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WEAKLY SEMIBOUNDED
BOUNDARY PROBLEMS

AND SESQUILINEAR FORMS
by Gerd GRUBB

In this paper and its successor [8] we study boundary value
problems for systems A of linear partial differential operators
on a manifold Q with boundary F.

Let A be a q X ^-system of differential operators of order
2m, let pu denote the Cauchy data {Yo^? • • • ? Y2m-lu} °f u

with respect to A, and let B be a system of differential
operators on F; then AB denotes the realization of A with
domain

D(AB) = {u e H^Qppu = 0}.

(A and B actually operate on sections in vector bundles over
i2, resp. r.) The boundary condition Bpu = 0 is assumed
to be normal in an appropriate sense. One is interested in the
coerciveness inequalities

(0.1) Re(Au, u) ^ cjull^ - Co||u||§, u e D(Aa),

for s e [0, m] (Sobolev norms); they all require the validity
of a weaker inequality

(0.2) Re(Au, u) ^ - c\\u\\2^ u e D(AB),

which we call weak semiboundedness. It was shown in [6] how,
for the case where A is scalar and elliptic, (0.1) with s = m
(Garding's inequality) is characterized by two conditions on
A, B : (i) a condition on the full operators B and A at F,
necessary and sufficient for (0.2); (ii) a condition on the prin-
cipal symbols of A and B, related to the condition by
Agmon [1].
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The present paper is devoted to a thorough study of (0.2)
and its analogue for systems of « mixed order », without any
a priori assumptions on A; e.g. A may degenerate at F.
The results and notations will be applied to elliptic systems
in [8], where we treat (0.1) and other properties along the
lines of [5], [6].

In Chapter 1 we introduce notations, and set up a Green's
formula and the « halfways » Green's formulae associating A
with sesquilinear forms. Furthermore we define normal
boundary conditions; here a class of triangular systems of
differential operators on F play a central role.

In Chapter 2, (0.2) is characterized by an explicit condition
on A and B, and it is proved that (0.2) is necessary and
sufficient for the existence of a sesquilinear form a(u, v) on
?(0) X ?(0), for which

(Au, ?) == a(u, c), all u, v e D(Aa)$

(Theorem 2.4), this determines the boundary problems ente-
ring in variational theory. A number of alternative explicit
conditions for (0.2) are given, in particular for the case where
F is noncharacteristic for A; these will be of use in [8].
They are finally used to show that when the « total number
of boundary conditions » equals mq, then (0.2) holds precisely
when the space of Dirichlet data for AB equals the space of
Dirichlet data for the formally adjoint realization A^; and
in that case A.y is also weakly semibounded.

Chapter 3 treats the systems A = (A^(^ , where
A,( is of order m, + ^i; {^i? • • - 5 ^q} denoting a set of not
necessarily equal nonnegati^e integers. Let

m = max {mi, . . . , m<J, and m = mi + • • • + rn^

For such systems, a workable definition of Green's formula
and of normal boundary conditions does not seem to have
been available (cf. [11, p. 241]), the trouble being, roughly
speaking, that there are 7h + rnq Cauchy data, on which one
usually wants to impose m boundary conditions (less than
half). We here present such definitions, and proceed to charac-
terize the analogue of (0.2):

(0.3) Re(Au, u) > - c(||uj|^ + ... + ||ujiy
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(for u = {ui, . . ., Uq} satisfying a normal boundary condi-
tion). The whole discussion in Chapter 2 is shown to generalize
to these systems. (In particular, this determines the normal
boundary problems to which de Figueiredo [9] can be applied
in the study of coerciveness.)

As an extra benefit we find a Green's formula

(Au, ^) — (u, A'^) = <%u, (3°^) — <(B°u, x^>

(valid for all smooth u and ^), where [3°i6 consists of the
m Dirichlet data of u, and where, when F is noncharacte-
ristic for A, x and K are surjectwe trace operators each
consisting of ~rh more data. Boundary conditions for A
that can be expressed by differential operators on (B°u and
xu (the « reduced Cauchy data ») can be treated much like the
2m-order case. (For instance, it is possible to extend techniques
of [11] and of [10] to such boundary conditions.) We show
that the normal boundary conditions for which (0.3) holds,
i.e. all normal boundary conditions arizing in connection with
sesquilinear forms, are indeed differential boundary conditions
on {(B°u, xu}.

The author is grateful to G. Geymonat for having called
our attention to the above systems of mixed order.

Plan of the paper.

CHAPTER 1. —— NOTATIONS AND PRELIMINARIES.
1.1. Green's formula.
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1.4. Normal boundary conditions.
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ORDER.

2.1. Characterisation of weak semiboundedness.
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2.3. Existence and uniqueness of B11 for given B°°.
2.4. The adjoint boundary condition.

CHAPTER 3. — SYSTEMS OF TYPE (m^ — m^\ (^
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CHAPTER 1

NOTATIONS AND PRELIMINARIES

1.1. Green's formula.

Let Q. be an n-dimensional compact riemannian (1) ma-
nifold with boundary F and interior ti == i2\r. Let E be
a C°° complex hermitian vector bundle over Q with fiber
dimension q > 1. Then the spaces of square integrable
sections L^E), L^E]?), and the Sobolev spaces H^(E),
IP(E|r) (5 e R), H^(E) {s ^ 0) may be defined (cf. e.g. [11]),
and we denote inner products over 0. by ( , ) and inner
products (and dualities) over F by ( 5 ). The space of C°°
sections with compact support in £1 will be denoted Co°(E).

We now introduce trace operators etc., essentially following
Hormander [10, p. 192-193]. Assume, as we may, that t2 is
imbedded in an n-dimensional riemannian manifold S without
boundary, so that E is the restriction of a vector bundle £
on S. Moreover, let n{x) denote the vector field consisting
of the unit tangent vectors to the geodesies normal to F and
oriented towards 0.; it is defined in a neighbourhood Sg of F
consisting of the points in S with geodesic distance
— e < t < s from r, s sufficiently small. Then one may
choose a first order differential operator D^ in E whose
symbol equals n(x)' S tor x e Sg (^ e the cotangent bundle
T*(S)); the so-called normal derivative. We then define the
trace operators

Y,:u->(D^)|r , A - = 0 , 1 , 2, . . . ,

(1) When Q, is an yi-dimensional C°° manifold, it may always be provided with
an appropriate riemannian structure; we assume this has been done on beforehand,
since we want to include the case ^ <= R". The compactness of Cl is not used in
any essential way; all estimates are local.

10
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for u e C°°(E) or C°°(E); recall that Yk ls continuous from

H^E) into H'^^EIr) tor all s > k + 1 (cf. e.g. [11]).
2i

First order differential operators P in E with principal
symbol a(x}^ satisfying a{x)±.n{x) for x e Sg, can be said
to act along the parallel surfaces I\ of F (F( consisting of
the points in S with geodesic distance ( from F; ( e ]— s,
s[), since for such operators, P^lr^ is independent of the choice
of the extension 9 e C^E) of 9 e (^(EI^). We then denote
P^jp^ == Pq>. Higher order operators acting along the 1̂
are obtained a.s sums of products of first order operators
acting along I\.

For f e C^E) denote by />0 the section that equals f
over Q. and equals 0 over S\ti. Let 8 denote the distri-
bution f\—>- jp Yo/da. Then one has the formulae

(1.1) D^o^D^-^/^ and P^o) = (P^o,

for ^^(E), when P acts along the I\, |(| < e. We shall
mainly use these formulae on the following forms :

(1.2) (D^ ^ - {u, W = i{w ̂  u, ^ e C^E),

where D^ is the formal adjoint of D^; note that D^ — D^
is of order zero (for the symbol of D^ is real).

(1.3) (Pu, ̂  - (u, P'P) =0, u, v e C°°(E),

where the formal adjoint P' of P again acts along the I\.
Let A be a C°° differential operator in E of order r > 0.

In Sg it may be decomposed uniquely

(1.4) A - 1 A.D;,
^=0

where the A; are differential operators of order r — I acting
along the I\, \t\ < e; this is seen e.g. by induction from the
first order case. Note that A^ is of order 0, so is locally
multiplication with a q X ^-matrix; globally it may be viewed
as a vector bundle morphism in E. We shall identify zero
order differential operators with morphisms in this way
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throughout the paper. Clearly, one has

Remark 1.1. — F is non-characteristic for A at a point
x e r if and only if A.^{x) is bijective.

Let M be the set of integers

(1.5) M = { 0 , 1 , . . . ,r-l},

then the Cauchy boundary operator p for A is defined as

(i-6) p == {To? • • • ? Yr-i} == {Y/cLeM,

usually considered as a column vector. With A' denoting the
formal adjoint of A, we have Green's formula

LEMMA 1.2. — For all u and v e H^E),

(1.7) (Au, ^ - (u, A^) = <apu, p^>

where QL = (^fc^/ceM is a system of differential operators GL^
in Ejr of orders r — / — k — 1, with

OL^ === iA^+i 4- lower order operator

for r — j — k — 1 > 0, and OL^ = 0 /^ r — / — /c — 1 < 0.

Proof. — It follows from (1.1) that tor each Z, each
/•eC^E)

A,DU/10) = (AW)O - iA.^D^-WS),

i.e., with u-/*!^, (/ e C^E),

(u, (A,D^)^) = (A,D^, ^ -i^^u, ̂ (D:^-1-^;^).
fc==0

This gives

(A,D^, „) - (u, (A,D^) = ^S<(A, + S^Y^, T^-i-^),
fc=0

where the S^ are differential operators of order < r — I in
E[r? stemming from commutation and taking adjoints.
Collecting the terms we obtain (1.7).

CL is of type (— /c, — r + 1 + J)j,keM in the terminology of
Hormander [10, p. 135] (which we shall use throughout); i.e.
it is continuous from ]J H^E]?) into n H^+^Ejr) tor

A € M J'GM
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all a e R. Note that it is skew-triangular, the entries in the
second diagonal being equal to the zero order operator A^.
By Remark 1.1, 0L is thus invertible if and only if F is non-
characteristic for A; dl-1 is then also a skew-triangular system
of differential operators.

1.2. The even order case; sesquilinear forms.

In this section we assume r = 2m [m integer ^ 1), and
establish an alternative version of (1.7), and the « halfways »
Green's formulae.

Define now the subsets Mo and Mi of

M= {0, 1, ...,2m- 1}
by

(1.8) Mo= {0, . . . ,m-l}, Mi= {m, . . . , 2m- l} ,
so M = Mo u Mi.
The Cauchy boundary operator is split into the Dirichlet and
the Neumann boundary operators y s^d v

(1.9) Y = {Y/cLeM,, ^ == KLeM,, SO p = {y , v}.

The matrix 0L is split in four blocks
/^OO d01\

(1.10) ^(^o "o)-

where a82 = (Cl^eM^eM., clearly Cl11 = 0. Then (1.7)
takes the form

(1.11) (AM, P) — (u, A'^) = ̂ ""YU, yp>
+ '̂"•VM, YC> + <CctloTU, VP>,

for u, c 6 H2'"(E).

DEFINITION 1.3. — By a sesquilinear form a{u, v) on H'"(E)
we shall understand an integro-differential form

(1.12) a(u, v} = 2 (Q.M, P.^),
iei

wAere the Q^ 072^ P; ar^ C00 differential operators in E o/*
orders ^ m, indexed by a finite index set I; a(u, ^) 15 defined
and continuous for {u, ^} e H^E) X ^(E).
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a(u, ^) is said to be associated with A if

(1.13) a(u, v} = (A^, P), for all u, ^ e C^(E),

i.e., if A = S P^Qi.
— l e l

When t2 c: R^ (1.12) may of course be written in the
usual way: a(u, P) == S|ai, |p|<^(aapD?u, D^).

LEMMA 1.4. — Le( a(u, ^) &<? a sesquilinear form on H'"(E)
associated with A. Then for all u G H^E), v e H^E),

(1.14) (Au, ^) = a(u, ^) + <(9Lolvu, y^> + <^T^ Y^>

wAere ^ is an m X m-system of differential operators in E|r,
of type (— /c, — 2m + 1 + /)̂ M,.

Proo/*. — Applying Green's formula (1.7) to each P[ and
(1.4) to each Q,, we find

(Au, ^) - a(u, (.) = S [(P;Q^, ̂  - (Q^, P^)]

= S <^yQ^, Y^>
iei

= <^pu, y^> = <^ivu, y^> + <^2T^ Y^>

where ^ is of type (— /c, — 2m + 1 + /)^, ^M, and ^
is of type (— A-, — 2m + 1 + /)^ ^M,. In a similar way

(u, A7^) — a(u, v) = <yM, ̂ v^ + <yu, ̂ Y^.

For any given y, ^ e C^EIr)" there exist u, v e C°°(E) with
vu == <p, y^ := 0, y^ == ip. Inserting these, we get, by compa-
rison with (1.11)

<^<p, +> = (Au, P) - (u, A'^) = <0L01^, +>,

whence î = 0L01.

We shall now show that the operator y in (1.14) can take
any value.

LEMMA 1.5. — Let y be a first order differential operator in
E[p. Then there exists a sesquilinear form ^(u, ^) on HP(E)
such that

(1.15) s(u, ̂  == < y^u, Yo^> /b^ ^, ^ e W(E):
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for any such form the operator S in E associated with s(u, v)
is zero.

Proof. — Let y be a. first order operator in E that acts
along the I\ for \t\ < e, so that SP acts like y on
r = Fo. Then by (1.2) and (1.3),

<^Yo^ Yo^> == <Yo^ Yo^>
=-i(D^u,^)+^^D»
= - i{yD^ ^ - ,([D,, y]u, ̂  + ̂ u, D»
== (~ iD,u, ^'^ - (i[D^ y}u, ̂  + (^^, D»,

which is a sesquilinear form on H^E), since the commutator
[D,, y} = D^y — ^D, is of first order. Since any form
s(u,^) satisfying (1.15) vanishes for ueCo°°(E), the associated
operator S in E is zero.

PROPOSITION 1.6. — Let y = (^AfceM, be a system of
differential operators in E|r, of type (— k, — 2m + 1 + j)j^e^
Then there exists a sesquilinear form $(u, v) on ^(E) so that

(1.16) s{u, v} = <^y^ Y^> /or u, (/ e H^E),

and the associated operator S in E is zero.

Proof. — The proof is reduced to the preceding case as
follows :

Let {/, /c} e Mo X MO. y^ is of order 2m — 1 — / — k
and it may be written as a finite sum

y^ = s PAR.,
iei

where the P, are of order m — 1 — /, Q; of order 1, R, of
order m — 1 — /c. Now, with notation as in the preceding
proof,

<^Y^, Y^> = S <PAR,Y^, Y^>
ieiiei
2
iei
S

iCi

= S <Q.RiY^, P;Y^>
iei

- S <Q.YoR.D^, YoP;D^>,
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where R^D^ and P^D^ are differential operators in E of
order m — 1.

COROLLARY 1.7. — For any system y of type

(-^ -2m+l+/)^M,

of differential operators in Ejr? there exists a sesquilinear form
a(u, v} on Hm(E) such that

(1.17) (Au, P) = a(u, P) + ̂ ^vu, YU> + <^y^ Y^>,

/or aM u e H^E), v e H^E).

Remark 1.8. — The results of this section generalize imme-
diately to the following situation : Let A be of order r = s-\-t^
s and t nonnegative integers. Let M()( == {0, . . ., t — 1},

Mu= {t, ...,5+^-1}, Mo,- {0, ...,5-1},
MU = {^ . . . , 5 + ( — 1},

and set
Po. == {Y/cLeM,, ^^^ == (^k)yeM,, fc6M,,,

etc. Then (1.7) may be written

(Au,^) - (u, A'P)
= «a^po,u, po^> + ̂ ^puu, po^>

+ <^to(Po^, Pî >.

By a sesquilinear form on H^E) X IP(E) we understand an
expression (1.12) where the Q^ are of order ^ t and the P,
are of order < 5, it is associated with A when (1.13) holds.
One finds that for such forms,

(1.18) (Au, P) = a(u, ̂  + ̂ ^puu, po^>
+ <^Po^, Po^>

for all u e H^E), ^ e H^E); where ^ can be any s X ^-sys-
tem of differential operators in Ejr, of type

(— n? — r ~t~ 1 ~r /)jeM^, keMoc

Note that OL0^11 is a quadratic submatrix of (9L, its second
diagonal being contained in the second diagonal of dt; so
it is invertible if and only if F is non-characteristic for A.
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1.3. Triangular differential operators.

In this section we study a class of differential operators that
are fundamental in our treatment of boundary conditions.

Let N be a finite subset of N u {0}, the non-negative
integers; the number of elements in N is denoted |N|. For
each / e N there are given two hermitian vector bundles Fj
and Ej over F, Fy of fiber dimension pj ^ 0 and Ej of
fiber dimension qj ^ 0. (We shall use some elementary facts
about vector bundles, for which we refer e.g. to Atiyah [3].)
For each pair {/, k} e N X N there is given a differential
operator B^ from E^ into F^, of order / — k $ the conven-
tion that differential operators of negative order are zero is
used throughout; of course B^ is also zero if pj or q^ is 0.
The Bjfc form a matrix (or system) of differential operators

D = (H/TO./.fceN

of type ( — / c , — / ) j . k e N ? i-e. B is continuous from JJ Vill~k(E^)to n H^TO forau a e R keM
J G M

B is triangular, since B^ == 0 for / < k. We define its
diagonal part B^ and its subtriangular part B, by

(1.19) B,== (W,)^^ B ,=B-B , ;
a matrix will be said to be subtriangular when the diagonal
and all elements to one side of it are zero. The elements B^
in the diagonal are differential operators of order 0, so they
may, as previously remarked, be regarded as vector bundle
morphisms (from E^ to F/,); B^ is also a morphism, from
© E^ into © F/,.

f c G N f c € N

PROPOSITION 1.9. — Assume that B^ is surjectwe (so in
particular, p^ ^ q^ all k e N). Then the morphism

(1.20) C,-B;(B^)-i
is a right inverse of B^. Moreover, the differential operator

|N|

(1.21) C = C, S (- B/^
fc=0
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is a right inverse of B; it is a system C == (C^)y^gN of type
(— A*, — /)j,keN? ^ C/fc being differential operators from F^
into Ey. /n particular^ B 15 surjectwe from ]J H^^E^) to
11 H^F )̂ /or aH a e R. fceN

JEN

Proof. — The first statement follows from the corresponding
statement for vector spaces. (Since B^ is a diagonal matrix,
one actually treats each B^ separately, and C^ is a diagonal
matrix with C^ == B^(B^B^)"1.) Now observe that B^C^
is a subtriangular differential operator in @ F/? since B,

./(EN
is subtriangular and C^ is diagonal. Thus B^C^ is nilpotent,
its |N[ — t h power being zero. Defining C by (1.21), we then
have

BC = (B, + B,)(C, ~ C,BA + CACAC, - • • • )
= B^Crf — B^CACd + BrfCACACd — ...

+ B,C, - B.CAC, + • • -
= I,

since B^Cd == I (the identity in Q) F/Y Clearly C is a
\ ^ ^ yeN -7

system of the described type; its continuity properties imply
the surjectiveness of B.

LEMMA 1.10. — Assumptions of Proposition 1.9. For each
k e N, the kernel and image of the morphisms B/^. resp. B^,

(1.22) Zk == ker B^ and R/, == im B^

are orthogonal subbundles of E^, o/* dimension q^ — p^ re5p.
pfc. Moreover^

(1.23) CfcfcB^ == B^^B^B^^^Bfcfc == B^C^ == (C^B^)*,

and i( 15 (/ie orthogonal projection of E^ onto R/c; and I — C^B/^
i5 (/ie orthogonal projection of E^ onto Z^. Altogether^
C^d === B3C^ and is the orthogonal projection of 0 E^ onto

f c e N .im B$ == (E) Rk, and I — C^B^ 15 (Ae orthogonal projection of
f c E N

© E/, onto ker B^ == © Z^.
k e N fceN
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Proof. — Follows from the corresponding evident state-
ments for vector spaces. (I denotes the identity in various
spaces, its meaning should be clear from the context.)

When Brf is surjective (so B^ is injective) it follows
from Proposition 1.9 that B* is injective with left inverse C*.
However, we do not have equality between CB and B*C*
since CB is lower triangular and B*C* is upper triangular
(unless of course (CB), = 0). We may define C = B*(BB*)-1,
which does satisfy CB = B*C* in better analogy with
Lemma 1.10. But C will usually not be a differential operator
but a pseudo-differential operator, and not triangular, so we
prefer to work with C as right inverse of B. Note that the

(N|
subtriangular part of C is C -— C^ = C^ S (— B^C^.

We introduce the spaces (for a e R) : fc=l

Z«(B) = Sy e II H^'^lBy = O J ;
(1.24) ( k6N )

Z(B)= (J Z^B);
Rae

R«(I - CB) = (I - CB) n H'-"""^);
(1.25) kept

R(I -CB)== (J R^I- CB);
aep

(1.26) R^B*) - B* n H^'^F,); R(B*) = (J R^B*);
J € = N aeR

Z-(I - B^C*) = S9 6 n H^-^ly - C^B^ = 0? ;
( 7eN )

(1.27) Z(I - B^C*) = U Z^I - B^C*).
aeR

These definitions apply similarly to B^ and C^, viewed
as differential operators. We also have, with the notation (1.22)

(1.28) Z^B,) = i, n Ha-fc^(Z,), Z(B,) = i^( © Z,\,
k e N V f c e N /

(1.29) R^BS) - ̂  n ̂ '"^(RJ, R(BS) = ̂  ̂ 7 © R,\,
f c G N V f c e N 7

where iz and ^ denote the injections © Z/, (^ © E^ resp.
k 6 N fceN

© RkC © E^ (they may be omitted in less precise state-
f c G N f c G N
ments).
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LEMMA 1.11. — Assumptions of Proposition 1.9. For any
a e R,

(1.30) Z^B) = R^(I - CB), Z(B) = R(I - CB),
(1.31) R^B*) = Z^I - B^C*), R(Bslt) == Z(I - B^C*).

Proo/*. — When Bcp = 0, 9 = 9 — CBy. When
9 == (I — CB)^, B<p = B^ - BCB+ = B+ — B+ == 0. This
proves (1.30).

When <p = B*^,

(I - B*C*)<p = B^p - B*C*B^ = B*^ - B*^ == 0.

When (I - B*C*)(p = 0, 9 = B*(C*9). This proves (1.31).

LEMMA 1.12. — Assumptions of Proposition 1.9. I — CB,
and I + CrfB^ are each others inverses. Moreover, for any a e R

(1.32) Z»(B) = (I - CBJZ^B,), Z(B) = (I - CB.)Z(B,).
. 33. R«(B») = (I + B^R^ES),
(i.oo) ^g^ = (I + B:CS)R(B;).

Proof. — Since C^B, is subtriangular, I + C((B, has the
inverse

|N|

I - CA + (CA)2 - • • • = I - C, S (- B^^B, = I - CB,,

cf. (1.21). Now

B<, = B - B, = B - BCB, = B(I - CB,),
B = B, + B, = B, + B^B, = B,(I + CA),

from which (1.32) immediately follows. (1.33) follows from the
adjoint identities

B^ = (I - B^C^B*, B* = (I + B:C;)B^.

Combining this lemma with (1.28) and (1.29) we see how
Z°'(B) and R^B*) may be « parametrized » by full Sobolev
spaces over bundles :

(1.34) Z»(B) == (I - CB,)iz 5 H'""'̂ ),
k G N

(1.35) R«(B*) == (I + B:C^B S Ha-k"^(R,),
fceN
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(similar statements for Z(B) and R(B*)), where (I — CB^)i'z
and (I + B^C^R are injective differential operators. Note
that R^B*) may also be parametrized by

(1.36) R^B*) = B* S H^'^F,),
7 € N

where B* is injective.
Surjectiveness of B does not in general imply surjectiveness

of Bd. However, it does so in a special case :

LEMMA 1.13. — Assume that F^ == E^ for all k e N. Then
if B is surjecti^e from ]_J H^^E^) to n H^E,) for some

f c € N J G N
a 6 R, the diagonal part B^ is an isomorphism {so B is
bijective for all a).

Proof. — We have

N = {/Ci, . . ., kp} (where 0 < A-i < ... < kp).

For 1 < g ^ p we denote by B^ the submatrix of B,
(ftjk)j\ke\k^...,k \- Since B is lower triangular and surjective,
all the submatrices B9 are surjective. In particular, B1 == B^
is a surjective morphism from E^ to E^, thus an isomor-
phism. We proceed by induction: Assume that B7""1 has
bijective diagonal part; by Proposition 1.9, B7"1 is bijective.
Let^ =^{0,^ ... 0, tKJ (? elements), ^ e H^^E^). Since
B9 is surjective, there exists

^=={9,, , ...^JenH-^EJ,
r==l

for which B^99 = ̂ . But since B^~1 is injective,

9fc, = • • • = 9/c^ = 0.

Then ^^ == B^ ^ 9^ . This proves that B/( ^ is a surjective
morphism from E^ to E^ , and thus bijective. So B^ has
bijective diagonal part.

Remark 1.14. — All calculations generalize immediately to
systems B, where the B^ with j > k are pseudo-differen-
tial operators of orders / — /c, but where we still have that
the B^ are morphisms and the By^ with j' < k are zero.
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1.4. Normal boundary conditions.

We shall now define the boundary value problems to be
studied in Chapter 2 : Let A and E be as in section 1.1. For
each / e M == {0, . . ., r — 1} there is given a hermitian
bundle Fy over F of dimension pj ^ 0. There is given a
matrix B = (B^)y ^M of differential operators B^ from
E[r to ¥j, of type ( — A - , — jO^gM (as in section 1.3).
Then B defines the homogeneous boundary condition

(1.37) Bpu = 0

or, equivalently: ^ B^y/c^ = 0 for all / e M. We shall
k^J

study the boundary value problem

A.U = /*, Bpu = 0,

or rather the realization AB of A defined by

(1.38) AB : u ̂ —^ Au, D(Ae) = {u e H^Eppu = 0}.

The systems of boundary conditions usually studied can be
put in the form (1.37); we have just grouped together the
conditions of the same normal order (like Seeley [12]) and
permitted the range space for each normal order / to be a
nontrivial bundle. Moreover, we have included zero bundles as
ranges (those where pj === 0) for convenience, so that we do
not have to distinguish between M and the set
J = { J \ p j > 0} that entered in the announcement of results
[7]. For elliptic A it is usually assumed that ^ p, = mq\
we shall not assume that on beforehand. • /eM

DEFINITION 1.15. — The boundary condition Bpu = 0
— or the differential operator B — will be said to be normal
when Bd == (8^B^)j^gM is a surjective sector bundle morphism.
(Then in particular pj ^ q for all j e M.)

The definition is a vector bundle version of that of Seeley
[12] (cf. also Remark 2.2 below). It extends the wellknown
definition of Aronszajn and Milgram for scalar operators.
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Remark 1.16. — Let us compare the present definition of
normality with that of Geymonat [4, Definizione 2.2]. He
considers the case where A and B are matrices of scalar
differential operators (i.e., E and the Fy are trivial bundles),
and his definition of normality requires that one can supple-
ment B with rq — ^ pj rows to obtain a system

^'eM
B = (B^eM of q X ^-matrices, of type (-— /c, — /)^eM
and with bijective diagonal part. In our framework this means
exactly that trivial bundles Gj of dimension q — pj (/' e M) may
be found, together with morphisms Pjj: E| p -> Gj, such that
the morphisms Bjj === Bjj © Pjj: E|r -> F, © Gj are iso-
morphisms. In comparison, the present definition of normality
merely requires that the Bjj be surjective (which is satisfied
under Geymonat's requirement); then if we let Pjy denote
the orthogonal projections of E[p onto Z, == ker B .̂, the
B5j = Bjj @ P^. are isomorphisms of E| p onto Fj ® Zy,
for / e M. When both requirements are satisfied, P» defines
an isomorphism of Zy onto Gy, for / e M. So, when E
and the Fj are trivial and the Bjj are surjective, Geymonat's
normality holds if and only if the Zy are trivial bundles. This
is a global condition that will not in general be satisfied for
surjective Bjj. (Example: Let

" = {(^i, ^2, x^) e R3 [ ^ + A + A ^ 1},

let E == Q. X R3, and let Bjj be the 1 X 3-matrix (x-^ x^ ^3),
for (^3, x^ x^) e F == S2. Then ker Bjj is the tangent bundle
of S2, which is nontrivial.) The present definition of normality
is local and at the same time more general than Geymonat's.

The « Lions-Magenes theory » of Geymonat [4] can easily be
extended to the present normal boundary condition, on the
basis of the Green's formula

(1.39) (Au, P) — {u, A'^) = ̂ (B0)-1!̂ , p^>
= <Bpu, ̂ (B0*)--1^^) + <P°P^ prz(BO*)-l(9L*pp>,

pry and prz denoting the projections of Q) (F, © Z.) onto
® F^ resp. © Z,.

./(EM yeM



CHAPTER 2

WEAKLY SEMIBOUNDED REALIZATIONS
OF OPERATORS OF EVEN ORDER

2.1. Characterization of weak semiboundedness.

Throughout this chapter we assume (with the notations of
Chapter 1) :

Assumption 2.1. — A is an arbitrary C°° differential
operator in E of order r = 2m, m integer > 0. AB is the
realization defined by a normal boundary condition

(2.1) Bpu = 0.
We shall study the problem of determining those B for

which AB satisfies the inequality
(2.2) Re ^(Au, u) ^ c\\u\\^ all u e D(An),

for some c > 0, 6 e R. The inequality is always satisfied for
u e Co^E), so depends essentially on the boundary condition
and the behaviour of A at the boundary. However, it will be
seen that it depends on the full operators B and A at r,
not just on part of (e.g. the principal part of) their symbol.
(2.2) is necessary (with 6 = n) for any of the « coerciveness
inequalities »

(2.3) Re (Au, u) > cju||2 - co|lu||§, u e D(Aa),

s e ]0, m], or just semiboundedness

(2.4) Re (Au, u) ^ - c,W u ^ D(AB).

These other properties will be treated in [8], under further
assumptions on A. We shall here concentrate on the special
aspects of (2.2), called weak semiboundedness for lack of a
better name.

Remark 2.2. — The assumption of normality is partly justi-
fied by the observation of Seeley [12] that for elliptic boundary
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value problems, Agmon's necessary and sufficient condition
for the existence of a ray of minimal growth implies normality.
When e.g. (2.4) holds, there are many rays of minimal growth.
The investigations given below have led us to believe that,
at least when F is noncharacteristic for A and ^ pj = mq,

7€M
normality is also necessary for (2.2) (cf. Remark 2.21).

Since r = 2m, the notations of section 1.2 apply (cf. in
particular (1.8), (1.9)). We split B and its right inverse C
accordingly :

(poo o \
B== B" Bn} ^-(B^Mg.^M,;
C = /C»o 0 \ s, _

\C10 C11/ —V^WjeMg, f c e M g ?

where B01 and C01 a.re zero since / < k in Mg X Mi.
Note that C00 and C11 are the right inverses by Proposition
1.9 to B00 resp. B11. The boundary condition (2.1) may now
be formulated as

(2.5) B°°YU = 0, B^yu + B11^ == 0.

It is wellknown that p is surjective from HP^E) onto

]J H ^EIr). We therefore, have two other formulations
kGM
of (2.5) (recall notations (1.24), (1.25)) :

LEMMA 2.3. — A section u e H^E) is in D(Ae) if and
only if {yu, vu} satisfies either of the equivalent conditions
(i), (ii) :

(i) y^ ^ Z^B00), vu + (^B^YU G Z^B^;
(ii) y^ e R2m(I — C^B00), vu + C^B10^ e R2m(I — C^B11).

Proof. — (i) is equivalent with (2.5) since B11^1 == I.
(ii) is equivalent with (i) by Lemma 1.11.

We shall now prove the fundamental result

THEOREM 2.4. — Let A. be a differential operator in E of
order 2w, and AB the realization defined by a normal boundary
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condition (2.5). The following statements (i)-(iv) are equivalent:
(i) There exist 6 e R, c > 0 such that

Re e^Au, u) < c|lul|^ all u e D(As)

fi.e., AB is weakly semibounded).

(n) The following identity holds

(2.6) (I — COOBOO)*c<t(»(I — C1^11) = 0.

(m) rAere e;mte a sesquilinear form as(u, ?) on H'"fE)
associated with A, such that

(2.7) (AM, ?) == ay{u, P), aM u, v e D(AB).

(iv) T'Ae/-e exists c > 0 swcA ^a(

(2.8) |(AM,P)( < c||u||̂ ||p||̂  aH M,P£D(AB).

Proof. - Clearly (iii) ̂  (iv) ̂  (i), since a»(u, ?) is
continuous on H'-(E) x H-»(E). We shall now show that
(i; =^ (n). Let a(u, P) be any sesquilinear form on H'"fE)
associated with A. Then

(2.9) (AM, P) = a(u, P) + <<ct•)lvu, yP> + <^YM, Y^>

for some y of type (- A, - 2m + 1 4- /)̂ M, cf. Lemma
1.4. By Lemma 2.3 we have

(2.10) Y^ = (I - C»«BO«)VO,
vu = (I - ̂ B")^ - C îOyu,

where {yo» 9i} runs through

n, "'"̂ (EID x n, H--t(Eip).
This gives by insertion

(2.11) <<St»ivu, YP> == <a<>i(I - C1^11)^!, YP>

- '̂'̂ "BIOYW, Y^>,

where also (<W^o is of type (- k, - 2m + 1 + /),,„.
Then a(u, ?), <^yu, YP> and <(SIOIC"B"Y" YC> are 5l
continuous on H-(E) x H"-(E), so that (i) is equivalent with

11
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the existence of 6 e R, Ci > 0 for which

(2.12)
Re ̂ (^(I - C1^11)^, Y^> ^ c,\\u\\^ all u e D(AB).

We now observe that for w e Co°(E), u + w e D(AB) and
y(u + w) = Y^; ^(u + w) = vu. Then (2.12) implies

Re ̂ ^(I - C^B11)^, y^> < ci inf ||u + w[|^
f2 13') weCo^CE)
v / < C2 S l l Y ^ I I 2 , 1 , all U E D ( A B )

kGMo m " "2

by a well known theorem (cf. e.g. [II]). Inserting
yu == (I — C^B^o and using the continuity of I — C^B00

we conclude from (2.13)

Re ̂ a01^ - C1^11)^, (I — C^B00)^)
= Re^I — C^B00)^0^! — CllBll)9l, 9o>
^ ^3 S l lPoJ 2 , i ,

fceMo m k y

valid for all the pairs {90? <Pi}. That can only hold if
(I — C^B00)*^01^ - C1^11) = 0.

Finally we show that (ii) ==^ (iii). When (ii) holds, we have
by (2.9), (2.11), using that also y^ (= R2^! — CTB00),

(Au, ̂  = a(u, ^) + <(^ — (^(^B^YU, y^>,

for u, P e D(AB). By Proposition 1.6 there exists a sesquilinear
form s{u, v) on H^E) satisfying

5(u, ^) = <( ̂  - aolCllBlo)Yu, y^>, for u, P e ^(E).

Let aa(u, ^) = a(u, ^) + s(u^ ^). Then OB(U, v) satisfies (iii).
This completes the proof of the theorem.

Remark 2.5. — In the proof that (ii) implies (iii) we have in
fact constructed a^ such that (2.7) (and thus also (2.8))
is valid for all u e D(Aa), all y e H^E) with B°°Y^ == 0.

Remark 2.6. — A somewhat analogous theory can be set
up for operators A of arbitrary order r, connecting the
inequality (for an integer ( e [0, r])

|(Au, ^)| < c|HMHl,̂ ,
with sesquilinear forms on H^E) X FP-^E), cf. Remark 1.8.
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Remark 2.7. — It is also easy to prove without use of (iii)
that (ii) implies (i). The equivalence of (i), (ii) and (iv) extends
to the case where the B^ with / > k a.re replaced by pseudo-
differential operators B .̂ from E|p to Fy of order / — k
(cf. Remark 1.14).

2.2. Discussion of (2.6).

We sha.11 now look more closely at what (2.6) stands for.

LEMMA 2.8. — The identity (2.6) is equivalent with each of
the following statements (2.15)-(2.18)

(2.15) Z(B11) <= Z((l - C^B00)*^01);
(2.16) O^B11) c: I^B00*);
(2.17) (I - C^B11)*^01^! - C^B00) = 0;
(2.18) a^ZfB00) c R(B11*).

Proof. — (2.6) may be written
aoiR(i „ C^B11) c Z((I — C^B00)*)

which is equivalent with (2.15) and (2.16) by Lemma 1.11.
(2.6) is equivalent with its adjoint equation (2.17), and thus
with (2.18) by Lemma 1.11.

Remark 2.9. — Because of the continuity properties of the
operators involved, each of the inclusions (2.15), (2.16) a.nd
(2.18) is equivalent with the inclusion between the spaces

y.—k—^-
intersected with IIH ^EIr), any a e R (the spaces
Z^. . .), R^. . .) in (1.24)-(1;27)). Similar statements hold for
the following results.

For any normal boundary condition we shall define the
operator

(2.19) Q == (I - C^B00)*^01^ - C^B11),

it is an m X m-system of differential operators in E|r, of
type (— /c, — 2m + 1 + /)yeMo./ceM^ J11^ like cxo1; in par-
ticular it has zeroes below the second diagonal. Define the
second-diagonal parts

Qd === (^y,2w-l-fcQ^)jeMo,fceMi»
(ftgl == (8^2TO-l-/c^k)^eMo,keM/?
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they are vector bundle morphisms. It is easily seen that

(2.20) Q, = (I - cw)*a^(i - cyB^).
Since Q == 0 implies Q(( == 0, we get immediately

LEMMA 2.10. — The identity (2.6) implies the following
equivalent statements (2.21)-(2.24)

(2.21) (I-C»)^(I-CyBii)=0;
(2.22) Z(B;i) .= Z((I - CmW);
(2.23) ^(B^) <= R(B^);
(2.24) arZ(B^) c= R(B;i*).
(2.21)-(2.24) actually express certain properties of the

bundle © Fy in relation to (^ E|r. Let us make this explicit
JGM ^ JEM

in the case where (Sl01 is invertible, i.e. F is noncharacte-
ristic for A:

THEOREM 2.11. — Assume that F is noncharacteristic for A.
Then (2.6) implies that Zj = ker Bjj is isomorphic to a sub-
bundle of Fg^-i-y, for all j e M. In particular,

(2.25) S Pj ^ m?-
jeM

W/ieyi furthermore ^ pj = mq, then
Jew

(2.26) Z(B;i) = (aSl)-lR(B3o<t),
(2.27) Z(By) = ̂ ^-^(BSI*),

anrf Z^ ̂  Fa^_i_j /or aZZ / e M.

Proof. — Since CL^ is skew-diagonal and invertible, (2.23)
may be written

Z(B^) <= (a^-i^^^B^^^-i-^, for all / e Mi.

This is equivalent with the statement for bundles (cf. (1.22))

Zy <= (<St2m-l-yJ)-lD2m-l-y, 2m~l-/^2CT--l--/?

where ((Sta^.-i-^j^B^-i..^ 2TO-i-y ls an injective morphism.
This shows the first statement for / e Mi; for / e Mo it
follows similarly from (2.24).
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Regarding dimensions, (2.23) and (2.24) imply

(2.28) S {q - Pj) < 5 Pj. S (? - P^ S Pp
,/eM* jeMo jeMo ./eMi

respectively; both statements are equivalent with (2.25).
When equality holds in (2.28), (2.23) and (2.24) represent
inclusions between vector bundles of the same dimension,
these must be identities, so (2.26) and (2.27) hold.

Remark 2.12. — When F is characteristic for A, (2.6)
may be satisfied with S Pj < m^ an(! (2-6) is in a sense less

jeM
restrictive on B. We refrain from a systematic treatment
here.

Also the inclusions in Lemma 2.8 can now be improved,
when ^ Pj = m?? an(! ^ ls noncharacteristic.

J'€M

THEOREM 2.13. — Assume that F is noncharacteristic for A,
and that ^ Pj = m?- Then (2.6) is equivalent with each of the

JGM
statements (2.29)-(2.32)

(2.29) Z(B11) c: ((9Loi)-iR(B00*),
(2.30) Z(B11) == (a01)-1!^00*),
(2.31) Z(B11) ^ (^^-^(B00*),
(2.32) B11^01)-^00* = 0.

Proof. — We have from Lemma 2.8 that (2.6) is equivalent
with (2.29). Clearly (2.31) and (2.32) are equivalent. Since (2.30)
implies (2.29) and (2.31), it remains to show that (2.29) implies
(2.30), and that (2.31) implies (2.30).

Assume (2.29). Since we are now dealing with differential
operators and not just morphisms, the dimension argument
in the previous proof is not directly applicable. We have
however, using Theorem 2.11 and Lemma 1.12

(2.33)
R(BOO») -=> aoiZ(B11)

== (^(I — (^^(B^)
= a01^ — C^B^W^R^*)
= OL^l - C^B^W)-^! - B^W^B00*)
= (I + K)R(B^),
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where K is a subtriangular differential operator in (g) E|r,
k € Mo

thanks to the subtriangular character of B^ and B^°*.
Denoting R(Booilt) by R, we have found

(2.34) R => (I + K)R.

Now K is a nilpotent operator on Y[ ^'(E|r). Moreover,
fceMo

since I + K maps R into R, K itself maps R into R.
Then (I + K)|n has the inverse

Iln - K|n + (Kl^)2 - • • • ^-(-KI^

so it maps R onto R, and the inclusion in (2.34) must be
the identity. Then also the inclusion in (2.33) is the identity,
and we have proved (2.30).

The proof that (2.31) implies (2.30) follows similarly from
Z(B11) => ((^-^(B00*)

= (B01)-^! + B^C^W{I + CW)Z(B11)
=(I+Ki)Z(Bn).

COROLLARY 2.14. — When F is noncharacteristic for A,
and ^ pj = mq, then (2.6) is equivalent with each of the

jeM
statements (2.35)-(2.38)

(2.35) Z(B00) c: (c^ol*)-lR(Bllill),
(2.36) Z(B00) = (aol*)-lR(Bllilt),
(2.37) Z(B00) ^ (<9Lol*)-lR(Blla(t),
(2.38) B00^01*)-^11* = 0.

Proof. — Follows from Theorem 2.13, using that the iden-
tities are pairwise equivalent (adjoint).

Theorem 2.4 together with Corollary 2.14 prove Theorem 1
in [7].

2.3. Existence and uniqueness of B11 for given B°°.

For the case where F is noncharacteristic for A, and
S Pj= m<?? we ^all consider the problem of how B10 andyeM

B11 may look, when B00 is given, and B shall satisfy (2.6).
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(The question on how B00 and B10 depend on B" is treated
similarly.)

We shall denote by ^ the skew-unit matrix

(2.39) ix ==
ro ... o i-i
0 . . . 1 0

LI ... o o
indexed according to its use. Denote 0 E|r by E° and

kSi E!r by El' Given Fo= e F^ ankdMB00 going from E»
to F°. '/eMI>

1° Existence. — B11 is required to have surjective diagonal
part and satisfy (cf. Theorem 2.13)

(2.40) Z(B11) = (dl01)-1^00*).
Now we find by Lemmas 1.11-1.12

(2.41)
(aoi)-iR(B<><>*) === (cz"i)-i(i + B'TC-^r^BS0'1')

= (a»i)-i(i + B^CS^Z^I - (W)*)
= z((i - cOTBTO)(I - aw^ci.o1),

where (I - C.W)* = I - CM defines the orthogonal
projection of E» onto Z° = © Z^ (Z^ == ker B^, cf. Lemma

fceMo
1.10), let us denote it przo. Then if we define

F/ == ^m-i-j tor / e Mi,

Le- Tl=&Fj=lxzo with I X = =(8————^eM..eM,; and

B11 = ^ przo(I — B?0*^0*)^01,

then B11 is a differential operator from E1 to F1 of type
(j~ ^ —/)./. fceM, satisfying (2.40), and its diagonal part
B;1 = ^ przoOLy is surjective. Also

d™ ( © Fy) + dim ( © F,\ = mq
VjeMo •/ \jeM, J ) ^

as required. B10 can be any differential operator from E°
to P of type (^-/c, -/^M^eMo.
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2° Uniqueness. — Now let F1 = 0 F, and B10 and B11

YeMi
satisfying (2.6) etc. be given. By Theorem J2.11, F^ ̂  ^m-i-j
for / e Mi, so F1 = OF1 for some diagonal bijective mor-
phism 0 == (<I>^,keM,- Moreover, we have Z(B11) == Z(B11).
Using the decomposition

^'(E1) == Z(B11) + R(C11) (direct sum),

written q> == <po + <Pi? we find that

B11^ = B11^^ ?i) = B11^! = B11^11]^11^
= B11^1^1^ = (DO-^C^B11^
= OYB11^, for all <p e ^'(E1),

where Y = O-^B11^11 is a bijective differential operator of
type (— /c, — J')j\keM^ ln F^ by Lemma 1.13 it has bijective
diagonal part. Conversely, if Y is a bijective differential
operator in F1, then Z(OYB11) = Z(B11).

So there is existence and uniqueness of B11 up to isomor-
phisms. More precisely, we have found :

THEOREM 2.15. — Assume that F is noncharacteristic for A,
and consider normal boundary conditions with ^ pj == mq.

j e M
Let (B F. and B00 be given. Then the operators B10 and B11,

jeMo
/or which (2.6) i5 satisfied^ are characterized by

^ &Fy = °(,Si Z2m-l-k)? w/lere (I) == (^^^ is ^v
diagonal vector bundle isomorphism.

(ii) B10 is any differential operator from (f) E[r to © F;
nf ^ir\p ( If i\ keMO • /eM<of type (— /c, — J)jeM^ /ceM,-

(iii) B11 = OYB11, where T 15 an?/ differential operator in
© Z^TO-i-k with bijective diagonal part, and

kGMt

(2.42) B11 = ^ przo(I - B^C00^01,

as defined above.
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2.4. The adjoint boundary condition.

We shall finally study the (formally) adjoint realization; it
represents a boundary condition that may be determined by
methods analogous to those of section 2.3. This leads to a
more illuminating criterion for weak semiboundedness. The de-
termination of the adjoint realization is independent of whether
A is of even or odd order, so for that part, the order will again
be denoted r.

DEFINITION 2.16. — The formally adjoint realization (AB/
of AB is the operator sending v into A'^, with domain

(2.43) D((Aa)') = {^ e H^KAu, ̂  - (u, A^) =0
for all u e D(Aa)}.

We shall now show that there exists a differential operator B'
so that (Aa)' is the realization of A' determined by the
boundary condition B'p^ === 0.

PROPOSITION 2.17. — D((Ae)') == D(A/B-), where

(2.44) B' = P< prz(I - B^C^OL*,

here prz denotes the orthogonal projection of © E[r onto
fc€M

© Zfc, and ^ = (82m-i-/, k)y.k€M. B' is a system (B^)^gM
fc€ M

of differential operators B^ from E[r to "L^m-i-j (for /? ̂  e M),
of type (— /c, — /)j,/ceM- When T is noncharacteristic for A, B'
is normal.

Proof. — When u e D(Aa), p^ runs through

Z^B) == R^I - CB),
so

(Au, ̂  - (u, A'P) = <<9L(I - CB)9, p^>
== <<p, (I - CB)W^y.

Thus

D((Aa)') = {^ e H^E^I - CB)Wpp = 0}
== {^ e H^E)!?^ e 7^(1 -- CB^dt*)}.
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Like in (2.41) we find

^((1 - CB)W) = (a^-iR^B*) = (dt*)-^! + B^RTO
= ^((1 - CrfB,)*(I - B:C*)a*)
= ZW,

with B' defined by (2.44), since (1 - C,B,)* = 1 - C,B,
is the orthogonal projection of © E|r onto © Z^ cf. Lemma

k€M kGM
1.10. (As in section 2.3 we insert ^ to get the correct
type.) The diagonal part is B^ = ^ prz Cl^, which is
surjective when (9L is invertible (i.e., when F is noncharacte-
ristic).

Next, we consider the uniqueness question. Given a bundle
© Fj and a normal system B' == (B^)^ ^M of differential
operators B;̂  from E|r to F;, of type ( — / c , -/),. ^M,
for which (An)' == A^'. This means that

(2.45) Z^B') = Z^B')

in view of Proposition 2.17. Now Z^B') = R^I — C'B'),
so (2.45) implies

B'(I - C'B') = 0.

In particular, the diagonal part must be zero, so we conclude

Z(B,) = R(I - C,B,) == Z(B,).

Assume in the rest of this proof that also B' is normal; then
an analogous argument gives the opposite inclusion, so in
fact

Z(B,) == Z(B,).

This gives for the bundles :

© F;. ̂  © (E|r e ker B ,̂) = © (E|r e ker B;,) ̂  © Z,,_^,
yeM jeM Y e M JGM.

the range space for B'. So © F'. = 0 I © Z^m-i-j} for some
./CM V y e M /

diagonal bijective morphism. It is finally seen from (2.45),
like in the proof of Theorem 2.15, that B' = B'C'B' where
6'C' is a differential operator from © Zg^.i.^ to © F'-

kSM 'CM
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with bijective diagonal part. We have proved

THEOREM 2.18. — Assume that B', defined by (2.44), is
normal. A normal system B' = (B}fc)y ^M of differential
operator B^ from E|r to Fy, of type ( — k , —/ )^k<=M?
satisfies D((AB)') = D(AS,)
i/* and only if

(i) F;^Z2^-i_; for each / e M ;
(ii) B' = YB', wAere Y 1*5 a bijecti^e differential operator

from © ^m-i-k to © F;, of type (— /c, — /)^€M.
fceM J G M

Now let r == 2m. We then have, with obvious notations,

<2-47) ^-[i0 'oT? pi]-
rl — BS°*C00* Si -i ra00* (9L10*-!

x L 0 I - B^C11^! La01* 0 J
^ ^IX prz*(I - B^C11*)^01* 0 -j
~ L S^ Ix przo(I - B^C^a10*]

(Si and 82 not worth calculating). Thus, using Lemma 1.12,

(2.48) Z(B/00) == Z(IX prz<(I - B^C11^01'11)
= ((Sl01*)-^! + B^Q^Z^ - BS^Q1516)
= ((9Lol*)-lR(Bllslt).

This formula is valid whether (9L01* is invertible or not, if we
by ((St01*)""1 understand the mapping of a set into its inverse
image by dt01* . Connecting this with Lemma 2.8 (in particular
(2.18), cf. also Theorem 2.4), we find

THEOREM 2.19. — AB is weakly semibounded (or, equi^a-
lently, satisfies (2.6)) if and only if

(2.49) Z^B00) c: Z^B'00),

that is, if and only if YD(AB) c: yO^Aa)').

For the noncharacteristic case this has the consequence

COROLLARY 2.20. — Let r be noncharacteristic for A. If
AB is weakly semibounded, then (Aa)' is weakly semibounded
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if and only if ^ Pj = m(l' When ^ Pj === m?? (2.6) is equi-
valent with yeM yeM

(2.50) Z(B00) = Z(B'°°),
i.e., YD(Aa) = TD(AB-).

Proof. — Let AB be weakly semibounded. Then by Theo-
rem 2.11, ^ Pj ^ m?- When ^ pj > m<y, the fiber dimen-

j e M j e M
sion of the range space for B' is

5 (? — P2m-i-/) == 2my — S Pk < m^
J € M fcGM

so, by Theorem 2.11, AB' cannot be weakly semibounded.
Now assume S Pj = m(l' Then by Theorem 2.13 and

j e M
(2.48), (2.6) is equivalent with (2.50). Since (A^)' = Aa, and
(2.50) is symmetric in {A, B} and {A', B'}, (2.50) must also
be necessary and sufficient for the weak semiboundedness
of AB.

Remark 2.21. — It was shown in [6, Theorem 3.4] for the
case where A is elliptic, that also for general realizations A
of A, yD(A) c: YD(A*) (closure in n H'^^lr)) is

k€Mo
necessary for weak semiboundedness (the above proof was
inspired from that theory). This is the reason for our conjecture
that normality is necessary under much more general circums-
tances than those accounted for in Remark 2.2; for the lack
of normality tends to enlarge Z(B°°) and diminish yO^Aa)').



CHAPTER 3

SYSTEMS OF TYPE (m,, -m,)^_.,,.

3.1. Green^s formulae.

In this chapter we describe how the results of Chapters 1
and 2 extend to systems A that are of « mixed order », and of
a symmetric type.

Let {mi, . . ., rriq} be a set of nonnegative integers, and let
A = (A^)^ t=i,..., q he a q X gr-matrix of differential operators
on a, of type (m^, —m^^_^; i.e., A^ is of order
m, + ^- Among the systems of this type are the strongly
elliptic systems, cf. [2]. Denote

(3.1)
N = {1, . . . , q}, m = max m^ m = m^ + . • • + m.,

( G N -

and assume m > 0.
For such systems one usually studies boundary conditions

of the following kind : There is given a set of p integers
{[AI, . . . , pip} and a p X y-matrix of differential operators
^ = W.=i..... p ; ( = = i , . . . .<? o11 ^ of type

(^ ^=1.... .p; (=!,... .<p

it defines the boundary value problem (3.2)-(3.3)
q

(3.2) A.u=f, i.e., SA.^=^, 5== l , . . . ,g ;
(==i

q

(3.3) Yo^ = 0, i.e., S Y(A^ — 0, s = 1, . . . , p;
(=i

here f= { f^ . . . ,^}, u = {ui, . . . , uj.
(3.3) determines a realization A^ by

A^ : u h—— Au, D(A^) = S u e n W^W^u = 0^
( ( E N )
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We shall say that A;g is weakly semibounded if there exist
c > 0, 6 e R such that

Re e^Au, u) ^ c S ||î , for all u e D(A^);

like in Chapter 2, the inequality depends only on A and SS
at F, but involves the exact operators, not just for instance
principal symbols. When A is elliptic, one usually assumes
p == m; we do not assume that on beforehand.

If for some s, m, — (A, < 0 for all (, then the terms 39 ,
y St

are all zero, so S Y»A(M( = 0 is trivially satisfied; we can
t=i

therefore assume that (A, < max m, = m for all s. We
shall furthermore assume that the ^ are > — m 4- 1
hereby we exclude boundary conditions of very high order^
just like boundary conditions of order > 2m were excluded
in Chapter 2. Our boundary conditions still include those
that arize in connection with sesquilinear forms as in Guedes
de Figueiredo [9].

To apply our techniques we shall set up a Green's formula
and reformulate (3.3), such that differential operators on T
of the same order are grouped together.

Let JA, (} e N X N. We have by Lemma 1.2 for u,
^ e C"(Q)

m^+m^—l

[L, =](A^, p,) - (u,, A>,) = S < <^Tk."<, w>,
j ' , /c'==0

where CL^. is of order m, + m^ — /' — k' — 1. Set
/ == /' — m, + m and /c == k — m,t + m, and set

/cy _ /<^
^St/k — ^S^y+m^-m./c+m^m

for
/ e { — ̂  + ^, . . . , 2m — 1}

and
k e {— m, + m, .. ., 2m — 1},

where we put £L^ =0 for / ^ m, + m or /c ^ m, + m.
Then (Sl̂  is of order

^ + rrit — ( / + m, — m) — (/c + w, — m) — 1
= 2m — / — /c — 1
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for all /, A*. (Here, for / ^ m^ + m or k ^ m^ + ^V the
order is negative in accordance with d^ = 0. We have
actually just augmented the usual boundary matrix by some
zero rows and columns.) Now

2m— l 2W--1

L ̂  . S S <^y/cYM-m,-m^ Yj+7n,-m^>-
./=—w,4-w fc==—m^+rn

For u, ^ e ^ C°°(tl) one has
(GN

(3.4) (Au, P) - (M, A'?) = S L,
5, (GN

and we shall now regroup the terms in ^ I,(. Define as
usual s> (eN

(3.5) M = {0, . . . , 2m- i} , Mo = {0, . . . , m - 1},
Mi = {m, . . ., 2m — 1}.

For each A* e M, define

(3.6) N,. == {^ G N|/c + m, - m ^ 0},

and denote |N^[ === ^. Clearly,

(3.7) 0 ^ No ^ ... <= N,_, <= N, - N,^
- • • - -N^^N,

using that N^ = { ^ [ m ^ ^ 0} = N (and aM N^ equal N if
and only if all m^ equal m as in Chapter 2). Note that
9m = " ' = ?2m-i = ?• Moreover, it is easily seen that

(3.8) qo + • • • + ^_i == m.

Denote the trivial bundles F X n C by E^.
^^ ,

Now define for each {/ , k} e M X M the Ny X N/, matrix
^ by

(3.9) Ct^ == (ei^jk^sG^j, tG-Nk'7

it is a differential operator from E/, to Ey of order
2m — / — k — 1. Altogether the (9L^. from a system

(3.10), a=(<^eM
of type (— /c, — 2m + 1 + /)y.keM.
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Introduce the vector valued trace operators (3/,, for A* e M
by

(3.11) M={Y^-^LCN,;
they are continuous and surjective from ]J H014-"1^^) onto

l A t e N.
Ip+2-/c-2(E,), for a + 2 m > / c + y , respectively. Alto-

gether they form a vector (of vectors) (3 :

(^ PU = {MLeM.

Actually, (B^ consists of a rearrangement of the traces
{YO^I, Yl^l, . . . , Ym,+m-l^l; • • • $ YO^ Yl^, • • • , Ym,+m-l^},

and it has a total number of ^ (m^ + m) = ^ ?/e elements.

These are exactly all that enter in (3.4). It is thus reasonable
to call (Bu the Cauchy data of u. We now find

2m—i 2w—i

S ^ = S . S 5 <<^Y/c+^-m^ Yy+m,-m^>
^.teN s, tGV J=—m^m k=—m^+m s

2m— l 2w—l

== S S S 2 <<^Y/c+m,-m^ Yj+m,-m^>
j=o k=o se^jte^k

== S <^P^, P^> = W^, p^>,
y , f c e M

and have hereby proved Greens formula

(3.13) (Au, <.) - (u, A'^) = <dl|3u, pp>,

it is valid for all u, p e n HP^Q). (A similar formula
( G N

holds when the functions u^ are replaced by sections in
bundles, we omit this aspect for simplicity.)

Let us now consider the case where F is noncharacteristic
for A. This means that the N X N-matrix A°, whose
entries are the functions A^ ̂ +^ stemming from the decom-

m,+mt

positions A,( = ^ A,^, is bijective. The elements
^ ^=0

^j^m-i-j are Ny X ^m-i-j-submatrices of A°, so that
when the m^ are not all equal, (9L can never be invertible
(in view of (3.7), cf. also below). This is the main reason for
the trouble with setting up e.g. a Lions-Magenes theory for
boundary value problems for systems of mixed order. However,
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it is possible to treat a particular class of boundary value
problems, as indicated below.

Define (cf. (3.5))

(3.14) ^u= {MLeM,, ^u= {M,eM,,

and note that (3°u is a rearrangement of the Dirichlet data

{To^i? • • • ? Ym,-i^i; • . • ; Yo^p . . . » Tm^-i^};
(3°u has ^ q^ === m entries and p1^ has mgr entries. With

fceMo ^
the usual decomposition of €i

a - l̂ 00 î ^£ - ra ^'" [_a10 o j' (^W .̂̂ M.,
(3.13) takes the form

(3.15) (Au, P) — (u, A'^) == ((i00?0^ p°^>
+ (a01?1^, p0^) + <aLlo(Bou, (B1?).

Because of (3.7), the second diagonal in (9L01, resp. (9L10,
consists of Ny X N-submatrices, resp. N X N^-submatrices,
of A°. Then we obtain, by application of Proposition 1.9 to
I^01 and to Ix(a10)* (cf. (2.39)) :

THEOREM 3.1. — When r is noncharacteristic for A, OL01

is surjective with a right inverse Q01 of type

(— 2m + 1+ /C, — /)jeM,.fceM,,

and (9L10 is injective with a left inverse ^10 of type

(— 2m + 1 + /c, — /)^M,.fceM,.

It will be seen below that these properties suffice to gene-
ralize the results of Chapter 2 in a very satisfactory way.
Moreover, (3.15) may be viewed as a Green's formula for some
special boundary operators, for Theorem 3.1 clearly implies

COROLLARY 3.2. — Define x and x' by

(316^ ^u=(Si^u
' ' x'u = — a10*^ — a°°*p»u.
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Then we have for all u, v e ]J H"1*"1"1"^)
( G N

(3.17) (Au, ^) - (u, A'^) = <xu, (3°p> — <(B°^, x'^>,

where^ if F 15 noncharacteristic for A, {(B°, x} anrf {(B°, x'}
are surjectwe continuous mappings of ]J H01'1"7"^^) onto

n H^-^E,) X II H^E,) ̂  a > - 1 .
k€Mo /ceMo ^

We shall call {[3°u, xu} (resp. {p0^, x'u}) the reduced
Cauchy data of u with respect to A (resp. A'). (The (9l00-
term may of course be distributed in other ways). Boundary
conditions for A that can be expressed as normal conditions
on the reduced Cauchy data (i.e., « factor through 0L01 ») can
be treated much like those of Chapter 2; in particular one may
set up a Lions-Magenes theory (details will be given elsewhere).
Note that the Dirichlet operator p° belongs to this class.
One of the main theorems of this chapter (Theorem 3.11) will
be that the boundary conditions defining weakly semibounded
realizations are indeed conditions on the reduced Cauchy data.
A few more comments on this class are given in section 3.4.

We conclude this section by establishing the « halfways »
Green's formulae. By a sesquilinear form on ]J[ H^Q) we
shall understand an integro-differential form t€N

(3.18) a(u^)= S S (Q^P^),
s, (€N l €1(5,0

where the Q^, and P^i are differential operators on Q of
order ^ m^ resp. ^ m^ and the I(^, t) are finite index sets.
a(u, v} is defined and continuous on ]J H^Q) X ]J H^Q),

(eN ^EN
and it is associated with A if and only if

(3.19) A,,= S P;̂ , all ^eN.
iei(^o

Applying Remark 1.8 to each A^ and collecting the terms
one finds, just as in section 1.2

THEOREM 3.3. — When a(u, ?) is a sesquilinear form on
JJ H^H) associated with A, then for all u G JJ H7"^7^^),
tW f € N
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all ^ e ]J H^)
5€N

(3.20) (Au, ^) = a(u, P) -!- ^^(B1^ (B°p> + <^p°^ (B°^>;

where y = (^^.)^ ^eMo ^ ^ system of differential operators
from Efc to E^, o/* (z/p^ (— /c, — 2m + 1 + /)^ /^M,. Conver-
sely, for any such system y there exists a sesquilinear form
a(u, P) on n H^D), fitting together with A m (3.20).

t€N

3.2. Normal boundary conditions;
weakly semibounded realizations.

We shall now reformulate (3.3). By (1.4) we have

mt-V's

T(A^= S .̂uT^^
/=0

where each ^st,i ls a differential operator in F of order
^ — ^ — ^ Letting k == I — m^ + m^ we can write

2/n—l

Yo^-t^ == 5 ^.H-m.-mYk+m.-m^
k=—m.+m

where we have added on some zero terms (recall
— m ^ — (JL, < m — 1), and ^(,k+^-^ is of order m — ̂  — /c.
Introduce the index sets

L = {1, . . . , p}, L^= {s E L\m — [L, ==/} for / e M,

and denote | Lj\ = pj. Clearly, L equals the disjoint union
I J Ly, and ^ py == p. Denote the trivial bundles r X JJ C
j e M j e M f e L,
by Fj (with Fy being the zero bundle F X {0} when
L^ == 0). For each {/, k} e M X M we now define the
Pj X ^-matrix

-DJ/c == ( ̂ t, k+m^-m )A e L ,̂ t € N^

it is a differential operator from E^ to Fy of order / — /c.
Altogether the B^ form a system B == (By^)y ̂ eM of type
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(— /c, — j)j ̂ <=M- With p as defined above, the boundary
condition (3.3) may then be written in the form

(3.21) B(3u == 0,

/or, equivalently, ^ B/j^u == 0 for all / e M\.
\ k^j\ )

Our considerations in the following will be valid also when
the Fy are nontrivial vectorbundles. From now on we study
boundary conditions (3.21) where B = (B^)^gM goes from
© E^ to © Fy and is of type (— /c, — /)^eM, and the F,

fc €5 M J G M
are any bundles over F of dimension py. Definition 1.15
can now be generalized :

DEFINITION 3.4. — The boundary condition B(3u == 0 —
or the operator B — will be said to be normal when the diagonal
part Bj == (8,;,B^)^eM is a surjectwe morphism. {Then in
particular pj < qj for all j e M).

Assume from now on that the boundary condition is normal.
We split B in blocks as usual

[Roo 0 ~i
(3^) B= ^ ^} B^={B,^^

and the considerations in section 1.3 now apply to B, B00

and B11, which have the right inverses C, C°° resp. C11. (3.21)
may be written

(3.23) B°°^u = 0, B10^ + B11?1^ = 0.

Define Z^B00) = j < p e JJ H^'^E^IB00^ = O J , etc., then
C fceMo )

Lemma 2.3 generalizes to the present case.

THEOREM 3.5. — Let B = (ByJy/egM be a system of diffe-
rential operators from E^ to F^, of type (— k, — / ) , f c e M ?
defining a normal boundary condition B(3u == 0. L^ AB 6^
the realization of A. defined by

(3.24) A B : U — ^ A u , D ( A B ) = $ u e n H^+^jBpu = 0^.
/ ( € N )
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The following statements (i)-(iv) are equivalent:
(i) There exist 6 e R, c > 0 such that

(3.25) Re^Au, u) ^ c S K[|2 aM u e D(AB)
t € N

(i.e., AB ^ weakly semibounded).
(ii) rAe following identity holds

(3.26) (I — C^B00)*^01^ — C^B11) = 0.

(iii) There exists a sesquilinear form aa(u, ?) on JT H^ti)
associated with A, 5ucA t/ia^ (eN

(3.27) (Au, ^) = OB(U, ^), aM u, ^ e D(AB).

(iv) There exists c > 0 5uc/i (Aa^

(3.28) |(Au^)| < c /S IluJI^V/S ll^ll^2,V II 77 II 2 \ 2' / V II 0 11 2 \ 2'L ll^tllmj ( 2j ll^llm,
< t e N / \ ( e N\ t e N / \ ( e N 7

aK IA, v e D(AB).

Proof. — With the notations introduced above, the proof
goes in complete analogy with the proof of Theorem 2.4
(y and v being replaced by p° and (B1, d01 replaced by
a01).

The Remarks 2.5 and 2.7 extend immediately to the present
case. Remark 2.6 extends as follows : For systems A = {A.^)s (SN
of type (m^, — l^tev where {m^e^ and {^LeN are sets
of nonnegative integers, one can set up Green's formulae
generalizing (3.15) and (3.20), just like the formulae in Re-
mark 1.8 generalize (1.11) and (1.14), and one can again define
Cauchy data for A and for A', and normal boundary condi-
tions. Then the inequality

l- i.
2|(Au,p)| < c / S KII^WS W}

\(6N / \^5N /

may be set in relation to sesquilinear forms on

n H'»'(Q) x n H'-(Q),
teN seN

generalizing Theorem 3.5. We refrain from details in order to
limit notations. [Not all systems of mixed order are of this
type.]
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3.3. Discussion of (3.26).

All the statements in sections 2.2 and 2.3, that do not depend
on whether 0L01 is invertible, extend immediately. We shall
use the convention that when an operator S is not invertible,
S~1 denotes the mapping sending sets into their inverse
images by S, i.e. S~1 is viewed as a relation.

Lemmas 2.8 and 2.10 thus generalize to

LEMMA 3.6. — The identity (3.26) is equivalent with each of
the following statements

(3.29) Z(B11) c: Z((l — C^B00)*^01),
(3.30) Z(B11) <= (a01)-1!^00*),
(3.31) Z(B°°) c (a^*)-iR(B11*),

and it implies each of the equivalent statements

(3.32) Z(B^) cz Z((l - CW)*^),
(3.33) Z(B^) cz (5^)-iR(Br),
(3.34) Z(BS") cr (asi*)-iR(B;i*).

Here, the right sides in (3.29) and (3.30) are identical, by
Lemma 1.11. When (3.29) holds, we already have
Biopo^ ^_ B^U == 0 -^ ^u + C^B^u e Z(B11)

_^ pi^ -^ C^B^u e Z((I — C^B00)*^01)
^^ (I _ C^B00)*^01^ + (I — COOBOO)*aolCllBlQ^ou=0,

showing that our boundary condition implies a condition on
the reduced Cauchy data. A more precise statement will be
obtained in Theorem 3.11 below.

We shall now show how Theorems 2.11 and 2.13 may be
generalized.

THEOREM 3.7. — Assume that F is noncharacteristic for A.
Then (3.26) implies that Z^ = ker Bjj is a subbundle of
(a^-i^^B^.i.,, 2m-i-,F2m-i-/ for ] c Mi, resp. is iso-
morphic to a subbundle of F^m-i-j /or 7 e Mo. In particular,

(3.35) S Pj ^ S ^ [EE ^]-
jeM keMo
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When furthermore ^ pj = ^ q^
j e M k e Mo

(3.36) Z(B;i) = (asi)-iR(Br),
(3.37) Z(B^) = (&o^)-iR(B^);

50 z^ (^2m-l-7j-1 BL-I-,. 2m-l-/ I^m-l-/ /^ / G MI, 0^

^ == W.2m-l-/)~1 B^_i_y ,2m-l-/ l^m-l-./ ̂  F^m-l-/ /O^ / ^ MQ.

Proof. — Whcm r is noncharacteristic, then (X31 is a
surjecti^e morphism from © E/, (of dimension mg) to

keMi
© E/ /of dimension ^ qA, and ^l01* is an injectwe mor-

J'eMo ^ \ jeMo • /7 /

phism in the other direction. Then (3.33) resp. (3.34) imply the
first statement of the theorem; in particular we have for the
dimensions in (3.33) resp. (3.34)

(3.38) S (q-P^rnq- ^ ^+ ^ P,;
jeM^ jeMo jeMo

(3.39) S (^ - Pj) ^ S PyjeMo ^eMi

Each of these inequalities is equivalent with (3.35). Now
assume there is identity in (3.35) and thus in (3.38) and (3.39).
Then (3.33) resp. (3.34) are inclusions between vector bundles
of the same dimension, so they are identities, and we have
proved (3.36) and (3.37).

To prove the analogue of Theorem 2.13 we shall first extend
some considerations from section 2.3. Denote, for s = 0,1,
E5 - ® E,, Z5 = © Z, and P - © F,. Then I - C^Bgo

fceMg fceMe /ceMt
defines the orthogonal projection of E0 onto Z0, denote it przo.

PROPOSITION 3.8.— Define the system B11 = (B,fc),^eM of
differential operators B^ from E/, into Z^-i-,, of type
(— A>? — /)y,fceM,, fey

(3.40) B11 = ^ przo(I — B^C00*)^01,

i^ diagonal part ^ przo^1 l5 surjective when F 15 noncharac-
teristic for A. TAeM

(3.41) (^^-^(B00*) = Z((I — C^B00)*^01) == Z(B11).
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Proof. — A direct generalization of the existence proof in
section 2.3.

THEOREM 3.9. — Assume that F is noncharacteristic for A,
and that ^ Pj == m' Then (3.26) is equivalent with each of the

JGM

following statements (3.42)-(3.44)

(3.42) Z(B") cz Z(B11),
(3.43) Z(B11) = Z(B11),
(3.44) Z(B11) ^ Z(B11),

for B11 defined in Proposition 3.8.

Proof. — In view of (3.41) and Lemma 3.6, (3.26) is equi-
valent with (3.42). Since (3.43) implies (3.42) and (3.44), we
have to show (3.42) =^ (3.43), and (3.44) ==^ (3.43). By use
of Theorem 3.7 we find, assuming (3.42),

(3.45) Z(B;i) = W)-iR(Br)
= Z((I - CWW) = Z(B;1).

Then (3.42) implies, by use of Lemma 1.12,

Z(B11) ^ Z(B11) == (I - C^By) Z(B^)
= (I - (^^(B^) = (I - C^BW + C^B^B11)
= (I + K)Z(B^),

where K is subtriangular. Now the argument in the proof
of Theorem 2.13 applies, showing that the inclusion must be
the identity, and we have proved (3.43).

(3.44) implies (3.43) in a similar way.

Part of Corollary 2.14 is immediately generalized (and the
remaining part will come out as a corollary at the end of sec-
tion 3.4) :

COROLLARY 3.10. — Assumptions of Theorem 3.9. (3.26) is
equivalent with (3.46) and (3.47)

(3.46) Z(B°°) c: ((a.oi^r^B11'11)
(3.47) Z(B°°) == (Ol01*)-1!̂ 11*).
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With Theorem 3.9 we can now show that weakly semiboun-
ded realizations represent boundary conditions on the reduced
Cauchy data.

THEOREM 3.11. — Assume that F is noncharacteristic for A,
and that AB is the realization of a normal boundary condition

(3.48) ^ B(3u = 0,

with ^ Pj = m9 If AB is weakly semibounded, then there
j'eM

exists a differential operator B11 = (B^)^M,, keMo from © E^
to -® F/? °̂  ^pe (— 2m + 1 + /c, — /)yeM,keM, anrf wi^
surjective second-diagonal part, such that

(3.49) B11 == B11^01.
Hereby (3.48) is equivalent with

(3.50) B°°^u=0, B^u + B^u = 0.

Proof. — By Theorem 3.9, we have

Z(B11) == Z(B11);

moreover, we have by Theorem 3.7 that F1 = 01^°, with
y == (8^^-i-k)yeM<. fceMo and 0 a diagonal vector bundle
isomorphism. Now

^'(E1) = Z(B11) + R(C11)

so that, using the argument in section 2.3,

(3.51) B11 = B11^1^11

= B11^11^ przo (I — B^C00*)^01 =^ B11^01,

where B11 = B11C11IX przo(I - B^C00*) is a differential
operator from E° to F1 of type

(- 2m + 1 + /c, - l),eM,^.
Note that

(3.52) B11 = OYIX przo(I — B^C00*),

where Y == O^B11^11 is a bijective differential operator in
^ ^m-i-k of type (— k, — /)y,k€M,, so that by Lemma 1.13
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its diagonal part is a vector bundle isomorphism. Thus the
second-diagonal part of B11,

B;1 = OY^ przo,

is a surjective morphism.

This proof not only gives the existence of B11, it also serves
to discuss the characterization of B11, when B00 is given
and B shall satisfy (3.26). For we then have by (3.51)-(3.52)

B11 = OTB11;

and on the other hand, any such operator (with 0 a diagonal
vector bundle isomorphism and T a bijective differential
operator in © ^m-i-k of type (— A-, — J\^M,) satisfies

_ k € Mi
Z(B11) == Z(B11). So Theorem 2.15 carries over word for
word.

THEOREM 3.12. — T h e complete analogue of Theorem 2.15
holds,

3.4. The adjoint boundary condition.

Define the formally adjoint realization (Ac)' as the ope-
rator sending ^ into A'^ and with domain

(3.53) D((AB/) = ̂  e n H^+^KAu, ^) - (u, AV) = 0
( ( G N

for all ue D(AB)}.
Like in section 2.4, we easily find that

D^)') = ^ e n ?^(0)1(1 - CB)^*^ == Q\
( t 6N )

so defining

(3.54) B' = l̂  prz(I - B^C*)^*

we have

(3.55) D((Aa)') = D(AB.).

However, B' need not be normal; in fact (cf. (2.47))

_ rB'oo 0 -i
— LB'10 B'11]'
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where
g'oo ^ ix p^(i _ B^C11*)^01*;
B'11 == Ix przo(I — B^C00*)^10*,

where we can only be sure that B'11 has surjective diagonal
part (when F is noncharacteristic), cf. Theorem 3.1. But we
have in any case, as in section 2.4

Z(B'°°) = Z((I - C^B11)*^01*) = (ao1*)-1!^11*),

which can be applied to Lemma 3.6 and Corollary 3.10, giving

PROPOSITION 3.13. — AB is weakly semibounded if and only
if

(3.56) Z^B00) <= Z^B'00),

that is, if and only if (B°D(AB) c: (B°D(AB'). When F is non-
characteristic and ^ pj = m, (3.56) is equivalent with

j e M

(3.57) Z^B00) = Z^^B'00),

i.e., P°D(AB) = P°D(AB.).
Now AB and AB» are no longer analogous, so the trick

of Corollary 2.20 cannot be applied to prove weak semiboun-
dedness of A^. (Computations seem unmanageable.) We
shall circumvent this by using that we a.re in fact dealing with
boundary conditions on the reduced Cauchy data {[B°u, KU}
(boundary conditions where B11 factors through dt01), in
view of Theorem 3.11. For such conditions, it is easy to repeat
the whole theory in a simpler version based on the Green's
formula

(Au, ̂  = a(u, P) + <xu, (B°p> + <^(B°^ P°^>,

cf. (3.20). This gives

THEOREM 3.14. — Assume that F is noncharacteristic for A.
Let AB be the realization defined by a boundary condition

(3.58) BQO^Ou=0, B10^ + EPxu = 0,

where the differential operators B00, B10 and B11 go from
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© E, to © F,, © F, and © F, (respectively), and are
fceMo jeMo j'eMi ./eMi J ' r l"
^ types (-/c, -/)^eM,, (-/c, ~/) ,eM,fceM, and
(— 2m + I + k, -- /)./eM,, keMo (respectively). Assume that the
boundary condition is normal in the sense that the diagonal part
By and the second-diagonal part B^ are surj'ective morphisms,
and assume that ^ Pj = ̂ . Let IXC11 denote the right inverse

JGM
of B11IX according to Proposition 1.9. Then AB is weakly
semibounded if and only if each of the following equivalent
conditions hold:

(3.59) (I - C^B00)^! - C11^11) = 0;
(3.60) Z(B11) c R(B00*);
(3.61) Z(B11) ^ R(BOO'lt);
(3.62) B^B00* =0;
(3.63) Z(B00) c: R(B11'11);
(3.64) Z(B00) = R(Bllile);
(3.65) Z(B00) ^ R(Bll'lt).

It is used in the proof that (3.58) is equivalent with

(3.66) P°U.R(I -COOBOO);
' ' xu + C^-IS-u € R(I — C^B11).

By Green's formula (3.17):

(Au, v) - (u, A'?) = <%u, p°p> - <p<>u, %^>

we now see, using (3.66), that v e D((AB)') if and only if

0 = <(I - C11!?11)̂  - ̂ "B1^! - C<)»BO(')yo, P°^>
- <(I - Co-B^yo, X'P>

for all smooth cpo, (pi, i.e. if and only if

(I — ^"B11)*?0? = 0
(I — COOBOO)*B10')'C11*PO^' + (I — C^B0®)^'^ = 0.

This may be reformulated by the usual technique to a normal
boundary condition

(3.67) 6'°°p»^=0, fi'1^ + 6'iVp = 0,
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where B'00, B'10 and B'11 go from © E^ to F°, F1 and F1

fcGMo
(respectively), of types as in Theorem 3.14, B'00 and B'11

having surjective diagonal resp. second-diagonal part; here
F°- ® kerB^-i-,.; and F1 == © ker B^-i-^m--i-y. So

J € Mo 7 e Mi
(Aa)' == Ag., the realization of A' defined by the boundary
condition (3.67). Moreover, AB is the formally adjoint
realization to A^ in the analogous way. Observing that

Z^B'00) = (B°D((AB)') = Z2^! — C11^11)*) = R^B11*),

we may write (3.64) as

(3.68) Z^B00) = Z^B'00);

and since AB and (Aa)' === Ag. now enter in a symmetric
way, we can conclude that (3.68) must also imply weak semi-
boundedness of (As)'. So we have proved

THEOREM 3.15. — When F is noncharacteristic for A and
^ pj = ~fn, then AB is weakly semibounded if and only if

JGM
(Aa)' is weakly semibounded.

The formulation analogous to Corollary 2.20 is also valid.
Let us finally note that the adjoint equation to (3.62),

(3.69) B°°B11* = 0,

and its equivalent statement

(3.70) Z(B°°) => R(B11*),

provide the analogues of the last two statements in Corollary
2.14: When B11 = fi11^01 as in Theorem 3.11, then
Bii* = (9LOi*B1!*, where d01* is iwertible, so (3.70) and
(3.69) are equivalent with

(3.71) Z(B°°) ^ ((i01*)-1!^11*),
resp.,

(3.72) B00^01*)-^11* = 0,

the perhaps simplest version of (3.26). Corollary 3.10 can now
be completed with (3.71) and (3.72).
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