IBRAHIM DIBAG Decomposition in the large of two-forms of constant rank

Annales de l'institut Fourier, tome 24, nº 3 (1974), p. 317-335 http://www.numdam.org/item?id=AIF 1974 24 3 317 0>

© Annales de l'institut Fourier, 1974, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DECOMPOSITION IN THE LARGE OF TWO-FORMS OF CONSTANT RANK

by Ibrahim DIBAG

0. Introduction.

"Whether a vector-bundle admits a 2-form of constant rank" has been an important question in algebraic topology; and a good deal of research (4, 5, 10) has been done on the subject. In this thesis we shall take, apriori, a vector-bundle that does admit such a 2-form, w, of constant rank 2s. We shall then show that, w, locally decomposes into a sum: $w = y_1 \wedge y_{s+1} + y_2 \wedge y_{s+2} + \cdots + y_s \wedge y_{2s}$ of products of linearly-independent 1-forms (y_i) on E. The main task of the thesis is to find necessary and sufficient conditions for, w, to have a global such decomposition.

We shall define a 2s-dimensional sub-bundle S_w of E on which, w, can be regarded as a 2-form of maximal rank; and a necessary condition for, w, to decompose globally is that S_w is a trivial (product) bundle.

Using the triviality of S_w we shall represent w, as a map w_1 : $B \rightarrow I_s$; where B is the base-space, and $I_s = SO(2s)/U(s)$ is the homogenous space; and, w, decomposes globally if and only if w_1 lifts to SO(2s).

We shall then investigate the integer cohomology, $\mathrm{H}^*(\mathrm{I}_s\,;\,\mathrm{Z}),$ of I_s ; and the cohomology-mapping

 p^* : H^{*}(I_s; Z) \rightarrow H^{*}(SO(2s); Z)

induced by the projection $p : SO(2s) \rightarrow I_s$. We shall deduce that :

1) $H^*(I_s; Z)$ is, additively, generated by the duals of normal cells $[2i_1; 2i_2; \cdots; 2i_k]$ for $s > i_1 > i_2 > \cdots > i_k \ge 1$ and the zero-cell [0].

2) $p^*[2i_1; 2i_2; \cdots; 2i_k]^*$ is of order 2 in $H^*(SO(2s); Z)$. From these two statements will follow the theorem that : "A necessary condition for the liftability of w_1 is that Image of $w_1^* \subset$ Subgroup of elements of $H^*(B : Z)$ of order 2" and the corollary that :

"If $H^*(B; Z)$ does not have any 2-torsion; then a necessary condition for the liftability of w_1 is $w_1^* = 0$.

These results will then be applied to some special cases, and a full discussion will be given of the existence and decomposability of 2-forms of constant rank on i) spheres, ii) real, and iii) complexprojective spaces.

1. Fiber-bundle structures over two-forms of rank 2s.

1.1. Définitions and notation :

Let E be a real *n*-dimensional inner-product space ; and as usual, identify E with its dual E^* through the metric.

Then it is well known (e.g. refer to [9]) that :

i) Any 2-form, w, on E decomposes into

$$w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$$

a sum of products of linearly-independent vectors (y_i) of E.

ii) The number of terms in any such decomposition is unique; and is called the "rank" of w.

Thus if $\widetilde{V}_{2s}(E)$ = manifold of ordered 2s-tuplets of linearlyindependent vectors in E.

 $\widetilde{A}_{s}(E) =$ Set of 2-forms on E of rank 2s.

We can define \widetilde{f}_s : $\widetilde{V}_{2s}(E) \rightarrow \widetilde{A}_s(E)$ by

 $(y_1, y_2, \dots, y_{2s}) \mapsto y_1 \wedge y_{s+1} + \dots + y_s \wedge y_{2s}$

and by the above, $\widetilde{f_s}$ is "onto". Also, the real-symplectic group, $\operatorname{Sp}(s \ ; R)$ acts freely and transitively on the fibers of $\widetilde{f_s}$; and thus $\widetilde{f_s}$ factors through the orbit-space, $\widetilde{V}_{2s}(E)/\operatorname{Sp}(s \ ; R)$, in a bijective fashion.

1.2. The Principal Sp(s; R)-bundle : $\widetilde{V}_{2s}(E)$ ($\widetilde{A}_{s}(E)$; Sp(s; R))

1.2.1. LEMMA. – The map $\widetilde{f}_s : \widetilde{V}_{2s}(E) \rightarrow \widetilde{A}_s(E)$ admits a local cross-section.

Note : In the following proof, we shall, for convenience of notation, take the definition of $\tilde{f_s}$ to be :

$$\widetilde{f_s}(y_1,\ldots,y_{2s}) = y_1 \wedge y_2 + \cdots + y_{2s-1} \wedge y_{2s}.$$

Proof. – Choose a basis (e_1, e_2, \ldots, e_n) of E. Then any $w \in \Lambda^2 E$ can be written as $w = \sum_{i < j} a_{ij}(w) e_i \wedge e_j$ where $a_{ij} : \Lambda^2 E \to \mathbb{R}^1$ are continuous functions on $\Lambda^2 E$.

 $Q_r = (w \in A_r(E)/a_{12}(w) \neq 0)$ is an open subset of $\widetilde{A}_r(E)$ for $1 \le r \le s$.

$$\mathbf{S}_{2r} = \widetilde{f}_r^{-1}(\mathbf{Q}_r) \subset \mathbf{V}_{2r} (\mathbf{E}) \quad ; \quad \widetilde{f}_r : \mathbf{S}_{2r} \to \mathbf{Q}_r$$

well-defined.

Let F be the subspace of E generated by (e_3, e_4, \ldots, e_n)

$$((y_1, y_2))$$
; $(y_3, y_4, \dots, y_{2s})$ $\mapsto (y_1, y_2, \dots, y_{2s})$

defines a continuous map

 $i: S_2 \times \widetilde{V}_{2s-2}(F) \to S_{2s}$; and $(q; w_0) \mapsto q + w_0$ defines a continuous map $B: Q_1 \times A_{s-1}(F) \to Q_s$ and that

$$\widetilde{f_s} \circ i = B \circ (\widetilde{f_1} \times \widetilde{f_{s-1}}).$$

Now, given $w \in Q_s$, we have :

 $w = \left(e_1 - \frac{a_{23}}{a_{12}} e_3 - \dots - \frac{a_{2n}}{a_{12}} e_n\right) \wedge (a_{12} e_2 + \dots + a_{1n} e_n) + w_0$ where $w_0 \in \widetilde{A}_{s-1}(F)$. Let

$$y_1(w) = e_1 - \frac{a_{23}}{a_{12}} e_3 - \dots - \frac{a_{2n}}{a_{12}} e$$
$$y_2(w) = a_{12} e_2 + a_{13} e_3 + \dots + a_{1n} e_n$$

Then define continuous maps :

$$\begin{split} k_s : \mathbf{Q}_s &\to \mathbf{S}_2 \quad \text{by} \quad k_s(w) = (y_1(w) \ ; \ y_2(w)) \\ p_s : \mathbf{Q} &\to \widetilde{\mathbf{A}}_{s-1}(\mathbf{F}) \quad \text{by} \quad p_s(w) = w_0. \end{split}$$

By définition : $B((\widetilde{f_1} \circ k_s) \times p_s) = l_d$. We shall, now, prove by induction on s that $\widetilde{f_s}$ admits a local cross-section. For s = 1. Assume W.L.G. that $w \in Q_1$. Since $\widetilde{A}_{s-1}(F) = 0$; $p_1(w) = 0$.

Hence, $k_1 : Q_1 \rightarrow S_2$ yields the desired lifting of $\widetilde{f_1}$.

For s > 1; again assume W.L.G. that $w \in Q_s$, and that the inductive hypothesis holds for s - 1; i.e. there exists a neighbourhood U of $p_s(w)$ in $\widetilde{A}_{s-1}(F)$ and a lifting L_{s-1} of \widetilde{f}_{s-1} over U. Then $N = p_s^{-1}(U) \subset Q_s$ is a neighbourhood for w in Q_s and hence in $\widetilde{A}_s(E)$; and

$$N \xrightarrow{k_1 \times (L_{s-1} \circ p_s)} S_2 \times V_{2s-2}(F) \xrightarrow{i} S_{2s} \subset \widetilde{V}_{2s}(E)$$

yields the desired lifting $L_s = i \circ (k_1 \times (L_{s-1} \circ p_s))$ of $\widetilde{f_s}$ over the neighbourhood N of w.

Q.E.D.

1.2.2. PROPOSITION. $-\widetilde{f_s}$ induces a principal Sp(s; R)-bundle : $\widetilde{V_{2s}}$ (E) ($\widetilde{A_s}$ (E); Sp(s; R)).

Proof. – The existence of a local cross-section to $\widetilde{f_s}$ implies that $\widetilde{A_s}(E)$ and the orbit-space $\widetilde{V}_{2s}(E)/Sp(s; R)$ are homeomorphic; and that $\widetilde{f_s}$ and the projection $p: \widetilde{V}_{2s}(E) \rightarrow \widetilde{V}_{2s}(E)/Sp(s; R)$ can be identified. The fact that the projection, p, induces a principal Sp(s; R)-bundle follows from the fact that Sp(s; R) is a closed subgroup of GL(2s; R); and that the full-projection :

$$\widetilde{V}_{2s}(E) \rightarrow \widetilde{V}_{2s}(E)/GL(2s; R) = G_{2s}(E)$$

= Grassmann-Manifold of 2s-planes on E, induces a principal GL(2s; R)-bundle.

1.3. The Principal Unitary-bundle : $V_{2s}(E)$ ($A_s(E)$; U(s)).

1.3.1. Let $V_{2s}(E) =$ Stiefel Manifold of orthonormal 2s-frames on E. $A_s(E) = \widetilde{f_s}(V_{2s}(E)) =$ Manifold of "normalized" 2-forms on E of

rank 2s. f_s : $V_{2s}(E) \rightarrow A_s(E)$ the "restriction" of \tilde{f}_s to $V_{2s}(E)$.

Then, $U(s) = Sp(s; R) \cap O(2s)$ acts freely and transitively on the fibers of f_s ; and thus f_s factors through the orbit-space $V_{2s}(E)/U(s)$ in a bijective-fashion.

LEMMA. – There exists a retraction $r : \widetilde{V}_{2s}(E) \to V_{2s}(E)$ such such that $\widetilde{f}_s = f_s \circ r$ when restricted to $\widetilde{f}_s^{-1}(A_s(E))$.

Sketch of Proof. – Let $y \in V_{2s}(E)$; and pick any orthonormal frame e in the plane of y. Then $y = u \circ e$ for some $u \in GL(2s; R)$. Let u = tv be the polar decomposition of u into an orthogonal matrix t and a positive-definite symmetric matrix v. Put $r(y) = t \circ e$. Then, independence of the definition of r(y) on the frame used, and other properties of r can easily be verified.

COROLLARY. – Let B be a topological-space and $w : B \rightarrow A_s(E)$ a continuous map; and $\phi : B \rightarrow \widetilde{V}_{2s}(E)$ a lifting of w. Then, $r \circ \phi$ lifts w to $V_{2s}(E)$.

1.3.2. **PROPOSITION**. $-f_s$ induces a principal U(s)-bundle :

 V_{2s} (E) (A_s(E) ; U(s)).

Proof. – Let ϕ be a cross-section to $\widetilde{f_s}$ over some compact neighbourhood \widetilde{N} of $\widetilde{A_s}(E)$. Put $N = \widetilde{N} \cap A_s(E)$ and $\phi_1 = \phi/N$. Then, by the preceeding Corollary, $r\phi_1$ is a cross-section to f_s over N. Define $t : N \times U(s) \rightarrow f_s^{-1}(N)$ by $t(n, u) = u((r\phi_1)n)$. Then, t, is a homeomorphism (by compactness). Hence f_s is locally-trivial; and thus induces a principal U(s)-bundle.

1.4. Retraction of $\widetilde{A}_{s}(E)$ onto $A_{s}(E)$.

Let \widetilde{W}_s = Set of non-singular and skew-symmetric $2s \times 2s$ matrices. W_s = Set of orthogonal and skew-symmetric $2s \times 2s$ matrices.

Then, GL(2s; R) acts on W_s by $u \circ k = uku^t$ for

$$u \in GL(2s; R)i$$
 and $k \in W_s$

and the subgroup, O(2s), leaves W_s invariant under this action. If

k = gv is the polar-decomposition of $k \in \widetilde{W}_s$; then $g \in W_s$; and thus $k \to g$ defines a projection $p : \widetilde{W}_s \to W_s$.

LEMMA. – There exists a continuous deformation retraction of \widetilde{W}_s onto W_s that commutes with the action of O(2s).

Proof. – Define a homotopy
$$h_r : \widetilde{W}_s \to W_s$$
 by
$$h_r(gv) = g((1-r)v + rl_d)$$

Then, $h_o = l_d$; $h_l = p$; and h_r commutes with the action of O(2s).

From this Lemma we recover the following :

PROPOSITION. – There exists a retraction θ : $\widetilde{A}_s(E) \rightarrow A_s(E)$.

Proof. – Let's first assume that n = 2s. Then, an orthonormal frame e on E defines homeomorphisms ; $t_e : \widetilde{W}_s \to \widetilde{A}_s(E)$ and $t_e : W_s \to A_s(E)$ by $t_e(k) = \sum_{i \le j} k_{ij} e_i \wedge e_j$ and $t_e = t_e / W_s$.

A homotopy $f_r : \widetilde{A}_s(E) \to A_s(E)$ can be defined by $f_r = t_e \circ h_r \circ t_e^{-1}$ and it is, immediately, verified that this definition is independent of the orthonormal frame used. Thus, $\theta = f_1$ yields the desired retraction.

For $n \ge 2s$; we have the diagram :

a retraction θ_p ; and a homotopy $(f_r)_p : \tilde{\pi}^{-1}(p) \to \pi^{-1}(p)$ over each 2s-plane, $p \in G_{2s}(E)$. Then, the collections, $\theta = (\theta_p)_{p \in G_{2s}}(E)$ and $f_r = (f_r)_p$ yield the desired retraction and the homotopy respectively.

Q.E.D.

2. Decomposability of two-forms of constant rank.

2.1. Notations and definitions :

Let E be an \mathbb{R}^n -bundle (with a Riemannian-metric) over a connected base-space B. Let $\widetilde{V}_{2s}(E)$, $V_{2s}(E)$, $\widetilde{A}_s(E)$, $A_s(E)$ be the associated-bundles to E with fibers $\widetilde{V}_{2s}(\mathbb{R}^n)$, $V_{2s}(\mathbb{R}^n)$, $\widetilde{A}_s(\mathbb{R}^n)$, $A_s(\mathbb{R}^n)$ respectively. A 2-form, w, on E of constant rank 2s is, by definition, a cross-section to $A_s(E)$. The maps $\widetilde{f}_s(E) : \widetilde{V}_{2s}(E) \to \widetilde{A}_s(E)$ and $f_s(E) : V_{2s}(E) \to A_s(E)$ are defined and we have the following "global" versions of Propositions 1.2.2. and 1.3.2. :

PROPOSITION 1.2.2.* $-\widetilde{f_s}(E)$ induces a principal Sp(s; R)-bundle.

PROPOSITION 1.3.2.* $-f_s(E)$ induces a principal U(s)-bundle.

2.2. Local-Decomposability and the Sub-bundle S_m :

DEFINITION. – A 2-form, w, on E of constant rank 2s is said to be locally-decomposable iff each point $x \in B$ has a neighbourhood U_x and linearly-independent 1-forms (y_i) i = 1, ..., 2s on E over U_x s.t. $w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$ over U_x . (Or, alternatively, there exists a cross-section, y, to $\widetilde{V}_{2s}(E)$ over U_x such that $w = \widetilde{f}_s \circ y$).

LEMMA. -A 2-form, w, of constant rank 2s on E is locally-decomposable.

Proof. – Let
$$x \in B$$
; and, c , a cross-section to $f_s(E)$:

$$V_{2s}(E) \rightarrow A_s(E)$$

over a neighbourhood N of w(x) in $\widetilde{A}_s(E)$. Then, the composite $w^{-1}(N) \xrightarrow{w} N \xrightarrow{c} V_{2s}(E)$ defines a cross-section y = cw to $\widetilde{f}_s(E)$ over $w^{-1}(N)$ such that $\widetilde{f}_s \circ y = w$. Q.E.D.

Given a 2-form, w, of constant rank 2s; then at each point $x \in B$, w(x) determines a 2s-dimensional subspace $S_{w(x)}$ of E_x on which it is of maximal rank; and local decomposability of w, immetiately yields the following:

PROPOSITION. – The union $S_w = \bigcup_{x \in B} S_{w(x)}$ is a sub-bundle of E; and, w, being a 2-form on S_w of maximal-rank determines a reduction of its structure group from GL(2s; R) to Sp(s; R).

This Proposition, clearly, demonstrates that the "existence of a 2-form of constant rank on E" (which is assumed apriori in the thesis) is, already, a strong condition ; and will be useful in proving non-existence theorems about 2-forms of constant rank on spheres and projective-spaces in the last-chapter.

2.3. Decomposition of 2-forms of constant rank :

Let $\widetilde{V}(S_w)$, $V(S_w)$, $\widetilde{A}(S_w)$, $A(S_w)$ be the associated-bundles to S_w with fibers $\widetilde{V}(R^{2s})$, $V(R^{2s})$, $\widetilde{A}(R^{2s})$, $A(R^{2s})$ respectively.

DEFINITION. -w is said to be decomposable iff

$$w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$$

for linearly-independent 1-forms (y_i) on E. (Or, alternatively, the diagram : admits a lifting).

An immediate consequence of this definition is the following :

Observation. – If, w, is decomposable ; then S_w is a trivial (product)-bundle.

Let $r : \widetilde{V}(S_w) \to V(S_w)$ and $\theta : \widetilde{A}(S_w) \to A(S_w)$ be the retractions of Sections 1.3. and 1.4. (respectively) defined globally on S_w .

DEFINITION. – The "normalization" of, w, is defined to be the composite $\theta w : B \xrightarrow{w} \widetilde{A}(S_w) \xrightarrow{\theta} A(S_w)$ and is a "normalized" 2-form of rank 2s. (i.e. a cross-section to $A(S_w)$).

DEFINITION. – A normalized 2-form, w, of rank 2s decomposes orthogonally iff $w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$ for orthonormal-frame $y = (y_1, \ldots, y_{2s})$ on S_w .

PROPOSITION. -A 2-form, w, of constant rank 2s decomposes iff its normalization decomposes orthogonally.

Proof. – Suppose, w, decomposes. i.e. there exists a continuous map $L : B \to \widetilde{V}(S_w)$ such that $\widetilde{f_s} \circ L = w$. Since θ is a retraction ; $w \simeq \theta w$, and thus $\widetilde{f_s} \circ L \simeq \theta w$. Since $\widetilde{f_s}$ is a fibration ; by the covering-homotopy-theorem ; there exists a lifting $T : B \to \widetilde{V}(S_w)$ of θw to $\widetilde{V}(S_w)$ and by the "global-version" of Corollary 1.3.1. rT is a lifting of θw to $V(S_w)$. Thus, θw decomposes orthogonally.

Conversely, suppose θw decomposes orthogonally ; i.e. that there exists a lift $k : B \to V(S_w)$ of θw to $V(S_w)$. Then,

$$f_{s} \circ k = \theta w \simeq w ;$$

and again, by the covering homotopy theorem, there exists a lifting of, w, to $\widetilde{V}(S_w)$.

Q.E.D.

By Observation 2.3., a necessary condition for w to decompose is that S_w is a trivial (product)-bundle. Let's choose a particular product representation : $S_w = B \times R^{2s}$ which gives rise to further product representations : i) $V(S_w) = B \times V(R^{2s}) = B \times O(2s)$ and ii) $A(S_w) = B \times A(R^{2s}) = B \times O(2s)/U(s)$ and a representation of θw as a map $w_1 : B \rightarrow O(2s)/U(s)$.

 θw decomposes orthogonally iff w_1 lifts to O(2s). Since B is connected and w_1 continuous; we may, without loss of generality assume that $w_1(B) \subset I_s = SO(2s)/U(s)$; and then lifting w_1 to O(2s) is equivalent to lifting it to SO(2s). We can summarize this in a single:

THEOREM. – A 2-form, w, of constant rank 2s decomposes iff i) S_w is a trivial (product)-bundle.

ii) The representation of its normalization as a map w_1 :

$$B \rightarrow I_s = SO(2s)/U(s)$$

arising from any trivialization of S_{u} lifts to SO(2s).

The method used above was to assume the existence apriori, of a metric on E (and thus on S_w); and to show that, w, decomposes iff its normalization (with respect to this metric) decomposes orthogonally.

A more and invariant approach does not pre-suppose the existence of a metric on S_w . w, determines a reduction of the structure-group of S_w to Sp(s; R); and since U(s) is a maximal compact subgroup of Sp(s; R); it undergoes a further reduction to U(s); and thus S_w admits a unique Hermitian metric. Then, w, becomes normalized with respect to the corresponding real-metric, and thus decomposes iff it decomposes orthogonally. The rest of the theory goes as before; and one, again, obtains the above theorem with obvious modifications.

3. Cohomology of I_s .

3.1. Preliminaries :

Let $x \in \mathbb{P}^{n-1}$; and ϕ_x be the "reflection" through the hyperplane perpendicular to x; and ϕ_0 the reflection corresponding to the initial point (1, 0, ..., 0). Then, we imbed $P^{n-1} \subset SO(n)$ by $x \to \phi_x \phi_0$. We, now, list the following standard results; and for proofs we refer the reader to [8] pp. 40-45.

Observation : i) $\mathbf{P}^{n-1} \cap \mathrm{SO}(n-1) = \mathbf{P}^{n-2}$. ii) $\mathbf{P}^{i} \circ \mathbf{P}^{j} = \mathbf{P}^{j} \circ \mathbf{P}^{i}$ and iii) $\mathbf{P}^{i} \circ \mathbf{P}^{i} = \mathbf{P}^{i} \circ \mathbf{P}^{i-1}$ in $\mathrm{SO}(n)$.

Let P^{n-1}/P^{n-2} be the space obtained by collapsing P^{n-2} to a point ; and SO(n)/SO(n-1) the left coset-space.

LEMMA. – The natural-map $T : P^{n-1}/P^{n-2} \rightarrow SO(n)/SO(n-1)$ is a "homeomorphism".

PROPOSITION. – The matrix-multiplication

$$m : (\mathbb{P}^n \times \mathrm{SO}(n) ; \mathbb{P}^{n-1} \times \mathrm{SO}(n)) \to (\mathrm{SO}(n+1) ; \mathrm{SO}(n))$$

is a relative-homeomorphism.

THEOREM. -SO(n) is a cell-complex with normal cells

 $[i_1 ; i_2 ; \cdots ; i_k] \quad \text{for} \quad n > i_1 > i_2 > \cdots > i_k \ge 1$ given by

$$E^{i_1} \times E^{i_2} \times \cdots \times E^{i_k} \rightarrow P^{i_1} \times P^{i_2} \times \cdots \times P^{i_k} \xrightarrow{m} SO(n)$$

and the zero-cell [0]; and matrix-multiplication m:

 $SO(n) \times SO(n) \rightarrow SO(n)$

is a cellular-map.

3.2. Cellular Structure of I_s :

Observation : $I_s = SO(2s)/U(s) = SO(2s-1)/U(s-1)$.

Proof. – Obviously, $SO(2s - 1) \cap U(s) = U(s - 1)$ and

 $SO(2s-1) \circ U(s) = SO(2s)$

by a dimension argument. Thus,

$$I_s = SO(2s - 1) \circ U(s)/U(s) = SO(2s - 1)/U(s - 1).$$

Q.E.D.

Let \overline{P}^{2s+1} and \overline{P}^{2s} denote the images of P^{2s+1} and P^{2s} under the projections $SO(2s + 2) \rightarrow I_{s+1}$ and $SO(2s + 1) \rightarrow I_{s+1}$ respectively. We, then, have the following :

Lemma. $-\overline{P}^{2s+1} = \overline{P}^{2s}$

Proof. – It is an immediate consequence of the fact that the "composite" $P^{2s+1} \subset SO(2s+2) \rightarrow I_{s+1}$ factors through $P_s(C)$; and that $P^{2s} \subset P^{2s+1} \rightarrow P_s(C)$ is "onto".

Q.E.D.

Let $v : SO(2s) \times I_s \rightarrow I_s$ be the action of SO(2s) on I_s . Then, we obtain the analogue of Proposition 3.1. for I_s :

PROPOSITION. -v : $(\mathbf{P}^{2s} \times \mathbf{I}_s ; \mathbf{P}^{2s-1} \times \mathbf{I}_s) \rightarrow (\mathbf{I}_{s+1} ; \mathbf{I}_s)$ is a relative-homeomorphism

which in turn becomes the key in the proof of the following

THEOREM. $-I_s$ is a cell-complex consisting of even-dimensional normal-cells $[2i_1; 2i_2; \cdots; 2i_k]$ for $s > i_1 > i_2 > \cdots > i_k \ge 1$, given by

 $E^{2i_1} \times \cdots \times E^{2i_k} \to P^{2i_1} \times \cdots \times P^{2i_k} \xrightarrow{m} SO(2s) \xrightarrow{\text{proj}^n} I_s$

and the zer-cell [O]; and the action-map $v: \mathrm{SO}(2s) \times \mathrm{I}_s \to \mathrm{I}_s$ is cellular.

Proof. - We prove the theorem by induction on s.

For s = 1; I_1 is just the zero-cell O; and thus $v : SO(2) \times I_1 \rightarrow I_1$ is, obviously, cellular. By the preceding proposition, I_{s+1} is the adjunction-space : $I_{s+1} = I_s \vee_v (P^{2s} \times I_s)$. We, now, apply the following standard Lemma : "If K and L' are cell-complexes; L a subcomplex of K and $v : L \rightarrow L'$ a cellular-map; then the adjunction-space, $K \vee_v L'$ is a cell-complex having L' as a subcomplex; and the images of the cells of (K - L) as the remaining cells" with

$$\mathbf{K} = \mathbf{P}^{2s} \times \mathbf{I}_{s} \quad ; \quad \mathbf{L} = \mathbf{P}^{2s-1} \times \mathbf{I}_{s} \quad ; \quad \mathbf{L}' = \mathbf{I}_{s}$$

By the inductive hypothesis, $v : SO(2s) \times I_s \to I_s$; and hence its restriction to the subcomplex, $P^{2s-1} \times I_s$, is cellular; and thus we deduce that, I_{s+1} , is a cell-complex having I_s as a subcomplex; and the *v*-images of the cells of $(P^{2s} - P^{2s-1}) \times I_s$ as the remaining cells. By the inductive-hypothesis, the cells of I_s are normal cells $[2i_1; \cdots; 2i_k]$ for $s > i_1 > \cdots > i_k \ge 1$, and the zero-cell [O]; and the *v*-images of the cells of $(P^{2s} - P^{2s-1}) \times I_s$ are normal-cells $[2s; 2i_2; \cdots; 2i_k]$ for $s > i_2 > \cdots > i_k \ge 1$. The proof will be complete once we prove that $: v : SO(2s + 2) \times I_{s+1} \to I_{s+1}$ is cellular; and this is done in five steps:

- i) $v : \mathbb{P}^{2s} \times \mathbb{I}_s \to \mathbb{I}_{s+1}$ is cellular.
- ii) $v : SO(2s + 1) \times I_s \rightarrow I_{s+1}$ is cellular.
- iii) $v : SO(2s + 1) \times I_{s+1} \rightarrow I_{s+1}$ is cellular.
- iv) $v : \mathbf{P}^{2s+1} \times \mathbf{I}_{s+1} \to \mathbf{I}_{s+1}$ is cellular.
- v) $v : SO(2s + 2) \times I_{s+1} \rightarrow I_{s+1}$ is cellular.

Only iv) has a non-trivial proof which can be outlined as follows :

Proof of iv). – By iii) the restriction of, v, to the subcomplex, $P^{2s} \times I_{s+1}$ of, $P^{2s+1} \times I_{s+1}$, is cellular; and thus it suffices to prove that:

$$v(\mathbf{P}^{2s+1}; (\mathbf{I}_{s+1})^{2q}) \subset (\mathbf{I}_{s+1})^{2(s+q)}$$

Let $s + 1 > i_1 > i_2 > \dots > i_k \ge 1$ and $\underbrace{i_1 + i_2 + \dots + i_k = q}{P^{2s+1} : P^{2i_1} \times \dots \times P^{2i_k}} = \underbrace{P^{2s+1} \times P^{2i_1} \times \dots \times P^{2i_k}}{P^{2i_1} \times \dots \times P^{2i_k} \times P^{2s+1}} = v (P^{2i_1} \times \dots \times P^{2i_k}; \overline{P}^{2s+1})$ $= v (P^{2i_1} \times \dots \times P^{2i_k}; \overline{P}^{2s}) = \underbrace{P^{2s} \times P^{2i_1} \times \dots \times P^{2i_k}}{P^{2s} \times P^{2i_1} \times \dots \times P^{2i_k}} = v (P^{2s}; \overline{P^{2i_1} \times P^{2i_2} \times \dots \times P^{2i_k}}) \subset v ((SO(2s+1))^{2s}; (I_{s+1})^{2q})$ $\subset (I_{s+1})^{2(s+q)}$ by Part iii).

Q.E.D.

COROLLARY. – The projection $p : SO(2s) \rightarrow I_s$ is cellular; and maps normal cells $[2i_1; 2i_2; \cdots; 2i_k]$ of SO(2s) onto normal cells $[2i_1; 2i_2; \cdots; 2i_k]$ of I_s . The images of the remaining cells, i.e. $[j_1; j_2; \cdots; j_k]$ where j_t is odd for some $1 \le t \le k$ are contained in a skeleton of lower dimension.

3.3. Integer-Cohomology of Is and the Lifting Problem :

Since I_s is a cell-complex consisting of even dimensional cells only; the co-boundary operator is identically zero; and hence the $2q^{th}$ -cohomology group $H^{2q}(I_s; Z)$ coincides with $2q^{th}$ -cochains, $C^{2q}(I_s; Z)$, which is the free abelian group generated by the duals $[2i_1; \cdots; 2i_k]^*$ of normal cells $[2i_1; \cdots; 2i_k]$ for $q = i_1 + \cdots + i_k$.

PROPOSITION. – Image $p^* \subset$ Subgroup of elements of

$$H^*(SO(2s); Z)$$

of order 2.

Proof. By the above ; $p^*[2i_1; \dots; 2i_k]^* = [2i_1; \dots; 2i_k]^*$ and $2[2i_1; \dots; 2i_k]^* = \delta[2i_1 - 1; \dots; 2i_k]^*$ in SO(2s).

THEOREM. -A necessary condition for the lifting of the diagram :

is that :

Image $w_1^* \subset$ Subgroup of elements of $H^*(B; Z)$ of order 2.

COROLLARY. – If $H^*(B; Z)$ contains no 2-torsion; then a necessary condition for the liftability of w_1 is that $w_1^* = 0$.

4. Applications.

4.1. Lower-Dimensional Spaces :

We now, combine Theorems 2.3. and 3.4. with elementary obstruction theory to obtain the following :

PROPOSITION. – Let, w, be a 2-form of constant rank 2s(s > 1)on an \mathbb{R}^n -bundle E over a connected base-space B whose cohomology vanishes in dimensions greater than or equal to four. Necessary and sufficient conditions for, w, to decompose are i) S_w is a trivial (product)-bundle ; and ii) $2w_1^* = 0$ in $H^2(B; z)$ where

$$i \in \mathrm{H}^2(\mathrm{I}_s; \mathrm{Z}) = \mathrm{Z}$$

is the generator and w_1 is the representation of, w, arising from any trivialization of S_w .

When B is an orientable 3-manifold, the tangent-bundle T(B) of B is trivial; and S_w is the pull-back of the tangent-bundle T(S²) of the 2-sphere by the Gauss-Map P : $B \rightarrow S^2$; and thus the first Chern-Class, $c_1(S_w) = 2P^*(i)$, where $i \in H^2(S^2; Z)$ is the generator. Also by Alexander Duality, $2P^*(i) = 0$ iff $P^*(i) = 0$. Applying Theorem 2.3. yields the observation – A nowhere-vanishing 2-form, w, on an orientable 3-manifold decomposes iff $P^*(i) = 0$.

If we further specialize by taking B to be an open connected domain in \mathbb{R}^3 and use the Hopf-Classification Theorem that $[P] \rightarrow P^*(i)$ is an isomorphism : $[B; S^2] \rightarrow H^2(B; Z)$; we obtain :

COROLLARY. – A nowhere-vanishing 2-form, w, on an open connected domain B of R^3 decomposes iff the Gauss-Map $P : B \rightarrow S^2$ for S_w is null-homotopic.

4.2. Methods of Constructing p-forms on Spheres :

i) "From constant (p + 1)-forms on \mathbb{R}^{n} ".

Let $w \in \Lambda^{p+1} \mathbb{R}^n$; and define $t: \mathbb{S}^{n-1} \to \Lambda^p \mathbb{R}^n$ by $t(x) = \delta_x(w)$ for all $x \in \mathbb{S}^{n-1}$, where δ_x is the "adjoint" of the wedge-product map, $d_x : \Lambda \mathbb{R}^n \to \Lambda \mathbb{R}^n$ given by $d_x(y) = x \wedge y$. Then

$$\delta_{\mathbf{r}} t(\mathbf{x}) = \delta_{\mathbf{r}} \circ \delta_{\mathbf{r}} (w) = 0 ;$$

and thus, t, is a differentiable p-form on S^{n-1} .

ii) "From constant p-forms on Rⁿ"

Let $w \in \Lambda^p \mathbb{R}^n$. Then $t(x) = \delta_x \circ d_x(w) = w - d_x \circ \delta_x(w)$ for $x \in \mathbb{S}^{n-1}$ defines a differentiable p-form, t, on \mathbb{S}^{n-1} which is called the "tangential component" of w.

PROPOSITION. – The tangential-component of a normalized 2-form of maximal-rank on \mathbb{R}^{2n} is a 2-form on \mathbb{S}^{2n-1} of constant rank (2n-2).

Proof. $-w = x \wedge \delta_x(w) + t(x)$ for all $x \in S^{n-1}$. The transformation on \mathbb{R}^{2n} given by $x \to \delta_x(w)$ has square equal to minus identity; and thus $\delta_{\delta_x(w)}(t(x)) = 0$ which implies that $t(x) \in \Lambda^2 U_x$ for

$$\mathbf{U}_{\mathbf{x}} = (\mathbf{x} ; \delta_{\mathbf{x}}(\mathbf{w})) ;$$

and hence rank $(w) = \operatorname{rank} (x \wedge \delta_x(w)) + \operatorname{rank} t(x)$.

Note. -t(-x) = t(x); and thus, t, also defines a 2-form on P^{2n-1} of constant rank (2n-2).

4.3. Existence and decomposability of 2-forms of constant rank on spheres :

PROPOSITION. - S^{4n+3} admits a 2-form of constant rank 4n.

Proof. – Represent
$$S^{4n+3} = Sp(n+1)/Sp(n)$$
; and let
 $w_0 = e_1 \wedge e_{2n+1} + \dots + e_{2n} \wedge e_{4n}$

be a "normalized" 2-form at the distinguished point e_{4n+3} . For $x \in S^{4n+3}$, take any $u \in Sp(n+1)$ such that $u(e_{4n+3}) = x$; and define $w(x) = (\Lambda^2 u) w_0$. Since, $Sp(n) \subset U(2n)$ leaves w_0 -invariant; w is a well defined 2-form on S^{4n+3} of constant rank 4n. Q.E.D.

Note. - i) $w(e^{i\theta}x) = e^{2i\theta}w(x)$ and ii) $\delta_{J(x)}(w(x)) = 0$ where J is multiplication by $i = \sqrt{-1}$; and thus, w, defines a 2-form on $P_{2n+1}(C)$ (and hence on P^{4n+3}) of constant rank 4n.

Combining Proposition 2.2 with the Standard Theorem of [7] pp. 144 ; we obtain the following :

Statement. – The existence of a 2-form of constant rank 2s on S^n implies :

i) the existence of a field of 2s-frames on S^n for $4s \le n$.

ii) the existence of a field of (n-2s)-frames on Sⁿ for 4s > n. and using Adams' results on Vector Fields on Spheres ; we deduce :

COROLLARY 1. $-S^{4n+1}$ does not admit a 2-form of constant rank 2s for 0 < s < 2n.

COROLLARY 2. $-S^{2n}$ does not admit a 2-form of constant rank 2s for 0 < s < n.

It is also a consequence of Adams' results and Kirchoff's Theorem (Refer to [7] pp. 217) that S^2 and S^6 are the only even dimensional spheres which are almost-complex, i.e. admit 2-forms of maximal rank. We can, now, summarize all these results in the following :

THEOREM. – 1) The only even dimensional spheres which admit 2-forms of constant rank are S^2 and S^6 which admit 2-forms of maximal rank. None of these forms can be decomposed.

2) The only non-zero 2-forms of constant rank on S^{4n+1} are those of rank 4n, and none of these forms can be decomposed.

3) S^{4n+3} admits 2-forms of constant ranks 2, 4n, 4n + 2. Those of constant rank 2 always decompose; whereas those of constant rank 4n and 4n + 2 cannot be decomposed for $n \ge 2$. A 2-form, w, on S⁷ of constant rank 4 decomposes iff i) S_w is a trivial bundle; and ii) $\partial[w_1] \in \pi_6 U(2)$ vanishes, where w_1 is the representation of the normalization of w (with respect to the canonical Riemannian-Metric on S⁷) arising from any trivialization of S_w as a map

 $w_1 : \mathrm{S}^7 \to \mathrm{I}_2$; and $\partial : \pi_7 \mathrm{I}_2 \to \pi_6 \mathrm{U}(2)$

is the boundary-operator of the exact homotopy sequence of the fibration SO(4) \rightarrow I₂.

A 2-form, w, on S^7 of constant rank 6 decomposes iff i)

$$\partial [\mathbf{P}] \in \pi_6 \operatorname{SO}(6)$$

vanishes; where $P : S^7 \rightarrow S^6$ is the Gauss-Map for $S_{\mu\nu}$, and

$$\partial : \pi_7 S^6 \rightarrow \pi_6 SO(6)$$

is the boundary-operator of SO(7) \rightarrow S⁶. ii) $\partial[w_1] \in \pi_6 U(3)$ vanishes; where $w_1 : S^7 \rightarrow I_3$ is the representation of the normalization of w, and $\partial: \pi_7 I_3 \rightarrow \pi_6 U(3)$ is the boundary-operator of SO(6) $\rightarrow I_3$.

Remark. – The above theorem solves completely the existence and decomposability problem of 2-forms of constant rank for S^{2n} , S^{4n+1} , and for S^{4n+3} up to S^{15} . The first unsolved case is the existence question of 2-forms of constant rank 10 on S^{15} . The next is the existence question of 2-forms of constant rank 16 and 18 on S^{23} .

4.4. Existence and Decomposability of 2-forms of constant rank on Projective Spaces :

Parts 1 and 2 and most of 3 of the preceeding Theorem go through unchanged for real-projective spaces. The only changes in Part 3 are i) 2-forms, w, on P^{4n+3} of constant rank 2 decompose iff $c_1(S_w) \in H^2(P^{4n+3}; Z) = Z_2$ vanishes. ii) The discussions for 2-forms on S⁷ do not have their analogues for P⁷; since, w, can no longer be represented as an element of $\pi_7 I_2$ or $\pi_7 I_3$. A necessary condition for the decomposability of such forms is the decomposability of the corresponding forms on S^7 (which can be determined by the previous Theorem). However, whether this is sufficient is not known.

The case of the complex projective spaces can be best summarized in the following :

PROPOSITION. – P (C), being a complex analytic manifold, admits a 2-form of constant rank 2n.

The only non-zero 2-forms on $P_{2n}(C)$ of constant rank are those of constant rank 4n which cannot be decomposed.

 $P_{2n+1}(C)$, admits 2-forms of constant ranks 4n + 2 and 4n which cannot be decomposed for $n \ge 2$.

4.5. Translation-Invariant 2-forms on Lie-Groups :

PROPOSITION. – A Lie-Group, G, admits translation-invariant 2forms of constant rank 2s for $2s \leq \dim G$; and any translationinvariant 2-form on G decomposes.

Appendix

The analogous problem of decomposing a 2-form of constant rank on a *complex* vector-bundle is attacked in exactly the same way; and is reduced to the lifting-problem of the diagram :

One then investigates integer-cohomology of the homogenousspace, U(2s)/Sp(s); and the Kernel of the map, p^* :

 $\mathrm{H}^{*}\left(\mathrm{U}\left(2s\right)/\mathrm{S}p\left(s\right)\right) \rightarrow \mathrm{H}^{*}(\mathrm{U}(2s))$

BIBLIOGRAPHY

- [1] A. BOREL, Sur La Cohomologie des Espaces Fibre Principaux..., Ann. Math., 57(1953), 115-207.
- [2] A. BOREL, F. HIRZEBRUCH, Characteristic Classes and Homogenous Spaces I, Amer. J. Math., 80 (1958), 459-538.
- [3] J. MARTINET, Sur Les Singularités des Formes Differentiables, Thesis Grenoble (1969).
- [4] W.S. MASSEY, Obstructions to the Existence of Almost-Complex Structures, Bull. Amer. Math. Soc, 67 (1961), 559-564.
- [5] C.E. MILLER, The Topology of Rotation Groups, Ann. Math, 57 (1953), 91-114.
- [6] MOSHER-TANGORA, Cohomology Operations and Application in Homotopy Theory, Harper-Row Publishers (1968).
- [7] N.E. STEENROD, The Topology of Fibre-Bundles, Princeton Univ. Press (1951).
- [8] N.E. STEENROD, Cohomology Operations, Annals of Math Studies, n° 50.
- [9] S. STERNBERG, Lectures on Differential Geometry, Prentice Hall Edition (1964).
- [10] E. THOMAS, Complex-Structures on Real Vector-Bundles, Amer. J. Math., 89 (1967), 887-907.

Manuscrit reçu le 12 juillet 1973 accepté par G. Reeb.

Ibrahim DIBAG, Department of Mathematics Middle-East Technical University Ankara (Turquie).