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DECOMPOSITION IN THE LARGE
OF TWO-FORMS OF CONSTANT RANK

by Ibrahim DIBAG

0. Introduction.

"Whether a vector-bundle admits a 2-fbrm of constant rank"
has been an important question in algebraic topology ; and a good
deal of research (4, 5, 10) has been done on the subject. In this
thesis we shall take, apriori, a vector-bundle that does admit such
a 2-form, w, of constant rank 2s. We shall then show that, w, locally
decomposes into a sum : w == y^ ^ y^+i + Y^ ^Ys+i "̂  ' " "*" Vs ^Yis
of products of linearly-independent 1-forms ( y ^ ) on E. The main
task of the thesis is to find necessary and sufficient conditions for, w,
to have a global such decomposition.

We shall define a 2^-dimensional sub-bundle S^ o fE on which, w,
can be regarded as a 2-form of maximal rank ; and a necessary condition
for, w, to decompose globally is that S^ is a trivial (product) bundle.

Using the triviality of Sy, we shall represent w, as a map w^ :
B -> 1̂  ; where B is the base-space, and 1̂  = SO(2s)/V(s) is the
homogenous space ; and, w, decomposes globally if and only if
Wi lifts to S0(2^).

We shall then investigate the integercohomology, H*(I^ ; Z),
of ly ; and the cohomology-mapping

p* : H*(I, ; Z) -^ H*(SO(25) ; Z)

induced by the projection p : S0(2s) -> I,. We shall deduce that :
1) H*(Iy ; Z) is, additively, generated by the duals of normal

cells [2^ ; 2^ ; • • • ; 2^] for s > /\ > ^ > • • • > i^ > \ and the
zero-cell [0].
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2) ^*[2;\ ; 2/2 ; • • • ; 2/J* is of order 2 in H*(SO(25) ; Z).
From these two statements will follow the theorem that : "A
necessary condition for the liftability of w^ is that Image of w^ C
Subgroup of elements of H*(B : Z) of order 2" and the corollary
that :

"If H*(B ; Z) does not have any 2-torsion ; then a necessary
condition for the liftability of w^ is w^ = 0.

These results will then be applied to some special cases, and
a full discussion will be given of the existence and decomposability
of 2-forms of constant rank on i) spheres, ii) real, and iii) complex-
projective spaces.

1. Fiber-bundle structures over two-forms of rank 2s.

1.1. Definitions and notation :

Let E be a real ^-dimensional inner-product space ; and as usual,
identify E with its dual E* through the metric.

Then it is well known (e.g. refer to [9]) that :
i) Any 2-form, w, on E decomposes into

w = Vi A^! + • • • + Y s ^ V i s

a sum of products of linearly-independent vectors (^.) of E.
ii) The number of terms in any such decomposition is unique ;

and is called the "rank" of w.
Thus if V^(E) = manifold of ordered 2^-tuplets of linearly-

independent vectors in E.
A^(E) = Set of 2-forms on E of rank 2s.
We can define f, : V^ (E) -^ A,(E) by

(^i, Y i , . . • , y^s) ^ y \ A v^i + • • • + V s A Vis
and by the above, fy is "onto". Also, the real-symplectic group,
SpC? ; R) acts freely and transitively on the fibers of / - ; and thus^ ^ s

f^ factors through the orbit-space, V^(E)/Sp(5 ; R), in a bijective
fashion.
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1.2. The Principal Sp(s ; R)-bundle : V^(E) (A,(E) ; Sp(s ; R))

1.2.1. LEMMA.- The map ^ : V^(E) -^ A,(E) aAm^ a local
cross-section.

Note : In the following proof, we shall, for convenience of
notation, take the definition of fy to be :

^(^1 » • • • . V2s) = Yl A YZ + • • • + >2.-1 A Y^ .

Proo/ - Choose a basis (^ , ̂  , . . . , 6^) of E. Then any w G A^
can be written as w = ^ a^. (w) .̂ A ^. where a . : A^ -^ R1 are

i<]
continuous functions on A^.

Q^ = (w^\(E)/a^(w) ̂  0) is an open subset of A^(E) for
1 < r < s .

S2.=^ - 1(Q.)C=V„(E) ; ^: S,,^ Q,

well-defined.
Let F be the subspace of E generated by (^3 , e^ , . . . , e^)

((^1 , ^2) ; (^3 .^4 - • • ^2,)) ^ (^ ,^2 . • • • .^2.)

defines a continuous map

z : 83 x V^_2 (F) -> S^, ; and (q ; w^) H- ^ 4- w^

defines a continuous map B : Q^ x A^_i (F) -> Q^ and that

f,oi - -Bo^ x ^ _ ^ ) ,

Now, given w G Q^, we have :

w = (^i -^2 3^ - • • • -^L^) ^12 ^2 + • • • +^i .^)+^o\ a^ a^ /

where W()GA^_^F) . Let

y, (w) = ̂  - ̂  .3 - . . — a2n e
fll2 ^12

y^(w) = a^e^ + ^13 ^3 + • • • + ^ i ^ ^ .
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Then define continuous maps :

k, : Q, -^ S^ by /:, (w) = (^ (w) ; ̂  W)

p, : Q -^ A,_i(F) by p,(w) = WQ.

By definition : B((/\ o k^) x p ^ ) = l^. We shall, now, prove by
induction on s that ^ admits a local cross-section. For 5 = 1 . Assume
W.L.G. that w G Q ^ . Since A,_i(F) = 0 ; p ^ ( w ) = 0.

Hence, k^ : Q^ -> S^ yields the desired lifting o f / ^ .

For s > 1 ; again assume W.L.G. that w G Q ^ , and that the
inductive hypothesis holds for s - 1 ; i.e. there exists a neighbourhood/^/ /">»/
U of ^y(w) in A^_^(F) and a lifting L y _ i of ^_^ over U. Then
N = p^^U) C Q^ is a neighbourhood for w in Q^and hence inA^(E) ;
and

fc ix (L ,_ i °pp ^
N ————————. S, x V^(F) ————————> S^CV^(E)

yields the desired lifting Ly = z o (^ x ( L ^ _ i o ^ ) ) of /^ over the
neighbourhood N of w.

Q.E.D.

1.2.2. PROPOSITION. — fy induces a principal Sp(s ; R)-bundle :
^(E) (A,(E) ; Sp(s ;R)) .

Proof — The existence of a local cross-section to fy implies
that A^(E) and the orbit-space V^(E)/SpC? ; R) are homeomorphic ;
and that fy and the projection p : V^(E) -> V^(E)/Sp(5 ; R) can
be identified. The fact that the projection, p , induces a principal
Sp(s ; R)-bundle follows from the fact that Sp(s ; R) is a closed
subgroup of GL(2s ; R) ; and that the full-projection :

V2. (E) ^ V^ (E)/GL(2^ ; R) = G^(E)

= Grassmann-Manifold of 2^-planes on E, induces a principal GL(2s ; R)-
bundle.

1.3. The Principal Unitary-bundle : V^(E) (A,(E) ; U(^)).

1.3.1. Let V2,(E) = Stiefel Manifold of orthonormal 2^-frames
on E. A,(E) = Ts^is (E)) = Manifold of "normalized" 2-forms on E of
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rank 2s. f, : V^(E) -> A/E) the "restriction" of ^ to V^(E).

Then, V(s) = Sp(s ; R)r}0(2s) acts freely and transitively on
the fibers offy ; and thus^ factors through the orbit-space V^ (E)/UOO
in a bijective-fashion.

/^/
LEMMA. - TTzm? ^^^ a retraction r : F^(E) -> V^(E) ^cA

^c/z r/^r ?s = fs° r ^hen restricted to f^l(Ay(E)).

Sketch of Proof. - Let y G V^(E) ; and pick any orthonormal
frame e in the plane of y . Then y = uo e for some u E GL(2^ ; R).
Let u = tv be the polar decomposition of u into an orthogonal
matrix t and a positive-definite symmetric matrix v. Put r(^) = t o e.
Then, independence of the definition of r ( y ) on the frame used,
and other properties of r can easily be verified.

COROLLARY. - Let B be a topological-space and w : B -> A (E)
a continuous map ; and 0 : B -> V^ (E) a /^^ o/ w. 77 ,̂ /• o 0
lifts w to V^, (E).

1.3.2. PROPOSITION. - fy induces a principal V(s)-bundle :

^ (E) (A/E) ; \J(s)) .

Proof. - Let 0 be a cross-section to f^ over some compact
neighbourhood N of A,(E). Put N = NHA,(E) and 0i == 0/N.
Then, by the preceeding Corollary, r^ is a cross-section to ̂  over N.
Define t : N x U(^) -> /^(N) by r(^ , u) = ^((r0^). Then, t, is
a homeomorphism (by compactness). Hence fy is locally-trivial ; and
thus induces a principal Unbundle.

1.4. Retraction o/A,(E) o^ro A,(E).
"•̂

Let Wy = Set of non-singular and skew-symmetric 2s x 2s matri-
ces. W^ = Set of orthogonal and skew-symmetric 2s x 2s matrices.

Then, GL(2s ; R) acts on W, by u o k == uk^ for

t < E G L ( 2 5 ; R ) i and A ; G W
•a

and the subgroup, 0(25), leaves W, invariant under this action. If
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k = gv is the polar-decomposition of k E W, ; then g E W^ ; and thus
k -^ g defines a projection p : Wy -^ Wy.

LEMMA. — TTzere exists, a continuous deformation retraction of
Wy o^ro Wy r/z^ commutes with the action of 0(2s).

Proof - Define a homotopy hy : W^ -> Wy by

A.(^) = ^((1 -^ + r^)

Then, A^ = /j ; A / = p ; and A,, commutes with the action of 0(25-).
From this Lemma we recover the following :

PROPOSITION. - There exists a retraction 6 : A,(E) -> A,(E).

Proof — Let's first assume that n = 2s. Then, an orthonormal
frame e on E defines homeomorphisms ; ^ : Wy -> A^(E) and

^ : W, ^ A,(E) by te(k) = S ki, e^e^ and ^ = ^/W,.
<•</

A homotopy/^: A/E) ^ A/E) can be defined by/,. = ^ o ^o^~1

and it is, immediately, verified that this definition is independent of
the orthonormal frame used. Thus, 6 = f^ yields the desired retraction.

For n > 2s ; we have the diagram :

A,(E) A,(E)

^ ̂
G^(E)

a retraction 0p ; and a homotopy (/l)p : ^~^(p) ->• 'n~^(p) over
each 25-plane, pGG^(E). Then, the collections , 6 = (0p)pec (E)
and fy = ( fy )p yield the desired retraction and the homotopy respecti-
vely.

Q.E.D.
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2. Decomposability of two-forms of constant rank.

2.1. Notations and definitions :

Let E be an R"-bundle (with a Riemannian-metric) over a
connected base-space B. Let V^(E), V^(E), A,(E), A,(E) be the
associated-bundles to E with fibers V^CR"), V^(R"), A^R"), A,(R'1)
respectively. A 2-form, w, on E of constant rank Is is, by definition,
a cross-section to A,(E). The maps ^(E) : V^(E) ->• A,(E) and
/y(E) : V^ (E) -^ A,(E) are defined and we have the following
"global" versions of Propositions 1.2.2. and 1.3.2. :

PROPOSITION 1.2.2.* - ̂ (E) induces a principal Sp(s ; R)-bundle.

PROPOSITION 1.3.2.* -/,(E) induces a principal \](s)-bundle.

2.2. Local-Decomposability and the Sub-bundle Sy, :

DEFINITION. — A 2-form, w, on E of constant rank 2s is said to
be locally-decomposable iff each point x E B has a neighbourhood
U^ and linearly-independent \-forms (j^.) i = 1 , . . . , Is on E over
He s.t. w = y^ Aj^ + • • • ~^ Ys i^Vis over Ujc- (^ alternatively,
there exists a cross-section, y , to V^(E) over V^ such that w = ^o y).

LEMMA. - A 2-form, w, of constant rank 2s on E is locally-
decomposable.

Proof. - Let x E B ; and, c, a cross-section to ^(E) :

V,,(E) - A,(E)

over a neighbourhood N of w(x) in A,(E). Then, the composite
w'^N) ——> N-^ V^(E) defines a cross-section y = cw to ^(E)
over w~1 (N) such that fy o y = w. Q.E.D.

Given a 2-form, w, of constant rank 2s ; then at each point
x E B , wO:) determines a 25-dimensional subspace S^) of E^ on
which it is of maximal rank ; and local decomposability of w, imme-
tiately yields the following :
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PROPOSITION. - The union S^ = U S,̂  is a sub-bundle ofE ;
x^B

and, w, being a 2-form on Sy, of maximal-rank determines a reduction
of its structure group from GL(2s ; R) to Sp (s ; R).

This Proposition, clearly, demonstrates that the "existence of
a 2-form of constant rank on E" (which is assumed apriori in the
thesis) is, already, a strong condition ; and will be useful in proving
non-existence theorems about 2-forms of constant rank on spheres
and projective-spaces in the last-chapter.

2.3. Decomposition of 2-forms of constant rank :

Let V(S^), V(S^), A(S^), A(S^) be the associated-bundles to
S^ with fibers V(R25), V(R25), A(R2'), A(R2 ') respectively.

DEFINITION. — w is said to be decomposable iff

w = Vi A^! + • • • + y^V2s

for linearly-independent \-forms ( y ^ ) on E. (Or, alternatively, the
diagram : admits a lifting).

V(S,)
^

/,

B^———w——-A(S,)

An immediate consequence of this definition is the following :

Observation. - If, w, is decomposable ; then S^ is a trivial
(product)-bundle.

Let r : V(S^) ^ V(S^) and 0 : A(S^) -> A(SJ be the
retractions of Sections 1.3. and 1.4. (respectively) defined globally
on S^,.

DEFINITION. — The "normalization" of, w, is defined to be the
composite 6w : B——> A(S^)——> A(S^) and is a "normalized"
2-form of rank 2s. (i.e. a cross-section to A(S^)).
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DEFINITION. — A normalized 2-form, w, of rank 2s decomposes
orthogonally iffw==y^/\y^^ 4- • • * + y^ A y^ for orthonormal-frame
y == (Vi ,.. • , Yzs) on ^w'

PROPOSITION. — A 2-form, w, of constant rank Is decomposes
iff its normalization decomposes orthogonally.

Proof. — Suppose, w, decomposes, i.e. there exists a continuous
map L : B ^ V(Sy,) such that ^ o L = = w. Since 0 is a retraction ;
w ^ Qw, and thus f^o L ^ Ow. Since ̂  is a fibration ; by the covering-
homotopy-theorem ; there exists a lifting T : B -> V(Sy,) of Qw'"<—'
to V(S^) and by the "global-version" of Corollary 1.3.1. rT is a
lifting of Qw to V(S^). Thus, Qw decomposes orthogonally.

Conversely, suppose Qw decomposes orthogonally ; i.e. that
there exists a lift k : B -^ V(S^) of Ow to V(S^). Then,

fy o k == 0w ^ w ;

and again, by the covering homotopy theorem, there exists a lifting
of, w, to V(S^).

Q.E.D.
By Observation 2.3., a necessary condition for w to decompose

is that S^ is a trivial (product)-bundle. Let's choose a particular
product representation : Sy, == B x R25 which gives rise to further
product representations : i) V(S^) = B x VCR25) == B x 0(2^) and
ii) A(SJ = B x A(R25) = B x 0(2s)l\](s) and a representation of
0w as a map w^ : B -> 0(2^)/U(5).

Ow decomposes orthogonally iff w^ lifts to 0(25). Since B is
connected and Wi continuous ; we may, without loss of generality
assume that W i ( B ) C I ^ = = SO(2s)/UO?) ; and then lifting w^ to
0(25) is equivalent to lifting it to S0(2.s). We can summarize this
in a single :

THEOREM. - A 2-form, w, of constant rank 2s decomposes iff
i) Sy, is a trivial (produce-bundle,
ii) The representation of its normalization as a map w^ :
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B -> I, = SO(2s)/V(s)

arising from any trivialization of Sy, lifts to SO (25).
The method used above was to assume the existence apriori,

of a metric on E (and thus on S^) ; and to show that, w, decomposes
iff its normalization (with respect to this metric) decomposes ortho-
gonally.

A more and invariant approach does not pre-suppose the existence
of a metric on Sy,. w, determines a reduction of the structure-group
of Sy, to Sp(s ; R) ; and since UC?) is a maximal compact subgroup
of Sp(s ; R) ; it undergoes a further reduction to U(^) ; and thus
Sy, admits a unique Hermitian metric. Then, w, becomes normalized
with respect to the corresponding real-metric, and thus decomposes
iff it decomposes orthogonally. The rest of the theory goes as before ;
and one, again, obtains the above theorem with obvious modifications.

3. Cohomology ofl^.

3.1. Preliminaries :

Let x G P"~1 ; and 0^ be the "reflection" through the hyperplane
perpendicular to x ; and 0o the reflection corresponding to the initial
point (1, 0, . . . . 0). Then, we imbed P"-1 C S0(n) by x -> 0^.
We, now, list the following standard results ; and for proofs we refer
the reader to [8] pp. 40-45.

Observation : i) P"-^ S0(n - 1) = P"~2. ii) P'o pf = p^o P1

and iii) P'o p' = p'o p'-1 in S0(n).

Let pn-l/pn-2 be the space obtained by collapsing P"~2 to a
point ; and SO(n)/SO(n - 1) the left coset-space.

LEMMA.- The natural-map T : p"-1/?"-2 -^ SO(n)/SO(n - 1)
is a ^homeomorphism9'.

PROPOSITION. - The matrix-multiplication

m : (P" x S0(n) ; P"-1 x S0(^)) -> (S0(n + 1) ; S0(n))

is a relative-homeomorphism.
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THEOREM. — SO (n) is a cell-complex with normal cells

[i^ ; ^ ; • • • ; z'jj for n > i^ > i^ > ' ' ' > i^ > 1

given by

E11 x E12 x • • • x E^ -> P11 x P12 x • • • x P^ m-^ S0(n)

and the zero-cell [0] ; and matrix-multiplication m :

S0(n) x S0(n) ->• SOW
is a cellular-map.

3.2. Cellular Structure of ly :

Observation : I, = SO(2s)/V(s) = S0(2s - \)/\J(s- 1).

Proof. - Obviously, S0(2s - 1) n UOO = \)(s - 1) and

S0(2s- l ) o \J(s) = S0(2s)

by a dimension argument. Thus,

I, = S0(2s - 1) o U(5)/U(^) = S0(2s - l)/\J(s - 1).
Q.E.D.

Let P25^ and P2' denote the images of P2^1 and P25 under
the projections S0(2s + 2) -» I^i and S0(2^ + 1) ^ 1^^ respec-
tively. We, then, have the following :

- -^2s+l -2s
LEMMA. - P = P

Proof - It is an immediate consequence of the fact that the
"composite" P25^ C S0(2s + 2) -^ 1,̂  factors through P,(C) ; and
that P25 CP2^ -> P^(C) is "onto".

Q.E.D.
Let v : S0(2s) x I, -> I, be the action of S0(2^) on I,. Then,

we obtain the analogue of Proposition 3.1. for ly :

PROPOSITION. - v : (P25 x I, ; P25"1 x I,) -> (I,+i ; I,) is a
relative-homeomorphism
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which in turn becomes the key in the proof of the following

THEOREM. — 1̂  is a cell-complex consisting of even-dimensional
normal-cells [2z'i ; 2^ ; • • • ; 2;\] for s > i^> i^> ' • ' > i^> 1,
given by

E2^ x • • . x E2^ - P211 x • . . x ^ik ̂  SOW ^n-^ I,

and the zer-cell [0] ; and the action-map v : S0(2^) x 1^ -> ly is
cellular.

Proof. - We prove the theorem by induction on s.
For s = 1 ; Ii is just the zero-cell 0 ; and thus v : SO (2) x ^ -> I ^

is, obviously, cellular. By the preceding proposition, 15+1 is the
adjunction-space : I^+ i == ly v i,(P25 x \). We, now, apply the following
standard Lemma : "If K and L' are cell-complexes ; L a subcomplex
of K and v : L -> L' a cellular-map ; then the adjunction-space, K v yL'
is a cell-complex having L' as a subcomplex ; and the images of the
cells of (K - L) as the remaining cells" with

K = P25 x I, ; L = P2'-1 x I, ; I/ = I,

By the inductive hypothesis, v : SO (2s) x I, -^ I, ; and hence its
restriction to the subcomplex, P25"1 x ly, is cellular ; and thus we
deduce that, I,+i, is a cell-complex having 1̂  as a subcomplex ; and
the ^-images of the cells of (P2'9 - P25"1) x I, as the remaining
cells. By the inductive-hypothesis, the cells of 1̂  are normal cells
[2^ ; • • • ; 2;J for s > ̂  > • • • > ^ > 1, and the zero-cell [0] ;
and the u-images of the cells of (P25 - p25"1) x I, are normal-cells
[2s ; 2^2 ; • • • ; 2;J for s > i^ > ' • • > ;\ > 1. The proof will
be complete once we prove that : v : S0(2.y + 2) x I,+i -> I^+i
is cellular ; and this is done in five steps :

i) v : P25 x I, -> I,+i is cellular.

ii) v : SO (2s 4- 1) x I, -^ I,+i is cellular.

iii) v : SO (2s + 1) x I,+i -» I,+i is cellular.

iv) v : P2^1 x I,^ -> I,+i is cellular.

v) v : S0(2s 4- 2) x I^+i -> ls+i 1s cellular.
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Only iv) has a non-trivial proof which can be outlined as
follows :

Proof of iv). — By iii) the restriction of, v, to the subcomplex,
P25 x I^.n of, p25'1'1 x I^.n , is cellular ; and thus it suffices to prove
that :

v^1 ̂ ^Cd^)2^

Let s 4- 1 > ̂  > ̂  > • • • > ̂  > 1 and i^ + ^ + • • • + ijc = <l

V(P2^1 ; P21! X • • • X P2^) = P2^1 X P21! X • • • X P21^

= P21! X • • • X P21^ X P2"1 = l;(P21! X • • • X P21^ ; P2^)

= ^(P211 X • • • X P21^ ; P2') = P2' X P21! X • • • X P2^

= i;(P25 ; P211 x P21'2 x • • . x P2^) C i;((SO(25 + I))25 ; (I^i)2^)

C (I^l)2(s+(^) by Part iii).
Q.E.D.

COROLLARY. - The projection p : S0(2^) -^ ly is cellular ; a^zd
maps normal cells [2i^ ; 2^ ; • • • ; 2^] of SO (2s) onto normal cells
[2?\ ; 2 /2 ; • • • , 2i^] of ly. The images of the remaining cells, i.e.
[/i ; 7'2 » ' * * » 7jJ ^here j\ is odd for some 1 < t < fe are contained
in a skeleton of lower dimension.

3.3. Integer-Cohomology of ly and the Lifting Problem :

Since I, is a cell-complex consisting of even dimensional cells
only ; the co-boundary operator is identically zero ; and hence the
2^-cohomology group H2^!,; Z) coincides with 2^-cochains,
C2^!^ ; Z), which is the free abelian group generated by the duals
[2;\ ; • • • ; 2^]* of normal cells [2^ ; • • • ; 2i^] for q = i^ 4- • • • + i^.

PROPOSITION. — Image p * C Subgroup of elements of

H*(SO(2^) ; Z)
of order 2.

Proof. - By the above ; p*[2i^ ; • • • ; 2fJ* = [2i^ ; • • • ; 2^]*
and 2 [2^ ; • • • ; 2^]* = 6 [2^ - 1 ; • • • ; 2^]* in S0(2s).
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THEOREM. — A necessary condition for the lifting of the diagram :

S0(2s)
^

/

9 / P
' /

/ w. f
B-——————-1.

is that :

Image w^ C Subgroup of elements of H*(B ; Z) of order 2.

COROLLARY. — //H*(B ; Z) contains no 2-torsion ; then a necessary
condition for the lif lability of w^ is that w* = 0.

4. Applications.

4.1. Lower-Dimensional Spaces :

We now, combine Theorems 2.3. and 3.4. with elementary
obstruction theory to obtain the following :

PROPOSITION. - Let, w, be a 2-form of constant rank 2s(s > 1)
on an R" -bundle E over a connected base-space B whose cohomology
vanishes in dimensions greater than or equal to four. Necessary and
sufficient conditions for, w, to decompose are i) Sy, is a trivial
(produce-bundle ; and ii) 2w^ = 0 in H^B ; z) where

ieH\l, ; Z) = Z
is the generator and w^ is the representation of, w, arising from any
trivialization of Sy,.

When B is an orientable 3-manifold, the tangent-bundle T(B)
of B is trivial ; and S^ is the pull-back of the tangent-bundle T(S2)
of the 2-sphere by the Gauss-Map P : B -^ S2 ; and thus the first
Chern-Class, c^(S^) = 2P*(0, where fEH^S 2 ; Z) is the generator.
Also by Alexander Duality, 2P*(0 = 0 iff P*(0 = 0. Applying
Theorem 2.3. yields the observation — A nowhere-vanishing 2-form,
w, on an orientable 3-manifold decomposes iff P*(0 = 0.

If we further specialize by taking B to be an open connected
domain in R3 and use the Hopf-Classification Theorem that [P] -^ P*0')
is an isomorphism : [B ; S2] -> H^B ; Z) ; we obtain :
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COROLLARY. — A nowhere-vanishing 2-form, w, on an open con-
nected domain B of R3 decomposes iff the Gauss-Map P : B -> S2

for Sy, is null-homo topic.

4.2. Methods of Constructing p-forms on Spheres :

i) "From constant (p 4- \)-forms on R" ".
Let w E A^ R" ; and define t : S"~1 -^ A? R" by t(x) = §^(w)

for all x^=.Sn~i, where 8^ is the "adjoint" of the wedge-product
map, d^ :' AR" -^ AR" given by d^(y) = x i\y. Then

8^t(x) = 6^ o 5^(w) = 0 ;

and thus, ^, is a differentiable p-form on S""1.

ii) "From constant p-forms on R" "
Let wEA^". Then t(x) = §„ o d^(w) = w - ̂  o 6^(w) for

x G S"~1 defines a differentiable p-form, t, on S"~1 which is called the
"tangential component" of w.

PROPOSITION. — The tangential-component of a normalized 2-form
of maximal-rank on R2" is a 2-form on S2""1 of constant rank (In — 2).

Proof. - w = x A5^(w) + t(x) for all xES""1. The transfor-
mation on R2" given by x -> 8^ (w) has square equal to minus Identity;
and thus 65 ,— (^00) == 0 which implies that t(x) E A2 U^ for

U^ = (x ; 6^(w)) ;

and hence rank (w) = rank (x A 8y (w)) + rank r(^).

Note. — t(— x) = t(x) ; and thus, ^, also defines a 2-form on
P2""1 of constant rank (In - 2).

4.3. Existence and decomposability of 2-forms of constant rank on
spheres :

PROPOSITION. - S4"4'3 admits a 2-form of constant rank 4n.
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Proof. - Represent S4^3 = Sp(n + \)/Sp(n) ; and let

W0 = e\ ^eln^ + • • • + e2n A^

be a "normalized" 2-form at the distinguished point ^+3 . For
XGS4" '"3 , take any u E S p ( n + 1) such that ^(^4^+3) = x ; and
define w(x) = (A2^) w^. Since, S^(/i) C \](2n) leaves Wo-invariant ;
w is a well defined 2-form on S4n+3 of constant rank 4^2. Q.E.D.

Note. - i) w^e^x) == e2iow(x) and ii) 6j^ (w(;c)) = 0 where
J is multiplication by / = \/ - 1 ; and thus, w, defines a 2-form on
^2n+i (C) (and hence on p4^3) of constant rank 4n.

Combining Proposition 2.2 with the Standard Theorem of [7]
pp. 144 ; we obtain the following :

Statement. — The existence of a 2-form of constant rank 2s
on S" implies :

i) the existence of a field of 2s-frames on S" for 4s < n.
ii) the existence of a field of (n - 2^)-frames on S" for 4s > n.

and using Adams' results on Vector Fields on Spheres ; we deduce :

COROLLARY 1. - S4n+l does not admit a 2-form of constant
rank 2s for 0 < s < 2n.

COROLLARY 2. — S2" does not admit a 2-form of constant rank
2s for 0 < s < n.

It is also a consequence of Adams' results and Kirchoff's Theorem
(Refer to [7] pp. 217) that S2 and S6 are the only even dimensional
spheres which are almost-complex, i.e. admit 2-forms of maximal
rank. We can, now, summarize all these results in the following :

THEOREM. — 1) The only even dimensional spheres which admit
2-forms of constant rank are S2 and S6 which admit 2-forms of maximal
rank. None of these forms can be decomposed.

2) The only non-zero 2-forms of constant rank on S^n+l are
those of rank 4 n, and none of these forms can be decomposed.
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3) S4"'1'3 admits 2-forms of constant ranks 2, 4n, 4n 4- 2. Those
of constant rank 2 always decompose ; whereas those of constant
rank 4n and 4 ^ 2 + 2 cannot be decomposed for n > 2. A 2-form,
w, on S7 of constant rank 4 decomposes iff i) Sy, is a trivial bundle ;
^zrf ii) 3[wjE7r^U(2) vanishes, where w^ is the representation of
the normalization of w (with respect to the canonical Riemannian-
Metric on S7) arising from any trivialization of Sy, as a map

Wi : S7 ->• 1^ ; and 3 : TT^ -^ 7r(,U(2)

/5 r/^ boundary-operator of the exact homotopy sequence of the
fibration SO (4) ^ I^.

^4 2-form, w, on S7 o/ constant rank 6 decomposes iff i)

aiP]E7T,SO(6)

vanishes ; where P : S7 -^ S6 ^ r/^ Gauss-Map for S^, a^d

3 : Tr^S6 -^ 7r^SO(6)

is the boundary-operator of SO (7) -^ S6. ii) 3 [wj ETT^ U (3) vanishes ;
where i^ : S7 -^ 13 is the representation of the normalization of
w, and 8 : TT^ 1^ -^ 7r^U(3) ^ ^/z^ boundary-operator of S0(6) -> 13.

Remark. — The above theorem solves completely the existence
and decomposability problem of 2-forms of constant rank for S2",
S4""'1 , and for S4"''3 up to S15. The first unsolved case is the existence
question of 2-forms of constant rank 10 on S15 . The next is the
existence question of 2-forms of constant rank 16 and 18 on S23.

4.4. Existence and Decomposability of 2-forms of constant rank on
Protective Spaces :

Parts 1 and 2 and most of 3 of the preceeding Theorem go
through unchanged for real-projective spaces. The only changes in
Part 3 are i) 2-forms, w, on p4^3 of constant rank 2 decompose iff
CiCS^eH^P4"''3^) = Z^ vanishes, ii) The discussions for 2-forms
on S7 do not have their analogues for P7 ; since, w, can no longer
be represented as an element of TT^I^ or T T ^ I ^ . A necessary condition
for the decomposability of such forms is the decomposability of
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the corresponding forms on S7 (which can be determined by the
previous Theorem). However, whether this is sufficient is not known.

The case of the complex projective spaces can be best summarized
in the following :

PROPOSITION. — P (C), being a complex analytic manifold, admits
a 2-form of constant rank In.

The only non-zero 2-forms on P2^(C) of constant rank are
those of constant rank 4n which cannot be decomposed.

P^+i(C), admits 2-forms of constant ranks 4 ^ + 2 and 4n
which cannot be decomposed for n > 2.

4.5. Translation-Invariant 2-forms on Lie-Groups :

PROPOSITION. — A Lie-Group, G, admits translation-invariant 2-
forms of constant rank 2s for 2s < dim G ; and any translation-
invariant 2-form on G decomposes.

Appendix

The analogous problem of decomposing a 2-form of constant
rank on a complex vector-bundle is attacked in exactly the same
way ; and is reduced to the lifting-problem of the diagram :

^ U(2^)

\^ P^
^ Wi

B —————————^ V(2s)/Sp(s)

One then investigates integer-cohomology of the homogenous-
space, \J(2s)/Sp(s) ; and the Kernel of the map, p* :

H*(U(25)/Sp(5)) -> H*(U(2^))
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