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IDELE CHARACTERS
IN SPECTRAL SYNTHESIS ON R/2nZ

by John J. BENEDETTO

Introduction.

The starting point for this paper is Malliavin’s construction
of real-valued absolutely convergent Fourier series ¢ on
T = R/2xZ having a non-synthesizable zero set, Z¢ (§ 0.1
will contain relevant definitions and background in spectral
synthesis). The construction of such a ¢ by Richards [7]
has led us to consider families of functions parameterized by
s=o¢ -+ 1reC, o > 1, and having the form

(1) F(s, @) — g e s

that is, for fixed s, ¢ > 1, the corresponding ¢ = ¢, 1is
o,(z) = Re F(s, ). The Dirichlet series (1) are discussed in
§ 1 and the results concerning the corresponding non-synthe-
tizable ¢ are proved in § 2. Because of these results we pose
the « abscissa of spectral synthesis» problem at the end of
§ 2.

Since the above construction of non-synthesizable ¢,
involves no arithmetic properties of the k,, it seemed reaso-
nable to investigate properties of ¢, when the corresponding
F was generated from an idele character. We've only consi-
dered Jo (see § 0.2), and have shown that those ¢, gene-
rated by « slow growing » idele characters have synthesizable
zero sets (§ 3). We could have expressed the arithmetic pro-
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perties for ideles over Q in a less idelic way, but our proce-
dure produces analogous results in a much more general

algebraic number theoretic setting; and we hope that Jo
will serve as a prototype technique to generate some examples
in synthesis.

The next problem we pose is that of «analytic continua-
tion ». We move left across ¢ =1 and construct pseudo-
measures T,, 0 < o < 1, associated with certain F(s, z)
generated from idele characters. The method to construct T,
involves counting solutions to diophantine equations, being
careful on the one hand in estimating upper bounds to ensure
that T, is a pseudo-measure, and on the other hand providing
specific lower bounds (when this 1s possible) to guarantee that
T, is not a measure. The spectral synthesis properties of such
pseudo-measures are the subject of forthcoming work, but
generally the following types of results evolve :

a) T, generated by «fast growing» idele characters are
synthesizable;

b) T, generated by «slow growing » idele characters are
non-synthesizable;

c) ¢, generated by «fast growing» idele characters are
non-synthesizable.
(The terminology « fast growing », etc. is clarified in § 3.)
Note that with our original non-synthesizable ¢, the

2

synthesizable but L3(T) functions since n+——k, isinjective
for this case.

. 1
pseudo-measures T, we obtain in ¢ e<——, 1> are not only
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0. Preliminaries.

0.1. Preliminaries from spectral synthests.

A(T) is the Banach space of absolutely convergent Fourier
series

o(z) = Za,e™

where |¢| = Z|a,|. The dual of A(T) 1s A’(T) the space
of pseudo-measures. A’(T) 1s the subspace of distributions

with bounded Fourier coefficients and the canonical dual norm
| la on A'(T) 1s

IT) s = sup |T(n)].

The Radon measures M(T) are canonically contained in
A'(T). If EcT 1s closed, A’(E) = {T € A'(T) : supp Tc E}.
¢ € A(T) (resp., TeA'(T)) is synthesizable if for all S e A’(Zo)
(resp., for all ¢ € A(T) with supp T<Z{) <S, ¢) =0
(resp., (T, ¢>=0). E 1is a synthesis (S) set if for all
peA(T) with ¢=0 on E and for all TeA'(E),
<T’ Py = 0.

We say that a real-valued ¢ € A(T) satisfies condition
(M) it

Vk<r+1 3C, > 0 such that YueR
le™[a < Celul ™.

Clearly (M,) implies (M,) if r > ¢t. The following is Mal-
liavin’s operational calculus technique and we refer to [2,
§ B.1] for details, remarks and generalizations.

Prorosition 0.1. — If real-valued ¢ € A(T) satisfies (M,)
for some r > 2 then Z¢ isnotan S set.

Remark. — In the proof of the above result we use (M,)
to construct T € A’(T) such that
(0.1) (T, 9> #0, T¢?=0.

Then by an argument which uses Wiener’s result on the
reciprocal of ¢ € A(T) we show [1, Theorem 3.15 d] that
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S6 =0 implies © =0 on suppS; thus ¢ =0 on suppT
and so Z¢ 1s non-S by (0.1).

We record some routine properties of the | [, norm.

(0.2) Vo € A(T)c A'(T), lola < lela
(0.3) Vo eA(T), |g| <1, either [ofa < 1

or
o(z) = a exp ikz, keZ and la| = 1.
(0.4) 'The map A(T) - R
T+— | T|a
1s continuous.

(0.5) Vo e A(T), VhkeZ\{0}, lela = l¢*ls
where o¥(z) = o(kz).

0.2. Preliminaries from number theory.

References for the material in this section are [4, Chapters 2
and 15; 5; 8].

For each prime number p=2, 3,5, ... let Q% be the
non-zero elements of the p-adic completion of Q. Thus

Qj:% Y ap':0<a <p,aeZ, some q; #0, n > 0f
j=—n

With the p-adic valuation | |, Q5 1s a locally compact
group under multiplication and is totally disconnected. The
compact and open subgroup of units U, for Q5 1is

)

Up=32 ap’ e Q5 : ay # 0¢-
(1]

Let Qf = R\{0}. Define J, to be the set of all sequences
«={a,: p=0,2,3,5 ...} where «,€ Q5 and with the
property that, for all but a finite number of p=2,3,5, ...,
«, € U,. Next, consider sets

B - ];I BPQJQ
where B,c Q7% 1is open for all p=0,2, ... and B,=1,
for all but a finite member of p =2, 3, .... Such sets B

form a basis for a topology on Jo. As such, with component-
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wise multiplication, Jo 1is a locally compact abelian group,
the idele group corresponding to Q.

It is standard to prove that ¢ ejo, the dual group of Jg,
if for each p =0, 2, ... thereis ¢, Q3 such that for all

« = {a,} € Jo
c(a) = I;[ cp(xp)

and ¢,(U,) =1 for all but a finite number of p. When
c,(U,) = {1} we say that ¢, is unramified.
Foreach p=2,3, ... define P,cQ’ to be

P, = {0, € QF: |apf, < 1}
and p, =P, nZ. Clearly

Pp:%% ajp"le;%-
and so p, 1is the multiplicative ideal in Z\{0} each of
whose elements 1s divisible by p. A neighborhood basis of
1eQf mm U, 1s {1+ P} where 1+Po=1U, It is
standard to check that if ¢, € Q5 then there is a smallest
integer n, > 0 for which

c,(1 + Poo) = {1}.

Now, if ce Jo with corresponding « projections » ¢, € Qx
then there are only finitely many primes p =2, 3, ... such
that the corresponding n, > 0; this follows since ¢,(U,) =1
for all but finitely many p. As such, given ¢ we form a
multiplicative ideal f, in Z, called the conductor of vc,
defined by

fo= 11 Pp.
np>0
Recall that the fractional ideals in Q are singly generated.
Then, for example, if p,, ..., p. are the primes for which
n, > 0, f. is generated by pin...pmr=~h We let G,
be the set of multiplicative fractional ideals A ¢ Q gene-
rated by n = ¢ ... ¢jj¢, m; € Z, such that each ¢; is prime
and for all j, k, q; # p.. For A e G, generated by n as
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above, we define « = {«,} € J& by

17 P # q;
g7, p=gq;

ap:

Then the Hecke character associated with ¢ is a multiplicative
homomorphism

Xe:Ge—>T
given by
Xo(A) = c(q) - .. ch(q"i"")-

The mapping ¢ — ¥, is injective.

Observe that we can imbed QX into j, by the map
¢ — (g, ¢, ...). c€Jo is an idele class character if ¢(Qx) =1.
Idele class characters are needed in algebraic number theory
to obtain functional equations.

Preserving the above notation between n and A we
define the Hecke L series associated with yx, to be

Lis,0) = 3 %)

S
mp=1 N

(for the definition of L we consider only n e Z, recalling
that n could be rational in the definition of G,). Now, f,

is trivial (i.e., n,=0 for all p) if and only if for each
p=23, ...

cp(“p) = I“plgp

where t, is determined mod 2= /log p. Thus for each ceJo
with trivial conductor there is a unique set of integers

{ky: p =2, ...} such that
(0.6) Lis,c) = 3 —expi 3 mk,
1

where n = Ilg™, the prime decomposition of n. Conversely
given {k,:p=2,...}cZ thereis a unique ce Jo defined
by

¢(n) = II exp imyk,

where Ilg™ is the prime decomposition of n.
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Finally, if we are given {k,:p =2, ...} cZ and extend
additively by
k, =k, + k, if n = pq
then (0.6) becomes

(0.7) Lis, c) = 3 —

n

exp tk,.

HMS

s

1. Pseudo-measure norms and Dirichlet series.

The real part of F defined in (1), considered as a function
of z for fixed s, ¢ > 1, is

0u(z) = Fy(s, 2) = 3

- [cos k,x cos (v log n)

-

+ sin k,z sin (7 log n)].

Because of condition (M,) in § 0.1 we shall consider

exp tue,(z) = ﬁ exp%: [cos k,x cos (7 log n)
n=1

+ sin k,z sin (7 log n)].

As such we define the auxiliary functions

(1.1) Yy mslx) = ﬁ exp :—;—: [cos k,x cos (v log n)

n=1 ~+ sin k,z sin (7 log n)]

and

(1.2) 0, ,s(x) = exp (m—i*_u——c [cos z cos (v log (m + 1))

1)
+ sin z sin (v log \m + 1))].
Observe that
“I’u, m+1,s = "l"u,m,xe:’.nr:,ls'
Using (0.4) and (0.5) Richards [7, Lemma 1; 2, Theorem

B.6] has made the following key observation concerning the
growth of | 4.

Proposition 1.1. — Given {{,, 0,: u e R}c A(T)\{0}
and assume u+— §,, ut—- 0, are continuous functions. Then

VR > 0, Ve > 0, ke Z, k>0,
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such that
Viu| < R
190514 < (L 4 ¢) [dullar [6a]la-
Fix {¢,} so that ¢ >0 and I(1+¢,) < 2. Also for
each ¢ > (1 4+ V5)/2 let B,c C be the closed rectangle

[1 4+ 1/e, ¢] X [—¢, ¢]. Define an increasing function
c: N - R, ¢(m) = R, such that

UBC={seC:c > 1}.
1

Using Proposition 1.1 and a uniformity argument we obtain :

Prorosition 1.2. — Given {¢,} and c¢ as above. There is a
sequence of integers k,, n =1, 2, ..., increasing to infinity,
such that

Vs € C, s > 1, iK, > 0
such that
vm > K, V|u| < ¢(m)

(1'3) ""l’u,m—*—l,s”A’ < (1 + sm) "‘l’u,m,s”ﬂ ueu,m,s”A"

Naturally, it may happen that for some s,6 > 1, and some
m, (1.3) 1s not true for all |u| < ¢(m).

ProrositioN 1.3. — Given {c,} and c as above. Then
Vs e G, c > 1, IK; > 0
such that
vm > K; V|ul < ¢(m) Vn > m
<1'4) ”eiu%"A’ < 2 H "eu,j,s"A"
Jj=m

Proof. — Take K, as in Proposition 1.2 and fix m > Kg;
thus we have (1.3) for all |u| < ¢(m).
Arguing iteratively, and using (0.3) and the definition of ¢,

(15) ""pu,k,sHA’ < 2]];1”‘ “eu,j,s"A'

forall k > m and all [u| < ¢(m).
(1.4) follows by taking lLim’s in (1.5) and invoking (0.3)
again.
q.e.d.
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ProrositioN 1.4. — Given {e,} and c¢ as above and form
the corresponding F of (1). Take any closed interval 1< R\{0}.
Then

3 (0, 1)
such that
VseC, o >1, VneZ\{0} Vu/im+1)Fe + |
(1.6) 165 mslar < p.

Proof. — From (0.3) and (0.5) there 1s ¢, , € (0, 1) such
that
Vn e Z\{O}’ Heﬁ, m,s"A' < Pu,m,x'

For n fixed, the function a+—62,  from I —> A(T) is
continuous, where « = u/(m + 1)°.

(1.6) follows since continuous functions achieve their maxima
on compact sets.

q.e.d.

2. Examples of non-S sets.

In light of Proposition 1.3 and Proposition 1.4 we shall see
that the key to Theorem 2.1 is to choose ¢ so that for all n

(24)  we(n) — o(n 4 L1 > fle(n + 1))
aoo(nfie — (n4+2) > fle(n + 1))

for some n € (0, 1) and some « relatively quickly increasing »

f.

TaeoreM 2.1. — Let ¢(n) = e* and form the corresponding F
of (1). Then for all se€ G,6 > 1, thereis M, > 0 and 3, > 0
such that

(22) Yu € R, H eiucp,HA, < Mce—aa-‘"lllc.

In particular (M,) is satisfied for all r > 2 and Zgp, 1is
non-S.

Proof. — Take K, as in Proposition 1.2 for a fixed s.
Let I = [n, 1] where 0 < n < 1/e.

Choose the corresponding 0 < p < 1 from Proposition 1.4.
Without loss of generality we do the calculation for uw > 0.
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Take u > e where n, > K, and e®™° > n;, 4 2; and
let n > n, have the property that

c(n+1) > u > ¢(n).
From Proposition 1.3

(2.3) leela < 211 163540
n+1
for all |u| < ¢(n+ 1) and m > n 4 1.
For our fixed v and ¢ we now want to count which j's
have the property that

(2.4) u/(1+j) el
If ¢n+ 1) <14; then u/(1+j)° <1 and if
WLt ) < olmpe then < w/(L+ )

Because of (2.3) and these inequalities the number of j's for

which (2.4) holds 1s estimated by
(25) 7 eo(mp — 1 — max (n + 1, eln + 1% — 1)

(note the resemblance to (2.1)).
Since c¢(n) = e, (2.5) 1s

(2.6) e"o(n7e — ellf) = re™® > reTloytle,

Combining (2.3), (2.6), and Proposition 1.4 we have (2.2) since
p=¢e? p>0.
q.e.d.

Remark. — Let us see how much generality we have in
choosing ¢ so that Theorem 2.1 is valid. c¢(k) must grow
faster than k so that (2.5) i1s positive. If ¢(k) grows like a
polynomial the technique of Theorem 2.1 will not work for all ¢
and this leads to the abscissa of convergence problem below.
If ¢(k) grows too fast (e.g., c(k) = exp k log k) the procedure
again fails since (2.5) again becomes negative.

Ezample 2.1. — For the choice of {k,} in Proposition 1.1
and Proposition 1.2 1t 1s desirable to choose the smallest possible
kna > 0 given ky, ..., k, > 0. Thus, given ¢, ¢(1), and
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ky =1 we find k,. Using Schifli’s integral form for Bessel
functions we compute

VN, 3 (funm =2 3 |Jaw)

|m|>N

< 20m (1 2) "zN( g“)”‘/ .

From the proof of Proposition 1.1 we now take k, = 2N,
where N is the smallest N for which

302) /<o (-5F)

Abscissa of Spectral Synthesis Problem. — Given specified F
of (1) our calculations [3] indicate that Z¢, becomes more
non-spectral as ¢ - 1 +. We would like to determine those
F for which there is an abscissa o =6, of spectral synthesis,
Le.,

Yo > o, Zo,1s S
V1l < ¢ < o, Zo, 1s non-S.

3. Spectral synthesis functions and idele characters.

For the remainder of the paper assume for convenience that

¢ € Jo has trivial conductor, and consider the Hecke L-series
characterized by {k,}<Z, where p=2, 3, 5, .... Given
L(s, ¢) we associate the Fourier series F(s, z) (of (1)) for
fixed s,0 > 1; and ZFcT 1s {z:F(s, ) = 0}, where s
1s fixed.

Remarks. — 1. If ¢ 1s an idele class character then the
corresponding Hecke character y, 1s precisely a classical
Dirichlet character (for Dirichlet L-series); consequently the
corresponding Fourier series F(s, ) 1s a trigonometric poly-
nomial for each s, ¢ > 1. In particular Z¢, is finite and

thus S.

2. The terminology « fast growing » etc., from the introduc-
tion indicates that {k,} tends to infinity at certain rates.
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Prorosition 3.1. — Given ¢ €Jo with trivial conductor and
corresponding {k,} cZ.

a) If k,=0(p*), p—> ©, for some a > 0 then
Vo > 1 4 «, F(s, z) e CY(T).
b) If k, =0 (log p), p > o, then
Vo > 1, F(s, z) e C}(T).
¢) For each of the above cases, ZF s S.

Proof. — ¢ 1s clear from the Beurling-Pollard result.
a) Differentiating F with respect to z

ik, |k

-]
2 _n eik,,a;
1 nO'

n.\'

<3

1
we need only check that |k,|/n* 1s bounded for « > 0. If
n = Ilp"

Ikl < KiZrp* < KpZp* < Kgn®

b) Arguing in the same way we need only check that for
B > 0, |k,|/nf is bounded.

If n=TIp"

|k, < KErlogp =Klogn

and log n/nf is bounded.
q.e.d.

In order to generalize the synthesis result in Proposition 3.1
we say that {k,}<Z* or the corresponding ¢ ejo 1s
r-bounded, r > 0, if

VB > r aM; such that Vn, ka[nf < Mg

Thus, for example, k, = O(p*), p - o, « > 0, is 0-bounded.

 Prorosition 3.2. — Given c € Jqo with trivial conductor and
{k,}<Z*. If c¢ is r-bounded then “for each o > 14,
F(s, ) ts a function of bounded variation and ZF s S.

Proof. — The fact that ZF is S if F has bounded varia-
tion is standard [6, p. 62]. The bounded variation follows
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classically once we observe that
fr |F(s, z + k) — F(s, z)| dz = O(h), |h] — 0.

By direct computation the integral is bounded by
K|h|Z|k,|/n°; and so setting o=1-+4+r+y we let
B =r+ v/2 and apply the r-boundedness.

q.e.d.

In order to generate non-S Zg in §1 and § 2 the sequence
{k,} was chosen to have a certain lacunarity. We now observe

that no matter how fast lim |k,| tends to infinity the sequence

{k,}, generated by the corresponding c € jo, has no lacuna-
rity properties.

Example 3.1. — Given ceJo with corresponding {k,}.
Let k, > 0, k, increasing to infinity. If {k,} were lacunary
then k, /k, = 8 > 1 for all m. Suppose this is the case.
Then for all m

l_chn_ k2m k2m—-1 k

= mil > §2m,

km k2m-1 kzm—z km
On the other hand

kam _ ky
kTR,

so that since k, - o, {k,} can not be lacunary.

4. Idelic pseudo-measures.

Given cejo with trivial conductor, and corresponding
{k,}<Z and F. Our problem 1s to find conditions in order
that

Ts~2%e”‘"”, 0<ox<t

represent an element of A’(T) for a fixed s, 0 <o < 1;

by this we mean that we wish to find conditions on {k,}
for which

(41) bm)= 3 —

S
meHm M

’ H(n) = {m: k, = n},
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1s a bounded sequence. When the sequence {b,(n):neZ}
1s bounded we say that ¢ determines the pseudo-measure T,.

Clearly Dirichlet characters do not yield pseudo-measures
in this way. As a generalization of this fact, we have.

Prorosition 4.1. — Given ce€Jo with corresponding
{k,}sZ+. If {k,} is bounded c does not determine a pseudo-
measure for any s, 0 < o < 1; further, there is n > 1 such
that

1

. m & H(n) m
diverges.

Proof. — Assuming 1 < k, < B we find n such that

2

k=

diverges. Let C = 1/(B + 1).
a) We first observe that

in e [1, B] such that Vk > 1,
(4.2) NJG— k) > C

1
m

n

for infinitely many j > k, where
N;=vcard {k, =n:p, < p < p;}

and p; is the j-th prime.
b) Choose n from a. Then

Zj : é 1 1

> — ~ 10 N,
m= pm m:j_Nj+l Pn g pj/pj Nj+1
P, €H(n)

by the integral test. Consequently from the prime number
theorem

4 1 log j
4.3 — > log = J O8]
G B e T BTN Do (— N, 1
P € H(R) .
> log —L——.
Ogl“‘Nj+1

We apply (4.2) which yields j — N, +1 < j1 —C)+ 14 Ca
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and so the right hand side of (4.3) is greater than or equal to

log <1/[(1 0+ % n c_‘;_D

Now choose K, « > 0 such that log (1/[(1 — C) 4+ K]) > «;
and then take j large enough so that

(1—C)+%+C—';.—<1—C+K.

Letting a = a; we define a;,, =7 + 1.
Thus starting with a; =1 we form {q;} and

1 1 S | ol
_ > —_ = _— > o = 00.
meHm M P,,,EZH(n) Pn i§1 méa,- P %
P € H(n)
q.e.d.
Prorosition 4.2. — Given ceJo with corresponding
{k,} € Z* increasing to infinity. Then
Vn, card H(n) < oo.
Proof. — Given n = 1IIp"; to show card H(k,) < .

Choose a prime ¢ = p, such that k, > k,, by hypothesis.
For each j <k choose r;eZ such that rk, > k,

and define
k-1

my = I[ p7-
Jj=1
Then
vm > m, kp >k, > k,

and so H(k,) 1s finite.
q.e.d.
We now give a procedure to find ¢ € o which determine

T, e A'(T)\M(T).
Lemma. — Let T~ 3 c,é™ e A’ (T). If
1

Y c,/n  diverges
1

then T e A’(T)\M(T).
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Proof. — If T € M(T) then
Vi(z) = Y a,e™,

Inl<N

2

In|<N

< ATl el

Take a, > 0 for n > 0, {a,} decreasing to 0, and set
a, = —a_, for n < 0.
N
Recall, | Y, a, sin nx
1

For such a,,

< A(xm+ 1) if na, < A.

N
2 e,
n=1

2,

In|l<N

< Tl 2A(= + 1)

C
and so Y a,, converges.
1

q.e.d.
For technical convenience we now let s = 1.
Prorosition 4.3. — Given ce€Jo with corresponding
{k,} € Z*. If
(4.4) kp =0 (log*p), p—>

then T, € A'(T); and T, ¢ M(T) if

3 ty(m)n
diverges.

Proof. — The fact that T, ¢ M(T) follows from the Lemma.
Assume {k,} increases ot infinity and k, > 0.
Let II(r) be the set of all integers

n =[] p?, r; = 0.
j=1
We first observe that if

= é 1/p.h
% 1/m,

melr)

a
b

then
(4.5) e —1 < b < e?—1.
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This follows since

r

1+b=H<1+i+#+--->
J

j=1 Pj
and
P < 1+_1'+_1E+"':1+_1_ <1+l<62/p.
p p—1 p
Set
1

Hn,r - 2 —

meHmNIE M
We use (4.4), (4.5), and Mertens’ estimate
5 L —loglogz + C + O(1floga), o o,
Pz

to calculate

(46) H,< 3 ijm<exp2 3 1/p,
1

mEH(ri){ 1
2 < -
<C (log pr) < ) kPr < Kkpr <1 Prix — 1>’ K> 1,
for all n.
Note that

O(r+ 1) = 0(r) VU poa1I(r) U pE,T(r) U -

)

a disjoint union. Thus,

H(n) N O(r + 1) = p (H(r) O plaI1(r))
is a disjoint union.
If meHn nI(r+1) then k,=n and m = upl,,,
u e II(S,). Thus
ky=n—jk, k=k

Pr+s*

Consequently,
1
DY Im= 3% ) 1/(upla) = 5 H, . rs
m e HmNPL I ue g%;)ﬂ) Pr+a
and so
1 1
(4‘7) Hn,r+l = Hn,r + — Hn—k,r + o Hn—2k,r _l— Tt
Pr+1 Pr+1

5
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From (4.5) there is M > 1 such that
Vn, H,, <M.

Since b;(n) = sup H, ., we’ll prove that if n is fixed then
H, . < MKk, for each r.

Using (4.6) and (4.7),

Hn,2 < Hn,l + M( 1 >

< MKk, <1 -- 1 1) + MKk, <;—-1—1> — MKk,
—

We argue similarly for any H, ..

q.e.d.

Ezample 4.1. — Condition (4.4) determines many pseudo-
measures. We note that k, = [log p] also determines a pseudo-
measure by appropriate technical refinements. In order to
give specific examples of T e A’(T)\M(T) determined by
cejo we now use k, = [log p], k, =1 (for technical conve-
nience only). If n is given and k < n then from the prime
number theorem (p; ~ jlogj, j — ) the number of primes
in [e*, e**1) 1s estimated by e*(k(e — 1) — 1)/k(k + 1) = N,.
Thus there are approximately N, primes p for which k,= k.
Therefore we write

n ‘ m (where k, = n)
n=1—|—1—+---—|—1 m =2
(482)  =k+1+ .- +1 — 3-Yn—ks
= kyoy ' = p(n)

where p(n) 1s the largest prime p for which %, = n. Conse-

quently the sum X -%L— for those m listed in (4.8) is bounded

below approximately by
(4.9-2) 1 5 1 k—=1)e—1)—1

€ k+a;n+1 g; (k - 1)k
K22
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We rewrite (4.9) as

and estimate it by

1 1 1 1
(100 S rom—n T Em—y " T

(we can also estimate the integral

e~ f g dx>-
1 X
For the next steps we form (4.8-3), ..., (4.8-p), ... where if m
1s listed in (4.8-p) and k, = n then

m = q2%3% ... p°%

where ¢ is a prime or 1 and if a; 4 --- 4+ a, ; > 0 then
a, > 0. We form the corresponding sum (4.9-p) by again
counting the number of primes ¢ in the allowable (that is,
a, >0 and n =k, 4 ak, + --- 4+ a,k,) intervals [e*, e¥*1).
Consequently, we form a sequence of finite sums (4.10-p)
whose total sum over p is a lower bound b&(n) of Ty(n)

and check that Y b(n)/n diverges.
1

Ezample 4.2. — If E cZ is lacunary (e.g., Example 3.1)
then E is Sidon [6]. Sidon sets are a special case of A(¢)
sets for all ¢te€ (0, o). y(¢) sets E, for te(l, o), are
characterized by the property that

{e e M(T): Vrn¢ E, g(n) =0} c LYT).
Given ceJ, with corresponding k, (let {k,} 1increase to

infinity with k, > 1). r(n, {k,}) is the number of represen-

tations of n as a sum of ¢ elements, possibly repeated, from
{k,}. When {k,} is not A(2t) for any ¢ then

Vi, sup ry(n, {k,}) = .

Consequently, such ¢ € J, which further satisfy (4.4) are a
natural source in which to find T e A’(T)\M(T).
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