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REGULARITY OF IRREGULARITIES
ON A BROWNIAN PATH

by Samuel James TAYLOR

0. Introduction.

The development of the theory of Gaussian processes
owes much to information already available about the Brow-
nian motion case — in large measure due to the pioneering
work of Paul Levy [9]. The regularity properties of the
Brownian path are well known and this is a basis for studying
the sample path regularities of Gaussian processes. However
in looking at the fine structure of Brownian motion it is clear
that the path has some points where small irregularities
occur. It is possible to quantify the extent of the irregularities,
and to show that even the irregularities occur in an extremely
regular manner. This paper summarises recent results in
this area, with references to detailed proofs published else-
where.

Section 1 is devoted to a complete solution of the variation
problem for Brownian motion. A 'best possible' function
is obtained for measuring the strong variation and corres-
ponding results are described for the weak variation of the
path — a concept introduced by Goffman and Loughlin [5].
For detailed proofs, see Taylor [13]. In trying to understand
these variation results, it became clear that there are times
where the local growth rates of the path are exceptional but
that this does not affect the answer. This exceptional set
was examined by Orey and Taylor [11] and by Knight [8]
and the main results are summarised in Section 2. The cele-
brated 'uniform modulus of continuity9 for Brownian paths
due to Levy [9] raises other questions about the uniform
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structure of the sample paths. Partial answers to some of
these are given in Section 3, while Section 4 summarises
some results recently obtained by Jain and Taylor [7] on
the local asymptotic laws satisfied at most points of the
path. Throughout we restrict attention to local properties
of a finite piece of the path. For many of the phenomena
considered there are corresponding results for the path beha-
viour for large times.

1. Weak and strong variation ofbrownian paths.

A standard Brownian motion in R^ will be denoted by
X((, w) or X(() when we do not need to be explicit about
the point w in the underlying probability space. It is well
known that almost all paths X(() are everywhere continuous
but not of bounded variation on finite intervals and that
the square variation is « almost » finite on a fixed interval
and becomes constant under suitable restrictions. Let

^ = {0 = ^.0 < ^n.l < < tn,kn= 1}

be a nested sequence of partitions of (0, 1) with
^^n) = max <^i — <n,i-i) -> 0 as n -> oo.

i

Then Levy [9] showed that, with probability 1,

lim S |X<^> - X^^l2^.
ra>°o i=i

The Levy modulus of continuity for Brownian motion leads
easily to a proof that

v^(x,7r)= s ^<|X(^) -x(^)|>
^•ew

is bounded for all partitions TC of (0, 1) whenever
^){s) = ̂ /log* s (where log* s = max {l,|log s\}) while Levy
proved [10] that the corresponding square variation is unboun-
ded. Recently Taylor [13] showed that the « correct » function
for measuring the strong variation of the path is

^{s) = ̂ /2 log* log* s

in the sense that V^(X, n) is bounded for all partitions n
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but becomes unbounded if ^i is replaced by any variation
function which is asymptotically larger as s -> 0. This
follows from

THEOREM 1. — There are finite positive constants c^ such
that, with probability 1,

lim [ sup V^i(X, 7r)1 == c^
3t0 L<r(w)<8 • ' J

This deals with the strong variation of the path — that is,
the result when TT is chosen with fine mesh but such that
V<j,(X, n) is as large as possible. There is a corresponding weak
variation problem in the sense of Goffman and Loughlin [5].
It turns out that the correct function for this purpose is

^z{s) = s2 log* log* $.

THEOREM 2. — If R(X; a, b} = sup |X(() — X{s)\, therea<5«a
are finite positive constants c^ such that, with probability 1,

limf inf S ^[K(X; ̂  ^)]-1 = c,.
8^0 L(T(w)<8 J

These two theorems together show that the difference
from ^>{s) = s2 is of order log* log* s for both large and
small variations — giving an exact quantitative value for
the discrepancy. These results have been extended by Kawada
and Kono to a suitable class of Gaussian processes.

2. Times when the law of iterated logarithm fails*

It is well known that the local growth behaviour at a
prescribed time to > 0 is given by

„ (,. |X(to + h) - X((o)| J ,P ^lim sup 1—v-0—1——'-———v-171 == 1{ =1.
(2 h log* log* h)~2 }h^Q

However a condensation argument [11] shows that, with
probability 1, each sample path has some times ( for which

,. |X((+ h) — X(()| ,lim sup 1—v—1-—'-——-^-j± = 1;
(2/i log* A)Y/it0
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in fact the set of such times is everywhere dense with
cardinal c. This makes the result of theorem 1 somewhat
surprising for it means that we cannot choose TV to give

effect to these large excursions of order (2h log* h)2 in
small intervals of length A. In trying to understand this
phenomenon, Orey and Taylor [11] examined the Hausdorff
measure of the set of times where the Brownian excursions
are larger than they are at a preassigned ^.

Note that a simple Fubini argument shows that the excep-
tional time set

^e [0 , l ] :Hmsupl x ( f + / t ) - x (^ l j
( A+o {2h log* log* A ) 2 S

has zero Lebesgue measure, with probability 1.

THEOREM 3. — The random set

E(a) = (t 6 [0, 1] : lim sup TO+^-y)! ^ }
I d \L ft -~- f

( T (2A log'" h)2 )

is empty for a > 1 and satisfies

dim E(a) = 1 — a2 for 0 < a < 1, with probability 1.

In the above dim E(a) stands for the Hausdorff Besicovitch
dimension. H. Kaufman (private communication) subsequently
showed that the set E(a) was 'regularly spaced" in the
sense that if H is any fixed set of dimension (S then, with
probability 1, H 0 E(a) will have dimension ^ p — a2

when p > a2.
To deal with the case where the excursions are just bigger

than the law of iterated logarithm, we have.

THEOREM 4. — For (B > 1, the random set

F(p) = ^[O.lhlimsup1^4"^ ^ x^! ^ p?
( hto {2h log* log* h)2 j

satisfies ^ - m(F(p)) = j^ ^ ̂  ̂  I } ^ith proba^
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bility 1 where <p^ — m denotes the Hausdorff measure w.r.t.
9^(5) = 5(log* 5)T.

A recent paper of Knight [8] tackles the problem of times
for which the oscillation is smaller than that given by the
law of iterated logarithm. He proves.

4
THEOREM 5. — For d == 1, and k > --- there exist with

probability 1 times t for which

Y/^ n /7T \X(t + h) - X(t)\ ,X(() = 0 and hm sup '—v—•——1-————^- ^ /c.
/lto (2/i log* log* hV

This gives a partial answer to a question raised by
Dvoretsky [3], who showed that there were no times ( for

-JL 1which lim sup |X(( + h) — X(t)\h 2 < ~ The gap bet-
/»to 4

ween the results of Dvoretsky and Knight leaves an interesting
problem.

3. Uniform local asymptotic results.

Levy's uniform modulus of continuity is well known. A
closer examination of the proof yields, for 0 ^ a < 6,

ofr TO + h) - X(t}\ ,1 ,P | hm sup •—'—-——'-—————a === 1 | === 1;
| ht0 a^f^fr -t- |
L (2/i log* h)2 J

which implies that values of the maximum increment
over a time interval of length h are asymptotic to

j-

( 1\ 2

^(h) = 2/i log , ) as h -> 0. Chung, Erdos and Sirao [1]

dealt with the large values of this maximum increment as
h —> 0 by proving.

THEOREM 6. — For d == 1, if y(^) is monotone increasing
in s, then with probability 1 there is an e == e(w) > 0
such that

\X(t + h) - X(()| < /^<p(/i~1) for 0 < h < e

if and only if f' (log h)^~2 e^'^dh < oo.
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It is reasonable to ask for the small values of the maximum
increment. Put

s(h) = sup R(X; (, ( + h).
a^t^b

What is the appropriate integral test to determine whether

s{h) < A2^-1) for some arbitrarily small values of h with
probability 1 ? I do not have a complete answer but can
prove :

THEOREM 7. — For d = 1, if

^(h) == 2 log h + log log h — c log log log h
.1

then s(h) < /^(/r-1) for some arbitrarily small h with
probability 0 or 1 according as c > 2 or c < 2.

The results of theorems 6 and 7 show how regular is the
growth rate of s(h) for small h. An argument similar to
that used by Hawkes [6] is sufficient to deal with the small
oscillations.

THEOREM 8. — There are finite positive constants c'a such
that, for 0 ^ a < by

P flin. ( inf R'^ '. ' +.*)) = J = 1.H""" wiog.A)i ( J
Theorem 8 should be thought of as the uniform result corres-
ponding to the local theorem of Ciesielski and Taylor [2]
who showed that, with probability 1,

Un,inf-MXL^±^^,
h^ (A/log* log*/^

One could ask for integral tests for both large and small
values corresponding to theorem 8.

There is an alternative way of looking at these results.
If x = X{to) is a point on the sample path we can define

P(x, a) = inf {( > 0 : |X(<o + t) - x\ ^ a}

to be the first passage time out of a sphere centre at x and
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radius a. If C denotes the range of the Brownian motion
up to time 1, then with probability 1

,. r P(x, a) ~]hm sup .; ' / = nid
a^Q LXGC a log aj
,. r. „ P(rr, a) 1lim inf v ^ = Hid
a^o l.-cec fir/log* aj

where m^ and m'd are finite positive constants.
For d ^ 3, the path is transient and we can define T(rc, a)

to be the total time spent in a sphere centre x and radius a.
There is no local time for the process but one can consider
the behaviour of a~2 T(:r, a) which has a finite positive
expectation. The independance difficulties now make it
impossible to push through the usual argument, but there
are strong reasons to believe that there are constants (A^, ^
for d ^ 3 such that, with probability 1,

,. r T^ a) ihm sup v \' = ̂ d
a ^ o Li^i a log^ aj
,. r. „ T(.r, a) -1hm inf v ^ ' = ^d.
a ^ o Lcec a"/log* aj

I have only been able to obtain bounds for the lim int and
lim sup as a —> 0 which are not equal.

4. Two-sided local asymptotic laws.

Another by-product of the variation paper [13] was the
observation that, for fixed ( > 0,

T ~ | X ( ^ + u ) - X ( f - ^ ) | 1 ,lim sup sup ——'—'—•——'-———^———n——^ ==1
h^O n^O, v^O ,^/ , \ , A , * / i \ - » 2 l_ u+y=/» {2(u + ^) log* log* (u + ^)} -J

with probability 1. Jain and Taylor [7] examined the exact
asymptotic behaviour as h —> 0 of

Y(A) = sup |X(( + u) - X(( - ^)|,
u^0.u>0

0<u+v^h
and proved.
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THEOREM 9. — If <p(A) is monotone increasing as h —> oo
( JL

and X is a Brownian motion in Rd then P(Y(A) > h2 <p(A~1)
/or 5ome arbitrarily small h} is 0 or 1 according as

r {pW}^2 -i^w^L -( L — ^ dh is < co or -}- oo.

This means that the one-sided upper growth rate for Brow-
nian motion in R^2 is the same as the two-sided result
in R^ Why should this be so?
• It is also interesting to look at 2-sided rates of escape.
Put, for ( > 1, d ^ 4,

Z(A) = min |X(( + u) - X{t - ^)|.
u+v^h

u$?0, l^-u^O

Note that Z(A) = 0 for d ^ 3 since double points of the
path exist with probability 1. The question now is to deter-
mine the asymptotic growth rate of the small values of Z(/i)
as h ^ 0. These are given by.

THEOREM 10. — If X is a Brownian motion in R^ and
g{h) is monotone increasing for small positive h, then

P ^Z(A) < h2 g(h) for arbitrarily small h\ == 0 or 1 accor-
ding as

(i) for d ^ 5 f [gWF-4 dh is < oo or = + oo;
Jo+ /I

/ • • \ ^ -7 / r dh . .ii for d = 4 I — — 1 5 < oo or == + oo.Jo+ h log* g(/i)

The corresponding results for one sided escape are due
to Dvoretsky and Erdos [4], and Spitzer [12]. Again we
notice the surprising fact that, for every d > 4, the 2-sided
rate of escape for a process in R^^ is precisely the same as
the 1-sided rate of escape for a process in R^~2. It would
be nice to see intuitively why this should be so.
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