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Introduction.

We shall be concerned here with classes of functions f (x)
measurable on [0, 1] and satisfying a condition of the type

^ ̂ rr^^^)^-
where Y and p are restricted as follows

(1.2) a) ^(u) is defined and continuous in (— oo, + °°)?
b) T(u) = Y(— u) f oo (strictly) as |u| f oo, and
(1.3) a) p(u) is defined and continuous on [—1, I],
&) p{u) == p(— u) ^ 0 (strictly) as \u\ ^0.

Let us recall that to each measurable f{x) on [0, 1] we
can associate a non-increasing right continuous function
f*{x) such that

(1.4)
m{x: f{x) ^ X} == m{x : f*{x) ^ X} VX e (-— oo, + oo),

f*{x) is usually referred to as the « non-increasing rearrange-
ment of fv> and can be defined by the formula

(1.5) f*{x) = = i n f { X : m{t: f{t) > X} < x}.

The main contribution of this paper is the following

THEOREM I.I. — If Y and p satisfy (1.2) and (1.3) and
in addition Y^) is convex then

(1.6) Lr,,(D < Iv,,(/-).
This result has been announced in [4] but no complete proof
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of it has yet appeared in print. The reader may refer to [4]
for further background information. Basically our motivation
for proving (1.6) has been to obtain an extension and shar-
pening of the following result established in [7].

THEOREM 1.2. — Let

r r^(f-lx)^^\d.dy^B<^
Jo Jo \ P(x — y) ]

and suppose that p and Y in addition to (1.2) and (1.3)
satisfy the condition

(1.7) J^y-^^u) < a) (^),

then f {x) is essentially continuous and for almost all x^ y :

(1.8) \f{x) - f{y)\ < 8 f^Y-i i^VpW.
Jo \u /

Here, by means of (1.6) we shall obtain a considerable impro-
vement of (1.8) at least in the case T(u) == \u\°' (a > 1), in
addition we shall also be able to draw some conclusions in
case (i.7) is not satisfied.

The particular cases T(u) == e61"12, T(u) == e^ of (1.8)
have so far proved quite useful in probability theory. For
instance in [7] and [5] we show that (1.8) with Y(u) = ^CNSt

implies the continuity of paths for certain Gaussian processes^
Also, Getoor and Kesten in [8] use (1.8) with Y(i^) == e^
to derive the continuity of local times for certain Markov
processes. Some further applications of (1.8) have been dis-
covered by Strook (3).

Another interesting use of 1.8 can be made to obtain a
rather direct and simple proof of the following result of Nisio
(see [12]). If {^n{t)} is a complete orthonormal system on
[0, I], the series

X<(<o)== ie,(co) r^{a)da
v=i vv

(2) T--1 denotes the inverse function of T.
(8) Personal communication.
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when {6^} is a sequence of independent standard normals,
converges uniformly in ( with probability 1. Of course the
resulting process X(((o) is always Brownian motion, and in
this case 1.8 yields estimates for the modulus of continuity
of paths that are as good as any that have been obtained by
other methods (4).

It turns out that our inequality 1.6 enables us now to
obtain the following result.

THEOREM 1.3. — If

r r\(f(x)-fy\d.dy^B<
Jo Jo \ p^ - y) ) '

00

where Y, p satisfy (1.2) and (1.3) and in addition Y(^) is
convex then for 0 < x ^ 1/2

(i.9) r^) - ni/2) )r(i/2)-r(i-^
r112 / R \ / R \^ 4 f rl (-^) ̂  +4rl (-^)p(a;)-Ja; \u / X^ /

We shall show later that (1.9) includes (1.8) at least in the
cases when ^F^) is convex. This given it should now be
possible, essentially using the same approach adopted in [7]
and [5], to obtain some information concerning Gaussian
processes without continuous paths.

We shall not pursue this point here and leave it as a subject
for further research.

Roughly speaking our aim here is to use the finiteness of
^V,p{f) to derive a-priori bounds for other important func-
tionals of f such as its modulus of continuity or other high
order norms. These bounds will of course involve Y and p
but are « a-priori » in the sense that they depend on f only
through the value of Iqr p(f) .

It is good to give here a sample of our results.
For instance in the case ^V(u) = M^a > 1) we can

obtain from (1.6) the following theorems.

(4) This suggests that perhaps (I. 8) is best possible when ^(u) ^ oo very rapi-
dly.
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THEOREM 1.4. — Let

(1.10) B = f r F f^-fW d x d y - f ' ^
Uo Jo 1^-t / l0 I {x-yY\ < 00\ x - y \ " | (a;

where a > 1, 6 > 0. Let ^ = a/(a — 1). Then if
0 < 6 < 1/(3 (5), /'(.r) i&- essentially continuous and for almost
all x, y

(1.11) )/•(:,)-/-(y)| ^ ^9B|a--yjO

wAere
== 2

ca.0 28(ep)^log2'

THEOREM 1.5. — Let

B = ff f iiw - /•(y)i i^ - yM'.i^-r < oo
LJo Jo p — yj^J

w^re a, p > 1. TAen /* 15 m weak Lp, indeed it is in the
Lorentz class Lp a and we ha^e a constant c^ such that

(1.12)

iin.a = f-i- F2 [(r^) - r(i - ̂ )^a^T/a ^ c^B.
B- /- */ 0 ^ J|

To be sure both these theorems can be derived without
making use of (1.6). In fact, (1.11) is qualitatively the same
as (1.8), while a result similar to (1.12) has been obtained by
Herz in [10] (6).

However, there are other consequences of the inequality
in (L6) that seem to be inaccessible by any other methods.
For instance, without any additional difficulty 1.6 enables
us to treat also the limiting cases 6 = 0 and p = oo of
Theorems (1.4) and (1.5).

These can be stated as follows :

THEOREM 1.6. — Let

B = [T f [w-fw (iog —Y^Y '^r1' < „.i Jo Jo L \ 1 ^ — 2 / 1 7 J l^—yl^l
(5) For 6 ̂  1/jB it can be shown that f (x) is essentially constant.
(6) We are grateful here to D. Adams who made us aware that our methods

can also be used to obtain estimates such as (I. 12).
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where a > 1, 6 > 0 and ? == a/(a — 1). Then

Fexpc \f^-f^i exp Ca, Q | ^r\^jtel_p/2)"',te,2^
Jo 1 r>
'0

where
_(log2) l/e(ise) l^o

^.e-———^———

For 6 === 0 we have the following curious result:

THEOREM 1.7. — Let

r /*1 /»! ( / 1 \ l /S^a /7/y, --il/a

"-[n^-M10^) i^J —
then

f»pl L^/l/-M-r(l/2)1^2rj<i.. < 8.
Jo ^ ( \ ^ / )

If we change the sign of 6 we get a remarkable modulus
of continuity result.

THEOREM 1.8. — Let

fT'o Jo

r /n /»l ( / 9 \ Q+i/0) a .7/y. /7., -ii/a^[n^-^ra) i^]<
^) —n? / ) ! I log.—————r ^ ,————— < 00

x—u\ \ \x — u PJ

with 6 > 0, a > 1, [B == a/(a — 1), then f(^) is essentially
continuous in [0, 1] and for almost all Xy y

(1.13) \f^)-f{y}\ < c.,e

where

B

r^r-^TL "|a;-y|J

fa.O log2(p6)l/P

The conclusions of these last three theorems are probably
best possible. Indeed, Greenhall in [9] using potential theory
methods was able to show that this is the case when a == 2.

We shall see here that an estimate analogous to (1.13) can
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also be derived for a > 1 and general p , provided

rr^f^< oo n
Jo Lu^J u u

Using this latter estimate when a == 2, we obtain a new
path continuity result for Lg processes. The same ideas
should, of course, be fruitful in the study of general Lp pro-
cesses, but we shall leave this for further research.

Also, we should point out that estimates such as those given
by Theorems 1.2 and 1.5 have been obtained in [5] and [10]
without dimension restrictions.

Now, it would be very unreasonable if an inequality simi-
lar to 1.6 were not behind these higher dimensional results
as it is in the one dimensional case.

It should thus make a worthwhile research project to try
and extend the methods of the present paper and obtain such
highly refined estimates as those given by Theorems 1.6 and
1.7 for every dimension.

The main difficulty in this endeavour seems to be formula-
ting the appropriate generalization of 1.6. This difficulty con-
sists in making the right choice for /**.

As we shall see, 1.6 follows from a purely combinatorial
result concerning certain lattices of intervals. Now, the latter
result appears generalizable to higher dimensions, and a study
of this generalization might very well lead to the proper
definition of /**.

1. The combinatorial result. Preview.

We shall now give a brief outline of the path we will
pursue in presenting our results.

First of all, we show that 1.6 is an immediate consequence
of the following interesting inequality.

THEOREM 1.1. — Let ^(u) be a non-decreasing function
of \u\ in (— oo, + oo). Let 0 < S < 1 and set

(1.1) J<i,,s(f) = ff^ ̂  <S>{f(x) - f(y)) dx dy.

(7) See Theorem 5.2 below.
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Then, for each measurable f on [0, 1] we have

(1.2) J<M(D < J<1^(/1).
Next we derive (1.2) from the following discretized version

of it:

THEOREM 1.2. — Let ^(u) he a non-decreasing function of
\u\ in (— oo, J- °°) ana ^et 1 ^ M ^ n be integers. Then
for any reals

x^ ^ x^ ^ • • • ^ ^n

and any permutation (<TI, 03, . . . , C T J o/' (1, 2, . . . , yz) we
have:

(1.3) S <I>(^-^ S (^.-^.)-
li-./jOl li-./KM l J

Our next task is to eliminate the presence of <1> in (1.3).
This is done by showing that (1.3) is a simple consequence of a
purely combinatorial result. The latter can be stated as fol-
lows.

For given integers 1 ̂  M < n let Q^ denote the set
of intervals a = (i, /) (1 ^ i < ] < n) such that \i — ]\ ̂  M.
We introduce in ^ a lattice structure by saying that

a={i,j) < a-={i\n
if and only if

i' ^ i < j ^ /'.

I.e., if and only if a is contained in af in the usual sense.
Now, given a permutation <r == (cri, era, . • . ? ^n) °^

( l , 2 , . . . , n )

we set for each a == (i, /)
((<y,, Oj} if a, < .̂,

aa === ^ / \ .p
((^., CT,) if dj < CTi.

Furthermore let, for each 1 ̂  M ^ n, a^^ denote the image
of ^M under this map o.

This given, (1.3) is shown to be an easy consequence of the
following result.

THEOREM 1.3. — For each 1 ̂  M < n and each permuta-
tion (o^, erg, . . . , c r J , there exists a one-to one map
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TC : ^M •<—>- CT^M such that

(1.4) TTO > a Va e ^

Our final step in the proof of 1.6 is to show that a certain
very simple inductive procedure leads to a construction of
this map TT, for each M and each given cr.

It is worth noting at this point that in our first proof of
Theorem 1.3 we only deduced the existence of TT. This was
done by an application of what is commonly known in com-
binatorial theory as the « marriage theorem ». This approach
reduces Theorem 1.3 to proving a further combinatorial
lemma (Theorem 4.1 below).

In the summer of 1969 H. Taylor found an ingenious proof
of this lemma, (see [15]). Thereby a complete proof of 1.6
could finally be put together.

In this paper we show that Taylor's lemma is essentially
none other than the inequality (1.3) in the particular case that
<I>(u) is the step function

„ , Cl if \u\ ^ 1,
^-fo if H <i.

We thus obtain here a new and somewhat simpler proof
of this remarkable result proved by Taylor.
Our next and final task is to present some of the consequences
of 1.6. In doing this we are led to derive inequalities concer-
ning monotone functions f satisfying conditions such as

^r.p^) < co-
This will deliver us theorems such as those stated in the

introduction. In particular we shall derive Theorem 1.3,
which by the way antedated Taylor's work and was our
original motivation for proving 1.6.

We terminate the paper with some applications and com-
ments that might be useful for further research.

2. The reduction to a finite problem.

We start by proving that Theorem I.I follows from Theo-
rem 1.1.
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To this end, let Y and p satisfy the conditions (1.2),
and (1.3) and suppose further that T^) is convex. Since
we can assume without loss that Y is absolutely conti-
nuous, for all 0 < u < 1 and A > 0 we have

^^r^)^8'-
Setting

$(u) = T'(u)u,

this relation can be rewritten in the form

x¥(-^-\-^(-^\+ ^<S>(A-\r(u< S}W,^w W'Jo W^ ) pw u

Replacing A by \f{x) — f(y)\yU by \x — y\ and inte-
grating over the square [0, 1] X [0, 1] we get

'̂-n^^^)^^•^f^)"^^-
Thus, Fubini's theorem gives

^=f:Mt(Iy)^+r^-,,<.o(''>^)-^^•
Since each of the functions

w( u \ d)/IM I^^\pwr "{p^)
satisfies the hypotheses of Theorem 1.1 the inequality (1.2)
givesi^)>.rrv(f^-f'^^

Jo Jo \ P{1) /

+ r 1 s rr ofi^MrirMi^^j^w.
' J o iJJ^<8 Y P(8) ; 2/ip(8)

(8) For any statement €i we set /((fl) = 1 if €L is true and ^(CX) = 0 if
€L is false.
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Reversing our steps by means of another use of Fubini's
theorem we deduce

i^y) > 4-.p(r).
Thus Theorem 1.1 implies Theorem I.I as asserted.

Our next step is to derive Theorem 1.1 from Theorem 1.2.
Let then ^(u) be a non-decreasing function of \u\ in

(— oo, + oo). Suppose first that f [x] is constant on the
intervals

iw -^ p -1 ^ ^ - 1 2 9-lv ~L 2- ? ̂  v-1^ • • •^ •

In other words
2"

/>^) == S yw^Y
v=l

Note then that for any n ^ m we also have

f(x)= 'ty^Wx)
v==l

where
yw=2n f^f{x)dx.

It is easy to see that in this case
2"

f*W = S y^wO^)
v=l

where (<TI, ^2, . . ., a^n) is the permutation of (1, 2, . . ., 271)
which arranges ^"), y^\ . . ., ̂ ) in decreasing order.

This given, when — < 8 we have
2t

fL, <W^) - f{y)) dxdy= s W-yr)—}-^,
1»-.»1<8 li-JI<2"6 ^

fr ^ ( f * { x ) - f * { y ) ) d x d y
J J |a;—y|^8

== S ^(^ - ̂ )) - + ̂
11-71^2" 8 J ^

where e^ and ^ are correction terms which in absolute
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value do not exceed

2»+l<&(2max|/•(;r)l)^;.

Since this quantity tends to zero as n —> oo, Theorem 1.2
and a passage to the limit as n —^ oo yields

(2.1) J<M(D ^ J<M(/1)
for these special choices of f' {x).

Let us suppose now that f [x) is a bounded measurable
function on [0,1], say \f{x)\ ^ M, and let for each integer m

ux) = S i/r ww
v==l

where y^0 is the average of f in I^, i.e. :

^^"J;^/^)^.

From what we have shown we deduce that

(2.2) J<i>,s(/:) ^ J<i>,8(/.) V m = l , 2 , . . .

It is well known that

f^x)-^f{x) a.e. in [0,1]

and since l/m^)! ^ M Vw, the dominated convergence
theorem gives

limJ<D, §(/„.) = J^/*).
m->dc

At this moment, we need only have

(2.3) W->rW a.e. in [0,1],

for then, a passage to the limit in (2.2) and Fatou's lemma
yields (2.1) for all bounded measurable /*.

If f is not bounded, we can proceed as follows. For each
integer m ^ 1 we set

m if f{x) > m,
g^x) = f[x) if \f[x)\ ^ m,

— m if f{x) < — m.
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Now, it is easy to see that

\8^) - g.(y)\ ^ \f(x) - f{y}\ V^, y e [0, 1].

We thus have
<W^m) ^ J«M(f)-

Since each g^ is bounded, (2.1) yields

(2.4) J<^(g;) ^ J<M(/*) Vm.

Thus, again if we have

(2.5) g^}-^f*{x) a.e. in [0,1]

passing to the limit as m -> oo in (2.4), Fatou's lemma
yields (2.1) for all measurable f.

To complete our argument we need only verify (2.3) and (2.5).
Now, these two facts are immediate consequences of the

following:

LEMMA 2.1. — If {f^} and f are integrable in [0, 1] and

(2.6) ^Ll\fnW-f(x)\dx=0
n->oo ^v

then
f^x)-^f^x)

holds at all points of continuity of f *(rc).
This result must be known, but for lack of a specific refe-

rence we shall briefly indicate how it can be proved. To this
end observe first that from 2.6 it follows that

^mdt-^f;f*{t)dt
uniformly for x e [0, 1].

In fact (see remarks below) it can be shown that for any
two integrable functions f^{t) and f^(t) and for any x e [0, 1]
we have

(2.7) \f;fW dt - f;ft(t} dt ^ ̂  \f,{t) ~ /^)| dt.

This given, using the monotonicity of f^, for any

x, e [0, 1]
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and any A > 0 we get
4 /»a?o4-A \ f*XQ

- \ f^t) dt-e^ ?0) ^ — ( f*{t) dt + .,
A Jx, A Ja-o-A

where we may take

e,=^^\Ut)-f{t)\dt.

Passing to the limit as n -> oo we derive

1 r^f*{t)dt ^liminfy^o)
zx Ja-o "^00

^limsupf^o) ^^- r0 r^)^-
n^00 /x Ja-o-A

From these estimates the conclusion of the lemma is easily
established.

Remarks. — The inequality in (2.7) can be established in
the following manner. We first note that for any integrable f
we have

(2.8) f;f^{t) dt = inf j \x + f,1 (f{t) - X)-^j.

Setting for a moment

e/x^^+J;1^)-^)-^
we see that

\W- W\ ^f^fiW-f^dt.
Thus

linf W - inf W\ ^ s^ip |6^X) - 6^(X)|

^Jo'lA^-^)!^.
and (2.7) follows from (2.8).

The identity in (2.8) is easily verified if we observe that for
any X we have

(2.9) f,1 (f (<) - x)+ dt = ̂  {f *(() - x)+ dt,

and this in turn can be derived from the fact that f and /**
5
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have the same distribution. Actually, 2.9 can just as well
be derived directly from the definition of f* .

Indeed, since we shall need it later on, let us show here that

(2.10) ^^f^dt=f^{f^t))dt

holds for all 0(u) of the form
(s)(u)=f^PWd\

where p(X) is non negative and integrable in (— oo, 4- oo).
To this end, for convenience set

Y / X ) = m { ( : f(t) > X},
and note that

(2.11) f*{x) = inf { X : Y/W ^ x} = sup { X : y/W ^ x}.

A multiple application of Fubini's theorem then yields

f^{fW)dt

=/-7Jo1^ < f[t))dtpWd\
= /_7 PW^) d\ = f^ pW f^ ̂ ^) ^ x) dx d\

=/01/-7P(X)^ ^ f\x))d\dx
=f^{f^))dx.

The fact that f and /** have the same distribution can
now be derived from (2.10). Indeed, the dominated conver-
gence theorem yields immediately

m{x: f\x) > X} =^^ {rW - ̂ dx

=-|^fl^W-^+dx=m{x: fW > M.

3. Combinatorial arguments.

We show now that Theorem 1.3 implies Theorem 1.2.
Remembering the notation of Section 1 we see that if we set
for each a == (?', /')

<p(a) == <D(|^-~^.|)



MONOTONICITY OF CERTAIN FUNCTIONALS 83

then the inequality in (1.3) can be rewritten in the form

5 ̂  < S <p(<^),
ae^ ae^

or better
S <P(^) ^ S <P(^).

ae^ aeo^

Note then that, since 0(u) is monotone non-decreasing,
the condition

x^ ^ a?2 ^ ... > ̂

makes the function 9(0) monotone non-decreasing with
respect to the lattice ordering we introduced on Q^. More
explicitely, if a = (i, /), a' = (i', / / ) and

i' ^ i < j ^ /'
then

9(0) = 0(^ — ^) ^ <D(^. — Xj.) = 9(0').

This given, from Theorem 1.3 we get (using 1.4)

S ^(a) ^ 2 ^^ - S ^(^
ae3)n ae3)M a6<r3)n

which is our desired inequality. We are thus reduced to pro-
ving Theorem 1.3.

To help us visualize our steps we shall now recast the
whole setup in a geometric form.

We deal with finite subsets of the upper half plane

^ == {(^ y) '' V ^ 0}-
We introduce in ^ a partial ordering by saying that

{x,y) < (^',z/)
it and only if

x' — y' < x — y ^ x + y ^ x9 + y\

In other words (re, y} < {x\ y ' ) if and only if the triangle
with vertices

(x, y), {x - y, 0), {x + y, 0)

is contained in the triangle with vertices

(x\ y^ [x9 - y ' , 0), [x1 + y\ 0}
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Now, given n distinct reals

Ul, Ug, . . . , ̂

not necessarily in decreasing order, we represent in ^ the
couples

{^, u,} i , /== 1,2 , . . . , n {i ^ j )

by the points
/ \ /^i + u] l̂ i — ui\ \a[u,, Uj) == ———^ ^ J •

\ ^ 2 /
We also let

^M(^l, ^2? • • • ? ^)

for a given 1 ̂  M ^ n represent the subset of u consisting

1 2 3 5 6 8
Us U3 14 u, u^ u<

Fig. 1.

of the points a(u^ Uj) with \i — /[ < M. In other words

^M( l̂, U^ ..., U,)

( / \ u. 4- u; |u. — u,[ ., .. ., ,-.)= ̂ x,y):x= t ^ ^y= ' l ^ ^ 1 < |i-/| < Mj.

We then let ^M^I? ^25 • • • ? ̂  I36 none other than the set
S^(u^ u^ . . ., u^) where

U ,̂ U ,̂ . . ., U^

are obtained by rearranging u^, i^, . . . ,^ in increasing
order.
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In Figure 1 we have illustrated the situation in case n = 6,
M = 2 and

(u,,ua, ...,ue)=(5,3,2,8,l,6).

There, dots represent points of SQ and ^g, squares repre-
sent points of @2 and triangles points of ^3.

This given we prove the following result

THEOREM 3.1. — Given (î , Ug, ..., uj and 1 ^ M ^ n
we can construct a one-to-one map T : Qi^ —> 2^ such that

TO < a Va e ^M.

It is easy to see that Theorem 3.1 implies Theorem 1.3
when we take (ui, Ua, . . ., u^) = (o-i, c^, . . ., <^) and 7r==T~1.
A moment's reflection should also reveal that the greater
generality of Theorem 3.1 is only apparent. Indeed, the two
theorems are perfectly equivalent.

We now get on with the proof of Theorem 3.1. Note first
that since ^ == Q^ the result is entirely trivial when
M = = n .

We shall thus proceed by induction on n. We assume the
theorem true for a given M and n = N — 1 and prove
it for the same M and n == N.

Let then Ui, Ug, . . ., Uy be given and suppose that Uy == i4.
I.e. suppose that Uy is the /c-th largest of the u's. Let us
assume for simplicity that

(3.2) M + l ^ A ^ n - M .
By the induction hypothesis we can find a one-to-one map

T^ of SM^UI, u^ . . ., UN-i) onto ^M(^I? ^2? • • • ? ^N-1) which
is decreasing in the lattice ordering we have introduced in u.

To construct our desired map T of ^(^i? ^2? • • • ? ^ )
onto ^1(̂ 1, ^2, . . ., u^) we shall simply modify and extend
slightly this map T^.

To this end observe that ^1(̂ 19 u^ . . . , U N ) contains
^1(̂ 15 ^2? . . . ,^N-i) . Their difference is the set § consis-
ting of the points

a(uN, UN-i), a(uN, ^N-2), • . ., a(u,N, UN-M).
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The sets ^(ui, U g , . . . , ^ ) and Q^(u^ u^...,u^)
differ in a more substantial way. Indeed, Qw{ui, ^2, . . ., u^)
contains the set Q consisting of the 2M points

a(i4, u^.i), a(^, ^.2), • . ., Ct{u^ 14-u)
and

^(^, Z^+l), ^^, ^+2), • • .? »(^ ^+M)

none of which is in ^1(̂ 1? ^2? - • • ? ^N-1).
On the other hand, since the increasing rearrangement of

Ui, Ug, . . ., UN_I is
))c i|e ^i ^

Ul, Ug, . . ., ^fc-1? ^fc+1? uS^1, M/2, . . . ,

the set ^M(^I? ^2? . . . ,^N-1) contains the set S whose
points are

^(^-M, ^+1), a(^_M+i, ^+2), • • .? «(^-i, ^+M)
none of which is in 3>^{u^ Ug, . . ., Uy).

Fig. 2.
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If we keep in mind the definitions of S, Q, S and set

R == ^(^i, ^2, . . . , u^i) n Q^(u^ ̂  . . . , UN),

we can recapitulate all our findings in the following formulae

^M(^3, ̂ , . . ., U^) == ^M(UI, ̂ , . . ., UN-I.) + S

^M(^i, ̂ , . . ., UN-i) == R + S

^M(UI, U2, . . ., Uy) = R + Q

In figure 2 we have represented schematically these various
sets and maps.

We are now ready to describe our construction of the map T.
First of all we let T be equal to T^ for those points of

^1(̂ 1, 1^2, . . . , U N - i ) which are sent into R by T^. Next
we define T on S by finding for each element of S a « most
economical » image of it in Q. This will use up exactly half
of Q, say Qi. The other half of it, say Q2, will turn out
to be « below » S, i.e. we shall be able to construct a map
T2 of S into Q2 which is one-to-one and decreasing.

We then let T be T^ followed by ^^ on those points of
^M(UI, U2, . . ., UN-i) which are sent into S by T^.

Figure 3 should help understanding how this program can
be carried out. There we have represented things when M=5,
squares indicate the elements of S and circles the elements
of Q.

Our first task is to give a recipe for defining T on §.
Note that all the points of § lie on the 45° lines through
(u^, 0). Say Mi of them are on the right of (i4, 0) and Mg
are on the left. We match the least one on the right with
a(i4, i4+i), the next on the right with a(i4, ^+2), ...,

^ ^ / / X\\/^X \ \ \ \
"k-S u^ "k-3 "k-2 "k-l "k "k+i "k+2 ^3 "k+4 "k+5

Fig. 3.
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largest on the right with a{u^ u^). On the left we proceed
in the same way. The least element of S on the left is matched
with a(?4, z4_i), the next with a(i^, u^a), . . . , the largest
with a(i4 U^M,).

This defines T on §.
In figure 3 we have illustrated the case in which Mi == 3,

Mg = 2. With this choice of T on S, Qg consists of the M
points

(3.3) a(i4, u^M,+i), . . ., a(i4 u )̂,
a(i4 z4_M,-i), . . ., a(?4, U^_M).

We need now give a recipe for the map Tg. However, we
have no choice. We must let

(3.4) T2a(u;_M,-i, ?4+M,) = a{i4, u -̂i)
T2a(U^_M,-2, ^+M,-l) = 0(^, U^_M,-2),

and
^2^(^-M, ^+1) = a(u^, U^M).

^2^(^-M., ?4+M,-n) ^ ^(?4, ^+M,+l)

T20(^_M,+i, U^4.M,+2) ̂  ^(^? ^+M,+2)?

Tg^U^i, U^+M) == ^(^, U^+M).

A look at Figure 3 should perhaps be more illuminating
than the above formulas as to what we are doing here.

To complete our proof we need only say what must be
done in case one or both the inequalities in (3.2) are not
satisfied.

To this end we need only observe that in view of the defi-
nition of Mi and Mg we must necessarily have

1 '̂ k — Mg < k + Mi ^ n.

This is because there must be at least Mg points (u?, 0) to
the left of (u^, 0) and Mi to the right.

This means that the definition of T on S given above
makes sense in any case.

In general S and Q may not have M and 2M points
respectively as they do when the inequalities in 3.2 hold true.
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However, to each point lost by S there corresponds, under
the map Tg defined in 3.4, a point lost by Qg.

So again we can use (3.4) to define Tg as a map between
what remains of S and what remains of Qg. Indeed, we
can use the formulas in (3.4) whenever both sides make
sense.

4. Taylor's lemma, comments.

Let us take a look at Theorem 1.3 from this geometric
view point. We can visualize the sets Qf^ defined in Section 1
as subsets of the upper half plane or better subsets of the set

Qn= \{x,y):X=^-+-J-, y=l———i^ ^ i < j ^ J

( J

Clearly we can construct 3^ by drawing on the upper
half plane the 45° lines through the points (i, 0) i == 1, 2, . . ., n
then obtain the points of Q^ as the intersection of these
lines.

For each M ^ 1 Qf^ consists of those points of Q^ that
are at a distance of no more than M/2 from the x-axis.

For a given a = ( l ' ^ i ' n ) e Q^ we set
\ 2 1 J

R^ == {a' e Q^: a' > a}

Clearly R<, is the « rectangle » with one vertex at a and the
T n . (n + 1 n — 1\diagonally opposite vertex at ( —-—, —-— ).

\ 2 2 /
Given a permutation CT == ((TI, GZ, . . ., orj the mapping

of Q^ into itself associated to CT in Section 1 can be written
in the form

( a, + (y/ \Gi — °'»1 \ c / • -\oa = ——^—^ ' l ^ J l ) tor a = a(i, /).

To produce the map TC of Theorem 1.3 we need only choose
for each a e Q^ a point TCO in the set

(4.1) F,=R,n<r^M.
Of course we want also

TTOi =^ wag when Oi + Og.
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But this is precisely a set up to which Phillip Hall's theorem
on the selection of distinct representatives applies.

For the benefit of the reader who may not be acquainted
with this theorem we shall state it in the specific form needed
here.

Let X be a finite set of points. Let ^ == {F^ : a e 1}
be an indexed family of subsets of X (the F^s need not be
distinct). We say that we have a « system of distinct represen-
tatives for ^ in X » if and only it we have a one-to-one
map TC of I into X such that

TTO e F,, Va el.

P. Hall's theorem, sometimes referred to as the « marriage
theorem », can be stated as follows :

« Given X and ^ = {F^ : a e 1} it is possible to select
a system of distinct representatives for ^ in X if and only
if for any k-tuple a^, a^ . . ., a^ e I we have :

|F,uF»,u . . .uFJ > k{9)
Clearly this condition is necessary for the existence of the

map TT. Indeed, the set

F^uF^u ... uF^
must at least contain the points

TTOi, 71^2, . . . , TTOfc.

As for the sufficiency, a very lucid proof may be found
in [14].

Using P. Hall's theorem with X == a^^ I = ^M and F<,
given by (4.1) we immediately derive that Theorem 1.3 is
equivalent to the following result:

THEOREM 4.1. — Given any integers 1 < M < n, any
permutation a = (<TI, erg, . . ., crj of (1, 2, . . ., n) and any
rectangles R^, Ra,, . . ., R<^ we have

(4.2) | (R^ u R,, u ... u RJ n o^l
^ [(R^uR^u ... uRJn^Ml.

(9) If S is a set by |S| we mean the number of elements of S.
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Thus we see that another way of establishing Theorem 1.2
is to prove this result first then obtain Theorem 1.3 by means
of the P. Hall theorem.

This is essentially the path followed in the first proof of
Theorem I.I.

In fact, for a while, the inequality (4.2) remained the mis-
sing link in our work until H. Taylor found a proof of it.

Theorem 4.1 is what we referred to in Section 1 as « Taylor's
lemma ».

We can make a few further remarks concerning the ine-
quality (4.2). At first sight it may seem rather fortuitus that
we are able to prove Theorem 1.2 by proving Theorem 1.3.
For, there could be other ways for the inequality

(4.3) S ^ - ̂ ) ^ S ^a, - ̂ ,)
li-y'KM li-./l^M J

to be true without necessarily having to pair off each term in
the left sum with a bigger term in the right sum.

We shall show here that actually this is the only way
Theorem 1.2 can be proved.

To this end note that given any reals

x-^ < x^ ' • • < x^
the function

(D(^-.r,) - xd^-^,1 ^ 1)

takes the value one precisely on a subset

R^uR^u ... uR^.

Thus for such a choice of 0 the inequality (4.3) reduces to
(4.2). This given, to show that Theorem 1.2 implies Theorem
1.3 we need only establish the following:

THEOREM 4.2. — Given any Oi, 03, ...,^ in Qf^ we
can find reals x^ x^ . . ., x^ such that

(4.6) R^Ra.^ • • • uR^={a{i,j): \x,-x,\ > 1}.

Proof. — Let
r , ( ^ ft ^ /«y + PV 1°^ —— Pv| \a^ = a(o^, (^) == ( ——_——, J——-——L l.

\ L L ]
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By throwing away a few unnecessary a^s we can assume
that

04 < OC2 < . . . < ^

Pi < P2 < • • • < P/c

and, of course, we have
a, < (3,.

Let us set
ao == 0, P^i == n + 1,

and
L __ ,,/.., j A Q 4 \ __ /^ "I" Pt+1 Pt+1 —— ^ —— 2\^ _ a(a^ -f- 1, p î — 1) — I ——.——, ————.———— ),

\ ^ 2 /
for i = 0, 1, ..., A*.

For convenience set, when a == a(i, /)

9(0) = x(l^ — ^-l ^ 1).

In figure 4 we have represented the case n = 14, k == 4

(ai, aa, 03, 04) == (1, 2, 6, 8)
(Pi, P2, Pa, ^4) = (3, 5, 9, 12).

The points of the rectangle R ^ u R ^ u • • • u R^ are repre-
sented by dots, the as by circles and the Vs by squares.

A look at this figure should make it clear that 4.6 will hold
as soon as we choose x^ x^ ..., x^ in such a way that

(4.7) <p(ay) = 1 for v = l , 2 , . . . , / c
and

(4.8) <p{b,)=0 for v = = 0 , l , . . . , / c
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Let us set

1̂ ^ 0, 2̂ — 1̂ == 6i, 3̂ — 2̂ = 62, . . . . ^ — ^n-1 = 6,-i,

and endeavour to satisfy (4.7) and (4.8) with

6l, 62, . . ., Qn-l

all positive.
The first condition gives

(4.9) 6 i+62+ • • • +6^-2 < 1.

Note that (3i ^ ai + 1 ̂  2. If ^ = 2 (4.9) is trivially
satisfied. If Pi > 3 then we choose 61,62? • • • 9 6 0 2 all
equal and such that

^4.10) 6 i + 6 2 + ... +6^.2=1/2

The next condition will be satisfied if

^4.11) e^+6,^+ ... +6^.1-1.

Note that the term 6 p _ i does not appear in (4.10), thus we
can choose it so that (4.11) is satisfied.

Next we need

^4.12) e,^+6^2+ • • • +6^.1 < 1.

Here, since 6^ is missing and was contributing to (4.11),
the sum of the terms already defined is less than one. So we
have no difficulty in choosing the remaining terms (if any) all
positive and such that (4.12) holds true.

The reader should convince himself that this process can
be continued until all remaining Q'^s have been chosen.

This completes the proof of Theorem 4.2. Thus we can
conclude that Theorems 1.2, 1.3 and 4.1 are all equivalent.

5. Inequalities for f*(x) and applications.

We shall start by proving Theorem 1.3. To this end let Y,
p satisfy 1.2, 1.3 with Y(^) convex and set for convenience

FFy(7(»)-/-(')\,fa,^B.
J, Jo \ P(» - t) /
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Let for each 0 < x < y ^ 1/2

A(^ y) = {(^ t ) ^ y ^ s ^ x - { - y , s — y ^ t ^ x}

Since both this set and its reflection across the line ^ == (
are contained in [0, 1] X [0, I], using 1.6 we get

(5.1) ff Y (f^^f^\ ds dt ^ 1/2 B.
JJA(^) \ P{s — () /

Note that in A (a;, y) we have

f*W-f^) ̂ f^)-f*(y),
s — t ^ y.

Substituting in (5.1) we obtain

^(r^-rw\^i2.2 \ p{y) )
Thus, it Y-1 denotes the function inverse of T we must
have

(5.2) f^)-f*(y) ^-l(JI)p(y)v^ /
for all 0 < x < y ^ 1/2.

We now construct an auxiliary sequence {x^} in [0, 1] by
setting XQ = 1/2 and

(5.3) x^ = p-i (p^} VM ^ 0.
\ 2 /

Let 0 < x < 1/2 be given and let N be such that

(5.4) x^+^ < x ^ ^N+1.

We have

f*{x) - r(i/2) - f*{x} - f^i + s r^v) - r(^-i).
v=l

Using the inequality (5.2) for each of these terms we get
(5.5)

f-w -r(i/2) < '¥-l(J-}pw + s y-1^)?^,)
\ x / v=i \ X^ /

Formula (5.3) gives [with (5.4)]

p{xy) = 2p{xy^) = 4p(^+2) < 4p(a;),
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and

^(^W-l) = ̂ (l̂ )4 )̂ - P(^l))\X^ / \ X,, / ''x':/'̂ )^-
Combining with (5.5)

f^x) - r(l/2) < W-1 (^P^ + 4 P Y-i(^\dp(u),
\^ / ^^N+1 \u /

and this clearly implies the top part of 1.9. To obtain the
bottom part we just observe that

(-/r =-r(i-^).
We now show that Theorem 1.3 implies Theorem 1.2 at

least when Y^) is convex.
To this end let

/n/2 / R \
f Y-^0)^) < w.

Jo \u /
We then have

^•(^^r^)^"'"0
as .r —^ 0. Thus from 1.9 we easily deduce

^1/2 / R \(5.6) r^) - r(i-) < 8 f Y-i^Wu).
Jo V^ /

The inequality (1.8) will be derived by a trick which here and
in the following will be referred to as the change of scale argu-
ment.

For given 0 <: x < y ^ 1 we set

A5) = f {x +5A) A = y — xf

An easy calculation then shows that

B=r rw^)-^w
Jo Jo \p (A(s - ())/^rr^^T)^-^
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Thus using 5.6. with f replaced by f, B by B and 0(1*)
by p(Au) we obtain

^W - ̂ (1-) ^ 8f^ Y- (̂ ) dp (Au)
/»A/2 / R \

l̂ (̂l̂ )»/ 0 \ — /
from which we deduce

^^^^-Te8.1"^^ ^ ^'"'^-^B/U^^u).

This yields

1 /^a;+/l/. / v 1 /ly /^-yl^
TJ, f(t) ~hj ./(<) ̂  ^ 8J Y-^B/u2) rfp(u)

for all 0 < h < \x — z/|/2.
Letting h -> 0, 1.8 immediately follows whenever .r and u

are Lebesgue points of /*.
We now prove a basic inequality from which Theorems 1.4

to 1.8 can be derived.
This can be stated as follows

LEMMA 5.1. — Let Y and p satisfy 1.2, 1.3 with Y(^)
convex. Let Q{s) be monotone increasing and such that

0 ^ Q{s) ^ s

for all 0 ^ s ^ 1 thenĵ;.(™^,^^,
Proof. — Since the region

R = {(s, () : 0 < s < 1, 0 < ( < Q{s)}

and its reflection across the line s = ( are both in
[0, 1] X [0, 1] 1.6 yields

(5-8' ^F '̂)--^)-
However, in R we have

/"^)-r(s) >r(e^))-r^)
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and
p{s — t) ^ p(s).

Substituting in (5.8), (5.7) immediately follows.
The inequality 5.7 in the case Y(u) === Ju j 0 1 (a > 1) can be

used to derive much sharper estimates for f*{x) than those
given by Theorem 1.3.

We can state them as follows

THEOREM 5.1. -— Let p satisfy 1.3 and

,.^ r r 1 ̂ in^/W^-i^
(s(5.9) rfY^IW-A*r=B<a,.

v Uo Jo P{s — () -1

Then, setting P ==—"—p for all 0 < 8 < 1/2 we have
oc — i-

(5.10)
/•*(8)-r(i/2) ) ^_K_[ r1 rp^-ĵ -î
/•*(1/2) -/•*(!- 8)^ log 2 [Js Ls^J sJ

Proo/'. — We choose Q[s) == s/2 in ^5.7) and get

^rr(^)-r^)r^^B».
Jo L p(s) J

Since f *[s) is non-increasing we have

[?(§) - r(i/2)] log 2 < f6/-^)^- fr^
J8/2 ^ Jl/2 0

^ 1 / 2 ^ , .ds r 1 f*, \ds
= f ^ —- /^ ^)—

J8/2 5 J8 ^- r[f^w-f^)]^
J8 s

But now we write

r^^-^^^-ri^v^]'''-^?-
Thus a use of Holder's inequality gives

[^(8) - r(l/2)] log 2^"-^F^wnr
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This clearly implies the top part of (5.10). The bottom part
again follows because ( — / ' ) * == — f*(i — x).

Theorems 1.6 and 1.7 are all immediate consequences of the
inequalities in ^5.10).

We need not do all this in detail here but we shall be con-
tented with deriving the special case 6 = = = 1/2, a == 2 of
Theorem 1.6. Namely the fact that the condition

prTtoL^orAA^BxooJo Jo L s— t J
implies

(log2)^r/(.c)-/*(l/2)^
(5.11) f^e 2 L B } dx ^2^2

In this case we have p(u) == u, so (5.10) gives

n.)-ni/2) [̂i,̂ ]".
Thus

dog 2)8 r/*(.g)-/*(i/2)-]a ^
e 2 L B j ^ e112 los l/x = ——.

\/x
Integrating over (0, 1/2)

^/2 (10§w f/*(.P)-/*(l/2)^
J, ^ 2 L B J ̂  ^ y/2.

The bottom part of (5.10) yields the same bound for the inte-
gral over (1/2, 1). This proves (5.11).

Theorems 1.4 and 1.8 are immediate consequences of the
following general result

THEOREM 5.2. — Let

'5-12' ^m^M"--.
where a > 1 and p in addition satisfies

^rpW^du
I \^J~\ — < °°Jo Li^J u

with (3 = ——. Then f (x) is essentially continuous and for
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almost all x, y in [0, 1] we ha^e

2B r r^~^ rv(u\^du'~\1^
(5.13) \fW-fW\^[f, [^J^]

Proof. — This follows from (5.10) by the change of scale
argument. We set as before for 0 ^ x < y ^ 1

/ ? (S)==/^+5A) ^ ^ y - x

and obtain from (5.12)

r r^w-fwrdsdt^,
Jo Jo lp(A(5 - t))J A2

From (5.10) we get

f^-ni-x 2B rrr^^f^'r^n^ ^ n1 ̂  ^2/0 ̂ g 2 LJo L ^2/a J s J
making the substitution u = A^ (5.13) immediately follows.

Our final task is proving Theorem 1.5.
We start by assuming that

[n'F^M'--8-'
with ,^_i.
and set

^/(A-,).

From (5.10) with P^ = s-1'" we gets
R r- /»1/2 ./« -il/3/•w-r(i/2)<,-i,[^ .-,̂ ]

or better

i5.i4) rw-ni/iXi^f)"^,
The assertion that f is in weak Lp easily follows from this
inequality.

To obtain the stronger inequality (1.12) we go back to (5.7)
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and set 6(5) == y5, where y > 0 is to be determined. This
gives

(5.15) r'^f^-f^))^]^^^.
Jo s 2y

To simplify our calculations assume for a moment that
/•*(1/2) == 0. We then have f * ( s ) ^ 0 for 0 < s ^ 1/2
thus setting 8, == y»/2 {n= 0, 1, . ..) and using the inequa-
lity

A« ^ B" + aA^A - B) (A ^ B > 0)
for

A=/"»(Y^, B^/-^)-/-1^)
we obtain

(5-i6) f6" [^(Y.)]^^ < r8" y^^) _ /•*(,)]« ,,/.̂
^n-n 5 JS^ 5

+a r" y^T^)]01-1/1*^)^^.
. ^Sn+i 5

Now, since V u, v, \ ^ 0
__ A

OK.W ^ ————u? + X^
A

we get

a f8" [f^^f^s^ ̂ a-^1 f8" y*(,)j«,«/^.J^. s ^ .A,,,, s
Substituting in (5.16), a change of variables gives

^-^x '̂-'̂
< f0" [r(^) - rw^ + x r6" [/•*(,)]^/P^

•^Sn+l 5 JSn*. S

We now choose X, y so that

--L/1 ^-i\ 4
'"Xy'/^1 ~^~)>±

and set
e- = f8" [f^s)]^'^.

0'Sn+4 s
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We have then

pe^ <4,T[nT5) ̂  ̂ ^a5a/p?+9-
Summing for n = 0, 1, . . . , N and using (5.15)

p[6i + V+ • • • + ̂ ] ^ (6o+ 61 + . . . +6N)+^^•

Note now that from (5.14) we have
/^1/2 Jo / B ^ / D N^P 1..̂  y.(.)^(^^) ,̂ 1.

Thus

( D \a / „ \a/8 ^ Ra
(p-D(e,+8,+...+e.), ^)(^-) i.̂ +^

Passing to the limit as N -> oo we see that there is a cons-
tant c(a, p) such that

r^r^T^ B^a,?).
Jo 5

In case /'*(1/2) 7^ 0 working with f (s) replaced by
f^s) — /**(1/2) we obtain

F2 [(r^) - f^l^))^]'^ ^ Bac^ P)-Jo 0

Of course, we must also have

f112 [(^(1 _ ,) - f^i^'P]^ ^ B^a, p).
Jo 0

Combining these last two inequalities with Minkowski's
(1.12) is readily obtained.

Remark 5.1. — It is good to point out that the inequality
(5.13) is always at least as good as the one we can derive from
1.8, and in some cases it is definitely netter.

From Theorem 1.2 we get that when Y(u) = [u^ a suffi-
cient condition for f to be continuous is

(5.17) »M - f81^ < ",
J o "
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while from Theorem 5.2 we get the condition

(5.18) ^)=^^^__.

Now it is easy to see that in the case p(u) == —u , a == 2
log Ifu

(5.17) fails to be satisfied while (5.18) holds true. Thus when
Y(w) == \u\9- Theorem (5.2) predicts continuity in cases when
Theorem 1.2 does not. This fact was first discovered by
C. Greenhall [9] who determined in the case a == 2 the best
possible estimates.

We do not know if a similar situation holds when T(u) == e^
or Y(u) == e|°l. If this were to be the case then some of the
results obtained in [7] and [8] could be sharpened and the
latter appears to be doubtful.

For a function f satisfying the inequality

fTp'-^in.^B.
Jo Jo L p(s — t) J

our two methods of estimating f * give the modulus of con-
tinuity estimates

\fW-f{y)\ ^^(^=-yY\
\ -" /

\fW-f{y}\ ^i^^(l^-yl).
0

That the latter is qualitatively always as good as the former
when (5.17) holds follows from the simple inequality

^(8) < (a/2)Pcp(8) 0 < 8 < 1.

which was pointed out to us by D. Adams.

6. Applications to path smoothness of Lp-processes.

As we have mentioned earlier the results of this paper yield
some new information about the path behaviour of Gaussian
and non-Gaussian processes.

We shall not pursue this matter to the full here since it
would lead us too far out of the present context. We just note
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that Theorem 1.8 and Theorem 5.2 yield interesting improve-
ments upon existing conditions for path smoothness of Lp-
processes.

To this end let {5^} be a process on [0, 1].
In [7] we have proved the following result:

THEOREM 6.1. — Suppose that
^ /l! /I v — V. I2/»! /»! / .y «,, 2\

(6.1) ( 1 E(^——^ ) d s d t < oo,1 Jo Jo \P{s- t) )

where p{u) satisfies 1.3 and

(6.2) f
Jo
•w

-u.
du < oo

t/ien {/J has a model {%J wit/i a.s. continuous paths.
Indeed^ for {^J we can produce a random variable B(co)
with finite expectation such that Vs, t e [0, 1]

IL-X.I < v^co) r'^du.
Jo u

A. corollary of the above result is that if {%J satisfies the
condition

(6.3) E(|x. - X.D <; c 1 ' '~ '1 -i

["'̂ l

then, if ^ > 3, {/J has a model with a.s. continuous paths.
Indeed, it is easy to see that if we set

u(6.4) p(u) =
fiog-A-1L u|J"rTU\ J

then (6.1) is satisfied as soon as

(6.5) T < ̂ Ll

while (6.2) requires
Y > 1.

Clearly such a y can be found when X > 3.
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Using Theorem 5.2 and following step by step the argu-
ments given in [7] we can improve Theorem 6,1 as follows :

THEOREM 6.2. — Suppose 6.1 holds and

(6.6) C[PW^<^-
Jo u

Then {%<} has a model {^} with a.s. continuous paths.
Indeed^ for {%(} we can produce a random variable B(<o)
with finite expectation such that V^, ( e [0, 1] we have

———— r- ^\s-t\ rlis~\^^

1 % , - X < 1 < V^)^ [PW^] •

Again, if (6.3) holds and choose p(u) as in (6.4) then (6.6)
requires

Y > 1/2.
Combining with 6.5, we see that as soon as X > 2 we can find
Y so that both 6.1 and 6.6 are satified. We thus obtain as a
corollary:

THEOREM 6.3. — Suppose that

E(|x, - X.12) < c I"-/1 -, X > 2.

[10^]

Then {/(} has a model with a.s. continuous paths.
To put this result in historical perspective, we point out

that, quite independently from our work P. Bernard [1]
showed that if

(6.7) E(|x, - ̂ a) ^ c }s^ (a > 1)

r8!^
then, if X > a + i? {x j has a model with a.s. continuous
paths.

Thus we see that, at least when a == 2, Bernard's result
is a consequence of what we obtained in [7] and thus it is
superseeded by our work here.
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In [3] R. M. Dudley shows that the condition (6.7) with
X === — 1 is not sufficient to guarantee path continuity
and wonders where the best possible exponent X lies between
- 1 and a + 1.

Our Theorem 1.8 indicates that

X > a

is sufficient to guarantee path continuity and we strongly
suspect that this is best possible.

Indeed, setting

T.̂  rr1 r'r i.n 2 r04-^ dsdi -î .B(B) == U. f. b- - ̂  [log î J î r-1 '^m'
and using (6.7) we easily get

E(Ba(<o)) ^ 2c^l/2[log-^]ao+a-l+A^.

Thus B01 will have a finite expectation as soon as

a9 + a < X
or better, as soon as

o < e < ̂ a.

Theorem 1.8 then yields an estimate of the form

i i ^ B(<o)
I X t — X j < ^,0-————a——-,0[10^]

for almost all s, t e [0, 1].
For our argument to be complete, we should go on to exhibit

a model {%J with continuous paths whenever X > a.
We are not doing this here, but we do not expect this fur-

ther task to present serious difficulties.
In Dudley's paper we see that the condition X > a was

shown by Delporte [2] to be sufficient to guarantee path
continuity for processes with a 2-dimensional time parameter.

However, we do not expect (see [5]) that the dimension is



106 A. M. GARSIA AND RODEMICH

a factor as far as X is concerned. From our experience in this
subject, we conjecture that the weakest condition of type
(6.7) tor d-dimensional time processes is

Edx,-/^) < c 1"-^ , X > a.

r8!^
In this connection we wish to point out for the record that

the theorem of Marcus and Shepp [13] quoted by Dudley
in Section 7.2 of [3] was conjectured by us in [7].

We close this section by pointing out that using our results
here we can show that, even when X ^ a a process {^}
satisfying 6.7 has paths with a considerable degree of smooth-
ness.

In fact, some interesting conclusions can be derived using
Theorems 1.6, 1.7.

As a matter of fact, a simple use of our fundamental ine-
quality 1.6 shows that a process {^J which satisfies 6.7
with

X > 0,

has paths which a.s. satisfy the intermediate value property.
To see how this comes about, note that a non-increasing

function f*{s) which satisfies
/»i /»i / f * ( v \ — f*(f}\I I y f 7 —^—LW^^^ < oo

Jo Jo \ P{s - t) ]

cannot have any jump in (0, 1) when

(6.8) F T (-1-} (T da == oo Vs > 0.
Jo VP^)/

When <t>(u) == \u\9' and
(,J2/a

(6.9) p{u) = —IUL—
^T

MlulJ
this condition reduces to

^n z-i^dCTX'KI \r\r» ___ | ...._ .—- QQ

CT J ^
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or better
Y > — I/a

Now we observe that when {%J satisfies (6.7) we have

(6.10) E/ F F x; "" xf "ds dt\ < oo
v / Uo Jo P{s -t) )

as soon as
p g da

J. [log^fO ' co-
<y do

C

When p(u) is given by (6.9) this reduces to

^n 2-^x+aTrfa<o r^J -
or better

< or
€S J CT

x - 1
T < a

Thus we immediately conclude that when

\ i x — i— I/a < ————,
a

there is a p{u) such that both 6.8 (with Y(u) == jul^ and
(6.10) are satisfied.

This implies in particular that for a process {^} satis-
fying (6.7) with X > 0 the paths have a.s. monotone rearran-
gements /^ with no jumps in (0, 1).

To obtain the full result announced earlier we need only
apply the change of scale argument introduced in Section 5.

Thus we can state

THEOREM 6.4. — If

Ed^-x^Xc 10 -'
Hog—"—IL " | «—<|J

with X > 0. Then with probability one a path %( takes in any
subinterval of (0, i) every value between its ess sup and its ess
inf.
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7. Conditions implying constancy.
Uniform convergence results for Fourier series

and further remarks.

For certain choices of Y and p the only f ' s satisfying

<7-1' '-'̂ n^ )̂̂ 00

are essentially the constants.
When this happens let us, for convenience, say that our

condition (7.1) « implies constancy ».
From Theorem (5.2) we see that

TO flflt^al\^=
Jo Jo \x — y\ |

B01 < oo

gives (when 6 > 2/a)

(7.3) \{W - {W < î _ .̂,̂  - »1'-"-.

This implies constancy as soon as 6 > 1 + 2/a.
However, it is well known and easy to show using elementary

Fourier analysis that (7.2) with a === 2 implies constancy
as soon as 6 ^ 3/2.

For some reasons we do not fully understand (7.3) (when
a == 2) is best possible when 1 < 6 < 3/2 and it is just
jibberish when 6 ^ 3/2.

Nevertheless, if we modify our estimating procedure, our
methods can be used to derive constancy conditions which agree
with all the previously known ones.

Indeed, we can show that (7.2) when a ^ 1 implies
constancy as soon as

(7.4) 6 ^ 1 + I/a.

The basic estimate from which this result can be derived
can be stated as follows :

THEOREM 7.1. — Let Y, p satisfy 1.2, 1.3 and suppose
that Y is convex. Let

AO == sup \\ > 0: f Yfx-^-^CT < oo ̂
( Jo \ PW }
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Then if f*{x) is non-increasing in [0, 1] and

r1 r\(r^-fy\d.dy<o.Jo Jo \ P^ - y ) /
we haw

(7.5) /••W - r(i-) ^o.
Proof. — Let 0 < 8 < 1 and

Rg = {(s, (): 0 < f < 1 — 8; 0 < s — ( < 8}

Making the substitution s == CT + ( we get

ffT^-^")^,
JJB, \ P{S —t) I

= r1-5 r^(rw-r^^ rft
Jo Jo \ P(<T) /

Using the convexity of T we derive

/*8 / 1 /*1-8 f'f^ — f*it + d) ,\ ,(7-6) r ^(1—? i '—'—/ v /^)^' Jo \ l -8Jo P^) /

^r^s111^^-
Since f*{t) is non-increasing and cr < 8

f1"6 [r(<) - r(< + ̂ )] ̂  = J;n<) ̂  - ̂ ^'(^ ̂> [r(s) - r(i - ̂
Substituting in (7.6)r^v^^r^-'-

In view of the definition of ?^o we must have
^(8) _/•*(!-8) < ( l -S)Xo.

Passing to the limit as 8 -^0 (7.5) follows.
We thus obtain the following interesting

COROLLARY 7.1. — If p satisfies 1.3 and

(7.7) r -^da= 0)
Jo P(^)|
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then the condition

r r w - ̂ )r,wy <
Jo Jo p{^ — y) | ' 00

for a ^ 1 implies constancy.

Proof. — Clearly (7.7) implies Xo == 0 in this case. Thus
Theorems I.I and 7.1 combined give

ess sup f — ess inf f=f *(0+) — f *(1~) == 0 Q.E.D.

It is to be noted that Theorem f7.1) can also be used to
derive some continuity results. For instance Theorem (7.1)
has the following curious

COROLLARY 7.2. — A measurable function on [0, 1] is
essentially Lipschitzian if and only if there is a B > 0 such
that

(7.8) fY,xpil^)-^)llog^^<oo.
Jo Jo ( B|a; — y\ ° \x — y\ ^ y

Proof. — The necessity of (7.8) is trivial. For the sufficiency
we resort to the change of scale argument and set for

0 < x < y ^ 1
f(S)^f{x+^5) A==y - ^ .

We then have

•»i

/o </o

provided p(u) = p(Au).

-v /v [fw-m ̂  jf
t ^ Ws-t) as atrr.^-o^^^rr.B^^.

Jo Jo J, J, A2

Whenp(u) =—iul using Theorem 7.1 we get
log

u|

</-»(0+) -f-(i-) < sup j x : ^^B-i,10 ,̂̂  ^ ^j
A-

/«! r 1 -jBA<8UP ^Xld rf(T < oo ( == BA.
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This immediately gives

\f{x)-f{y}\ ^B\x-y\

for almost all x, y e [0, 1]. Q.E.D.
Our methods can be used to derive information about

the behaviour of partial sums of classical Fourier series. This
stems from the following observations.

Note first that if f (x) is measurable on (— oo, + oo)
and periodic of period 2n then setting

•7C /»7: y/^/»7C /»7: y/X

^==f_f l^^+s)-^a;)la^[^y]-«'
^^rrf^-f^\dxdy

J-tr.J-2r. P { x — y ) ]

I \ f / i ^\ ^f..\\a.J^ wo

T^

we have

(7.9) A' < B' < 2A« +-^—6n\\f^

Provided of course p(u) = p{— u) ^ 0 as j u j ^ O in
[— 4TC, 4w].

This given using M. Riesz's theorem we immediately derive

[f-
'TC

—W k(^+8,/•)-^/>)la<^^
< c.[f^\f^+S)-f{x)\cldx]llct

where we have set as customary

^,f)= 1 ^•w c^-re-^fW^, c^^re-^fWdt.
^TrJ-TCV=-n ^7r J-TC

Combining with (7.9) we deduce that

p Fr^n-^J)r^^^2^+^6xii^i«Jc;.
J-2^J-2^L p(x—y) J ( (?(")) )-2TC «/ —21;

Applying Theorem 5.2 we get

\Sn(x,f) — s^y,f)\
^ ^2Aa +< FSA- i 2tt"1 wrf" ca \ f'^Tp^f^T^.^ L + (p(Tc))a 6 1 1 / l l aJ iog2LJo Lu^J uj

Thus we can state
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THEOREM 7.2. — If f is periodic of period 2n and

pK r*v. /7^

(7.10) Aa=J_J_J/'(a;+8)-/>(a;)lad;r[p^]a< 00

with p(u) satisfying 1.3 and

(,«, f;[^<. (^^)
(Aen fAe partial sums {s,t(x, f)} of the Fourier series of f con-
verge uniformly. Indeed they are equicontinuous and there is a
constant c depending only on A, \\f\\a. and a such that
Vx, y :

, , ... , ,,, r r^-^rpiu^du-}'1^
k(^/)-^/J)l ̂ |̂  Lu^J^I •

It is interesting to note that when 1 < a ^ 2 (7.10)
with (7.11) can be shown by classical methods to imply the
absolute convergence of the Fourier series of /*. However,
when a > 2 this is not the case. Indeed, it is not difficult
to verify that

f{x}=i±ie^
n^O n

satisfies the condition (7.10) with any a > 2, for almost
all changes of sign.

For sure it must be possible to put together a classical
Fourier analytical proof of the full result in Theorem 7.2.
That is a proof that doesn't use our basic inequality (1.6).

However, so far we have been unable to find one.
The details we have omitted in this section along with some

other material on Fourier Series will be the subject of a forth-
coming publication by the first named author.

Before closing we would like to make a few additional
remarks.

In [5] we have considered the functionals

B^(/-) =sup r rY(^—pi)^^i j i j i \ P[\I\) /
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where Y and p satisfy (1.2), (1.3) and T is convex.
Here I is a subinterval of [0, 1] and 11| denotes its length.

Now, the following theorem holds :

THEOREM 7.3. — Under the above hypotheses if f*{x)
is non-increasing in [0, 1] and

(7.12) Bxy^r) ^ B < a)

then for 0 < x ^ 1/2

1 ^x \(7.13) ^ - r f * { t ) d t - f * w )
x Jo
/•*(i/2)-1 F r^

'z' </l—a;

< 4^1/2 T-^ (1-) Jp(u) + 4T-i (1-) p(^).

-«- / / *ak / . \ 7. f*/A /Q\

Proof. — Setting, as we did at the beginning of Section 5,
a^ = 1/2 and

(7.14) ^=p-x(A)^

from (7.12) we get

i r" r-Y/nrEL^rw ^^i zr / /* (^ ) - / ' * (y ) \^ B
aW,+iJo Jo \ P^") / ^A+i^n^n+lJo ^0 \ P^") 7

Using the convexity of T and (7.14) we immediately deduce
thatl- r" rf.)^-^ r <• •«-) ̂  < ̂ - (̂ ) pw1 r^f^dx-1 rf*(y}dy < T-(^-)p(,r,
^n+lJo ^n Jo V^n^n+1rt+lJo ^n Jo V^n^n+1/£n+i / R \< 4 y-(l-)rfp(u).

..<-2 \w /

Proceeding as we did at the beginning of Section 5 we easily
derive for all 0 < x < 1/2

^ /^1/2 /»1/2 /R\f r(t) ̂  - 2 f r(() ̂  < 4 f y-^0)^)1 ^ r1^ /^2 / ., z
— f fWdt-2 f r(^ < ^ I f-1 (^}dp(u
x Jo JQ Jo V^Jo Jo Jo \^ /

+4y-(l)?M.
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This clearly implies one half of (7.13). The other half is obtai-
ned by replacing f*(x) with — f * { l — x ) .

This given, one is tempted to formulate (in analogy to 1.6)
the inequality

(7.15) B^(D ^ CB^(/*)
for some constant C.

It turns out that when Y(u) = [u| and p(u) = |u|2, (7.15)
is indeed true with C = 10,

Now, in this case, it is not difficult to show that the condi-
tion

^M)=^^fJ^{x)^f(^\dx^< oo

is equivalent to feBMO. Thus, (7.15) and (7.13) combined
lead to an interesting new proof of the John-Nirenberg theo-
rem [11].

Unfortunately, it can be shown that when Y(u) == |u|
and p{u) == j u ^ l < a < 2, (7.15) is false for any C.

Nevertheless, it is our belief that there is a functional
^^{f) which reduces to B^(/*) when Y(u) == |u| and
p{u) = \u\2 which satisfies

(7.16) B^(p) ^ CA^)
for some C.

In fact, when Y(u) == |u| and p(u) = \u\2'-l^(l < a ^ oo)
we can take

(7.17) A,̂ ),̂ !^^^^1^
r.i r 2 1 1 . 1 1 ' *

L k J

where we have set p ==——— and the sup is taken over

all sequences of disjoint intervals {1^} such that

Lk-Eo,!].
k

This given, note that if f is in weak L,, i.e., if

(7.18) m{x: \f{x)\ > M <4 vx > 0
A
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then

S T^T f f 1̂  - ̂ 1 d x d y ^ 2 ^ C \f{x)\ dx,
k | ^l JifcJifc k t/Ife

and clearly (7.18) implies

fsi \f\dx^ c / s i i j y ^
fc & \ k /

Thus in this case the functional in (7.17) is finite. Viceversa,
if this functional is finite, (7.16) and (7.13) immediately yield
(7.18) back again.

We therefore obtain the following interesting result.

THEOREM 7.4. A function f {x) integrable in [0, 1] is in
weak La if and only if there is a constant B such that

s m f f \fW -f^\ ̂ ^ ^ ̂ fS \w-1
k | lk | JWl& \ k I

for all sequences {1^} of disjoint intervals contained in [0, 1].
It is not difficult to see that this result is a little stronger

than one of the theorems proved by John and Nirenberg in
t11]-We wish to point out also that using the Martingale techni-
ques of [6] a proof of Theorem (7.4) can be obtained quite
directly and without any dimension restrictions.

It would be of interest to find out what A^p(/*) should
be for general T and p in order that (7.16) holds true.
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