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BOUNDARY BEHAVIOUR
OF HARMONIC FUNCTIONS

IN A HALF-SPACE
AND BROWNIAN MOTION Q

by D. L. BURKHOLDER and R. F. GUNDY

The behaviour of harmonic functions in the half-space R7^"1

has been discussed from two points of view: geometrical and
probabilistic. In this paper, we compare these two view
points with respect to (1) local convergence at the boundary
and (2) the H^spaces. The results are as follows: (1) The
existence of a. nontangential limit for almost all points in a
set E of positive Lebesgue measure in R"(== ()R^1"1) is more
restrictive than the existence of a « fine » or probability limit
almost everywhere in E when n > 2. When n == 1, the
existence of a nontangential limit almost everywhere in E
implies the existence of a « fine » limit almost everywhere in E
and conversely. (2) For all n ^ 1, the nontangential maximal
function of u belongs to 1 (̂0 < p < oo) if and only if the
Brownian motion maximal function belongs to LA That is,
in light of the results of Fefferman and Stein [10], we may say
that the class H^, defined probabilistically concides with FP
defined geometrically. This is proved in [3] for the half-plane
R2.. However, the arguments for R2. cannot be extended to
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thank Professor Lennart Carleson for many stimulating conversations on the
subject of this paper at the Institut Mittag-Leffler, Djursholm, Sweden.
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R3., basically, because of the potential-theoretic distinction
between dimensions two and three. That this distinction is
exhibited in the local statement (1) but not in the global
statement (2) is something of a surprise.

From the geometrical view point, the main results on local
convergence are due to Marcinkiewicz and Zygmund [141,
Spencer [18], and Privalov [17] for n = 1, and to Calderdn
[4], [5] and Stein [19] for n > 1. Theorem A below is a
summary statement of these results. First, however, we need
some notation. The cone in R7^1 with vertex at x e R71

height /c, and angle a, is denoted by

r(.r; a, k) = {(s, y) : \x — s\ < ay, 0 < y < k}.

The nontangential maximal function of a function u defined
on R7^-1 is defined as

N(u; a, k){x) = sup |u(5, y)\
(5,y)er(.c;a,k)

and the area function

A(u; a, k){x) = (//^^ |Vu(^ i/)|y- dxdy)^.

Notice that both N(^; a, k) and A(u; a, k) are monotone
increasing in the parameters a and k.

THEOREM A. — Let u be harmonic in R7^-1. The following
subsets of R71 == ^R^i are equal almost everywhere:

(1) {x: N(^; a, k){x) < oo};
(2) {x: A(u; a,k){x) < oo};
(3) {x: lim u{s, y) exists and is finite}.

(s,y)->x
(s,y)er^:a,fs)

A simplified proof of Theorem A, based on distribution
function inequalities between the area function and the non-
tangential maximal function, is given in [2].

In order to state the probabilistic analogue of Theorem A,
we recall the following facts : Let u be an harmonic function
defined in R^i and let ^ = {x,, y^ t ^ 0 be {n + 1)-
dimensional Brownian motion started from the point
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(^o? ?/o) e K^S stopped at time T == inf { ^ : y^ = 0}. We
refer to this process as Brownian motion in R7^"1. It follows
from Ito's change of variables formula (see McKean [15])
that u[x^ y t ) is a stochastic integral of the form

u{x^ y^ = U{XQ, i/o) + f^ <V^(^), dz,y.

We let P^,^ denote the measure on the space of trajectories
from (xo, Vo) to R" corresponding to the process (^, y^
t ^ 0. We may also define the conditional measure PSo.yo
corresponding to a « Brownian » process that starts at (^09 yo)
and terminates at the point x e R". Explicit formulas for
P^ ^ and P^y^ as well as a discussion of these processes,
is given by Doob [9].

Let the Brownian maximal function of u be defined as

u* == sup|u(^, y,)\.
t<T

The Brownian analogue of the area function A(u) is given by

S(u) = [u2^, t/o) + ^T |V^, ^)|2 dt}^.

With these definitions, we may state the following theorem.

THEOREM A'. — Let u be harmonic in R^4"1. The following
subsets of R" = &R^4"1 are equal almost everywhere (with
respect to Lebesgue measure) for every [XQ, yo) e R^'1:

(1') {x: P^{u* < a)) > 0}

(2') { x : P^(S(u) < a)) > 0}

(3') {x: PSo.yo (lim u(Xt, y^ exists and is finite) > 0}.
t->i

We omit the details of the proof of Theorem A'; it follows
from the fact that the sets {u* < 00} and {S(u) < 00} are
equal Pa-^y -almost everywhere. The set (3') can also be charac-
terized as the set where u has a fine boundary limit in the
sense of Leiong [13] and Nai'm [16]. This fact is due to Doob

^-One purpose of this paper is to compare the local behaviour
12
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of u described in Theorems A and A\ We have the following :

THEOREM 1. — a) For u harmonic in R2., the sets of
Theorem A. are equal almost everywhere with respect to Lebesgue
measure on R1 to the sets of Theorem A', b) For u harmonic in
R^4'1, n ^ 2, the sets of Theorem A are contained in those of
Theorem A', up to sets of measure zero. The converse is not true.

Part a) of Theorem 1 is due to Brelot and Doob [1] and
Constantinescu and Cornea [7]. Part b) is due in part to Brelot
and Doob [1]; our contribution is to show that, without
additional hypotheses, the sets of Theorem A' can be strictly
larger than those of Theorem A when n ^ 2. (If, however,
one adds the hypothesis that u is positive, or even bounded
below in each cone r(x'y a, k) for x e E of positive measure
— the bound may depend on x — then u has a nontangen-
tial limit almost everywhere in E (Carleson [6]), as well as a
fine limit almost everywhere in E (Brelot and Doob [1]).)

We now consider the geometric and probabilistic descrip-
tions of the Hardy classes IP. For R2., it is shown in [3]
that IP, 0 < p < oo may be described as the space of real
harmonic functions u such that

(4) , sup ^JN(u; a, k)^ dx < oo.
t-^A vk>Q

Fefferman and Stein [10] extend this result to the IP spaces
introduced by Stein and Weiss [20] for harmonic functions in
R7^"1, n ^ 2. Therefore, we take (4) as the definition of IP.

The probabilistic analogue of condition (4) is

sup j^n E^ y{\ u*^) dx < oo
y>o

where E^y is the expectation corresponding to Pa; y.
Fefferman and Stein show that the area function and non-

tangential maximal function are related as follows :

THEOREM B. — Let u be harmonic in R^. Then for all p
in the interval 0 < p < oo,

. . sup L|A(u; a, k){x)\Pdx ^ Cp^ sup L|N(u; a, k){x)\P dx.
k>0 v k>0 v
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Furthermore, if the left-hand side of this inequality is finite u
may be normalized to vanish at infinity and with this normaliza-
tion

K? ̂  IN(U; af k)w dx ^ c^ ^P /R" l^"; ", WP dx.
•t^ Q

»Th^r^babilistic version of Theorer" B is stated in [31 for
R2 ([3], Lemma 4). The proof, however, is valid in any number
ot dimensions. We restate it here as Theorem B'.

THEOREM B'. — Let u be harmonic in R -̂i. For all p in
the interval 0 < p < oo,

°P s^ JR- ̂ (IS^P) dx < ŝ up f^ E (̂|u )̂ dx

^ c^/B..E^(fS?)&.

The second purpose of this paper is to compare Theorems B
and B .

THEOREM 2. — Let u be harmonic in R^*-1, n ^ 2. Then

c^ s^ JR- E^d^P) dx < ŝ up ̂ JN(u; a, k)\P dx

^ ̂ "'^f^^W)^-

Thus, while the probabilistic and nontangential local
convergence criteria are different in R^-i for n > 2, the HP
spaces, defined probabilistically or geometrically, coincide in
all dimensions. It then follows from Theorems B and B' that
the Brownian and nontangential area functions have equi-
valent L^-norms for 0 < p < oo.

Proof of Theorem 1. - Since the first two statements of
Iheorem 1 may be found in Brelot and Doob [I], we prove
only the last by constructing an example : There is a function u
that is harmonic in R î such that a) lim u(x,, y,) exists

and is finite with P .̂-probability one foraTmost all x e R».
b] nontangential convergence of u holds for no x e Q the
unit cube in R». That is, the set (1') is strictly larger than the
set (1).
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For simplicity, we carry out the details for R3.. Roughly
speaking, we construct a bed with an infinite number of
vertical spines of varying height on the unit square. The
function u defined on R3. is to be large and of varying sign
at the end of each spine, but small nearly everywhere else.
The set where u is largest — the tips of the spines — has
small capacity, so the Brownian paths from (.TO, y^) miss
these points with high probability. On the other hand, any
cone r(^), x e Q is punctured by infinitely many of the spines,
so that the oscillation of u over T[x) is infinite for every
r r e Q .

Let

D.^(^i,v^l,^)-„-=i,...,^.^i,...,^

so that F(a;; a, k) contains at least one point of D^ for each
n ^ n(a, k). The function u to be constructed satisfies

u{x, y) ^ n, {x, y) e D^

for n odd, and
u{x, y) ^ — n, {x, y) e D^

for n even. Therefore, the oscillation of u over the cone
T{x'y a, /c), x e Q is infinite, so that u has a nontangential
limit nowhere in the set Q. For simplicity, we may assume
that a = 1, k == 2, and denote the corresponding cone by
r.{x).

The function u to be constructed is of the form
00

u === ^ Uj
J=l

where each Uj is harmonic in all of R3 and the series is
uniformly convergent on compact subsets of R3.. Therefore,

lim uj{x^ y t ) •== Uj{x^ 0)
t->T

almost everywhere with respect to P^,yo- ^so? we show that
with P^ ^-probability one,

00

^ U*j < 00
^=1
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so that by the Lebesgue dominated convergence theorem,
00 00

lim u{x^ yt) = S I™ ^/(^ Vt) = 5 ^/(^ 0)
t->^ j=l f^t j=l

almost everywhere P^,^. By definition of the conditional
measures P^,^ we have

P^ y /lim u(r^, i/() exists and is finite^ == 1
\ t-^T /

for almost every x e Q, with respect to Lebesgue measure.
In other words, u has a fine limit for almost every x e Q,
but a nontangential limit nowhere in Q.

The basic device in the construction is Runge's theorem for
harmonic functions in R". (Walsh [21]; also see Leiong's
review [12], for other references.)

Runge's Theorem for R"+1. — Let K be a compact set in
R71"1"1 such that R^1 — K is connected. Suppose that u is
harmonic on an open set containing K. Then u can be
uniformly approximated by harmonic polynomials on K.

We now proceed with the construction. For convenience,
assume that the initial point (a;o, t/o) for the Brownian motion

^
satisfies yo ^ 2. Let 0 < e^ < _^p &„ > y^ + n be chosen
so that

(5) P^((^, ^) e (̂  - T, for all 0 ^ ̂  r) ^ 1 - 1

2"
where

Qn-E-^&n] X [-^&»] X [0,26,]

and
T^ = j(^ y ) : \^— s\ < ̂  o ^ y < ̂  + £„,

/ 1 \ )for some point ̂ , ̂ ^ e D^.

Notice that T\ is the union of 22"-2 disjoint cylinders or
« spines » each of which contains a point of D^ in its interior.
Notice also that, because of the transience of Brownian motion
in R3, the choice of e^, &„ in (5) is possible in R3 but not
in R2. The set K, = (Q, - TJ u D, is compact and
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R3 - K, is connected, so that the hypotheses of Runge's
theorem apply. Let U and V be disjoint open sets such that

Q, - T, <= U
and

A <= v.
Let w{x, y} be defined on U U V, equal to zero on U, X
on V, where \ is a constant to be chosen later. Then' w
is harmonic on U U V and by Runge's theorem, there is a
harmonic polynomial Un such that

\Un{x, y) - w{x, y)\ <-^- on K,,.

Therefore,

(6) \^{x,y)\ <-^ for ^,y)eQ,-T,.

and

\Un(x, y) - X»| < -̂ - for (x, y) e D».

The first claim is that the series J \u,(x, y}\ converges

uniformly on compact subsets of R^F'Any compact subset
of R». is a subset of Q,, - T,. for all large n, so uniform
convergence follows from (6). It follows that

00

U = ^ Uj
• T • •/=1

is harmonic in R3..
Finally, we must choose the constants \. Let Xi == 2

and note that the point ( i i i\ e Di but
\ Z Z ]

/ I 1 . \ 0 „
Y^T 1 ) 6 ^ " ' ^

for all n > 1. Therefore

"(t.i'^HT'T1)
oo / A \ j> 2 - s ( 4 ) = i -y=i \z /
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Suppose Xi, . . ., X^_i have been chosen so that u(x, y) ^ k
for (x, y) e D^, /c odd, and u{x, y) ^ — k for [x, y) e D^,
/c even. Simply choose 7^ so that

n—l

inf ^ ^c(^ y) +\ > ri+ 1
(x, y) e Dn A=I

if n is odd. Then
1 1u{x, y) > n + 1 2" 2"+1

^ 7Z

for (re, y) e D^ since this also implies (re, y) £ Q^— T^ for
m > n. It n is even, then choose \ so that

n—l

sup S ̂  !/) + \ < — {n + 1);
(a?, y ) e D^ fc=i

then u(rc, y) ^ — n for (^, y) e D^ in the same way. Finally,
by (5) and (6),

( 1 \ 1P .̂ ^ > ̂  < ^r
00

so that ^ u^ < oo almost everywhere (P^yJ. This com-
n=l

pletes the construction.

Proof of Theorem 2. — We begin with a series of lemmas.

LEMMA 1. — For b > a > 0, and X > 0,

m(N(u; &, k) > X) ^ Cm(N(u; a, /c) > X)

TTie choice of C depends only on the dimension n and the
ratio alb. In particular,

B N ( u ; f c , / c ) | | ^ ^ C||N(u;a,/c)| |^.

This lemma corresponds to Lemma 2 of [2], stated for
N(u; a) and N(u; 6). The proof, however, is valid for any
measurable function u defined on R^1. Therefore, we may
simply apply that argument to

u^x, y) = u{x, y) if y ^ k
= 0 otherwise.
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The second assertion of the lemma follows from the integration
formula

||N(u; a, k)^ =pf^ ^-im(N(u; a, k) > X) dX.

The next lemma is due to Hardy and Littlewood [11] for
the case p < 1. They state it without proof; a full proof is
given by Fefferman and Stein (Lemma 2 in [10]).

LEMMA 2 . — Let BR be a ball in R"+1 with center at {xo, z/o),
radius R > 0, and B^ c: BR be another ball with the same
center but with radius r < R. Then for 0 < p < oo,

sup [u{s, t)\P ^ Cp,,/R——— r \u{x, y)\Pdxdy.
(^O€EB, " m(Bn) J^ ' J yn y

LEMMA 3. — Let

D(u; a, k) = sup y\ \7u{s, y}\;
(^,y)er(a;;a»fc)

^eyz
D(u; a, /c) ^ CN(u; 6, 2/c)

/or b > a, w^A C depending only on the dimension n and
the ratio ajh,

This lemma is taken from Stein [19] (see Lemma 4). We
omit the proof.

LEMMA 4. — Let u be harmonic in R^1 and satisfy the
condition

^P Cnl^ y^dx < oo
y>o v

for some p in the internal Q < p < oo. Then

(7) l|N(u,;a,/c)|[, < oo

for all a > 0, k > 0, where Uy,{x, y) = u{x, y + a) for a > 0.
Furthermore, there exists a ko > 0 .sucA that for all k ^ ky
we have

(8) ||N(u,; 2a, 2/c)l|, ^ C||N(u,; a, /c)||,.
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The constant ko depends on u, but C depends only on p
and the dimension n.

Proof, — If lim ||N(ua; a, k)\\p < co for some a > 0, then
k-><x>

the same is true for 2a by Lemma 1. Also, (8) holds for k > 0
sufficiently large.

We now assume that lim ||N(ua; a, k)\\p = oo for a ^ -L-.xooo 2
Consider the ball B(x, a/2) with center at (re, a/2), radius
3a/2. Then B(;r, a/2) contains the cone r(rc; a, a) and all
points of r(rc; a, a) lie at a distance of more than
(3/2 — l/\/2)a from the boundary of the ball B{x, a/2).
Therefore, by Lemma 2,

|N(u,; a, a)(^)|P ^ C i rr |u ,̂ i/)|^A/.
m^n^, a/z;; JjB(a?,a/2)

If we integrate both sides of the above inequality with respect
to x, and use Fubini's theorem, we obtain

(9) L|N(u,;a,a)|^ C, sup L\u{x,y)\Pdx
v 0<J<3a J

^ Cp sup j \u(x, y)^ dx < oo.
y>o J

That is, we have shown that ||N(ua; a, A*)||p < oo for k = a
provided a ^ 1/2. The same kind of argument shows that if
|[N(ua; a, k)[\p < oo for some /c < oo, then

(10) ||N(u,;a,2/c)|l^ l|N(u,;a,/c)| |^
+ ̂ ^P f^\u{x,y)\Pdx.

In fact, if

(11) M{u^a,2k)(x)
= sup {|u^, y)[ : (5, y) e= r(^; a, 2/c) — r(a;; a, k)}

then

(12) |N(u,; a, 2k)\? < |N(u,; a, /c)|^ + |M(u,; a, 2/c)|^.

If B{x, 3/c/2) is the ball centered at (x, 3/c/2), then the
((top half)) of the cone r(^; a, 2/c), that is, the set
r^; a, 2/c) — r^; a, /c), is contained in the ball B(x, 3/c/2),
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/3 — K/5\
and lies at a distance of ( ——^—— (k from the boundary of

. ^ /

the ball. Therefore, again by Lemma 1 and the argument
leading to (9), we find that

UM(u,; a, 2/c)||^ ^ C.sup L\u[x, y)\? dx.
y>o v

Therefore, (10) follows from this and inequality (12).
The argument to this point shows that ||N(ua; a, k)\\p < oo

for all k > 0 since this statement is true for k = a, 2a, .. .
A slight amplification of the argument shows that
[|N(ua; a, k)\\p is a continuous, increasing function of k with
range equal to the interval [0, oo). Therefore, for some
/CQ > 0, we have

||N( ;̂ a, W = sup L \u{x, y)\P dx.
y>o v

For any k ^ A*o, from (10) we have

|[N(^; a, IkWp ^ 1]N(^; a, /c)l|^ + C, sup L|^, y)|^^
.y>o v

<. ( l+C,)l[N(u,;a, /c) | |^

Finally, by Lemma 1, we may replace a by 2a and obtain

llN(u,;2a,2/c)||^ C;||N(u,;a,/c)l|^.

The lemma is proved.

LEMMA 5. — Given D > 0 and 0 < p < oo, let f^i = 1, 2,
he a pair of functions that satisfy the inequality

(13) f\f^ < D/IAI^ a).
TAen

f ̂ p ̂  2 f^^f^

Proof. Since ||/i|[p < oo, either the conclusion of the lemma
holds, or, with strict inequality, we have

flAl^a f |A|^ — fl/"^ fl/ih
^ ^IIAI^D)-1^/,!! JJ ^ J

which is a contradiction.
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Given any point {s, y) e R^-1, reca.11 that P^y is the
measure associated with conditional Brownian motion with
initial point {s, y) and terminal point x e R".

LEMMA 6. — Let B(^', y ' ) be the ball in R^-1 with center at
{x\ t/), radius 6y', 0 < 6 < 1, and with \x' — x\ < ay\ If
\s — x\ ^ ay, y ^ 2t/, then

PSy((^ Vi) hits B(^, y')) ^ C > 0

where C depends only on Q and a.

Proo/'. — Let T = inf {t: 2/( == z/'}. The conditional mea-
sure associated with the random vector (rc^, y^) is given by

h^s, y)P^((^, ^) G A)
= J1 ̂ (^, l/T)P.,y (^T, ̂ r) {(^T, 2/r) £ A}

where h^ is the Poisson kernel for R^4'1 with pole at x e R".
This formula may be obtained by a standard stopping time
argument. The probability P?,y((^ 2/r) ^ A) has a density
with respect to Lebesgue measure on the hyperplane y = y '
in R^4"1 given by

f^ <». »), »•) = C.—————s-^———55,̂ .
(I- - 'I' + \y -!/•]') • ""'"•

It follows that

f^y^^'^^y^y^dw ^ c > o
where S(^', y') is the projection of B(a/, y') on the hyperplane
y = y ' . (The constant C depends only on 6 and a.) The
integral represents the probability that the ^-dimensional
sphere S(a;', y ' ) is hit by a conditional path from (5, y} to x
before the path hits the complement of S(rc', y') on the hyper-
plane y = y\ Since this probability is smaller than the one
we wish to estimate, the lemma is proved.

LEMMA 7. — Let u be a continuous function in R7^4'1. Then

sup j^ P^y{u* > x) dx ^ C sup m(N(u; a, k) > X).
y>o ~ ' k>o
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Remarks. — This inequality is stated as part of Theorem 3
of [3] for the case n = 1. The proof may be extended without
difficulty for n > 1, so we omit the details. It should be
noted, however, that in Theorem 3 of [3], we assume that u
is harmonic. As is clear from the proof, this assumption is
used to obtain the converse inequality only.

We are now in a position to prove Theorem 2. First, we note
that

sup L E^(|u*|^) dx ^ C sup L |N(u; a, /c)? dx
y>o J ft>o v

where C depends only on a. This follows immediately by
integrating the stronger estimate given in Lemma 7.

Now, we prove that

sup CjN(u; a, /c)p dx ^ C sup L E^y^u*^) dx
k>o J y>o ~

where C depends only on a and p. We may assume that
the right hand side is finite, so that, in particular,

sup Ln\u{x, y)p dx < oo.
y>o v

The hypothesis of Lemma, 4 is satisfied, and therefore, we have

(14) ||N(u,; 2a, 2/c)l|^ ^ C|lN(u,; a, k)^

with the right hand side finite for a > 0. We now apply
Lemma 5 with /i = N(ua; a, k) and /a = N(u<x$ 2a, 2/c). The
hypothesis of Lemma 5 is satisfied with the constant D = C
where C is given in Lemma 1, independent of a, a, m, and /c.
Let

G = [x: N(u^; a, k){x) ^ (2C)-^N(^; 2a, 2/c)(rr)}.

From this and Lemma 3, we may conclude that

(15) G c L:D(u^, 3 /c)^) ^ CN(^;a,/c)(r.)?
( \ 2 2t / 5

for another constant C independent of a, a, m, or k. Fix a.
point x e G and consider the cone T[x\ a, k) = F. We may
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select a point {x\ y ' ) e F and a ball B(o/, y ' ) with center
^

{x\ y'), radius 6y' such that \u^s, t)\ ^ —N(ua ; a, /c)(a;)

for every point (s, t) e B(rc', y'Y This may be done as follows :

Choose (a/, y ' } e F so that |i4(^', y')! > - N(u^; a, /c)(aQ.
Since x e G, we know (15) holds so that

t|VUa(5, ()| < CN(Ua; 0, k){x)

for all points (5, () in a ball of radius 6y', centered at (re', y'),

( Q Q \
and contained in the cone F re; —> — / C H r c ) . The constant 6

. ^.depends only on the angle a, at this point; we may assume
1

6 < — By the mean value theorem,
Zt

j.
|u ,̂ () - u '̂, y')| ^ 2CN(u,; a, /c)(.r) (1^ - ̂ 2+/^ - ̂ ) 2

y

for all points (s7, (') e B(n;', y'). Now choose 6 so that
86C < 1; it follows from the above inequalities that

\u^s, t)\ > \u^(x', y'}\ - \u^s, t) - u^x', y')! ^ -^ N(ua; a, /c)(^)

for all (5', (') e B(^', y1} with radius 6y'.
If we now apply Lemma 6 to B(rc', y'\ we obtain

(16) Pf/u:^ -^N(u,;a,/c)(^

^ P^((^, 2/0 hits B(^', y')) ^ C > 0

for x e G, \s — x\ ^ ay, y ^ 2z/'. Notice that y ' ^ /c, so
points (s, y) such that \s — x\ ^ ay, y ^ 2A* satisfy the
above requirements. The last restriction, y ^ 2/c, prevents
us from making a direct estimation of integrals from the
probabilities (16). To overcome this obstacle, we cut into G
in the following way: Let R be chosen large enough so that
GR == G n {\x\ ^ R} satisfies

(17) ^JN(ua; a, k){x)\Pdx < 2C ̂  |N(ua; a, k)(x)\P dx
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where C == C(14). With this choice of R, let yo be chosen so
that t/o ^ 2/c and such that each point (s, i/o) in the n-dimen-

sional ball \s\ ^ -,- yo is contained in the cone F(^; a, z/o)A
for every ^ such that \x\ ^ R. In particular, since 2/0 ^ 2/c,

the points in the ball <{s^ y o ) : \s\ ^ -7- yo[ satisfy the require-
( 1 )

ments of inequality (16) for every x e GR. Let E^ ^ be the
conditional expectation corresponding to P^ and %Gn( )
the indicator function of the set GR ; we have

E,Ju:h == E^(E^(Kp))
^ E^^E^^IU^I^G,^))
^ CE^(\^(u^, a, k)(x)\"^(x))
== C^Xo^)|N(u,; a, ̂ )(^)1-^_,|.^^^^.

Therefore,

sup ̂  E (̂| u;!") ds^ f „ E,,̂  (| U;|P) ̂
7>0 l5!-^ T^0

^ C r r Xo^)|N(u,;a, /c)(a;)|^—————yo———^ dx ds
^^y^ {\s-x\^+yl) 2

^ C^XG^)|N(^;a,/c)(^)|^a;
^ C^JN(^;a,/c)(a;)|^^.

Here we have used Fubini's theorem, inequality (17), and

the fact that z/o ^ 2R and \s\ ^ — yo impliesli

Z/n 1_______2"_______ ^ __.
(^D -(/»

(|. - ̂  + !/§) ^ yo

In summary, we have shown that

sup L^Wds ^ C L|N(^; a, /c)(^)|^^
y>o v v

for A' > ko and all a > 0. By successive applications of the


