D. L. BURKHOLDER RICHARD F. GUNDY Boundary behaviour of harmonic functions in a half-space and brownian motion

Annales de l'institut Fourier, tome 23, nº 4 (1973), p. 195-212 http://www.numdam.org/item?id=AIF_1973_23_4_195_0

© Annales de l'institut Fourier, 1973, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 23, 4 (1973), 195-212.

BOUNDARY BEHAVIOUR OF HARMONIC FUNCTIONS IN A HALF-SPACE AND BROWNIAN MOTION (¹)

by D. L. BURKHOLDER and R. F. GUNDY

The behaviour of harmonic functions in the half-space \mathbf{R}_{\perp}^{n+1} has been discussed from two points of view: geometrical and probabilistic. In this paper, we compare these two view points with respect to (1) local convergence at the boundary and (2) the H^{p} -spaces. The results are as follows: (1) The existence of a nontangential limit for almost all points in a set E of positive Lebesgue measure in $\mathbf{R}^{n} = \partial \mathbf{R}^{n+1}$ is more restrictive than the existence of a « fine » or probability limit almost everywhere in E when $n \ge 2$. When n = 1, the existence of a nontangential limit almost everywhere in E implies the existence of a « fine » limit almost everywhere in E and conversely. (2) For all $n \ge 1$, the nontangential maximal function of u belongs to $L^{p}(0 if and only if the$ Brownian motion maximal function belongs to L^p. That is, in light of the results of Fefferman and Stein [10], we may say that the class H^{p} , defined probabilistically concides with H^{p} defined geometrically. This is proved in [3] for the half-plane \mathbf{R}_{\perp}^2 . However, the arguments for \mathbf{R}_{\perp}^2 cannot be extended to

⁽¹⁾ This research was partially supported by NSF Grant GP-28154 at the University of Illinois and GP-19222 at Rutgers University. The authors would also like to thank Professor Lennart Carleson for many stimulating conversations on the subject of this paper at the Institut Mittag-Leffler, Djursholm, Sweden.

 \mathbf{R}_{+}^{3} , basically, because of the potential-theoretic distinction between dimensions two and three. That this distinction is exhibited in the local statement (1) but not in the global statement (2) is something of a surprise.

From the geometrical view point, the main results on local convergence are due to Marcinkiewicz and Zygmund [14], Spencer [18], and Privalov [17] for n = 1, and to Calderón [4], [5] and Stein [19] for n > 1. Theorem A below is a summary statement of these results. First, however, we need some notation. The cone in \mathbf{R}^{n+1}_+ with vertex at $x \in \mathbf{R}^n$, height k, and angle a, is denoted by

$$\Gamma(x; a, k) = \{(s, y) : |x - s| < ay, 0 < y < k\}.$$

The nontangential maximal function of a function u defined on \mathbf{R}^{n+1}_+ is defined as

$$N(u; a, k)(x) = \sup_{(s, y) \in \Gamma(x; a, k)} |u(s, y)|$$

and the area function

$$A(u; a, k)(x) = \left(\iint_{\Gamma(x; a, k)} |\nabla u(s, y)|^2 y^{1-n} \, dx \, dy \right)^{\frac{1}{2}}.$$

Notice that both N(u; a, k) and A(u; a, k) are monotone increasing in the parameters a and k.

THEOREM A. — Let u be harmonic in \mathbf{R}^{n+1}_+ . The following subsets of $\mathbf{R}^n = \partial \mathbf{R}^{n+1}_+$ are equal almost everywhere:

- (1) $\{x: N(u; a, k)(x) < \infty\};$
- (2) $\{x: A(u; a, k)(x) < \infty\};$
- (3) { $x: \lim_{\substack{(s, y) \neq x \\ (s, y) \in \Gamma(x; a, k)}} u(s, y)$ exists and is finite}.

A simplified proof of Theorem A, based on distribution function inequalities between the area function and the nontangential maximal function, is given in [2].

In order to state the probabilistic analogue of Theorem A, we recall the following facts: Let u be an harmonic function defined in \mathbf{R}^{n+1}_+ and let $z_t = (x_t, y_t), t \ge 0$ be (n+1)dimensional Brownian motion started from the point

 $(x_0, y_0) \in \mathbf{R}_+^{n+1}$, stopped at time $\tau = \inf \{t : y_t = 0\}$. We refer to this process as Brownian motion in \mathbf{R}_+^{n+1} . It follows from Ito's change of variables formula (see McKean [15]) that $u(x_t, y_t)$ is a stochastic integral of the form

$$u(x_t, y_t) = u(x_0, y_0) + \int_0^t \langle \nabla u(z_s), dz_s \rangle.$$

We let P_{x_0, y_0} denote the measure on the space of trajectories from (x_0, y_0) to \mathbf{R}^n corresponding to the process (x_t, y_t) , $t \ge 0$. We may also define the conditional measure P_{x_0, y_0}^x corresponding to a « Brownian » process that starts at (x_0, y_0) and terminates at the point $x \in \mathbf{R}^n$. Explicit formulas for P_{x_0, y_0} and P_{x_0, y_0}^x , as well as a discussion of these processes, is given by Doob [9].

Let the Brownian maximal function of u be defined as

$$u^* = \sup_{t<\tau} |u(x_t, y_t)|.$$

The Brownian analogue of the area function A(u) is given by

$$S(u) = \left[u^{2}(x_{0}, y_{0}) + \int_{0}^{\tau} |\nabla u(x_{t}, y_{t})|^{2} dt \right]^{\frac{1}{2}}.$$

With these definitions, we may state the following theorem.

THEOREM A'. — Let u be harmonic in \mathbb{R}^{n+1}_+ . The following subsets of $\mathbb{R}^n = \partial \mathbb{R}^{n+1}_+$ are equal almost everywhere (with respect to Lebesgue measure) for every $(x_0, y_0) \in \mathbb{R}^{n+1}_+$:

(1') {x: $P_{x_0, y_0}^x (u^* < \infty) > 0$ } (2') {x: $P_{x_0, y_0}^x (S(u) < \infty) > 0$ } (3') {x: $P_{x_0, y_0}^x (\lim_{t \to \tau} u(x_t, y_t) \text{ exists and is finite}) > 0$ }.

We omit the details of the proof of Theorem A'; it follows from the fact that the sets $\{u^* < \infty\}$ and $\{S(u) < \infty\}$ are equal P_{x_0, y_0} -almost everywhere. The set (3') can also be characterized as the set where u has a fine boundary limit in the sense of Lelong [13] and Naïm [16]. This fact is due to Doob [8].

One purpose of this paper is to compare the local behaviour

of u described in Theorems A and A'. We have the following:

THEOREM 1. — a) For u harmonic in \mathbb{R}^2_+ , the sets of Theorem A are equal almost everywhere with respect to Lebesgue measure on \mathbb{R}^1 to the sets of Theorem A'. b) For u harmonic in \mathbb{R}^{n+1}_+ , $n \ge 2$, the sets of Theorem A are contained in those of Theorem A', up to sets of measure zero. The converse is not true.

Part a) of Theorem 1 is due to Brelot and Doob [1] and Constantinescu and Cornea [7]. Part b) is due in part to Brelot and Doob [1]; our contribution is to show that, without additional hypotheses, the sets of Theorem A' can be strictly larger than those of Theorem A when $n \ge 2$. (If, however, one adds the hypothesis that u is positive, or even bounded below in each cone $\Gamma(x; a, k)$ for $x \in E$ of positive measure — the bound may depend on x — then u has a nontangential limit almost everywhere in E (Carleson [6]), as well as a fine limit almost everywhere in E (Brelot and Doob [1]).)

We now consider the geometric and probabilistic descriptions of the Hardy classes H^p . For \mathbf{R}_{+}^2 , it is shown in [3] that H^p , 0 may be described as the space of realharmonic functions <math>u such that

(4)
$$\sup_{k>0} \int_{\mathbf{R}^n} |\mathcal{N}(u; a, k)|^p dx < \infty.$$

Fefferman and Stein [10] extend this result to the H^p spaces introduced by Stein and Weiss [20] for harmonic functions in \mathbf{R}_{+}^{n+1} , $n \ge 2$. Therefore, we take (4) as the definition of H^p.

The probabilistic analogue of condition (4) is

$$\sup_{y>0}\int_{\mathbf{R}^n} E_{x,y}(|u^*|^p) dx < \infty$$

where $E_{x,y}$ is the expectation corresponding to $P_{x,y}$.

Fefferman and Stein show that the area function and nontangential maximal function are related as follows:

THEOREM B. — Let u be harmonic in \mathbf{R}^{n+1}_+ . Then for all p in the interval 0 ,

$$\sup_{k>0} \int_{\mathbf{R}^{n}} |A(u; a, k)(x)|^{p} dx \leq c_{p, a} \sup_{k>0} \int_{\mathbf{R}^{n}} |N(u; a, k)(x)|^{p} dx.$$

Furthermore, if the left-hand side of this inequality is finite, u may be normalized to vanish at infinity and with this normalization

$$\sup_{k>0}\int_{\mathbf{R}} |\operatorname{N}(u; a, k)(x)|^p dx \leq C_{p, a} \sup_{k>0} \int_{\mathbf{R}^n} |\operatorname{A}(u; a, k)(x)|^p dx.$$

The probabilistic version of Theorem B is stated in [3] for \mathbf{R}_{+}^{2} ([3], Lemma 4). The proof, however, is valid in any number of dimensions. We restate it here as Theorem B'.

THEOREM B'. — Let u be harmonic in \mathbf{R}^{n+1}_+ . For all p in the interval 0 ,

$$c_p \sup_{y>0} \int_{\mathbf{R}^n} \mathrm{E}_{x,y}(|\mathrm{S}(u)|^p) \, dx \leq \sup_{y>0} \int_{\mathbf{R}^n} \mathrm{E}_{x,y}(|u^*|^p) \, dx$$
$$\leq C_p \sup_{y>0} \int_{\mathbf{R}^n} \mathrm{E}_{x,y}(|\mathrm{S}(u)|^p) \, dx.$$

The second purpose of this paper is to compare Theorems B and B'.

THEOREM 2. — Let u be harmonic in
$$\mathbf{R}^{n+1}_+$$
, $n \ge 2$. Then
 $c_{p,a} \sup_{y>0} \int_{\mathbf{R}^n} \mathbf{E}_{x,y}(|u^*|^p) dx \le \sup_{k>0} \int_{\mathbf{R}^n} |\mathbf{N}(u; a, k)|^p dx$
 $\le C_{p,a} \sup_{y>0} \int_{\mathbf{R}^n} \mathbf{E}_{x,y}(|u^*|^p) dx.$

Thus, while the probabilistic and nontangential local convergence criteria are different in \mathbf{R}^{n+1}_+ for $n \ge 2$, the \mathbf{H}^p spaces, defined probabilistically or geometrically, coincide in all dimensions. It then follows from Theorems B and B' that the Brownian and nontangential area functions have equivalent \mathbf{L}^p -norms for 0 .

Proof of Theorem 1. — Since the first two statements of Theorem 1 may be found in Brelot and Doob [1], we prove only the last by constructing an example: There is a function u that is harmonic in \mathbb{R}^{n+1}_+ such that a) $\lim_{t \to \tau} u(x_t, y_t)$ exists and is finite with $\mathbb{P}^x_{x_0, y_0}$ -probability one for almost all $x \in \mathbb{R}^n$; b) nontangential convergence of u holds for no $x \in \mathbb{Q}$, the unit cube in \mathbb{R}^n . That is, the set (1') is strictly larger than the set (1).

For simplicity, we carry out the details for \mathbf{R}_{+}^{3} . Roughly speaking, we construct a bed with an infinite number of vertical spines of varying height on the unit square. The function u defined on \mathbf{R}_{+}^{3} is to be large and of varying sign at the end of each spine, but small nearly everywhere else. The set where u is largest — the tips of the spines — has small capacity, so the Brownian paths from (x_{0}, y_{0}) miss these points with high probability. On the other hand, any cone $\Gamma(x), x \in \mathbf{Q}$ is punctured by infinitely many of the spines, so that the oscillation of u over $\Gamma(x)$ is infinite for every $x \in \mathbf{Q}$.

Let

$$D_{n} = \left\{ \left(\frac{2j-1}{2^{n}}, \frac{2k-1}{2^{n}}, \frac{a^{-1}}{2^{n-1}} \right) : j = 1, \dots, 2^{n-1}, k = 1, \dots, 2^{n-1} \right\}$$

so that $\Gamma(x; a, k)$ contains at least one point of D_n for each $n \ge n(a, k)$. The function u to be constructed satisfies

$$u(x, y) \ge n, \qquad (x, y) \in \mathbf{D}_n$$

for n odd, and

$$u(x, y) \leq -n, \qquad (x, y) \in \mathbf{D}_n$$

for *n* even. Therefore, the oscillation of *u* over the cone $\Gamma(x; a, k), x \in \mathbb{Q}$ is infinite, so that *u* has a nontangential limit nowhere in the set Q. For simplicity, we may assume that a = 1, k = 2, and denote the corresponding cone by $\Gamma(x)$.

The function u to be constructed is of the form

$$u = \sum_{j=1}^{\infty} u_j$$

where each u_j is harmonic in all of \mathbb{R}^3 and the series is uniformly convergent on compact subsets of \mathbb{R}^3_+ . Therefore,

$$\lim_{t \to \tau} u_j(x_t, y_t) = u_j(x_\tau, 0)$$

almost everywhere with respect to P_{x_0, y_0} . Also, we show that with P_{x_0, y_0} -probability one,

$$\sum_{j=1}^{n} u_j^* < \infty$$

so that by the Lebesgue dominated convergence theorem,

$$\lim_{t \to \tau} u(x_t, y_t) = \sum_{j=1}^{\infty} \lim_{t \to \tau} u_j(x_t, y_t) = \sum_{j=1}^{\infty} u_j(x_\tau, 0)$$

almost everywhere P_{x_0, y_0} . By definition of the conditional measures P_{x_0, y_0}^x , we have

$$\Pr_{x_0, y_0}^x \left(\lim_{t > \tau} u(x_t, y_t) \quad \text{exists and is finite} \right) = 1$$

for almost every $x \in Q$, with respect to Lebesgue measure. In other words, u has a fine limit for almost every $x \in Q$, but a nontangential limit nowhere in Q.

The basic device in the construction is Runge's theorem for harmonic functions in \mathbb{R}^n . (Walsh [21]; also see Lelong's review [12], for other references.)

Runge's Theorem for \mathbb{R}^{n+1} . — Let K be a compact set in \mathbb{R}^{n+1} such that \mathbb{R}^{n+1} — K is connected. Suppose that u is harmonic on an open set containing K. Then u can be uniformly approximated by harmonic polynomials on K.

We now proceed with the construction. For convenience, assume that the initial point (x_0, y_0) for the Brownian motion satisfies $y_0 \ge 2$. Let $0 < \varepsilon_n < \frac{1}{2^{n+1}}$, $b_n > y_0 + n$ be chosen so that

(5)
$$P_{x_0, y_0}((x_i, y_i) \in Q_n - T_n \text{ for all } 0 \leq t \leq \tau) \ge 1 - \frac{1}{2^n}$$

where

$$\mathbf{Q}_n = [-b_n, b_n] \times [-b_n, b_n] \times [0, 2b_n]$$

and

$$\mathbf{T}_n = \left\{ (s, y) : |x - s| < \epsilon_n, \quad 0 \leq y < \frac{1}{2^{n-1}} + \epsilon_n,
ight.$$
 for some point $\left(x, \frac{1}{2^{n-1}}\right) \in \mathbf{D}_n
ight\}$

Notice that T_n is the union of 2^{2n-2} disjoint cylinders or « spines » each of which contains a point of D_n in its interior. Notice also that, because of the transience of Brownian motion in \mathbb{R}^3 , the choice of ε_n , b_n in (5) is possible in \mathbb{R}^3 but not in \mathbb{R}^2 . The set $K_n = (Q_n - T_n) \cup D_n$ is compact and $\mathbf{R}^3 - \mathbf{K}_n$ is connected, so that the hypotheses of Runge's theorem apply. Let U and V be disjoint open sets such that

 $Q_n - T_n \subset U$ $D_n \subset V.$

and

Let $\mathscr{W}(x, y)$ be defined on $U \cup V$, equal to zero on U, λ_n on V, where λ_n is a constant to be chosen later. Then \mathscr{W} is harmonic on $U \cup V$ and by Runge's theorem, there is a harmonic polynomial u_n such that

$$|u_n(x, y) - w(x, y)| < \frac{1}{2^n}$$
 on K_n .

Therefore,

(6) $|u_n(x, y)| < \frac{1}{2^n}$ for $(x, y) \in Q_n - T_n$

and

$$|u_n(x, y) - \lambda_n| < \frac{1}{2^n}$$
 for $(x, y) \in D_n$.

The first claim is that the series $\sum_{n=1}^{\infty} |u_n(x, y)|$ converges uniformly on compact subsets of \mathbf{R}_+^3 : Any compact subset of \mathbf{R}_+^3 is a subset of $\mathbf{Q}_n - \mathbf{T}_n$ for all large n, so uniform convergence follows from (6). It follows that

$$u = \sum_{j=1}^{\infty} u_j$$

is harmonic in \mathbf{R}_{+}^{3} .

Finally, we must choose the constants λ_n . Let $\lambda_1 = 2$ and note that the point $\left(\frac{1}{2}, \frac{1}{2}, 1\right) \in D_1$ but

$$\left(\frac{1}{2},\frac{1}{2},1\right)\in \mathbf{Q}_n-\mathbf{T}_n$$

for all n > 1. Therefore

$$u\left(\frac{1}{2}, \frac{1}{2}, 1\right) = \sum_{j=1}^{\infty} u_j\left(\frac{1}{2}, \frac{1}{2}, 1\right)$$

> $2 - \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^j = 1.$

Suppose $\lambda_1, \ldots, \lambda_{n-1}$ have been chosen so that $u(x, y) \ge k$ for $(x, y) \in D_k$, k odd, and $u(x, y) \le -k$ for $(x, y) \in D_k$, k even. Simply choose λ_n so that

$$\inf_{(x, y)\in D_n}\sum_{k=1}^{n-1}u_k(x, y)+\lambda_n > n+1$$

if n is odd. Then

$$u(x, y) > n + 1 - \frac{1}{2^n} - \frac{1}{2^{n+1}} - \cdots$$

 $\ge n$

for $(x, y) \in D_n$ since this also implies $(x, y) \in Q_m - T_m$ for m > n. If n is even, then choose λ_n so that

$$\sup_{(x, y) \in D_n} \sum_{k=1}^{n-1} u(x, y) + \lambda_n < -(n+1);$$

then $u(x, y) \leq -n$ for $(x, y) \in D_n$ in the same way. Finally, by (5) and (6),

$$\mathbf{P}_{x_0, y_0}\left(u_n^* > \frac{1}{2^n}\right) \leqslant \frac{1}{2^n}$$

so that $\sum_{n=1}^{\infty} u_n^* < \infty$ almost everywhere (P_{x_0, y_0}) . This completes the construction.

Proof of Theorem 2. — We begin with a series of lemmas.

LEMMA 1. - For b > a > 0, and $\lambda > 0$,

 $m(N(u; b, k) > \lambda) \leq Cm(N(u; a, k) > \lambda)$

The choice of C depends only on the dimension n and the ratio a/b. In particular,

$$\| \mathbf{N}(u; b, k) \|_{p}^{p} \leq C \| \mathbf{N}(u; a, k) \|_{p}^{p}$$

This lemma corresponds to Lemma 2 of [2], stated for N(u; a) and N(u; b). The proof, however, is valid for any measurable function u defined on \mathbf{R}^{n+1}_+ . Therefore, we may simply apply that argument to

$$u_k(x, y) = u(x, y)$$
 if $y \le k$
= 0 otherwise.

The second assertion of the lemma follows from the integration formula

$$\|\operatorname{N}(u; a, k)\|_{p}^{p} = p \int_{0}^{\infty} \lambda^{p-1} m(\operatorname{N}(u; a, k) > \lambda) d\lambda.$$

The next lemma is due to Hardy and Littlewood [11] for the case p < 1. They state it without proof; a full proof is given by Fefferman and Stein (Lemma 2 in [10]).

LEMMA 2. — Let B_R be a ball in \mathbb{R}^{n+1} with center at (x_0, y_0) , radius R > 0, and $B_r \subset B_R$ be another ball with the same center but with radius r < R. Then for 0 ,

$$\sup_{(s, t)\in B_{\mathbf{r}}} |u(s, t)|^{p} \leq C_{p, r/\mathbf{R}} \frac{1}{m(\mathbf{B}_{\mathbf{R}})} \int_{\mathbf{B}_{\mathbf{R}}} |u(x, y)|^{p} dx dy.$$

LEMMA 3. – Let

$$\mathbf{D}(u; a, k) = \sup_{(s, y) \in \Gamma(x; a, k)} y |\nabla u(s, y)|;$$

then

$$D(u; a, k) \leq CN(u; b, 2k)$$

for b > a, with C depending only on the dimension n and the ratio a/b.

This lemma is taken from Stein [19] (see Lemma 4). We omit the proof.

LEMMA 4. — Let u be harmonic in \mathbf{R}^{n+1}_+ and satisfy the condition

$$\sup_{y>0}\int_{\mathbf{R}^n}|u(x, y)|^p\,dx < \infty$$

for some p in the interval 0 . Then

(7) $\| \mathbf{N}(u_{\alpha}; a, k) \|_{p} < \infty$

for all a > 0, k > 0, where $u_{\alpha}(x, y) = u(x, y + \alpha)$ for $\alpha > 0$. Furthermore, there exists $a k_0 > 0$ such that for all $k \ge k_0$ we have

(8)
$$\| \mathbf{N}(u_{\alpha}; 2a, 2k) \|_{p} \leq C \| \mathbf{N}(u_{\alpha}; a, k) \|_{p}.$$

The constant k_0 depends on u, but C depends only on p and the dimension n.

Proof. — If $\lim_{k \to \infty} || N(u_{\alpha}; a, k) ||_{p} < \infty$ for some a > 0, then the same is true for 2a by Lemma 1. Also, (8) holds for k > 0 sufficiently large.

We now assume that $\lim_{k \to \infty} \| N(u_{\alpha}; a, k) \|_{p} = \infty$ for $a \leq \frac{1}{2}$. Consider the ball $B(x, \alpha/2)$ with center at $(x, \alpha/2)$, radius $3\alpha/2$. Then $B(x, \alpha/2)$ contains the cone $\Gamma(x; a, \alpha)$ and all points of $\Gamma(x; a, \alpha)$ lie at a distance of more than $(3/2 - 1/\sqrt{2})\alpha$ from the boundary of the ball $B(x, \alpha/2)$. Therefore, by Lemma 2,

$$|\operatorname{N}(u_{\alpha}; a, \alpha)(x)|^{p} \leq C_{p} \frac{1}{m(\operatorname{B}(x, \alpha/2))} \iint_{\operatorname{B}(x, \alpha/2)} |u_{\alpha}(s, y)|^{p} ds dy.$$

If we integrate both sides of the above inequality with respect to x, and use Fubini's theorem, we obtain

$$(9) \quad \int_{\mathbf{R}^{n}} |\operatorname{N}(u_{\alpha}; a, \alpha)|^{p} \leq C_{p} \sup_{0 < y < 3\alpha} \int_{\mathbf{R}^{n}} |u(x, y)|^{p} dx$$
$$\leq C_{p} \sup_{y > 0} \int_{\mathbf{R}^{n}} |u(x, y)|^{p} dx < \infty$$

That is, we have shown that $||N(u_{\alpha}; a, k)||_{p} < \infty$ for $k = \alpha$ provided $a \leq 1/2$. The same kind of argument shows that if $||N(u_{\alpha}; a, k)||_{p} < \infty$ for some $k < \infty$, then

(10)
$$\| N(u_{\alpha}; a, 2k) \|_{p}^{p} \leq \| N(u_{\alpha}; a, k) \|_{p}^{p} + C_{p} \sup_{y>0} \int_{\mathbf{R}^{n}} |u(x, y)|^{p} dx.$$

In fact, if

(11)
$$\begin{array}{ll} \mathbf{M}(u_{a};\,a,\,2k)(x) \\ = \sup \{ |u_{a}(s,\,y)| : (s,\,y) \in \Gamma(x;\,a,\,2k) - \Gamma(x;\,a,\,k) \} \end{array}$$

then

(12)
$$|N(u_{\alpha}; a, 2k)|^{p} \leq |N(u_{\alpha}; a, k)|^{p} + |M(u_{\alpha}; a, 2k)|^{p}$$
.

If B(x, 3k/2) is the ball centered at (x, 3k/2), then the « top half » of the cone $\Gamma(x; a, 2k)$, that is, the set $\Gamma(x; a, 2k) - \Gamma(x; a, k)$, is contained in the ball B(x, 3k/2),

and lies at a distance of $\left(\frac{3-\sqrt{5}}{2}\right)k$ from the boundary of the ball. Therefore, again by Lemma 1 and the argument leading to (9), we find that

$$\|M(u_{\alpha}; a, 2k)\|_{p}^{p} \leq C_{p} \sup_{y>0} \int_{\mathbf{R}^{n}} |u(x, y)|^{p} dx.$$

Therefore, (10) follows from this and inequality (12).

The argument to this point shows that $||N(u_{\alpha}; a, k)||_{p} < \infty$ for all k > 0 since this statement is true for $k = \alpha, 2\alpha, \ldots$ A slight amplification of the argument shows that $||N(u_{\alpha}; a, k)||_{p}$ is a continuous, increasing function of k with range equal to the interval $[0, \infty)$. Therefore, for some $k_{0} > 0$, we have

$$\| N(u_{\alpha}; a, k_0) \|_p^p = \sup_{y>0} \int_{\mathbf{R}^n} |u(x, y)|^p dx.$$

For any $k \ge k_0$, from (10) we have

$$\| \mathbf{N}(u_{\alpha}; a, 2k) \|_{p}^{p} \leq \| \mathbf{N}(u_{\alpha}; a, k) \|_{p}^{p} + \mathbf{C}_{p} \sup_{\substack{y > 0 \\ y < 0}} \int_{\mathbf{R}^{n}} |u(x, y)|^{p} dx \\ \leq (1 + \mathbf{C}_{p}) \| \mathbf{N}(u_{\alpha}; a, k) \|_{p}^{p}.$$

Finally, by Lemma 1, we may replace a by 2a and obtain

$$\| N(u_{\alpha}; 2a, 2k) \|_{p}^{p} \leq C_{p}^{\prime} \| N(u_{\alpha}; a, k) \|_{p}^{p}$$

The lemma is proved.

LEMMA 5. — Given D > 0 and $0 , let <math>f_i$, i = 1, 2, be a pair of functions that satisfy the inequality

(13)
$$\int |f_2|^p \leq \mathcal{D} \int |f_1|^p < \infty.$$

Then

$$\int |f_1|^p \ge 2 \int_{\{|f_4| > (2D)^{-1/p} | f_2|\}} |f_1|^p$$

Proof. Since $||f_1||_p < \infty$, either the conclusion of the lemma holds, or, with strict inequality, we have

$$\int |f_1|^p < 2 \int_{\{|f_1| \leq (2D)^{-1/p} | f_1|\}} |f_1|^p \leq \frac{1}{D} \int |f_2|^p \leq \int |f_1|^p,$$

which is a contradiction.

Given any point $(s, y) \in \mathbf{R}^{n+1}_+$, recall that $P^x_{s,y}$ is the measure associated with conditional Brownian motion with initial point (s, y) and terminal point $x \in \mathbf{R}^n$.

LEMMA 6. — Let B(x', y') be the ball in \mathbf{R}^{n+1}_+ with center at (x', y'), radius $\theta y', 0 < \theta < 1$, and with $|x' - x| \leq ay'$. If $|s - x| \leq ay, y \geq 2y'$, then

 $\mathbf{P}_{s, y}^{x}((x_{t}, y_{t}))$ hits $\mathbf{B}(x', y')) \ge \mathbf{C} > 0$

where C depends only on θ and a.

Proof. — Let $\tau = \inf \{t : y_t = y'\}$. The conditional measure associated with the random vector (x_{τ}, y_{τ}) is given by

where h_x is the Poisson kernel for \mathbf{R}^{n+1}_+ with pole at $x \in \mathbf{R}^n$. This formula may be obtained by a standard stopping time argument. The probability $\mathbf{P}^x_{s,y}((x_{\tau}, y_{\tau}) \in \mathbf{A})$ has a density with respect to Lebesgue measure on the hyperplane y = y'in \mathbf{R}^{n+1}_+ given by

$$q^{x}(w; (s, y), y') = C_{n} \frac{y - y'}{(|w - s|^{2} + |y - y'|^{2})^{\frac{(n+1)}{2}}} \frac{h_{x}(w, y')}{h_{x}(s, y)}$$

It follows that

$$\int_{\mathbf{S}(x', y')} q^x(w; (s, y), y') \, dw \geq \mathbf{C} > 0$$

where S(x', y') is the projection of B(x', y') on the hyperplane y = y'. (The constant C depends only on θ and a.) The integral represents the probability that the *n*-dimensional sphere S(x', y') is hit by a conditional path from (s, y) to x before the path hits the complement of S(x', y') on the hyperplane y = y'. Since this probability is smaller than the one we wish to estimate, the lemma is proved.

LEMMA 7. — Let u be a continuous function in \mathbf{R}^{n+1}_+ . Then

$$\sup_{\mathbf{y}>\mathbf{0}}\int_{\mathbf{R}^{\mathbf{n}}}\mathbf{P}_{\boldsymbol{x},\,\mathbf{y}}(u^{\boldsymbol{*}}>\lambda)\;dx \ \leqslant \ \mathbf{C}\;\sup_{\boldsymbol{k}>\mathbf{0}}\;m(\mathbf{N}(u\,;\,\boldsymbol{a},\,\boldsymbol{k})>\lambda).$$

Remarks. — This inequality is stated as part of Theorem 3 of [3] for the case n = 1. The proof may be extended without difficulty for n > 1, so we omit the details. It should be noted, however, that in Theorem 3 of [3], we assume that u is harmonic. As is clear from the proof, this assumption is used to obtain the converse inequality only.

We are now in a position to prove Theorem 2. First, we note that

$$\sup_{\mathbf{y}>\mathbf{0}}\int_{\mathbf{R}^n} \mathcal{E}_{xy}(|u^*|^p) \, dx \leq \mathcal{C} \sup_{k>\mathbf{0}}\int_{\mathbf{R}^n} |\mathcal{N}(u; \, a, \, k)|^p \, dx$$

where C depends only on a. This follows immediately by integrating the stronger estimate given in Lemma 7.

Now, we prove that

$$\sup_{k>0} \int_{\mathbf{R}^n} |\operatorname{N}(u; a, k)|^p dx \leq \operatorname{C} \sup_{y>0} \int_{\mathbf{R}^n} \operatorname{E}_{x, y}(|u^*|^p) dx$$

where C depends only on a and p. We may assume that the right hand side is finite, so that, in particular,

$$\sup_{y>0} \int_{\mathbf{R}^n} |u(x, y)|^p dx < \infty.$$

The hypothesis of Lemma 4 is satisfied, and therefore, we have

(14)
$$\| N(u_{\alpha}; 2a, 2k) \|_{p}^{p} \leq C \| N(u_{\alpha}; a, k) \|_{p}^{p}$$

with the right hand side finite for $\alpha > 0$. We now apply Lemma 5 with $f_1 = N(u_{\alpha}; a, k)$ and $f_2 = N(u_{\alpha}; 2a, 2k)$. The hypothesis of Lemma 5 is satisfied with the constant D = Cwhere C is given in Lemma 1, independent of a, α, m , and k. Let

$$G = \{x : N(u_{\alpha}; a, k)(x) \ge (2C)^{-1/p} N(u_{\alpha}; 2a, 2k)(x)\}.$$

From this and Lemma 3, we may conclude that

(15) G
$$\subseteq \left\{ x : D\left(u_{\alpha}; \frac{3a}{2}, \frac{3}{2}k\right)(x) \leq CN(u_{\alpha}; a, k)(x) \right\}$$

for another constant C independent of a, α, m , or k. Fix a point $x \in G$ and consider the cone $\Gamma(x; a, k) = \Gamma$. We may

select a point $(x', y') \in \Gamma$ and a ball B(x', y') with center (x', y'), radius $\theta y'$ such that $|u_{\alpha}(s, t)| \geq \frac{1}{4} N(u_{\alpha}; a, k)(x)$ for every point $(s, t) \in B(x', y')$. This may be done as follows: Choose $(x', y') \in \Gamma$ so that $|u_{\alpha}^{*}(x', y')| > \frac{1}{2} N(u_{\alpha}; a, k)(x)$. Since $x \in G$, we know (15) holds so that

$$t|\nabla u_{\alpha}(s, t)| \leq CN(u_{\alpha}; a, k)(x)$$

for all points (s, t) in a ball of radius $\theta y'$, centered at (x', y'), and contained in the cone $\Gamma\left(x; \frac{3a}{2}, \frac{3}{2}k\right)(x)$. The constant θ depends only on the angle a, at this point; we may assume $\theta < \frac{1}{2}$. By the mean value theorem,

$$|u_{\alpha}(s, t) - u_{\alpha}(x', y')| \leq 2CN(u_{\alpha}; a, k)(x) \frac{(|x' - s|^2 + (y' - t)^2)^{\frac{1}{2}}}{y'}$$

for all points $(s', t') \in B(x', y')$. Now choose θ so that $8\theta C < 1$; it follows from the above inequalities that

$$|u_{\alpha}(s,t)| \geq |u_{\alpha}(x',y')| - |u_{\alpha}(s,t) - u_{\alpha}(x',y')| \geq \frac{1}{4} \operatorname{N}(u_{\alpha};a,k)(x)$$

for all $(s', t') \in B(x', y')$ with radius $\theta y'$.

If we now apply Lemma 6 to B(x', y'), we obtain

(16)
$$P_{s,y}^{x}\left(u_{\alpha}^{*} \geq \frac{1}{4} \operatorname{N}(u_{\alpha}; a, k)(x)\right) \\ \geq P_{s,y}^{x}((x_{t}, y_{t}) \text{ hits } B(x', y')) \geq C > 0$$

for $x \in G$, $|s - x| \leq ay$, $y \geq 2y'$. Notice that $y' \leq k$, so points (s, y) such that $|s - x| \leq ay$, $y \geq 2k$ satisfy the above requirements. The last restriction, $y \geq 2k$, prevents us from making a direct estimation of integrals from the probabilities (16). To overcome this obstacle, we cut into G in the following way: Let R be chosen large enough so that $G_R = G \cap \{|x| \leq R\}$ satisfies

(17)
$$\int_{\mathbf{R}^n} |\operatorname{N}(u_{\alpha}; a, k)(x)|^p dx \leq 2C \int_{\mathbf{c}_{\mathbf{R}}} |\operatorname{N}(u_{\alpha}; a, k)(x)|^p dx$$

where C = C(14). With this choice of R, let y_0 be chosen so that $y_0 \ge 2k$ and such that each point (s, y_0) in the *n*-dimensional ball $|s| \le \frac{a}{2} y_0$ is contained in the cone $\Gamma(x; a, y_0)$ for every x such that $|x| \le R$. In particular, since $y_0 \ge 2k$, the points in the ball $\left\{ (s, y_0) : |s| \le \frac{a}{2} y_0 \right\}$ satisfy the requirements of inequality (16) for every $x \in G_R$. Let E_{s,y_0}^x be the conditional expectation corresponding to P_{s,y_0}^x and $\chi_{G_R}($) the indicator function of the set G_R ; we have

$$\begin{split} \mathbf{E}_{s,\,y_0}(|\,u_{\alpha}^{*}|^{\,p}) &= \mathbf{E}_{s,\,y_0}(\mathbf{E}_{s,\,y_0}^{x}(|\,u_{\alpha}^{*}|^{\,p})) \\ &\geqslant \mathbf{E}_{s,\,y_0}(\mathbf{E}_{s,\,y_0}^{x}(|\,u_{\alpha}^{*}|^{\,p})\chi_{\mathbf{G}_{\mathbf{R}}}(x)) \\ &\geqslant \mathbf{C}\mathbf{E}_{s,\,y_0}(|\,\mathbf{N}(u_{\alpha};\,a,\,k)(x)|^{\,p}\chi_{\mathbf{G}_{\mathbf{R}}}(x)) \\ &= \mathbf{C}\int_{\mathbf{R}^{\mathbf{n}}}\chi_{\mathbf{G}_{\mathbf{R}}}(x)|\,\mathbf{N}(u_{\alpha};\,a,\,k)(x)|^{\,p}\frac{y_0}{(|s-x|^2+y_0^2)^{(n+1)/2}}\,dx. \end{split}$$

Therefore,

$$\begin{split} \sup_{\mathbf{y}>0} & \int_{\mathbf{R}^{n}} \mathbf{E}_{s,\,\mathbf{y}}(|\,u_{\alpha}^{*}|^{\,p}) \, ds \, \geq \, \int_{|s| \leq \frac{\alpha}{2} \, \mathbf{y}_{0}} \mathbf{E}_{s,\,\mathbf{y}_{0}} \, (|\,u_{\alpha}^{*}|^{\,p}) \, ds \\ & \geq \, \mathbf{C} \, \int_{|s| \leq \frac{\alpha}{2} \, \mathbf{y}_{0}} \int_{\mathbf{R}^{n}} \chi_{\mathbf{G}_{\mathbf{R}}}(x) |\, \mathbf{N}(u_{\alpha};\,a,\,k)(x)|^{\,p} \, \frac{y_{0}}{(|s\,-\,x|^{\,2}\,+\,y_{0}^{2})^{\frac{(n+1)}{2}}} \, dx \, ds \\ & \geq \, \mathbf{C} \, \int_{\mathbf{R}^{n}} \chi_{\mathbf{G}_{\mathbf{R}}}(x) |\, \mathbf{N}(u_{\alpha};\,a,\,k)(x)|^{\,p} \, dx \\ & \geq \, \mathbf{C} \, \int_{\mathbf{R}^{n}} |\, \mathbf{N}(u_{\alpha};\,a,\,k)(x)|^{\,p} \, dx. \end{split}$$

Here we have used Fubini's theorem, inequality (17), and the fact that $y_0 \ge 2R$ and $|s| \le \frac{a}{2}y_0$ implies

$$\frac{y_0}{(|s-x|^2+y_0^2)^{\frac{(n+1)}{2}}} \simeq \frac{1}{y_0^n}.$$

In summary, we have shown that

$$\sup_{y>0} \int_{\mathbf{R}^n} \operatorname{E}_{s, y}(|u_{\alpha}^*|^p) \, ds \geq \operatorname{C} \int_{\mathbf{R}^n} |\operatorname{N}(u_{\alpha}; a, k)(x)|^p \, dx$$

for $k \ge k_0$ and all $\alpha > 0$. By successive applications of the

monotone convergence theorem, we finally conclude that

$$\sup_{\boldsymbol{y}>\boldsymbol{0}}\int_{\mathbf{R}^{n}} \mathrm{E}_{\boldsymbol{s},\,\boldsymbol{y}}(|\,\boldsymbol{u^{*}}\,|^{\,p})\,d\boldsymbol{x} \geq \mathrm{C}\sup_{\boldsymbol{k}>\boldsymbol{0}}\int_{\mathbf{R}^{n}}|\,\mathrm{N}(\boldsymbol{u}\,;\,\boldsymbol{a},\,\boldsymbol{k})(\boldsymbol{x})|^{\,p}\,d\boldsymbol{x}.$$

Theorem 2 is proved.

BIBLIOGRAPHIE

- [1] J. M. BRELOT and L. DOOB, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble), 13, (1963), 395-415.
- [2] D. L. BURKHOLDER and R. F. GUNDY, Distribution function inequalities for the area integral, Studia Math., 44, (1972), 527-544.
- [3] D. L. BURKHOLDER, R. F. GUNDY and M. L. SILVERSTEIN, A maximal function characterization of the class H^p, Trans. Amer. Math. Soc., 157 (1971), 137-153.
- [4] A. P. CALDERÓN, On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc., 68, (1950), 47-54.
- [5] A. P. CALDERÓN, On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc., 68, (1950), 55-61.
- [6] L. CARLESON, On the existence of boundary values for harmonic functions in several variables, Arkiv för Mathematik, 4, (1961), 393-399.
- [7] C. CONSTANTINESCU and A. CORNEA, Über das Verhalten der analytischen Abildungen Riemannscher Flachen auf dem idealen Rand von Martin, Nagoya Math. J., 17, (1960), 1-87.
- [8] J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France, 85, (1957), 431-458.
- [9] J. L. Doob, Boundary limit theorems for a half-space, J. Math. Pures Appl., (9) 37, (1958), 385-392.
- [10] C. FEFFERMAN and E. M. STEIN, HP-spaces in several variables, Acta Math., 129, (1972), 137-193.
- [11] G. H. HARDY and J. E. LITTLEWOOD, Some properties of conjugate functions, J. fur Mat., 167, (1931), 405-423.
- [12] J. LELONG, Review 4471, Math. Reviews, 40, (1970), 824-825.
- [13] J. LELONG, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup., 66, (1949), 125-159.
- [14] J. MARCINKIEWICZ and A. ZYGMUND, A theorem of Lusin, Duke Math. J., 4, (1938), 473-485.
- [15] H. P. MCKEAN Jr., Stochastic integrals, Academic Press, New York, 1969.
- [16] L. NAĪM, Sur le rôle de la frontière de R. S. Martin dans la Théorie du potential, Ann. Inst. Fourier (Grenoble), 7, (1957), 183-285.
- [17] I. I. PRIVALOV, Integral Cauchy, Saratov, 1919.
- [18] D. SPENCER, A function-theoretic identity, Amer. J. Math., 65, (1943), 147-160.

- [19] E. M. STEIN, On the theory of harmonic functions of several variables II. Behaviour near the boundary, Acta Math., 106, (1961), 137-174.
- [20] E. M. STEIN and G. WEISS, On the theory of harmonic functions of several variables I. The theory of HP-spaces, Acta Math., 103, (1960), 25-62.
- [21] J. L. WALSH, The approximation of harmonic functions by harmonic polynomials and harmonic rational functions, Bull. Amer. Math. Soc., 35, (1929), 499-544.

Manuscrit reçu le 8 décembre 1972. Accepté par J. Neveu,

D. L. BURKHOLDER,

Department of Mathematics, University of Illinois, Urbana, Illinois 61801 (USA)

and

R. F. GUNDY,

Statistics Center, Rutgers University, New Brunswick N.J. 08903 (USA).