Annales de l'institut Fourier

IbRAHIM Dibag
 Decomposition in the large of two-forms of constant rank

Annales de l'institut Fourier, tome 24, n ${ }^{0} 3$ (1974), p. 317-335

http://www.numdam.org/item?id=AIF_1974__24_3_317_0
© Annales de l'institut Fourier, 1974, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

DECOMPOSITION IN THE LARGE OF TWO-FORMS OF CONSTANT RANK

by Ibrahim DIBAG

0 . Introduction.

"Whether a vector-bundle admits a 2-form of constant rank" has been an important question in algebraic topology ; and a good deal of research $(4,5,10)$ has been done on the subject. In this thesis we shall take, apriori, a vector-bundle that does admit such a 2 -form, w, of constant rank $2 s$. We shall then show that, w, locally decomposes into a sum : $w=y_{1} \wedge y_{s+1}+y_{2} \wedge y_{s+2}+\cdots+y_{s} \wedge y_{2 s}$ of products of linearly-independent 1 -forms $\left(y_{i}\right)$ on E . The main task of the thesis is to find necessary and sufficient conditions for, w, to have a global such decomposition.

We shall define a $2 s$-dimensional sub-bundle S_{w} of E on which, w, can be regarded as a 2 -form of maximal rank; and a necessary condition for, w, to decompose globally is that $\mathrm{S}_{\boldsymbol{w}}$ is a trivial (product) bundle.

Using the triviality of S_{w} we shall represent w, as a map w_{1} : $\mathrm{B} \rightarrow \mathrm{I}_{s}$; where B is the base-space, and $\mathrm{I}_{s}=\mathrm{SO}(2 s) / \mathrm{U}(s)$ is the homogenous space ; and, w, decomposes globally if and only if w_{1} lifts to $\mathrm{SO}(2 s)$.

We shall then investigate the integercohomology, $\mathrm{H}^{*}\left(\mathrm{I}_{s} ; \mathrm{Z}\right)$, of I_{s}; and the cohomology-mapping

$$
p^{*}: \mathrm{H}^{*}\left(\mathrm{I}_{s} ; \mathrm{Z}\right) \rightarrow \mathrm{H}^{*}(\mathrm{SO}(2 s) ; \mathrm{Z})
$$

induced by the projection $p: \mathrm{SO}(2 s) \rightarrow \mathrm{I}_{s}$. We shall deduce that:

1) $\mathrm{H}^{*}\left(\mathrm{I}_{s} ; \mathrm{Z}\right)$ is, additively, generated by the duals of normal cells $\left[2 i_{1} ; 2 i_{2} ; \cdots ; 2 i_{k}\right.$] for $s>i_{1}>i_{2}>\cdots>i_{k} \geqslant 1$ and the zero-cell [0].
2) $p^{*}\left[2 i_{1} ; 2 i_{2} ; \cdots ; 2 i_{k}\right]^{*}$ is of order 2 in $\mathrm{H}^{*}(\mathrm{SO}(2 s) ; \mathrm{Z})$. From these two statements will follow the theorem that : "A necessary condition for the liftability of w_{1} is that Image of $w_{1}^{*} \subset$ Subgroup of elements of $H^{*}(B: Z)$ of order 2 " and the corollary that :
"If $\mathrm{H}^{*}(\mathrm{~B} ; \mathrm{Z})$ does not have any 2-torsion ; then a necessary condition for the liftability of w_{1} is $w_{1}^{*}=0$.

These results will then be applied to some special cases, and a full discussion will be given of the existence and decomposability of 2 -forms of constant rank on i) spheres, ii) real, and iii) complexprojective spaces.

1. Fiber-bundle structures over two-forms of rank $2 s$.

1.1. Définitions and notation :

Let E be a real n-dimensional inner-product space ; and as usual, identify E with its dual E^{*} through the metric.

Then it is well known (e.g. refer to [9]) that :
i) Any 2 -form, w, on E decomposes into

$$
w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}
$$

a sum of products of linearly-independent vectors $\left(y_{i}\right)$ of E .
ii) The number of terms in any such decomposition is unique ; and is called the "rank" of w.

Thus if $\widetilde{\mathrm{V}}_{2 s}(\mathrm{E})=$ manifold of ordered $2 s$-tuplets of linearlyindependent vectors in E .
$\widetilde{\mathrm{A}}_{s}(\mathrm{E})=$ Set of 2 -forms on E of rank $2 s$.
We can define $\widetilde{f_{s}}: \widetilde{\mathrm{V}}_{2 s}(\mathrm{E}) \rightarrow \widetilde{\mathrm{A}}_{s}(\mathrm{E})$ by

$$
\left(y_{1}, y_{2}, \ldots, y_{2 s}\right) \mapsto y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}
$$

and by the above, $\tilde{f_{s}}$ is "onto". Also, the real-symplectic group, $\mathrm{Sp}(s ; \mathrm{R})$ acts freely and transitively on the fibers of $\widetilde{f_{s}}$; and thus $\widetilde{f_{s}}$ factors through the orbit-space, $\widetilde{\mathrm{V}}_{2 s}(\mathrm{E}) / \mathrm{Sp}(s ; \mathrm{R})$, in a bijective fashion.

1.2. The Principal $\mathrm{S} p(s ; \mathrm{R})$-bundle : $\widetilde{\mathrm{V}}_{2 s}(\mathrm{E})\left(\widetilde{\mathrm{A}}_{s}(\mathrm{E}) ; \mathrm{S} p(s ; \mathrm{R})\right)$

1.2.1. Lemma. - The map $\widetilde{f_{s}}: \widetilde{\mathrm{V}}_{2 s}(\mathrm{E}) \rightarrow \widetilde{\mathrm{A}}_{s}(\mathrm{E})$ admits a local cross-section.

Note : In the following proof, we shall, for convenience of notation, take the definition of $\widetilde{f_{s}}$ to be :

$$
\widetilde{f_{s}}\left(y_{1}, \ldots, y_{2 s}\right)=y_{1} \wedge y_{2}+\cdots+y_{2 s-1} \wedge y_{2 s}
$$

Proof. - Choose a basis $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of E. Then any $w \in \Lambda^{2} \mathrm{E}$ can be written as $w=\sum_{i<j} a_{i j}(w) e_{i} \wedge e_{j}$ where $a_{i j}: \Lambda^{2} \mathrm{E} \rightarrow \mathrm{R}^{1}$ are continuous functions on $\Lambda^{2} \mathrm{E}$.
$\mathrm{Q}_{r}=\left(w \in \mathrm{~A}_{r}(\mathrm{E}) / a_{12}(w) \neq 0\right)$ is an open subset of $\widetilde{\mathrm{A}}_{r}(\mathrm{E})$ for $1 \leqslant r \leqslant s$.

$$
\mathrm{S}_{2 r}=\widetilde{f}_{r}^{-1}\left(\mathrm{Q}_{r}\right) \subset \mathrm{V}_{2 r}(\mathrm{E}) \quad ; \quad \widetilde{f_{r}}: \mathrm{S}_{2 r} \rightarrow \mathrm{Q}_{r}
$$

well-defined.
Let F be the subspace of E generated by $\left(e_{3}, e_{4}, \ldots, e_{n}\right)$

$$
\left(\left(y_{1}, y_{2}\right) \quad ; \quad\left(y_{3}, y_{4}, \ldots, y_{2 s}\right)\right) \mapsto\left(y_{1}, y_{2}, \ldots, y_{2 s}\right)
$$

defines a continuous map

$$
i: \mathrm{S}_{2} \times \widetilde{\mathrm{V}}_{2 s-2}(\mathrm{~F}) \rightarrow \mathrm{S}_{2 s} ; \quad \text { and } \quad\left(q ; w_{0}\right) \mapsto q+w_{0}
$$

defines a continuous map $\mathrm{B}: \mathrm{Q}_{1} \times \mathrm{A}_{s-1}(\mathrm{~F}) \rightarrow \mathrm{Q}_{s}$ and that

$$
\widetilde{f_{s}} \circ i=\mathrm{B} \circ\left(\widetilde{f_{1}} \times \widetilde{f_{s-1}}\right)
$$

Now, given $w \in Q_{s}$, we have :
$w=\left(e_{1}-\frac{a_{23}}{a_{12}} e_{3}-\cdots-\frac{a_{2 n}}{a_{12}} e_{n}\right) \wedge\left(a_{12} e_{2}+\cdots+a_{1 n} e_{n}\right)+w_{0}$ where $w_{0} \in \widetilde{\mathrm{~A}}_{s-1}(\mathrm{~F})$. Let

$$
\begin{aligned}
& y_{1}(w)=e_{1}-\frac{a_{23}}{a_{12}} e_{3}-\cdots-\frac{a_{2 n}}{a_{12}} e \\
& y_{2}(w)=a_{12} e_{2}+a_{13} e_{3}+\cdots+a_{1 n} e_{n} .
\end{aligned}
$$

Then define continuous maps :

$$
\begin{aligned}
& k_{s}: \mathrm{Q}_{s} \rightarrow \mathrm{~S}_{2} \quad \text { by } \quad k_{s}(w)=\left(y_{1}(w) ; y_{2}(w)\right) \\
& p_{s}: \mathrm{Q} \rightarrow \widetilde{\mathrm{~A}}_{s-1}(\mathrm{~F}) \quad \text { by } \quad p_{s}(w)=w_{0}
\end{aligned}
$$

By définition : $\mathrm{B}\left(\left(\widetilde{f_{1}} \circ k_{s}\right) \times p_{s}\right)=l_{d}$. We shall, now, prove by induction on s that $\widetilde{f_{s}}$ admits a local cross-section. For $s=1$. Assume W.L.G. that $w \in \mathrm{Q}_{1}$. Since $\widetilde{\mathrm{A}}_{s-1}(\mathrm{~F})=0 ; p_{1}(w)=0$.

Hence, $k_{1}: \mathrm{Q}_{1} \rightarrow \mathrm{~S}_{2}$ yields the desired lifting of $\widetilde{f_{1}}$.
For $s>1$; again assume W.L.G. that $w \in \mathrm{Q}_{s}$, and that the inductive hypothesis holds for $s-1$; i.e. there exists a neighbourhood U of $p_{s}(w)$ in $\widetilde{\mathrm{A}}_{s-1}(\mathrm{~F})$ and a lifting L_{s-1} of \widetilde{f}_{s-1} over U . Then $\mathrm{N}=p_{s}^{-1}(\mathrm{U}) \subset \mathrm{Q}_{s}$ is a neighbourhood for w in Q_{s} and hence in $\widetilde{\mathrm{A}}_{s}(\mathrm{E})$; and

$$
\mathrm{N} \xrightarrow{k_{1} \times\left(\mathrm{L}_{s-1} \circ p_{s}\right)} \mathrm{S}_{2} \times \mathrm{V}_{2 s-2}(\mathrm{~F}) \xrightarrow{i} \mathrm{~S}_{2 s} \subset \widetilde{\mathrm{~V}}_{2 s}(\mathrm{E})
$$

yields the desired lifting $\mathrm{L}_{s}=i \circ\left(k_{1} \times\left(\mathrm{L}_{s-1} \circ p_{s}\right)\right)$ of $\widetilde{f_{s}}$ over the neighbourhood N of w.
Q.E.D.
1.2.2. Proposition. - $\widetilde{f_{s}}$ induces a principal $\mathrm{S} p(s ; \mathrm{R})$-bundle : $\widetilde{\mathrm{V}}_{2 s}(\mathrm{E})\left(\widetilde{\mathrm{A}}_{s}(\mathrm{E}) ; \mathrm{S} p(s ; \mathrm{R})\right)$.

Proof. - The existence of a local cross-section to $\tilde{f_{s}}$ implies that $\widetilde{\mathrm{A}}_{s}(\mathrm{E})$ and the orbit-space $\widetilde{\mathrm{V}}_{2 s}(\mathrm{E}) / \mathrm{S} p(s ; \mathrm{R})$ are homeomorphic ; and that $\widetilde{f_{s}}$ and the projection $p: \widetilde{\mathrm{V}}_{2 s}(\mathrm{E}) \rightarrow \widetilde{\mathrm{V}}_{2 s}(\mathrm{E}) / \mathrm{S} p(s ; \mathrm{R})$ can be identified. The fact that the projection, p, induces a principal $\mathrm{S} p(s ; \mathrm{R})$-bundle follows from the fact that $\mathrm{S} p(s ; \mathrm{R})$ is a closed subgroup of $\mathrm{GL}(2 s ; \mathrm{R})$; and that the full-projection :

$$
\tilde{\mathrm{V}}_{2 s}(\mathrm{E}) \rightarrow \tilde{\mathrm{V}}_{2 s}(\mathrm{E}) / \mathrm{GL}(2 s ; \mathrm{R})=\mathrm{G}_{2 s}(\mathrm{E})
$$

$=$ Grassmann-Manifold of $2 s$-planes on E, induces a principal GL($2 s ; \mathrm{R}$)bundle.

1.3. The Principal Unitary-bundle : $\mathrm{V}_{2 s}(\mathrm{E})\left(\mathrm{A}_{s}(\mathrm{E}) ; \mathrm{U}(s)\right)$.

1.3.1. Let $\mathrm{V}_{2 s}(\mathrm{E})=$ Stiefel Manifold of orthonormal $2 s$-frames on $\mathrm{E} . \mathrm{A}_{s}(\mathrm{E})=\widetilde{f_{s}}\left(\mathrm{~V}_{2 s}(\mathrm{E})\right)=$ Manifold of "normalized" 2-forms on E of
rank 2s. $f_{s}: \mathrm{V}_{2 s}(\mathrm{E}) \rightarrow \mathrm{A}_{s}(\mathrm{E})$ the "restriction" of \widetilde{f}_{s} to $\mathrm{V}_{2 s}(\mathrm{E})$.
Then, $\mathrm{U}(s)=\mathrm{Sp}(s ; \mathrm{R}) \cap \mathrm{O}(2 s)$ acts freely and transitively on the fibers of f_{s}; and thus f_{s} factors through the orbit-space $\mathrm{V}_{2 s}(\mathrm{E}) / \mathrm{U}(s)$ in a bijective-fashion.

Lemma. - There exists a retraction $r: \tilde{V}_{2 s}(\mathrm{E}) \rightarrow \mathrm{V}_{2 s}(\mathrm{E})$ such such that $\widetilde{f_{s}}=f_{s} \circ r$ when restricted to $\widetilde{f_{s}^{-1}}\left(\mathrm{~A}_{s}(\mathrm{E})\right)$.

Sketch of Proof. - Let $y \in \mathrm{~V}_{2 s}(\mathrm{E})$; and pick any orthonormal frame e in the plane of y. Then $y=u \circ e$ for some $u \in \mathrm{GL}(2 s ; \mathrm{R})$. Let $u=t v$ be the polar decomposition of u into an orthogonal matrix t and a positive-definite symmetric matrix v. Put $r(y)=t \circ e$. Then, independence of the definition of $r(y)$ on the frame used, and other properties of r can easily be verified.

Corollary. - Let B be a topological-space and $w: \mathrm{B} \rightarrow \mathrm{A}_{s}(\mathrm{E})$ a continuous map; and $\phi: \mathrm{B} \rightarrow \widetilde{\mathrm{V}}_{2 s}(\mathrm{E})$ a lifting of w. Then, $r \circ \phi$ lifts w to $\mathrm{V}_{2 s}(\mathrm{E})$.

1.3.2. Proposition. $-f_{s}$ induces a principal $\mathrm{U}(s)$-bundle :

$$
\mathrm{V}_{2 s}(\mathrm{E})\left(\mathrm{A}_{s}(\mathrm{E}) ; \mathrm{U}(s)\right) .
$$

Proof. - Let ϕ be a cross-section to $\widetilde{f_{s}}$ over some compact neighbourhood $\tilde{\mathrm{N}}$ of $\widetilde{\mathrm{A}}_{s}(\mathrm{E})$. Put $\mathrm{N}=\tilde{\mathrm{N}} \cap \mathrm{A}_{s}(\mathrm{E})$ and $\phi_{1}=\phi / \mathrm{N}$. Then, by the preceeding Corollary, $r \phi_{1}$ is a cross-section to f_{s} over N . Define $t: \mathrm{N} \times \mathrm{U}(s) \rightarrow f_{s}^{-1}(\mathrm{~N})$ by $t(n, u)=u\left(\left(r \phi_{1}\right) n\right)$. Then, t, is a homeomorphism (by compactness). Hence f_{s} is locally-trivial ; and thus induces a principal $\mathrm{U}(s)$-bundle.
1.4. Retraction of $\widetilde{\mathrm{A}}_{s}(\mathrm{E})$ onto $\mathrm{A}_{s}(\mathrm{E})$.

Let $\widetilde{W}_{s}=$ Set of non-singular and skew-symmetric $2 s \times 2 s$ matrices. $\mathrm{W}_{s}=$ Set of orthogonal and skew-symmetric $2 s \times 2 s$ matrices. Then, GL($2 s ; \mathrm{R}$) acts on W_{s} by $u \circ k=u k u^{t}$ for

$$
u \in \mathrm{GL}(2 s ; \mathrm{R}) \mathrm{i} \quad \text { and } \quad k \in \widetilde{\mathrm{~W}}_{s}
$$

and the subgroup, $\mathrm{O}(2 s)$, leaves W_{s} invariant under this action. If
$k=g v$ is the polar-decomposition of $k \in \widetilde{W}_{s}$; then $g \in \mathrm{~W}_{s}$; and thus
$k \rightarrow g$ defines a projection $p: \widetilde{W}_{s} \rightarrow \mathrm{~W}_{s}$.
Lemma. - There exists. a continuous deformation retraction of $\widetilde{\mathrm{W}}_{s}$ onto W_{s} that commutes with the action of $\mathrm{O}(2 s)$.

Proof. - Define a homotopy $h_{r}: \widetilde{\mathrm{W}}_{s} \rightarrow \mathrm{~W}_{s}$ by

$$
h_{r}(g v)=g\left((1-r) v+r l_{d}\right)
$$

Then, $h_{o}=l_{d} ; h_{l}=p$; and h_{r} commutes with the action of $\mathrm{O}(2 s)$.
From this Lemma we recover the following :
Proposition. - There exists a retraction $\theta: \widetilde{\mathrm{A}}_{s}(\mathrm{E}) \rightarrow \mathrm{A}_{s}(\mathrm{E})$.
Proof. - Let's first assume that $n=2 s$. Then, an orthonormal frame e on E defines homeomorphisms ; $t_{e}: \widetilde{\mathrm{W}}_{s} \rightarrow \widetilde{\mathrm{~A}}_{s}(\mathrm{E})$ and $t_{e}: \mathrm{W}_{s} \rightarrow \mathrm{~A}_{s}(\mathrm{E})$ by $t_{e}(k)=\sum_{i<j} k_{i j} e_{i} \wedge e_{j}$ and $t_{e}=t_{e} / \mathrm{W}_{s}$.

A homotopy $f_{r}: \widetilde{\mathrm{A}}_{s}(\mathrm{E}) \rightarrow \mathrm{A}_{s}(\mathrm{E})$ can be defined by $f_{r}=t_{e} \circ h_{r} \circ t_{e}^{-1}$ and it is, immediately, verified that this definition is independent of the orthonormal frame used. Thus, $\theta=f_{1}$ yields the desired retraction.

For $n \geqslant 2 s$; we have the diagram :

a retraction θ_{p}; and a homotopy $\left(f_{r}\right)_{p}: \tilde{\pi}^{-1}(p) \rightarrow \pi^{-1}(p)$ over each $2 s$-plane, $p \in \mathrm{G}_{2 s}(\mathrm{E})$. Then, the collections, $\theta=\left(\theta_{p}\right)_{p \in \mathrm{G}_{2 s}}(\mathrm{E})$ and $f_{r}=\left(f_{r}\right)_{p}$ yield the desired retraction and the homotopy respectively.
Q.E.D.

2. Decomposability of two-forms of constant rank.

2.1. Notations and definitions :

Let E be an R^{n}-bundle (with a Riemannian-metric) over a connected base-space B. Let $\widetilde{\mathrm{V}}_{2 s}(\mathrm{E}), \mathrm{V}_{2 s}(\mathrm{E}), \widetilde{\mathrm{A}}_{s}(\mathrm{E}), \mathrm{A}_{s}(\mathrm{E})$ be the associated-bundles to E with fibers $\widetilde{\mathrm{V}}_{2 s}\left(\mathrm{R}^{n}\right), \mathrm{V}_{2 s}\left(\mathrm{R}^{n}\right), \widetilde{\mathrm{A}}_{s}\left(\mathrm{R}^{n}\right), \mathrm{A}_{s}\left(\mathrm{R}^{n}\right)$ respectively. A 2 -form, w, on E of constant rank $2 s$ is, by definition, a cross-section to $\mathrm{A}_{s}(\mathrm{E})$. The maps $\widetilde{f_{s}}(\mathrm{E}): \widetilde{\mathrm{V}}_{2 s}(\mathrm{E}) \rightarrow \widetilde{\mathrm{A}}_{s}(\mathrm{E})$ and $f_{s}(\mathrm{E}): \mathrm{V}_{2 s}(\mathrm{E}) \rightarrow \mathrm{A}_{s}(\mathrm{E})$ are defined and we have the following "global" versions of Propositions 1.2.2. and 1.3.2. :

Proposition 1.2.2.* $-\widetilde{f_{s}}(\mathrm{E})$ induces a principal $\mathrm{S} p(s ; \mathrm{R})$-bundle.
Proposition 1.3.2.* $-f_{s}(\mathrm{E})$ induces a principal $\mathrm{U}(s)$-bundle.

2.2. Local-Decomposability and the Sub-bundle $\mathrm{S}_{\boldsymbol{w}}$:

Definition. - A 2-form, w, on E of constant rank 2 s is said to be locally-decomposable iff each point $x \in \mathrm{~B}$ has a neighbourhood U_{x} and linearly-independent 1-forms $\left(y_{i}\right) i=1, \ldots, 2 s$ on E over U_{x} s.t. $w=y_{1} \Lambda y_{s+1}+\cdots+y_{s} \wedge y_{2 s}$ over U_{x}. (Or, alternatively, there exists a cross-section, y, to $\widetilde{\mathrm{V}}_{2 s}(\mathrm{E})$ over U_{x} such that $\left.w=\widetilde{f_{s}} \circ y\right)$.

Lemma. - A 2-form, w, of constant rank $2 s$ on E is locallydecomposable.

Proof. - Let $x \in \mathrm{~B}$; and, c, a cross-section to $\widetilde{f_{s}}(\mathrm{E})$:

$$
\widetilde{\mathrm{V}}_{2 s}(\mathrm{E}) \rightarrow \widetilde{\mathrm{A}}_{s}(\mathrm{E})
$$

over a neighbourhood N of $w(x)$ in $\widetilde{\mathrm{A}}_{s}(\mathrm{E})$. Then, the composite $w^{-1}(\mathrm{~N}) \xrightarrow{w} \mathrm{~N} \xrightarrow{c} \mathrm{~V}_{2 s}(\mathrm{E})$ defines a cross-section $y=c w$ to $\widetilde{f_{s}}(\mathrm{E})$ over $w^{-1}(\mathrm{~N})$ such that $\widetilde{f_{s}} \circ y=w$.
Q.E.D.

Given a 2 -form, w, of constant rank $2 s$; then at each point $x \in \mathrm{~B}, w(x)$ determines a $2 s$-dimensional subspace $\mathrm{S}_{\boldsymbol{w (x)}}$ of E_{x} on which it is of maximal rank ; and local decomposability of w, immetiately yields the following :

Proposition. - The union $\mathrm{S}_{\boldsymbol{w}}=\underset{x \in \mathrm{~B}}{ } \mathrm{~S}_{\boldsymbol{w}(\boldsymbol{x})}$ is a sub-bundle of E ; and, w, being a 2-form on S_{w} of maximal-rank determines a reduction of its structure group from $\mathrm{GL}(2 s ; \mathrm{R})$ to $\mathrm{S} p(s ; \mathrm{R})$.

This Proposition, clearly, demonstrates that the "existence of a 2-form of constant rank on E" (which is assumed apriori in the thesis) is, already, a strong condition ; and will be useful in proving non-existence theorems about 2-forms of constant rank on spheres and projective-spaces in the last-chapter.
2.3. Decomposition of 2-forms of constant rank :

Let $\widetilde{\mathrm{V}}\left(\mathrm{S}_{w}\right), \mathrm{V}\left(\mathrm{S}_{w}\right), \widetilde{\mathrm{A}}\left(\mathrm{S}_{w}\right), \mathrm{A}\left(\mathrm{S}_{w}\right)$ be the associated-bundles to S_{w} with fibers $\tilde{\mathrm{V}}\left(\mathrm{R}^{2 s}\right), \mathrm{V}\left(\mathrm{R}^{2 s}\right), \widetilde{\mathrm{A}}\left(\mathrm{R}^{2 s}\right), \mathrm{A}\left(\mathrm{R}^{2 s}\right)$ respectively.

Definition. -w is said to be decomposable iff

$$
w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}
$$

for linearly-independent 1-forms $\left(y_{i}\right)$ on E. (Or, alternatively, the diagram : admits a lifting).

An immediate consequence of this definition is the following :
Observation. - If, w, is decomposable ; then $\mathrm{S}_{\boldsymbol{w}}$ is a trivial (product)-bundle.

Let $r: \widetilde{\mathrm{V}}\left(\mathrm{S}_{\boldsymbol{w}}\right) \rightarrow \mathrm{V}\left(\mathrm{S}_{\boldsymbol{w}}\right)$ and $\theta: \widetilde{\mathrm{A}}\left(\mathrm{S}_{\boldsymbol{w}}\right) \rightarrow \mathrm{A}\left(\mathrm{S}_{\boldsymbol{w}}\right)$ be the retractions of Sections 1.3. and 1.4. (respectively) defined globally on S_{w}.

Definition. - The "normalization" of, w, is defined to be the composite $\theta w: \mathrm{B} \xrightarrow{\boldsymbol{w}} \widetilde{\mathrm{A}}\left(\mathrm{S}_{\boldsymbol{w}}\right) \xrightarrow{\theta} \mathrm{A}\left(\mathrm{S}_{\boldsymbol{w}}\right)$ and is a "normalized" 2-form of rank 2 s. (i.e. a cross-section to $\mathrm{A}\left(\mathrm{S}_{w}\right)$).

Definition. - A normalized 2-form, w, of rank $2 s$ decomposes orthogonally iff $w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}$ for orthonormal-frame $y=\left(y_{1}, \ldots, y_{2 s}\right)$ on S_{w}.

Proposition. - A 2-form, w, of constant rank $2 s$ decomposes iff its normalization decomposes orthogonally.

Proof. - Suppose, w, decomposes. i.e. there exists a continuous map $\mathrm{L}: \mathrm{B} \rightarrow \widetilde{\mathrm{V}}\left(\mathrm{S}_{\underset{w}{ }}\right)$ such that $\widetilde{f_{s}} \circ \mathrm{~L}=w$. Since θ is a retraction ; $w \simeq \theta w$, and thus $\widetilde{f_{s}} \circ \mathrm{~L} \simeq \theta w$. Since $\widetilde{f_{s}}$ is a fibration; by the covering-homotopy-theorem ; there exists a lifting $\mathrm{T}: \mathrm{B} \rightarrow \widetilde{\mathrm{V}}\left(\mathrm{S}_{w}\right)$ of θw to $\widetilde{\mathrm{V}}\left(\mathrm{S}_{w}\right)$ and by the "global-version" of Corollary 1.3.1. $r \mathrm{~T}$ is a lifting of θw to $\mathrm{V}\left(\mathrm{S}_{w}\right)$. Thus, θw decomposes orthogonally.

Conversely, suppose θw decomposes orthogonally ; i.e. that there exists a lift $k: \mathrm{B} \rightarrow \mathrm{V}\left(\mathrm{S}_{\boldsymbol{w}}\right)$ of θw to $\mathrm{V}\left(\mathrm{S}_{w}\right)$. Then,

$$
f_{s} \circ k=\theta w \simeq w
$$

and again, by the covering homotopy theorem, there exists a lifting of, w, to $\widetilde{\mathrm{V}}\left(\mathrm{S}_{w}\right)$.
Q.E.D.

By Observation 2.3., a necessary condition for w to decompose is that S_{w} is a trivial (product)-bundle. Let's choose a particular product representation : $\mathrm{S}_{w}=\mathrm{B} \times \mathrm{R}^{2 s}$ which gives rise to further product representations : i) $\mathrm{V}\left(\mathrm{S}_{w}\right)=\mathrm{B} \times \mathrm{V}\left(\mathrm{R}^{2 s}\right)=\mathrm{B} \times \mathrm{O}(2 s)$ and ii) $\mathrm{A}\left(\mathrm{S}_{w}\right)=\mathrm{B} \times \mathrm{A}\left(\mathrm{R}^{2 s}\right)=\mathrm{B} \times \mathrm{O}(2 s) / \mathrm{U}(s)$ and a representation of θw as a map $w_{1}: \mathrm{B} \rightarrow \mathrm{O}(2 s) / \mathrm{U}(s)$.
θw decomposes orthogonally iff w_{1} lifts to $\mathrm{O}(2 s)$. Since B is connected and w_{1} continuous ; we may, without loss of generality assume that $w_{1}(\mathrm{~B}) \subset \mathrm{I}_{s}=\mathrm{SO}(2 s) / \mathrm{U}(s)$; and then lifting w_{1} to $\mathrm{O}(2 s)$ is equivalent to lifting it to $\mathrm{SO}(2 s)$. We can summarize this in a single :

Theorem. - A 2-form, w, of constant rank $2 s$ decomposes iff
i) S_{w} is a trivial (product)-bundle.
ii) The representation of its normalization as a map w_{1} :

$$
\mathrm{B} \rightarrow \mathrm{I}_{s}=\mathrm{SO}(2 s) / \mathrm{U}(s)
$$

arising from any trivialization of $\mathrm{S}_{\boldsymbol{w}}$ lifts to $\mathrm{SO}(2 s)$.
The method used above was to assume the existence apriori, of a metric on E (and thus on $\mathrm{S}_{\boldsymbol{w}}$) ; and to show that, w, decomposes iff its normalization (with respect to this metric) decomposes orthogonally.

A more and invariant approach does not pre-suppose the existence of a metric on $\mathrm{S}_{\boldsymbol{w}} . w$, determines a reduction of the structure-group of S_{w} to $\mathrm{S} p(s ; \mathrm{R})$; and since $\mathrm{U}(s)$ is a maximal compact subgroup of $\mathrm{S} p(s ; \mathrm{R})$; it undergoes a further reduction to $\mathrm{U}(s)$; and thus $\mathrm{S}_{\boldsymbol{w}}$ admits a unique Hermitian metric. Then, w, becomes normalized with respect to the corresponding real-metric, and thus decomposes iff it decomposes orthogonally. The rest of the theory goes as before ; and one, again, obtains the above theorem with obvious modifications.

3. Cohomology of I_{s}.

3.1. Preliminaries :

Let $x \in \mathrm{P}^{n-1}$; and ϕ_{x} be the "reflection" through the hyperplane perpendicular to x; and ϕ_{0} the reflection corresponding to the initial point ($1,0, \ldots, 0$). Then, we imbed $P^{n-1} \subset \mathrm{SO}(n)$ by $x \rightarrow \phi_{x} \phi_{0}$. We, now, list the following standard results ; and for proofs we refer the reader to [8] pp. 40-45.

Observation: i) $\mathrm{P}^{n-1} \cap \mathrm{SO}(n-1)=\mathrm{P}^{n-2}$. ii) $\mathrm{P}^{i} \circ \mathrm{P}^{j}=\mathrm{P}^{j} \circ \mathrm{P}^{i}$ and iii) $\mathrm{P}^{i} \circ \mathrm{P}^{i}=\mathrm{P}^{i} \circ \mathrm{P}^{i-1}$ in $\mathrm{SO}(n)$.

Let $\mathrm{P}^{n-1} / \mathrm{P}^{n-2}$ be the space obtained by collapsing P^{n-2} to a point ; and $\mathrm{SO}(n) / \mathrm{SO}(n-1)$ the left coset-space.

Lemma. - The natural-map $\mathrm{T}: \mathrm{P}^{n-1} / \mathrm{P}^{n-2} \rightarrow \mathrm{SO}(n) / \mathrm{SO}(n-1)$ is a "homeomorphism".

Proposition. - The matrix-multiplication

$$
m:\left(\mathrm{P}^{n} \times \mathrm{SO}(n) ; \mathrm{P}^{n-1} \times \mathrm{SO}(n)\right) \rightarrow(\mathrm{SO}(n+1) ; \mathrm{SO}(n))
$$

is a relative-homeomorphism.

Theorem. - $\mathrm{SO}(n)$ is a cell-complex with normal cells

$$
\left[i_{1} ; i_{2} ; \cdots ; i_{k}\right] \text { for } n>i_{1}>i_{2}>\cdots>i_{k} \geqslant 1
$$

given by

$$
\mathrm{E}^{i_{1}} \times \mathrm{E}^{i_{2}} \times \cdots \times \mathrm{E}^{i_{k}} \rightarrow \mathrm{P}^{i_{1}} \times \mathrm{P}^{i_{2}} \times \cdots \times \mathrm{P}^{i_{k}} \xrightarrow{m} \mathrm{SO}(n)
$$

and the zero-cell $[0]$; and matrix-multiplication m :

$$
\mathrm{SO}(n) \times \mathrm{SO}(n) \rightarrow \mathrm{SO}(n)
$$

is a cellular-map.
3.2. Cellular Structure of I_{s} :

$$
\text { Observation : } \mathrm{I}_{s}=\mathrm{SO}(2 s) / \mathrm{U}(s)=\mathrm{SO}(2 s-1) / \mathrm{U}(s-1) .
$$

Proof. - Obviously, $\mathrm{SO}(2 s-1) \cap \mathrm{U}(s)=\mathrm{U}(s-1)$ and

$$
\mathrm{SO}(2 s-1) \circ \mathrm{U}(s)=\mathrm{SO}(2 s)
$$

by a dimension argument. Thus,

$$
\mathrm{I}_{s}=\mathrm{SO}(2 s-1) \circ \mathrm{U}(s) / \mathrm{U}(s)=\mathrm{SO}(2 s-1) / \mathrm{U}(s-1)
$$

Q.E.D.

Let $\overline{\mathrm{P}}^{2 s+1}$ and $\overline{\mathrm{P}}^{2 s}$ denote the images of $\mathrm{P}^{2 s+1}$ and $\mathrm{P}^{2 s}$ under the projections $\mathrm{SO}(2 s+2) \rightarrow \mathrm{I}_{s+1}$ and $\mathrm{SO}(2 s+1) \rightarrow \mathrm{I}_{s+1}$ respectively. We, then, have the following :

$$
\text { Lemma. }-\overline{\mathrm{P}}^{2 s+1}=\overline{\mathrm{P}}^{2 s}
$$

Proof. - It is an immediate consequence of the fact that the "composite" $\mathrm{P}^{2 s+1} \subset \mathrm{SO}(2 s+2) \rightarrow \mathrm{I}_{s+1}$ factors through $\mathrm{P}_{s}(\mathrm{C})$; and that $\mathrm{P}^{2 s} \subset \mathrm{P}^{2 s+1} \rightarrow \mathrm{P}_{s}(\mathrm{C})$ is "onto".
Q.E.D.

Let $v: \mathrm{SO}(2 s) \times \mathrm{I}_{s} \rightarrow \mathrm{I}_{s}$ be the action of $\mathrm{SO}(2 s)$ on I_{s}. Then, we obtain the analogue of Proposition 3.1. for I_{s} :

[^0]which in turn becomes the key in the proof of the following

ThEOREM. $-\mathrm{I}_{s}$ is a cell-complex consisting of even-dimensional normal-cells $\left[2 i_{1} ; 2 i_{2} ; \cdots ; 2 i_{k}\right]$ for $s>i_{1}>i_{2}>\cdots>i_{k} \geqslant 1$, given by

$$
\mathrm{E}^{2 i_{1}} \times \cdots \times \mathrm{E}^{2 i_{k}} \rightarrow \mathrm{P}^{2 i_{1}} \times \cdots \times \mathrm{P}^{2 i_{k}} \xrightarrow{m} \mathrm{SO}(2 s) \xrightarrow{\text { proj}^{n}} \mathrm{I}_{s}
$$

and the zer-cell $[\mathrm{O}]$; and the action-map $v: \mathrm{SO}(2 s) \times \mathrm{I}_{s} \rightarrow \mathrm{I}_{s}$ is cellular.

Proof. - We prove the theorem by induction on s.
For $s=1 ; \mathrm{I}_{1}$ is just the zero-cell O ; and thus $v: \mathrm{SO}(2) \times \mathrm{I}_{1} \rightarrow \mathrm{I}_{1}$ is, obviously, cellular. By the preceding proposition, I_{s+1} is the adjunction-space : $\mathrm{I}_{s^{+1}}=\mathrm{I}_{s} v_{v}\left(\mathrm{P}^{2 s} \times \mathrm{I}_{s}\right)$. We, now, apply the following standard Lemma : "If K and L ' are cell-complexes; L a subcomplex of K and $v: \mathrm{L} \rightarrow \mathrm{L}^{\prime}$ a cellular-map ; then the adjunction-space, $\mathrm{K}{ }{ }_{v} \mathrm{~L}^{\prime}$ is a cell-complex having L^{\prime} as a subcomplex ; and the images of the cells of ($\mathrm{K}-\mathrm{L}$) as the remaining cells" with

$$
\mathrm{K}=\mathrm{P}^{2 s} \times \mathrm{I}_{s} \quad ; \quad \mathrm{L}=\mathrm{P}^{2 s-1} \times \mathrm{I}_{s} \quad ; \quad \mathrm{L}^{\prime}=\mathrm{I}_{s}
$$

By the inductive hypothesis, $v: \mathrm{SO}(2 s) \times \mathrm{I}_{s} \rightarrow \mathrm{I}_{s}$; and hence its restriction to the subcomplex, $\mathrm{P}^{2 s-1} \times \mathrm{I}_{s}$, is cellular ; and thus we deduce that, I_{s+1}, is a cell-complex having I_{s} as a subcomplex ; and the v-images of the cells of $\left(\mathrm{P}^{2 s}-\mathrm{P}^{2 s-1}\right) \times \mathrm{I}_{s}$ as the remaining cells. By the inductive-hypothesis, the cells of I_{s} are normal cells [2i $i_{1} ; \cdots ; 2 i_{k}$] for $s>i_{1}>\cdots>i_{k} \geqslant 1$, and the zero-cell [O]; and the v-images of the cells of $\left(\mathrm{P}^{2 s}-\mathrm{P}^{2 s-1}\right) \times \mathrm{I}_{s}$ are normal-cells $\left[2 s ; 2 i_{2} ; \cdots ; 2 i_{k}\right]$ for $s>i_{2}>\cdots>i_{k} \geqslant 1$. The proof will be complete once we prove that : v: $\mathrm{SO}(2 s+2) \times \mathrm{I}_{s+1} \rightarrow \mathrm{I}_{s+1}$ is cellular ; and this is done in five steps :
i) $v: \mathrm{P}^{2 s} \times \mathrm{I}_{s} \rightarrow \mathrm{I}_{s+1}$ is cellular.
ii) $v: \mathrm{SO}(2 s+1) \times \mathrm{I}_{s} \rightarrow \mathrm{I}_{s+1}$ is cellular.
iii) $v: S O(2 s+1) \times \mathrm{I}_{s+1} \rightarrow \mathrm{I}_{s+1}$ is cellular.
iv) $v: \mathrm{P}^{2 s+1} \times \mathrm{I}_{s+1} \rightarrow \mathrm{I}_{s+1}$ is cellular.
v) $v: \mathrm{SO}(2 s+2) \times \mathrm{I}_{s+1} \rightarrow \mathrm{I}_{s+1}$ is cellular.

Only iv) has a non-trivial proof which can be outlined as follows :

Proof of $i v$). - By iii) the restriction of, v, to the subcomplex, $\mathrm{P}^{2 s} \times \mathrm{I}_{s+1}$ of, $\mathrm{P}^{2 s+1} \times \mathrm{I}_{s+1}$, is cellular ; and thus it suffices to prove that :

$$
v\left(\mathrm{P}^{2 s+1} ;\left(\mathrm{I}_{s+1}\right)^{2 q}\right) \subset\left(\mathrm{I}_{s+1}\right)^{2(s+q)}
$$

Let $s+1>i_{1}>i_{2}>\cdots>i_{k} \geqslant 1$ and $i_{1}+i_{2}+\cdots+i_{k}=q$

$$
\begin{aligned}
& v\left(\mathrm{P}^{2 s+1} ; \overline{\mathrm{P}^{2 i_{1}} \times \cdots \times \mathrm{P}^{2 i_{k}}}\right) \\
& =\overline{\mathrm{P}^{2 i_{1}} \times \cdots \times \mathrm{P}^{2 i_{k}} \times \mathrm{P}^{2 s+1}}=\overline{\mathrm{P}^{2 s+1} \times \mathrm{P}^{2 i_{1}} \times \cdots \times \mathrm{P}^{2 i_{k}}} \\
& =v\left(\mathrm{P}^{2 i_{1}} \times \cdots \times \mathrm{P}^{2 i_{k}} ; \overline{\mathrm{P}}^{2 s}\right)=v\left(\mathrm{P}^{2 i_{1}} \times \cdots \times \mathrm{P}^{2 i_{k}} ; \overline{\mathrm{P}}^{2 s+1}\right) \\
& =v\left(\mathrm{P}^{2 s} ; \overline{\mathrm{P}^{2 i_{1}} \times \mathrm{P}^{2 i_{2}} \times \cdots \times \mathrm{P}^{2 i_{k}}}\right) \subset v\left((\mathrm{SO}(2 s+1))^{2 s} ;\left(\mathrm{I}_{s+1}\right)^{2 q}\right) \\
& \left.\subset\left(\mathrm{I}_{s+1}\right)^{2(s+q)} \text { by Part iii}\right) .
\end{aligned}
$$

Q.E.D.

Corollary. - The projection $p: \mathrm{SO}(2 s) \rightarrow \mathrm{I}_{s}$ is cellular ; and maps normal cells $\left[2 i_{1} ; 2 i_{2} ; \cdots ; 2 i_{k}\right]$ of $\mathrm{SO}(2 s)$ onto normal cells $\left[2 i_{1} ; 2 i_{2} ; \cdots ; 2 i_{k}\right.$] of I_{s}. The images of the remaining cells, i.e. $\left[j_{1} ; j_{2} ; \cdots ; j_{k}\right.$] where j_{t} is odd for some $1 \leqslant t \leqslant k$ are contained in a skeleton of lower dimension.

3.3. Integer-Cohomology of I_{s} and the Lifting Problem :

Since I_{s} is a cell-complex consisting of even dimensional cells only ; the co-boundary operator is identically zero ; and hence the $2 q^{\text {th }}$-cohomology group $\mathrm{H}^{2 q}\left(\mathrm{I}_{s} ; \mathrm{Z}\right)$ coincides with $2 q^{\text {th }}$-cochains, $\mathrm{C}^{2 q}\left(\mathrm{I}_{s} ; \mathrm{Z}\right)$, which is the free abelian group generated by the duals $\left[2 i_{1} ; \cdots ; 2 i_{k}\right]^{*}$ of normal cells $\left[2 i_{1} ; \cdots ; 2 i_{k}\right.$] for $q=i_{1}+\cdots+i_{k}$.

Proposition. - Image $p^{*} \subset$ Subgroup of elements of

$$
\mathrm{H}^{*}(\mathrm{SO}(2 s) ; \mathrm{Z})
$$

of order 2.
Proof. - By the above ; $p^{*}\left[2 i_{1} ; \cdots ; 2 i_{k}\right]^{*}=\left[2 i_{1} ; \cdots ; 2 i_{k}\right]^{*}$ and $2\left[2 i_{1} ; \cdots ; 2 i_{k}\right]^{*}=\delta\left[2 i_{1}-1 ; \cdots ; 2 i_{k}\right]^{*}$ in $\operatorname{SO}(2 s)$.

Theorem. - A necessary condition for the lifting of the diagram :

is that :
Image $w_{1}^{*} \subset$ Subgroup of elements of $\mathrm{H}^{*}(\mathrm{~B} ; \mathrm{Z})$ of order 2.
Corollary. - If $\mathrm{H}^{*}(\mathrm{~B} ; \mathrm{Z})$ contains no 2-torsion ; then a necessary condition for the liftability of w_{1} is that $w_{1}^{*}=0$.

4. Applications.

4.1. Lower-Dimensional Spaces :

We now, combine Theorems 2.3. and 3.4. with elementary obstruction theory to obtain the following :

Proposition. - Let, w, be a 2-form of constant rank $2 s(s>1)$ on an R^{n}-bundle E over a connected base-space B whose cohomology vanishes in dimensions greater than or equal to four. Necessary and sufficient conditions for, w, to decompose are i) S_{w} is a trivial (product)-bundle ; and ii) $2 w_{1}^{*}=0$ in $\mathrm{H}^{2}(\mathrm{~B} ; \mathrm{z})$ where

$$
i \in \mathrm{H}^{2}\left(\mathrm{I}_{s} ; \mathrm{Z}\right)=\mathrm{Z}
$$

is the generator and w_{1} is the representation of, w, arising from any trivialization of $\mathrm{S}_{\boldsymbol{w}}$.

When B is an orientable 3-manifold, the tangent-bundle $T(B)$ of B is trivial ; and S_{w} is the pull-back of the tangent-bundle $T\left(S^{2}\right)$ of the 2-sphere by the Gauss-Map $\mathrm{P}: \mathrm{B} \rightarrow \mathrm{S}^{2}$; and thus the first Chern-Class, $c_{1}\left(\mathrm{~S}_{w}\right)=2 \mathrm{P}^{*}(i)$, where $i \in \mathrm{H}^{2}\left(\mathrm{~S}^{2} ; \mathrm{Z}\right)$ is the generator. Also by Alexander Duality, $2 \mathrm{P}^{*}(i)=0$ iff $\mathrm{P}^{*}(i)=0$. Applying Theorem 2.3. yields the observation - A nowhere-vanishing 2-form, w, on an orientable 3-manifold decomposes iff $\mathrm{P}^{*}(i)=0$.

If we further specialize by taking B to be an open connected domain in R^{3} and use the Hopf-Classification Theorem that $[\mathrm{P}] \rightarrow \mathrm{P}^{*}(i)$ is an isomorphism : $\left[\mathrm{B} ; \mathrm{S}^{2}\right] \rightarrow \mathrm{H}^{2}(\mathrm{~B} ; \mathrm{Z})$; we obtain :

Corollary. - A nowhere-vanishing 2-form, w, on an open connected domain B of R^{3} decomposes iff the Gauss-Map $\mathrm{P}: \mathrm{B} \rightarrow \mathrm{S}^{2}$ for S_{w} is null-homotopic.

4.2. Methods of Constructing p-forms on Spheres :

i) "From constant $(p+1)$-forms on R^{n} ".

Let $w \in \Lambda^{p+1} \mathrm{R}^{n}$; and define $t: \mathrm{S}^{n-1} \rightarrow \Lambda^{p} \mathrm{R}^{n}$ by $t(x)=\delta_{x}(w)$ for all $x \in \mathrm{~S}^{n-1}$, where δ_{x} is the "adjoint" of the wedge-product map, $d_{x} \vdots \Lambda \mathrm{R}^{n} \rightarrow \Lambda \mathrm{R}^{n}$ given by $d_{x}(y)=x \wedge y$. Then

$$
\delta_{x} t(x)=\delta_{x} \circ \delta_{x}(w)=0 ;
$$

and thus, t, is a differentiable p -form on S^{n-1}.
ii) "From constant p-forms on $\mathrm{R}^{n "}$

Let $w \in \Lambda^{p} \mathrm{R}^{n}$. Then $t(x)=\delta_{x} \circ d_{x}(w)=w-d_{x} \circ \delta_{x}(w)$ for $x \in \mathrm{~S}^{n-1}$ defines a differentiable p-form, t, on S^{n-1} which is called the "tangential component" of w.

Proposition. - The tangential-component of a normalized 2-form of maximal-rank on $\mathrm{R}^{2 n}$ is a 2 -form on $\mathrm{S}^{2 n-1}$ of constant rank $(2 n-2)$.

Proof. $-w=x \wedge \delta_{x}(w)+t(x)$ for all $x \in \mathrm{~S}^{n-1}$. The transformation on $\mathrm{R}^{2 n}$ given by $x \rightarrow \delta_{x}(w)$ has square equal to minus ldentity; and thus $\delta_{\delta_{x}(w)}(t(x))=0$ which implies that $t(x) \in \Lambda^{2} \mathrm{U}_{x}$ for

$$
\mathrm{U}_{x}=\left(x ; \delta_{x}(w)\right) ;
$$

and hence $\operatorname{rank}(w)=\operatorname{rank}\left(x \wedge \delta_{x}(w)\right)+\operatorname{rank} t(x)$.

Note. $-t(-x)=t(x)$; and thus, t, also defines a 2 -form on $\mathrm{P}^{2 n-1}$ of constant rank (2n-2).
4.3. Existence and decomposability of 2-forms of constant rank on spheres :

Proposition. -- $S^{4 n+3}$ admits a 2-form of constant rank $4 n$.

Proof. - Represent $\mathrm{S}^{4 n+3}=\mathrm{S} p(n+1) / \mathrm{S} p(n)$; and let

$$
w_{0}=e_{1} \wedge e_{2 n+1}+\cdots+e_{2 n} \wedge e_{4 n}
$$

be a "normalized" 2 -form at the distinguished point $e_{4 n+3}$. For $x \in \mathrm{~S}^{4 n+3}$, take any $u \in \mathrm{~S} p(n+1)$ such thất $u\left(e_{4 n+3}\right)=x$; and define $w(x)=\left(\Lambda^{2} u\right) w_{0}$. Since, $\mathrm{S} p(n) \subset \mathrm{U}(2 n)$ leaves w_{0}-invariant ; w is a well defined 2-form on $S^{4 n+3}$ of constant rank $4 n$. Q.E.D.

Note. - i) $w\left(e^{i \theta} x\right)=e^{2 i \theta} w(x)$ and ii) $\delta_{\mathrm{J}(x)}(w(x))=0 \quad$ where J is multiplication by $i=\sqrt{-1}$; and thus, w, defines a 2 -form on $\mathrm{P}_{2 n+1}(\mathrm{C})$ (and hence on $\mathrm{P}^{4 n+3}$) of constant rank $4 n$.

Combining Proposition 2.2 with the Standard Theorem of [7] pp. 144 ; we obtain the following :

Statement. - The existence of a 2-form of constant rank $2 s$ on S^{n} implies :
i) the existence of a field of $2 s$-frames on S^{n} for $4 s \leqslant n$.
ii) the existence of a field of $(n-2 s)$-frames on S^{n} for $4 s>n$. and using Adams' results on Vector Fields on Spheres ; we deduce :

Corollary 1. - $\mathrm{S}^{4 n+1}$ does not admit a 2-form of constant $\operatorname{rank} 2 s$ for $0<s<2 n$.

Corollary 2. - $\mathrm{S}^{2 n}$ does not admit a 2-form of constant rank $2 s$ for $0<s<n$.

It is also a consequence of Adams' results and Kirchoff's Theorem (Refer to [7] pp. 217) that S^{2} and S^{6} are the only even dimensional spheres which are almost-complex, i.e. admit 2 -forms of maximal rank. We can, now, summarize all these results in the following :

Theorem. - 1) The only even dimensional spheres which admit 2-forms of constant rank are S^{2} and S^{6} which admit 2-forms of maximal rank. None of these forms can be decomposed.
2) The only non-zero 2-forms of constant rank on $S^{4 n+1}$ are those of rank $4 n$, and none of these forms can be decomposed.
3) $\mathrm{S}^{4 n+3}$ admits 2 -forms of constant ranks $2,4 n, 4 n+2$. Those of constant rank 2 always decompose ; whereas those of constant rank $4 n$ and $4 n+2$ cannot be decomposed for $n \geqslant 2$. A 2-form, w, on S^{7} of constant rank 4 decomposes iff i) $\mathrm{S}_{\boldsymbol{w}}$ is a trivial bundle ; and ii) $\partial\left[w_{1}\right] \in \pi_{6} \mathrm{U}(2)$ vanishes, where w_{1} is the representation of the normalization of w (with respect to the canonical RiemannianMetric on S^{7}) arising from any trivialization of S_{w} as a map

$$
w_{1}: \mathrm{S}^{7} \rightarrow \mathrm{I}_{2} ; \quad \text { and } \quad \partial: \pi_{7} \mathrm{I}_{2} \rightarrow \pi_{6} \mathrm{U}(2)
$$

is the boundary-operator of the exact homotopy sequence of the fibration $\mathrm{SO}(4) \rightarrow \mathrm{I}_{2}$.

A 2-form, w, on S^{7} of constant rank 6 decomposes iff i)

$$
\partial[\mathrm{P}] \in \pi_{6} \mathrm{SO}(6)
$$

vanishes; where $\mathrm{P}: \mathrm{S}^{7} \rightarrow \mathrm{~S}^{6}$ is the Gauss-Map for $\mathrm{S}_{\boldsymbol{w}}$, and

$$
\partial: \pi_{7} S^{6} \rightarrow \pi_{6} S O(6)
$$

is the boundary-operator of $\mathrm{SO}(7) \rightarrow \mathrm{S}^{6}$. ii) $\partial\left[w_{1}\right] \in \pi_{6} \mathrm{U}(3)$ vanishes; where $w_{1}: \mathrm{S}^{7} \rightarrow \mathrm{I}_{3}$ is the representation of the normalization of w, and $\partial: \pi_{7} \mathrm{I}_{3} \rightarrow \pi_{6} \mathrm{U}(3)$ is the boundary-operator of $\mathrm{SO}(6) \rightarrow \mathrm{I}_{3}$.

Remark. - The above theorem solves completely the existence and decomposability problem of 2 -forms of constant rank for $S^{2 n}$, $S^{4 n+1}$, and for $S^{4 n+3}$ up to S^{15}. The first unsolved case is the existence question of 2 -forms of constant rank 10 on S^{15}. The next is the existence question of 2 -forms of constant rank 16 and 18 on $\mathrm{S}^{\mathbf{2 3}}$.
4.4. Existence and Decomposability of 2-forms of constant rank on

Projective Spaces :
Parts 1 and 2 and most of 3 of the preceeding Theorem go through unchanged for real-projective spaces. The only changes in Part 3 are i) 2-forms, w, on $\mathrm{P}^{4 n+3}$ of constant rank 2 decompose iff $c_{1}\left(\mathrm{~S}_{w}\right) \in \mathrm{H}^{2}\left(\mathrm{P}^{4 n+3} ; \mathrm{Z}\right)=\mathrm{Z}_{2}$ vanishes. ii) The discussions for 2-forms on S^{7} do not have their analogues for P^{7}; since, w, can no longer be represented as an element of $\pi_{7} I_{2}$ or $\pi_{7} I_{3}$. A necessary condition for the decomposability of such forms is the decomposability of
the corresponding forms on S^{7} (which can be determined by the previous Theorem). However, whether this is sufficient is not known.

The case of the complex projective spaces can be best summarized in the following :

Proposition. - P (C), being a complex analytic manifold, admits a 2-form of constant rank $2 n$.

The only non-zero 2 -forms on $\mathrm{P}_{2 n}(\mathrm{C})$ of constant rank are those of constant rank $4 n$ which cannot be decomposed.
$\mathrm{P}_{2 n+1}(\mathrm{C})$, admits 2 -forms of constant ranks $4 n+2$ and $4 n$ which cannot be decomposed for $n \geqslant 2$.

4.5. Translation-Invariant 2 -forms on Lie-Groups :

Proposition. - A Lie-Group, G, admits translation-invariant 2forms of constant rank $2 s$ for $2 s \leqslant \operatorname{dim} G$; and any translationinvariant 2 -form on G decomposes.

Appendix

The analogous problem of decomposing a 2 -form of constant rank on a complex vector-bundle is attacked in exactly the same way ; and is reduced to the lifting-problem of the diagram :

One then investigates integer-cohomology of the homogenousspace, $\mathrm{U}(2 s) / \mathrm{S} p(s)$; and the Kernel of the map, p^{*} :

$$
\mathrm{H}^{*}(\mathrm{U}(2 s) / \mathrm{S} p(s)) \rightarrow \mathrm{H}^{*}(\mathrm{U}(2 s))
$$

BIBLIOGRAPHY

[1] A. Borel, Sur La Cohomologie des Espaces Fibre Principaux..., Ann. Math., 57(1953), 115-207.
[2] A. Borel, F. Hirzebruch, Characteristic Classes and Homogenous Spaces I, Amer. J. Math., 80 (1958),459-538.
[3] J. Martinet, Sur Les Singularités des Formes Differentiables, Thesis Grenoble (1969).
[4] W.S. Massey, Obstructions to the Existence of Almost-Complex Structures , Bull. Amer. Math. Soc, 67 (1961), 559-564.
[5] C.E. Miller, The Topology of Rotation Groups, Ann. Math, 57 (1953), 91-114.
[6] Mosher-Tangora, Cohomology Operations and Application in Homotopy Theory, Harper-Row Publishers (1968).
[7] N.E. Steenrod, The Topology of Fibre-Bundles, Princeton Univ. Press (1951).
[8] N.E. Steenrod, Cohomology Operations, Annals of Math Studies, $\mathrm{n}^{\circ} 50$.
[9] S. Sternberg, Lectures on Differential Geometry, Prentice Hall Edition (1964).
[10] E. Thomas, Complex-Structures on Real Vector-Bundles, Amer. J. Math., 89 (1967), 887-907.

Manuscrit reçu le 12 juillet 1973 accepté par G. Reeb.

Ibrahim Dibag, Department of Mathematics Middle-East Technical University

Ankara (Turquie).

[^0]: PROPOSITION. $-v:\left(\mathrm{P}^{2 s} \times \mathrm{I}_{s} ; \mathrm{P}^{2 s-1} \times \mathrm{I}_{s}\right) \rightarrow\left(\mathrm{I}_{s+1} ; \mathrm{I}_{s}\right)$ is a relative-homeomorphism

