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UNIFORM MAPS INTO NORMED SPACES

by Zdenek FROLIK

Thirteen properties of uniform spaces are shown to be equivalent.
The most important properties seem to be those related to modules of
uniformly continuous mappings into normed spaces (condition (3), (4)
and (5) in Theorem 1 below), and to partitions of unity (condition (6)).
The spaces satisfying these equivalent conditions seem to be useful
for the theory of uniform spaces as well as for applications in analysis.
Therefore we do not want to choose a name for them before the whole
theory is developed, and basic applications are shown. In § 5 a short
survey of these spaces is given.

If X is a uniform space we denote by aX the set X endowed
with the finest uniformity which is topologically equivalent to X. The
set of all uniformly continuous mappings of X into Y is denoted by
U(X , Y). If Y ^ R, then we write simply U(X). I f / i s a real-valued
function then coz / stands for {x\ fx ^= 0}. A cozero set in a uniform
space X is a set of the form coz/, /EU(X). The collection of all
cozero sets in X is denoted by cos X (by the way, this defines a functor
into paved spaces).

THEOREM 1. — The following conditions (1) — (7) on a uniform
space X are equivalent :

1) // M is a metric space, and iff : X -> M is uniformly conti-
nuous then so is f : X -> aM.

2) // M is a metric space then U(X , M) is closed under taking
the limits of continuously convergent sequences.

3) U(X) is inversion-closed, and for every norm space B the real
module U(X , B) is a V(X)-module.

4) Condition (3) with B restricted to Banach spaces.
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5) Condition (3) with B restricted to l-spaces, i.e. B = /(A) for
some A.

6) ///: X -» /(A) is uniformly continuous, f = 2{/^jc. a \ a E A;,
then {coz /^ \a € A) ^ a uniform cover of X.

7) // ^U ^ a uniformly a-discrete completely coz(X)-additive
cover of X, then ^U z'5 a uniform cover of X.

Proo/ — It is self-evident that (3) implies (4), and (4) implies
(5). Condition (7) implies (1) by a simple application of a non-trivial
theorem of A.H. Stone [I], that every open cover of a metric space
is refined by a uniformly a-discrete open cover ; indeed, the preimage
of such a cover under a uniformly continuous mapping is a uniformly
a-discrete completely coz-additive cover (every open set in a metric
space is a cozero set in the metric uniformity). The implication
(1) =^ (2) is almost obvious after the definitions are stated ; this is
done in § 1. Implication (2) =» (3) is verified in § 2 on modules of
uniformly continuous mappings. The implications (5) =^ (6), and
(6) =» (7) are proved in § 3 devoted to the space /(A) and partitions
of unity.

1. Continuous convergence.

Let X be a set and let T be a topological space. A net {/^ : X -^ T}
converges continuously to an / : X -> T if for any net{^} in X, and
for each x G X such that/^ -> fx for each a, the net {f^x^} converges
to fx (with respect to the product order for indices).

If {/^} continuously converges to /, and if X is a topological
space, and if all f^ are continuous then so is /.

This is easy to prove, and has been reproved by many authors,
(the present one is not excluded).

Proof of (1) =^ (2) in Theorem 1. Assume that a sequence
{/„} in U(X , M) converges continuously to /. Consider a uniformly
continuous mapping h of X onto a metric space S such that all f^
factorize by A, i.e.
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Thus fa = 8a ° ^ f01 eac!1 a ' Clearly we have / = g o h for some
continuous g : S -> M, i.e. uniformly continuous g : aS -> aM. By
Condition (1) the mapping h : X -> aS is uniformly continuous, hence
/ : X -> aM is uniformly continuous, hence / : X -> M is uniformly
continuous.

An important example of continuous convergence is the following.

Example. — Let {/^ : X -> T} be a net, T be a uniform space,
and let X be a topological space, the topology of X being projectively
generated by all/^,. If {/^} locally uniformly^ converges to / : X -> T,
then {/^} converges to / continuously.

That means, if each point of X has a neighborhood U such that
f^ | U converges to /1 U in the topology of uniform convergence, then
{/ } converges to / continuously. The proof is evident.

2. Modules of uniformly continuous maps.

Let X be a uniform space, and let B be a real normed space. The
set U(X , B) of uniformly continuous mappings of X into B is a real
linear space with the operations defined pointwise. Let U^ (X , B) be
the subset of U(X , B) consisting of all bounded mappings endowed
with the sup-norm. Thus /EU^X.B) if and only i f / G U ( X , B )
and

H / l l = SUp{ | IA | lB l^X}<oo

PROPOSITION. - U^X.B) is a Vb(X)-module (with the natural
operation).
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Proof. - We use U^(X) for U^X , R), when R is the space of
real numbers. If /G U(X) and if g E U(X , B), then

f.g ={x -> fx.gx\x^X}\ X -> B

In general, /. g does not belong to U(X , B). However, i f /and g are
bounded, then /. g G U6 (X , B). Apply the following identity :

( f . g ) x - ( f . g ) y =fx(gx - gy) + gy(fx - fy) .

This concludes the proof.

LEMMA 1. - Condition (2) implies that U(X , B) is a U(X) module.

Proof. - Le t /GU(X) , /^ 1 , ^ E U ( X , B ) , h = f. g. Let

/„ = minOz,/)
and

gx if || gx || ̂  n

gnx= n' r^ if ii^">^1 1 ̂  1 1
By Proposition ^ =/„ . ̂  E U^(X , B). Assume that h^x^ -^ h^x
for each n. The sequence {/^x} converges to hx, {f^x} converges to
fx and {g^x} to gx. It follows by an easy argument that h^ converges
continuously to A.

LEMMA 2. - Condition (2) w7/z M = R implies that X /5 inversion-
closed, that means, if ^GU(X), ^c ^ 0 /or ^ac^ x then l /gGU(X).

Pwo/ - Define {g^} by the formula in the proof of Lemma 1.
Clearly {g^} converges to g continuously.

Proof of (2) ^ (3). Combine Lemmas 1 and 2.

3. Partitions of unity and /(A).

For any set A let /(A) be a linear subspace of RA of all z = {zj
such that

||z|| = 2{|zJ | ^EA}<oo
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Then {z -> \\z\\} is a norm on /(A), and /(A) with this norm is a
Banach space. Denote by 6, 6 G A, the element z = { z ^ } such that
z^ = 1 if a = b, and z^ == 0 otherwise, and denote by TT^ the restriction
of the projection, i.e. TT^ z = z^ . In this notation for any z we have

z = S{7T^z . a |aG A}

Furthermore, we denote by S(A) the unit sphere in /(A), i.e.

S ( A ) = { z | ||z|| = 1} .

Let X be a set, and let {/^ | f l €A} be a family or real valued
functions such that 2 { I /^ x \ \ a € A} < o° for each a. Thus there
exists a unique / : X -> /(A) such that

fx = S { ^ ; c . a | a G A } ,
i.e. ^ = ̂  o /.

LEMMA 3. - // / : X -^ /(A) f5 uniformly continuous, then the
family {jT^ o f\a^ A} is uniformly equicontinuous.

Proof. — The mapping

k = / - / : X x X -> /(A)

defined by A: < x , ̂  > = fx — fy is uniformly continuous, and

\\fx-fy\\ = ^{\f,x-f,y\\a^A} ,
and hence

IIA-^II^I/^-/^!

for each a. This concludes the proof.
A partition of unity on X is a mapping / of X into some S(A)

such that TT^ o / ̂  0 for each a E A.

LEMMA 4. — Condition (5) implies (6).

Proo/ — Assume that / : X -> /(A) is uniformly continuous,
fx ¥= 0 for each x, and /^ = TT^ o / ̂  0 for each a. Hence

U ={coz/J^GA}

is a cover of X. We shall show that "U is a uniform cover. First consider
the partition of unity
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F = 1 / 1 1 / H . / = £ { F , j c . f l | ^ e A }

By Condition (5), F is uniformly continuous.
a) For each x put

hx = sup{F^x.|a G A}
Then

h = {x ^ hx} : X -> R

is uniformly continuous.
Indeed, for each x in X choose an a^ in A such that F^ x > hx — r,

where r is a given positive real number. Choose a uniform pseudometric
d on X such that d < x , y > < 1 implies I F^ ;c — F^ | < r for each a.
Now if d < x , y > < 1 then

Indeed
I hx - hy | < 2r

hx < h. x + r ̂  h y + 2r ̂  hy 4- 2r

j3) Consider the mapping
G = l//z .F

By Condition (5), G is uniformly continuous. Let V be a uniform
cover of X such that the diameter of G[V] is less than 1/2 for each V
in V. We shall show that V refines U Let V CV , and let x E V. We
shall show that for any x G V

VCcoz/^ ,

where a^ is the index chosen in a with r= 1/3 (hx). We have
I I Gx || > l / h x . F_ x > 2/3. If ^ E V - coz /, , then

"X X

||G,_G,||.,|^_^|^^_^|.^>^.
hx^ hy hx hy hx 3

which contradicts the assumption that the diameter of G[V] is less
than 1/2.

LEMMA 5. — / / { U ^ l a E A } is uniformly o-discrete completely
coz-additive cover of X, then there exists a uniformly continuous
mapping f of X into /(A) such that
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U^ = COZ 7T^ o /

for each a.

PAW/. - Choose a cover {A^} of A such that each{U^ \a G A^} is
uniformly discrete. The sets G^ = U{U^ |aE A^} are cozero sets, and
hence we may choose uniformly continuous functions g^ such that
G^ = coz^, 0^^ ^2-". For a E A ^ let

j ^ x if xEU,
- a ) ^\ 0 otherwise

Put
f^x= S { / , x .a |aeA^ } .

We shall check that each/,, is uniformly continuous. Then/ = 2 {/„}
will be uniformly continuous because of the uniform convergence of
the series.

Fix n. Choose a uniformly continuous pseudometric d on X such

that the distance of each pair U^,, U^ is 1 at least, and d < x , y > < —

implies I g^ x - g^ y \ < e. If d < x , y > < 1, then

fnx- fnY =fax-fay ^ ^ X - g ^ y

for some a, and hence

\fax - faY^ \SnX- g^y\<€ .

This concludes the proof.
Proof of (6) =» (7). Lemma 5. This concludes the proof of

Theorem 1.

4. Inversion-closed spaces.

Recall that a uniform space X is called inversion-closed (or U(X)
is called inversion-closed) if for each /GU(X), fx 1=- 0 for each x,
I// is uniformly continuous. Usefulness of inversion-closed spaces
will be indicated below. We begin with the following list of equivalent
conditions.
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THEOREM 2. — The following conditions on a space X are equi-
valent :

a) X is inversion-closed.

b) // the preimage of cozero sets under an f : X -> R are cozero
sets in X, then /EU(X).

c) // / : X -> R - (0)) is uniformly continuous then so is
/ : X -^ a(R - (0)).

c7) // / : X -> ] 0, -^ 1 [ ^ uniformly continuous then so
is f : X -» a ] 0 , -^ [ .

Proof. — We shall prove a) =^ b) =^ c) =^ c') =^ a). It is easy to
see that c') implies a) (I/A = {y -^ \ / y } ° /), since a^O ,-> [ is a
subspace of a(R — (0)) and D O ,-^ [ is a subspace of R — (0), evi-
dently c) implies c'). Assume b) and let/ : X -> R — (0) be uniformly
continuous. Hence / satisfies the assumption in b) (with R replaced
by R - (0)), and hence each g o /: X -> R, with g : R.- (0) -> R
continuous, satisfies the assumption in b), and hence by b) each g ° f
is uniformly continuous. Since a(R — (0)) is projectively generated
by allg (see the subsequent remark), this implies that/: X -^ a(R —(0))
is uniformly continuous. It remains to show that a) implies b). First
observe that a) implies that if z^ and z^ are disjoint zero-sets in X,
then there exists g E U(X) which is 0 on z^ , 1 on z^ , and 0 < g < 1.
To do that, choose /^GU(X), f, ̂  0, such that

z, ={x\f,x=0} .

Put g = ———- •
J \ ' J l

Now assuming a), for any bounded function / : X -> R satisfying the
assumption in b), and for any r > 0, by a standard procedure one can
construct a ^EU(X) with \ f — g \ < r . This shows that bounded
functions satisfy b). Now let / be an unbounded function. We may
and shall assume that / ̂  1. Then 1 // is bounded, hence uniformly
continuous, hence /is uniformly continuous because U(X) is inversion-
closed. This concludes the proof.

Remark. — In the proof we used the fact that a(R - (0)) is
projectively generated by all continuous functions, i.e. that for every
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open cover of R - (0) there exists a continuous function h such that
II is refined by the preimage of an r-cover. It is enough to do that

just for ]] 0 , -^ I. For each x let gx be the supremum of all r > 0
such that 1^, r^ is in some member of 1̂1. Define / as follows :

fy=
inf{gx | 1 < x < y} for y ^ 1 ,
inf{^x |^ < x < 1} for ^ ^ 1 .

Since on compact sets fy > 0, / is positive, and it is easy to see that /
is continuous. Put

hy = r l/fx dx .J\

It is easy to check that h has the required property for any r < 1.

Note. - Every continuous form on U^X) can be represented by
a finitely additive measure on the smallest algebra containing coz X if
X is inversion-closed. Only if it holds in the following sense : there
exists a Y which is inversion closed and such that U^X) = U^Y).
This is the classical theorem of A.D. Alexandrov.

Along the lines of Theorem 2 we can add the following characte-
rizations of the spaces in Theorem 1.

THEOREM 3. -Each of the following conditions (8)-(10) is
equivalent to conditions in Theorem 1.

8) // B is a normed space and f : X -> B — (0) is uniformly
continuous then so is f : X -> a(B — (0)).

9) (8) with B Banach spaces.
(10) (8) with B = /(A).

Proof. - Clearly (1) implies (8), (8) implies (9), (9) implies (10).
It remains to show that (10) implies one of the conditions (1) — (7).
We shall show that (10) implies (5). First, (10) implies that X is
inversion-closed (with A a singleton) by Theorem 2. Now let/G U(X),
g e U(X , /(A)). If fx ^ 0 ̂  gx for each x, then

g : X -^ a(/(A) - (0))

is uniformly continuous, hence
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f . g : X -> a(/(A)-(0))

is uniformly continuous, hence /• g : X -> /(A)
is uniformly continuous. For the general case, let A' = A U (a),
where a ̂  A. Then /(A) C l(A'). Consider the map h = g + a. Then
h has no root, hence /• h : X -> l ( A ' ) is uniformly continuous,
hence

f - ( g + a ) - f . a =f.g

is uniformly continuous. We have proved (5) for non-vanishing elements
of U(X). Condition (5) now follows by a routine argument. This
concludes the proof.

The last set of characterizations is given in the concluding.

THEOREM 4. - Each of the following conditions (11) - (13) is
equivalent to the conditions ( 1 ) — ( 1 0 ) :

11) For any normed space B, the linear space U(X , B) is scalar
inversion-closed, i.e. if f : X -> B G U does not vanish, then the map

{x -^ 1/11 A ||2 o/x} : X -> B

is uniformly continuous.
12) Condition (11) with B restricted to Banach spaces.
13) Condition (11) with B restricted to spaces /(A).

Proof. — Condition (5) implies Condition (11), because {x -> || fx ||} :
X -> R is uniformly continuous. Obviously (11) implies (12), and
(12) implies (13). We shall prove that (13) implies (5). Clearly U(X)
is inversion-closed (R is /(A) with A a singleton). Next let/GU(X),
/^ 1, and let g E U(X , /(A)). Embed /(A) into /(A'), where A' = A U (a),
a ̂  A, and consider h = g + a. Clearly \\gx \\ ̂  \a \ = 1 for each x,
and hence l / h (= 1/11/II2 -/) is bounded. Also I// is bounded, and
hence !//• \lh is uniformly continuous by Proposition in § 2. Again
by Condition (13),/- h is uniformly continuous, hence/- g = /• h — /,
a is uniformly continuous. Now i f /EU(X), then we apply what is
already proved to 1 -h max(0 ,/), 1 — min(0 ,/), and then we get
general / by simple computation. This concludes the proof.
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5. Remarks.

Property (1) was introduced by A. Hager [1] (under the name
w-fine), who restricted his attention just to separable uniform spaces.
J. Vilimovsky [I] , [2] studied (1) in quite general categories with a
any coreflection, and proved that property (1) is coreflective. This
means that in the setting of this note for each uniform space X there
exists a finer space mX with property (1) such that if / : Y -^ X is
uniformly continuous, and if Y has (1), then/ : Y -> mX is uniformly
continuous. The proof of coreflectivity in uniform spaces is usually
quite simple. It is enough to show that the class of spaces is closed
under inductive generation. (For example inversion-closed spaces are
coreflective). However the description of the coreflection may be a
difficult problem. In the case of property (1), the coreflection was
described by M. Rice [1] and the present author [I] , [2]. Rice has a
basis for uniform covers of mX all covers ^ such that there exists a
countable cover V of X by cozero sets in X such that each'11/V,
V GV is a uniform cover of the subspace V of X. The present author
has the covers in (7) for a basis. The setting of (1) led the present
author to introduce metrically determined functors. A functor F of
uniform spaces is called metrically determined if FX is projectively
generated by all maps / : FX -^ FM where / : X -> M is uniformly
continuous and M is metric, and a complete family of projections of a
space into spaces in a class (e.g. metric) [1].

Property (2) is a modification of the author's definition of mea-
surable spaces [3] (pointwise convergence is replaced by continuous
convergence).

Properties (3) - (6) seem to be new. I believe that the further
investigations of these properties may bring interesting results. Perhaps
one should try to strenghten the conditions to get spaces investigated
by the author in [4] ; i.e. to add the property that a uniformly
locally uniformly continuous real valued function is uniformly conti-
nuous.

Conditions (8) — (13) are seemingly new.
It may be interesting to know more about the following (obviously

coreflective) property (weakening of (3)).
U(X , B) is a U(X)-module for every normed space B.
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Concluding remarks.
a) If X has the property that for every / G U(X),/: X ->• aRG U,

then U(X) is an algebra, and the converse is not true, because e.g. the
elements of U(R) do not grow faster than a multiple of{x -> x}when
x tends to infinity.

b) If X has the properties (1) - (13), in particular the properties
(11) - (13), then one can show that

/ G U ( X , B ) implies / E U ( X , a B ) , (*)

and this implies that

U(X , B) is a U(X) - module.
If we add to the last property that X is inversion-closed then X has
the properties (1) - (13).

One can show that (*) for Banach spaces is really weaker than
(1)-(13).

c) It follows from Theorem 1, property (7), and the description
of coreflection corresponding to (1), that this coreflection has for its
basis the covers of the form

{coz/^ |flG A}

where / : X -> /(A) is uniformly continuous.
d) The results of this paper are needed for a theory of vector

measures on uniform spaces.
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