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SUBDUALS AND TENSOR PRODUCTS
OF SPACES OF HARMONIC FUNCTIONS

by lan REAY

Introduction.

In this paper we shall be working in the axiomatic potential
theory of M. Brelot. For the fundamentals of this theory the reader
is referred to Brelot [7] and Herve [18]. We shall also assume a
knowledge of convexity theory that is to be found in, for example,
Alfsen [1] and, in summary, in Effros and Kasdan [14]. Let ^ be
a topological space to which Brelofs theory applies and let a? be
an open, relatively compact subset. The set X = {h : h is harmonic,
> 0 and h(Xo) = 1}, for a fixed arbitrary XQ, is well known to be
a compact Choquet simplex in the topology of uniform convergence
on compacta. As such it is the state space of the linear function
space, A(X), of continuous affine functionals on X. The question
arises, and was first proposed by D.A. Edwards, as to an intrinsic
description of the space A(X) in the context of potential theory.
Such a description is to be found in the statement of Theorem 1.
In the case that ^2 satisfies the hypothesis of proportionality it is
seen to related to the Martin boundary of the space considered.
Some ancillary results are also given.

In the second part of the paper Theorem 1 is applied in proving
that the space of differences of positive separately harmonic functions
(Gowrisankaran [16]) is a tensor product of two spaces of harmonic
functions. Also in this part it is demonstrated that by using tensor
product techniques whenever possible many proofs of results in
the subject of separately harmonic functions can be simplified. For
example, Corollary 18, which was originally proved by Gowrisankaran.
Some ancillary results are also given in the second part. The readers
attention is drawn to Theorems 1, 11 and 14 which are the three
central results of the paper.
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This work is a summary of the author's doctoral dissertation
at the University of Oxford, under the supervision of Dr. G.F. Vincent-
Smith, to whom I am indebted for his comprehensive help. I also
owe a debt of thanks to K. Gowrisankaran for pointing out that
Theorems 1 and 14 are valid without the necessity of assuming the
hypothesis of proportionality and for the proof of Proposition 5.

Part 1. — A function space with state space X.

1. We consider the topological space ^, with the presheaf of
harmonic functions 96(^2) satisfying Brelot's axioms I, II, III. We
also assume that ^ has a countable base of open sets. Let FT (^2)
be the cone of positive harmonic functions on ^2. It is well known
that X = {h E I-T (T2) : h (x^) = 1} is a compact metrizable Choquet
simplex in the topology of uniform convergence on compacta £ Sl.
We denote the set of extreme points of X, by Ai , such points are
called the minimal harmonic functions in X. It can be shown by
an application of Choquet's Theorem that to every harmonic function,
h, in X there exists a unique probability measure, JL^, concentrated
on A ^ , such that

h(x) = f^ u(x) d^(u) for all x E ^2 .

This integral is referred to as Martin's Integral Representation.

Martin's Integral Representation defines a map m : X -^ OT^(Ai)
the simplex of probability measures on Ap This map is not a bijection
but we will construct a subspace L^ C(Ai) such that the composition
of the map m with the dual map : OT<^ (Ai) -> S(L), where S(L) is
the state space of L, is a bijection.

Let 3T^(^2) be the space of all real measures on ^ of compact
support. Define the subspace L£ C(A^) as follows ;

L = { /GC(Ai ) : f(h) = v(h) for all h G Ai and some ^C ^(^2)}.

THEOREM 1. - L is a linear function space which contains the
constants and separates the points of Ap and its state space S(L)
is affinely homeomorphic to X. Symbolically, A(X) ^ L , S(L) ^X.
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Proof. - L is a linear subspace of C(Ai) trivially. Also (a) it
contains the constants, because 5^ (h) = h (x^) = 1 for all / z E X ,
and §^ is in OT^(^2), (b) it separates the points o f A ^ since ifh^ ^ h^
both being in A^ there exists an x G Sl such that /^Cc) ^= h^(x), so
that 8^1) =^ §^(^2) hence there exists an/E L such that f(h ̂ ^f(h^).

Define a map F : S(L) -> X in the following way ; If p G S(L)
then p is a positive linear function on L and p ( l ) = 1. By the
Hahn-Banach Theorem p extends, non-uniquely, to a positive linear
functional on C(A^) which by the Riesz Representation Theorem
can be regarded as a probability measure, jn, on A^ This measure
defines a harmonic function, h, in X by the Martin Representation.
Now, although F is not uniquely defined by p, h is, since if jLii , ̂
are both extensions of p, then JL^(/) = JLI^/) for an fm L, in other
words,

ffh(x)dv(x)d^(h) =ffh(x)dv(x)d^W.

By Fubini's Theorem, since the map X x Sl -> R given by (h , x) -> h(x)
is continuous,

ff h (x) d^, (h) dv(x) = ffh (x) d^(h) dv(x),

which can be written v(h^) = v(h^) where h, corresponds to ^
(i = 1, 2) in the Martin Representation. This holds for all v G 011^(^2),
which clearly implies that h^ = h^, by taking v == 5^ for instance.
So the map F is well defined.

r is injective, since for the harmonic function, /z, the family
of measures representing h on A^ all have the same value for

ff_ u(x)dfji(u)dv(x) for ^G^(S2),

and thus for J- v(u) d^(u), in other words, when restricted to L
the measures all coincide, so that they all collapse to the same element
of S(L), which is the only one that can map into h under r.

r is also_a surjection, since if u E X, take one of its representing
measures on A^ and restrict to L, to obtain pGS(L), then clearly
F(p) == u. So r is a bijection between S(L) and X.
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F is affine, since if a E (0, 1), p , e S(L) and r(p,) = h,, where
/ z , e x , a = i, 2),
aF(^) 4- (1 - a) r(p^) = ah^ + (1 - a) h^

=afu(.)d^^u) + ( 1 -a)fu(.)d^(u)

=fu(.)d{afJi^ + (1 -a)^}(u)

=F(ap, + (1 -a)p^

since the map h -> ^ is affine.
Finally, F is a homeomorphism for X endowed with the topology

of uniform convergence on compacta and S(L), the weak* topology.
Both X and S(L) are metrizable so it is enough to consider sequences.
Now, p ^ - ^ p in S(L) if and only if ?„(/)-»?(/) for all /GL,
if and only if v(h^) ->• v(h) for all ^GOT^(n) where h^= r(p^) ,
h = r(p), using the definition of L and Fubinfs Theorem, and
v(h^) -> v(h) for all such v if and only if h^ -> h, because one can
take v = 5^, and by the result of Herve, (Brelot [7], Lemme on
page 23), pointwise convergence in H+ is equivalent to uniform
convergence on compacta. This completes the proof.

COROLLARY 2. — The Choquet boundary of A^ with respect to
L is the set of minimal harmonic functions A^ = exX. Symbolically,
ajA,)=A,.

Proof — There is a canonical injection A^ -> X and the extreme
points of X are just the minimal harmonic functions, the Choquet
boundary is just the inverse image of Ai under this map.

COROLLARY 3. - // A^ is closed, L is a lattice and L = C(A^).
Proof. — This follows immediately from Theorem 2.6 of Effros

and Kazdan [14].

_ COROLLARY 4. - L has the weak Riesz separation property and
L has the strong Riesz separation property.

Proof. — Since L is a simplex space, the result follows from
Proposition 9 of Edwards and Vincent-Smith [13].
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Remark. - We emphasise that if ^ , ̂  are two measures in
OT^,(?2) they correspond to the same function /E L if and only if
^h) = ^(h) for all h G X.

Proof. - Clearly, _if jLii (h) = ^(h) for all h G X then in particular
they do so for all h E A^ and so correspond to the same element of L.

) Conversely, if ^(h) = ^(h) = f(h) for h G A i , by Martin's Repre-
sentation every ^ G X can be represented by a probability measure,
^, on A^ but

f^ ^Wd^(h)=f_ ^(h)d^(h),

and using Fubini again we obtain ^^(.u) = p,^(,u).
In the case that ^2 satisfies the hypothesis of proportionality,

ie. to every point x G ^l there exists a potential ̂  of support {x},
unique up to scalar multiple. Then Theorem 1 and its corollaries can
be phrased in terms of the Martin Boundary. Under this new hypo-
thesis the Martin Boundary is a compact, metric space, 3 '̂ such
that

A, ^.A^ B^M ^ X ,

and since A^ can clearly be replaced by any closed set, C, such
that A ^ — C — X, in the statements of Theorem 1 and its corollaries,
they will remain valid, in these circumstances, if at every point at
which "A/' occurs "3^" is substituted.

2. In this paragraph we study the relationship between the spaces
JlZ^(n) and L. It will be seen in the definition of L given in Theorem 1
that we have a positive, linear map T : OT .̂ (S2) -^ L c C(A^) defined
by TO) (h) = v(h) =j hdv for h G A ^ . For a compact K c^ this
map, T, restricts in the obvious way to T^ : 31I(K)-> C(A^. We
give 01t(K) the weak* topology and C(A^) the supnorm topology.
The proof of the following proposition is due to K. Gowrisankaran.

PROPOSITION 5. - TK : OTI^K) -> C^A^) is continuous.
Proof. — Since OTL^K) is metrizable in the weak* topology we

may consider sequences. To prove the proposition we have to show that
whenever ̂  -> v in the weak* topology, in ^(K), T(^) (h) -^ TO) (h)
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uniformly for all /z G A p Without loss of generality we may assume
that Ml < 1, 11^11 = 1 ior_n > 1. We can find a finite number of
points /^, h^, . . . , h^ in Ap and open neighbourhoods V\, . . . , V^,
of the form

V .̂ = {h € A^ ; 1/zOc) - h^x)\ < e/4 for all x E K} ,

such that UV. = Ap Then, given any h G Ap 3 a V. containing /z and

i/'Arf^ - f/u^ | < [ fhdv^ -fh^.dv^ \ + [ fhj dv^ - fh^ dv 4-

+ | fhjdv - fhdv | < e/2 + | fh^d^ - f h^dvV

Hence there exists an N such that for all n > N, and for all h G Ap

fhd^-fhdv\<e.

This completes the proof.
Let L^ c L+ be defined, for each compact K ~ ^2, as L^ = {/G 1^ :
there exists a measure, ^, supported by K with T(^) = /}.

COROLLARY 6. — ^4^ /lorm bounded subset of L^ is equicon-
tinuous.

Proof. - The set<)1c^(K) - { ^ E Olc^K) : 0 < ^(1) < a}is weak*
compact. Since T^ is continuous on OTI^K), T^01Z.^(K)) is a compact
subset of C(A^) and so is equicontinuous by Ascoli. But if N c L^
is bounded in norm by a, N c L^ H T^OIZ^K)), and so N is equi-
continuous.

' + f f/- \ _ r -. /— < '̂Y»' ̂  ̂

-+ /

3. In this paragraph we give a function space whose state space
is the simplex B, to be defined later, which is a base of the cone S'̂
of positive superharmonic functions on ^2. In this paragraph we assume
the hypothesis of proportionality of Herve ie. to every x G ̂  there
corresponds, up to scalar multiple, a unique potential, p, such that
p is harmonic in Q{x}.

It is well known that S+ is a lattice cone and has as base the
set B defined as follows :

B = { V E S + : V/^)+V^_/^)= 1 }
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where /E C(ft) (ft is the one point compactification of ft) takes the
value 1 at the point at infinity, °° ; XQ and x^ are fixed points in
ft, and the map f^ V.. is the kernel operator. It is left as a puzzle
to show that B may be taken to contain X with no loss of generality.
In the T-topology (Herve [18]) B is compact and thus is a Choquet
simplex. Since the T-topology induces the topology of uniform conver-
gence on compacta on I-T, B contains X as a closed face.

We can thus write ; : X -> B for the canonical injection, from
this we can construct the restriction map i^ : A(B) -^ A(X). It is
a simple corollary of the Edward's Separation Theorem, [12], that
i^ is surjective and it is clearly continuous. Theorem 1 tells us that
A(X) ^ L c CCSft^). F10111 this it appears natural to look for a
subspace J ~ C(^2^), where ftj^ = ft,j3ft^ is the Martin Compac-
tification, such that 4 becomes the restriction map C(ft^) -^ C^ft^),
and such that J ^ A(B).

We define J c C(3ft^) to be maximal with respect to the pro-
perty :

J|a"M c L .
In other words,

j = {/e c(ft^) : f\ aftM G u.
Note that J contains the constants, trivially, since L does, and that
J separates the points of ^2^. This is true because L separates the
points of 3^M anc^ ^or ^y f m J an(^ ^y compact set K ^^2 one
can alter / on K in an arbitrary manner provided the function obtained
remains continuous on S2j^. Now it is well known that one can visualise
ft as sitting inside exB, by means of the canonical homeomorphism,
0, which sends x ^ p ^ , the potential of support {x}.

We need the following lemma, the proof of which we do not
give as it is almost a standard corollary of the Edward's Separation
Theorem, [12].

LEMMA 7. — // X is a closed face of a simplex B, such that
X D exB \exB ; in other words X,jexB is closed, then any /G C(X,jexB)
such that f\^ is affine has a norm preserving extension to an element
of A(B). The extension is unique.
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This lemma can be reformulated in the following way ;

LEMMA 7a. - With the notation of Lemma 7, if

C^(X^exB) = {/G C(X^exB) : /l^ eA(X)>

then A(B) ^ C^(X,jexB), anrf the correspondance is an order isometry.
We can now state and prove the proposition central to this

paragraph.

PROPOSITION 8. — If 3 is the function system defined above then J
is isometrically order isomorphic to A(B), hence B is af finely homeo-
morphic to the state space of J . Symbolically, J ^ A(B), S(J) ^ B.

Proof. — It is well known that X D e^B\exB, in other words
0(ft)^X is a closed subset of B containing exB. X is also well known
to be a closed face of B so by Lemma 7a.

A(B) ^ CJX^exB) ^ J.

COROLLARY 9. — // A^ is the set of minimal harmonic functions
in X then the Choquet boundary ofJ is ft^ A i .

Proof. - The extreme boundary of B is just the set 0(ft),jA^
and the Choquet boundary is the inverse image of this under the
map ft^ -> B.

PROPOSITION 10. — / / Jo ={/GC(^) : f is the restriction of an
element in J}, then ?2^ is the JQ-compactification of ft.

Proof. - Let ftj^ be the Jo-compactification of ft. Then
(a) ft is homeomorphic to a dense subset of ftj".
(b) Every element of J^ extends to an element of C(ftj*).
(c) The extensions separate the points of 3ft j = ft^\ft, and

ftj" is uniquely defined by the properties (a), (b) and (c), up to
homeomorphism. But ftj^ satisfies all three properties and so ft^ ^ ftj^.
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Part 2. — Separately harmonic functions and
tensor products of simplexes.

1. In this paragraph, unless otherwise indicated, we shall assume
that each harmonic space satisfies the axioms I, II, III of Brelot.
Separately harmonic functions, as their name suggests, are functions
of two variables in harmonic spaces S^,^, which are harmonic
in each variable. More formally,

DEFINITION. — Let ^ZQ,^ , be two harmonic spaces, then a
function, h, on S^Q x ̂  ;>s' separately harmonic if it is harmonic
in each variable for each fixed value of the other variable. I.e. for
each x G ^ Q , y ^ h ( x , y ) lies in H(S2i) and for each y^Sl^
x ^ h(x , y ) lies in H^).

In a similar way a function h can be defined to be separately
harmonic on each open subset a? ~ ^IQ x S2^. Let MH^^ , Sl^) be
the convex cone of positive separately harmonic functions on ̂  x ̂ ,
let MH(^2o , ̂ ) be the vector space of separately harmonic functions
on ^IQ x ̂  and let MHp^o , ̂ i) be the vector space of differences
of positive separately harmonic functions. Also the symbols MIT^o?) ,
MH(o?) and MHo(o;) will denote the same objects corresponding to
the open set co c ^IQ x ^.

The above definition has been taken from Gowrisankaran [16].
In fact, Gowrisankaran talked about multiply harmonic functions
which are separately harmonic functions that are also continuous,
but because any positive separately harmonic function is necessarily
continuous and, in this paper we shall only be interested in positive
functions or differences of such functions we do not need to impose
this extra condition. In [16], Gowrisankaran showed that the sepa-
rately harmonic functions satisfy three axioms, the first, IM, and
the third, HIM, corresponding exactly to axioms I and HI of Brelofs
system ; the second, IIM, to a somewhat weaker form of the axiom II
of Bjelot. Then, among other things, Gowrisankaran develops the
theory along similar lines to the development of axiomatic potential
theory and proves an integral representation theorem analogous to
Martin's Integral Representation. We propose, in the next paragraph,
to deduce this theorem by different methods and in this paragraph
we will cite the axioms IM, IIM, HIM, and give a new proof of IIM,
based on tensor product ideas.
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AXIOM IM. — Let co^^o x X^i 6^ c^w2. // u E MH(o?) ^^
u GMH(§) for all § ̂  GJ. Ifu is separately harmonic in a neighbourhood
of each point in a; then u CE MH(oj).

Proof. - See [16].
Call the presheaf of separately harmonic functions on the directed

system of open subsets of ̂  x S^, MS€(S^Q , S^i).

AXIOM HIM. — Let 8 ^^IQ x ^l^ be a domain and let{u^^ be
an increasing, filtering family of functions in MH(§). Then the upper
envelope u of this family is either 4- °° on 8 or lies in MH(§).

Proof. - See [16].
One can immediately deduce the

LEMMA. -// u^UH+(8), for a domain 5, then either u>0
everywhere in 6 or == 0 everywhere in 5.

Proof. - See [16].
An immediate corollary of this is that the set

XM ^CMH^o ,^2 i ) : h(x^ ,^o) =

= 1 for fixed (x^ ^(^G^X ^J

is a base for MHT^^o ? ^i)- ^e ^all discuss the topology on
MH^BQ , ^i) in the next paragraph.

In order to prove the validity of Axiom IIM, we need to set
up some terminology. Let (^Q c fto » <A;! c ̂ i be open and rela-
tively compact. Define MA(o?o , o?i) == {h : h is continuous and sepa-
rately harmonic in o?o x ^i and has a continuous extension to
cJo x a?i such that / z ( x , . ) is harmonic in c*;i for ^ G (^Q and
similarly for x and y reversed}. MA is clearly a uniformly closed
subspace of C(o?o x o?^). Since we are assuming throughout that
the constants are harmonic then MA is a closed function space that
contains the constants and separates the points of o?o x c^, let
S(MA) be its state space.

AXIOM IIM. — Let o?o c ^IQ , o^ c ̂  be regular domains. Let
6(a?o x co^) = 3a;Q x 3c^. For fln>' /EC(5(a;Q x a^)) ^/z^r^ exists
a function 3^ on C^Q x cj^ with the following properties :
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(a) J ^ > 0 if f>0.
(b) ]^. = f on §(o?o x o?^) ^fi? lies in MA.
(c) Jy is uniquely determined by (a) and (b).

Proof. — Let the symbol 'V refer to completion with respect
to the weak tensor product norm. Then there is a positive isometry

I : Ao « AI -^ MA,

where AQ == A(a)o) = { / z G H ( o ? o ) : /z has a continuous extension to
CJQ}, AI = A(c<^i). This map is defined on the dense subspace, A^ «• A^ ,
by the rule

n n
I : ^ U, ^ V, ̂  ̂  l̂ . ,

i= 1 /=!

for u^ G Ao, î . ̂  A^ , and it is enough to show that it is an isometry
on .this set since one can then extend by continuity. Let I I . I I ^ be
the weak tensor product norm, then

n H i \\ n II
V Uf « v^ = sup ] ^ < Uf , p > Vf : p lies in
î ||̂  ( L-=i 11

the unit ball of A^ .

Now, by a direct calculation based on the triangle inequality for the

I n 11
norm, the map p ^ ^ < ^ . , ^ > ^ J is seen to be convex. It is

î II
also continuous since it is the composition of the maps

P ^ t , <u,,p>v, ̂  I ^ < ^ - , P > ^
i=l II ^=1 II

each of which is continuous. Hence, by the Bauer Maximum Principle
(see e.g. [1]), it is sufficient to take the supremum over the extreme
boundary of the unit ball of A^. But this is precisely the set

exS(Ao)u - exS(Ao),

where S(A()) is the state space of AQ, and by a well known result
(see e.g. Effros and Kazdan [14]) it is contained in

{ 5 - x G oJJu {- §, : x G GJ). },
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where 6^ is the evaluation at x, so

I f ^ ® ̂ | = sup j I Y u,(x) J| : x E^ ( ,
l l^ i h ( lh=i || )

( ^ - _= sup 1 ̂ .(x) ^.(jQ : x E ̂  , ^ G cji
( /=!

I " IIV II° £"•°•1
So I is an isometry, it is clearly positive. Because MA is closed
in C(c;o x G^) and therefore complete in the supnorm topology
I extends to the completion, A() & Ai , and remains an isometry
there. Now, §(GJo x c^) = Bc^ x 80^ is a closed set and is the
extreme boundary of the simplex

orc^a^ x 3coi) ^ oT^(3o^) » or^(aa;i).
So OT^(8o?o x 3a?i) is the state space of

C(3a;o) «COo;i) ^ Ao ® Ai .

So by the extension theorem of Bauer (see e.g. [1]) every continuous
function /eC(5(c<jo x o^)) extends continuously to an element of
MA. (a) follows immediately from the positivity of I and Bauer's
Maximum Principle. This completes the proof.

This proof essentially uses the fact that there exists a positive
isometry AQ & Ai -> MA. This leads one to ask the questions :
(a) Can we say that Ao ® A^ ^ MA in a sense which preserves the
order structures ? In other words, is I : Ao ^ Ai -^ MA(G;o , c^i)
bipositive and surjective ? (b) If so, does (a) still remain true for
o^o and o^ no longer regular ?

The answer to question (b), and hence also to (a), is affirmative
provided that we assume that I"̂  and ^ both have a countable
base of open sets, that both spaces satisfy the axiom of propor-
tionality of Herve and Axiom D (see e.g. [7]). These assumptions
ensure, firstly, that ^o and ^ are metrizable and, secondly, that
Ao and Ai are simplex spaces (the latter being ensured by Axiom D).
One can however avoid the use of Axiom D by assuming instead
that the two sets o?o and c^ are weakly determining domains as
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this also ensures that Ao and Ai are simplex spaces (see Boboc and
Cornea [2]).

The reader who is not acquainted with the theory of tensor
products of simplexes and simplex spaces is referred to the papers
[ I I ] , [19] and [21].

THEOREM 11. — Under the hypotheses mentioned above on they
two spaces ^ and ^, AQ ^ A^ is isometrically order isomorphic
to MA(cx;o , c^), where AQ = A(o?o) , Ai = A(c^) and a?o c S^Q ,
o?i c ^2^ are open relatively compact sets. Symbolically,

Ao ^ Ai ^ MA.

Proof. — Let So , S^ be the state spaces of Ao , Ai respectively.
We recall that by the results of Davies and Vincent-Smith [ I I ] ,
SQ ^ S^ is the state space of Ag ^ Ai and is a simplex. Moreover,
AQ ^ A^ is isometrically order isomorphic to BA(SQ , Si), the
Banach space of jointly continuous biaffine functionals on So x S^
Since each function in BA(SQ , S^) achieves its maximum at a point
in the product of the extreme boundaries of SQ and Si and this is
just the product of the two sets of regular boundary points, 3,.c^o ,
9^i, the restriction map combined with the inverse of the natural
injection o^o x c^ -> So x Si provides an isometry

G : BA(So , Si) ^ MA(G,o , c^i)

which is bipositive. Hence, we also have an isometric order isomorphism

Ao ^ Ai ^MA(o;o , c^i).

We will identify Ao ^ A^ with its image under this map.
v

Now, as we have just remarked, the state space of Ao ^ Ai
is a simplex and AQ ^ A^ is a function space containing the constants
and separating the points of cJo x ^i, such that

Ao « Ai c MA(c^o , ^i) c C(cJo x c3i)
y

and if we can show that the Choquet boundaries of AQ ^ A^ and
MA(o?o,c^) are equal then the density theorem of Edwards and
Vincent-Smith [13] will give us that the former subspace is dense
in the latter, and, since they are both closed, they will be equal.
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To show that the Choquet boundaries are equal we remark
firstly that the Choquet boundary ofA^A, is just the set 8^o?o x 3^
as this is the extreme boundary of the simplex SQ « Si. To prove
that this set is also the Choquet boundary of MA(o?o , c^) we use
the characterisation of the Choquet boundary as the set of points
in €JQ x o?i which do not possess a representing measure over MA
larger than 6^y in the ordering defined by the min-stable wedge
W(MA) generated by MA (see e.g. Effros and Kazdan [14]).

Let (x , y ) lie in the Choquet boundary of MA, and let AI (- 5^
in the ordering defined by W^ - the min-stable wedge generated by
Ao - then form the measure JLI «> 6 y . It is not hard to see that this
measure is greater than 6^ y in the ordering defined by W(MA),
e.g. i f /= h^ ^h^ A . . . A h^ lies in W(MA), where

/ z . E M A 0 = 1 , . . . , n)
then

ffdp. « 6y =^ h, A/^ A . . . A /^ ( . , ; ; )^ ,

and the function x »-> h^ A /^ A . . . i\h^(x , y ) lies in W^, by defi-
nition of MA(O?Q , o?^),so

f fd^ji ^ 8y < f ( x , y ) .

This shows that ^ ^ 6y ^ 8 ^ y and it is clear that this implies
^ ^ 8y = 6^ y since (x , y ) lies in the Choquet boundary and it is
immediate from this that JLI = 6^, hence x lies in the Choquet boundary
of CL?Q with respect to A(), i.e. in 3^o?o. By exactly the same reasoning
y G 3^co^ and so (x , y ) G 3^o?o x 9^^.

The converse inequality, that the Choquet boundary of MA
contains 8^o?o x 3^a?i, follows immediately from the fact that
MA D AQ «' AI . This completes the proof.

COROLLARY 12. - S(MA) = So » S^ 77^2C67

(a) S(MA) is a simplex.
(b) exS(MA) = 3^<A;o x 3^0)^.
(c) The Shilov boundary of MA = 3^o?o x 3^o?^.
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Proof. — This is the dual statement of Theorem 11. (a) and (b)
follow from the results of Davies and Vincent-Smith in [11]. (c) is
just the statement that the Shilov boundary is the closure of the
Choquet boundary. This completes the proof.

Part (c) of this corollary was obtained by J. Walsh in [26]
for Euclidean space, using probabilistic techniques.

It is clear from the statement and proof of Axiom IIM that
for CL?Q , c^ regular, the map/*-^ Jy from C(3a;o x 3o^) toMA(o?o,a^)
is a positive linear map and so the map f ^ l f ( . x , y ) is a positive
measure on 3a?o x 3c^, called p^°y^1.

We complete this paragraph by quoting a proposition that is
a straight generalisation of the convergence theorem of Herve. We
do not give the proof since it follows very closely the proof of the
original result, to be found, for instance, in Brelot [7]. We merely
remark that the proof requires the fact that positive separately
harmonic functions are continuous which is Lemma 1 of [16].

PROPOSITION 13. — Letih^} be a sequence of separately harmonic
functions in MH^c^o , Cx^), pointwise convergent to h G MH^ then

(a) h = sup (inf h ), where "A" denotes the lower semi-conti-
n p>n

nuous regularisation.
(b){h^}is uniformly convergent on compacta to h.

2. In this paragraph we show that the space of functions obtained
by forming the tensor product of two spaces of differences of positive
harmonic functions is the space of differences of positive separately
harmonic functions. Many of the results in [16] are deduced from
this fact. The hypothesis on each space is, in addition to the basic
three axioms of Brelot, the existence of a countable base of open sets.

We consider the two spaces ̂  , Sl^. Recall that

MH" == MH^o , ^i)

is the cone of positively separately harmonic functions. By Lemma 1
of [ 16] every function in this cone and in the space MH() = MHT^ — MH'^
generated by it are continuous. Moreover, as we remarked above
MH'^ has the convex base,
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XM^CMH' : h ( x Q , y o ) = 1},

for a fixed, arbitrary pair (XQ .y^^-^l^ x ̂ . We give MFT^ the
topology of uniform convergence on compacta.

THEOREM 14. - Let I-r^o) , H^^) be the positive cones of
harmonic functions on the spaces S^,^, respectively and let

XQ ={h^W : h(x^= 1} , Xi^GH^) : / z (^o )= 1}

be their respective bases. Then X^ is a/finely homeomorphic to
\o ^ X i . Symbolically, X^ ^ XQ « Xi .

Proof. - Let L Q , L I be the subduals of H^o) - H^o),
H^i) - H"^) respectively as in Theorem l . I f / G L o « L^ thenyi
f has an expression of the form / = ^ fr^fr ^or //• E LQ, /^ ^ L^,

r = l

and corresponds to the measure (non-uniquely) of compact support
c~ n
L! ^ I Q x ^2^, JLI = ^ ^ « JLI^., where JLI^ corresponds to /,. and is a

r=i
measure of compact support on ^, and ^ corresponds to f[ and
is a measure of compact supportoon ̂  (r = 1, . . . , n). Now define
the map S : X^ -^ Xp ^ X^ in the following way : for h E X^i,

S(/0 (/) = f h ( x , y ) d ^ ( x , y ) = ^ f f h ( x , y ) d ^ x ) c l p t , ( y ) .
r= l

S is a well-defined map by the remark after Corollary 4, because
h is separately harmonic and hence by a simple application of
Fubinfs Theorem, the map y ^ j h(x , y ) d^(x) is also harmonic.
It is clear that S(/z) is a positive linear map from LQ ^ Li -> R, and
Lo ^ Li has an order unit so it is also continuous and hence extends
to a positive linear form on LQ ^ 1̂  (as in the proof of the validity
of Axiom IIM the sup norm on LQ ^ L^ coincides with the weak
tensor product of the sup norms on LQ and Li). Hence, S(h) lies
in the positive cone of the dual o f L Q ^ L^, that is to say, by defi-
nition of the tensor product of simplexes, in a scalar multiple of
XQ ^ Xi. But if / = 1 ^ 1, / corresponds to the measure 5^ x §
so that
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SW CO = ffh(x,y)d6^x)d8^(y) = h(x^ , ̂ ) = 1,

and / is the unit element in LQ ^ l^, in other words S(7z) € XQ ^ Xi .
S is clearly affine by the linearity of integration, and it is an

injection because if S(/?i) (/) = S(/^) (/) tor all /^L() ^ L i , select
/o such that it corresponds to 5^ ^ § then

h,(x , 3.) = S(/ii) Oo) = S(/^) (/„) = h^x , j.) ,

and x , ̂  are arbitrary. To show that S maps onto XQ ^ Xi is rather
more difficult.

Let F E X ( ) ^ X I , then, as X^ « X^ is a compact, metrizable
simplex with extreme boundary exX^ x exX^, there exists a unique
probability measure, v, concentrated on exX^ x exXi which repre-
sents F over A(Xy « Xi) ^ L() « Li. Then

< / , F > = f < / , ^ ^ i ; )^ , ,
v exX^ x exX^

where /G L^ «> L\. We remark that every element of exXo x exXi
lies in the image of S ; if (u , v) E exXo x exXi and /E LQ ^ Li ,

S ( w ) ( / ) = V rfu(x)v(y)d^(x)d^(y),
r^l J J

= S fu(x)d^x)fv(y)d^(y),
r=l

= $ <^ , / , ) < i ; , /;>,
r=l

where /^ e Lo, corresponds to ^, and //, to ^,

= </ , ^ ® i ; > .

In other words S : uv ̂  u ^ v. In general, we have the measure v
corresponding to F E XQ ^ X^ ; define h on ̂  x ^2^ by

^0' , ̂ ) == / u(x) v(y) dv(u , i;) ,
t / e x X x e y X ^

then /? is clearly separately harmonic by Martin's Representation,
and lies in X^ since



136 ^N REAY

h(xo . Yo) = / ̂ o) ̂ (^o)^(^ ' ^) '

= / 1 dv(u , i;) ,

= 1.
n

Now, for this h and for / = ^ fy ^ // as usual,
r= l

S(/2) (/) = § /JJ )̂ ̂ ;(^) ̂ ^ ' ̂  ̂ rW d^(y) ,
'̂ — 1

and the map (u , v , x , y ) ̂  u(x) v ( y ) is continuous from
Xo x Xi x ^o x ^i

to R so that

S(/0(/) -y ^ ffu(x)v(y)d^x)dfi^yr^ d^u , i;),

=/S(^)(/) ^(^,1;),

= f ( f , u ^ > v ) dv(u , i^) ,

= < / , F > .

This holds for all /£ Lo ^ L,, so, by continuity, for all/in LQ ^ L,.
So S is a surjection. Finally, S is a homeomorphism by the next
lemma.

LEMMA 15. — The topology of uniform convergence on compacta
c ^ I Q x ^2,, on XM is the same as the topology on X^ induced by
the map S from Xp ^ Xi .

Proof. - The topology on XQ ^> Xi is the weak* topology in
the duality < LQ ^ L,, Ho(^) « Ho(^i) > ; we may consider sequences
in XQ « Xi since XQ and X^ and, hence, XQ ^ X^ are metrizable.
Now, p^ p in XQ ^ Xi if and only if ( p ^ , / ) - » < ? , / > for all
f^Lo ^ Li. Suppose for the moment that / is in LQ ^ Li. We have
that (S(h) ,(/)>= / h ( x , y ) d ^ ( x , y ) , where h e X^ and JLX on
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^2o x n! corresponds to /. The support of jn is a finite union of
sets of the form K x L, where K c ̂  , L c^ are compact, and
so is compact. If h^ -> h uniformly on compacta, for h^ h<EX^,
then j h^ dfJi-^j hdji for all JLI corresponding to an /G L() « Lp
so < S ( ^ ) , / ) - > (S ( / z ) , / ) for a l l /GLo « Li. Now the map

f^ <S( /0, />

is continuous linear because S(h) lies in the continuous dual of
Lo « Li ; ̂ o if_/^ G Lo ^ Li for all m > 1 and /^ -^ / as m -> oo ,
where /E L() ^ Li , then

( S(/z,) , / > - ( S(/z) , / ) < ! < S(/z,) , /) - ( S(/z,) , /„ > | +

1<S(^) , /^ ) -<S( / ; ) ,^ ) | +

\(S(h) ,/^ > - < S ( / z ) , / > | ,

< ^ ,

for _m and ^2 sufficiently large. So < S(/z^) , / > - > < S(/z) ,/) for all
/ ^ L o ^ L \ .

Conversely, if < S(/zJ ,/) -^ < S(A) ,/> for all /G Lo « Li, choose
/ to correspond to the measure 5^ « §^, this shows that h^->h
pointwise, and by Proposition 13, we have uniform convergence on
compacta c ^o x ^r This completes the proof.

COROLLARY 16. - XM is a compact Choquet simplex in the topo-
logy of uniform convergence on compacta.

Proof. — Since the tensor product of two simplexes in a simplex,
[ I I ] , Theorem 3.

One can define minimal separately harmonic functions in exactly
the same way as minimal harmonic functions by saying that a sepa-
rately harmonic function is minimal if the only positive separately
harmonic functions that it dominates are scalar multiples of it. Then
one has,

COROLLARY 17. - The minimal separately harmonic functions in
X^ are the functions of the form uv for u a minimal harmonic function
in XQ, and v a minimal harmonic function in X i .
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Proof. — Immediate from Theorem 14 and Theorem 4 of [ 11 ].

COROLLARY 18. —(Gowrisankaran) To every h G MH^^Q ,^i)
corresponds a unique positive measure v^ on exX^ x exXi such that

h(x , y ) = ^u(x)v(y)dv^(u , i;)

for all (x , y) G ̂  x ̂ .

Proof. — Immediate from Theorem 14 and Choquet's Theorem
bearing in mind Corollary 17.

COROLLARY 19. - (Gowrisankaran) MH^^o ,^> ^ a lattice in
its own order with compact base X^ .

Proof. — By definition of a simplex.
Gowrisankaran proved, in fact, that MET" is a complete lattice.

COROLLARY 20. — (Gowrisankaran) The set X^ is equicontinuous.

Proof. — By Ascolfs Theorem X^ is equicontinuous if and only
if it is relatively compact, and X^ is compact by Lemma 15.

Following Walsh and Loeb [25] we make the following definition.
Let F be a topological vector space (locally convex), let cj c ^2 be
an open subset of a harmonic space, and let / : a? -> F be a function,
then / is called P-harmonic if for all p €: F*, the map a? -> R defined
by x -> (f(x) , p ) is harmonic.

COROLLARY 21. — ^c./ Gowrisankaran [161, Lemma 6) The maps
V "̂  ̂  vv/z^^ /z E MH^ ^zrf ^ ^ the canonical measure on exXo
representing the harmonic function h(. , y ) , are F-harmonic, whereF
is the space OfIc(exXo) in the weak* topology.

Proof. — By Corollary 18 we have the representation

h(x , y ) = f u(x)v{y)du(u , v)

so that d]^ (u) = v(y) dv(u , v\ by Martin's uniqueness property, since
both are measures concentrated on exXg. The dual ofOTl(exXQ) with
the weak* topology is C(exXo) and if /G: C(exXo),
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</, ̂  > =ff(u)d^(u) =ff(u)v(y)dv(u , v) =fv(y)d^(v) ,

where î . is a measure on exX^ so ( / , ^ > is a harmonic function
of y , i.e. ^ -> ^ is F-harmonic.

3. In this paragraph we show that a result on uniform approxi-
mation of harmonic functions, originating from Deny, can be extended
in a natural way, to separately harmonic functions. We consider in
this paragraph harmonic spaces of Brelot satisfying, in addition to
the basic three axioms, the countability axiom, the axiom of propor-
tionality and Axiom D. Let cj c ^2 be an open, relatively compact
subset of such a space. Recall that, under our assumptions, the subspace

A(co) = {/G C(c«3) : /is harmonic in a?},

is a simplex space and is uniformly closed. We now also define
D(o?) = {/€ A (a;) : / extends to a function harmonic in a neigh-

bourhood of c5}.

It can be shown that the state space of D, is also a simplex,
call it S(D). It is shown that the Choquet boundary of D is contained
in 3o? and those points in the Choquet boundary are called stable
points of a?. Stable points play the same role with respect to D
as regular points play with respect A. We quote the following :

THEOREM 22. — D is uniformly dense in A if and only if every
regular point is stable.

It is not hard to see that since D c A, every stable point is
necessarily regular. We intend to show that by suitably redefining
D and A for separately harmonic functions we can prove a result,
in this context, analogous to Theorem 22. So consider harmonic
spaces ^IQ , ^2i and their associated objects — their allegiance being
defined by the suffix 0 or 1. In paragraph 1, we defined the set
MA(o?o , o?^), o?o , o?i open and relatively compact, as follows ;

MA(o?o , a?i) = {h : h is continuous and separately harmonic
in €OQ x a? i and has a continuous extension to o?o x c^ such that
h(x , .) is harmonic in c^ for all x e: 0?^ and similarly for x and y
reversed}.
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We now define the set MD(o?o , o^) as follows,
MD(o;o , CL^) ={h GMA(o?o , o?i) : /z extends to a function conti-
nuous and separately harmonic in a neighbourhood of cJo x o^}.

We give MA and MD the sup norm topologies.

_ LEMMA 23. - The space DQ «» D ^ , w/z/c/z ;5 ̂  completion of
Do ^ DI wz/Tz respect to the weak tensor product norm, is isome-
trically order isomorphic to MD ; symbolically DQ ^ D^ ^ MD.

Proof. — We do not give the proof as it does not differ in any
essential way from the proof of Theorem 11. It uses the Edwards-
Vincent-Smith density theorem in exactly the same way.

PROPOSITION 24. — MD = MA if and only if every point pair
(x , y) G 3o;o x 8o?i which is a pair of stable points is also a pair
of regular points.

Proof. — If every pair of stable points is a pair of regular points
then by Theorem 22, DQ == AQ and D^ == Ai so by Theorem 11
and Lemma 23,

MD = Do ^ DI = Ao « AI = MA .

Conversely, if MD = MA then by the easy half of the density theorem

S(MD) = S(MD) = S(MA) and so exS(MD) = exS(MA)

but exS(MD) = exS(Do) x exS(Di) because S(MD) = S(D()) « S(Di),
by dualising Lemma 23, and exS(MA) = exS(Ao) x exS(A^). Hence,

exS(Do) x exS(Di) = exS(Ao) x exS(Ai),

but the left hand side defines the set of pairs of stable points and
the right hand side the set of pairs of regular points. This completes
the proof.

The subject of uniform approximations of harmonic functions
is dealt with in a number of papers, notably, Brelot [5], de laPradelle
[23], and Vincent-Smith [24].

4. In this, the final, paragraph of this paper we show that
Keldych's Theorem also extends to separately harmonic functions.
We assume in this paragraph the same conditions on our space ^2
as in the previous paragraph.
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Keldych's Lemma asserts that if cj c ^2 is open and relatively
compact and if for all x CE 80?, 3o3\{x} is connected, then for each
regular boundary point x, there exists a positive function /GC(9o?)
such that f(x) = 0, / > 0 at every other point and / extends conti-
nuously to a function H^ harmonic in a?. Keldych's Lemma is the key
fact which enables one to prove,

THEOREM 25. — (Keldych). Suppose a? satisfies the conditions
stated above. Let Ly(.x) be, for each /GC(3a?) a function on a?
such that

(a) x ^ Ly(.x) is harmonic.
(b) Ly == H^ whenever H^ extends continuously to f.
(c) The function /^ Ly : C(3cL?) -> H(cj) is positive and linear.

Then Ly = the solution of the generalised Dirichlet problem, H^,
for all /G C(3a)).

We remark that Keldych's Theorem extends almost word for
word to separately harmonic functions. Firstly, one can see that
Keldych's Lemma extends : Let 0:0 x co^ c ^IQ x ^2i with o?o , 0:1
as for cj in Theorem 25. Then for x, G 80^., regular boundary points,
we can find peaking functions f^ CE C(3c^.) such that/^. > 0 everywhere
except at x^ where /,(x,) = 0, and /, extends to an element of
A, (z = 0, 1). Then /g ®/i EC(3o;o x 3o?i) extends to an element
of AQ « AI c AQ ® AI c C(o?o x c^i). It is easy to see that /o »/i
is a peaking function for MA(o?o , Cx;i) = Ao ® Ai. This encourages
one to believe that we can extend Keldych's Theorem, although we
do not use it in the proof, in fact.

PROPOSITION 26. — Let o?o , 0:1 be as in Theorem 25. Let A^x , y )
be, for each /GC(3o?o x 3c^), a function on c^g x c^ such that ;

(a) (x , y ) '-> A/x ,>Q /5 separately harmonic in €JQ x o?p
(b) Ay = L. whenever f extends continuously to an element of

MA. (See Paragraph 1 for the definition of J^.).
(c) The function f^ Ay : C(3o?o x 3o?i) -^ MH(o?o , <^i) is posi-

tive and linear.
Then Ay ^ unique.
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Proof. — Fix g E C(3o^), ^ > 0 such that^ extends continuously
to H^1, its Dirichlet solution in o^, and fix ^Go^. Then consider
the map

/^A^(x,^)/H/jQ,

It can be seen that this map satisfies conditions (a), (b) and (c)
of Keldych's Theorem and so

A ^ ^ ( x , y ) = rCMrC^),

for all x €: o?o ,Y G <^i. Now, fix /^C(3a?o), /> 0, and ^ G o?o,
and consider the map

^A^.^/H/0^).

By what has just been said this map satisfies the conditions of
Keldych's Theorem as well so that

A^(x , y ) = H^°(x) B^\y)

for all strictly positive /EC^ac^) and g^C+(^o}^), and all

(x , y ) G C^Q x 0:1.

By the linearity of A and the decomposition / = (f + e) — (f~ + e),
g = (g^ + e) — (g~ + e), one can see that this equation remains valid
for / and g arbitrary.

n
Finally, if / = V /, ® g, is in C(QO)Q x 3o?i) then by linearity

i=i
we must have

A/Oc , y ) = f H^°(x) H^(^).

Thus A. is uniquely defined on a dense subspace of C(QO)Q x b(jj^)
and since for all x , y , A^(x , y ) is a positive linear functional on an
order unit norm space it is continuous and so extends uniquely to
the whole space. This completes the proof.

Because of this result we call A.. the solution of the generalised
Dirichlet problem for separately harmonic functions. For Keldych's
Theorem see Brelot [6], [7].
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