
ANNALES DE L’INSTITUT FOURIER

KOHUR GOWRISANKARAN
Integral representation for a class of multiply
superharmonic functions
Annales de l’institut Fourier, tome 23, no 4 (1973), p. 105-143
<http://www.numdam.org/item?id=AIF_1973__23_4_105_0>

© Annales de l’institut Fourier, 1973, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1973__23_4_105_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
23, 4 (1973), 105-143.

INTEGRAL REPRESENTATION FOR A CLASS OF
MULTIPLY SUPERHARMONIC FUNCTIONS

by Kohur GOWRISANKARAN

Introduction.

Let QI, Oa? • • • ? ^n be connected, locally compact, non-
compact Hausdorff spaces with countable basis for open
sets. Let there be a system of harmonic functions on each
of the spaces satisfying the axioms I, II and III of Brelot [1].
Let us further suppose that each space has a base for the
open sets consisting of completely determining regular domains.
An extended real valued function p on the product space
is said to be M-superharmonic if (1) it is lower semiconti-
nuous, (2) v =1=. + oo and (3) ^ is hyperharmonic in each
variable for every fixed value of the others. Let
(MS)+(tii X • • • X ^J or briefly (^S)+ be the class of
non-negative n-superharmonic functions on the product
space.

In 1965, the author showed that there is an unique integral
representation for the subclass of (nS^) consisting of posi-
tive n-harmonic functions with the aid of Radon measures
on the set of extreme elements belonging to a compact base,
[5]. In 1968, R. Cairoli gave an unique integral representation
for functions of two variables that are separately excessive
and satisfy an additional condition, that is called condition
(H) by him, [3]. Recently A. E. Drinkwater showed that with
a natural topology, the analogue of Cartan-Brelot topology,
(nS)4" has a compact metrizable base and hence obtained
an integral representation for elements of (nS)'4" with Radon
measures on the extreme elements in the compact base. But
she did not settle the question of uniqueness [4].
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The purpose of this paper is to obtain an unique integral
representation for a subclass ^ of (nS)"1". Motivated by
the results of Cairoli [3], we define the class ^ in the case
of product of two spaces 0.^ and Qg consisting of those
elements p in (2S)'1" for which x -> ^^ depends superhar-
monically on £2i (see Definition 2.1) where v^ is the cano-
nical measure on the extreme elements <^g of a conveniently
chosen compact base of S^Qg) representing the function
(^(rc,.). With the topology as in [4] we show that ^ is
closed in (2S)+ and hence has a compact base. Hence every
element in ^ is represented by a. Radon measure on the base
carried by the extreme elements. To show the uniqueness of
the measure representing each element, we show that V
is a lattice in its own order. Not surprisingly, a major part
of the paper is devoted to prove this lattice property and to
determine the extreme elements of the base. The key result
used in proving the lattice property and to characterize the
extreme elements is the Theorem 2.2 where we show an ele-
ment P of (2S)"1" belongs to ^ iff ^(rc, y) === jp 9 (re, p)v {dp)
where 9 is a Borel function which is superharmonic in the
first variable for every fixed p in ^3. This result also enables
us to show that ^ is precisely the set of elements of (2S)4'
satisfying the analytic analogue of Cairoli's condition (H)
(cf. Theorem 2.8).

Finally, we define the class ^ contained in {nS)^ by
induction on n. Most of the proofs of the earlier case go
through for the general situation and we obtain the integral
representation in this case. We also give at the end a charac-
terization of ^ in terms of the ^-dimensional analogue of
the Cairoli condition. We shall give elsewhere an application
of the integral representation result to holomorphic functions
of several variables.

1. Some measure theoretic results
and a result about positive superharmonic functions.

LEMMA 1.1. — Let X be a Lusin space and let
{^n? Pn? ^n}n=i to oo be a strict subdivision of X [9]. Let T
be the topology on X with the base for open sets consisting
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of sets of the form 9^(0), c in ^, n = 1 to oo. Then, (X, r)
i$ a Lusin space.

Proof. — It is clear that the sets <pn(c), c G ̂ , n == 1 to oo,
form a base for a topology. To show that (X, r) is a Lusin
space, it is enough to verify that the given strict subdivision
is also a subdivision for (X, r). For this, it is again enough
to verify that any coherent family of sets ^n^n) r-converges
to an element x contained in all of them. But it {<p»(cJ} is
coherent then there is an element x contained in all of
them such that the filter generated by {<pn(cJ} converges
in the original topology to x. Then, {<p^(cJ} is precisely
a base of r-neighbourhoods of x and hence the filter generated
by this sequence r-converges to x. The lemma is proved.

COROLLARY. — The Borel a-algebras of (X, r) and X
with the initial topology are identical.

Proof. — Clearly, T is finer than the given topology
on X. It follows that the open sets of the two topologies
generate the same cr-algebra [9].

LEMMA 1.2. — Let X be a Lusin space and {^, ?„, ^n}n==i to oo
a strict subdivision of X. Let (JL and v be two finite Borel
measures (1) on X such that ^nW = v[9n(c)] for every
c in ^ and n == 1 to oo. Then |JL == v.

Proof. — Let (X, r) be the Lusin space associated with
the given strict subdivision as in the above lemma. Since the
Borel sets are the same for (X, r) and X with the original
topology, [L and v are also finite Borel measures on (X, r).
Also, (X, r) being a Lusin space, [L and v are in fact
Radon measures on (X, r) [9]. Further for a base of r-open
sets, viz., 9/»(c), c in ^, n = 1 to oo, (JL and v have the
same value. However, every r-open set is a countable dis-
joint union of sets in the above base. Hence, (A and v are
the same on every r-open set. Now, from the outer regularity
of p. and v, we deduce that p. and v are identical measures.
The proof is complete.

(1) We use the term measure for a set function which is countably additive,
monotone, non-decreasing and equal to zero on the empty set.
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THEOREM 1.1. — Let X and Y be two Lusin topological
spaces and SD^X) the set of finite Borel measures on X. Let
v be a mapping of Y ->- SD^X) 6?uc/i (/iat i/' v( y) = ^y and
B any Borel set of X then^ y —> Vy(B) is universally measu-
rable for every finite Borel measure on X. Let X and v be
finite Borel measures on Y and X respectively such that (1)
Vy is absolutely continuous relative to v for every y in Y,
and (2) i Vy(X)X (dy) < + °o • Then, there exists a positive
Borel function f on X X Y ^ucA (Aa( for ^-almost every
y in Y, f(^^y) is a Lebesgue-Radon-Nikodym derivative
of ^y relative to v ; i.e., for every Borel subset B of X,
for ^-almost every y in Y, independent of B,

fj{x,y).(dx}==^{B).

Proof. — Consider the class 81 of Borel sets E contained
in X X Y such that y -> j XE(^? y ) ^ y {dx) is a universally
measurable function on Y. Clearly, this class contains R
where R is the algebra of subsets of X X Y consisting
of finite disjoint unions of Borel rectangles. Further 81 is
easily seen to be a monotone class as a consequence of mono-
tone convergence theorem. Hence, 31 contains the monotone
class generated by R. But the spaces X and Y being
Lusin, in particular Lindelof spaces, the monotone class gene-
rated by R is precisely the Borel a-algebra B(X X Y) of
the product space X X Y. Hence 81 is precisely B(X X Y).
Now, once again by a repeated application of monotone
convergence theorem it is easy to deduce that there is an
unique finite Borel measure [L on X X Y such that for
every non-negative Borel function g on X X Y,

f g d^ = f X (dy) f g{x, y^y {dx).

Let us now show that \L is absolutely continuous relative
to the product measure v (x) X. Let E be any Borel set in
the product space X X Y such that (v ® X)(E) = 0. Then,
there is a set A contained in Y of X-measure zero, A may be
assumed to be Borel, such that for every y in Y\A,
^(E^) = 0 where E3' is the section through y of E. Since
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v^ is absolutely continuous relative to v for every 73 in
Y, it follows that ^(E^) == 0 for every y in Y\A. Now,

^E)==f^{dy)f^(x,y)^{dx)
= f^ v,(E^ (dy)
=0.

Let f be a non-negative valued Borel function on X X Y
such that f is a Lebesgue-Radon-Nikodym derivative of (A
relative to v ® X. Then, for every Borel set E of X X Y,

fj{x,y^{dx)\{dy)=^E).
Also,

(.(X X Y) = f X (dy) J* Iv, (^)

=J\(X)x(A/)
< + °0 .

Hence, /* is v (x) X-integrable and so there is a Borel set Fi
of measure zero such that for every y in Y\Fi, f {x, y) is
v-integrable on X.

Let us now fix a Borel set E contained in X. For every
Borel set F contained in Y, we have :

XxpA^ V^ {dx)\ (dy) = pi(E X F)

= JP x W ^ ̂  {dx),
i.e.,

X [^(E) - X f^ v^ W]^ W = o.
This is true for every Borel set F contained in Y. From
this it is easy to see that there is a set AE, depending on E,
such that AE is X-measurable of X-measure zero and for
all y in Y\AE,

^(E)=^f(x,y).{dx).

Let ^ be the countable collection of all Borel sets belon-
ging to a strict subdivision of X. For every E in ^, let
AE be the set of X-measure zero determined as above. Let
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F = Pi U { A E : E e g}. Then, X(F) = 0 and for every
y in Y\F and all E in § we have,

^{E)=fj(x,y).{dx).

Now, for every y in Y\F, Vy is a finite Borel measure on
X and so is the indefinite integral J f{x, t/)v {dx). It follows
by Lemma 1.2. that, for every y in Y\F and every Borel
set B of X,

^(B) =/J^MAr).

The theorem is proved.

Remark. — The above result is still true if we alter the
hypothesis as follows : X and Y are any topological spaces
with countable basis for open sets; however, all the measures
considered are Radon measures.

We need the following result to prove the lattice property
of ^. Let 0. be a harmonic space of Brelot, i.e., with a
system of harmonic functions satisfying the axioms I, II
and III and with a positive potential > 0. Let, further, ^
be a countable base for open sets of ti consisting of comple-
tely determining domains. Let S" '̂ denote the space of non-
negative superharmonic functions on t2.

THEOREM 1.2. — The mapping S"1" X S4' ->• S"̂  gi^en by
(^, w) i—>• sup (^, w), the supremum in the specific order, is
a Borel function', ^iz.y the inverse image of every Borel set in
S4' under this mapping is Borel in S'^ X S4". The space S^
is provided with the Cartan-Brelot topology and the product
space with the product topology.

Proof. — We may assume that the Cartan-Brelot topology
on S"̂  is defined using the regular domains <o in the base S6
and a countable dense subset belonging to Q. Let co be a
fixed element of 8S and x in <o. We shall first show that
the mapping S4' X S4" -> R defined by

(P, w) i—^ f sup (^, w) d^,
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is a lower semi-continuous function on S"^ X S'4'. Suppose
(?„, Wn) in S"^ X S+ converges to (^, w). We may find
a positive number (3 such that j v d^ ^ (B, | w d^ ^ (3,
and for all n, f ^ d^ ^ (3 and f w^ d^ ^ p. Let
Ap == {u 6 S'1": j u rfp^ ^ |B}. Then Ap is a compact subset
of S"̂ " and Ap + AR c= Aap is also a compact subset of S"1".

Let us consider ^ and w^ for a fixed n. We know that
the specific supremum of ^ and w^ is the pointwise lower
envelope of all the specific majorants of ^ and w^ Let
us assume that at least one of the sequences {^}, {^n}
contains non-zero elements. Hence, we may find a sequence
{u^} of elements in S4" such that (1) u^ is a specific majo-
rant of both ^ and w^ (2) u^ decreases to a function u^
as k tends to oo and (3) the lower semi-continuous regula"
rization u'n of u^ is precisely the specific supremum of ^
and w^ We observe that for every n, u^ converges to u'^
in the Cartan-Brelot topology as k tends to oo and further
that \ u'n d^ ^ 2p since u'n ^ ^ + w^ Hence, for every
n, u'n is an element of A^p and we may assume without
loss of generality that u^ belongs to Agp for every k and
every n. Now, given s > 0, by the definition of Cartan-
Brelot topology we may choose an integer k^ for every TZ,
such that

0 < f <(S)p^ W) - / u^ {d^) < s/2.

Let us now consider the sequence {u^} of positive superhar-
monic functions on Q belonging to Agp.

To prove the required lower semi-continuity, it is enough
to show that the sequence ] f u[ d^ ^ of real numbers has
the property that from any subsequence of this sequence we
may extract a further subsequence with a limit greater than
or equal to j sup (^, w) c?p^. Accordingly, given any subse-
quence of {u'n} say {^JOTGMCN consider the corresponding
subsequence {^}meM. This latter sequence of functions
belong to Aap, hence we may extract a further subsequence,
say for m e M' c M, which converges to a superharmonic
function h in Cartan-BreIot-topology as m tends to oo,
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m in M'. Hence, for all m sufficiently large and m in M'

f <(S)p^ (dS) > / h{W W - s/2.

Hence, we get that for all m in M', m sufficiently large,

f<[W W ^ /<(S)p^ W - s/2
> fh^W- e (1)

We shall now show that A is a specific majorant of v and
w. We know that u^ is a specific majorant of v^ and hence,
u^ = ^m + ^m t011 some (4 in S+, in fact, in Agp. Also
as m tends to oo with m in M', ?„ converges to ^, u^
converges to /i and now it is easy to deduce that ^ converges
to an element v ' in S^ Hence h = p + ^' and /i is a
specific majorant of ^. It follows similarly that h is also
a specific majorant of w\ hence, h majorises sup (?, w)
in the specific order. Hence, for all sufficiently large m in
M',

f < d ^ ^ f h d ^ - e
^ j sup (^, w) dp^ — e.

This completes the proof of the lower semi-continuity of the
function (^, w) \—>- j sup (^, w) rfp^.

Now, for any pair of real numbers a a.nd 6, a < &, any
8 in ^ and re in 8, let

W(8,o;,a, b) = \ue S+: a < fud^<b\.• */ '
Then, there is a subbase for the Cartan-Brelot-topology
consisting of a countable number of sets of the form W(8, x,
a, fc). It is clear that the Borel cr-algebra B(S+) of S4' is the
<r-algebra generated by this countable subbase. To prove
that the mapping (^, w} \—^ sup (^, w) is Borel it is enough
to show that the inverse image of the sets of the form W(8, x,
a, b) under this mapping are Borel sets of S~^ X S+. But,

{(^, w) e S-^ X S+: sup (^, w) E W(S, x, a, b)}
= j (^, w) : a < j sup (^, w} dpi < b}
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and the set on the right side is Borel in S4- X S4- in view of
the lower semi-continuity proved above. The proof is complete.

COROLLARY. — The mapping (^, w) \—>- inf (^, w) in the
specific order is a Borel mapping of S4" X S4' -> S4".

Proof. — The mapping S4- X S4- -^ S4- given by
(c, w) i—>• v -\- w is jointly continuous and

v 4- w = sup (P, w) 4- inf (^, w).

Hence, (^, w) i—>• j inf (^, w) d^ is upper semi-continuous
on S4' X S4'. The proof of the corollary is now completed as
in the last part of the proof above.

LEMMA 1.3. — Let T be a measurable space, i.e. a set with
a a-algebra T of subsets of T and ^: T ->• S+. The space
S4" is provided with the Cartan-Brelot-toplogy and B is the
Borel a-algebra of S4'. Then the following are equivalent
conditions.

(1) The function 9((, x) = (<?(^))(^) is T X B measurable
on T X 0.

(2) The mapping ^: T -> S4" is Borel.

Proof. — Suppose (2) is verified. In particular, the real
valued function t -> j ^(()(^)pi (d^) is r-measurable on T
for every fixed x in 8, where 8 is any element of S>.
However, x\—>- j <^(()(S)pI (^S) is harmonic on 8 for
every (. We deduce that ((, x) i—^ f 9(<)(S)pj (dS) is
T X (B n 8) measurable, [6, p. 487]. Define /§: T X ^ -> R4-
as follows :

/^, .r) = J ̂ )(S)pj (^) if ((, a;) G T X 8
=0 if ((, x) G T X (Q\8).

Then, clearly /§ is a T X B-measurable function on T X t2.
Also, cp((, x) = sup {/§((, x) : 8 e %}. Since ^B is a countable
set we conclude that (1) is satisfied.

Conversely, suppose <p(^, x) is T X B-measurable on
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T X ^. Let 8 be in S> and x in 8. Then

(h——j\(^)pl(^)

is T-measurable. Consider the subbase for the topology of
S4' consisting of sets of the form W(8, x, a, b) as in the proof
of Theorem 1.1. It is clear that {( e T : y(() e W(8, x, a, b)}
is in T. The proof of the Lemma is now completed easily.

THEOREM 1.2. — Let T be a measurable space with a a-alge-
bra T of subsets of T. Let 9 and ^ be two non-negative
valued T X B(Q) measurable functions on T X 0. where
B(Q) denotes the Borel a-algebra of 0.. Let further, for every t
in T, <p((, .) and ^((, .) be elements of S+. Let for every t
in T, p(t, .) be the specific supremum of the superharmonic
functions 9(1, .) and ^(t, .). Then, p : T X 0. -> R is a
T X B(I^) measurable function.

Proof. -— From the above lemma, we conclude that the
inverse image of any Cartan-Brelot Borel set of S4" under the
mappings ^ and ^ given by ~^{t)(x) = <p(^ x) and
^{t){x) = ̂ {t, x), belong to T. Now let p be the composite
of the mappings T -> S4" X S+ given by (i—>- (^(t),~^{t))
and S4" X S4' -> S4' given by [v, w) i—>- sup {v, w) in the
specific order. By Theorem 1.1 we know that the latter map-
ping is Borel. Also we conclude easily that the inverse image
of any Borel set under the mapping (i—^ (<^), ^(()) is in
T using the following two facts : (1) this mapping is coordi-
natewise r-measurable and (2) since S4' is polish the Borel
a-algebra of the product of S4" with itself is the product
of the Borel (T-algebra BfS4'] with itself. Hence ^ is T-mea-
surable. It follows from the earlier lemma that the function
p is T X B(Q) measurable, completing the proof.

2. The class (° of doubly superharmonic functions
and the integral representation.

Let QI and Qg be harmonic spaces of Brelot and we shall
assume that ^i (resp. ^3) is a countable base for open sets
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of QI (resp. Q^) consisting of completely determining regu-
lar domains. Let S^ be the space of non-negative superhar-
monic functions on Q^ and A^ the Cartan-Brelot-compact
base of S^ consisting of the functions v such that for a
fixed S£ in ^ and a fixed point 4 in 8g, R^(^) === 1;
for k = 1,2. Let <^ be the set of extreme superharmonic
functions belonging to the base A^ for k == 1,2. Let (2-S)+
denote the class of positive 2-superharmonic functions on
QI X ^2- Before we define the class ^ contained in (2-S)+
we need

DEFINITION 2.1. — Let v : QI -> 3D^-(<^) be a mapping of
t2i into the space of finite Borel measures on ^3. This mapping
is said to depend superharmonically on ^ if the folllowing
hold good. Let us denote the measure v(x) by \^ for every x
in QI.

(1) For every Borel set contained in <^, the function x -^ ^(B)
is universally measurable for every finite Radon measure on Q.^.

(2) For every regular domain co contained in 0.^ and any x
in o) let v(co, x) be the finite Borel measure on <^ defined
by

v(co, ^)(B) = J\(B)p^).

Then, for every Borel set B of S^ v(cx>, x){B) ^ v.c(B).
(3) For every x in 0.^ and any sequence {co^} of regular

domains of Qi such that {x} == n <x>^ and co^+i c: co^ for
all TZ, and every Borel set B of <^,

l imf^(B)p^(^)=v. (B) .
n>oo ^

The above definition is really equivalent to stating that for
every Borel set B of ^3, x i—^ v^(B) is a superharmonic
function. But we prefer to define it the longer way.

DEFINITION 2.2. — A doubly superharmonic positive function
on ^i X ^2 is said to belong to the class ^ if the mapping
x'—^ ^9 ^x being the canonical measure on €^ corresponding
to the superharmonic function v{x, .) on 0.^ depends superhar-
monically on x in 0.^.
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Remark. — The set of points x in Qi for which
^(rc, .) == + oo on Og is easily seen to be polar and this is
a Borel set of 0.^; for all x belonging to this set, we set v^.
equal to some arbitrary positive finite measure on <^a.

Before proceeding further, we prove the following lemma.

LEMMA 2.1. — Let v be a positive doubly superharmonic
function on 0.^ X ^2- Then, for every Borel set B contained
in <^2? ^1—^ ̂ (B) is a Borel function on O^, where v^ is
the canonical measure on ^2 corresponding to the superharmo-
nic function y \—>- v{x^ y).

Proof. — Let ^^(^2) denote the set of finite Radon mea-
sures on <^2- Let this set be given the narrow topology. Then,
it is known that 9)1^(^2) ls a polish space, since ^2 is a
polish space, [9]. Now, consider the mapping 9 : S^-^SD^f^)
given by the canonical measure on ^2? corresponding to
the element v in S^". This is a one-one, onto mapping.
And the inverse of this mapping is continuous as, if v^ in
^^(^2) converges to v in §?^(^2) then the superharmonic
functions corresponding to v^ converge to the function with
the canonical measure v in the Cartan-Brelot topology.
However, §?^(^2) being a polish space, this implies that the
mapping cp : S^ -> ^^{^z) 1s Borel [9]. Now, the mapping
x i—^ v.y is the composite of 0.^ -> S^ given by x i—^- ^(x, .)
and cp. In view of Lemma 1.3, i^ —> Sg" is Borel and it
follows that x i—>- v.p is a Borel function. In particular,
x i—>- ^.c{f) is Borel for every positive continuous function
f on ^2- Now, by standard Baire class arguments, we can
deduce that x \—^ v^(B) is Borel for every Borel set B in
^2. The lemma is proved.

COROLLARY. — The canonical measure corresponding to

f^,y)^{d^)

on <?2 ts precisely the measure

f^(d^)
on <^2-
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The corollary follows as a consequence of Fubini's Theorem
and the uniqueness of the measure on ^2 representing
f^y)^{d^.

PROPOSITION 2.1. — The set ^ is a convex cone for the cano-
nical addition and scalar multiplication.

The proof is obvious.
Let ^i be the vector space generated by the cone ^'. That

is, by the standard method of introducing the natural equiva-
lence relation on ^ X ^ etc., ^i consists of differences of
the form ^-w, 9 and w in ^. The convex cone ^ is with
vertex 0 and generates ^i. Let (( >- » be the order intro-
duced by ^, i.e., with ^ as the positive cone. In this order
^, w in ^i satisfy v >- w if v — w is an element of ^.
We shall now proceed to show that with this order ^ is a lattice.

THEOREM 2.1. — Let v : QI -> 9)^(^2) depend superhar-
monically on î. Then the sets of ^y, = v(x) measure zero
are independent of x in 0.^. Also, if f is real valued Borel
function on €^ then the ^^-integr'ability of f is independent
of x in QI, except for a polar set E^ depending on /*. Further^
for a positive « integrable )) Borel function f,

ff{pK{dp)

is a superharmonic function on Qi.

Proof. — If B is a Borel set such that v.c(B) = 0 for some
x, then v^(B) = 0 for every ^ in Qi since Si—^ ^(B)
is a non-negative superharmonic function on i^i. Now, let
E be a v^-measurable set for some x in ^i such that
v^(E) == 0. Then, there is a Borel set B containing E such
that v^(B) == 0. Hence v^(B) == 0 for every S in Qi. It
follows that E is v^-measurable for every ^ in ^i and
v^(E) === 0. Now, by standard measure theoretic arguments,
it is clear that for any positive Borel function on ^2,

x —^ f /'(p)^ {dp)

is identically zero or + oo, or else superharmonic on t2r
The proof is now completed easily.
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The following is the crucial result in getting the integral
representation.

THEOREM 2.2. — Let v be a positive ^-superharmonic func-
tion on 0.^ X ^2 belonging to the class ^. Let v be any
finite Borel measure on <^ such that for every x in Q^, the
canonical measure v^ on ^2 corresponding to the positive
superharmonic function v{x^ .) on 0.^ is absolutely conti-
nuous relative to v.

Then^ there is an extended real valued non-negative Borel
function f {x, p) on Di X ^2 su^ ^at

(1) for every p in €^ x\—>• f (rr, p) is superharmonic
ou 0,1, and

(2) for every x in ^2?

^ y} = f P (y) f{^ p)^ {dp)'
Conversely, let f (x, p) be a non-negative extended real

valued Borel function on Q,i X €^ such that it is superhar-
monic in the first variable for every p in S^. Let v he any
finite Borel measure on <^a- Then,

^ y) = f p{y) f{^ p^ W
is either identical to 0 or oo, or else a positive 2-superhar-
monic function in the class ^.

Proof. — Let So he the fixed domain in ^2 defining the
base Ag (and the corresponding ^2) with fixed yo in So.
Observe that

f ̂  2/)P^° W

is a positive superharmonic function on i^r Let x^ be an
arbitrary element belonging to the regular domain CD^ in ^i.
Let a^ > 0 be such that

00

S a,p^ (5a,.) < + oo
n=l

and

5 a, ff v{x, y)^ {dy)^ {dx) < + oo.
n î
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Let X == Sa^p^". Then X is a finite Radon measure on Qi.
And,

f v,(<^)X {dx) = f X (^) J P(^, y)p^ (A/)

== S ^nff^y)9^{dy)^{dx}
H—1

< + 00 .

Further, both Qi and ^2 are polish topological spaces.
Hence, by Theorem 1.1, there is a Borel function 9 on
QI X ^2 suc!1 ^at 9(0;, p) ^ 0 and except for a set F
contained in Qi of X-measure zero, 9 (re, .) is the Radon-
Nikodym derivative of v.p relative to v. It follows that F
is of p ̂ "-measure zero, for every n; i.e., F is ^i-negligible.

Let co be any regular domain in the base ^i and consi-
der the integral

f ̂ p)^W=^{x,p).

As a function of x in o, ^{x, p) is harmonic or identically
+00. Suppose for p in a set of positive v-measure on
^2? y^ P) = + °°- Then,

+ ̂ ^ff^P^^W
=f^Wf^p).{dp)
= f ^ {dW^)
< + oo.

Hence, for v-almost every p in (fg, y(o(^? p) is harmonic
on o) and is clearly a Borel function on <^- Hence, ^{x, p)
is jointly Borel on co X <^a [6? p. 487]. _

Now, let 0)1 and cog be in the base ^i such that co^ is
contained in o)i and let B be any Borel set of ^2. Then,
for x in (Og,

JB ̂ "(^ P)^ (^) = JB v (^P) / ^(^ p)p^ W
== f p^ (^) JB <p(^ p)^ (^p)
=J'^(B)p^(^)
< rv^(B)p^(^) (^ belongs to ^)

= JB ^^(^ P)^ (^P),
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i.e.,

JB [r^ P) - ̂ (^ p)h W ^ o-
Hence, there is a set Ea; of v-measure zero in ^2 such that
for every p in the complement (p^rr, p) ^ y^^rc, p). Let
E be the union of the exceptional sets E^ corresponding
to a; in a countable dense subset of cog. Also we may suppose
that E contains the set of p for which cp^a?, p) = + oo.
Now, E is of v-measure zero and for every p in ^ and
not in E, (p^rc, p) and cp^a;, p) are two harmonic func-
tions on cog and satisfy 9C01(^, p) < ^^(rK, p) on a dense
subset. Hence, for every p not in E, cp^a;, p) ^ (p^rc, p)
tor all x in cog. The base ^i is countable and it is easy
to see that it is possible to choose a set €^ contained in <^
of full v-measure such that for all p in <^ and every pair
of elements co^, 003 in ^i such that <x)i => cog,

cp^, p) < (p-̂ , p) < + oo

for all x in (02- Since a finite measure v on the polish space
<^2 is Radon we may without loss of generality assume that
<^2 is a K<y"set, in particular, a Borel set. Also, for every
Borel set B of ^2 ^d f01* ^i-nearly every x in Q^,

^ 9^ pHdp) - J\(B)p^ (d^
< v.(B)
= JB ^(^ ̂ v (^)-

Let for every <o in ^i, ^^(.x;, p) = 0 if ^ is not in co and
= ^^(^ p) if ^ is in co. Then 9^ is a Borel function on
Q.I X ^2? ^ is the sup {9,°: co e ^1} = /*.

We claim that for every p in ^25 the function
x\—^ f'(re, p) is lower semi-continuous on D^. To prove
this, let p be fixed in ^2- Consider {x: f {x, p) > a}. If
XQ is in this set then, there is a co in ^i, co contains XQ,
such that 9(o(cro? p) > a. Since ^ is continuous in x, there
is an open neighbourhood U of XQ in which 9to(cr, p) > a.
Now, f (re, p) ^ 9(0(^, p) > a for all ^ in U. This shows
that {x: f (x, p) > a} is open, proving the lower semi-
continuity.

Let x be in Qi and {co^} a sequence of regular domains
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in ^i such that co^+i is contained in co^ for every n and
nco, = {x}. It is easily seen that lim ^{x, p) == f {x, p)

n-xxi
for every p in <^a. In particular, by monotone convergence
theorem, for all Borel sets B of ^9,» 2 9

JB f^ P^ W = lun JB ̂ "(^ ̂ v W-
However, except for x in F, the set which is ^i-negligible
introduced at the beginning of the proof,

F <?{x, p)v {dp) = lim T 90Jn(^, p)v {dp).
v n->w ^ "

It follows that for all x in ^i\F, f{x, p)v {dp) and
9 (re, p)v (^p) are the same measures on ^3. Hence,

JB v (^) / A^ P)?^ W) = f p? (dS) J, /•(S, p)v (dp)
=f^{d^)f^{^p).{dp)

=f^(dP}f^P)^W

- ̂  9(u(^ P)^ (^).

The above equation is true wha.tever be the Borel set B of
^2 and all elements co of ^i. It follows that

ff^P)^{d^)=^{x,p)

for v-almost every p in <^, the exceptional set depends on
x in (o. Now exactly by the same argument as before, using
the continuity of ^{x, .) and f /'(S, p)p!? (d^) we may
find a Borel set <^ of S^ contained in <^ such that (1)
v(<^2 — <^) = 0 and (2) for every p in <^ and every regular
domain <o in Q.^, co in ^i, f /•(S, p)p^ (dp) ^ y^, p).
TVT ^Now,

f f { ^ p ) ^ { d p ) = ^ { x , p )
^ f { x , p )

for all x in co and every p in <^, and this shows that
^ i—>-f{x,p) is superharmonic on Q^ for every p in <?2-
We may change f to take the value 0 for all x in £1^ and
all p in <^2\^a, then /* is defined on the whole of t2i X <^a
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and for every x in I2i, f(x, p) dv is unaltered. Further,
(a;, y) i—>- J p( y} f{x, p)v (Jp) is a. positive 2-superharmonic
function on t^i X ^2 ^d for all x in ni\F and y in ^2,
where F is ^i-negligible,

/ p(y) /l (^ p^ (^p) = / p(yM^ p^ (^p)
== (̂a;, y)

It is now clear that for all {x, y) in ^ X ^2

^ y) = J* p(y) /> (^ p)^ (^p)-
Conversely, let f be as in the hypothesis and v any finite

Borel measure on ^2- It follows by straightforward applica-
tion of Fatou's lemma and Fubini's theorem that

^ y} = f f^ p)?^ W
is a doubly duperharmonic function on 0.^ X ^2- Again
we deduce using Fatou's lemma that for any Borel set B of
<^2? ^1—^ j ^ f ^ y p ) ^ (^P) ls lower-semi-continuous. Also, for
any regular domain co,

jp,- (^) /, f^ P)v (^) - J, v (^P) / nS, P)?^ W

< f^f{^p)v W'
This shows that the mesaures {/*(^, p)v (^p)} depend super-
harmonically on x. But since the measure on €^ represen-
ting y[x, .) is unique, f(x, p)v (dp) is precisely the canonical
measure corresponding to p(rc, .). Hence, v is in the class ^.
The proof is complete.

THEOREM 2.3. — The cone ^ is a lattice in its own order,
that is, in the order « > ».

Proof. — Let P and w be any two positive 2-superhar-
monic functions belonging to the class %\ Let X be the
canonical measure on ^2 corresponding to the superharmo-
nic positive function (^ + w) (a?o, .) on Q.^ for a fixed XQ
in i^i. Clearly, the canonical measures v^ (resp. (JL^) corres-
ponding to the superharmonic function v(x, .) (resp. w[x, .))
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on Qg are absolutely continuous relative to X for all x in
^i. Hence, by Theorem 2.2, we may find non-negative
Borel functions 9 and ^ on ^i X <^2 such that for every
p in (^2? ^ { ' ^ p ) ^d 4 ' ( - ? p ) are superharmonic on 0^
and

^ !/) = f 9^ P)P(2/)^ (^P)

^ y) = f ̂  p)?^ (^p)-
Let us define p(cT, p) = sup [9(^5 p), <K^, p)] for every p
in (^2 where the supremum is taken in the specific order on
positive superharmonic functions on ^2- By Theorem 1.2,
we know that p is a Borel function on Qi X §2- Let

h^ y} = f p(^ p)p{y)^ (^p)-
Then, A is a positive 2-superharmonic function on Q^ X ^2
belonging to the class ^. It is clear from the way p is defined
that h — v and h — w are both elements of ^, that is,
h >• v and h >" w. We shall show that h is precisely the
supremum.

Let X' be any finite Borel measure on ^2 such that
X' ^ X. Then by Theorem 2.2, ^ and w can be represented
by Borel functions 9' and V on fl^ X <^2 with respect
to the measure X', viz.,

^ y) = f ^'(^ p)p(^/)x' (rf?)
^ y) = / +'(^ p)p(^/)x' (^p).

where 9'( . ,p) and ^ ' ( .5?) are non-negative and superhar-
monic on t2r Let g be a Radon-Nikodym derivative of
X relative to X'. Then,

^r, y) = J 9(^, p)p{y)g{p)^ W
w^ y) "= f ̂  pMy)sW W'

Now, as in the proof of Theorem 2.2, we can conclude that for
all p in ^2 except for a Borel set of X'-measure zero,

g{p} f ?(S, P)P^ W = f 9'(S, p)p? (dS)
and g{p) f ̂  p)^ (dS) = f ^'(S, p)^ W
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for every co in 8S^ and all x in co; and this set of X'-measure
zero is independent of co in SS^ and x in G). However,
y^? ?)? 9 ' ( -? P)? ^ ( • ? P) ^d ^ ' ( - ? p ) are ŝ l superharmonic
on î and hence, 9(3;, p)g(p) === 9'(^ p) and

g^PW^P) == ^'(^P)
X'-almost everywhere. Hence,

sup [<p'(^, p), ^/(^, p)] = g(p) sup [9(^, p), +(.3?, p)]

X'-almost everywhere, the supremum being taken in the speci-
fic order. It follows that

h^ y) = ( ^P [^ p), ^(^ p)]?^)^ (^p)t^=== J ^(p) ^P [9(^ p), ^(^ p)]p{y)^ {dp)
= f SUp [Cp^, p), +'(^, p)]p(2/)X' (^p).

Now, let u be an element of ^, majorising both v and
w, i.e., u — ^ and u— w are both elements of ^. Let X'
be the canonical measure on §2 corresponding to the posi-
tive superharmonic function ^{xo, y) + w{xo, y) + u(^o? 2/)
where a;o is a fixed point of Q.. Let 9', ^ /? P' b^ non-nega-
tive Borel functions on ^i X ^29 superharmonic on t2i
for every p in ^2 a11^ represent in the above sense respecti-
vely the functions ^, w and u with respect to the measure
X'. Also, let 91 and ^ be similar functions representing
u — v and u — w respectively. That is,

{u — ^{x, y) = f (piQr, p)p(y)X' (dp)

and (u — w){x, y) == J ̂ , p)p(t/)X' (dp).

An easy computation along with the uniqueness of the
measure on ^2 representing any positive superharmonic func-
tion on ^2 shows that

p'(^, p) = <p'(rr, p) + 9i(^, p)
and p'(^, p) = ̂ {x, p) + ̂ i(^ ?),

for X'-almost every p in S^. Hence, for X'-almost every p
in <^2?

P'(^ P) :== ^P [?'(^ P)? +'(^ ?)] + Pi(^, ?)
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where the supremum is taken in the specific order; and pi
is non-negative and superharmonic in the first variable and
pi jointly Borel. Let

h\x, y) = f piQr, p)p{y)^ (dp).

By Theorem 2.2, h' is an element of ^. Further, u == h + h\
This proves that h is the supreum of v and w in the
order « >- ».

It is now easy to see that the infimum of p and w is pre-
cisely (P + w} -— sup (P, w). It can also be seen directly
that the infimum of v and w is precisely

f inf [cp(^, p), ̂ , p)]p(y)X (rfp)

where the infimum; is taken in the specific order.
The proof of the theorem is complete.
Let us consider the vector spaces (2S) generated by

(2S)4" in the standard way and the vector space ^\
generated by ^. Clearly ^i can be identified with a vector
subspace of (2S). The vector space (2S) and so ^i can
be given the locally convex Hausdorff topology T under
which all the linear functionals PI—>• j j ^ d^ d^ are
continuous for <x) in ^i, 8 in ^3 ^d (^? y) ln <«> X 8.
It is shown in [4] that (2S)+ with this topology is locally
compact and metrizable and has the compact base

{ p : ff ^ d ^ d ^ ^ l }

for fixed <x>o? So, XQ and y^. We shall assume that the o>o
and XQ (resp. §o ^d 2/o) are ^e domain and the point
respectively used in getting the base Ai of S^ (resp. Ag
of S^"). Clearly, ^i with T is a locally convex Hausdorff
topological vector space generated by the cone ^. Also,
^ = {^ e ^ : r f p d^ d^ =1} is a base for the cone.
We shall now show that ^ is closed in ((2S), r).

THEOREM 2.4. — The topological space (^, r) 15 locally
compact and metrizable.
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Proof. — (^, r) is a topological subspace of (2S)4" and
is hence metrizable. To complete the proof, it is enough to
show that ^ is r-closed in (2S)4". Accordingly, suppose
^ belongs to ^ nda converges in T to p in (2S)4'. Let
<o be any regular domain in Q^ contained in the base ^i.
Let v^ and v(co, x) be the canonical measures on <^a corres-
ponding to the functions y i—>• ^{x, y) and

y^f^y)^W
respectively: in the second case x is in co. We recall that
v(co, x) is precisely the measure j v^ (d^) (Lemma 2.1)
Now the fact that ^ converges in T implies that

/^,t/)pS)(^)

converges in the Cartan-Brelot topology to j ^(^, y)p^ (d^).
This is true whatever be the regular domain <o and x in Q).

Let us fix an x in tl^, and, let coi, 0)3, . . ., G)^, . . . be
regular domains containing x such that nco^ == {re} and
^m+i ls contained in co^ for every m. Now, ^ is an ele-
ment of ^ and hence, ^^((o^+i, x) ^ Vn( ( l )m? rc) to1* every n
and every m where ^(^fc? ^) is the canonical measure on
<^2 corresponding to j ^(^, f/)p^ (d^). Hence, fixing m,

/ ^n(^ y)p^ (dS) - / ^(S, y)^ W) + < (1)

where w^ is a non-negative superharmonic function on Q,^.
Let us proceed to the limit as n tends to infinity. Since
J\(S, Qp^ (^S) converges to f ̂ (^, ^p^ (^) and
J ^(^, .)pS)m (cUS) converges to J ^(^, .)p^m (dS) and since
Sg" is closed we conclude that

f ̂  .)p^- (dS) = / ^(S, .)p^ (^) + u,

where u^ is the element of Sg" which is the limit of the
sequence w^. It follows that v(co^+i, re) ^ ^((^m5 rc)- This
is true for every positive integer m. Let (JL^ b6 Ae measure
which is the limit of the increasing sequence of measures
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v(co/n, x) in the sense that for every f ̂  0 and Borel on <^,

[L^f) = lim fjfdv(co^a;).
ro->« l/

In particular it follows that for every y in t^,

J* P(2/)^ (<^P) == lim / P{y}^m, x) {dp)

==limfp(S,i/)p^(^)
OT>ac l/

= ̂ , I/).

It follows that v^ = ^a; by the uniqueness of the measure
representing p(rc, .). And in particular we deduce that
^(^m? ^) ^ ^ for every positive integer m and that v(<o^, x)
increases to ^. This shows that the measures ^ depend
superharmonically on x in jQi, i.e. the function p belongs
to the class ^. The proof is complete.

COROLLARY. — <^o = {^ : JT p d^ d^ = 1} 15 compact.

Proof. — The proof of the above theorem shows that ^o is
a closed subset of the corresponding base (2S)o" of (2S)+.
The proof is complete.

The next result characterizes all the extreme elements of
the compact base ^o.

THEOREM 2.5. — An element 9 of ^ is an extremal generator
iff there are extremal generators p and p' in S^ and 83' respec-
tively such that ^{x, y} == p(^)p'( y) for all {x, y) in t2i X Qg-

Proof. — It is known [4, page 37] that every function of
the form p{x)p/( y), where p and p ' are positive extreme
superharmonic functions on ^i and fi^ respectively, is
an extremal generator of even (2S)+. Conversely, we
shall show that every extremal generator of ^ is of this
form. Let v be an extremal generator of ^. Let v be a
finite Radon measure on (fg and 9 a non-negative Borel
function on Qi X ^g? superharmonic on 0,^ for every p
in ^2 such that y(rp, p)v (dp) is the canonical measure on
<^a corresponding to p(n;, .).

Suppose now there is a Borel set E of ^2 such that v.p,



128 KOHUR GOWRISANKARAN

00

for every x in Qi, is carried by the set E and E === (J En
n=l

where E^ are all Borel subsets of E and E^ r\ E^ == 0
if m ̂  n. Then, we claim that there is an unique integer
m such that \^ is carried by E^ for every x in Q^, i.e.,
v^(EJ === 0 for all n ̂  m. Suppose this is not true, and say
^(E^) ^ 0 and v,,(E/Ei) ^ 0. Then,

and
î(^ y) = JE, ?(2/M^ p^ (dp)

î(^ y) = JE/E< P (2/M^ p)^ (dp)
are both elements of ^ (Theorem 2.2) and w^ ^ 0, w[ -^- 0.
However, w^ + Wi == P. Since ^ is an extremal generator
there is an a between 0 and 1 such that Wi = ap and
w[ == (1 — a)^. It is clear that a is neither zero nor one.

( 1 \Hence, (l/a)^i = v == .——— ) w^. Looking at the canonical
. . /

measures of the positive superharmonic functions Wi, w[
and ^, we conclude, in view of the uniqueness of integral
representation for elements of Sg", that the measures,

/[
<p(^, p)v (dp), -^ XE/P)?(^, p)^ (dp)

1
and 7.———^ XE/F/P)?^? p)^ (dp) are identical. This implies

in particular, that the measure (p(rc, p)v (dp) is carried by
both EI and E\Ei. This in turn implies that <p(^, p)v {dp)
is the zero measure, i.e. v == 0. This contradicts the assump-
tion that v is a non-zero element. Hence, we conclude that
there is at the most one integer m such that Va?(E^) =^ 0.
However there is at least one since ^y, is a non-trivial measure.
Again by Theorem 2.1, this set is independent of x in Qi.

Now, consider a strict subdivision of the polish space €^
[9, part II]. Let {B{[} be the sequence of mutually disjoint
Borel sets in the first stage of the subdivision, i.e., uB^ = S^
By the above, we can choose an unique B^ which carries the
measures v^;. It is clear now, than we ca.n choose by induction
a coherent sequence of sets B^, B^, . . ., B^, . . . , B^ a
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Borel set in the n^ stage of subdivision carrying the measure
v^ for every x. But, this coherent sequence of sets generate
a filter which converges to an unique element p' in <^g.
We claim that v^ is precisely a constant multiple of the
Dirac measure at p'. Suppose pi in ^2 and pi 7^ p\
Then, there are neighbourhoods W of p' and Wi of pi
such that W n Wi == 0. Then, B^ is contained in W for
all sufficiently large n. In particular, ^(Wi) == 0 for all x
in QI. It follows tha.t the support of ^ is {?'}. Hence,
p(rc, y) = w{x)p\ y) for every (x, y) in Qi X ^2; where
clearly w(rc) is a positive superharmonic function on Qi.
Suppose now that ^ = = ^ 1 + ^ 2 where ^ and w^ are posi-
tive superharmonic functions on t^i. Then, it is easily seen
that Wip' and w^p' are both elements of ^ and,

p = w^p + Wgp'.

Hence ^ip' and w^p' are proportional to each other. Hence,
by fixing y at a point Y] other than the support of p',
so that 0 < p'(^) < + oo, we see tha.t w^ and ^2 are
proportional to each other. This shows that w is an extremal
generator of S .̂ The proof is complete.

Remark 1. — The above theorem gives a one-one, onto
mapping of ^i X ^a -^ ^(^o) ^•5 (p? P') -^ PP' where
8(^0) ls Ae set of extreme elements of ^o- I1 1s easily seen
that this mapping is a homeomorphism. Hence the finite
Borel measures, which are the finite Radon measures of the
two spaces, may be identified. Also, by Krein-Milman theorem,
we get that the convex combinations of elements of the form
pp', p e <^i p' e ^2 are dense in ^o-

THEOREM 2.6. — Let y be a positive doubly superharmonic
function on Di X ^2 belonging to the class ^. Then, there
is an unique finite Radon measure pi on <^i X S^ such that
for all (re, z/) in Q.^ X ^2?

^ y) = f pWp\ v)^ ^P d p f ) '
Proof. — All the conditions to apply the integral representa-

tion theorem of Choquet are verified and we conclude that there
is one and only one Radon measure (A on ^o carried by
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<^(^o) such that for every continuous linear functional I
on ^i,

fl{P)^{dP)==l{v).

Now, we observe that this measure (JL can be considered as
a finite Radon measure on <^i X ^2 ^d? tor every G) in ^i
and 8 in ^2 any (re, y) in <o X 8,

ff ^ d^ d^ = f (i (dp dp') ff ppf d^ d^.

Fixing (a;, y) in ^ X ^a? let us choose regular domains
o^ in ^i, §„ in ^3 satisfying <^+i <= o^ ^ c: S^
{.r} == nco^ and {z/} = n8^. An easy application of mono-
tone convergence theorem shows that

^ y) = f pW{ y)^ {dp d p ) .
Conversely, let v be any finite Radon measure on <^i X <^a
such that

^ y) = f pW[ y}^ {dp d p ) .
The measure v can be considered as a Ra.don measure on
^o carried by the set ^(^o)- For any pair of regular domains
(o and 8,

ff ^ d^ d^ = ff d^ d^ f pp'v {dp d p ' )
= f v {dp d p ) ff pp' d^ d^y (Fubini).

And now it is easy to deduce that v = fpp'v {dp d p ' ) vec-
torially. It follows that (A == v. The proof is complete.

COROLLARY. — E^ery element v in ^ can be written in the
form ^i + ^2 + ^3 + ^4 where ^ is 2-harmonic, ^ (resp.
^3) is harmonic on 0.^ (resp. Q.^) for every fixed y in Qg
(resp. x in Q.^) and ^4 is a potential in each variable for
every fixed value of the other.

Proof. — Let A^ (resp. A^) be the set of extreme harmo-
nic functions contained in €^ (resp. ^3). Let Vi, Vg, Vg
and v4 be respectively the restriction of (JL to the Borel sets
At x Aj, At X (^2\A|), (<^i\Ai) X Ai and (<T\Ai) X (<r2\Ai).
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Let ^i, ^, ^3 and ^4 be respectively the non-negative
2-superharmonic functions on 0,^ X ̂  belonging to ^ with
the corresponding canonical measures v^, Vg? ^3 and ^.Then,
it is clear that ^, ^2, (^3 and (^4 satisfy the required condi-
tions, completing the proof.

Remark. — The example in [4] shows that the class ^ is
in general not equal to (2S)4". We believe that the class
^ is in every case strictly contained in (2S)+.

Before we proceed to the case of functions of more than two
variables, we give below a characterization of the class V
and a consequence. We note that there is an apparent asymme-
try in our definition of the class V. The following result
shows that the class is indeed symmetric in the sense that a
corresponding condition in the other variable is automati-
cally satisfied. Also, we believe that the equivalent condition
is more suited for application.

THEOREM 2.7. — Let p be a positive doubly superharmonic
function on Q.^ X ^2- Then, the following are equivalent.

(1) v belongs to the class ^.
(2) (Cairoli) for every pair of regular domains co and 8,

o) in î 8 in ^2 and any (rr? y) in (^ X 8,

f ̂  y)^ (rfS) + / ̂  ̂  (^) ^ ̂  y) + ff ^ d^ d^.

Proof. — Suppose p satisfies (2). Fix a regular domain co
in ^i. Then, v{x, y) — j P(S) y)p^ (d^) is the difference
of two lower semi-continuous functions on 02- Also, the given
inequality can be written in the form,

f[^y)-f^y)^{dWAd^)
^ ^ y ) - f ^ y ) ^ { d ^ ) .

This is true for any regular domain 8 in the base ^2 a11^
any y in 8. It follows that y\—^ v[x, y) — f ^(S, y}^ W
is positive and an S^-f unction on ^2* However, it is the
difference of two positive superharmonic functions on Qg
and is hence itself superharmonic on ^2- Let v^ (resp.
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v((o, x)} be the canonical measure on <^ corresponding to the
superharmonic functions ^(rr, .) (resp. \ ̂ (S? y)p^ (^S)). It
follows that v(<x), x) ^ v^ f01* all a; in co. Now, as in the
earlier situations it is easy to show that x i—>- Vy; depends
superharmonically on x. This shows that p belongs to the
class ^.

Conversely, let ^Q be the set of ^ in the compact base ^o
which satisfy the condition (2). To prove the theorem it is
enough to show that ^ = ̂ o- Clearly, ^ is a convex set.
Suppose w is in VQ and is of the form w^w^ where w^
(resp. w^) is positive and superharmonic on 0.^ (resp. ^3).
Then, for any pair of regular domains o> and 8,

[- f ̂ (î  W + w^x)} [^{y) - f ^(v])p^ {dr^)] ^ 0

i.e.,

î(^) / ^(v])pi {d^) + ̂ { y) f ^i(^)p? (^)
^ w^x)w^ y) + f w^ d^ f wg d^.

This implies that w-^w^ is in ^o- I11 particular all the extreme
elements of the base ^o belong to ^o- Hence, it is sufficient
to prove that ^o ls closed in ^o- Let ^ belong to ^o an(i
converge to v in ^o- We have to show that ^ belongs to
^o* Let co and S be fixed regular domains belonging res-
pectively to ^i and ^2. Let (.2:0, z/o) be fixed in <o X 8.
Choose regular domains §„, co^ for n == 1 to oo such
that (1) <x)^ e ^i? ^n+i c: ^n and neon == {a;o} and (2)
8^ G ^a, 8^1 <= 8^ and n8^ == {2/0}. We may assume without
loss of generality that coi <= <o and 8^ c: 8. We have, for
every m, every (re, y) in co X 8,

/ ^(^ y}^ W + J ̂ , ̂  (d^)
^ ^{x, y) + ff ̂  d^ d^.

Integrating this inequality we obtain,

ff P^ {dx)p^ {dy) [f ̂ , y)^ {d^) + f ^(x, ̂  (dv))]

< ff ̂  dp^ d^ + ff ̂  d^ d^.
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This inequality reduces to

// .„ d^ d^ + ff p, dp^ d^
< ff ̂  dp^ d^ + ff ̂  dp^ dp^.

Let us fix the n and let m tend to oo. Since v^ converges
to v we conclude that,

ff ̂  ̂ {d^ (^) + // ̂  ̂  (dS)p^ W

^ ff v d^ d^ + ff v d^ d^

Now, let n tend to infinity and in view of the superharmo-
nicity of the functions involved, we get

f^yo)^{d^+f^^(d^
< ^o, yo) + ff ^ d^ d^.

It is now easy to deduce that v belongs to ^o. The proof
is complete.

COROLLARY. — Eyery positive 2-superharmonic function p
on QI X ^2 such that v is harmonic on 0.^ (resp. Og) for
every fixed y in Q.^ (resp. Qi) belongs to ^. In particular,
every positive 2-harmonic function on 0.^ X ^2 lfs i71 the class
^.

Proof. — To be precise let us assume that v is harmonic
in the first variable. Let co and 8 be any pair of regular
domains in ^i and ^2 respectively. Then,

f^y)^{d^+fv{x,^{d^
=^y)+ffv(^^{d^{d^

and this completes the proof.

Remark 1. — It can be shown that ^ is precisely the clo-
sure of S^ (x) Sg" in the projective topology.

As a consequence of the above characterization of the
class ^ we get the following interesting property of V.

9
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THEOREM 2.8. — Let ^ be elements of ^ such that {^}
decreases pointwise. Let v = lim ^ pointwise. Then v belongs
to e.

Proof. — It is clear that ^ ^ 0 and a Borel function on
DI X ^2- I1 follows by monotone convergence theorem that

/ ̂  V)^ W + f ^, ̂  (^) ^ ̂  y) + ff ^ d^ d^

for every pair of regular domains co in SS-^ and 8 in ^3.
It is known [7] that v is a 2-superharmonic function and
v{x, y ) is the limit of j j v d^ d^ as the regular domains
(o shrink to x and the regular domains 8 shrink to y , as
in the case of functions of a single variable. Now, since v ^ ^,
we have,

/ ̂  y}^ W + f ̂  ̂  (^) < ^, y) + ff ^ d^ d^

This is true whatever be (x, y) in G) X 8. Let us fix (r^o, 2/o)
in (o X 8 and take the lim inf as (re, y) in <o X 8 tends to
(^o? 2/o)- Since the left side is clearly the sum of two 2-super-
harmonic functions, we get

/ ̂ , l/o)P^ W + / •̂0, l̂)Py5. (<^)

<<^nf.)[^y)+Jyp^^]•
But on the right side jj v d^ d^j being a doubly harmonic
function on <o X 8, the limit of j j v d^ d^ as {x, y)
converges to (XQ, yo) exists and is equa.1 to ft 9 d^ d^.
Hence, the right side of the last inequality is equal to

^o, 2/o) + ff^ d^ d^.

This shows that ^ belongs to ^, proving the theorem.

Remark 1 .—I t can be shown that if v and w are elements
of ^ then the pointwise lower envelope of all « > » majo-
rants of p and w is the precisely the > supremum of ^
and w. Then, it is possible to find a pointwise decreasing
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sequence of elements u^ in ^ such that u^ > v and u^ > w
and if u = lim u^ then, u is precisely the above supre-
mum.

Remark 2. — It is possible to show as above that every
upper bounded (resp. lower bounded) family of elements of
^ has the least upper bound (resp. greatest lower bound).

Remark 3. — It can be shown as in the proof of Theorem 1.2,
with the aid of the first remark above that (^, w) \—>• sup (^, w)
and (?, w) i—>- inf (^, w), the supremum and infimum in
the order >-, are Borel mappings of ^ X ^ -> ^.

LEMMA 2.2. — Let P be a positive doubly superharmonic
function on 0.^ X ^2- Let for every x in 0.^, u{x, y) be the
greatest harmonic minorant of the superharmonic function
y\—>- P(rc, y) on Q^. Then, u is a Borel function on Q,^ X ^2
such that for every y in 0.^, x\—>- u(x, y) is nearly superhar-
monic on 0.^.

Proof. — Let U be an open subset of Qg and let y in
^2 be fixed. Let X be the swept out measure corresponding

p
to sweeping out on ^ U and the Dirac measure £y [8,
Theoreme 10.1], viz., for every w in S ,̂

fthy) = / ̂ (^ w.
In particular, for every x in iii,

^,,{y}==f^^W.
It follows that as x^ converges to XQ in t^i,

lim inf ftfe,,.)(y) = lim inf F ^(^, T])X (^T])
^m-^^o ^m^^o •/

> J ^o? 7!)x (^7)) (Fatou's lemma)

-ftfc, .)(</)•
Hence, ri; i—^ R^ ^(y) is a lower semi-continuous function
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on ^r Now, let &> be any regular domain of t2i and x
in G>. Then,

J ftfe ./i/)p^ (dS) == / ̂  W f ?(S, ^)x (<^)
= J\ (^) J P(^, 7))?^ (^)

< J' (̂ (a;, i])X (JT))

=^. .)(?/)•

Hence, rci—^ft^.^y) is superharmonic on 0.^, This is
true for every y in ^3.

Now, let Ui, Ua, ..., U^, . . . be a sequence of relatively
compact open sets of Og forming a covering of tig such that
for every n, Uy» is contained in U^+i. Then, I^».) decreases
with n and the limit as n tends to infinity is precisely the
greatest harmonic minorant of the superharmonic function
y i—>• ^{x, i/). Hence, we conclude that u is a Borel function
on QI X ^2 ^d that for every y in tig, x i—>- u[x, y)
is a nearly superharmonic function on Qi. The lemma is
proved.

Remark. — It can be shown that u the lower semi-conti-
nuous regularization of u on Q.^ X ^2 1s 2-superharmonic
on QI X tig? ls harmonic in y and hence belongs to the
class ^. Also then it is seen that for every y , u{x, y)=u(x, y),
^i-nearly everywhere on Qi and this exceptional set is
independent of y in tig.

THEOREM 2.9. — Let y be a positive ^-superharmonic func-
tion on QI X ^a. Then the following are equivalent:

(1) v belongs to the class ^.

(2) Let Ag denote the set of harmonic functions in ^ For
every compact set K contained in ^^\^ the function
x\—^ v^(K) is superharmonic on Oi, where Va; is the cano-
nical measure on <^a representing v[x, .).

Proof. — It is obvious that if 9 belongs to ^ then the
condition (2) is fulfilled. Conversely, let v be an element
of (2S)4" satisfying the condition (2). Let B be any Borel
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subset of ^2\Ag. Since v^ is a Radon measure on ^g, we
get that Va;(B) is the increasing directed limit of the numbers
Va;(K) for all compact sets K contained in B. It follows
that x\—>• Va;(B) is a superharmonic function on ^i. Hence,
we deduce by standard measure theoretic arguments that
P(rr, y ) = je\^'p{y)^x {dp) is a positive 2-superharmonic
function on 0.^ X ^2 8LT1^ further it is clear that P belongs
to the class ^. Now,

^ y) - /g^A, P(^ (^P) + JA. P^ W
= P(^ y} + u{x, y).

But, clearly u(rc, y) is precisely the greatest harmonic mino-
rant of y \—>• v{x, y) on 0.^. By the earlier lemma, we
know that x -> u{x, y) is a nearly superharmonic function
on QI. Further, u(n?, y) is the difference of two positive
superharmonic functions y{x, y) and P(rr, y) for every y
in ilg- Hence, rci—^ u(x, y) is, in fact, superharmonic
on tli. But since y i—>• u{x, y) is harmonic, it follows by
the corollary to Theorem 2.7, that u is an element of ^.
Since ^ is a convex cone it follows that v is in ^, comple-
ting the proof.

3. Multiply superharmonic functions in the class 6
and the integral representation.

We shall give now the extensions of the proofs to get the
integral representation of the elements of ^ in the case of
functions of more than two variables. Let Qi, .... Q^ be
harmonic spaces of Brelot and let S "̂ be the cone of super-
harmonic functions ^ 0 on 0.^ for k = 1 to n. Let 8^
be a fixed regular domain belonging to a base ^y of comple-
tely determining domains of the space O.j. Let for j' === 1 to
n,

A,=^eS;r: /^J-l j

for a fixed element y^ in 8^; and let Sj be the set of extreme
elements of this compact base Aj.

We shall define the class ^ of n-superharmonic functions
by induction on n. Let us assume that the class is defined
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for all integers up to n. Let us further assume that for all
fc == 3 to n —• 1, a /f-superharmonic function belonging to
the class ^ has a unique integral representation similar
to the case of 2-superharmonic functions as shown earlier.
We shall further assume as part of the induction hypothesis
that the class ^ in /c-variables with the corresponding
topology is locally compact and metrizable.

DEFINITION 3.1. — A non-negative n-superharmonic func-
tion v on 0.^ X • • • X 0'n is said to belong to the class ^
if (1) for every x in î, v(x^ .) is a function belonging to
the class ^ as a {n — l)-superharmonic function on

Os X • • • X £ln

and (2) the canonical measure \{x) on €^ X • • • X <^n corres-
ponding to the function P(rr, .) depends superharmonically on
x in QI.

Let us now recall [4] that the space (^S)"1' of non-negative
n-superharmonic functions on Qi X ^2 X * * • X ^n can be
provided with a. topology T such that this space is (1) metri-
zable and (2) is locally compact. The topology T is the
weakest such that the mappings v -> j 9 dp$? are conti-
nuous where p^? denotes the product measure
p!?1 ® • • • ® P^" where <o/ belongs to ^ and Xj is an
element of co^. We now have the following :

THEOREM 3.1. — The set ^ with the induced T topology
is locally compact and metrizable.

Proof. — (^, r) being the subspace of a metrizable space
is clearly metrizable and to prove the local compactness, it
is enough to show that ^ is a closed subspace of (MS)"1".
Suppose ?„, belongs to ^ and {^} converges in T to
an element p in (nS)"^ We shall show that v belongs
to ^.

Let co be any regular domain of jQi and x an element
of co. Consider the function y \—^ j ^m(^? j)?? (^S). It
is clear that this function ^(o;, .) is (n —l)-superharmonic
and ^ 0 on ^2 X • • • X O-n- But we assert that this is
in ^(Q^ X • • • X ^n). This is seen as follows. As in the
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previous cases (cf. Lemma 1.3), it is easy to see that
^: QI -> ^(Qg X • • • X QJ, ^(x) == ^{x, .) is a Borel func-
tion. Since the right side is a polish space, 9 can be appro-
ximated uniformly on Q,^ by a sequence of functions

^: ̂  -> <€{^ X • - • X ^n)

such that «„ takes at the most countably many values and
each of them on a Borel subset of ^ [9, Ch. 1]. Hence to
show that | ^ (S, ,)p^ (^S) belongs to ^, it is enough to

r ->
prove that f ^(S)?^ (^S) belongs to %\ But this latter
integral is simply the sum of a convergent series of elements
in ^ and hence belongs to ^. The same is true for all m.
Also, as in Lemma 2.1, it can be shown that x\—^ v^(B)
is Borel on Oi for all Borel sets B of ^2 X • • • X <^n.

Now, it is clear that r-convergence of p^ to p implies
that ^(rc, .) converges as a (n — l)-superharmonic function
to ^{x, .). However, ^(Q^ X • • • X tij is closed in
((n — 1)S)+ by the induction hypothesis and ^{x, .)
is in this set for every m and we conclude that ^(rc, .) is in
<^(^2 X • • • X ^).

Let us now fix x in £2i. Let co^ be regular domains of t2i
such that cx)^i <= <o^ for every integer k and n<o^ == {x}.
Since ^, for each m, belongs to ^(Qi X • • • X ^n),

^-(^ .) =^fe(^ .)+<

where w^ is an element of ^(Qa X • • • X tij, in fact the
element with the canonical measure ^fr^ — ^k on
^2 X • • • ^ ^n- It is clear that for fixed /c, w^ converges
as m tends to oo and the limit u^ necessarily belongs to
^(Os X • • • X ^n). It follows

^{x, .) =^{x, .) +^c.

Hence the corresponding canonical measures on

^2 X • • • X < »̂

satisfy the equation

v(co^i, a;) === v((x)fc, re) 4- ^ positive Radon measure.
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In particular, v ((Ofc+i, .r) ^ v(co^, a?). This is true for every k.
Let v(.r) be the limit of this increasing sequence of measures;
for every non-negative Borel function f on ^3 X • • • X S^
j fd^(x) is the increasing limit of j fd^{(^^ x ) ' Now, since
^ is n-superharmonic, we get that

\^f^y}^W=^x,y\

and the limit is an increasing limit. Clearly, the limit of an
increasing sequence of elements in ^(t^ X • • • X ^n) also
belongs to the same class and we conclude that ^(^, .) belongs
to ^(jQg X • • • X ^n) tor every x in ^i. Now, for every y
in ^2 X • • • X On,

^(x,y) =lim r^,.y)p^(^)
k>oo ^

= lim f P(j)v(<o,, x) {dP),
k>oo ^

= f P{y).{x) (dP),

since the measures v((0k, ^) increase to v(a?). It follows by
the uniqueness of the measure on €^ X • • • X ^n represen-
ting the elements of ^(^2 X • • • X S^n) that v(rc), for
every x in ^i, is precisely the canonical measure corres-
ponding to the function ^(.r, .). Now it is easy to show that
x i—>- Va;(B) is lower semi-continuous in x, for every Borel
set of ^2 X • • • X <^n. This shows that x i—>• Vy; depends
superharmonically, concluding the proof.

We conclude as before,

COROLLARY. — ^ has a compact, metrizable base.
For instance, we can take for such a base

<^= ^ n ̂ e(nS)+: f v d^. = I?
* »/ 0 /

Let us now consider the vector space ^\ generated by
^ = ^(^i x • • • X i^J. It is clear that with the r-topology
defined above ^i is a locally convex topological vector space
and ^ is a convex cone with vertex at the origin generating
^i. Consider the partial order « >^ » introduced by ^$
viz., p and w in ^i satisfy ^ > w if ^ — w is an element
of %'. It is clear that the order is compatible with the topology



INTEGRAL REPRESENTATION FOR A CLASS 141

and that ^ is closed. We now have the following sequence
of three results establishing the unique integral representation.
The proofs are very similar to the corresponding results in the
case of two variables (cf. Theorems 2.3, 2.5, 2.6). We shall
not give the proofs.

THEOREM 3.2. — ^(fli X • • • X aj is a lattice for the
order « > ».

THEOREM 3.3. — An element v in ^{Q^ X • • • X Q-n)
is an extremal generator if and only if there are extreme superhar-
monic functions p^ in Si^ such that v = pipg • • . pn-

THEOREM 3.4. — Corresponding to every element v in
^(i2i X • • • X ^n) there is an unique finite Radon measure v
on <^i X • • • X S^ such that

v[x) = f p{x)v {dp),

for every x in ^ X • • • X O'n-
Finally, we give below equivalent characterization of the

class ^. Let co^ be any regular domain in ^i and x^ any
element of co;. Let us introduce the operator T(co^, ^)
acting on any measurable positive or real valued integrable
function f on t2; by setting

T{^x,){f)=f{x,)-ff^{d^

Then, we have,

THEOREM 3.5. — Let v be a positive n-superharmonic
function on the product space Q^ X • • • X Q-n- Then the
following are equivalent.

(1) v is an element of ^(Qi X . . . X QJ.
(2) for every (o^, . . . , c o ^ regular domains belonging to

^i, . . ., ̂  respectively, {x^ . . ., x^) in coi X • • • X o>^,
2 < k < n, and any permutation TC of the integers 1 through
/c, the following inequality is verified:

T(CO^I), ^(i)) o T((0^2), ^(2)) o ... o T(O)^), X^W ^ 0

when the other variables are kept fixed.
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Proof. — Consider the set ^o °^ a!! elements of ^o for
which condition (2) is verified. Clearly this set ^o is a convex
set and it contains all the extreme elements of ^o, i.e.
elements of the form p^pz . . . pn. Now as in the proof of
Theorem 2.7, it can be shown that ^o is closed and is hence
compact. It follows that ^o == ^o- Hence every ^ in ^
satisfies the condition (2).

The converse is proved by induction. The result is true for
n = 2. (Cf. Theorem 2.7). Let us assume that it is true for
all integers upto and including (n ~ 1). We shall show that
it is true for <o/'. Accordingly let p be a positive multiply
superharmonic function on t2i X ^2 X • • • X ^n such that
(2) is verified. It follows that for any x in ^1,^1—^ ^(x,y)
is an element of ^(Dg X • • • X t^). Now, for any regular
domain CD of 0.^ and x in co, as in the proof of Theorem
3.1, it can be shown that j ^(S?^)?^ (^S) is an element of
^(^2 X • * • X OJ. Let TT be any permutation of the
integers 2, 3, 4, . . ., /, / ^ n. Then,

T((0^(2), (̂2)) ° T(C0^3), 0^(3)) o ... o T((0^),

•̂ )) [^ - / ̂  •)^ W] = ̂ ^ ^<2)) ° • • • ° T^^x
^a))-T((o,^)[p]

and the right side is > 0 by assumption. It follows that
p — f p ( S , .)p^ (d^) belongs to ^(^ X • - • X OJ. We can
now conclude that x \—>- v^. where v^ is the canonical
measure on ^2 X • • • X ^n corresponding to p(rc, .) depends
superharmonically on x in 0.^. Hence v belongs to
^(^^ 4- •" X Q'n) completing the proof.

Finally we would like to make a remark concerning the
assumption of the existence of a base of completely determi-
ning domains. As can be observed easily most of the results
of this paper do not make use of the existence of such domains.
All the results except Theorem 2.4 and Theorem 3.1 are true
in general. Naturally the T-topology of M.me Herve [8] replaces
the Cartan-Brelot topology on S+ and very minor modifica-
tions are needed to see that the proofs carry over to the general
case. Without the completely determining domains, we have
to give a different topology on ^i and we have to prove
the local compactness and metrizability of ^. This can be
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done as follows. For any continuous function of the form f.g
where feC^i), g e C(^) [8], we could define

^== M^ -)J/(^2/)

and extend the definition by linearity to ^ for 9 == Soc^g;.
The topology on ^ would be the coarsest one for which
p i—>- ̂ {x, y) is continuous for all 9 and {x, y) not in the
support of y. Using heavily the results in [8] and with
proofs similar to that in [4] the required local compactness
can be proved. The metrizability of ^ is really easy to verify.
In this paper, we preferred to assume the existence of comple-
tely determining domains and use the results of [4]. Lastly,
we remark that the topology suggested above is only for the
class ^ or ^ — ^ and could not be carried over to all
positive multiply superharmonic functions.
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