jf(K^—ri=N—ri whereO^Yi^e;

9. 7. for every A such that O^A^l and for every H,
there exists ]a]compact Kn(X) such that

(a) /(Kn(A))==A,
(b) KuCA^cKHCA) if / /<A,
(c) K,ri)==KH.
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For every system of numbers ^H^O such that ^XH^I and
for every i e I, let

A,==UKH(^H).
H9i

We designate by m the point of L,, defined by

Om==^5lHVH.

The set of these points, under the condition ^ jAn^l ,
is a simplex S of dimension N. The definitions above of A^
associate with each m the point M === $(m) representing in R^
the family of the A(. If the Kn(X) formed an additive
family, the mapping $ would be an identity. We shall see
that with our hypothesis, $ is a continuous mapping which
differs arbitrarily little from an identity if e is taken suffi-
ciently small.

9. 8. $ is continuous. — It is sufficient to show that
each f(Bj) is a uniformly continuous function of m; since /'(Bj)
is an increasing function of XH, it is enough to give to the XH
positive increments AXn. From the inequality

f(\jK,)-f(\Jk,)^f{K,)-f(k,),

it follows, since the Kn(^) increase with X, that

AB.O-yTO^AXH,
where the Bj and Bj are associated respectively with the
points m == (Xn) and m + Am == (XH + AXn). This inequality
proves the required continuity.

9. 9. $ differs arbitrarily little from an identity. — It is
sufficient to show that each /*(Bj) differs arbitrarily little from
^, XH. More generally, given any family (Kp)pep of compact

HOJ^e

sets such that ^/ ' (Kp)—^(U^p)^6? t^16 same inequality
pep?

holds when we replace each Kp by a compact subset of Kp.
This follows from the inequality used above by writing it in



THEORY OF CAPACITIES 161

the form (^f(k,))-f((jk,) ̂ (S/W) -f((J K,) where
fcpCKp.

Now it is a well known fact that, if M == $(m) is a continuous
mapping of the N dimensional simplex S of R1^ into R11 such
that Mm^Tj for all w, the image $(S) of S contains all
points of S at a distance ^^from the boundary of S. Since r,
tends to 0 with £, it follows that each interior point of S is a
point M which represents a family (A,) of compact subsets of D.

Finally, if we notice that in our second hypothesis the
constant which occurs in the definition of S, that is, in the
condition VAH^I, can be replaced by an arbitrary positive

"̂̂  . . 0 0

constant a, we get immediately C, == L^.

9. 10. Proof of the second hypothesis. — We shall prove this
hypothesis for the case in which the constant a has the
value 1.

It is sufficient to show that for every integer N and for
every £ > 0 there exists a family of compact regular sets
K,, (i = 1, 2, . . . , N), such that /(K,) = 1 for every i and
f ( \ ] K() = N — YJ, with O^Y)^£, where a compact subset of
D is called regular when it is the union of a finite number
of cubes. For if C is a cube and if C(R) denotes the cube
concentric with C and obtained from C by a homothety of
ratio p^O, then f(C^) is a continuous increasing function
of p. More generally, let K == (J C», where each C,. is a cube
and let K^ = N C,^y Then, recalling the inequality (8. 4), it
follows that /YK(P)) is an increasing and continuous function
of p with f ( K ^ ) == 0 and /*(K^) == 1. The third part of the
second hypothesis is thus satisfied whenever the compact
sets K( are regular.

Let G(Po, Q) be the Green's function for D with pole Po.
If SfPo, p) denotes the open Green's sphere defined by

. . iG(Po, Q)^p, it is well known that its capacity is —•

The procedure will now be as follows $ we shall suppose the
N points Pf, i = 1, 2, . . . , N, so chosen that the restriction
of G(P,, Q) to S(P,, 1/2) is ̂  S for all couples i, / with i =^/
(S will be determined later as a function of £). Since for each
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i we have /*(S(P,, 1/2)) == 2, we can find a regular compact set
of capacity > 3/2 in the open set S(P,, 1/2). Starting with
this compact set, we can construct a compact regular subset
K; of S(P,, 1/2) with capacity == 1 by a procedure already
used.

Now, the equilibrium potential A(K() satisfies the relation
/i(K,)^inf[l,2G(P,, Q)] everywhere on D since

inf[l, 2G(P,Q)-j

is the equilibrium potential of S(P,, 1/2) and K,.C:S(P,, 1/2).
Foreverypain, / with i=/=j\ the restriction of A(K,) to Kyis < 2S;

then V/i(K.) is, on each K,, less than (1 + 2§N). Then ̂ h^
^ ' 1+2SN

is on D the potential of a positive admissible measure (see

the beginning of this chapter) of total mass .——y— • Thus
1 -4"" 2yN

^N^UK^N; hence, N-^(UK,)^^. For

given £ and N, S can always be chosen small enough so that
this quantity does not exceed £.

It remains to choose, for every o > 0, the N points P, so
that the restrictions described above are satisfied. When D
has a boundary D which is sufficiently regular, we designate
by ^7c^ a family of N distinct points of D" and by ^V^
mutually disjoint neighborhoods of these points. For every
i there exists a neighborhood W, of ^ such that for everv
P, 6 W, and every Q e V,, G(P,, Q) < S. If moreover o < 1/2,
then S(P,, 1/2) CV,. Thus G(P,,Q)^S on S(P,, 1/2) for
i.^/.

In the general case, a proof has been kindly given by
M. Brelot (9) at my request.

9. 11. Study of the frontier of C,. — We have proved the
relations C,, C: L,, and C, === L,,, but it remains to determine
which frontier points of the cone L^ belong to C,. This depends
essentially on the topological nature of D and probably on its
homology group. We shall give a complete determination of

(t() M. Brelot. Existence theorem of n capacities, in these Annals, tome 5.
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C,i only when D is simple (see 7. 8). We shall not give a proof
here; it would be analogous to the proof of the second part of
Theorem 9. 2. and would follow essentially of the result stated
in 7. 11.

We shall call the set of points of L,, defined by a set of
equalities of the form (XH? == 0) a face of L«. If this set
contains r equalities, the dimension of the face is N — r.

The first essential fact is that if a point interior to a face of
L^ belongs to C,,, then each point interior to this face also
belongs to €„. Such an open face will be called an open face of C^.

9. 12. Determination of the open faces of C,,.
RULE.— Let ^/.Hp === 0^ be the set of equalities which determine

a face of L^« Its interior is an open face of C» if and only
if ^ )^ === 0 ^ is hereditary in the following sense : if it contains
an equality AH = 0, it must also contain all its descendents
relative to at least one index i^ e H.

For a better understanding of this rule, recall that we had
set X H = = V ( B I - H $ ^Af j ign) tor any system of sets (A,).

With the hypotheses made on D, if XH == 0, there exists an
^ e H such that A,^ <= BI_H. It follows that the equality XH = 0
implies that XH' = 0 for every H' such that iy e H' and H' c H.
It is this fact that leads to the definition and the preceding
result. More precisely, a set 8 of equalities XH? == 0 defines
an open face of L, if for every p there exists an ip e Hp such that
for every H' which satisfies ip^H'cHp,, the equality XH'=O
belongs to 8; these h' are the descendents of Hp relative to ip.

9. 13. EXAMPLE. Let I == 1, 2, 3 so that N = 23—! = 7.
The open face X i , 2 = = 0 , A i = 0 belongs to €„.
The open face X^a = 0, X^a = 0, X^ = 0 belongs to C».
The open face A^a == 0, \^ 3 = 0, Xi = 0 does not belong to Cn.

9. 14. Canonical parametrization of the set of open faces. —
Every open face is characterized by a set of independent relations
of the form A.cBi^H where i e H. Conversely, to each set
of such relations corresponds a face whose equations are all the
AH = 0 where i e H' c H and i and H are indices relative to one
of the given relations.

As an example, we shall now give the set of all the systems of
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relations which define the faces of €3. For brevity of notation
we indicate the relation A^cBi-H by writing (i |(I—H))
It is necessary to add to the systems listed those which follow
from them by permutations of the indices.

Systems including a single relation.

\m \w^}\
Systems including two relations.

Hl|2), (1|3)| |(1|2), (2|1)| ^(112), (2|3)|
|(1|2), (3|2)| ^(1|2), (2)3,1)1 Kl|2,3), (2|3, 1)|

Systems including three relations.

Kl|2), (1|3), (2|1)I Kl|2), (2|3), (3|1)I
^(1|2), (3|2), (2^,1)^ ^(1|2,3), (2|3,1), (3|1,2)^.

There is no system of four relations.

Observe, for example, that the system

K112,3), (2|3,1), (3 j l ,2)^
determines the face \ = Xg = Xg == 0.

9. 15. Consequences of theorem 9. 2.
COROLLARY. — I f an equality of the form ^^Hf(B^)^0

Bel
holds for every family jA^ei of compact subsets of D, there
exist N constants ?j^0 such that the linear form ^.a.nXn is a
linear combination with coefficients (?j of the linear forms Aj as
follows:

^ (XH^H = ̂  P/Aj.
Hcl Jd

In fact, the linear form ^.an^H is positive on the cone L,,.
Then it is a linear combination with positive coefficients of the
linear forms which define Ln.

An equivalent statement is obtained by replacing the capa-
cities /*(BH) by the potentials h(Bu) and the linear forms \ of
a?H by the corresponding linear combinations of A(BH).
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10. Inequalities concerning all operations of the algebra of sets.
— The inequalities V(B|_H$ |A^ ,€H)^O concern only unions
of the sets A,. We have already seen that it is possible to
deduce other inequalities from them which involve intersec-
tions $ the following is an example:

AAUB)+f(AnB)^(A)+/ ' (B) .
If n compact sets \^\ are given, we can derive from

them a certain family of sets, in general distinct, by using the
operations of union, intersection, and difference of sets. More
precisely, we first form the N « atoms » as follows :

E..=(nA,)n(n[A,.)
\ f6.1 / \i6T-J /

Then we take unions Fp of any number of atoms. Thus we
obtain % = (2^ — 1) == (2(2n-l)— 1) sets.

Let <p(/^Fp^)^0 be an identically true relation whatever
A,C:D may be, where <pQYp|) designates any continuous func-
tion of the positive variables Yp (p === 1,2,. . ., U).

We assert that this relation is a consequence of the inequa-
lities V^O.

This is equivalent to saying that, if we consider in the space
R11 of dimension % the set (°n of the points of coordinates
Xp = f ( F p ) when the system of compact sets ^ A , ^ varies
arbitrarily, the closure C5^ of C\, is identical to the cone ,̂
defined by the relations V^O in which we understand now
as variables not the A,, but the Ej defined above.

More precisely, it can be shown that the interior of €„ is
identical to the interior of ,̂.

The fact that the Fp are not compact sets is not disturbing.
In fact, each of these sets is a K<j; it is capacitable, and we can
from now on apply to these sets the inequalities V^O.

The only difficulty arises from the fact that the Ej (which
replace the A,) are not arbitrary cap'acitable sets, but are
mutually disjoint.

We have evidently t%C:^. In order to show that (^ =: 4,1 . °we show that for every point {Xp) e if,, there exists a family
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of mutually disjoint compact sets (Ej) to which is assigned in
R% a representative point identical with (rCp).

0 0

In the procedure used to compare C^ with L,,, we used a
variable base of sets A, which were not mutually disjoint.
With the notation thus used we had

A,=(JKH(XH).
U9i

But we remark that, instead of considering the compact sets
KH and their subsets KH(XH), we could just as well have used
the compact sets with two indices KH, i (^n) with KH^riKH^^^
for i =/=- /', and set A, == M KH, 1(̂ 11) with the condition that the

H9i 1 1capacities of KH.I^H) and of UKn,i(^H) should be still equal
to XH. l

In fact, it is usually not possible to subdivide a compact
set Kn(^H) into n compact sets of the same capacity, but this
subdivision can be approximated as we shall now show.

It is sufficient to change as follows the construction of the
KH. Instead of taking KH(XH) == a union of cubes, we shall
let Kn(^H) == the boundary of this union of cubes. Then assu-
ming an YI^O given, we shall set KH.((XH) == K [(1 +IY])^HJ,
i == 1, 2,..., n. In order to show that (°, === S,,, it is essentially
this idea that could be used. We shall not show the details of
the proof but give only the result.

10. 1. THEOREM. — Let^[\Xp\) be a continuous function of
the positive variables (x? {p == 1, 2, . . ., U). Let us suppose
that for every index p, f(Fp) designates the capacity of a set Fp
defined in terms of compact sets A, (i = 1, 2, ..., n) by a given
sequence of operations U? Ft, ((difference ».

If the relation <p( t/'(Fp)j)^0 is satisfied by any family (A,),
the relation <f(^Xp^)^0 is a consequence of the % relations
V ̂  0 in which each V is considered as a linear form of the
variables Xp.

More precisely, with the notations already introduced we Have:
e^^ande^0^.

11. Possibilities of extension of the preceding theorems. —
All the preceding results apply without modification to
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potentials and capacities relative to Greenian spaces (see
Choquet and Brelot [1]). They apply equally well to plane
domains which are not Greenian and, more generally, to
Riemann surfaces, taking in the definition of the capacity
the following precautions : If we study the capacities of the
compact sets contained in a circle of diameter equal to or
less than rf, take for kernel Log d / r and for capacity of a
compact set the supremum of the total masses of the admis-
sible measures on this compact set.

More generally, Theorem 7. 6. relative to the successive
differences of the potentials of equilibrium and its corol-
lary relative to the successive differences of the capacities
are extended without any difficulty in the proof, to every
capacity associated with a theory of potential in which the
two fundamental principles 6. 4 and 6. 5 are satisfied.
Such potentials can be defined on a space which is not
necessarily either R" or even a group ; exemples can be
constructed by replacing the domain D by any locally
compact space.

Differentiability of capacity. — Let D be a Greenian domain
in a Euclidean space, or more generally, let D be a Greenian
space. Let K be a compact subset of D such that f{K.) ^=f=. 0
and let m e D — K. Let AK be any compact subset of D
contained in the sphere B(m,p) and such that /(AK) =^0.

11. 1. THEOREM. — J/*A^(K) denotes the value at m of the
equilibrium potential h(K) of K, then

v /'(KUAK)—/^) .., , /^
iTo AAK) /=^-^K)^

Proof. We shall consider the restriction of the potential
A(KUAK)—^(K) on K and on AK. This is quasi every-
where 0 on K and quasi everywhere [(1 -— ^(K)] on AK, that is,
equal to [1 — A,n(K)] within £ (where & —»- 0 with p). Then

/•(KUAK)-/-(K)
1-UK)

is equivalent to the total mass of the measure on (KUAK)
whose potential is 1 on A K and 0 quasi everywhere on K.
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Now this last potential is [A(AK) — 6(AK, K) | where 6(AK, K)
equals 0 on AK and /i(AK) on K. The potential &(AK, K) is
equivalent (for ?-^0) on K to [ f ( K ) . b ( m , K)], where b(m, K)
denotes the potential of the measure obtained by the sweeping
out process (balayage) on K of the unit mass at m. The total
mass of this measure on K is a function of m which is harmo-
nic on (D— K), and which is 0 on the boundary of D and 1 on
the boundary of K and is thus identical with A(K). Thus the
total mass of the measure which generates [ A(AK) — &(AK, K)J
is equivalent to /*(AK)(1—/^(K)); this fact proves the theorem.

11. 2. Extension of the Green's function. — Let P^and Pg be
two distinct points of D and K,, Ka two compact sets of
positive capacity contained in B(P,, p) and b{P^ o) respec-
tively. We shall study the behavior of

/ • (KO+AKoJ-^K^UK,)
when p—^0.

We could use the preceding result, but it is quicker to prove
that this potential is the sum of two potentials Ui and L^ of
measures a^ and 0.2 each defined on (K.i U Kg), where the res-
trictions of^Ji on KI and K.^ are respectively 0 and A(Ki) and
the restrictions of IL on Ki and Kg are respectively h(K^) and 0.
The restriction of A(K,) on K^ can be approximated by
G(Pi,P2)./YK,). It follows easily that the total mass of ^ is
equivalent to G(Pi, P.^) ./'(K,) ./"(Kg); the same is true of the
total mass of ;JL). Thus

fW+f{K^-f(K^K^ when——0
2f{K,)f(K,) [ 19 2) when ^ vl

and the convergence is uniform when P^ and P.^ belong to two
disjoint compact sets.

Thus the ratio,
G(K. K)-/ '(K.)+AK.)-/-(K.UK.).̂, ^) 2/-(K,)AK.)

defined on the set of pairs of compact sets of non-zero capacity is
a natural extension of the Greeks function. It is a positive and
symmetric function of Ki and Kg and can be extended by continu-
ity to the set of pairs of points of D, and is there identical with
G(P., P.).



CHAPTER III

ALTERNATING AND MONOTONE FUNCTIONS. CAPACITIES.

12. Successive differences of a function. — Let fc be a
commutative semi-group (10) and 3 a commutative group.
The operation in S will be denoted by ^ and in ^by +• Let
y = ̂ x) be a mapping from ^ into 9.

The successive differences of 9(0;) with respect to the para-
meters a,, a^ . . ., are defined as follows.

\7,(rc; a.)<,==- ?W—^{x^a^ and in general,
Vn^i(^; ^15 • • • ? ^5 ̂ i)c :=-—,(^? a<, ..., a«)e

——V^T^l; ^i? •••^n)?

In the above definition the element x and the elements a,
are, of course, assumed to be elements of 6.

As in the special case treated in the preceding chapter, the
following properties of the function Y7,, can be verified imme-
diately.

12. 1. V,,(^; a,, . . ., aj is a symmetric function of the a,;
it is therefore possible to write this function in the concise
form ^7n(a?$ ^a^gi), or, if I is a given fixed set, \7(^; \^i\\

12. 2. v(.r; ^)==^7(^$ ^) whenever x^a,= x^a\
for each i; moreover, \7(a?; ^ a ^ ) = = 0 if, for at least one i,,,
we have (x^a^=x\ (this case occurs when 6 contains a
zero element and when a^ is this zero element).

12. 3. If ^ contains a zero element 0, we have

y^; ̂ )=—V^(0; \a, ^)+VnCO$ ^a4).

()0) This means that a mapping of the form c = a-r & is defined from 82 into
E, with tlie operation -r assumed commutative and associative.
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12. 4. \7«(^; ^i, ...^-i, a,-ra^)—^(.r; a,, ..., a^)
^V^T^; a!? • • • . ^-o a")-

13. Alternating functions. — We now make the additional
assumption that 6 and 9 possess an ordering compatible
with their algebraic structure, and that 8 contains a zero
element. The relations defining the two orderings are deno-
ted by ^ and <^_ respectively.

13. 1. DEFINITION. — A mapping 9 from 8 into 9 will be
called alternating of order n, where n is an integer ^1, if
\//rc; ta^)^0 for each p^n and for every finite family \a^
which is positive^ (that is, for which 0 ̂  a^ for each &).

The mapping 9 will he called alternating of order oo, if it
is alternating of order n for each n^l.

It is an immediate consequence that if 8 is an idempotent
semi-group {a^a=a for every a), then <p is alternating of
order n if and only if \/n(^; {a^^O for every positive family
\0i\. In fact, \/n{x', a,, . . ., a,,) == \7n_i(^$ a,, . . ., a«_i) whe-
never On=a^_^ since the equation [(^-raj-r^.i = {x^a^}\
implies the equation \^jn_^x^a^ a,, . . ., a^_,) = OJ.

13. 2. Immediate properties. — If y is alternating of
order n, then every function Vp(^; ^0 (where p < n) is
alternating of order (n—p).

When 8 is such that a ̂  b implies b == a -y- c where c ̂  0,
every Vp(p < ^) is an increasing function of x, and every \/p
{p^n} is a decreasing function of each a,. Finally, \7p is an
increasing function of p in the sense that

V(^5 l^e-O^VG^ t^^ei)

for Jcl and I^n.
The verification of these properties is analogous to that of

the same properties in the case of the Greenian capacities.

13. 3. Examples of alternating functions.
(i) If 8 is the positive half of the real axis (i. e. all points

x > 0) and 9 is the real axis, then the statement that the
function y^= <f{x) is alternating of order oo is equivalent to the
statement that 9 (x) possesses derivatives of all orders and
that (—DV^O for each n^L
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(ii) If ^ is the class of all compact subsets of a Greenian
domain, and if the operation -p is the union, then the capacity
f [ x ) of the element x is alternating of order <x ; the same is
true for the equilibrium potential h{x). (In the latter case, 9 is
the vector space of all real-valued functions defined on D,
with the classical order structure.)

14. Set functions. — We shall not continue here the
general study of alternating functions, but shall restrict our
remarks to the case where ^ is a class of subsets of a set E,
where the operation -p is either union or intersection, and
where 3s is the real axis. It should be remarked, however,
that some of the definitions and theorems could be easily
extended to the case where 9 is an ordered, commutative,
topological group.

14. 1. We shall continue to use the term ((alternating » for
mappings y when -y- is union (U) ; but when -p is intersection
(D), we shall use the term « monotone » for the function (— <p).

More precisely, let 8 be a class of subsets of a set E and y(X)
a mapping from 6 into the extended set of real numbers (con-
taining -l-oo and —oo)(11). ^ will then be called additive
{multiplicative}^ if from A^ ed> and A ^ e S it follows that
(AlUAg) <=£( (Ai riAa) €=£). For additive 8 , the differences \/
with respect to 9 will be denoted by V$ for multiplicative 8

by A (these symbols are designed to recall the symbols |J
and D).

A function 9 defined on an additive class S is called alter-
nating of order n it its differences V of orders p ̂  n are non-
positive (^ 0).

A function <p defined on a multiplicative class 8 is called
monotone of order n if its differences A of orders p ̂  n are non-
negative Qt 0).

If we call a function ^ defined on 6 increasing whenever
(A, C:A2)—^(p(Ai)^<p(A3), it follows immediately from the defi-
nition that every increasing function which is defined on addi-
tive S is alternating of order 1, and conversely. Analogously,

(M) With the understanding that the expressions [(+ s o ) — ( + 0 0 ) | and
[ (— oc) — (— oo) j may take arbitrary values.
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every increasing function which is defined on multiplicative
< » is monotone of order 1 and conversely.

14. 2. Conjugate functions. — If 9 is a function defined
on a class 8 of subsets of E, we shall denote by 9' the function
which is defined on the class 8' of the complements X' = (E — X)
of all elements X of 6 by the relation,

9 /(X /)+T(X)==0.
We have, obviously, (^ == 9, and (^y == 8. The two

functions 9 and 9' are called conjugate functions.
It follows immediately that if 9 is alternating of order n

on additive 6, then 8' is multiplicative and 9' is monotone of
order n on ?'.

14. 3. Alternating functions of order 2. — If 9 is alterna-
ting of order 2 on additive 8, then 9 is also increasing and
we have,

9(A U A*) — 9(0 U ̂  9(A) — 9(0)
whenever oC:A and o, A, /c, eg. From this inequality it
follows that.

^(U^^-ydJ^)^^^)-^))
whenever O(C:A, for every i.

If ^ is additive and multiplicative, the two statements
below are equivalent.

(i) 9 is alternating of order 2.
(ii) 9 is increasing and satisties.

9 (A, U A,) + 9 (A, n A,) ̂ 9(AQ + 9 (A,).
If 9 is alternating of order 2 on 8, and if 9 ̂  0, then 9 is also

sub-additive, that is 9(A^ U A,) ̂ 9(A,) + 9(A,). We shall not
prove these elementary properties which have in large measure
been proved in the preceding chapter.

14. 4. Monotone functions of order 2. — If 9 is monotone of
order 2 on multiplicative S, then from the properties of its
conjugate, 9', the corresponding properties for 9 can be deduced.
We find that 9 is increasing, and

9(An/c)—9(on/c)^9(A)—9(o).
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whenever aC:A, and

^nA..)-^^.)^^)- '̂
whenever a^ClAi for all i.

When 8 is both additive and multiplicative, the following
two statements are equivalent:

(i) 9 is monotone of order 2.
(ii') y is increasing and satisfies

y (A< U A,) + 9 (A, ft A,^ 9 (A,) + 9 (A,).

If 9 is monotone of order 2, and if 9^) == 0, then 9 is supra-
additive in the sense that 9 (Ai (J A.^) ̂  9 (A,) + 9 (Ag) whenever
(A,nA,)==p.

14. 5. Alternating and monotone functions of order 2.
THEOREM. — If 8 i5 6o(/i additive and multiplicative^ then

every function 9(X) defined on 8, which is both alternating
and monotone of order 2, is increasing and satisfies

9(A, U A,) + 9(A. n A,) = 9(AQ + 9(A,).
Conversely^ if a function 9 defined on £ is increasing and satisfies
the above relation^ then, for every n^L 1,

V.(X;|A,0==9(Xna)—9(a)^0, where a = f| A,,

An(X;tA,Q==?(XUA)-9(A)^0, where A=(JA,

7^ function 9, which is thus seen to be alternating and mono-
tone of all orders^ is called additive.

Proof. If 9 is both alternating and monotone of order 2,
then we obtain simultaneously,

9 (A, U A,) + 9 (A, n A,) ̂  and ^ 9 (A,) + 9 (A,),

whence the equality of the two members. Let us assume now
that 9 is increasing and that the above mentioned equality
holds. Clearly, this equality implies

9(X)-9(XUA.)=9(XnA,)—9(A,).

and hence V< (X $ A,) == 9 (X Ft a) — 9 (a), where a = A,.
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We now assume that the relation Vp = y(Xria) —9(0) holds
for all orders p^n and we prove it for p == n + 1.

If a = Q A,, and a' = ^j A,, then
i^n i^n-n

V^(X;A,,..,A,,0
=r?(Xna)-y(a)]-[9((XUA^Ona)-9(a)1
=9(Xna)—9((Xna)Ua').

From the fundamental equality, the last expression is equal
to ^(XrW)—y(^)? which is indeed the desired quantity; it
is obviously non-positive.

The second relation for the A^ is deduced by duality from
that for the Vn.

15. Capacities. — Let E be a topological space, £ a class of
subsets of E, and 9 a mapping from 8 into the extended real
line [— oo, + oo].

15. 1. Continuity on the right. — We shall say that 9 is
continuous on the right at A (A e8), if for every neighborhood
W of y(A) there exists a neighborhood V of A in E, such that

y(X)«=W whenever Xe8 and AcXcV

Obviously this definition may be applied also to the case where
<p(A) == + oo or y(A) == — oo

If <p is continuous on the right at every A <= 6, we shall say
that <p is continuous on the right on 8.

15. 2. Capacity on a class 8 of sets. — A function 9 defined
on 8 is called a capacity on 8 if ^ is increasing and continuous
on the right on 8.

We shall now define the following functions of subsets A of E.
Interior capacity of PL = y^(A) == sup y(X) (for X e= 8 and

XcA). When there exists no element of 8 contained in A, we
set y^(A) == inf y(X) (for all X e 8).

In particular, y^((o) is thereby defined for every open set (o,
and we can now define for any A :

Exterior capacity of A == <p*(A) == inf y^((o) («) open and Ado)).
^Ve have always, y^^y* and <p^, <p* are increasing functions.

A set A is called capacitable if y^(A) == 9*(A). It is a trivial
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conclusion that every open set is capacitable. We shall
consider only capacities for which every element A of 8 is
capacitable. This will occur in particular when 8 is absorbing :
A class 6 of subsets of E is called absorbing if for every open
subset (o of E and for every pair (Ai, Aa) of elements of 8 such
that A,C:(O (i == 1, 2), there exists an element A3 of 8, satisfying
(A, (J Ag) cA.^ Cco. For instance, 8 is absorbing when it is
additive.

For simplicity, let us assume that <p(A) is finite. For
every £ > 0 there exists, by virtue of the continuity on the right
of y, an open set co such that A Cco, and 0 ̂  ̂ (A') — y(A) ̂  £ for
every A' satisfying AcA'Clo).

Moreover, since 6 is absorbing, to every B <= ^ and contained
in (o, there corresponds a C e 8 such that (A U B) CC Cco. Hence
y(B)^y(C)^y(A) + s? from which we deduce (pJ(o)^y(A) +£,
and therefore, <p*(A)^y (A). Clearly, since moreover <p*(A)==y (A),
the element A of 6 is capacitable. There is therefore no contra-
diction, when for arbitrary capacitable sets A we define

y(A)==^(A)=9*(A).

15. 3. Alternating capacities. — We shall introduce a scale
of classes of capacities.

A capacity y on 8 is called alternating of order t\^ i f K is additive,
(a restriction which is not essential for eli ̂ ,) and if y satisfies
one of the following conditions €ig^:

€i^a ^ I f \^-n\ ts am! increasing sequence of subsets of E,
then (jp*(A,,)—^y*(A), where A = = l j A ^ .

dl, f e : Given £ > 0, there exists an Y) > 0 such that the inequa-
lity

o(A,)—9(^() <^ Y! (^^A,, Oi and A^<=^ with i == 1, 2) implies
the inequality

9(A,UA,)—9(a,Ua,)<£.

cl^: The function <p 15 alternating of order n (n== 2, 3, . . .,).
dt^ : The function is alternating of order oc.

15. 4. Monotone capacities. — A capacity <p defined on S 15
called monotone of order Wa if 6 i5 multiplicative^ (a restric-
tion which is not essential for W^ <,), anrf i/* <p satisfies one of
the following conditions TTta:
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•M),,^ I f |A^ ts any decreasing sequence of subsets of E,
then y*(a^)-^<^(a), where a == Q A,,.

l^ , & ; Given £ > 0, </iere exists an Y) > 0 5uc/i t/ia( <Ae inequa-
lity

9(Af) —9(01) < Y) (a, C:A(, a^ anrf A» e 8, wi</i i == 1, 2)

implies
9(A,nA,)—^ria,)<£.

M>n: The function 9 i5 monotone of order n (n == 2, 3. . .,).
.ifc^ : 77?^ function y 15 monotone of order x>.

45. 5. Immediate consequences of the definitions.
ctn ^., =-^ a,, and .III),, ^ , —>. ll»,, for n ̂  2

dig ===^ cti ft and M)^ ===^ .A'bi ^ ft.
The above relations are an immediate consequence of the

properties of functions which are alternating or monotone of
order n^2 (studied at the beginning of this chapter). For
example, the relation M^ ==>,^i,/, derives from the inequality

9(nA,)-9(n^)^S9(A,)-9(^).
An important theorem which will be proved in the sequel,

states that in very general cases the following relations hold :

^i.fr^^'^i.a and * l i ^ ) ^ , f r== = ^»H ' l , r t .

15. 6. Conjugate capacity of a capacity. — If o is a capacity
defined on a class 6, which is assumed to be absorbing, then the
conjugate function ^ corresponding to ^ is not in general a
capacity because, firstly, K' is not in general absorbing, and
secondly, ^' is not in general continuous on the right.

However, if S is an absorbing class of closed subsets of E
then for every capacity 9 defined on < • another capacity ^
may be associated with it which is also defined on ^ » . This is

done by setting y (X) == •— (p [ \ j X) for every X e K. The defi-

nition is meaningful since t X is an open set and hence a set
for which y is defined.

The function y is obvious increasing. It is also continuous
on the right. This is due to the fact that by the definition
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of 9^, every open set L X contains closed sets belonging to £,

such that their capacity differs from that of L X by an arbitra-
rily small value. Hence y(X) is a capacity.

Let us further assume now 8 is the class of all closed subsets
of E (E is additive, and therefore absorbing). For every open
subset a) of E we have,

y(o)) === sup y(X) == —inf y(G).
xeg GD^Q
Xc (JD G open

Clearly, inf y(G) = y ( L (o) == —y((o),where 9'is the conjugate
function corresponding to y, y' being defined on the class 8' of
all open subsets of E. It follows that y(co) = y^co).

As a definition, the function <p will therefore be called the
conjugate capacity of y.

Moreover, for every X e S we have

^(X) ==—9 ( [ x) === — y'( [ x) = 9(X).
It can also be immediately verified that for every AC:E,

y,(A.) + f( C A.) == 0 and ^(A) + y( [ A) = 0.

Thus the operation I (complementation) establishes a
canonical correspondence between the y-capacitable and the
^-capacitable sets.

15. 7. If <p is of order Jll^ (<^i,a)? then y is of order a^
(Jifb^J. This is an immediate consequence of the last two
equalities.

If <p is of order. Iba (for a == (1, b) or a == n ̂  2), then y is of order
<9L^. For the proof of this correspondence it is sufficient to show
that the fundamental inequalities which define a class M)^ still
hold when the closed sets are replaced by open sets, a result
obtained without difficulty from the following lemma.

15. 8. LEMMA.—Let ^co,^ei be a finite family of open subsets
of E such that y (co,) is finite for each i. To each £ > 0 there corres-
ponds a family ^X^^i of closed sets, with X(C:o)f for every i,
and such that y / ( j (o^ — ? ( f | X*\ < £, for every J C: I.

v <ej 7 V iej
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In fact, for arbitrary J d, consider a closed set

Xjccoj = Fjco,
iCJ

such that <p(coj) — y(Xj) < e.

If we set X, == (J Xj, we obtain X, Cco/. On the other hand,
^ i6.T

I I X.O Xj and hence the sets X, satisfy the desired relation.
<6J

15. 9. If 9 is of order A>a(a == 1,& or a = n^2), then y
is not necessarily of order "WL^ except in the case when E is
a normal space.

In this case it can be shown (see next Chapter 17. 9. and
17.10.) that the inequalities defining a class Jba are still valid
if the closed sets are replaced by open sets. The inequalities
which define the class M)^ are then obtained by complemen-
tation. Thus we see that a perfect duality does not exist bet-
ween the alternating and monotone capacities. This is due to
the fact that the definitions of <p^ and <p* are not parallel; © can
be defined only after <p* has been defined.



CHAPTER IV

EXTENSION AND RESTRICTION OF A CAPACITY

16. Extension of a capacity. — Let 8, and 83 be two classes
of subsets of a topological space E such that S^ C:8g, and let jf,
be a capacity on 61. We shall always suppose @i to be such
that each element of 8, is /\-capacitable, which is the case, as
we have seen, when 8, is absorbing (for example, additive).

16. 1. DEFINITION. — The function f ^ on gg defined by
/g(X) == /*f(X) for each Xegg is called the extension of /*i to 8g.
/( is indeed an extension in the ordinary sense for if X e 8,,
w e h a ^ e f , ( X \ = f ^ ( X ) = f , ( X ) .

This function f ^ is a capacity. First, it is obviously increa-
sing. On the other hand, for each A c E such that, for example,
/\ is finite, and for each £ > 0, there exists an open set (D
containing A and such that / \ (co)—/^(A)<£; hence, if
A egg, we have the inequality /^(B)—/^(A) < £ for each
B e 83 such that A C:B C:co. This fact shows that fg ls conti-
nuous on the right.

Since SiC:^, we have jfJX) ^/^(X) for each set X. But
this inequality obviously becomes an equality for open sets.
It follows that /T(X) = f t { X ) for each X. In particular we
have, for Aeg^ /^(A) = f^(A.) = /^(A), and it follows that
A is /'2-capacitable, although we have made on Sg no restrictive
hypothesis such as « 83 is absorbing ».

It also follows from these relations that if an X cE is /\-capa-
citable, it is also /^-capacitable and we have /'i(X) ^/^(X).
In short:

16. 2. THEOREM. — The extension f ^ of a capacity /\ is a
capacity and f ^ f ^ n=r.
There are more f^capacitable sets than /\ -capacitable sets.
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An example of extension. — If we take for 83 the class of
all the subsets of E, each X C: E becomes /g-capacitable. This
example shows clearly that it is not of interest to make exten-
sions to classes which are too large. Of course, extensions
enrich the class of capacitable sets, but we lose preciseness in
the process since now f ^ '=.f^.

16. 3. THEOREM. — If X C: E is such that each element ofK^
contained in X is f ^-capacitable, or is contained in an f ^capa-
citable subset of X, we have /\^(X) == /^(X); thus, if this X is
f^-capacitable, it is also f ̂ capacitable.

In tact, if A C: B C: X with A e= ̂  and /^(B) = /T(B), we have
^(A)=/t:(A)^7lT(B)=^(B)^^(X). By comparing the
extremes it follows that f^{X)^f^(X.). Since we have
already the inequality f^^f^ we have, indeed, the equality
/^(X) = ̂ (X).

16. 4. Applications of theorem 16. 3.

16. 5. First application. — Suppose that each element of
83 is /\-capacitable. The preceding theorem is applicable then
to each XcE. Therefore we have the identities f ^ ^ f ^
and f ^ ^ f \ . In particular, the /\-capacitability is identical
to the /'2-capacitability.

EXAMPLE 1. — If §2 is the class of ^-capacitable subsets
of E, it is the largest extension of /\ which does not change the
capacitability. We shall say that it is the canonical extension
of /•..

EXAMPLE 2. — Suppose that there exists a closed set N C: E
which contains each element of §1 and thajfc, for each element
Aegg , the set AfIN is /\-capacitable. k

Then each element A e 83 is /\-capacitable.
In fact, we have /^(X) = /\JX Fl N) for each X C: E. Fur-

thermore, for each open set GD, we have /\((o) ==f\w \J f N};
this shows that f ^ ( X ) = f ^ X W ) for each Xc E.

Thus each X such that X ft N is /^-capacitable is also
/'1-capacitable.

We have, for example, one such circumstance in taking for
§1 the set of closed subsets of a closed N of E and for 83 the
set of all closed subsets of E.
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16. 6. Second application. — Suppose that each element of 83
contained in an element of 8< is an element of 8,.

EXAMPLE. — Let 81 and 83 be hereditary classes of closed
subsets of E. Then theorem 16. 3. is applicable to each X
which is a subset of an element of 8,, that is, f ^ = f ^ for
this X.

Special case. — If there exists a subset N C: E which
contains each element of 81, and if each element of §2 contained
in N is an element of 8^, the theorem is applicable to each
X C: N. We obtain an example of this situation by taking 8^
as the set of all compacts contained in a set N in a Hausdorff
space E and 83 as the set of all compacts in the same space E.

16. 7. Transitivity of the extensions. — If 8, c: 83 c: 83, if f ^ is
a capacity on 8, and f ^ f s its extensions to 83 and 83 respec-
tively, it is obvious that f s is identical to the extension of /"g to
83. Indeed, the exterior capacity of a set remains invariant
in each extension. This amounts to saying that the extension
is a transitive operation.

17. In variance of the classes d^ by extension.

17. 1. Classes Oi, a- — From the identity f ^ = f z it follows
immediately that, if f ^ is in the class a^, then each extension
/'2 of f i is in the same class.

17. 2. Classes ct^ of order a greater than (1, a). — In order
to study these classes, we will need a new definition.

17. 3. DEFINITION. — A class 8 of subsets of E is rich i f , for
each couple of open sets co,, 003 of E and each element A of 8 such
that A C: (o), U <*^)? there exist two elements A, and A.^ of 8 such
that A! C: (o,, Ag C: (Og, A C: A, U Aa.

17. 4. EXAMPLE. — If E is a normal space, each heredi-
tary set of closed subsets of E is rich. In fact, by duality,
it is sufficient to prove the following: if Fi and Fg are two
closed sets of E, and if G is an open set such that GZ) F, 0 Fg,
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then there exist two open sets G, and Gg which contain G and
such that

G,^)F,, G,:DF,, and G=G,nG,.

Now the sets (F,—G) and (F,—G) are closed and disjoint:
the normality of E implies that they are respectively con
tained in two disjoint open sets g, and gg. It is then sufficient
to take G , = = G U g i and G^=G\Jg^, these open sets have
the desired properties.

17. 5. EXAMPLE. — More generally, if g is a hereditary
class of closed sets of E such that each element of 8 is normal,
then g is rich. This example is a generalization of the pre-
ceding one. The preceding proof is applicable provided that
the passage to the complements is made with respect to the
closed set A of 8 which is to be covered by Ai and A.,.

17. 6. EXAMPLE. — If 8 is a class of compacts of E such that,
for each Keg, each compact k C: K and each neighborhood
V of k, there exists an element X of K such that k C: X C: V,
then 8 is rich.

In fact, when the open sets co,, co^ are given as well as the
compact K e g such that K C: (^ U (02)? we find immediately,
by usingthe information in Example 17. 5., two subcompacts A-,
and k^ of K such that k, C co,, ^ C (Og, and K == k, |J k^ By
virtue of the hypothesis, there exist K< e § and K^ <= £ such
that A", C: K, C: co, and ^ C: Kg C: (Og. These compacts form the
desired covering.

17. 7. LEMMA. — Let f be a capacity on a class 6 of subsets
of E, and let ^X^ei be a finite family of arbitrary subsets
of E with H\J X\ finite for each J C I.

\i6J /

For each e > 0, there exists a family ^ co, i of open sets of E
such that X, C: co,. for each i and

^U^—rfU^^^ ^ each Jc I.
\<6J / ViCJ /

In fact, for each J C: I, there is an open co, such that

((J AA C co, and f(^} -^YU ̂ ) < £-
ve.» / \^j /
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If we set o)(==0o)j, the family ^co^iei obviously has the
J9i

desired properties.

17. 8. LEMMA. — Let f be a capacity on an additive and rich
class § of subsets of a space E, and let ^(o^igi be a finite family
of open sets of E, with f ( [ ] <^\ finite for each J d. I. For each

\i€J /
&>0 there exists a family ^A^igi of elements of & such that
A, C (o, for each i e I, and such that for each J C I, we have

|a),-\-/-((jA;)<£.^U^-^U^)
\i6J \ieJ /i6J . \ i€J /

(Note that the restriction that the f{(^i) are finite is not essen-
tial; we would have an analogous statement if some of the
/'((Q,) were — oo or + oo).

For each J c I, let Aj be an element of 8 such that

Aj C M (o, and such that f i \\ (D, \ —/'(Aj) ̂  e.
»6J \ i6.T /

By using the fact that 6 is rich we can, for each J, cover
Aj by a family of elements ^ A», j ^ ̂ j of 8 such that A(, j C: co;
for all i e J. The proof follows immediately if J contains
only two indices; in the general case we apply the same process
repeatedly (exactly (J-—l) times). Then for each i e I let

A^U^-
J9«

It follows immediately that the family ^ A , ^ has the desired
properties.

17. 9. LEMMA. — Let f be a capacity on an additive and rich
class 8 of subsets of a space E. Let I be a finite set of indices
and $(} xj Q a continuous real function of real variables X j [ J (Z I).
I f for each family ^A^iei of elements of 8 we have <&(|a'jQ^:0
where ;cj ==/*/ (J A,^, we have the same inequality when we

\'6J /
replace the sets A, by arbitrary subsets of E and each Xs by
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In order to simplify the proof we shall assume again that the
capacities which occur are all finite. In order to include the
case where they are not, it would be necessary to give a pre-
cise definition of the continuity of ^ at infinity. This defini-
tion is easy to formulate in the particular case (case of ^ linear)
where we shall have to use it.

The inequality ^(\xs^ )^=0 is satisfied when we take ele-
ments of 8 for the A,, therefore also, by virtue of lemma 17. 7.
and the continuity of $, when the sets A, are open. Lemma
17. 9. then follows because of the continuity of ^, from Lemma
17. 7. which asserts the possibility of approximating in a
suitable way each of the A, of a given family by an open set co,.

17. 10. APPLICATION. — L e t E be a Hausdorff space
containing a countable sub-set which is everywhere dense,
and let f be a positive, sub-additive capacity defined on the
class § === *^(E) of all compact sub-sets of E such that /*(X) == 0
whenever X contains not more than one point.

Then there exists a sub-set A C E which is a G^ everywhere
dense in E (hence A is a residual of E when E is a complete
metric space) and such that ^.(A) == /**(A) == 0.

For, let D = \a^ Og, . . ., a,,, . . . \ be a countable sub-set
which is everywhere dense in E, and £ an arbitrary positive
number.

There exists, for each n, an open set co^ such that f{(^n) -< £/2",
and On e (o^. n ^

If we set Q,, = \ J co, and [}===[ J co,,, then, from the above
lemma 1 i

w-xS^'x2'i -
On the other hand, since the sequence tin ls increasing, and
since each element of 8 is compact, it can be easily shown that
f ( Q ) == lim /YQJ (see end of 28. 2., Chap IV).

It follows that /'(Q) ̂  £. Now, Q is an open set which is
everywhere dense in E. Hence, there exists a sequence of
open sets G/, which are everywhere dense in E, and whose
capacities tend to 0. Their intersection is the desired set A (1 2) .

(12) Mazurkiewicz [1] has proved a weaker result, concerning only the interior
capacity of A, whenever E is a compact sub-set of a Euclidean space, and f is the
Newtonian capacity.
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17. 11. THEOREM. — I f f i s a capacity of arbitrary order Qig, on
an additive and rich class 8 of subsets of a space E, each extension
o f f to an additive family is also of order cx^.

Proof. For the class a^,, we have already seen that this
statement is satisfied, even without assuming that 8 is additive
and rich.

For a ̂  (1, b) it is sufficient to remark thm each class cx^ is
defined by a system of inequalities of the form ^^O^3) where $
is a continuous function of capacities /YU^V These ine-

\i6J 7
qualities remain valid, according to Lemma 17. 9., for the
exterior capacities f*(\.)^i\ w^le^e the A( are (for example)

\f6J /
elements of the set 83 on which the extension /\> of f is defined.
Since f J M A,-\= /*Y(J AA by the definition of f ^ , the ine-

\i€J / \<6J I
qualities $ ̂  0 remain true for f . ^

17. 12. C O R O L L A R Y . — I f a capacity f on an additive and rich
class 6 is of order d^(n^2), each of the inequalities V <^ 0
(p ̂  n) can be extended to the exterior capacities of arbitrary
subsets of E.

This corollary is actually an immediate consequence of
Lemma 17. 9.

18. Invariance of the classes M)^ by extension.

18. 1. The class J^i,^. If a capacity /\ is of order Jtb^a on £,
we have f^(A;,)—^f^ ( [ j A^) for each sequence A,,. However,
since we know only that f ^ ^ f i ^ we cannot show that
/^(An) —^/^( f | A ^ ) . Therefore, the order .Mr^ <, is not conserved
by extension.

18.2. Classes .lla for a ̂ (1, &).
18. 3. LEMMA. — Let f be a capacity on an additive and mul-

tiplicative class 8 of subsets of E, and let ^X^-ei be a finite
(13) This statement is less obvious for the class OLi,b. However, notice that the

condition which defines <9Li,& may be formulated as follows: for OicAj and
a,c A^, we have /(A» u A,) — f [ a , U a.,) ̂  ̂ | (/(AJ — /(a,)), (/(As) — f(a^)] where
yju, P) -3"- 0 with u and P.
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family of subsets of E such that /'Yf^X^ is finite for each
\ i€J /

Jc: I. For each £ > 0, there exists a family $ A^ igi of elements
of 8 5uc/i that A.P. X, for each i, and such that, for each J C: L
we have ^nx,wnA-)^.

\i6J / \iej /

Indeed, for each J C: I let Aj be an element of 8 such that
AjCQx, and /•(Q XA—f(Aj)^£. Then let A , = = U A ,

iEJ \i€J / J9^
for each i e J. This family obviously satisfies the condition
stated.

18. 4. LEMMA. — Let f be a capacity on an additive and mul-
tiplicative class §. With the same contentions as in Lemma
17. 9., if we have <&(^j|)^0, with x^ = f^AX for each

V6J /

choice of the family ^A,^ of elements of 85 we have the same
inequality when we replace the A, by arbitrary subsets X, of E

and each xs by f j ^ ( | Xi \.
\i6J /

This lemma is an immediate consequence of the continuity
of $ and of Lemma 18. 3.

18. 5. DEFINITION. — A class 9 of subsets of a topological
space E is called G-separable if for each couple X, and X^ of
disjoint subsets of E each of which is either an element of 9 or the
intersection of one such element with a closed set of E, there exist
two disjoint open sets w^ and (Og of E such that X, C: a), and Xg C: co,.

The following are examples of G-separable sets ^:

18. 6. Any class 9 of compacts in a Hausdorff space E.

18. 7. Any class ^ of closed sets in a normal space E.
It is obvious that, if ^X^i is a finite family of mutually

disjoint sets each of which is either an element of 9 or the
intersection of such an element with a closed set of E, then
there exists a family \^i\^\ of open sets of E such that
Xf C: (o, for each i and co/rio)/ == ^ for i -=f=^ /.
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18. 8. LEMMA. — Let f be a capacity on a set d> of subsets of E,
and let ^X^gi be a finite family of subsets of E such that
each /"(Xj) is finite, where Xj = Q X, (Jd).

i€J
When all the Xj make up a G'separable set S, there exists for

each £ > 0 a family of open sets ^ (D, ^ ,ei of E such that X, C: co, for
each i and

^(coj) —/""(Xj) ̂  £ for each J C: I, where (Oj = 0 (Of.
iej

Proof. We can easily construct a family of open sets Qj
such that

XjcQj; /•(^)—r(Xj)^£
for each

J C: I; Qj^ C Qj^ whenever Jg C; J,.

This family plays a transitory role in the construction.
First let (Oi = Qi. Then we suppose the coj defined for all J

of cardinal number J > p, and in such a way that for each
such J we have

(1) XjCcoj, (ojC:Qj; (oj=Q^.
J'DJ

For each J such that J == p, we then define

Y,=Xjn(n CcoA
\J'DJ /

These Yj thus defined are mutually disjoint; they are therefore
separable by some open sets Gj which one can in addition
restrict by the condition Gj C: Qj. We then define coj as follows :

<oj=Gju/u^'y
It is obvious that the family of coj thus increased (J^p)
possess the three properties stated in (1) above. We continue
the construction until we obtain the coj with J == 1: they are
the desired co,.

18. 9. COROLLARY OF LEMMAS 18. 4. AND 18. 8. — Let f be a
capacity on an additive and multiplicative class 6. With the
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same conventions as in Lemma 18. 4, we have the inequality
^O^O^O? where Xj ==/'*( Xj) and Xj = Q X,, for each family

i€J
^X^er 5uc/i (/ia^ the set of Xj î  G-separahle.

This corollary is an immediate consequence of lemmas 18. 4.
and 18. 8. and of the continuity of <I> (we use Lemma 18. 4.
in the particular case where the X, are open sets).

18. 10. THEOREM. — I f f i s a capacity of order jHfca(a^= 1, b)
on an additive and multiplicative set 61, the extension of f to a
multiplicative set 62 is also of order Jlifca when the set 82 is G-sepa-
rable ( f o r example, if each element of 82 ls compact and E is a
Hausdorff space, or if each element of §2 ts closed and E is
normal).

This theorem is an immediate consequence of corollary 18. 9.

19. Extension of a class 6, by a limit procedure.

We are now going to study the extension of a capacity f in a
case where the set 62 is deduced from 6^ by a process inde-
pendent of the given capacity /*.

19. 1. THEOREM. — Let 61 be a multiplicative class of
compacts of a space E, and let £2 be the set of arbitrary intersections
of elements of 61. I f f ^ is the extension to 62 of an arbitrary
capacity /*, on 6,, then for each As cs 62,

/ ,(A,)=inf^(X) (A,CX;Xe6,) .

I f f i 1s of order ttba(a^l, b), then f^ is of the same order.
If^i is additive as well as multiplicative, 62 has the same pro'

perty: if then f^ is of order a<x? /2 ̂  of the same order.
Proof. We use the fact that, for each A e 63 and for each

open set co containing X, there exists an element B e 6, such
that AcB Cco. This statement is an immediate consequence
of the fact that A is the intersection of a filtering decreasing
family of compacts which are elements of 6,.

It follows that for any finite family ^A.A^ of elements of 63,
and for any two families of open sets (coj{ and iQji such that

Q A, Cco, \J A, cQj for each J C: I,
i€J »e.r
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there exists a family ^B^,ei of elements of 6, such that, for any
indices i and JA^cB, n^c^ u^cai.

t€J i6J

These relations show that we shall be able to approximate
each finite family of elements of 83 from above by elements
of 8, in such a way that this approximation is preserved by the
operations of intersection and union. The formula

A ( A , ) = = = i n f f , ( X ) (A,C:X; Xeg,)

follows from the fact that f ^ is continuous on the right, that
/*i (X) == /^(X), and that we can approximate A^ from above by
some X.

Henceforth, for each inequality

$(^J) ̂  0, where x, = f(^\ A,\,

which is valid for /\, it is sufficient to carry out a passage to
the limit in order to obtain the same inequality for f ^ . This
remark establishes the second assertion of the theorem.

When £, is additive, the additivity of 83 follows immedia-
tely, and the process which we have just used for / /OAA

/i i \ ^€J ^is also valid for /^(JA^. This fact proves the last part of
the theorem. v i€I I

20. Restriction of a capacity. — Let 81 and £3 be two classes
of subsets of a space E with 8, C: 6, and let /^ be a capacity
on 82.

The restriction of f ^ to §1 is the function /\ defined on £1 by
the relation /'i(A) == /^(A) for each A eg,.

It follows immediately that /*, is a capacity. We suppose,
as everywhere else, that the given data are such that for /\
(and f ^ ) every element of ^ (respectively 83) is capacitable, for
example, because @i and £3 are additive or absorbing.

The following relations hold for each X C: E :

^(X)^^(X) /T(X)^(X).
If /a is of order cx,^(^i.a), we cannot therefore conclude that
f ^ is of the same order. But, if ^ and §3 are additive (multi-
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plicative), and if /a is of order Qiy, (with a ̂  (1, b) (or respec-
tively of order Jl^a)? it follows immediately that /*i is of the
same order.

This operation is interesting in a special case.

20. 1. Special case. — Let N be a subset of E such that, for
each open set co C: E, the set (NDo)) is f ^capacitable (for example,
if N be open).

I f we take for §1 the set of elements of Sg included in N, we have
for each X C:N the equalities

/•.»(X)-A,(X) /T(X)=^(X).
In particular, each subset X of N i'̂  simultaneously f ^ and

f^-capacitable or non-capacitable.
The first of these relations follows immediately. In order to

show the second, we shall suppose, for example, that /T(X)
is finite. For each £ > 0 there exists an open set co such
that Xc:co and /\(co) —/T(X) < £. Now we have the follo-
wing sequence of inequalities:

^(X)^/?(X)^^(Nnco)=^(Nnco)=^(Nn(o)^^(<o)==/-,(a)).
It follows that /^(X)—/**(X)^£ for each e > 0, and the
desired result follows.

20. 2. Application of the preceding operations. — We shall
use these operations especially in the study of the capacita-
bility of sets. In fact, it is often convenient in this study
to suppose that the space E and set S possess a certain regu-
larity. The operation of restriction will permit us to
replace E by a subspace N; then the extension operation will
permit enrichment of the new class §1 thus obtained, a step
which often proves useful.

20. 3. EXAMPLE. — Let E be a Hausdorff space, and let &
be an additive and hereditary class of compacts of E. Let f h e
a capacity on @.

Let X be a subset of E such that every compact contained
in X is /'-capacitable $ and suppose that there exists a completely
regular set N such that X C: N C: E, and such that each
subset of N which is open relative to N is y-capacitable (if X
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possesses a completely regular neighborhood, we shall take
for N the interior of this neighborhood; if the element A of § is
metrizable, we shall take for N the set A if the capacity f is
such that each K^ of E is capacitable).

We wish to show how we can replace the study of interior and
exterior capacities of X by the same study in a simpler case.

Let 8, be the additive and hereditary set of elements of 8
contained in N. If /*i is the restriction of f to 8^ we have

/^(XQ = /.(X7) and /"(XQ = HXQ for every X' C: N.

Observe, on the other hand, that we can consider /\ as a capacity
on the set 8^ of subsets of the space N; we obtain for each X' C: N
the same values for the interior and exterior /"i-capacities when
we consider 8^ as a class of subsets of E or of an arbitrary
space in which N is imbedded. This remark will allow us to
imbed N in a new normal space as follows:
Since N is completely regular, it can be imbedded in a compact
space F. Designate by 83 the set of its compacts and by /'g the
extension of /*i to 83.

According to theorems 16. 2. and 16. 3; as every compact
included in X is /'-capacitable, and then also /\-capacitable,
we have,

/^(X)=/^(X) />:(X)=f,(X).
It follows that the interior and exterior capacities of X are the
same for f and for f ^ .

Now f^ has the advantage of being a capacity defined on the
set of subcompacts of a compact space.

Let us show in addition that if f is of any order ex, or of order
<*tt^ with a ̂  (1, 6), the capacity f^ is of the same order.

It is obvious that f ^ is of the same order as f . Then Theo-
rem 17. 11. shows that if /\ is of order (^l,, f ^ is also. And
Theorem 18. 10. shows that if f ^ is of order M\ with a^ (1, 6),
then /*, is of the same order.



CHAPTER V

OPERATIONS ON CAPACITIES AND EXAMPLES OF CAPACITIES

In this chapter we shall study first some operations which
transform capacities of a given class into capacities of the same
class, and then several examples of capacities, some of which
are important and will be used in the following chapters.

21. Operations on the range of capacities.

21. 1. If<t>(|n^) is a continuous, increasing function of the
real variables x-^ (i e I), and if (fi)^i denotes a finite family of
capacities defined on a class 6 of subsets of a space E, then
the function f { X ) , defined by /'(X) == $(S/ ' , (X)J) is a capa-
city on 8, and we have

^=W.J) and r-WO.
If each of the f i is of order a, 0(^1, a) then the same holds for /'.

If $ is a linear form with non-negative coefficients, and if
each f i is of arbitrary order dl<,(jl!bj, then the same is true for /*.

21. 2. If ( f n ) is a sequence of capacities defined on the same £,
and if the f ^ converge uniformly on 6 to a function /*, then this
function is a capacity. The f ^ converge uniformly to f ^ and
the f ^ converge uniformly to /**. If each f n is of order cx,,(Jljl),),
then f is of the same order.

21. 3. If ( f n ) is a decreasing sequence of capacities defined
on the same 8, then the limit f of this sequence is a capacity.

We have f^^limf^ but not necessarily: ^^lim/^.
If each f ^ is of class a^G^a)? with a^(l, fc), then the same

holds for the limit /*.
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We shall not give the very easy proofs of these statements.
21. 4. If <I>(u) is an increasing concave function of the real

variable u, and i f f is a capacity oforder a.̂  on an additive class 6,
then the function g == $(/*) is also a capacity of order 0X3.

Proof. The assumptions on 0 imply its continuity ; hence g
is a capacity. Let us show that Va(X; A, B)^^0. We know
that Vs(X; A, B)y^0 and that the Vi and \/2 with respect
to the function ^ are non-positive since ^ is increasing and
concave. If we set

V,(X; A, B)^-—AAB, V.(XUA; B)^=-XB,
V,(XUB; A)g=—X^ —/pC)--^

then the AA) ^B) ^AB? are non-negative and we have

fW - Ao,
/•(XUA)==AO+^+X^
/•(XUB)-^^^,
/(XUAUB) == Ao + AA + AB + XAB.

If we add the two relations

Wo; A.,, Xa + ̂ AB^O and V<(Xo + ̂ ; X^)4>^0
term by term, we obtain

^(\)—^{\+ \^+ XAB)-^(^O+ AB+ XAB) + (l>(Xo+ XA+ ̂ R+ XAB) ̂ 0,

which may be written also as follows :

V.(X; A, B),^0.

21. 5. Generalization. — An analogous result is obtained if (&
is replaced by a function of several real variables whose V,
and \72 are non-positive.

More generally, one could show that by composing two alter-
nating functions of order n {in the sense of Chapter in), tJze
resulting function is alternating of the same order. The proof
of this last result is not simple; we shall not give it here.

21. 6. If <D(u) is an increasing^ convex function of the real
variable u, and if f is a capacity of order M>.^ on a multiplicative
class fo, then the function g == $(/*) is also a capacity of order .l̂ .
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This statement is equivalent to the preceding one, for observe
that, if we set $'(u) ===—<!>(—u) and f ===—f, then the
function $' is increasing and concave, and f is alternating of
order 2 on the multiplicative semi-group 8.

An extention analogous to that of 21.4, can be obtained in this
case also.

21. 7. If f a capacity of order dl^(n^3) on an additive class

6, then Vi(X, Ai) is a capacity of order dl^_, oti 8 for every
A, eg.

The continuity on the right o fV i (X ; Ai) is obvious. On
the other hand, every difference of order {n—1) of this diffe-
rence Vi is a difference Vn of f ' , it is therefore non-positive.

An analogous statement concerning the capacities of order
.l^(n^3) on a multiplicative class £ is obtained if Vi is

replaced by Ar

22. Change of variable in a capacity.

22. 1. Let E and F be two topological spaces and ^ and 9
two classes of subsets of E and F respectively. A mapping
Y = y (X) from 8 into 9 will be called increasing and continuous
on the right i f .

a) (A, C: A.,) ===•=»- (y(A,i) C: <p(A.,)). for any elements A, and A..
°f^ .

b) /or every neighborhood V.i of y(AJ, there exists a neigh-
borhood U, of AI 5uc/i t/iat the relation y(X) C: V, holds for every
X e 6 5uc/i that A^CUi.

If f is a capacity on 9, then the function e(X.) = /*(Y), where
Y == <p(X) wi(/i X e 6, is obviously a capacity on @. We shall
say that e is derived from fhy the change of variable Y == 9(X).

22. 2. EXAMPLE. — Let y == ^(a;) be a continuous mapping
from E into F. For any class <'• of subsets of E, we shall still
denote the extension of y to ^ by y, and let 9 be the image of
S by y. This mapping o from ? onto 3s is increasing and
continuous on the right.
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If f is a capacity on 9, then for every B C: F we have

e^-\B))==UB) and ^(y-(B))^r(B);

and the last relation is an equality if the mapping 9 from E
into F is an open mapping, that is, it it maps open sets on open
sets.

More generally, the following relations hold for every A C: E :

.,(A) ̂ /,(y(A)) and .*(A) ̂ /^(A)).

An important special case is the following:
For E we take the product space of two Hausdorff spaces F

and G; and let y be the canonical projection from E on F. Let
us suppose that every element of 8 is compact, that 9 == 9(8),
and that the condition <p(K) e ̂ implies K e g for every compact
subset K of E. Using the notation employed in the preceding,
we assert that the relation e((o) == /*(y((o)) holds for every open
subset co of E.

Indeed, for every compact subset Bc:<p((o), there exists a
compact subset A C: co such that B ==== y(A); this statement is
easily deduced from the tact that B is compact. If we take,
for the sets B, elements of 9 whose /'-capacity approaches that
of y(<o), we obtain e((o) ^/'(^((o)); but we know already that
e(co) ^/^(co)), hence the equality.

It follows that e*(X) === f * { f { X ) ) for every subset XcE.
Since we know already that ^(X) ^j^((p(X)), the ^-capacita-
bility of X, that is, the condition ^(X) == e*(X), implies
r(9(X))^(y(X)), whence f^X)) == ^(X)).

22. 3. THEOREM. — The e-capacitability of X implies the
f-capacitability of its projection <p(X), andwehave e(X) ===/*(^(X)).

23. Study of U"homomorphisms continuous on the right.

We shall now suppose that ^ is additive. We shall say that the
mapping 9 from £ into ^ is a [)-homomorphism continuous on
the right if it is continuous on the right in the previously defined
sense, and if <p(AiUAa) ===o(Ai)U9(Ao) whenever A i and A^ e= S.
Such a mapping is clearly increasing.
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23. 1. General examples of U-homomorphisms continuous on
the right.

(a) Let E =. F and let ^ be an additive class of subsets
of E.

(i) For every A C: E, let 9^ be the class of those subsets of E
which are of the form (XU^A), where X e 8. Then the mapping
X -^ (XJA) from S onto ̂  is a U-homomorphism continuous
on the right.

(ii) For every closed subset A of E, let ̂  be the class of those
subsets of E which are of the form (XDA), where X e K .
Then the mapping X -^ (XfIA) from 8 onto ̂  has the desired
property.

(?) Let E = F. If g is the class of all subsets of E, and if 9
is the class of all closed subsets of E, then the mapping <p
from 6 onto 9 which is defined by y(A) •== A has the desired
property.

(y) Let x = ̂  (y) be a continuous mapping from a compact
space F into a Hausdorff space E. Then for every class 8 of
subsets of E, the mapping <p == ^-1 from 8 into the class of
all subsets of F has the desired property.

Indeed, for any A eg let B==y(A)==^"' i(A). Let V be an
open neighborhood of B. For every point xe A there exists
an open neighborhood u^ of x such that ^"'(u^dV. If
U ==== (J u^ then U is an open neighborhood of A such that

a;6A

^"'(L^CIV, which proves the continuity on the right of <p.
(S) More generally, let E be an arbitrary topological space,

F a compact space, and A a closed subset of (E X F). For every
X CE, let Y == y(X) be the set of those points y of F tor which
(re, y) e A for at least one x e X. Then the mapping A-^<p(A) is
again a U-homomorphism which is continuous on the right.

To these results there corresponds a reciprocal proposition
which shows, in an important special case, how every U-homo-
morphism which is continuous on the right can be obtained.

Let £ be an additive, hereditary class of compact subsets of a
topological space E, and let Y == <p(X) be a [j-homomorphism,
continuous on the right^ from & onto a class 9 of compact subsets
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of a Hausdorff space F. Then there exists in (E X F) a closed
subset A which satisfies the following relation:

For every X e g, 9(X) is the set of all points y of F such that
{x, y) e A for at least one x e X.

An equivalent statement is the following: if pr^m) and
prp[m) denote the projections of a point m of A on E and
F, respectively, then <p(X) == pr^^pri^X)).

We leave the verification of this proposition to the reader.
(s) Let y = f { x ) be a continuous mapping from E into F;

then the extention of 9 to an additive class 8 of subsets of E has
the desired property. We have already used this example and
stated an important special case of it in 22. 2.

23. 2. Preservation of the class a,(a^(l, b)) by the U-homo-
morphisms continuous on the right. — Let E and F be two
topogical spaces, 8 and 9 two additive classes of subsets of E
and F, respectively, and let y be a U-homomorphism, conti-
nuous on the right, from § into 9.

I f f is a capacity of order (Sla(a^(l, 6)) on 9, then the capa-
city <?(X) == /*(<p(X)) on 8 is also of order a^. This result is an
immediate consequence of the fact that the definitions of the
classes cx^ involve the operation U (mly-

24. Study of n-homomorphisms continuous on the right.

Let us suppose that £ is multiplicative. We shall say that
the mapping <p from 8 into 9 is a H-homomorphism
continuous on the right if it is continuous on the right, and if
<p(Ai FlAg) == y(Ai) Ft 9(Aa) whenever A, and Ag are elements of 8.
Such a mapping is obviously increasing.

24. 1 General examples of n-homomorphisms continuous on
the right.

(a) Under the conditions specified in example 23. 1. (a), the
mappings X-^-XUA and X — ^ X D A are n-homomorphisms,
continuous on the right, whenever 8 is multiplicative.

(p) Let E=F. If 8 is the class of all subsets of E, and if 9
is the class of all open subsets of E, then the mapping <p from 6
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onto 9 defined by y(A) = A (interior of A) has the desired
property.

(y) The mapping <p = ^~1 denned in example 23. 1. (y), has
the desired property. Thus, this mapping is both a U-and a
n-homomorphism, continuous on the right, whenever 8 is
both additive and multiplicative.

(S) Let y == ( f { x ) be a continuous, one-to-one mapping from
E into F, or more generally, let 9 be continuous and such that
<p(Ai n A^) =--= y(Ai) n9(Aa) whenever A, and A^ are elements of 6.
Then the extension of <p to 6 has the desired property.

(e) Suppose that E is a Hausdorff space and that every
element of ^ is compact.

(i) If F is the topological space of all compact subsets of
E, and if, for every A e 8, we define y by <p(A) ==3t(A), where 3t(A)
is the class of all compact subsets of A, then the mapping <p has
the desired property. For, on the one hand,

9(A,nA,)=9(AOri9(A,)
and, on the other, the continuity on the right follows from the
definition of the classical topology of F.

(ii) Let I be any set of indices, and F the topological space E1.
If, for every A e 8, we set B = <p(A) == A1, then the mapping y
has the desired property.

24. 2. PROBLEM. It would be interesting to find a simple
method for the construction of every D-homomorphism,
continuous on the right, from the class 8 of all compact
subsets of a compact space E into the class 9 of all compact
subsets of another compact space F.

24. 3. Preservation of the classes Jll)a(a^(l, b)) by the
n-homomorphisms continuous on the right. — Since there is a
perfect analogy with the proposition concerning the preservation
of the classes dy, by the U-homomorphisms (see 23. 2.), the
results will not be stated in detail.

24. 4. Study of other changes of variables. — There are
other changes of variable, such as for instance those which
transform a capacity of order da into a capacity of order M)^
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or conversely. They are of particular interest when the classes 6
and 9 to which they apply are classes of compact sets.

In this connection, it would be interesting to find a simple
method for constructing every mapping <p of the following types:
E and F are two compact spaces, 6 and 9 the classes of all
compact subsets of E and F, respectively, and y is a mapping
from 8 into 9 which satisfies either

9(A<UA,)==y(AOny(A,)
or

9(A,nA,)=9(A,)Uy(A,).
The first of these two functions may be called an exponential
and the second a logarithm. Both are decreasing; it is,
therefore, no longer possible to speak of their continuity on the
right. In each particular case one should impose the type of
continuity which is the most suitable.

EXAMPLE OF AN EXPONENTIAL. — For a given E let T be an
auxiliary compact space, F a compact topological space of
continuous mappings from E into T, and A a compact subset
of T. For every compact subset X of E, we denote by Y == y (X)
the class of all continuous mappings from E into T which
belong to F and which map X into A. Then Y is compact,
and obviously satisfies the relation y(X, U Xa) == y(Xi) ft ^(Xa).

25. Construction of alternating capacities of order 2.

Although the most interesting capacities to study are those
of order <St^ or «jlb^, the fact that the capacities of order dig
and tjtkj lead to a complete theory of capacitability induces us
to investigate the operations which lead to such capacities.
We shall study here an operation which leads to functions
which are alternating of order 2.

25. 1. Study of the Greenian capacity by means of the Dirichlet
integral. — Let D be a Greenian domain of R". Let '£ be the
set of absolutely continuous functions which are : non-negative
on D, zero on the boundary of D, and possess a finite
Dirichlet integral

/(?)== /(grad f Y d x .
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It can be shown that if <p, and 92 e ®, <p, ̂ ^ and <pi ̂ 9, are also
in 3), and that

/*(?!-?.) +/*(9l-?.) ==7(?i) +AT2).

Then let K be a compact subset of D. If we set
cap(K) ^inf/^y) for all y^l on K,

it can be shown that, within a constant factor, this capacity is
precisely the Greenian capacity of K that we have studied in
Chapter II. Let us show that cap(K) is an alternating capacity
of order 0^ (which we know already, but this new proof can be
extended to new cases).

The fact that it is increasing and continuous on the right is
immediate. Then let K, and K^ be two compacts of D and let
e > 0. Let <pi, (pa, be two elements of 3) such that:

/>(op,)—cap(K,)^£ and y^)^! on K, (i == 1, 2).
We have therefore

A? i"?2)+/'(?!-92)^ cap K,+cap K, + 2e.
Now

and
(y^y^l on (K.UK,)

(9,-y,)^l on (K,f1K,).
It follows that

f ( K , U K,) + f ( K , n K,) ̂ /-(KO + /TO.
Since this inequality is sufficient to obtain the most precise
results of the theory of capacitability, it is interesting to try to
apply the above reasoning to a more general case.

N. Aronszajn [1] in his study of functional completion
and of exceptional sets associates a set function to eachnor-
med space S, of real functions on a given set E, in the follo-
wing way : Let ||<p|| be the norm on ^. For each X cE we set

F(X) ==inf||<p|| for all 9 which are ^1 on X.
If there exists no <p which is ̂  1, on X, we set F(X) ==4-00 .

In the case where 1 is the linear space generated by the set
® introduced above, the Greenian capacity of a compact set X
is in fact the square of the expression F(X) corresponding to
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the norm ||<F|| == \//(9); but this difference is not trouble some
for the theory of capacity.

The following contains a theorem which leads to some gene-
ral cases where the above function F(X) is alternating of order 2.

25. 2. Alternating functions associated with a subvaluation on
a lattice. — - Let L he a lattice^ L/ a sublattice of L such that each
a e L is majorated by an a e L/, and f a real function on U such
that

f ( a ^ b ) + f { a ^ b ) ^ f ( a ) + f ( b ) .

We say that f is a sub-valuation on L7.
When L' === L is a distributive lattice and when f is an

increasing valuation on L, we shall see (26. 4.) that f is alter-
nating of order oo on L, relative to the operation ̂ .

If f is not an increasing valuation, this is no longer true in
general. However, we shall see how we can still associate to
each valuation and likewise to each sub-valuation on L/ an
alternating function of order 2 on L, even if L and I/ are not
distributive.

For each x e L, we set
cap (x) = inf f ( a ) for all a such that x ^ a and a e L/.

THEOREM. — The function cap {x} is an alternating function
of order 2 on L, relative to the operation ̂ .

Proof. That cap {x) is increasing is immediate; and the
inequality

cap (a^6) + cap (a^fc)^cap (a) + cap (fe)

is proved exactly as in the case where f is the Dirichlet integral.
of <p.

EXAMPLES. — Usually, the sub-valuation jfwill be a valuation
Here are some examples.

If D is a domain of R", we take L == SS^ and take for I/
the set of real positive functions (p which are : continuous on D,
zero outside of a compact set, and Lipschitzian. If we set

(14) SS^- denotes the cone of all positive and upper semi-continuous functions
on D which vanish outside of some compact.
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?i "̂  ?2 when 9i(^)^y8(^) fw every ;r, L is a lattice and L/ is
a sublattice.

Let $(rc, 9)-^) be a continuous function of re, y, and of the
\ ^/ /.

partial derivatives of the first order of y, such that f $ (re, 0,0)dy.
(where a is the Lebesgue measure or any other fixed abso-
lutely continuous measure on D) has a sense. We set

/*(<?) == i ^(x, 9, -^}d^ for each y e L'.
JD \ ^/

It is immediate that if (pi ^ 93, we have

Ayi - ¥2) + f{^ - ?s) = /'(Ti) + Ay.)-
The fact that this relation holds when <pi and (pg are arbitrary

is due to the following facts :
(a) the set of points of D where (p^=^=(pg is a denumerable

union of partial domains in each of which we have either
y, ^ <pa or (pa ̂  9,;

(&) the set of points of D where y, == (pg is the union of two
borelian sets A and B such that on A the functions (pi and (pa
have equal differentials, and B has Lebesgue measure zero.

It is often useful to notice that for each £ > 0, and for each
neighborhood V of the support of any (p e L\ there exists a
function <p' indefinitely differentiable, zero outside of V,with

jy—y'Ks and \fW—W)\<^
These conclusions would no longer hold it in the function ^
some partial derivatives of y of order ̂  2 occurred.

Special cases.
(a) $ == ^ leads to the norm of the spaces L^.
(&) $ == (grad <p)2 leads to the Dirichlet integral.
(c) ^ == (1 + grad2 (p)172 leads to the « area » of the graph of y.
When <1> is homogeneous of degree a with respect to <p and

-*. the function [cap^)]^ is homogeneous of degree 1 and, if
oyi
a > 1, the fact that v •===- u'^ is then an increasing and concave
function implies that [cap^)]^ is alternating of order 2
whenever /*(<?) is ^0 and alternating of order 2 (see 21. 4.).
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25. 3. Equilibrium. — The definition given above of the
function cap (x} is more general, even in the setting of the
classical Greenian capacity, than the ordinary definition,
since it defines not only the capacity of the characteristic
functions of compacts, but also the capacity of any element
y e SS,

We could associate to every element y e SS^ a sub-harmonic
function analogous to an equilibrium potential. We shall
show, in the general scheme introduced above, how we can
define such an equilibrium in very general cases.

Let us use the notations introduced in the above theorem.
For each Oo e L, let L(ao) be the set of elements a of L such
that Oo ^ a and cap (a) == cap (ao). L(ao) is a sub-lattice of L;
in fact, if. Oi, a^ e L(ao), we have

Oo ^0,^02 ^a,, 0.3

so that since cap (x) is increasing, we have

cap {a, ̂  a.,} == cap (ao),
and hence

ai—a2eL(ao).

On the other hand,

cap (a, ̂  a^) + cap (a, ̂  a^) ̂  cap (a,} + cap (a^ ;

hence
cap(a,^a.2)^cap(ao)$

and since cap (x) is increasing, it follows that

a^a^e L(ao).

The lattice L(ao) possesses a smallest element, which is Oo;
it can have only one largest element; when the latter exists,
we shall denote it 5^$ it is the equilibrium element associated
with Oo.

A case where a^ always exists whenever Oo is such that
L(ao) is bounded above is when

(a) L=L';
(&) each subset of L bounded above possesses an upper bound;
(c) f ( x ) is lower semi-continuous on the left, which means
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that for each subset (a,) of L, filtering on the right, and having
an upper bound a^, we have

f ( a ^ ) ̂  lim inf/^a;).

This semi-continuity occurs, for example, when /'(©) is the

integral on D of a function ^(x, 9, -^} which is^O and has,
A . ^x/ ~in a certain sense, a convex indicatrix when considered as a

function of —• (Example : $ == grad2 9 or $===(!+ grad2 y)^2.)

It can happen that for some Oo es L, L(ao) is not bounded
above, but that by introducing a convenient notion of excep-
tional set, L(ao) possesses a quasi-upper bound. This happens
for example in the classical potential theory.

26. Examples of alternating capacities of order €i .

In all of the following examples, the capacities under
consideration are always tacitly assumed to be defined on the
class § = 3t(E) of all compact subsets of the space E in question
unless otherwise indicated. We shall give here only examples
of capacities of order dl^. Let us notice here that many
capacities which occur naturally in analysis are obtained from
Radon measures by a small number of operations such as ft,

U, L , max, min, and that in general, the capacities obtained
in this way either fail to be of any order Oa or Jl1a or they
are of order <^or Jifb^.

26. 1. Alternating family of elements of a commutative ordered
group. — Let G be a commutative ordered group, and I
a finite set. Every function, alternating of order oc, which
is defined on the class 8 = 21 of all subsets of I and whose
values are in G is called an alternating family (o?j)jci of ele-
ments of G. Thus, if xj = f ( J ) , all the V/. are supposed to
be non-positive. Let us set, conforming to a notation already
used before,

V[(I—J); ^pej]=—Xj (J<=I, with J^^(Xj^O).
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By an already familiar computation we deduce from these
relations the following:

^J==^0+ ^ ^K.
KOJ^O

If XQ is not defined, an arbitrary value such that Xi is non-
negative is assigned to Xg; this assignment is always possible.
Conversely, it is easily verified that every family X j which is
defined by equalities of this form with numbers XK^-O is
indeed an alternating family.

EXAMPLE. — If I contains two elements 1, 2, then every
alternating family on I is of the following form :

^i = ^o + A, -}- X,, 3 $ X^ ==== X^ + \ + A-i, 3
*̂ 1, 2 == ^0 T" AI I ^2 "I ^1, 2*

26. 2. Operation <c sup » in a commutative lattice group (18). —
Let G be a commutative lattice group and I any set. Also, let
i —^ Xi be a mapping y from I into G.

Set jf(X) = sup {Xi) for every finite X C: I. The function fICA.
is thus defined on the additive class 8 of finite subsets of I.

We wish to prove that the V^ are non-positive and more
precisely, that

V(X; ^)/=inf[/(X), |/"(A^]-inf[^(A^].

It is equivalent to prove that for arbitrary elements x, dp of G
(p = 1, 2, . . . ) , we have

V(^; ̂  )sup == inf (.r, a)—a where a=inf\a^.

We recall the following identity : inf (u, ^) + sup (u, ^) == u + (\
It follows that Vi (rp; a^) = a;— sup (^, a,) = inf (a?, a^) — a,.
The general formula follows from this one by induction: the
proof is entirely analogous to that of 14. 5. for functions which
are both alternating and monotone of order 2. Thus, we can
state that the operation « sup » in a commutative lattice group
is an alternating function of order infinity.

(18) A commutative lattice group G is an ordered group such that any two ele-
ments Xi and Xg of G always have a least upper bound, sup(Xi, Xg), and a greatest
lower bound, inf(Xi, Xg), sometimes denoted by X, ^X^ and X, ^X^, respectively.
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For the operation inf there is a formula which is the dual of
the preceding one; hence, the \/^ will be non-negative. Thus,
if for every X C: I we set

co(X) == [sup (x,) —inf (a?,)],
iex iex

the oscillation co(X) is an alternating function of order infinity.
If G is in addition a complete lattice (10), these results may be

extended to additive classes S of subsets X of I such that every
-^(X) is bounded from above (and also bounded from below if
(o(X) is being considered).

APPLICATION. — Let ^(x) be a real-valued continuous func-
tion on a topological space E. For every X C: E we shall
denote by /*(X) and co(X) the least upper bound and the oscilla-
tion of y on X. These two functions are alternating capaci-
ties of order €L^ on each additive class @ of subsets of E (on
which they are assumed to be finite, for simplification). When
<p(x) is only upper semicontinuous on E, /'(X) only is a capacity
of order €L^ .

EXAMPLE. — If o(X) denotes the diameter of a compact
subset X of the real line, then since S(X) is the oscillation of
the function x on X, this diameter is a capacity of order Qi^ of X.
(It should be remarked that if one wants to assign a value to S(^),
this value should be—oo) .

On the other hand, the diameter of a compact set X in an
arbitrary metric space E is not of order €i^. This diameter is
equal to the maximum of a function which is defined on E2

and not on E. We therefore have only S(X) ==/'(X2) where f
is a capacity of order €i^ on ^(E2).

26. 3. Generalization: valuation on a distributive lattice. —
Let L he a distributive lattice and f a mapping from L into a
commutative ordered group G. We shall say that f is a valuation, if

/•(a- b) + f(a^ 6)= /"(a) +/•(&)•

26. 4. THEOREM. — I f f i 8 an increasing valuation (that is, if
(a ^ h):=~->f{a)^f{b)), and if we set g(X) ==f{supX.) for every

(16) A lattice G is said to be complete if and only if every subset of G which is
bounded from above possesses a least upper bound (and likewise for the greatest
lower bound).
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finite subset X of A, then the function g(X), which is defined on
the additive class 8 of all finite subsets of L, is alternating of
order oo, and

V(X; ^A,0,==inf(g(X), ^(A,)0-mftg(A,)j.

An analogous statement holds in the case where L is a complete
distributive lattice and where 8 is the class of all bounded
subsets of L.

COROLLARY. — With the same notations^ the function f{x) is
alternating of order oo on the ordered semi-group L with the ope-
ration sup.

26. 5. Examples of such valuations.
(i) The dimension of a variety in protective geometry or

in Von Neumann's continuous dimensional pro jective geometry.
(ii) For L we take the set of all positive integers, ordered

by the relation a ̂  b if b is a multiple of a and we set:
f { x ) = Log (x)

g(X) = Log [l.c.m.(X) ] for every X C: L, with X finite.

26. 6. Non-negative Radon measures. — If E is a locally
compact space, a function f defined on X(E) defines a non-
negative Radon measure if and only if

(i) f is finite for every Ke3t(E).
(u) f W = ° -
(iii) f is increasing and continuous on the right.
(iv) f(K, U K,) + /•(K, n K,) = /•(KQ + AK,).

These conditions are equivalent to stating that f is a capacity
on 3?(E) of orders a and M} which is finite and such that
W = o.

More generally, if E is any Hausdorff space, any function f
which is defined on an additive and hereditary class S of
compact subsets of E, and which satisfies the conditions (i),
(ii), (iii), (iv), will be called a generalized non-negative Radon
measure on §. Here again, these conditions are equivalent to
the statement that f is a capacity on 8 of orders a^ and JKfc
which is finite and such that f { f t ) = 0.

We further remark that, since the class £ is rich (see
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Chapter iv, 17. 3.) the extension of f to the class ^(E) of all
compact subsets of E is still of order o^ by virtue of Theorem
17. 10. of Chapter iv. Since, on the other hand, »*K(E) is
G-separable (see definition 18. 5.), this extension is also of
order M)^ by Theorem 18. 11. of Chapter iv. Thus, this
extension to 3z(E) is a capacity of order €L_^ and Jib^ such that
fW = 0. But it may happen that for this extension
/(K) == + °o tor certain compact sets K.

Let us show that i f f is any function which is defined on an
additive, hereditary class 8 of compact subsets of E, and which
satisfies conditions (i), (ii), and (iii), the condition (iv) is equi-
valent to the following condition:
(iv') /'(KI U Ks) ^/*(Ki) + A^s)? and this inequality becomes
an equality whenever K, ft Kg = 0 (K, and K^ are elements
of&).

Indeed, since f ^ O and f { f t ) = 0, (iv) implies (iv'). Conver-
sely, let us suppose that (iv7) is satisfied. We wish to show
that, if KI and Kg are elements of §, then

/•(K. U K,) + f(K, n K,) = /"(K,) + /W.
If Ki D Ka == f t , the desired relation obviously holds. If
KI n Kg -=f=- f t , let £ be an arbitrary non-negative number, and
let V be a compact neighborhood of (K, n K^) in (K, U K,)
such that

f{V)—f(K^K,)^
Set(K,:— V) ==/c, (i = 1, 2). The compact sets k, and (K^OK,)
are disjoint and

( (K,nK, )U/c , )CK, :c (VU^) ( ^ = = 1 , 2 ) .
Hence, by virtue of property (iv'),

/•(/c,) + AK. n K,) ̂  AK,) ̂  /•(/c,) + AV),
and
/(/c,) + /•(/c,) + /-(K, n K,) ̂  /•(K, U K,) .< ̂ ) + A^) + A'V).
Therefore,

AK,) 4-AK,) = f{k^ + /^) + 2f(K^ n K,) + r,
where 0 < Y] < 2&j

and /•(K, U K,) = /•(/c,) + f{k,) + f{K, H K,) + ̂
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where 0 ̂  r/ ̂  £.

Thus f(K, U K,) + f(K, n K,) = /•(KQ + f(K,) + Y^,

where O^^^s.

Generalization. — There exist functions of compact sets
which are closely analogous to the generalized Radon measures
but which are not continuous on the right. For instance,
the linear measure of Caratheodory, defined on the class of all
compact subsets of the Euclidean plane, is such a function.
In this connection, it is of interest to introduce the following
definition.

We shall call any function /*, defined on an additive hereditary
class @ of compact subsets of a Hausdorff space E a Caratheodory
measure if for every element K of S> its restriction to the class
of all compact subsets of K is a non-negative Radon measure
on K.

26. 7. Newtonian or Greenian capacity. — If E is a domain in
the Euclidean space R/1, or more generally, if E is a conformal or
locally Euclidean space which possesses a Green's function (see
Brelot and Choquet [1]), then the capacity of a compact
subset K C: E with respect to this Green's function is of order
0^. We have studied these capacities in detail in Chapter II.

26. 8. Fundamental scheme of the capacities of order a^. —
Let E and F be two sets (without topologies), A a subset of
(E X F), and (JL a non-negative additive function defined on
a ring (11) 9 of subsets of F. For every subset X of E, let
<p(X) be the projection on F of the set of those points of A
whose projection on E lies in X. In other words

y(X)=prp [An(Xx F)J.

The mapping X—^(p(X) is a U-homomorphism.
Let S> be an additive class of subsets of E such that <p (fi) C «f.

(17) A set which is closed under finite union and under difference, hence also
under finite intersection.
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The function ^ is alternating of order oo on 9 (see Chapter III,
14. 5.). Hence if we set

/•(X)=^(9(X)) for every Xeg,

the function f is alternating of order oo on 8.
For instance, if E is a Hausdorff space, F a locally compact

space, A a closed subset of (E X F), a a non-negative Radon
measure on F, and 8 the class 3T(E) of all compact subsets of E,
then it is easy to show that ® (X) is closed for every X e @, hence
measurable with respect to the measure p., and the preceding
definition is applicable. If one can show in addition that /'(X) is
continuous on the right, one can then state that /*(X) is a capa-
city of order dl^. This case will be realized, for instance, if the
set A is compact, or more generally, if ®(X) is compact for
every compact XcE.

We shall say that /*is the function (or the capacity) obtained
by the fundamental scheme (E, F, A, pi).

It is clear that in this scheme the additive function [-/. could be
replaced by any alternating function of order oo, but this
generalization is not of great interest; on the other hand, we
shall see that the importance of this scheme lies in the fact
that it provides a canonical representation of every capacity
of order oo on E, provided only that this capacity satisfies
some conditions of regularity.

26. 9. Game of « Heads or tails )>. — Let E be a finite set of
throws in a game of « heads or tails ». For every K C: E, let
f { K ) be the probability of the event that tails occurs at least
once on K. The function f { K ) may be obtained by the following
scheme : let F == V be the class of all subsets of E (including ̂ ),
and let Ac:(ExF) be the set of all points (rr, X) such that
x e X.

If a is the measure on F defined by the condition that the
measure of each of the 2" points of F be i/2", then f is the
function obtained by the scheme (E, F, A, pi). Thus f is
alternating of order cx^.

We remark that /YK) depends only on the number of
elements of K$ if that number is TZ, then /'(K) = o^(n).

Now if X, Ai, . . ., Ap are subsets of E which are mutually
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disjoint, with cardinal numbers n, a , , . . . , Op, respectively,
then we have obviously

V(x; ^0,==v("; W\,
and this equality shows that <p is a function of n which is alter-
nating of order infinity. This can be verified by using the
following explicit expression of 9: <p(n) == (1—2"").

26. 10. Geometrical probability. — Let E be a plane, D a
line in the plane, and a a non-negative Radon measure on D;
for every compact subset K of E, let /*(K) be the pi-measure
of the orthogonal projection of K on D. Then /*(K) is obvi-
ously a capacity of order €L^ on 3^(E). (As an analogous
example, we can consider the « angle » /'(K) under which a
compact set K, assumed to be contained in (E — 0), is seen
from a fixed point 0 of the plane.)

From this remark we might deduce that the measure (here
assumed to be the classical invariant measure) of the set of all
lines of the plane which meet a compact set K is a capacity of
order (fl^. But it is more convenient and more interesting to
prove this by means of the fundamental scheme as follows.

Let F be the topological space (which is locally compact)
of all lines D of the plane; let (JL be the invariant classical
measure on F, and A the closed subset of (E X F) which consists
of the pairs (x, D) for which x e D.

The function f ( x ) which is obtained by means of the scheme
(E, F, A, pi) is obviously the measure of the lines D which meet
the compact set D. (If K is convex, then /*(K) is, moreover,
equal to twice the length of the boundary curve of K.)

Now let us consider only those compact sets K which are
/YTO

contained in a fixed circle [\ If we set p(K) == —p~? then the

function p(K) represents the probability of the event that a line
which meets F also meets K. As in the preceding example we
have here exhibited a probability which is a capacity of order <fl^.
We shall return to this investigation in the last chapter.

26. 11. Let pi be a non-negative Radon measure defined on a
compact metric space E, and let A(u, m), (i^^tO, me E), be a
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continuous function of the point (u, m), which is decreasing in
u for every m.

For every compact subset X of E, set

f ( X ) = j h(um, m)d^

where Um denotes the distance from m to X.
We shall show that f is a capacity of order 0^ on 3t(E).

Indeed, f is obtained by means of the fundamental scheme
[E, 3?(E), AE, ^], where 3t(E) denotes the compact topological
space of all closed subsets of E, AE is the closed subset of all
points {x, X) of (E X 3t(E)) such that x e X, and (^ is a non-
negative Radon measure on that subset B of 3t(E) which
consists of all closed solid spheres B(m, u) of E, with ̂  defined
by the elementary measure dh.d^(m).

For every X e 3t(E) the class of the compact sets which meet
X has (XA-measure zero with the exception of those which are
closed spheres; and the spheres B(m, u) which meet X are
those for which u^u^. Hence the result.

26. 12. Harmonic measure. — Let E be a Greenian domain,
and for every m e E and every compact subset X of E, let
/i(X, m) be the harmonic measure of X with respect to the
point m for the domain (E—X). (When me X, we shall set
h == 1, by definition.) We have already used the fact that this
function is quasi-everywhere equal to the equilibrium potential
of X for the Green's function of E. (See 11. 2.) Moreover, we
have shown (see 7. 5.) that the equilibrium potential of X
considered as a function of X, has all its differences (V)^
non-positive. Thus /i(X, m) is an alternating function of X,
of order oo, for every m. It is continuous on the right. This
fact is obvious if m« X, and, if m e X , then A(X, m)==l ;
hence, we have also h(X.\ m) == i for X' ID X. Thus h is
indeed a capacity of order 0^.

More general capacities of order d^ may be derived from
this one by setting /'(X) = ^ A(X, m)c^(m), where pi is a non-
negative Radon measure on E of finite total mass.

We have given this example immediately after example
26. 11. because of their great similarity.
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26. 13. Construction of Cantor-Minkowski and regularization
of a capacity. — Let E be a metric space such that every
closed sphere in it is compact. For every compact subset K
of E, and for every number p^O, let K^ be the set of all
points of E whose distance from K is at most p.

The mapping K—^K(O) is a U-homomorphism, continuous
on the right, from 3t(E) into 3t(E). Hence, it g is a capacity of
order 0^ on 3t(E), then the same is true for f ^ where /p is
defined by /p(K) == g(K^). Moreover, /p decreases to g as a
limit, as p-^0.

For example, in E == R", /*? may denote the Euclidean
measure of K(?).

This construction may be used to show that every capacity g
of order a^ on 3t(E) is the limit of a decreasing sequence of
capacities of order <9L^ on 3t(E), each of which is a continuous
function of its variable X.

For simplification, let us suppose that g ̂  0. Let v == <p(u)
be a real-valued function of the real variable u, defined and
continuous on [0, I], decreasing, vanishing at x= 1, and such

y'»l

that j f d u = i . For every X>0, we set

gW^f^UK)^(\u)du.
We may also write

gW=f^f^(K)^t)dt,

which shows that gx(K) is a decreasing function of X. The
function gx(K) is on the other hand, clearly an alternating
function of order oo of K since this is the case for fu(K) for every
u. And since for 0 ̂  (^ 1, /^(K) tends uniformly to g (K) as
^-^oo, it follows that gx(K)—g(K) .

It remains to show that g\(K) is, for every X, a continuous
function of K considered as an element of the classical topo-
logical space of the compact subsets of E. If we use the
classical metric S for this space, the distances of any point of
E to KI and Ka differ by at most e whenever S(Ki, Ka) ̂  e,
which implies that Ki(p) CK^p+e) and K^C: K^(p +~e).

Thus ^(KO^/^^K,) and/p(K,)^,,(KO, so that
g^)^f^(K,)\<f{\u)du

= gx(K,) +/,00 [A.s(K,)-^(K,)]Xy(Xu)rfu.
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But
/." [/^(K,) —^(K,)]^(Xu) ̂

==,C /'«(K.) X [y (X (u - £)) — 9 (Xu)] rfu — /'; /•„ (K,) Xy (u) <^
so that

gx(K,) — ̂ (K,) ̂  ̂ (K,)X[y(X(u — e) — y(Xu)j rfu.
Let M=f(K) for

K=[K,(^..)]U[K,(}+..)]
where £y > 0.
For every £ < ̂  we have

^(KO—gx(K,)^y7MX[?(x(^—£))--9(^)^rfu-M/;£A9^)^
and an analogous inequality by interchanging K^ °and K,.
Thus

\S^)—g\(K,)\^j^^dt for every e < ̂
which shows that g\{K) is continuous.

Note that any alternate capacity on X(E) is upper semi-
continuous on the topological space 3t(E). We have just
shown that it is a decreasing limit of continuous capacities of
the same order.

26. 14. Elementary capacities of order cx^. — Let E be a
Hausdorff space and /*a capacity on ^i(E) which is sub-additive
and whose range contains at most the values 0 and 1.

Every element A e 3v(E) such that f(A.) === 0 has an open
neighborhood co such that, for every compact X Cco we have
fW == 0. Let Q be the union of the open sets co.

Every compact B c Q is covered by a finite family (co,) of
these open sets (D ; therefore that compact B is the union of a
finite number of subcompacts each of which is contained
in one of the (D, (see, for instance, 17. 4. in Chapter iv).

Therefore f { B ) = 0. In other words, for every Xe3t(E),
the necessary and sufficient condition that f { X ) == 0 is that
XcQ. Let T== CQ.wehave f^ ^ K:
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Consersely, if T is any non-empty closed subset of E, the func-
tion /r(X) defined by the preceding relations is obviously a
subadditive capacity on 3t(E).

We shall prove in Chapter vn as a special case of a general
theorem that every /r(X) is a capacity of order a^ and that
these capacities are the extrenial elements of the convex cone
of positive capacities of order 0^ on 3t(E).

The function /r(X) will be called the elementary capacity
(with index T) of order 0^ on X(E).

27. Examples of capacities which are monotone of order Jlll^.
— We shall give here fewer examples than for capacities
of order 0^, at first because monotone capacities do not occur
as often as alternating capacities and also because they seem
to be less useful.

27. i. Every non-negative additive set function is monotone
of order oc. Thus each non-negative Radon measure on a
locally compact space E is a capacity of order Jll^ on 3^(E).

27. 2. The fundamental scheme of alternating capacities
is replaced here by a scheme that we shall indicate in a special
case.

Let E be a locally compact space, F the topological space
of its compact subsets, and pi a non-negative Radon measure
on F. If, for every K cE, we set /(K) == (x(^(K)) where JT (K)
denotes the subset of F consisting of all the subcompacts of K,
then /*(K) is a capacity of order ill^.

The interest of this scheme lies in the fact that it leads to a
canonical representation of all positive capacities of order .M)
on 3?(E), as we shall see in Chapter vii.

27. 3. Let u. be a non-negative Radon measure on a locally
compact space E^, and let A(P, Q) be a non-negative continuous
real-valued function of the couple (P, Q), or more generally
a Baire function (with, if necessary, the restriction that
P^Q).

The function f ( K ) == (^A(P, Q) dpi (P) da (Q) is a capacity of
order Jtt^ on ^t(E), for the mapping K > K2 is a n-homomor-
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phism continuous on the right, and h(P, Q)^ix(P)^P l(Q) defines
a Radon measure on E2 (with possible value + oo).

Let us remark that f ( K ) can be interpreted as the energy of
the restriction of jm. to K for the kernel A(P, Q).

There are analogous statements for a function h of n variables
defined on E\

27. 4. On E == R\ if we define /*(K) to be the Euclidean
measure of the set of centers of circles of radius 1 contained
in the compact K, f is of order Mo^.

27. 5. On E==R", we set /•(K) = A(p(K)), where p(K)
denotes the radius of the largest sphere with center 0 contained
in K, and h(u) a function of the real variable u^O which is
non-decreasing and continuous on the right.

The function f can be obtained by the scheme of 27. 2. above
where pi is the Radon measure defined by dh{u) on the set of
spheres with center 0. Then f is a capacity of order JKb^.

27. 6. Let E be a finite set of throws in a game of heads or
tails. For every KcE, let /'(K) be the probability that tails
occur nowhere except possibly on K.

This probability is within a constant the conjugate function
of the probability that tails occurs at least once on K.

It is then of order .̂ . I f K = = = n and E == a, then/^K) == 2n/2a$
and it can be verified that f { K ) is a totally monotone function
of n in the classical sense.

27. 7. Elementary capacities of orders <M)^. — Let E be a
Hausdorff space and f a capacity on 3C(E) which is of order .Ikg
and whose range contains at most the values 0 and 1. If
/•(XJ = f ( X , ) = 1, we have also/'(X, n X,) = 1 and unless /^l,
we have Xi Ft X^ =7^ 0. Therefore the set of elements X e 3t(E) for
which ^(X) = 1 does not contain p and is multiplicative.

Let T be the non-empty intersection of those compacts; as T
is also the limit of that decreasing filtering set of compacts and
since f is continuous on the right, we have f ( T ) == 1.

In other words, in order that /'(X) == 1, it is necessary and
sufficient that TdX.
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Conversely, for every compact TCE, let

^ / Y \ ^ \ I it TcX.
^W-fO if TCFX,

It is obvious that /r(X) satisfies the identity :
fT(x,nx,)=/T(x,)./r(x,).

It follows from this (and it will be a particular case of a theo-
rem of Chapter vn) that ^r(X) is of order M)^, and that these
capacities are the extreme elements of the convex cone of
positive capacities of order M)^ on Vi (E).

The function ^r(X) will be called the elementary capacity
{with index T) of order M)^ on Vi (E).



CHAPTER VI

CAPACITABILITY. FUNDAMENTAL THEOREMS.

28. Operations on capacitable sets for capacities of order Oa. —
In this chapter we shall study the invariance of capacitability
under the operations of denumerable union and intersection,
as well as capacitability of analytic sets. We shall see that we
can obtain subtantial results for capacities which satisfy suffi-
ciently strict inequalities, for example, those which define the
classes (^2 or Jlk,. In order to avoid some complications of
terminology we shall suppose always that 0 is an element of
every class £ of sets.

28. 1. THEOREM. — Let K be an additive and rich set of
subsets of a topological space E, and let f be a capacity of order cx^
(a>(l,fc))on8.

(i) Each finite union of f-capacitable sets of capacity •==/^-— oc
is also t-capacitable.

(ii) If f is such that for each increasing sequence ^co,^ of open sets
of E we have /'((A),,) —^ /*( (J^n) (for example, if each element of ^
is compact), then

(a) f is of order a,,,, ; in other words, /^(AJ -^ /^( (JAn) for
each increasing sequence of sets A^cE such that f*(A^) =7^ — oo ;
and

(b) each denumerable union of capacitable sets of capacity
^ — ,30 is also {'capacitable.

Proof. Notice that if f is of order dt» (n ̂  2), f is also of
order (^2. On the other hand, the inequality which defines the
class d^^ is highly analogous to the inequality

/•(A.nA,)-/-(a,Ua,)^[/(A,)-/-(a.)] + y(A,)-/-(a,)],
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which is satisfied for the class dig. Thus, in order to simplify
the notations, we shall give the proof only for the class a^.

We recall first that, when /'is of order ̂  and is additive and
rich, by virtue of the inequality in 14. 3. and by Lemma 17. 9.,
we have

28.2. rdJ^) -rtU^^nA,)---/^)),
where a^cA/dE for each i.

Proof of (i). It is obviously sufficient to prove the theorem
for the union of two sets A, and Ag. Moreover, if one of these
sets, say A,, has a capacity /'(Ai) === +00, the set A^ u Ag has
an interior capacity equal to +00; therefore, it is capacitable.
We shall suppose therefore that /*(Ai) and /"(Ag) are finite.

For each £ > 0, there exists a set X; e 8 and an open set
(O,C:E such that X,C:AfC:(o, and /'((D,)—/'(X,) <e(for i== 1, 2).

We have therefore, by applying the above inequality 28. 2.,
f { ^ U ̂ -AX, U X,)^[/(<oO-/(XOl + [ f { ^ ) - f ( X , ) ] <2e.
Since (X, U X^) C:(A, U A.,) C:((D, U (02) and (X, U X,) e g, and
since (c0i |J ^2) ls open, the set (A^ (J Ag) is capacitable.

Proof of (ii). The proof of (a) will be given first. Let ^A, , j
be an increasing sequence of subsets of E such that /^(A,,) -=f=- — oc
for every n.

If for n=rio we have /**(AJ === + oo, it is obvious that

HAj^rdJ^)-
Otherwise for each £ > 0 and for each n there exists an open

set (On such that A^C:(O« and f(^n)—f*(AJ < £/2\
We have, therefore, by applying the inequality 28. 2. above,

n

and by remarking that i j Ai == An,

A^)-r(An)^y+---+-|,^£ where (}„ = (Jti),.

Now if we set 0 == ( J £}„ == M co,,, we know by hypothesis
that f ( Q , ) ^ f ( Q ) . Therefore, f ( Q ) ̂ lim/'*(A») + e, and, since
MA,,CO, we have a fortiori

limr(AJ^r((J A,) ̂ limHA,) + £.

Since £ is arbitrary, we have lim/**(AJ ===/** (^J A,,).
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The proof of (6) will be given next. Let ^ A ^ j be an arbi-
trary sequence of capacitable sets such that f(A.n)^—oo.

n

Let B^ = (J A,. We have (J Bn == (J A^ and moreover each B^
i

is capacitable according to the first part of the theorem. Since
the sequence B^ is increasing we have

limr(B^) = lim/^B,) -fdjBn).
On the other hand we have

lim^(B^)^f,((jB»)

Hence, rtU^^U8^ the capacitability of ((JB,) fol-
lows from this inequality.

We shall now show that if each element of 6 is compact,
the condition lim f ( w ^ ) =f^\^w^ is satisfied.

We have at once that lim f ( ^ ) ̂ f(Q), where Q=(JG),.
On the other hand, if f ( Q ) < + oo, for each e <0 there exists
a compact Kg e 8 such that ^(co) —/^Kg) < £. Now Kg C: (J (o»;
therefore, since Kg is compact and since the sequence (On is
increasing, there exists an n == rig such that Kg Co),. It
follows that /(co) —/*((») J < e. Therefore, f ( w ) ̂ lim/*(^); hence
the equality.

In the case where f ( Q ) =4-00, the proof is similar to that
given.

We remark that this result about open sets is valid for any
capacity on a class § of compacts.

28. 3. COROLLARY. — Let 8 be an additive and hereditary
set of compacts of E.

I f f is a capacity of order <9L<x(a^ (1, &)) on 8 with /'> —oo,
each denumerable union of capacitable sets is capacitable, and
for each increasing sequence of sets A^dE, we haw

limr(A,)=r((jA,).

Iff is of order a..^, then for arbitrary finite or infinite sequences
of subsets (A,) and (a,) of E, with a, cA, for each n, we have

^U^-rtLk^So^)-/' (a,)).
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29. A capacitable class of sets. — We shall introduce first
a convenient terminology.

29.1. DEFINITION. — Let 8 be a class of subsets of a set E. We
shall letSy denote the class of sets A c E where A. is a denumerable,
union of elements of 8.

We shall let 8g§ denote the class of sets A C:E where A. is a denu-
merable intersection of elements of 8<y.

We want to show, that under certain hypotheses each
element of 8<j§ is capacitable. We cannot use for the proof the
fact that each denumerable intersection of capacitable sets is
capacitable, for this fact is already false for finite intersections
as we shall show later. We will therefore have to use in a
precise way the fact that 8^ is constructed from elements of 8.
the set 8 satisfying in addition certain restrictions.

29. 2. THEOREM. — I f 8, additive and denumerably multi-
plicative, is such that, for each decreasing sequence ^ A ^ j of elements
of 8 and every neighborhood V of A == Q Ay,, we have A.n C:V for n
sufficiently large, and if f is of order Ct^? e^^ element of 8<y§ is
f-capacitable.

Proof. Let A e 8^. Then A == Q A^, where A» e &y; in other
p == oo

words, A^ === [_j AS where Ag e 8.
p=i

We can always suppose, since 8 is additive, that A^
increases with p.

Set /^(A) = 1. If I = — oo, we have /*(A) = — oo also
and A is capacitable. Otherwise it is finite or equal to + ̂
We shall give the proof in the case in which I is finite $ the case
in which I == + °o could be treated in an entirely analogous
manner.

(Besides, the case in which 1= + oo can always be reduced
to the case where I is finite by replacing f by g = — e~f. The
function (— e"'°) is continuous and strictly increasing; hence if f
is a capacity of order a,^ , g is also. Furthermore, /'-capa-
citability is equivalent to g-capacitability.)

Let & be any positive number. The set a\ = A Ft A^ is
/ = 00

increasing with p, and we have A = 1 1 ag. Therefore, since
p==i

f i s of order a ,̂ we have /**(A) == lim/^a?).
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Therefore there exists an index p, say pi, such that

r(A)-f(a?')<-|-.

Suppose that the sets of1 have been defined for each i^n
in such a way that for each i, /**(ap) is finite and that a^clA.

Set a^i ^a^riA^r This set is increasing with p, and we
p==oo

have a^-^t_jag^i, from which it follows that

f(ag»)=limf(a^).
P-^oo

There exists therefore an index p, say pn^i , such that

r(a£")-r(oi^.)<^.
If we add the first n inequalities thus obtained, we get

29. 3. ^(A)-f(agn)<£.

The a^ constitute a decreasing sequence of sets, all contained
in A. Set a, === Q ag". We can also write Og = A D [H^"]-
Now Afr cA,, so that Q Ag»C:A; hence, a^ === Q A£".

If we set B,,= Q Ag",theB,, constitute a decreasing sequence
i ^^^

of elements of 8 and a, == || B^. Now Og is again an element
of @; therefore, according to the continuity on the right of
f and the given hypothesis on the mode of convergence of
decreasing sequences of elements of 6, we have

/•(O-lim/^).
n->oo

Since a, CZa^dB^ we have also f(a,) === lim/'*(a{;"). The above
inequality 29. 3. becomes f\A.)—/'(a^^e. Since Ogeg, we
have therefore n^^/^A) + £ for each £. Hence f(A) ==^(A).

29. 4. COROLLARY. — If S is an additive and hereditary set
of compacts of E, and if f is of arbitrary order da on 8, with
/*>—oo, each element of <4§ is f-capacitable.

In fact, according to the Corollary 28. 3. of Theorem 28. 1., f
is then of order a^ and on the other hand, since each element
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of 8 is compact, each decreasing sequence of elements of £
satisfies the exact conditions of Theorem 29. 2. Therefore,
this theorem can be applied.

Notice that in this case each element of g^g is a Kgg. But
it is not true that each K^s of E is always /"-capacitable. We can
indeed construct examples where there are some compacts
of E which are not y-capacitable, even if f is of order a^.

The following is rather instructive as an example. Let E
be the Euclidean plane R2, 8 the set of compacts K of the plane
such that K is contained in a finite union of straight lines
parallel to a given fixed line A. For each K e g we set

f { K ) == linear measure of the projection of K on A.
It is immediate that f is continuous on the right on S and

alternating of order d^ ; on the other hand, 8 is additive and
hereditary.

Now for each compact KcE we have /**(K) == linear
measure of the projection of K on A $ and if K is such that
each intersection of K with a line parallel to A has a zero linear
measure, we have ^(K) == 0.

For example each arc of a circle is non-capacitable for /*.
Here the elements of 8g§ are the denumerable unions of sets
each of which is located on a line parallel to A and is any K<y5
on such a line.

30. Capacitability of K-borelian and K-analytic sets. — We
shall extend Corollary 29. 4. to the K-borelian and K-analytic
sets.

30. 1. THEOREM. — If&> is an additive and hereditary class of
compacts of a Hausdorff space E, and if f is of arbitrary order
€i^ on £ and f > — 30, any K-analytic set A of E is f-capa-
citable in each of the following two cases,

(i) A C:B where B <= &y {example : A is an element of the borelian
field generated by 8).

(ii) Ado) where co is a completely regular open set, and in
addition 3i.(A) C:6^, that is, each compact K C:A is an element
of S,^.

Proof. In each of the two cases considered, A is such that
each compact K contained in A is an element of 8<j? anc! hence
is /'-capacitable.
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Therefore, according to Theorem 16. 3. it is sufficient, in
order to show the /'-capacitability of A, to prove that A is capa-
citable for the extention f ^ of f t o the set 3t(E) of all compacts
ofE.

Now 8 being additive and rich and 3t(E) being additive
(E is Hausdorff), this extension f ^ is, according to Theorem
17. 10. of class a^.

Thus Theorem 30. 1. will be established if it is proved in the
simpler case where 8 == 3t (E).

We shall now simplify case (ii). It is sufficient to remark
that, since A is contained in a completely regular open set, we
can apply the method explained in Example 20.3. to reduce the
problem immediately to the case where the space E is compact.

In short, the two cases (i) and (ii) are both reduced to the
following simpler case : A is contained in a Kg of E and @ == 3t (E).

Now according to Theorem 5.1. there exists a compact space
F and a set FcE X F such that F is a K<j§, and such that its
projection on E is identical with A.

Let us designate then by g the capacity defined on 3t(E X F)
by the equality g(X) == /^praX), where (prpX) means the
projection of the compact X on E.

According to 22.2 and 23. 2. in Chapter v, the capacity g is of
order dy,; since in addition g > — oo, according to Corollary
29. 4., r is g-capacitable. Therefore according to Theorem
22. 3. in Chapter v, its projection A on E is y-capacitable.

30. 2. COROLLARY. — J/*E is a space which is homeomorphic
to a borelian or analytic subset {in the classical sense) of a sepa-
rable complete metric space, and if f is a capacity >— oo, defined
on the set 3t(E) of the compacts of E and of arbitrary order (SL^
each borelian or analytic {in 'the classical sense) subset A of
E is f-capacitable.

In fact, Theorem 30.1. is applicable to A since A is contained
in the open set E which is completely regular, and since A
is K-analytic (according to the classical theory A is the continu-
ous image of the set of irrational numbers of [0, I], which is a
K,s).

31. Capacitability for the capacities which are only subaddi-
tive. — We shall now construct an example of a capacity
f > 0, sub-additive, defined on the set of all compacts of the plane
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E == R2, and for which there exists a dosed subset A in E (hence
A is at the same time a Ky and a G§) which is not capacitable.

For each compact KcR2, denote by AK^/) and ^(y) the
respective diameters of the sets K D Dy and K ft dy, where
Dy and dy designate respectively the half-lines {x^O, y) and
(^0,y).

Let <p(u) be a continuous and increasing real function,
defined for u ̂  0, and such that 9(0) = 1 and 9(+oo)=2.
(For example, <p(u) == 2—e~ 0 ) .

Set N^-y^K^.OK^)) and f(K)==f ^(y)^,
JP(K)

the integral being taken on the projection P(K) of K on the
y-axis. This integral has a sense, for ^(y) is upper semi-
continuous. Since 1^^K^2, f { K ) is clearly sub-additive;
it is on the other hand increasing and continuous on the right $
and we can add that f ( K ) = 0 for each compact K whose
projection on Oy is of linear measure zero.

Now let A be the closed set (*r^0; O^y^l).

We have /.(A) = 1 and f(A) = 2.

In fact, '^K(y)EEEl for each KcA, from which follows
/^(A) = 1 and on the other hand we have /(co) = 2 for each
open set (o containing A, for there exist compacts K Co) such
that 4'&(2/) > 2 — & for each arbitrarily given £ > 0.

32. Capacitability of sets which are not K-borelian. — In this
section we shall give two examples.

32. 1. EXAMPLE. — The following is an example of a capa-
city f^O, alternating of order a^, defined on the set 3i(E} of all
sub-compacts of a compact space E, for which there exists a
non-capacitable set AcE which is at the same time a Kf tG
and a Gg.

Let X be the compact space obtained by adding the point of
Alexandroff co to a discrete space of cardinal number 2^o. Let Y
be the segment [0, 1] and let E == X X Y. For each compact
KcE, let

/(K) == the linear measure of the projection of K on Y.
Then f is indeed a capacity of order QL .

Now by hypothesis there exists a 1-1 correspondence given
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by y = < f ( x ) from (X—co) onto Y. Designate by A the graph
of <p (that is, the set of points (x^ 9(0;)) where rce(X—co)).
This set is of the^form K D G; on the other hand, for each £ > 0, the
set Ag of points {x, y) such that]?/—?(^)!<£ and xe (X—co)
is open and so A == Q Ag is also a G§.

Now each sub-compact of A is discrete, and hence finite,
from which it follows that /^ (A) == 0. Each open set
containing A projects onto Y; it follows that /'*(A) = 1.

Hence, A is not /*-capacitable.

32. 2. EXAMPLE. — We shall now present an example of a
capacity /*^0, alternating of order 0^ defined on the set 3t(E) of
compacts of a locally compact space E and for which there
exists a closed set AcE which is not f-capacitable,

It suffices to modify the preceding example by designating
by X a discrete space of cardinal number 2^o. The space
E == X X Y is locally compact and the graph A of ® is the
required closed set.

32. 3. REMARK. — These two examples show that the
statements of the preceding theorems cannot be extended,
without some restrictive hypothesis on the space E, to every
element of the borelian field generated by the open and closed
sets of E even when we impose on f the greatest regularity
possible; examples of restrictive hypotheses on E which
would be sufficient are the following; E is a complete, sepa-
rable metric space; or E is compact and such that each open
set G of E is a Kcr. Examples 32. 1. and 32. 2. justify the use
of the K-borelian and K-analytic sets.

33. Capacitability of sets CA. — It is well known that, for
each Radon measure a, which is defined, for example, on the
plane R2, each set CA (that is to say the complement of an
analytic set) is ^-measurable. We cannot state the same
result for capacities however regular they may be. More
precisely, we have the following theorem.

33. 1. THEOREM. — If E = R2 and 8 = .%(E), the statement
« there exists a capacity f ^ O of order 0^ on 8, and a CAcE
which is not f-capacitable » is not in contradiction with the ordi-
nary axioms of set theory.



THEORY OF CAPACITIES 227

Proof. According to a result of Novikov [1] which appears
to have been previously stated without proof by Goedel, the
statement «there exists on the real line R a projective set of
class P^ which is not measurable in the sense of Lebesgue »is
not in contradiction with the ordinary axioms of the theory
of sets (being admitted that these axioms are consistent).

Now let A be a straight line of E == R2 and B a subset of A
which is projective of class Pg and is not measurable in the
sense of Lebesgue. For each compact K C:E, set f ( K ) equal to
the linear measure of the projection of K on A. It is a
capacity which is ̂ O, and it is of order d^ on 3t(E).

There exists (18) a subset AcE whose projection on A is
identical to B, and which is of class Ci, that is, the complement
of an analytic set.

This set A cannot be /*-capacitable, otherwise the set B
would be measurable in the sense of Lebesgue, according to
Theorem 22. 3. of Chapter v.

In what follows we shall make use of the fact that there even
exists (19) in R2 a set CA of interior ^-capacity zero and whose
orthogonal projection on A is identical to A :

Indeed, the projective set of Novikov is of class Bg; that is,
the projective set and its complement are of class Pg. It
follows easily that there exists a partition of A into two sets
of class P^ each of which has its interior measure zero and its
exterior measure infinite.

Each of these two sets is the projection of a set, say A^
{i = 1, 2), of R2 which is of class CA, and we can always make
them such that A.i and Ag are contained in two disjoint open
sets. As a result of this precaution and since /*(AJ = f ^ (Ag) == 0,
we also have /*(Ai U As) = 0. The set (Ai U Aa), which is
still of class CA, possesses the required property.

33. 2. Consequence. — It follows immediately that if,
in E = R2 for example, a set is measurable for each positive
Radon measure, it is not necessarily capacitable for each capa-
city which is ̂  0 and is of order dt^.

In the same line, we can set the following problem.

(is, i9) The words « there exists » are a convenient abbreviation for « there is
no contradiction in supposing that there exists ».
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33. 3. Problem. — If A is a subset of the plane E == R2 (for
example) which is of measure zero for each Radon measure
without point masses, is A capacitable for each capacity
/> 0 and of order a^ on 3\ (E)?

34. Construction of non-capacitable sets for each sub-additive
capacity. — Let 6 be an additive and hereditary set of com-
pacts of a Hausdorff space E, and let f be a sub-additive capa-
city (hence ̂  0) on 6. (For example, f is ̂  0 and of order
a^ with n ̂  2.

According to Lemma 17. 9., we have, for any A, B CE :

34. 1. fAUB)^f (A)+f (B) .
Furthermore, let K be such that KC:(AL)B) with Keg . For
each open set <o such that B Co), we have

K = ( K — a ) ) U ( K r i a ) ) , with ( K — c o ) e g .
Therefore
f{K)^r(K—^+r(Kn^

==/'(K—co)+r(Kna))^/',(A)+r(co).

We can find a sequence (Kn, co^) such that /*(K^) -^ /^(AUB)
and f{(^n) —"/^(B). Passing to the limit, it follows that

34. 2. ^(AUB^/'J^+nB).
We have, of course, an analogous formula by interchanging A
and B.

Then let C be an /*-capacitable set with f ( C ) > 0. If there
exists a partition of C into two sets A, B such that
/.(A) = ̂ (B) = 0, the inequality 34. 2. gives /•(C) ̂  f(B); and
since BcC, we have /^(B) = f(C) >0.

Similarly f(A) = f ( C ) > 0.
The sets A and B are therefore not /*-capacitable.
Suppose now that C is a metrizable compact having the

cardinal 2^0. By using the axiom of choice^ we can easily
partition C into two sets A and B such that each subcompact
of C having the cardinal 2^o intersects A and B. In other
words, each subcompact of A or B will be at most denume-
rable.
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Now if /is such that f { K ) == 0 for each compact containing
only one point, the sub-additivity of / implies f (X) = 0 for
each X which is at most denumerable. Then if f (C) > 0, we
have the following for the sets A and B :

/.(A)==/.,(B)=0 and f (A) =f(B) =/(C) >0.
They are therefore not capacitable.

35. Intersection of capacitable sets. — We have stated pre-
viously, that for the capacities f of order a^, the intersection
of two /-capacitable sets need not be /-capacitable. The
reason for this is as follows. Let A be a set which is not
/-capacitable and let Bi, Ba be two disjoint sets such that
(ALlBi) and (AIJB^) are /'-capacitable; their intersection is
identical to A, which is not /-capacitable.

Here are two examples where this construction is appli-
cable.

35. 1. EXAMPLE. — Let / denote the Newtonian capacity
in the space E = R3. We shall designate by A a bounded
non-capacitable set (there exists such according to section 34)
and by Bi, Bg two disjoint concentric spheres each of which
contains A. We have /JA U B,) = /*(A U B,) = /(B,) accor-
ding to the classical theory of potential; hence, (A|jBi) and
(A U Bg) furnish the required example.

35. 2. EXAMPLE. — Let /(K) be defined on the set of
compacts of the plane E = R2 as follows: /(K) = linear
measure of the orthogonal projection of K on a straight line
A of R2. Let A again denote a bounded non-capacitable set
(construct A by the method of section 34 or by using Theo-
rem 33. 1.). This time Bi and Ba are two disjoint concentric
circumferences containing A. It is immediate here that

/,(A U B,) = /*(A U B,) = /(B,) (. = 1, 2).

36. Decreasing sequences of capacitable sets. — In spite of
the fact that for the capacities of order 0^, the intersection of
two capacitable sets is not always capacitable, we could hope
that the intersection A of a decreasing sequence of capacitable
sets A^ is capacitable and that Um/(AJ ==/(A). Let us show
that neither of these two results is correct.
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Recall, for instance, Example 35. 2. The set A will still
denote a bounded non-capacitable set. Let Bo be the cir-
cumference of a circle of radius p containing A and let B^ be
the circumference of a circle concentric to Bo and of radius
(p + x) where x > 0. Denote by Ca, the open annulus bounded
by Bo and Ba;.

If we set A^ = (A U C^) we have A =Q A^ since Q C^ == ̂ .
Now each of the sets A^ is y-capacitable, the sequence of

An is decreasing, but their intersection is not /'-capacitable.
/ 4 \

On the other hand, we have f(C^n) = 2( p + — ) and f(^) = 0.
\ n /

Hence it is not true that lim/*(Ci/n) ===/*( H Ci^) although the
C^fn constitute a decreasing sequence of plane open sets, that
is, sets of very regular topological structure.

We could easily construct an analogous example for the
Newtonian capacity f in the space R3.

37. Application of the theory of capacitability to the study
of measure. — We shall give three examples of the application
of the theory of capacitability to the study of measure.

37. 1. EXAMPLE. — Let A be a borelian or analytic set in
the plane E = R2, and let A be a straight line in the plane.
Let us suppose that the projection (pr^A) of A on A has a non-
zero linear measure. Since A is analytic, it is /'-capacitable for
the capacity f defined in Example 35. 2.

Therefore^ for each e > 0, A contains a compact K such that

mes^pr^ A — mes pr^ K < s.

This result can easily be improved in the sense that we can
choose the compact K such that it contains at most one point
on each straight line perpendicular to A; the projection then
defines a homeomorphism between K and {pr^ K).

Notice that the same property cannot be demonstrated if we
replace A by a set which is the complement of an analytic
set, even if its projection on A is identical to A. This follows
from the second example studied in section 33.

37. 2. EXAMPLE. — More generally let A be a K-analytic
and completely regular space, and let <p be a continuous map
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of A into a locally compact space F on which there is defined
a positive Radon measure pi.

There exist some compacts K C: A such that (x(<p(K)) approxi-
mates (x(<p(A)) arbitrarily closely.

The proof is entirely analogous to that of the preceding
example.

37. 3. EXAMPLE. — Let A be a K-analytic subset of a
compact space E, and let X be a set of subcompacts of E each
of which intersects A. Let us suppose that 3t, in the topolo-
gical space F of subcompacts of E, is (Ji-measurable for a cer-
tain Radon measure p. ̂  0 on this space F, and that y,(S\) > 0.
Then for each £ > 0 there exists a subcompact K C: A such that,
if 3t' denotes the set of elements of 3i which intersect K, we
have pi(X) — ^(3V) < £.

The very simple proof uses the fundamental scheme of
capacities of order ( X ^ .

38. The study of monotone capacities of order Jlla. —
We shall not make a direct study of capacities of order M)^, but
we shall use the properties already established for the capa-
cities of order (^a. Thanks to the notion of conjugate
capacities which we introduced at the end of Chapter in
^(see 15. 6.), to each of the properties of capacities of order 0i^
there corresponds a dual property for capacities of order Jllba.
This duality gives some substantial results only for capacities
defined on a set of closed subsets of the space E, but this par-
ticular case appears to be sufficient for the study of capacities
of order tll^.

38. 1. THEOREM. — Let E be a completely regular Hausdorff
space, let 8 be an additive and hereditary class of sub-compacts
of E, and let f be a capacity of order Jiba (a ̂  I? b) defined on
S with {sup f ) < + °C).

(i) Each A CE such that (E — A) is K-analytic for one of the
compact extensions^0) E of E, and such that 3% (A) C: S, is f-capa-
citable.

(20) It would be interesting to find general cases where this property (that (E — A)
is K-analytic) would be independent of the considered compact extension E. We
find in Sneider [I], [2], some theorems in this sense, when the considered compact
extensions have a certain character of denumerability.
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(ii) If in addition 8 is identical to the set 3i(E) of compacts of
E, we have /^ ( ( J A ^ ) == lim^(AJ for each decreasing sequence of
subsets An of E (property <^i,a); and each denumerable intersec-
tion of f-capacitable sets is f-capacitable.

Proof of (i). Let us designate by /\, the extension of f t o the
set «1t(E) of compacts of E. According to Theorem 16. 3.,
for each A C: E such that 3?(A) C: 8, the /*-capacitability of A
is equivalent to its /^-capacitability. In order to study the
/'-capacitability of such sets A, we can therefore suppose hence-
forth that 8 = ;K(E).

The hypothesis on the class of f remains the same because
according to Theorem 18. 11., since X(E) is G-separable and
multiplicative, the extension of f is still of class Jllka and we
still have (sup f ) < oo.

Let E be a compact extension of E. According to the
remarks at the end of section 20, the extension of f to the set
X(E) is still of order jifca since a^(l, 6), and the character
of capacitability of the sets A which were considered remains
unchanged in this new extension; their interior and exterior
capacities also remain unchanged.

We are therefore brought back to the study of the much
simpler case where the space E is compact and where S = 3t(E).
(We now use the notation E in place of E).

Then let f b e the conjugate capacity of f which was defined
at the end of Chapter in (see 15. 6.). This capacity is of
order a^ and is >—oo. Therefore, according to Theorem
30. 1. above, if (E—A) is a K-analytic set, (E—A) is /'-capa-
citable, and thus A is /*-capacitable.

Proof of (ii). If & = -^(E), we need only the second exten-
sion used above in order to reduce the proof to the case where
E is compact. Now if A,, is an arbitrary sequence of subsets of
E, their interior and exterior capacities and those of A == Q A^
remain unchanged in this extension.

We can therefore suppose that E is compact, and the conju-
gate capacity f allows us to interpret Corollary 28. 3. and to
obtain the second part of the theorem.

38. 2. COROLLARY. — I f E is homeomorphic to a borelian
(in the classical sense) subset of a complete, separable metric space,
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and i f f is a capacity of order Jllba (a±^(l? b)) which is defined
on the set 3t(E) of compacts of E, with (sup f) < oo, ^Aen each
borelian subset of E or each set whose complement is K-analytic
is f-capacitable,

Indeed, there exists in this case an extension E of E such
that E is compact and metrizable. If A is borelian in E, or

fhas a complement L A which is analytic, the same holds in
E. Hence, we can apply Theorem 38. 1.

38. 3. REMARK. — Since the CA sets, whose topological
nature is not well known, are those which are capacitable of
order M)^ it follows that the capacities of order M)^ are in a
certain sense less (( natural » than capacities of order dl^.

Starting with these two classes, one can construct capaci-
ties with curious properties. For instance, if f is the sum of a
capacity of order ̂  and a capacity of order M^ on the set of
subcompacts of E === R2, for example, every borelian set A C: E
is y-capacitable, but it is possible to construct f in such a way
that « there exist » analytic sets and sets CA which are not
/*-capacitable.

38. 4. REMARK. — The following will show that the res-
triction (sup. f ) < oc is essential in the preceding theorem.

Let E = R2, and let x'x^ y'y be two perpendicular axes in
E. For each compact KcE, let ^(K) and |^(K) be the
linear measure of the intersection of K with x'x and y y res-
pectively.

Set AK)-^(K).a,(K).

Then f is a capacity of order Jib^. The continuity on the
right is obvious. Let us now set Ka. = K ft (x'x} and
Ky == K n (y'y). The applications K -^ K.,. and K — Ky are
n -homomorphisms and so is the application K-^K^x K .

Now if ^ denotes the Lebesgue measure in R2, we have

f(K) = u,(K).a,(K) = v(K, X K,).

Since v is of order Jb^, then f is also.
Now if A is the straight line xx, we have ^(A) = 0.

However, for each open set c-o containing A, we have /*(co) == 4- oo,
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and hence f*(A) == + oo. Then A is not capacitable, although
A and its complement are very simple borelian sets.

Observe that if E is a compact space, if 8==3t(E), and
if /•(K)=^+ oo for each K e g, we have (sup./^/^EX + oc.

38. 5. REMARK. — For capacities of order €L^ we do not
have f ^ ( ( ] A.n) == lim/^(AJ for each decreasing sequence of
sets A^. Similarly, we do not have /** (^J A^) == ^(A^) for every
increasing sequence of A,, when f is of order M)^.

The following is an example in which the capacity f and the
class 8 are, however, exceptionally regular. The set E is the
segment [0,1] and 8==3t(E). We set f { K ) = 0 except
when K = E (f(E) = 1). This capacity is of order M)^ and
every subset of E is capacitable. However, if A^ is a strictly
increasing sequence of compacts of E such that ^JA^== E, we
have

lim^A^O and /•((JA^-I.



CHAPTER VII

EXTREMAL ELEMENTS OF CONVEX CONES AND INTEGRAL
REPRESENTATIONS. APPLICATIONS

39. Introduction. — We propose to study some convex
cones whose elements are real-valued or vector-valued functions,
to find their extremal elements, and to use these for integral
representation of the elements of these cones.

These representations will furnish in certain cases a simple
geometric interpretation of the elements being studied, and they
will enable us to show their relations with other problems.

Throughout this chapter the vector spaces under conside-
ration are assumed to be spaces over the real field R, and this
fact will not be mentioned again. The same assumption is
made for all cones.

Let us first recall a few classical definitions and results
(see also Bourbaki [4]).

39. 1. Extreme points and extremal elements. — Let ^ be a
vector space and 6 a convex subset of ^. We shall say that
a e C is an extreme point ofCif no open segment of 6 contains a.

Now let C be a convex cone in ^ which contains no straight
line passing through the origin. If 38 is an affine subspace
of ^ which does not contain 0 and which meets every ray of (°,
then a e 6 n ^6 is an extreme point of (° Ft 3@ it and only if the
equation

a === Oi + ^2 with Oi and a^ e (°,
implies

a, == \^a and a^ == XgO,

where Xi and \ are non-negative.
Such an element a e 6 is called an extremal element of the
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cone e; obviously every Xa (X > 0) is then also an extremal
element of (°.

39. 2. THEOREM OF KBEIN AND MILMAM. — I f the vector space
1 is a locally convex Hausdorff space, and G a convex, compact
subset of ^, then the set e(Q) of all extreme points of (° has
a convex hull whose closure is (°.

In other words, if x e 6, then there exists for every neigh-
borhood V of x a finite number of positive point masses located
at extreme points of C and having their center of gravity in V.

The set e((°) is not necessarily compact, If it is compact,
then the preceding theorem can be sharpened as we shall see.

39. 3. Center of gravity. — Let (° be a convex compact
subset of a space ^, and a a positive Radon measure on (°.

It is possible to find an ultra-filter, weakly converging to pi,
on the set of all elementary positive Radon measures p., defined
on 6, each of which consists of a finite number of point masses.
The centers of gravity G{^) of these measures are in the com-
pact set (°; hence, they converge with respect to the given
ultra-filter to a point G of (°.

Let us show that G is unique. We have, for every continuous
linear functional l(x) on ^,

l{W)fd^= f l ( x ) d ^

Since l(x) is continuous, we obtain

(1) l { G ) f d ^ = f l { x ) d ^ .

Now, if l{G/)=l{G) for every I, then G'=G. Thus G is
well-defined by (1), which is sometimes written as

G F du. === f xd^.t> « /

In particular, let us suppose that ^ is the space of all real-
valued functions x == x{t) defined on a set E. We shall
topologize 1 by means of the topology of simple convergence;
that is, the point x == 0 is assumed to possess a neighborhood
basis of the form V(e, ^, . . ., t,,) consisting of all points x for
which j^(^)l< e (i = 1, 2, . .., n). This space ^ is a locally
convex Hausdorff space.
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For every (e E, the function l(x) == x{t) is a linear con-
tinuous function on 2. Hence, with the preceding notations,
and designating by x^{t) the center of gravity of a measure a on
(?, we have

x^(t} / du. == ( x{t) dy. tor every t <s E.

39. 4 THEOREM. -— I f the vector space ^ is a locally convex
Hausdorff space, and if € is a convex compact subset of H,
then for every x^ e 6 there exists a measure ^ ̂  0 on e(6)
whose center of gravity is Xo.

Proof. For every neighborhood V of x, there is a measure
^ on e(G) of total mass 1, which consists of a finite number
of point masses, and which has its center of gravity -G(p^) in V.
Hence, there exists an ultra-filter on the set of these pi, such
that the associated G((JL») converge to Xo. But, on the other
hand, the measures ̂  converge weakly to a measure (Jio whose
support is e((°). The total mass of u.o is 1, and its center of
gravity is indeed x^

If e(C) is closed, e((°) is obviously the support of (JL.

39. 5. REMARK. — It would be interesting to know whether
it is always possible to impose on the measure ̂  the condition
that its support be e((°), in other words, that \C—e{£)] have
(Ao-measure zero.

It should be observed that if ^ is a normed vector space,
then e(C) is a G§. In the general case, little is known concer-
ning the topological character of e((°).

39. 6. APPLICATION. — Suppose that 2 is the vector space
of all real-valued functions defined on a space E, with the
topology of simple convergence.

Let C be a convex cone of ^, and assume that there exists a
point <o e E such that x(to) > 0 for every x e (°.

We designate by (°i the set of all normalized elements of
(°, that is, the set of all x e (° for which x(to) = 1. We further
designate by e((°i) the set of all extreme points of (°i.

If (^ is compact, then the above theorem shows that for
every x e 1° there exists a measure (JL^O on e((°i) such that

x(t} ===. jxe(t)dy.{e) for every ( e E.
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In almost all the cases which we shall study, e(l°i) will be a
compact set.

39. 7. Uniqueness of the measure [x associated with an
element x e (°. — Suppose again that ^ is locally convex, C a
convex cone in ^ which contains no straight line passing
through the origin, and X a closed linear variety in ^ which
does not contain 0 and meets every ray of (°.

Let us assume that 61 = (° D % is compact and has the property
(even in the case where e{^) is not compact) that there exists,
for every x e (°^ one and only one measure of total mass 1
whose support is e((°i) and whose center is rr.

Then there exists, for every x e C, one and only one measure
LX. on e((°i) for which x = f x e d ^ ( e ) . We shall denote this
integral by ^([^).

This correspondence between the measures ^^0 on e{€)
and the points of C is one-to-one, and since, moreover,
^i + (^2) == ̂ i) 4- ^(f^a), and o;(X(^) === \x{^) tor X ̂  0,
this correspondence is an isomorphism between the order
structure of the set of the [^^0 defined on e((°i) and the order
structure of C associated with

C{a^b if f c=a+c) .
Since the ordered set of the pi ̂ 0 is a lattice, the ordered

cone 6' is also a lattice. We can therefore state the following
result:

39. 8. THEOREM. — I f there exists a unique integral repre-
sentation of the points of (° by means of a measure on ^((?i),
then the ordered cone G is a lattice.

The fact that (3 is a lattice may be interpreted geometrically
as follows : if G[ and G'[ are the sets obtained from (°i by meang
of two positive homotheties, (with arbitrary centers) then the
set (°i ft Q[ is either empty or homothetic to (°i under a positive
homothety.

The necessary condition for uniqueness given in the prece-
ding theorem makes it often possible to determine a priori
cases where uniqueness is lacking. It would be very interes-
ting to know if the above condition is both necessary and suffi-
cient for the existence and uniqueness of the integral repre-
sentation.
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39. 9. Examples of cones which are lattices. — (1) Let E be
an ordered set, and 3 the cone of all non-negative increasing real-
valued functions defined on E. For any two elements jfi and/^
of 3, the set of all f e 3 such that f , ̂  f and f._ ̂  f has ^
smallest element /o in the sense that f ^ x ) ̂  f { x ) for every
x e E, but in general it is not true that ^ ̂  /*, so that 3 is
not a lattice.

But when E is totally ordered, 3 is a lattice.

(2) E is a Greenian domain of R" and C is the cone of real
positive functions which are super-harmonic in E. The cone C
is a lattice. It follows immediately that the sub-cone of 6
which consists of the positive and harmonic functions is also
a lattice. The extremal elements of C are the multiples
XG(P^, Q) of the Green's function with pole Po and certain
limits of XG(P(,, Q) obtained by letting Pp tend toward the
frontier of E.

The set of normalized extremal elements is not compact
in general; nevertheless, the integral representation by
means of extremal elements exists and is unique (see
Martin [1]).

(3) When n = 1 in example (2), C is identical to the set of
positive and concave functions on an interval (a, b) of R. We
might believe, more generally, that if E is a convex set
of R" and 6 is the set of all positive and concave functions
on E, then (° is a lattice. This is not true.

For example, let E be the circle x2-{-y2 :^1 of R2, and let
/*i=l—x, f ^ ^ i - ^ - x , If /\^/'2 did exist, we should have
f i ^ f 2 ^ f = int. (linear functions greater than /\ and f ^ on E).
Now we have also f = inf. (elements of (° greater than f ^ and
f . , on E.). We would therefore have f ^ f ^ = = f . But then for
each linear function I e C such that /\, f ^ ^ l ^ since this implies
f i , A ^ ^ we would have 1= f-\- g where g e f. Since f is not
linear, this equality is impossible.

Then the integral representation for C is not unique, as
will be verified in the following particular case : It is immediate
that the functions (1—x), (1 + x), (1—y), (1 + y) are extremal
elements. Now 2==(i— 'x) + (1 + x) and 2^( l—2/)+(l+y) .
This proves the non-uniqueness of the representation of the
function f===1.
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40. Extremal elements of the cone of positive increasing func-
tions. — If E and F are two ordered sets, each homomorphism
of E into F is called an increasing application of E into F. If
we wish to define the sum of two such applications and the
product of one of these applications by a real constant, we are
led to suppose that F is a vector space on the field R.

In order to obtain substantial results, we shall suppose
moreover that F is a vector lattice on the field of reals, and that
E is filtering on the right. We then have the following
statement.

40. 1. THEOREM. — Let <) be the convex cone of the positive
and increasing applications f of a set E, which is ordered and
filtering on the right, into a vector lattice F. The set of extremal
elements of 3 is identical with the set of elements f of 3 which,
besides the value 0, take at most only one value which is •==f=^ 0 and
is extremal on F^; any such function f is of the form ^A,&(*^)
where A is a subset of E which is hereditary to the left (21), and b
is an extremal element on the cone F^ of elements ^>0 of F, with

l O for r ceA,
A.5^)- p

( b for xe. t A.

Proof. It is immediate that the set of positive and increa-
sing applications f of E into F is a convex cone. It is likewise
immediate that there is identity between the elements f e 3
such that /*(E) contains besides 0 only one extremal element of
F^ and the set of /A, &.

Then let f b e a function of the form /A,&(^).
Suppose that /*== f ^ + f ^ where /*i and f ^ e .1.
For each x e A, we have 0 ==== f ^ x ) -\- f ^ ( x ) and thus

f ^ x ) = f , { x ) ^ 0 .

Let u and v e f (A); for each w^u we have

f,W+W=--b=f,(»>)+f^),
and thus

[/•.H -/••(")]+ [AH -A(")] = o.
(21) That is, such that [x' ^x and .re A) => (a?'eA).
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It follows that

f i {u) = f , (w) and f , ( u ) = ^(w).

Now since E is filtering on the right, there exists a w greater
than u and ^. It follows therefore that \

f^u)=f^) and f\W=f^

P
In other words, /i and jfa on L A take constant values b^ and b^
with b = bi + &2- Moreover, since b is an extremal element of
F^, we have 61 == A ^ f c and &y == X^fc where ^i and Xg are two
real numbers ̂  0. We have therefore /\ =E Xi/* and /^ = Xajf
which shows that /* is extremal.

Conversely, suppose now f is an extremal element of «^.
If /*(E) contains besides 0 only a single element b =/= 0, it is
clear that f cannot be extremal if b is not extremal on F^. Let
us show that if jf(E) contains at least two elements b and c
different from zero, f is not extremal.

We can always suppose b < c; for if f ( u ) and f ( y } are tw-o
distinct elements of/ '(E), there exists w e E such that u and
^ <j w and hence /"(i^) and f ( y } ^f{w}' In other words, /*(E)
contains two distinct comparable elements, ( f { u ) , f(w)) or
(M. fWY

Then let f, = inf (/*, &) ; f , = sup (/*, &) — &.
We have /* '= f ^ + A by virtue of the identity

inf (y, 6) + sup (y, b) = y + b.

Now inf (y, &) and sup (y, &) are two increasing functions of
y; therefore /*, and ^ belong to <\ Since sup (c, b) — b -=f=- 0,
/*2 is not identically zero. But we cannot have /a = \f since
we have f ^ = 0 when f = b. Hence the decomposition
y =-^ f ^ -^ f ^ shows that f is not extremal.

40. 2. REMARK. — It is sufficient to reverse the order in E
in Order to obtain a characterization of the extremal elements
of the set of positive and decreasing applications into F of a set
E which is ordered and filtering on the left.

40. 3. REMARK. — If there exists on E a topology compa-
tible with its structure of ordered set filtering on the right,
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and on F a topology compatible with its structure of vector
lattice, we can, instead of studying the cone 3, study the sub-
cone y of applications f which are also continuous on the
right on E (in an obvious sense). A reasoning formally iden-
tical to the preceding furnishes as extremal elements of V the
elements /A,& which are continuous on the right, that is, those
for which A is a subset of E which is open on the right and
hereditary on the left.

40. 4. Integral representation of real-valued positive and
increasing functions. — We shall now suppose that E possesses
a largest element co, and that F is the real line R. Let 3^ be
the set of elements f of 3 such that /'(co) = 1. It is seen
immediately that <\ is, in the vector space of real valued func-
tions on E (with the topology of simple convergence) a
convex and compact subset. On the other hand, the subset
e (3^) of extreme points of 3, is identical with the set of extremal
elements f = f ^ , i of 3 such that f ( w ) === 1; hence e{3^) is
compact. According to the Application in 39. 6., it follows
that/or each f e 3, there exists a positive Radon measure a on
e(3j) sue! i that

^)==J^,.(^(A).

We can easily extend this result to the case where E does not
possess a largest element, when we limit the study to the ele-
ments f o i 3 which are bounded on E. It is sufficient to extend
these functions f t o the set E which results from E by adding to
it a largest element co.

40. 5. EXAMPLE. — If E is the interval [0,1] of the real line,
with the usual order, the extremal elements of 3^ are of the
form /A, i with A == set of x < a or set of x ̂  a, (0 ̂ a ̂  1).
It is easy to see that e(3i) is homeomorphic to the set of all A
with the topology of order (the order here being defined by the
relation of inclusion, AidAg).

40. 6. Interpretation of the formula f ( x ) = | /A, i {x) d[f.. —
The class of the /A, i can be identified with the class of subsets
A of E which are hereditary on the right or with the class of
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their complements A' which are indeed the hereditary on the
right subsets of E. Now

. _ (1 when x e A',
/ A , i — ^0 when xe. A.

Therefore, f { x ) is just the pi-measure of the compact set of those
A' which contain x. If the set of A' is ordered by inclusion,
and if we denote by A'(re) the set A' of points of E greater
than x, we can still say that f { x ) is the pi-measure of the set of
all A' ^ A'(a;).

40. 7. Uniqueness of the measure pi. — When E is the
interval [0, 1] the cone 3 is a lattice and it is well known
that there is a unique measure a determined by an increasing
fonction f on E.

When E is the ordered set R^ it is no longer true. For
instance let /*i(^ Y]) == 0 it ^ < 1 and f ^ = 1 elsewhere; let
A^? ^l) ^= 0 if Y) < 1 and f^_ == 1 elsewhere. Those functions
are extremal elements of 3; however the function f === f ^ -\- f.^
has another representation in terms of extremal elements :
f = f s + A where f s === 0 if ^ < 1 and Y] < 1 and fs==- i else-
where; ^ = 0 if ^ < 1 or Y] < 1 and /^ == 1 elsewhere.

41. Extremal elements of the cone of positive and increasing
valuations on a distributive lattice. — Let E be a distributive
lattice and F an ordered vector space. Recall that a valuation f
of E into F is an application of E into F such that

f { a ^ b ) ^ f { a ^ b ) = f ( a ) + f { b ) .

It is clear that these valuations constitute a vector space. We
shall designate by °D the convex cone of valuations of E into F
which are positive and increasing.

41. 1. THEOREM. — The set of extremal elements of T) is
identical with the set of functions of the form /p, \, where P denotes
a partition of E into two sub-lattices Ei(P) and Ea(P) with Ei(P)
hereditary on the left, E^P) hereditary on the right, and where A
is an extremal element of the cone F^ of positive elements of F,
with

, . . {0 if x^L,
f^W=h if ^eL,.
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Proof, (a) We easily demonstrate at once the identity
between the functions f e ^ C which take only the values 0 and X,
and the functions of the form /p, ̂ . Then, exactly in the same
manner as in the preceding theorem, we show that each
element /p,), is extremal for U

(&) Conversely, suppose that f i s an extremal element of U
If /*(E) contains, other than zero, only one element X=^0, it
is clear that f cannot be extremal if f is not extremal on F^.
Let us show that if /'(E) contains at least two elements X
and pi which are different from zero, then f i s not extremal. As
in the proof of Theorem 40. 1. we can always suppose X < (x.
Let a and b be two points of E such that f ( a ) = ̂  and f ( b ) = pi.
Let

fi (x) = f^ ̂  a) — fW; A W = f{x - ̂ ).

We clearly have jf, and /*2^0 and /\, f ^ increasing. On the
other hand, since E is distributive, we verify easily that /\
and f ^ are two valuations. We have therefore /\ and f ^ e V
and f = f , + A.

Now, /*,(a)==0 and /\(fe)=^:0. Since /*(a)^=0, we cannot
have f ^ == \ f f where X, is a constant. This fact shows that f is
not extremal.

41. 2. REMARK. — We can remark, as for the theorem
of 40. 1., that if E and F possess topologies compatible with
their structures, the extremal elements of the sub-cone (0/ C: C
made up of the continuous on the right elements of (° are
those of the functions /p, \ which are continuous on the right.
In fact, in the preceding proof /*i and f ^ are continuous on the
right if f is continuous on the right.

41. 3. Integral representation and interpretation. — When F
is the real line R, we obtain for the integral representation of the
elements of V results quite analogous to those relative to the
cone 3, either when E possesses a greatest element or more
generally when the function f that we wish to represent is
bounded on E. This integral representation results from the
fact that the set of normalized extremal elements f p ^ i of D is
compact for the topology of simple convergence. The formula

f { x ) = f f , , , ( x } d ^ ( P ) ,
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valid for each x, shows that f { x ) is equal to the a-measure of the
set of partitions P such that xe L,(P).

It would be interesting to know whether V is a lattice and
whether the integral representation of the elements of T) is
unique.

42. Application to the integral representation of simply additive
measures. — Let E be an algebra of subsets of a given set A;

that is, if X, e E and X, e E, we have X, U X, e E and [ (XQ e E.
The set E is a distributive lattice when E is ordered by the
inclusion relation on A.

Let Jl^ be the set of positive and simply additive measures
on E. Each of these measures is clearly a positive and in-
creasing valuation on E. Conversely, each positive valuation f
on E is of the form f { 0 ) + (a measure); in fact, [f—/Y0)] = g is
a positive valuation on E with f ( ^ ) == 0. Now

g(XUY)+g(^)=g(X)+g(Y) when XnY==^;

it follows that.
g(XUY)==g(X)+g(Y).

The extremal elements of M)^ are, therefore, within a posi-
tive factor, the measures f on E which take only the values 0
and 1.

The set «lk^ of measures f on E such that /*(A) = 1 and its
subset e{M)^) of measures with values 0 or 1 are compact for
the topology of simple convergence.

Therefore, to each f e M)^ is associated a Radon mea-
sure a ̂  0 on e(Jl\J such that

f ( X ) == J7.(X) d^{e) for each X e E.

Let us study the extremal elements of 41 .̂ For each
/'eef.Al)^) let B(/*) be the set of elements of E such that
f(X) == 1. This set constitutes a base of a filter on A such
that if XeB(/*) , then whenever two elements X,, X, of E
form a partition of X, one of them belongs to B(/*).

Conversely, if B is a base of a filter on A, made up of ele-
ments of E and possessing this last property, we say that B is
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saturated relative to E. To each B we can associate a function
f s on E by placing

r/^r\ _ ^1 when X belongs to the filter of base B,
/ ] 0 otherwise.

It is seen immediately that /B^^l^a,)? and that B(/B) = B.
We have then established a canonical and one-to-one correspon-
dence between the normalized extremal measures on E and the
bases of filters on A which are saturated relative to E.

42. 1. REMARK. — The property which defines the satu-
ration of B resembles the property which characterizes the
ultra-filters, and it is actually identical to it when E =/= 2^.
However, if E ^=f=- 2^ there exists some bases of filter B satu-
rated relative to E and which are not bases of ultra-filters.

We are now going to make a more detailed study of A\\,
when E = 2\

42. 2. Extremal elements of the cone of positive measures on
E==2\ — By using a method of Stone [I], [2], [3] with
a slightly different language, we are going to show how one
can interpret the extremal elements of M)^ an^ represent each
element f of J'ba.

The following could be extended to the case where E is an
arbitrary algebra of subsets of A, but with a more complicated
formulation.

(1) Extremal elements of <Al^. The bases of filters on A
satured relative to E are identical with the ultra-filters on A.
Therefore, the extremal elements of M\^ are the functions
/*«(X) where u is an ultra-filter on A, with

^ .-y. _ <1 when X e u^
r^W- ;Q when X ^ u.

For example, for each x^ <= E, the ultra-filter u^ of the sets
containing x^ corresponds to the point measure f ^ == £^.

(2) Topology on the space U of ultra-filters. By defini-
tion this topology would be the topology of simple conver-
gence on the set of associated measures /*„, The space U is
therefore compact. For each XcA, let cofX) be the set of
ultra-filters on X. It is immediately seen that for each u^ e U
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the set of co(X), where X e Uo, constitutes a base of neigh-
borhoods of Uo.

In particular, for each x^ e A the ultra-filter u^ possesses
a base of neighborhoods formed by u^ itself. Hence u.̂  is
isolated in U; conversely, each isolated element of U is of this
form.

For each XcA, the set of ultra-filters on X is compact;
hence, (i)(X) is compact and so is co(A—X). Now each ultra-
filter on A is supported by either X or (A — X); therefore
co(X) and O)(A—X) constitute a partition of U. Hence, the
sets co(X) are both open and closed.

In particular, each point of U possesses a base of neigh-
borhoods of the form (o(X), and hence both open and closed.
It follows conversely that each subset of U which is both open
and closed can be written uniquely in the form co(X).

For each open set Q C: U, let I be the set of isolated points
of Q. Since each point of U is the limit of isolated points,
we have I === Q. Now let X^ be the canonical image of I in A.
We have Q == I == co(Xy). Therefore, the closure of each open
set is an open set.

The points of U represent the ultra-filters on A. Let us
see how the filters on A are represented in U. Let S be a
filter on E; there corresponds to it the filtering decreasing set
of open and closed sets w(X) where X es 9. Set 9 == 0 co(X).

X6^
We therefore have associated to 9 the closed, non-empty y^)
of U. Conversely let 9 be any closed, non-empty set of U.
The set of its open and closed neighborhoods has a canonical
image in E which is clearly a filter which we denote by ^(o).
It is seen immediately that ^(9(^0)) ̂  ^o ^r each filter ?o
on A. We have therefore established a canonical and one-to-
one correspondence between the filters on E and the closed sets
o f V .

In this correspondence, the intersection of a family of filters
on A corresponds to the closure of the union of the corres-
ponding closed sets in U; the upper bound of a family of filters
on A corresponds to the intersection (assumed to be non-
empty) of the corresponding closed sets in U.
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We shall see later, in the study of capacities of order a^,
which topology it is natural to define on the set of filters on E.

42. 3. Integral representation of a measure on E == 2\ —
According to the general theorem 39. 4., there exists for each
measure f e Jl^ a positive Radon measure a on U such that

/•(X) == ffn{X) dy. (u) for each X C E.

In other words, for each X we have
^(X) = a-measure of the set of u supported by X; that is,

/TX) is the measure a[co(X)1 of the image in U of the filter of
the supersets of X.

This Radon measure on U is well defined for each open and
closed set; since these sets constitute a base of open sets in U,
this measure a is unique.

Conversely, to each Radon measure a on U is associated a
measure /*, which is simply additive on E, by the relation
/•(X) = y.[^X)].

Each measure f on E can be extended to the set of filters
on A by setting

f{S) =mff{X} = infa[co(X)] = afo^)]
X6^r X6.^

for each filter ^ on A. Then f ( S ) is just the m-measure of
its image ^{3) in U.

In this interpretation the fact that an additive measure f on
E is not completely additive follows from the fact that when
(DI, . . ., (D^, . . ., is a sequence of not empty open and closed
subsets of U which are mutually disjoint, we always have
^J co^ =^= ^J OL)^ and hence, in general, different a-measures for
these two sets.

We have defined on the space of measures f on E the topo-
logy of simple convergence on E == 2\ Now these measures
are in one-to-one correspondance with the positive Radon
measures on U; hence, there exists a topology on the set of
these measures [M. As the images co(X) of the elements of E
constitute a base of open and closed sets of U, this topology
on the space of Radon measures on U is identical with the
classical topology of vague convergence (see Bourbaki [3]).
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43. Extremal elements of the cone of positive functions alter-
nating of order oo on an ordered semi-group. — We have
already emphasized the analogy between the capacities of
order a^ and the functions of a real variable which are
completely monotone. We are going to see that this analogy
is not only formal, but also that these two types of functions
belong to the same very general class of functions in which
exponentials and additive functions play an essential role.

43. 1. DEFINITIONS. — Let E be an ordered commutative
semi-group with a zero, all of whose other elements are greater
than zero. Let F be an ordered vector space, and let a be the
convex cone of the functions which are defined on E and take
values in F.,, and which are alternating of order 30 (see 13. 1.,
Chapter in).

We shall suppose F such that each X C: F^ which is bounded
from above and which is filtering on the right (22) has an upper
bound.

43. 2. DEFINITION. — Any application f of E into F such
that f { a f b) = f ( a ) — f { b ) will be called linear.

It is obvious that any linear and positive f belongs to a; the
set of those functions is a sub-convex cone of a, which we will
denote by ^.

43. 3. DEFINITION. — We say that a function ^ on E is an
exponential when ^ is a real-valued function such that

O^^i and ^a-rb)=^a).^b).

To each real, linear, and positive f on E corresponds the expo-
nential ^ == e~f and, conversely, to each exponential ^ which
does not assume zero values on E corresponds the positive
linear function f == Log I/A.

43. 4. THEOREM. — In order that an element f of the cone d
be extremal, it is necessary and sufficient that it be of one of the
two following forms.

(1) f is an extremal element of the cone ^ of linear elements
o/*a.

(22) We say that X7 is filtering on the right if for every a, 6e X, there is an ele-
ment. c e X such that a, b < c.
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/3\ y^ (1—^v, wAere ^ is an exponential on E and V
is an extremal element of the convex cone F^.

Proof. Let /* be an extremal element of ex.
(1) If /*(E) contains at most two elements 0 and V^O, we

can set /*= (1_^)V, where ^ is a function which takes only the
values 0 and 1 and is such that (Vn)^>0 for each n.

If ^(a) == 0, it follows from V,(a; b)^0 that ^(a~rb}=0
for each &.

If ^(a)==^ (&)==!, it follows from V,(°; ^ o^O that
^(a-r b) === 1. We have therefore

^(a-rb)=^{a).^(b\

and hence ^ ls an exponential.
In order that such an f be extremal, it is clearly necessary

that V be extremal on F_.
(2) If /*(E) contains at least two distinct elements X, a such

that X,[JL =^0, we can clearly suppose that they are comparable
in F. If f ( a ) = X and f { b } = a, with X < ̂  set

and
f^=f^a)—f{d),

f^x) == /t^) + Vi(^ ^/^ A^) + A^—A^TO).

Then, f=f,+f^ . . .
The function /*, belongs to a since the operation .r—(a;T^)

is a homomorphism of E into itself and since f { x -rd) —f{a)^0.
Also/'a belongs to a since on the one hand (Vn)A== (Vn^i)/^:0
and on the other hand f^O since the inequalities (Va)/^0

and f>0 imply f { a ) + f { x ) — f { x ^ a ) ^ 0 . Now

/-,(&) =y(a -r &)— Aa)>A—a>0;

hence ^ is not identically zero.
If /* is extremal, we have f , = V where A, is a real

number such that 0<\^1; (this fact implies in particular
that f ( 0 ) = 0 since /\(0) = 0). We can then write

f{xTa)—f(a)==\f{a).

Two cases are then possible.
(a) First assume that f is not bounded above on S, that is,

assume that there exists no v e G such that f { x ) ̂ v for each x.
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Now f ( x ) ^ f ( x - r a ) , and hence f ( x ) —A^^-V^)- We
cannot have \,=^1, otherwise

^a-.
and /* would be bounded. Therefore A,, === 1, and hence

f ^ - r a )= f ( x )+ f ( a ) .

This equality is true for any x. It is true also for any a; indeed,
the proof above shows that it is true for each a such that f { a ) > 0
since, f being not bounded, f takes values (JL> X $ on the other
hand if a is such that f { a ) = 0 the relations

V,(^; a) ̂  0, V,(0; a, x) ̂  0, /•(O) == 0
give

f ( x ) ̂  f { x T a) and f ( x ) ̂  /'(re -r a)
and so

/•(^ T a) = f(x) - f(x) + f(a).

Then f is linear. If /* is extremal on ex, /* is a fortiori extremal
on^.

(&) Now suppose lhat jfis bounded above on E. Let V be its
upper bound (^O), which exists since the set/*(E) is filtering on
the right in G. Set g = V — /*. We have the identity

g(a) — g(x T a) = X,(V — g(x)}
or

(1) g(a) + X,g(a?) == g(x T a) + X,V.

By the definition of V, we have
inf g{x) = 0 and inf g{x -r a) == 0.

By taking the lower bound of the two sides of (1) we obtain
(2) §(a)==W

This relation is valid for each a such that 0 < f ( a ) < V. If
f { a ) == 0, we have g(a) == V $ if f ( a ) = V, we have g(a) = 0. We
can therefore set f ( x ) =1 9 (re). V, where y is a real function
such that 0 ̂  y ̂  1. Also let us set ^ == 1 — <p, and so
g^)-'^

The relations (1) and (2) can be written now as

^a'K^) == ̂ (x T ̂ ) and ^(a) === \^;
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hence
(3) ^Ta)=^OK)4(a).

This relation is valid for each a such that 0 </*(^) < V. If
f ( ^ a ) = 0, we have as in the preceding case f ( x -r a) = f ( x ) ;
thus, ^(.r -r a) = ̂ {x) and, since ^(a) == 1, the identity (3) is
again satisfied.

If f{a) •== V, we also have f(a -r ^) = V. Therefore

^-ra)--Ha)=0,

and the identity (3) is again satisfied. In other words,
/*=== (1—40^? where ^ is an exponential.

Since f i s supposed to be extremal, it is clear that V must be
also an extremal element of the cone G^.

CONVERSE. -— We now have to show that the functions f on E
that we have just studied are indeed the extremal elements
of a.

(1) If f is an extremal element of ^, and if f = /\ + f - i with
f ^ j^ecl, the />, and f ^ necessarily belong to ^*

In fact, /'(O) == 0 and (\A\=0, which implies that ^(0) -= 0
and C\A)A-=0 ( i = l , 2 ) .

Thus the relation ^3 (0; a, b)f. == 0 is
fi(a + b) = /-.(a) + /•,(&) (i==l,2).

Therefore, since /* is extremal on ^, /*i and /*^ are proportional
to /*; thus /*is extremal on ex.

(2) Let f == (1—'^)V where ^ is an exponential on S and
where V e G^. We first have to show that we have /*ea.
Now /'^0 since O ^ ^ ^ l ^ m order to show that (V,,)y-^0,
it is sufficient to establish the equivalent relation (\7n)<L ̂  0.

Now \7^o;; aL === 4'(^—^(^T^^^C^)^—^(a)) and more
generally,

Vn(^;ta,o===-K^^(l- fK^))^o.
Finally, it remains to show that f is also an extremal element

of cl. We shall be able to do so only after having introduced
a suitable topology on a (see section 44 below).

43. 5. EXAMPLE. — E = R^, that is, the set of elements of
the group R" with positive coordinates. Each positive linear
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function f on E is of the form Sa^(a,^0). The extremal
elements of ^ are then the positive multiples of the n functions
f=x,

Every exponential f which does not vanish on E is, accord-
ing to a previous remark, of the form e"0 ' x where a.x denotes
the scalar product of the elements a and x of R^.

More generally, each exponential ^((Xi))c8in be written
4»((^)) == II^(^) where ^i denotes the restriction of ^ to the
Xi-Qi^ids.

The restriction ^, is again an exponential function of a real
variable. Now if ^(a) -=f=- 0 for a > 0, then ^i(na) ̂  0 for every
n\ thus ̂  cannot take the value zero. If ^,(a) =0 for all a> 0,
then ^(0) == 1 or 0; it is easily seen that conversely, each
of these functions is an exponential.

Thus each exponential ^(x) on S can be written as
^(x) == II ^ i ( X f ) where

^(^•)==e-w(a,>0) or ^) == e-00"' or ^=0,

where
.^,_^1 i f ^ = = 0

~ ^ 0 if^>0.

43. 6. EXAMPLE. — E is idempotent, that is, x -r ^ = x for
every x e E.

Each linear function on E is identically zero since

f { x ) = f ( x -rx)= f ( x ) + f { x ) implies f { x ) = 0.

If ^ is an exponential on E, then
^) ==^^) ̂ ^(^^(^^

hence ^ f { x ) = 0 or 1. The set of elements x of E, for which
^(x) = 1 is a sub-semigroup a of E, hereditary on the left (that
is, x' <^x and xea implies x' e cr). For if ^(a) = ^(b) = 1,
then ^ (a-r b) = 1. If ^(fc) = 1 and a < & then, since
0-1-6=6, '^(fe) ==^(a ) . ^ (&) and hence ^(^) === 1.

Conversely, for every sub-semigroup o- of E which is
hereditary on the left, let ^(x) = i if xea and ^{x) = 0 if
^(T. Then if ^(a) = ^(fc) == 1, is follows immediately that
^(a-r6)=^(a)4(6).
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If ^(a) = 0 and ^(6)== 1, then a > fc and therefore

a-y. f c = = a ; thus ^(a-pfe) == ^(a) ==4'(a)•4'W•

If^(a) == ^(fc)==0, then4»(a-r&) == 0, since a and 6==<i-r&;
hence again, ^(c^^b) = ̂ (a)^(b).

There is thus a one-to-one canonical correspondence between
the exponentials on E and the sub-semigroups of E which
are hereditary on the left.

The extremal elements of <$l are the functions /o, \(x) on
E defined by

. / . <0 if xea
A.v(^)-;y y ^^^

where cr is a sub-semigroup of E which is hereditary on the left
and V is an extremal element of F^.

43. 7. EXAMPLE. — E is an additive class of sets. Let E be
an additive class of subsets of a set A, the operation -,- being
union and the order on E being inclusion.

To every exponential ^ on E there is a canonically associated
sub-semigroup <r which is hereditary on the left. Let (T*

be the set of complements L X of elements X of cr; except for
the case where A e E and where ^ = 1, o-* is a base of a
filter.

Conversely, to each filter ^ on A having a base consisting
of elements of E*, there is associated the exponential on E

defined by f { X ) = 1 if [ X e 9 and f { X ) = 0 if [ X <t 9.
Thus exponentials, filters and extremal elements of the cone Ct

are in this example three aspects of the same mathematical
object.

The preceding interpretation of exponentials in terms of
filters now permits a better study of the normalized extremal
elements f of a whenever F is the additive group R, and an
extension of the definition of f t o the set of filters on A.

For such an element f = (1 —4')? ^et T ^e tlle filter on A
associated with ^. Then

f ( \ — \° if for some Y e T, XDY == ^,
/w ~ (1 if for every Y e T, XDY =^ ̂
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More generally, let T, and T^ be two filters on A, and let

f ( T T\ ^ ^ Ti^Tg does not exist,
/ V ^ l ^ S / —— } A '{ rp FT • .(1 if 11 ̂  Tg exists;

that is, f ( T , , T,) equals

\ 0 if there exists two elements of T, and T, which are disjoint,
(i otherwise.

For each fixed T, it is easily seen that the function
/r,(T) = f { T ^ T) is an alternating function of order oo on the
semigroup of the filters T on A, with the operation -p deno-
ting the intersection, that is, T -y T denoting the filter each
of whose elements is the union of an element of T and an
element of T'.

When T denotes the filter of supersets of a set XcA, the
function /r.(T) is identical with the f unction /r,(X) considered
earlier. The function f ^ { T ) == /'(T\, T) is called the elemen-
tary function alternating of order oo and of index T,.

43. 8. Special case. — If E is the set of compact subsets of a
Hausdorff space A, and if f is continuous on the right, the
filter T associated with f is just the filter of neighborhoods of
a closed subset of A. This was shown above (see section
26. 14., Chap. v).

44. Topology of simple convergence on a. Application. — Let
us come back to the general case assuming simply that F is
identical with R, and introduce on a the topology of simple
convergence on E.

The set of exponentials on E is clearly compact in the
topology of simple convergence; the same is true of the set of
elements of a of the form (1 — ^), where ^ is an exponential.

We shall now show, by using this compactness and the rate
of the decrease of the exponentials ^ on E, that each element
(1 — ^) is extremal on a.

We use the fact, which is easy to show, that if C denotes
a convex and compact subset of a locally convex Hausdorff
linear space, for each non-extreme point m e C, there is a mea-
sure (x^O of total mass 1 which is supported by [e{6)— (mN
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and whose center of gravity is m [where e{C) denotes the set of
extreme points of (°].

(1) We suppose first that E has a largest element co. Each
f e a is then bounded and the set a, of the elements of a such
that /'(co) = 1 is compact. The set of extreme points of a, is
identical with the set of extremal elements f of a such that
/'(erf) == 1. Now if ^ is an exponential not = 1 on E, then
inf ^ == 0 (since ^(nd) = (^(a)"); hence, sup (1 — ^) == 1.
Then the set e(0i) of extreme points of a^ is contained in the
compact set £, of the elements (1—40 where ^=/=i. We
shall show that e((X^ == g^.

Otherwise, suppose f == (1 — ^) is an element of [^—e(a,)j.
There is a measure (JL on the compact set (8,— |/'J) such that

f d y . = l and (1-^) = /(l-^)^);

hence ^= ^^da(().

For every a e E and for every £ > 0, the closed set of ( for
which ^a) ̂ i^ ̂ (a) + £ ls °^ [^-measure zero. For let (Jt.(£) be
its measure. Then

(4(0))" = ̂ (7za) = f^(nd)d^(t)

- / [^(^"^(O ̂ (£)('Ka) + s)",

hence a(&; ̂  ^ AJ^^ ) ? a quantity which tends to 0 as n -^ x.

Then ^(a)^^(a) for almost all (e g,.
From the relation

j (W — W) d^(t) == 0, since (^(a) — ^(a)) > 0

almost everywhere, it follows that ^(a) = ̂ (a) for almost
every t.

By passing to the limit, this equality holds at each point of
the compact support of (JL. In other words, ^ is identical with
each ^ for which ( belongs to the support of ;/.. Then pi is a
point mass supported by the representative point of (1 — ^),
contrary to hypothesis.

(2) If E does not possess a largest element, denote by E
the semi-group obtained by adjoining to E an element (o, by
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definition greater than each element of E and such that
a -r co == co for every a e E.

Let a be the set of applications which are alternating of
order x of cX in F^; then obviously, in order that f e a, it is
necessary and sufficient that the restriction of f to E be an
element of ex such that sup f ( x } <^ f ( w ) .

a;eE ^
According to the preceding, the extremal elements of €i

are, within a factor, just the functions (1 —4)? where 4 is an
exponential on E. Now, if 4 is an exponential on E such that
4^1? then m f ^ ( x ) = 0. Also, if 4 is the extension of A

^ . LleE - . ^
to E obtained by setting ^((o) == 0, then 4 is an exponential on
E. Then (1 — 4) is extremal on ex. This implies that (1 — A)
is extremal on a; otherwise (1 — 4) == /\ + f ^ with /\ and f ^ e= a
and /*!, /'2 not proportional to (1 — 4)-

We have sup (1 — ^) == 1 = sup ̂  + sup f , (on E). Then if ^
denotes the extension of /*, to E obtained by setting /*i((o) = sup /*(
on S, we have (l—^) ===/',-[-^ with /\ and /^ecX and /\, ^

/ '" \̂not proportional to [1—^).
Thus the theorem is proved when F == R.

We now suppose F to be arbitrary. Let us prove that each
/== (1—'^)V (y exponential, V extremal on F.J is an extremal
element of a.

Assume that f = /\ + f ^ (/',, f ^ e a).
For any .reE, if f ( x ) == 0, then f , { x ) + f ^ { x ) = 0 , hence

/\(;r)=/^)=0.
If /*(^) =/= 0, (1 — 40 V is extremal on F,, so that f , {x) and ̂  (a?)

are colinear to V. In other words, we may set /*, == o^V
and /*2 = 92^, where <pi and ^ are two real, positive functions $
it follows immediately that <?i and 93 are alternating of order
infinity. But we know that the relation (1—4*) == ?» + ®2
implies that 9, and 9^ are proportional to (1—^)', hence f
is indeed extremal on et.

44.1. REMARK.—When E is idempotent, each exponential ̂
takes only the values 0 and 1, so that the elements (1—4) o^€t

are increasing functions on E (ordered by the convention
that a < b if b = a + c) which take only the values 0 and 1.
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Since E thus ordered is filtering on the right, these functions
are extremal on the cone of real, positive, increasing functions
on E; they are, a fortiori, extremal on the cone ( X .

Thus the proof that the functions (1—^>) are extremal on ex
is very simple in this particular case.

45. Integral representation of the elements of a. — Let us
suppose at first that E has a greatest element co. We suppose
here that F = R. With the notations used above, for each
f e d there exists a measure (^ ̂ t 0 on the compact set of
extremal elements (1 — 'sp) of cl (with ^ =/= 1) such that

f ( x ) = J ( l—^ t (x ) ) du.(t) for every xe. E.

When E does not possess a greatest element, there still is such
a representation whenever the given function f i s bounded on E,
f being considered as the restriction to E of a function defined on
S == (Eri(o).

We shall not consider in the general case, the question of
uniqueness of the measure pi associated with the given /*.

45. 1. The case E == 2\ — We shall assume that E is the
additive set of subsets of a set A, the order on E being inclusion;
assume also that F === R.

The normalized extremal elements of ex are the elementary
alternating functions /r(X) associated with some filter T on A.
We shall use the space U of the ultra-filters on A which has
already been introduced.

With each filter T on E there is associated in U a closed
set that will be denoted by O)(T) or simply by T. Thus

f /Y)- \° if co(T)nco(X)==p/ rnA/"-^ if co(T)n(o(X)^.

With each element f of a there is associated the capacity <p of
order €i^ defined on the set of open and closed subsets of U by
the relation 9((o(X))==/'(X). This capacity 9 can be extended
to the set of all the closed sets of U by setting

^(W) = int ((o(X))
Wc<X)

for each such closed W.



THEORY OF CAPACITIES 259

This extension is equivalent to extending the function f to
the ordered semi-group of all filters on E.

Conversely, each capacity y^O of order <^on 3t(U)
is characterized by its restriction to the set of open and closed
subsets co(X) $ in other words, there corresponds to 9 an element
f of a.

Summarizing, we have established a canonical one-to-one
correspondence between the capacities ̂  0 and of order (X on
^(U) and the functions f ^ O and alternating of order oo on 2^.

The topology of simple convergence on the set of elementary
functions /r(X) is identical with the classical topology on the
space of closed sets T of U. This follows simply from the fact
that such a closed set has a base of neighborhoods consisting of
the sets (o(X).

To each element f of a there corresponds a Radon measure
a ̂  0 on the space 3t(U) such that

/•(X) = y/r(X) rf^(T) for every X (= A,

and, more generally, for each filter on A.
The uniqueness of (JL will be proved later on when we study

capacities of order <£t^ on an arbitrary locally compact space.
Let us add that the topology of simple convergence on a is

identical with the vague topology (which we shall define also)
on the set of capacities y associated with the elements f of a.

45. 2. The case E == R^. Let a be the cone of real
functions ̂ 0 and alternating of order oo on RI. For a given
/edt, if /'((I)) = 0 (where (1) denotes the point each of whose
coordinates is 1) then /*=0 since each f is decreasing and
concave on R"..

Thus for each f=f=0, there is a X > 0 such that X/((l))==l.
In other words, the closed hyperplane /*((!)) = 1 of the vector
space of real functions on R". intersects each ray of a at one and
only one point. Let a, be the set of elements f of a such that
AW)-!.. .

Since F is increasing and concave on R"., each /*<= a, has the
property that f ( x ) < sup [1, ̂ ]. Then a, is compact in the
topology of simple convergence.
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Now the extremal elements of di are the n functions f = Xi
and the normalized functions

l_g-S^

-i-e-^9

where the ^ are ̂  0 or + oc ? smd S(; =/= 0.
It follows that each f e d which is continuous on Rl has

an integral representation of the form

f{x) =a.x+ X +J1^^^^

where (A is a positive measure of finite total mass, on the set
of non-zero vectors ( of R"^.

The functions f ^ d which are not continuous have formally
the same representation but with suitable definitions to take
care of vectors t with infinite coordinates.

When n == 1, this expression can be simplified and can be
written, for every /'<=a, as

/^)=X+p^^d(x(Q,

where pi is supported by the compact [0, + °°]? with the con-
vention that

^_^-tx
———^ ^ when t == 0.

1—e~'

46. Extremal elements of the cone of monotone functions of
order oo on an ordered semi-group. — Let E and F once more be
a semi-group and an ordered vector space respectively, which
have the same properties as in section 43. Denote by «ll) the
convex cone of functions from E to F^. which are monotone of
order oo, (that is, the V« are ±^0)-

For every f e jll, we have Vi(0; a)>0; hence, (/(O)—-/^))^).
Then the function g(x) = f { 0 ) — f ( x ) is >0, and (Vn)^O.
Thus, g is a bounded element of dl.

Conversely, for each bounded element g of el, if ^(oo) denotes
its upper bound, the function /*== g(oo) —g(x ) is an element
of M).

It follows easily that the extremal elements of <ll are the
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functions f = ̂ .V, where ^ is an exponential on E and V an
extremal element of F^.

46. 1. EXAMPLE. — Let E == 2^ be the set of subsets of a
set A, the order on E being the inverse of that defined by
inclusion, and the operation in E being intersection. Let F
be identical with R.

The extremal elements of M) are identical with the functions
/r(X) associated with some filter T on E, where

..Y. \0 if X « T
/r(X)==^ ^ XeT.

46. 2. EXAMPLE. — Let E be the semi-group R^ and F = R.
The non-zero extremal elements are the exponentials ^-te,
where 0^(^ oo.

46. 3. APPLICATION. — The introduction of the topology of
simple convergence on M) leads to applications analogous to
those obtained by considering the cone a. For example
every continuous function f { x ) of the real variable x^O such
that (—W^)^^ toF all x>0, that is, every completely
monotone function of x, has a representation of the form

f(x)=fe-txd^

where a is defined on [0, oo [ and has a finite total mass. This
result is the classical Bernstein theorem.

There exists obviously an analogous representation for
continuous completely monotone functions on R" :

f ^ ^ f e - ^ d ^ d )

where ^ a is positive measure, with a finite total mass, on R^.
Similarly, we could state integral representations for positive

completely monotone functions defined on the open positive
half-line x > 0, or, more generally, on the interior of R". But
these generalizations are merely special cases of a more general
result concerning functions defined on an arbitrary semi-group,
which we shall now study briefly.

47. Alternating or monotone functions of order oo on an arbi-
trary commutative semi-group. — Let E be any commutative
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semi-group, and let F be a vector space satisfying the same
conditions as above. A function f from E to F^ is alterna-
ting (respectively, monotone) of order oo if all its differences
Vn(^5 1^0 are <^ (respectively, > 0) for any x and a, in E.

The convex cone of these functions is again denoted by €L
(respectively Jlib).

If a and b e E, we shall write a ̂  b if a == & or if fc == a-rc.
This relation is reflexive and transitive.

It a^ b and &^a, we shall write a~fc; this relation is an
equivalence relation p compatible with the relation ^.

Moreover, if a~& and a^V then (a-r^Q^^T V).
Then the quotient set E/p is an ordered semi-group in which
the relation x ^ y is equivalent to rp === y or t / = = . r + z ; that
is, it is an ordered semi-group which we shall call regular.

In E, if a ̂  b and if jfea, then f { a ) ^ /'(&); thus if a~&,
/•(a) =/•(&).

Then with the function /* on E there is canonically associated
on E/p a function alternating of order oo. We obtain an
analogous reduction when f e ,AI). Then in studying a and M>
it may always be supposed that E is a regular ordered semi-
group; this assumption will be made henceforth.

If E possesses a neutral element 0, we have 0 ̂  0 -{- x or
0 ^ x for every x. Then this case has been studied in the
preceding.

If not, we may embed E in the semi-group E obtained by
the addition of a neutral element 0 to E such that 0 -^ x for
all x, the study of the elements f of a and Mo associated with
E is then equivalent to the study of functions defined on the
set of non-zero elements of a regular ordered semi-group with
a zero. This remark simplifies sometimes the study of a and «M).

47. 1. DEFINITIONS. — (1) An element a of a regular semi-
group E without 0 is called extremal if the equality a == b 4- c
is impossible.

(2) For every a which is extremal^ the function <pa defined by
^x) =0 if x-=^a and <pa(a) = 1 is called the singular function
with the pole a.

(3) An exponential on E is again a function ^(x) such that
O^^l and ^ (a - r&) = ̂ (a).^(&).
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47. 2. THEOREM. — Lef E be a regular ordered semi-group.
In order that an element f of .Ib be extremal, it is necessary and
sufficient that it be of one of the following forms:

/•=<pV or /•==-^V,

where V is an extremal element of F,, ® a singular function,
and 4' an exponential.

Proof. When E has a zero, no element of E is extremal and
the theorem is a consequence of section 46. We assume
therefore, that E has no zero and suppose that f i s extremal. For
every a <=. E,

f = f i + f » where f , ( x ) = f ( x -r a),
and

A ̂ ) = f ( x ) — f ( x -r a) == \/,(x; a) f .
The functions /", and /', belong to ^o so that
(1) f,(x)=f(x-ra)=\f(x\ where O^X^l.

CASE 1. If there is an a e E such that f ( x -r a) =/= 0, then
\a ̂  0-

Now \,f(x) = V(a); hence, f ( x ) / ^ == f(a)l\ == some V ^ O
Then (1) can be written as V.X,^= X<,.V.X.,; hence,

^rr.^ .̂r for every a such that f [ a -r a;) =^. 0.
But if a such that f { a -r x) = 0, the identity (1) shows

that X, =- 0 and also \,-^ = 0. Then again ̂  = X,X.,.
Thus y = ^V, where -^ is an exponential. If ^V is extremal,

then V is obviously extremal on F^.
Conversely, if ^ is an exponential on E, it is easily verified

that f == ^/V belongs to Jl> for every V e F^.
When, moreover, V is extremal on F^it can be shown as

before, by introducing the topology of simple convergence, that
each f == -W is an extremal element of .ll).

CASE 2. If f ( x -r a) == 0 for every a, /'(a;) is zero at every
non-extremal point of E.

Now every function f from E to F, which is 0 at every
non extremal point of E is an element of ,Al>. For in V(a;; [ a. t ),•
all the terms are zero except possibly the first, f ( x ] , whichis^O.
Then in order for such an/to be extremal, it is necessary "and
sufficient that the set of points x where f { x ) =/: 0 cannot be
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partitioned; in other words, that this set consists of a single
extremal point of E and that the value of f at this point be an
extremal element of F^. Then f = <pV where 9 is a singular
function and V an extremal element of F^.

47. 3. REMARK. — There is an analogous theorem concer-
ning the extremal elements of a.

47. 4. EXAMPLE. — Let E be the additive semi-group of
real numbers rc^a> 0.

The extremal points of E are the points x of the interval [a, 2a[.
It is immediate that an exponential ^ on E other than ^j/^0
is not zero at any point of E ; then Log i f ^ is a positive
linear function on E. Now it is elementary to prove that such
a function has the form tx. Thus, each exponential not '=. 0
on E is of the form e"^.

If we remark, on the other hand, that f ( x + a) ̂  /"(a), then
we deduce that f is bounded on [2a, oo [.

We can then prove easily that for every f e a there exists
a measure a on [0, oo [ such that j e ~at dy. (() <; oo, and a
function s {x) > 0 defined for x ̂  a, with s {x) == 0 for x ̂  2a
such that

f [ x ) == j e~txd^(t)-^-s(x) for every x^>.a.

This result is rather remarkable since it implies that f is
analytic on [2a, -j- oo [ although the conditions \7n ̂ _ 0 imposed
on f have no local interpretation (since the parameters a,
appearing in Vn are all ^a).

An analogous study of the semi-group E of real x > o
(which contains no extremal point) would lead to the classical
representation of positive and completely monotone functions
on ]0, oo [.

48. Vague topology on the cone of increasing functions. —
Let E be a locally compact space and 3 the convex cone of real,
non-negative, and increasing functions f defined on the class
3t(E) of compact subsets of E. We have already introduced
on 3 the topology of simple convergence. However, this
topology is not satisfactory for investigation of the subcone
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of 3 consisting of positive capacities f (that is, the elements f
of 3 which are continuous on the right).

We shall therefore introduce a weaker topology by associating
with each /*€= 3 a suitable functional defined on the convex
cone Q^ of functions <p(a?) defined on E, real and > 0, and 0
outside of a compact set.

48. 1. Functional on Q^ associated with an element /*e3. —
Let f e 3, and let 9 <= Q^. For every number X > 0 let E^ be the
set of points x of E such that y (re) ̂  X.

The set E^ is a compact set which decreases when X increases,
with E^C: support of 9. Then /*(E^) is a positive, bounded
decreasing function of X. Set

f(<p)= j f ( E \ ) d ^ where I((p) is the interval ]0, maxy].

When /*(?) == 0, this integral can be written as?^)=rjw^=-f^df.
In particular, when f is a Radon measure, /*(<?) is simply the
integral j orfa.

48. 2. Immediate properties of the functional /To).
(1) Clearly f(?)>0-
(2) A9i)^/X?2) ^ ?i ̂  ?2 $ m other words, /"(y) is increasing.
(3) For every a^ 0, /'(^y) == ^(9)
But conversely, each functional defined on Q^ and possessing

these three properties is not necessarily the functional associated
with some element f e »1. We shall see later interesting exam-
ples of this fact.

48. 3. Regularization of elements f of 3. — Denote by 3 the
convex cone of functions f associated with elements f e 3.
The mapping f — ^ f o f 3 into 3 is linear. We shall investigate
the inverse image of an element f in this mapping.

For every f e 3, the regularized function associated with f
is the function /',. on 3?(E) defined by

f/K^inf/pC) (K and Xe5i(E)).
KCX
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If W denotes any « proximity » of the uniform structure of
E (associated with any of its compactifications), and if Kvv
denotes the neighborhood of order W of any compact subset
of E, then the above may be written

/•,(K)=lim /*(Kw).
w-^o

This form enables us to show that many properties of f are
preserved by regularization. For example, if f i s sub-additive,
or alternating or monotone of order n or oo, the same is true
Of fr.

It is immediate that f^ is ^> 0, increasing, continuous on
the right, and is the smallest of the functions larger than f and
possessing these properties. In particular, for every f e 3 the
condition f ^ . f r is equivalent to the condition that f be
continuous on the right.

An essential property of regularization is the equality f = f^
for every f e 3.

Indeed, for any X > 0, we have /'fE^^/^E^); and

^(E^AEx,) tor \ < X, since E^ c E^.
Then if we set u\ =f(E\) and u^(X) = /'r(E^), it follows that

Ur(X) == lim sup u(X') or u^(X) = the smallest decreasing func-

tion greater than u(^) and continuous on the left.

Thus f f ( E ^ ) d \ = f f W d ^
The set of elements f of 3 which are continuous on the

right is clearly a convex cone, which will be denoted by 3^.
The preceding shows that the canonical mapping of 3^ into 3
is a mapping onto 3.

Let us show that the canonical mapping f — ^ f of 3r onto 3
is one-to-one.

It is sufficient to show that for every f e 3^. and for every
Ke3t(E), f { K ) may be determined when f is known.

Now let ^{K.) be the characteristic function of K; then
f(K)= inff(y).

^(K)^<?
/-\

Indeed, /*(K) ^/'(<?) for every <p > ^(^)? anc^ smce f ls conti-
nuous on the right, for every s > 0 there is a compact neigh-
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borhood V of K such that (/(V) — /*(K)) < £. Now, since E
is locally compact, there exists a function < p e Q ^ such that
O^o^l, y == 0 outside of V, and 9 == 1 on K.

Then f { ^ ) ^ f { K ) + s? which proves the equality.

48. 4. Vague topology on 3. — The set of elements f of 3
which have the same image /* in 3 is identical with the set of
elements f whose regularized function is the element f r of 3y
which corresponds canonically to /*. In other words, if H^
is the canonical map of 3 onto 3,. and H that of 3 onto 3, then
H = = H o H , .

Let €»s be the topology of simple convergence on 3 and
5s the topology of simple convergence on 3. The inverse

^\ /—N ^

image Sy under H of the simple topology t?s on 3 is called the
vague topology on 3.

In other words, a filter on 3 converges vaguely to an element
/o of 3 whenever, for every © e Q ^ , the values f { ^ ) converge
to /'o(?) relative to this filter.

Or again, for every /*o e= I, a base of vague neighborhoods
of/*o consists of the V(s, (y,)) where this symbol denotes the set
of / e 3 such that

iAy.)—^)!^6 (£^0; 9ie Q^ with ^ e l and ! finite).

The map H of Sy into t3g is continuous by construction. Let
us show that the map H of t5s into Sg is also continuous.

This result follows immediately from the fact that, for every
filter on 3 which converges simply to an element /*o of 3, for
every 9 and every X, the /*(E^) converge to /*o(Ex)$ then if
u(X) == /'(E^), the ?^(X) converge to Uo(V). Now u(X) is decreasing
and thus

Ji^W-Jw^)-
This statement is equivalent to saying that the /'(y) converge to
/".(?)•

The restriction of H to 3,. being a one-to-one map of 3,.
onto 3, H defines a homeomorphism between 3p with the vague
topology and 3 with the simple topology. But it must be
noticed that the restrictions of ©s and of t?v to 3,. are not iden-
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tical (except for very special cases). To prove this statement
it is sufficient to take a sequence /^ of Radon measures on
E == [0, 1] each consisting of a point mass 4- 1 at the point
a?==l/n$ this sequence converges vaguely to /o == the point
mass +1 at x = 0, but it does not converge simply to any
function f ^

The space 3 with the topology t?v is not a Hausdorff space;
the associated Hausdorff quotient space is homeomorphic
with 3 or with 3,. with the vague topology.

It can be proved, but we shall not do so here, that with the
topology Sg, 3^ is everywhere dense in 3; and that, similary,
if a (respectively M) denotes the convex closed subcone of 3
consisting of the alternating (respectively monotone) functions
of order oo, then (3^ fl a) = a (respectively (3,. ft JM)) = M>\

48. 5. Study of the case where E is compact. — For every k > 0,
the set 3(/c) of all those /*e3 for which f { E ) ^ k is obviously
compact with the topology of simple convergence. Thus since
for every f , e 3, the set of those f for which f { E ) ^ 2 f , ( E ) is
obviously a neighborhood of /*o, 3 is locally compact with the
topology of simple convergence.

Now since the mapping H from 63 into Sg is continuous, the
image H(3(/c))is compact; but, since for every/*e 3,/*(E) ==^(1),
the set H(3(/c)) is identical with the set of all those f e ^ for
which /*(1)^^; moreover, every /*o(^0) has as neighborhood
in the topology ®s the set of all those ffor which /tr)^^^!).

Hence, 3 is locally compact.

It follows that 3^ is locally compact in the vague topology.
The same holds for the sub-cones a^ (and M)^) of 3^ consisting
of all positive alternating (monotone) capacities of order a
(JllJ on 3t(E).

In 3, a, and M), the subsets consisting of all functions /*(/*^0)
which take no values other than 0 and 1 are obviously compact
(since f { E ) = 1); the same is true for the canonical image of
these sets into 3 ,̂ €L^ and M^. Now, if/ 'e3, and if/* takes
no values other than 0 or 1, the same holds for the regularized /*,..

Thus, since these functions are the same, within a constant
factor, as the normalized extremal elements of 3^, a^ and M\,
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those sets e(3^), e(<^r)? e{M)^) are compact in the topology of
vague convergence.

48. 6. Study of the case where E is locally compact. — The
topology ©s on ^ is not locally compact in this case, but it is
easily shown that 3 is complete under the uniform structure
associated with the topology of simple convergence. The
same is true for the closed sub-cones <fl and ^llo.

Likewise, 3^ (ft,, and M)^ are complete under the uniform
structure associated with the topology of vague convergence.

It may be useful to remark that, for every /*o e 3, the set
of all f ^ f o is compact under the topology of simple conver-
gence. (The same holds for a and JL). This would still be
true if /*„ were replaced by an arbitrary non-negative function
defined on 3t(E).

The same is true on 3,. (also on cz^ and ^) with the vague
topology.

The following is another restriction which leads to compact
sets.

Let us set /*($) = sup /Y®) (9 e Q^) for every real-valued
?^<f>

non-negative function <I> which is continuous on E. Then the
set of all f e 3 for which /'($) ̂  k is compact in the topology
of simple convergence, for every constant k > 0. (The same
holds for cl and M)).

The above proposition holds also on 3^ (and cx^ M)^) with the
vague topology.

48. 7. Extension of f { ( p ) to non-negative, upper semi-continuous
functions which vanish on the complement of a compact set. — We
have associated /*(y), defined on Q^., with every f e d .

Let us designate by SS^ the set of all positive upper semi-
continuous real-valued functions ^(x) defined on E which
vanish outside of some compact set.

Furthermore, for each cpo^SS^, set

f(y,)=inf/-(9) (y^QJ.
/o^y

The notation /"(yo) 1s consistent since, if <po €= Q+? the extended
function f takes the same value as the function which was
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originally defined on Q,.. Thus, we have indeed obtained
an extension of f .

We shall henceforth assume that f is continuous on the
right, that is, /*e^$ in other words we shall assume that f is
a positive capacity on 3?(E). Then we have f ( ^ ) = /^(o) whene-
ver <p is the characteristic function of a compact set.

More generally, it is easily verified that, for every G^eSS,.,

A?)=^/(Ex)dX,

where E^ again denotes the compact set of all points x for
which 9(^)^X.

The lower integral of every positive function defined on E
(relative to f ) can then be defined by the classical procedure.

In particular, this lower integral is defined for every positive
lower semi-continuous function defined on E. The upper inte-
gral of every positive function y on E can then be defined as
the infimum of the upper integrals of all lower semi-conti-
nuous functions greater than y on E.

Hence we have a concept of a capacitable function. It
would not be very difficult to extend this concept to functions
of arbitrary sign on E.

In order to obtain significant theorems, it would be necessary
to place certain restrictions on the function /*, such as, for
instance, that f be alternating of order 2.

49. Integral representation of the non-negative capacities of
order a^ on 3i'(E). — We make the initial assumption that E
is a compact space. The cone a^ of all positive capacities of
order a^ on ^(E) is therefore locally compact in the vague
topology, and the set of its normalized extremal elements is
compact. Let us recall that these normalized extremal
elements are the functions /r(X) defined by

/ • / v \ _ \ 0 for X n T = = = ^ , where T is an arbitrary
/ T V ^(i for XDT^ compact subset of E.

Let 6,. be the set of these elements /r(X) (§,. c a,.).
The vague topology on S>r (distinct from the topology 6^

even on this subset of dr), which may be considered as a
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topology on the set of all elements T of ^(E), is identical
with the classical topology of 3((E).

For we have for every T e 3t(E), and each 9 e Q^,

/r(9) === max (9) on T.

It follows immediately that for every filter on 3t(E) which
converges to T,, in the classical topology, /r(9) converges for
every 9 to 7To(?)-

Conversely, assume that for some filter on n?(E) the /r(9)
converge to /i (9), and that (co,) is a finite covering of To by
open sets each of which meets To.

There exists 90 e Q^ with O^yo^l? snc^ lhat 90 == 1 ̂ n

L ( I k 0 0 ' ) ) an<^ ?o =: ̂  on ^o- For every i, there exists 9» e Q^»
with 0^9,^1, such that y ,===0 on L (o^) and max (y.) on
To is 1.

Hence there exists a set belonging to the given filter such
that every element T of this set is contained in M ((o») and meets
each (0,. Thus this filter converges to To in the classical
sense.

Hence, in view of the general theorem (see 39. 4.) there
exists for every f <= dy a non-negative Radon measure [M on
:K(E) such that

f ^ ) = f f ^ } d ^ ( T ) for every y e Q , .

This formula may be extended to every <po e SS^. For, such a
<po is the limit of a decreasing filtering set of functions <p e Q^..
Hence, /*(yo) ls ^e limit of the ^(9) with respect to this filte-
ring set. On the other hand, /r(9o) == (max (90) on T) is the limit
of (max (9) on T) with respect to this filtering set. This
function/r(9o) is upper semi-continuous on^(E), and its inte-
gral f f T ^ d ^ C T ) is indeed the limit of f f i ^ ) d [ L { T ) .

In particular, if for 9 we choose the characteristic function
of a compact set XdE, then

f { X } = /l/l^(X)dut.(T) for every compact set XC: E.

In other words, /\X) is the pi-measure of the set of all compact
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sets T which meet X. Thus, the capacity /'(X) may be obtained
from the fundamental scheme (E, F, A, a), where E is the
given space, F == X(E) with the classical topology, A is the
set of all points (.r, X) of (E X F) for which x e X, and y. is
the Radon measure on 3t(E) which we have introduced above.

We had previously established that the set functions obtained
from a Radon measure by means of a finite number of U-ho-
momorphisms are capacities of order (X^. We have now pro-
ved the converse.

More precisely, we can state the following theorem.

49. 1. THEOREM. — Suppose that A) is the smallest class of
all real-valued functions f each of which is defined on the set X(E)
of all compact subsets of some compact space E, such that the fol-
lowing conditions are satisfied:

(1) A) contains every non-negative Radon measure defined on
any compact space E.

(2) I f E and F are two compact spaces^ if Y == <p(X) is a
U -homomorphism which is continuous on the right from 3t(E)
into 3t(F), and i f f e Jb is defined on 3t(F), then we have ^(X) e Jl>
where e(X) is the function defined on 3t(X) by e(X.) ===/*(^(X)).

This class Jb is identical with the class of all positive capacities
of order €i^ defined on the sets X(E) relative to any compact
space E.

49. 2. Probabilistic interpretation of this result. — We have
already, in particular cases, interpreted the scheme (E, F, A, a)
as a probabilistic scheme.

More generally, let such a scheme be given, in which E and
F are two abstract sets, a a simply additive positive measure
defined on an algebra 9^ of subsets of F with a(F) = 1; and
let us denote by 8 an additive class of subsets of E such that
for each X e 8 the set Y == 4'(X) obtained from X by means of
the construction of 26. 8, Chapter v, belongs to «%.

We know that the function /'(X) == pL(Y) is alternating of
order oo on 3L

Now let us consider UL as an elementary probability on the
set F of events. Let us consider E as another set of events,
and A as the set of all favorable encounters (x, y) with x e E and
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y e F. Then /'(X) is obviously the probability that such a
favorable encounter occurs at least once on the subset Xc E.

Conversely, the preceding theorem shows that, if sufficient
conditions of regularity are imposed on E, 6, f (compactness,
continuity on the right), then every positive function of X
which is alternating of order infinity expresses the probability
that a favorable event occurs at least once on X.

Actually, the regularity need not be of such strong form.
And the fact that the set of all non-negative functions which
are alternating of order infinity on an additive class of sets has,
as extremal elements, functions whose values are 0 and 1,
shows that one could certainly always interpret such a function
as a probability; but it would undoubtedly be necessary in
this case to generalize the notion of additive measure [JL
on F.

Whenever one can prove that any function defined on the set
3t(E) of compact subsets of a compact space is a positive
capacity of order d^, one is sure that it could be interpreted
in terms of probabilities.

In the most interesting cases (such as the theory of poten-
tial), the space E is not in general compact, but only locally
compact, and the function f i s not bounded from above; hence
it is not possible to give a direct probabilistic interpretation
of/.

However, the brief study of the case where E is locally
compact which follows in section 49. 5. will show that the fun-
damental scheme still exists in this case, and that it is therefore
possible to give « locally » an interpretation of f in terms of
probability theory. If in particular f is bounded on .^(E),
then it is sufficient to divide /*by sup f i n order to obtain the
desired probabilistic interpretation.

49. 3. EXAMPLE. — If E is a Greenian domain in the space
R" and P a fixed point of D, we denote by /*(X) the harmonic
measure, for the domain (D — X), of the compact subset X
of D with respect to the point P. (jf(X) ==1 if P e X).

We know (26. 12, Chapter v) that /*(X) is a capacity of
order a^ on ^(E), and that O^/^l. Hence f must admit
an interpretation in terms of probability. That interpretation
is known (see Kac [1 and 2]); /*(X) is the probability that a
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particle issuing from P and undergoing a Brownian motion
will meet X at least once before it meets the boundary of D.

The support of the measure .̂ is in this case the set of all
supports of Brownian trajectories issuing from P and contained
in D.

In this particular case /'(X) can be extended to the set of all
compact subsets of the boundary of D; its restriction to the
set of these compact sets is then a Radon measure, which is
identical with the ordinary harmonic measure. Obviously, the
boundary can be topologized by various topologies which lead
to diverse harmonic measures used in modern potential theory :
ramified, geodesic, and Greenian measures (see Brelot and
Choquet [1]).

49. 4. EXAMPLE. — The Newtonian or Greenian capacity
F(X) of a compact subset X of a domain E admits a less
simple interpretation; this situation is due to the fact that
f { X ) is not bounded on X{E) (see Kac [2]).

49. 5. Integral representation in the case where E is locally
compact. — Suppose that the space E is locally compact,
but not compact, and that E is the compact space obtained
from E by adjoining the point co. The locally compact
topological space [.Tt(E)— t^H? where ^ is the element
of .'K(E) consisting of the simple point co, is isomorphic
with the set ^(E) of all non-empty subsets of E with a
suitable topology. When we shall talk of ^(E), it will be
understood that that topology has been placed on .^(E).

We have already shown that the extremal elements of the
cone ex,, of the capacities of order a^ on <Tt(E) are the func-
tions /r(X), where T is a non-empty closed subset of E, with

^0 if (TOX)-p
r^i-)i if (TDX)^.

For every f e d,. and each compact set Kc E, let us denote
by /K the capacity defined on 3t(E) by fv,(X) = f ( X f1 K).

There exists a measure a^ defined on the compact subset
3?(K) of ;?(E) and corresponding to fs., such that

/•^(X) = f f . , { X n K)<^K(T) = f f ^ X ) d ^ ( T ) .
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Using the facts that ^(X) ̂  f { X ) and that f { X ) = lim/K(X)
with respect to the set, filtering on the right, of all compacts
K, one can show that the measures OK converge vaguely,
with respect to this same filtering set, to a measure a on ^(E),
and that

f ( X ) == y/r(X)rf(JL(T), for every X e X(E).

We have again in this case, for every <p e SS^,

A?)-/^?)^^).
The relation / dy.^ oo holds if and only if f is bounded; in this
case the preceding formula is valid for every upper semi-
continuous non-negative <p on E.

50. Integral representation of the non-negative capacities of
order .Kfc^ on .^(E). Uniqueness of this representation. — The
reasoning and the results in this case are closely analogous
to those pertaining to the capacities of order d^ $ when E is
locally compact, the proof and results are even simpler than in
the case of the capacities of order Qi^.

Let us first suppose that E is compact. The extremal ele-
ments of M,. are the functions /r(X) (where T is a compact
subset of E) defined by

.,^ \Q if Tcl:X,A(X)=^ ^ ^^

For every f e .11̂ , there exists a measure ;-<.^0 on 3i(E)
such that

f ( ^ ) === / / r(9) d^ (T) for every 9 e SS^.

In particular, if we take for o the characteristic function of
a compact subset Xc E, we see that /'(X) is the a-measure
of the set of all T for which Tc: X.

Hence the following geometrical interpretation: 3t(E) is a
compact space, ordered by inclusion. For each Xe3t(E),
the set of all Tc X is a compact subset of 3t(E); we shall call
this set the negative cone with vertex X in X(E).

For every ̂ e^ there exists a measure ^^0 on3t(E) such
that we have, for every X <= X(E).

/'(X) = the ui-measure of the negative cone of vertex X.
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We have thus in a particular case a new proof of a general
theorem obtained by A. Revuz [3], which furnishes a simple
integral representation of all «totally monotone » functions
defined on a partially ordered set S (here S=^(E)), when cer-
tain conditions of regularity are satisfied.

The functions studied by A. Revuz are identical with the
functions monotone of order oo (^/n^O), defined on a semi-
group consisting of an ordered set S on which the semi-group
operation is the operation {a^b) which is assumed to be
always possible.

The general theorem of section 47. 2. shows that the cone of
these functions admits as its only extremal elements exponen-
tials (which take no values other than 0 and 1, since the semi-
group is idempotent), because there are no extremal elements
in S (we have x = x ̂ x for every x\

Now the set of all points x in S where a given exponential ̂  (x)
takes the value 1 is invariant under the operation ^, and it is
hereditary on the left; conversely, one may associate with each
subset of S having these properties an exponential whose value
is 1 on that subset and 0 elsewhere.

It can thus be foreseen that, if every negative cone of S is
compact, then it is possible to associate with each exponential ^
a point P(^) of S such that ^{x) equals 1 or 0 according as
x^P(^) or not.

It follows that in cases of sufficient regularity there exists
a representation of totally monotone functions f on S by means
of measures pi ̂ 0 defined on S and such that:
f ^ == the pi-measure of the negative cone with vertex x.

The very subtle analysis undertaken by A. Revuz enables
him to show the uniqueness of that measure pi in general cases.

In particular, this measure is unique when S is the ordered
set ^(E) associated with the compact space E, in other words,
if we are dealing with capacities of order M^ on 3?(E).

This uniqueness makes it possible to extend these results imme-
diately to the case where E is an arbitrary Hausdorff space.

More precisely, we have the following theorem.

50. 1. THEOREM. — I f E is an arbitrary Hausdorff space^
and f a non-negative capacity of order M^ on 3^(E), then there
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exists one, and only one, generalized, non-negative Radon
measure m. (see 26. 6, Chapter v) defined on »Tt(E) with the classical
topology such that, for every compact set X C: E, /*(X) is the [^-mea-
sure of the compact negative cone of vertex X in ^(E).

To prove this extension, it is sufficient to observe that, for
every compact set Xc: E, the restriction of/*to <Tt(X) is asso-
ciated with a Radon measure whose support is »^(X), and that,
if X,c: Xg, then the measures thus associated with Xi and Xg are
compatible on »^(Xi) because of the uniqueness of these
measures.

50. 2. Probabilistic interpretation of the elements f of Jbr- —
We have already remarked that the probability /*that a favo-
rable event occurs at least once on a set X C E is a function
of X which is alternating of order oo; thus, the function

g ( X ) = = l — / \ t ( X ) ^ , which expresses the probability that
this favorable event occurs never on the complement of X,
is a function which is monotone of order oo.

Conversely, the above result shows that, under the condi-
tions of regularity which we have indicated, and if, moreover,
E is compact and /'(E) == 1, then each function /*(X) which is
monotone of order oo expresses the probability that some favo-
rable event never occurs on the complement of X.

51. Uniqueness of the representation of a non-negative capacity
of order a^ on 3t(E). — Suppose that E is compact, and that
f is a non-negative capacity of order a^ on 3t(E), and let [JL be
one of the Radon measures on X(E) associated with /*.

Let /*, of order ̂ ^, be the conjugate capacity of f (see 15. 6.
Chapter in).

If we set g == /'(E) + f , then the capacity g is non-negative
and of order .M)̂  ; hence, a uniquely determined Radon
measure ^^0 on 3!(E) is associated with g.

Now for every compact set Xc: E we have
/*(X)==the pi-measure of the set of all T such that XflT^O;

hence : g(X) = f{E) + f(X) = f(E) - f{E - X)

is the pi-measure of the set of all T which do not meet (E — X)
and which are therefore contained in X.
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Since v is unique, we have a ̂  v, hence the following
theorem.

51. 1. THEOREM. — For every non-negative capacity f of
order a^ on3?(E), where E is compact, the measure (JL on 3t(E)
associated with f is unique; furthermore^ if v denotes the measure
on 3?(E) associated with the non-negative capacity g of order M^^y
defined by g == /*(E) + A then we have p. ̂  v.

We remark, without giving the proof, that this result can
be extended to the case where E is locally compact^ in the
following form:

(1) (Ji is unique'^
(2) (JL=V whenever g = (/*(E)+/") is defined^ that is,

whenever f is bounded.
When f is not bounded it is still possible to define a function

g associated with f by using the following definition:

g(X) == the pi-measure of the set of all TC: X.
It can be shown that g(X) is the limit, as K tends to D, of the
functions

§K(X) =-- /-(K) + /K(X) == /(X) -f(K- X).

For example, suppose that jfis the Greenian capacity relative
to a domain D; it can be easily shown that, for every X, we
have

[ f ( K ) — f { K — X ) ] - ^ 0 as K—D.

It follows that g(X) ̂  0; this tact implies that the measure a
on ^(E) has as its support the set of those closed subsets of D
which are not compact.

^~s .̂ -̂

52. Functional study of the elements of a and tAl. — We have
defined, for every f e3 and for every y e Q^,

fw-f^fw^
As we know, it follows that f is positive, increasing, and
positively homogeneous.

We now seek to establish what can be said about f when
certain restrictive hypotheses are placed on /, such as, for
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instance, that /'be sub-additive, or that f belong to <^, or that
f belong to M)^.

Let (E X R) be the product of E and the real axis; and for
every 9 e Q^ define [y] as the set of all points {xy y ) in
(E X R) such that t/^y(^). Furthermore, let (X) be the set of
all points (rr, y) in (E X R) such that y ̂  X. We have,
obviously,

Ex=prE([9]ITO)).

Now the following two relations are true :

[?i - 92] ̂  [?J u [92], [?i - 92] == [yj n [̂ L
where ̂  and ^ denote the operations sup and int on the <p.

These formulas make it possible to transform every relation
satisfied by /, which involves no operations other than inter-
section and union, into a relation satisfied by/*(E^) and involving
the operations ̂  and ^ on the <p.

If these relations are linear, then it is possible to integrate
and to obtain relations satisfied by /*. If, in particular, f is
sub-additive, then

Api-y^ ATO+/W
If /*eeX^5 then f is alternating of order oo on Q^. (relative to
the operation ̂  on Q.J.

^—s

It j f 6 ^^? then f is monotone of order oo on Q^. (relative to
the operation ̂  on Q^..

But it is not true that every functional on Q^ which is non-
negative and increasing, and which satisfies one of the three
preceding conditions is identical with the f associated with
an f e . 3, where f i s respectively sub-additive, of order €i^ orJib^.

This will be shown by examples, in which we shall choose
E such that E == 2.

52. 1. Study of an example. — Let the points of E be ^
and x^ Every function <p e Q^ is defined by its values
Vi=^{Xi) ( i== l ,2 ) . Thus Q,. is isomorphic to the ordered
cone R^ of all couples (1/1,1/2). Every f e ; ) such that f ( ^ ) = 0
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is characterized by the three values f { x ^ f ( x ^ ) ^ and f ( x ^ x^).
To say that /*e= 3 is the same as saying

/^)>0, /^)>0,
/*(^, ^)>sup(/'(^), y^)).

To say that /*<=a is the same as saying

/^)>o, A^)>o,
sup(/(^), f { x , ) ) ^ f ( x ^ x , ) ^ f ( x , } + f ( x ^ .

To say that /'e.ll is the same as saying
A^)>o, /•(^)>o,
f{xi)+f{x^^f{x^ ^2).

In each of these three cases, the function /'((?) == f ( y ^ y ^ ) is a
linear function in each of the regions yi^y^y^,y\\ it is
defined by its values on the lines y^ = 0, y^ =-- 0, y, == y^ and
so it depends upon three parameters.

Each function which is not of this type cannot belong to .1.
The following are three such functions on R\ which are more-
over increasing and positively homogeneous and respectively
alternating of order oc for the operation ^ and monotone of
order oc for the operation ^ :

^_+^+y2, g=-JQi_ or g={xyr\
8" x+y ° x+y ° v -

53. Definition and properties of the classes I, A, M. — Let E
be locally compact. We denote by I the cone of the functions f { ^ }
defined on the lattice cone Q^ w-hich are (a) positive,
(b) increasing, and (c) positively homogeneous.

We denote by A (respectively M) the subcone of I made up
of the functions on Q^ which are alternating of order x for
the operation ̂  (monotone of order oo for the operation ^).

We know already that^C:!; OC;A; .ticM. When E is
compact, these cones I, A, M, are locally compact under the
topology of simple convergence.

We can easily extend the definition of each f belonging to
one of these classes to the lattice cone SS,., with preservation
of the functional properties of /*.

We shall now state without proof several results about the
structure of these cones.
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53. 1. Extremal elements of A. — The extremal elements of
A are the functions /*^0, positively homogeneous on Q^, and
such that

(A?i) - /•(?.)) =^ (Ayi - ̂  = A?0 = Ay.))-
An equivalent condition to this is the following:

Ayi-y^sup^yO, /•(y^)).
It is immediate that each such function belongs to A, and

that it is an extremal element of this cone. The converse is a
little more difficult.

These extremal elements can still be characterized in an-
other way. Let (;ri)iei be an arbitrary family of points of E, and
let (^)(6i be some constants >0. The f unction /i (y )== sup X,y(^),

which is assumed << + oo tor each <p, is an extremal element;
and conversely each extremal element is of this form.

This last formula can also be written as

/^(9)=max(y0r).$(ri0),
a-eE

where ^ {x) is any function ^>_ 0 and upper semi-continuous on
E. There is a one-to-one correspondence between the extremal
elements of A and the functions $ to which they are associated.

For example, if <!>==!, f ^ { x ) is the ordinary norm on Q^.

When E is compact, it is immediate that each f e A admits
an integral representation such that

M == f/4>(?) d^} for each y e SS,,

where [JL is a measure on the compact set of all $ normalized by
the condition

/^(1)==1 or max($(rc))==l.

The topology on the set of these $ is by definition the
topology of simple convergence on the corresponding f ^ .
This topology can be interpreted as follows: each <? is repre-
sented in E X R by the compact set [^] of points {x, y )
where O^y^^^). The set of these [<&] is a compact subset
of the space ^?(E X R) of subcompacts of E X R. The topo-
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logy thus induced on the set of normalized <1> is identical
with the preceding topology.

The measure pi associated to each f e A is unique.

Example of elements of A:

/Y^ — I f^^T^ ^foreach a > 1 and
/ V T / ~" U y av I ?each measure v>0 on E.

53. 2. Extremal elements of M. — We obtain a characteri-
zation of the extremal elements of M analogous with the
preceding by changing the operation ̂  to ̂  and sup to inf.

We can write them in the form

^(y) ==inf \.y(^).
i€l

(We will have f =^= 0 only if the (^)»ei are taken on a compact
set.)

Or else, by designating by ^ an element of SS^ (hence zero
outside of a compact),
/^(<p) == max. of numbers k ̂  0 such that k^ (x) ̂  y {x} for each
x e E, which amounts to saying that

r i \ • ^(x}^^w
with the convention

iM
W

4- <» when ip(a;) == 0.

There is a one-to-one correspondence between the ^ e SS .̂
and the extreme elements of M.

For example, if E is compact and if ^= 1, we obtain
/4, == minimum of 9 on E.

Example of an element of M.

f W - [ f ^ d ^

for each a ===. 1/p with p a positive integer, and for each
v^rtO on E.

The normalized set (by max ^ == 1) of ^ e SS^ is locally
compact by the topology of simple convergence on the corres-
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ponding f . For each f e M there exists on this set one and
only one measure pi such that

/"((p) === f f ^ ( f } d y . ( ^ ) for each 9 e SS^.

In other words
Ay)=,/^

where m/ is the product of a with the function of ^ : min ( -j^ )

which is =7^= 0 only when ^ has its support contained in the
support of ©.

Let us remark that, since f ( f ) is a function ̂ 0, monotone
of order oo and continuous on the right on the lattice SS^.,
there exists, according to the theorem of A. Revuz mentioned
previously, one measure v ̂  0 and only one on the locally
compact space SS^ such that

^((p) === ^-measure of the set of <p' ̂  cp.
The measure a is obtained from v by the following relation :

a(A) = .(B)
where A is an arbitrary compact subset of the set of normalized
f^ and B is the set of ^' e SS^ of the form

'V = H where 0 ̂  6 ̂  1 and ^ e A.

Conversely, v is also determined as soon as a is known.

53. 3. Extremal elements of A ft M. — The elements f of
A n M are characterized by the following relations :

(a) /^O;
(b) A^)=V(y) for ^o,
(c) f(^ - ̂ ) + /-(9, - 9,) == /•(9,) + /(9,).

The extremal elements of the cone A ft M are, up to a constant
factor, the f a { ^ ) == ^{a}^ where a e E.

For each f e A n M there exists a unique measure a ̂  0 on E
such that

/•(?)=//«(?) dy.(a)==J'\(a)dy..
In other words, the cone A DM is identical with the cone

of Radon measures on E.
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53. 4. Study of the cone I. — We want to show that the
elements of I are closely related to the elements of A and M and
more precisely with extreme elements of these cones.

53. 5. THEOREM. — (a) The superior envelope (supposed
finite) and the inferior envelope of any family of functions f { < f )
belonging to I also belongs to I.

(&) Any element of I is the superior (inferior) envelope of
a family of extremal elements of M (respectively A).

Proof, (a) The first part of the theorem is immediate since
homogeneity and monotony are preserved by the operations
sup and inf.

{b) Now let /*<= I; for each 90 e Q-. where 9o^=0, the function

'̂-K^)
with the convention of section 53. 2. is an extremal element of
M; the same is true of

^-/W^?)-
Now, /^^Ayo)/^?) for each ?• In fact? i f we set

^=/?o(y)=min(^}
\yo/

we have 9 ̂  X^o and hence f { ^ ) ̂  X/*(9o),which is exactly the
required relation.

Hence, not only is f ( f ) the superior envelope of a family
of extremal elements of M, but for each 90 there is one of these
elements, namely f { ^ } f ^ ) , which is equal to f { ^ } for 9 == 9o.

(c) For each £ > 0 and for each 9 o ^ Q ^ (with 9o^=0),
let £ (re) be a continuous positive function on E such that
t(x) ̂  £ and let 9^ === sup (90, £(^)).

Let us show that

where

/•(y)^max(^-y(9.),
\ * 6 /

f { ^ ) = sup f {9 ' ) for all a' ̂  ?e-
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In fact, if

^ == max ( -z-.)?
\ ?.7

we have y ̂  Xyg and so /'(y) ̂  ̂ /"(pe) ^ich is exactly the
required equality.

Now if e is small enough,

hence,

maxf^==l;vye /

max (-F-). /'(9s),
\re/

which is an extremal element of A, takes the value f ( f ^ ) for
y = ?o.

Hence, if for each y^ and each £ we can choose t{x} such
that (/((pe)—A?o)) ls arbitrarily small—a restriction that we
have not indicated in the wording of the theorem in order not to
complicate it — we have proved the last part of the theorem.

This restriction, in the case where E is compact, concerns
only functions 9 which can take zero values on E; it is equi-
valent in a way to the continuity on the right of /'. Note here
that when E is compact, or more generally when E is the denu-
merable union of compacts, this restrictive condition is satis-
fied for each / e l which is sub-additive (for the operation ^-),
for example for each f e A.

53. 6. Extremal elements of I. — When E is finite, we can
give a complete characterization of the extremal elements of I.
The study of an /*, f = f ( y ^ 1/2,. .. Vn), of I amounts indeed to
the study of its trace on the simplex o- defined by yi^Q and
2y, == 1. This trace is locally Lipschitzian on the interior of
the simplex; in order that this be the trace of an extremal /*, it
is necessary and sufficient that almost everywhere the graph of
this trace has a tangent hyperplane which passes through
any one of the n faces of the simplex.

For example, and this is valid for any space E, each f which
is the superior or inferior envelope of a finite family of ele-
ments of A or M is an extremal element of I. From this it
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follows that the set of extremal elements of I is everywhere
dense on I.

53. 7. Primitive elements of I and the operations sup, inf,
and |. — Let us call each multiple \fa (where A > 0) of
the function f a { < f ) = y (a) a primitive element of I.

The preceding shows that we can generate A, M, A DM,
and I by starting from the primitive elements and applying the
following operations: superior envelope and inferior enve-
lope of a family of functions f , and the operation f f t da ((),
where a is a non-negative measure on a set of elements of I.

More precisely, let ^ be the class of primitive elements
(which are indeed the extremal elements of A D M).

The class ^sup of elements obtained from ^ by the operation
sup is made up of the extremal elements of A.

The class ^inf, is made up of the extremal elements of M.

The class ^is identical with AOM.
The classes £,up, inf and 2^ .up are identical to I.

The classes S ^ and ^ /<are identical respectively to A
and M. ' '

One could show that the class £. ̂  / S, . A is identical to
the class of positive, increasing, positively homogeneous and
V-sub-additive (V-super-additive) (4) functions defined on Q^.
It would be interesting to characterize also these classes in
terms of the operations ^ and ^.

For example, we can see easily that if jfe S p, we always
have

^(Pl ̂  ?2 ̂  ?3) ̂ A?l^ ?2) + /'(?2 —— ?3) + APS ̂  ?0

as well as other inequalities of the same type.

Let us add that we cannot form, with our three operations,
classes other than those which we have pointed out above.

(1) For the definition, see section 54.
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53. 8. REMARK. — We obtain an analogous classification
of the positive and increasing set functions by using the ope-
rations sup, inf, and f .

For example, if we consider the functions /*(X) defined on
the set 216 of all subsets of a set E, the primitive functions are
the functions /u(X), where u is an ultra-filter on E, with

p ,-y. _ ^ 1 if X e ultra-filter u,
TuW—^Q otherwise.

Our three operations lead to the classes difUl), a, M), 3,
and to other classes which we have not studied.

Various problems related to these operations could be consi-
dered. For example, if we apply the operation sup or inf to
a family of positive capacities on the set A'(E) (where E is
compact), for which the K-borelian sets are capacitable, to
what extent is it the same for the function thus obtained?

54. Relation between the alternating functions of order 2 and
the pseudo-norms. — Let us first prove a lemma relative to
the V-sub-additive or V-super-additive functions on a cone.

Let (5 be a lattice cone, that is, a convex cone such that
its natural order structure is a lattice structure.

A real function f on ^ is called V-sub-additive (V-super-
additive) if

(a) f { A x ) = \ f ( x ) for each X ^ t O ;
W f ^ + b ) ^ f { a ) + f { b ) ,

(respectively f ( a + b) ̂  f { a ) + f ( b ) ) .

54. 1. THEOREM. — If the function f on (° is positively
homogeneous and if it satisfies

(1) f [ c ^ b ) + f ( a ^ b ) ^ f ( a ) ^ f { b )
or

(2) f { ^ b ) + f ( a ^ b ) > f { a } 4- f W ,
then f is respectively V-sub-additive or V-super-additive.

Proof. The proof is based on the proof of the special case
where (° is finite dimensional (hence isomorphic to R"), and
where f possesses continuous second derivatives for x -=f=- 0.

Let f { x ) =f{x,, ..., x^).
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If a={(x,+h,), x^ .... x,\,
b = \x,, (x, + h,), ..., {xn + M» where h^ 0,

we have
a^6= (x,+hi)},
a^b= (x,)}.

When A, -^ 0, condition (1) implies that

2>A/^0;
hence,

/L^O for î :l,
and, more generally,

^^ ̂  0 f011 ^ ^= / •
Now since /'is homogeneous of order 1, we have

S ̂ fxixj = 0, for each i.

Therefore the terms F of second degree in the development of f
in the neighborhood of the point x satisfy

2F=S-^-.^[^-^^2^0.i^j L ̂  x! -J —
It follows that /'is locally convex on 6 and hence also globally,
and this is known to be equivalent to saying that f is V-sub-
additive. For the V-super-additivity, it is sufficient to change
f into — /*.

Let us notice that the converse of that theorem is false.
For example, in C = R^, the function

^ ^+y)
x-\-y +z

is V-super-additive (and it is increasing also), but it does not
satisfy the inequality (2). The function

f-^zy-+-^x+y
is V-sub-additive and increasing, but it does not satisfy the
inequality (1).

In order to verify this, it is sufficient to take a = (0, 1, 1)
and b = (1, 0, 1).
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54. 2. APPLICATION. — Let E be a locally compact space, f
an element of ^, and f t h e function on Q^ which is associated
to it. Recall that 7 is said to be a pseudo-norm on Q,. if we have

(i) f(?i+?.)^7(?o+7(?2).
THEOREM. — In order that f be a pseudo-norm on Q^, it is

necessary and sufficient that f be an alternating capacity of
order dig.

Proof. Since f is increasing, it is equivalent to say that f
is alternating of order dig or to ^y ̂ at we have

/•(x, ux,) + /•(X, n x,) ̂ /(xo + AX.).
Now this relation is equivalent to

7(?i - ?2)+7(?i - ?.) ̂  A?i) + 7(?.)-
According to the preceding theorem this relation implies that f
is a pseudo-norm. Conversely, let us assume that f i s a pseudo-
norm. It is immediate that the relation (1) above can be
extended to the functions 9 e SS^. Therefore, if 91 and 93 are
the characteristic functions of the compacts Xi and Xg, we
have

f(?i + ?.) ̂ 7(?i) + A?.) == AXO + /TO.
Now (9, + 9,) == 2 on (X, H X,), is > 1 on X, U X^ and = 0
elsewhere. Hence by using the definition of section 48. 1.:

7(?i + ?.) =AX. u x,) + AX, n x,).
The desired relation follows immediately.

In the same way, we could prove that in order for a positive
capacity f to be monotone of order <Aba, it is necessary and suffi-
cient that the associated function f satisfy the relation

A?i+?.)^A?0+A?.).
An immediate application of this theorem is the following:
If a capacity f is only sub-additive, its extension f is not

necessarily a pseudo-norm.
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