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NORMAL FORMS FOR CERTAIN
SINGULARITIES OF VECTORFIELDS

by Floris TAKENS

" 1. Introduction and statement of the results.

The main goal of this paper is to study singularities of
vectorfields on R! and singularities of vectorfields on R?
with a « rotation as 1-jet »; these are the simpelest non-
hyperbolic singularities. For the first sort of singularities we
obtain :

Tueorem 1. — Let X be a C®-vectorfield on R' of the
form X = a*F(z) % with F(0) #0 and k > 2. Then there
is a C™ orientation preserving diffeomorphism

¢: (R, 0) > (R, 0)
such that,y in some ﬁeighbourhood of the origin 0 e Ry
ou(X) = (Sxk—{—ax”“*l)sb—a—: with 8= +1 and aecR; §

and o are uniquely determined by the (2k — 1) — jet of X
in 0 eRL : '

There is an analogue of this theorem for local diffeomor-
phisms :

Taeorem 2. — Let ¥: (RY 0) - (R, 0) be a C™-diffeo-
morphism such that Y2 has the form Y?(z) =z + 2*F(z)
with F(0) # 0 and k > 2. Then there is a C orientation
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preserving diffeomorphism ¢ : (R, 0) - (R}, O) such that, in
some neighbourhood of 0 € R,

eVo(z) = + = + 3z* 4 ax?*1,

8= 1+1 and ae€R; & and « are uniquely determined by
the (Zk —1) — jet of ¥ in 0eRy if Y is orientation
reversing, then k s odd

Ve

Remark. -~ The ahove two theorems, for 'k =1, were
proved by S. Sternberg [4]; in this case they should be for-
mulated in a somewhat different way.

For vectorfields on R2?, we obtain the following result.

THEOREM 3. — Let X = X1 —|- X2 ‘be a C*-vector-
field on R? such that the 1-jet of Xl, resp Xz, in the origin
equals the 1-jet of — 2nz,, resp. 21::61 Then,
either, there'is a C”-diffeomorphism ¢: (R%,0) > (R%,0) such
that

¢*(X)¥f(x§+w§)<xlgz;——xz >+X—+ 2

2 0z,
where f is a C=-function, f(0,0) #0 and X,, X, are
flat C>-functions (i.e., the co-jet of X; is zeroin (0,0)),

or, there is a C*-diffeomorphism ¢: (R2?, 0) - (R2%,0) such
that, in some neighbourhood of the drigin,

9uX) = filan ) [ 25 o — 2 o (3t 4 53
+ a(x%+x%)2"><x1—- +a )]

0,
with f a C=-function, f(0,0)=1, 8=+ 1, keN,
k>1 and «eR; 3, k and « are uniquely determined
by the oo-jet of X in the origin.

Remark. — It 1s clear that, using a coordinate change
and/or multiplication with a constant, theorem 3 can be

applied to any C=-vectorfield X = X1 + X, 7 on R?
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for which X(0) =0 and <OX (0)) has 2 non-zero ‘purely
imaginary elgenvalues 0z L

From conversations with R. Moussu and others I learned
that theorem 2 has a consequence which has some impor-
tance in the theory of co-dimension one foliations :

- TureoreEM 4. — Let ¥: (R} 0) - (R, 0) be a C*-orienta-
tion preserving diffeomorphism of the form ¥ (z) = x + 2*F(x)
with F(0) # 0 and k > 2. Then there is a C*-vectorfield X
on R! such that, in a neighbourhood of the origin, ¥ = 9Dy ,,
where 9x,: R! —> R' is the time .t integral of X (for
k=1 this result follows from Sternberg [4]).

The rest of this paper is organized as follows. In §2 we
show that the above theorems 1, 2 and 3 are true « in the
formal sense », i.e., that they are true modulo flat functions
and vectorfields. In § 3 we prove theorem 1. In § 4 we prove
the existence of solutions of a certain functional equation;
this result is then used in § 5 to prove the theorems 2, 3 and 4.

We shall use the following notation: If X is a vectorfield
on R" then 2yx: R" X R - R" the integral of X, is the

map defined by 2x(p,0) = p and = (2x(p, 1)) = X(2x(p,1)
(we shall always assume that 2x can be defined on all of
R* X R):9x,: R* > R" denotes the map defined by

2x,4(p) = 2x(p, 1)

2. Formal normal forms.

Before we start with the actual proofs, we have to state and
prove two preliminary lemmas.

Lemma (2,1). — Let X=X;+ X, and Y be C*-vec-
torfields on R™ such that [Y, X;] = 0. If the (s, — 1) — jet
of X, and the (s — 1) — jet of Y are zero, sy > 2, then
the (s; + s, — 1) — jetsof (2v,.1). X and (X;+ X;—[Y, X;]

are equal (jet means here always : jet in the origin of R").

Proof. — Because s, > 2, the 1-jet of 2y, is the 1-jet
of the identity for all ¢ This implies that the s;-jet of
(Pv,1),X; equals the s; — jet of X, for all ¢. One knows
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from differential geometry [2] that

d
2 (@1.0.%) = — [Y, (9x..%].

As the (s; — 1) — jet of Y is zero, the (s; + s, — 1) — jet
of [Y, (2y,,),X;] is completely determined by the s, — jet
of Y and the s; — jet of (2y,),X;; both are independent
of t. Hence, for all ¢ the (s; + s, — 1) — jet of
g-t((gy,,),xz) equals the (s, + s, — 1) — jet of — [Y, X,].
From this it follows that the (s; + s, — 1) — jets of
(2v1) Xy and X, — [Y, X;] are equal. The lemma now
follows from the observation that (2y,),X; = X, (because
[Y, X,]=0).

Lemma (2,2). — Let ¥ be a diffeomorphism of R* to
utself such that the (s, — 1)-jet of ¥ in the origin equals the
(81 — 1)-jet of the identity, s; > 1. Let Y be some vectorfield
on R" with zero (s, — 1)-jet, sy > 2. Then the (s; + sy — 1)-jet
of 2v,¥(2v,1) and Drem ¥ areequal, Ay(Y)=Y — ¥ (Y).

Proof. — Let ¥, for teR, be the diffeomorphism defi-
ned by ¥,= 92y ,Y92y_,. From the fact that the 1-jet of
Py, 1s the 1-jet of the identity for all ¢, it follows that
the s,-jet of ¥, is independent of t. Now we define the
vectorfield Z, on R", depending on te R, to be the vec-
torfield such that each p e R* and ¢ e R, Z(p) 1s the tangent
vector of the curve u+—— ¥, (¥,)"(p). This definition of Z, is
equivalent with Z, =Y — (¥),Y = Ay,(Y); 1t is clear

that, for each peR" and teR, %(‘Ft(p))=zc(wt(l’))-

Hence the lemma is proved once we know that the (s;-4s,—1)-
jet of Z, is independent of t. This last fact follows from
the fact that the s;-jet of ¥, 1is independent of ¢ and that
the (s, — 1)-jet of Y 1s zero: this namely implies that the
(81 + 83 — 1)-)et of (¥,).Y, and hence of Z, 1s indepen-
dent of . :

ProrosiTion (2,3). — Let X be a C®-vectorfield on R!
of the form X=x"F(¢)—§; with F(0) 20 and k> 2.
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Then there is a C=-orientation preserving diffeomorphism
¢: (R, 0) = (R, 0) such that the o -jet of ¢,(X) in the origin

equals the oo -jet of (32 + aa? 1) 5%;— for some 3=+ 1 and
«e€R; 8 and « are uniquely determined by the (2k — 1)-jet
of X in the origin.

Proof. — First we notice that for fixed X, the
(1 +k—1)-jet of o, (X) only depends on the 1-jet of ¢.
Next we construct, by induction, a sequence of diffeomor-
phisms ¢;: (R}, 0) > (R}, 0),:=1,2, ..., with the follo-
wing properties :

(1) the (1 — 1)-jet of ¢; 1sthe (¢ — 1)-jet of the identity;
(i) ¢; 1s the time 1 integral 92y,, of the vectorfield
Y, = a,w‘—b— for some a; € R;
ox ,
(m1) for each 1, the (i1 + k — 1)-jet of
(@)u(Pima)s -+ - (P1)2X = (PiPic1 - -+ P1)u(X) = X
is as in the conclusion of proposition (2,3).

Construction of ¢, 1 =1,2, .

(@) t=1. For Y, = alx—g— we have ¢,(z) =e"z and
hence the k-jet of oz

(91)4(X) = (e72)".F(e~"a).

= A=0% gk F(e~"x) 2
ox
As k> 2, there is exactly one a, €R such that
e@=Mu F(0) = + 1; hence there is exactly one a;, such
that 2y, , transforms the k-jet of X 1n the required form.

by 1=2,...,k—1. We have now Yi=ai:vi-a%; the

kjet of (piy ... 9),X = X% has the form Sx"b%

with 8 = + 1. From lemma (2,1) we now obtain that the

(k+1—1)-jet of ()X (¢, = Dy,;) equals the

(k+1¢— 1)jet of X1 —J[Y, X]. The (k41— 1)-jet

of this last vectorfield is given by X1 — (k— i)ga*+1 %

As (k—1) # 0, there is exactly one a; such that the
12

d(e~x)
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(k +1i—1)-jet of (Dy,,),X"* has the required form.
'(c)“i =k. We jta\ke again Y, = a, 5%:’ P = 9y,:- By

the same calculations as above, we find that the (2k — 1)-jet
of (9.),X*1 is given by

X4t — [Y,, X¥3] = X5 — (k — K)aaH-t = = X+,

In other words, we are not able to change the (2k — 1)-jet
of X. As o« in proposition (2,3) is allowed to be any real
number, the (2k — 1)-jét of X*1 was already in the requi-
red form. From the above arguments it follows that this time
we may chose for a, any real number.

(d) © > k. By the same argument as under (b), we obtain
exactly one a; for each ¢ such that the (k -+ ¢ — 1)-jet

of (2y,1),X"? has the required form if Y; = a4z 56-3—3

To prove proposition (2,3) we first construct ¢, using the
above sequence ¢;, ¢5, .... Let &, 1=1,2,..., be the
map & = @93 ... 1. Then, for any ¢ < [,I' the
i-jets of &, and §,, are equal. Hence, by Borel’s theorem [3],
there is a diffeomorphism ¢ : (R, 0) - (R, 0) such that
for all : < I, the i-jets of ¢ and §, are the same. From

the construction of the sequence ¢,, ¢,, ... above it is clear
that the oo-jet of ¢, (X) 1s given by (8z* 4 aa??) E?—
for some 8 = + 1 and «eR. z

Finally we have to show that 8§ and « are uniquely deter-
mined by the (2k — 1)-jet of X. Notice that the co-jet
of ¢ 1s not uniquely determined by the requirements in
proposition (2,3) (see under (c¢) above), but the (k — 1)-jet
of ¢ 1is uniquely determined by these requirements (for
given (2k — 2)-jet of X). The (2k — 2)-jet, and by (c)
above even the (2k — 1)-jet of ¢,(X) 1s then uniquely
determined by the (k — 1)-jet of ¢ and the (2k — 1)-jet
of X. Hence 3 and «, are uniquely determined by the
(2k — 1)-jet of X and the requirements imposed on ¢.

Proposttion (2,4). — Let ¥: (R', 0) > (R, 0) be a C-
orientation  preserving  diffeomorphism of the form
Y(z) =z + 2*F(z) with F0) # 0 and k > 2. Then there
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is a C™-orientation preserving diffeomorphism ¢:
(R, 0) - (R, 0)

such that ¢¥oi(z) = z + 3z* + «a®* 1 + g(z) for some flat
function g, 8=+ 1 and «c€R; 8 and « are uniquely
determined by the (2k — 1)-jet of ¥.

Remark. — The same proposition holds if we require § = + a
for some a s 0.

Proof. — The proof of this proposition is completely ana-
logous to the proof of proposition (2,3); we only have to
use lemma (2,2) instead of lemma (2,1). Hence, instead
of [Y;, X], we have to calculate here Aw(Y, for

Y; = a2 gb; This goes as follows:

¥,(Y)(2) = a(¥Ha)*. ¥ (¥(2) o=

= a@ + (k — )22 F(0) + 0(|2*+) o=

Hence the (k4 i — 1)-jet of Agy(Y) =Y — ¥, (Y) 1is given
S AprEey . 7 A

by a(i — k)a**1F(0) Py

One can now construct a sequence ¢, @, ... as in the
proof of proposition (2,3). This time one also has to use the
following (rather trivial) fact: if ¥,, ¥y: (R?, 0) - (R, 0)
have the same (i — 1)-jet, then there is a vectorfield Z,
with zero (i — 1)-jet, such that the i-jets of 2,,¥, and
¥, are the same; the i-jet of Z is completely determined
by the i-jetsof ¥, and ¥,. If i = 1, one has to assume that
both ¥, and ¥, are orientation preserving.

The rest of the proof of proposition (2,3) earries over to
the present case without any difficulty.

Lemma (2,5). — Let ¥: (R, 0) > (R, 0) be an orienta-
tion reversing diffeomorphism of the form ¥(z) = — z + 22F(z)
(we do not assume here that F(0) # 0). Then there is a C*-orien-
tation preserving diffeomorphism ¢ : (R, 0) - (R, 0) such
that ¢¥o(r) = — z + 23G(2?) + g(z), where G is a C=-
function and g s a flat C*-function.
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Proof. — We use again the same procedure as in the proofs
of the propositions (2,3) and (2,4). Now we want a sequence
of diffeomorphisms ¢; such that

L) the (1 — 1)-jet of o, isthe (i — 1)-jet of the identity;

(1) ¢; 1s the time 1 integral 2y, of Y; —~a:xf— for
some a; € R; oz

(111) for each i the L-]et of 991 ... ¢Vt ... 72
i1s as in the conclusion of lemma (2,5). _
- To show that such a sequence exists, we have to calculate

the i-jet of Ay <a,1:‘a~ba—c for each i. Clearly the.i-jet of
v, <aia:‘ i) is “the idet of (—1)*az>. Hence the
ox or .

.. ;0 d ;N\ L '
- Nag > ) = agf > — ¥, 2 : :
i-jet of Ay <a‘x‘ bx> ax 52 <am‘bx> 1s given by

D ..
2a;2 — 1f 1 1s odd,
dx
0 if i 1s even.

From this the existence of the sequence o;, 9,5, ... follows;
the rest of the proof is as in the proof of proposition (2,3).

Prorosition (2,6). — Let ¥: (R, 0) - (R}, 0) be a C*-
diffeomorphism such that W2 has the form Y?2(x)=z+2"F(x)
with F(0) # 0 and k > 2. Then there is a C”-orientation
preserving  diffeomorphism ¢ : (R, 0) - (R, 0) such that
o¥ol(x) = + o + 82" + ax® ! + g(z) with § = + 1,«e R
and g a flat function; 8 and « are uniquely determined by
the (2k — 1)-jetof ¥ in 0 € RY; if ¥ usorientation reversing,
then k is odd.

Proof. — If ¥ 1s orientation preserving, ¥ 1is of the form
¥(z) = & -+ a* F(z), where F(0) # 0. In this case we can
apply simply proposition (2,4). If ¥ is orientation reversing,
we may assume (because of lemma (2,5)) that ¥ 1s of the
form Y(z) = — z+ 2*G(a?) + g(z) where g 1s a flat
function. If G 1s flat, ¥2%(z) = x + g(z) for some flat func-
tion g; this contradicts the assumption on ¥2, so we have
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to assume that G 1is not flat. We can now write ¥ in the
form ¥(z)=—a+a*+. G(a?)+g(z) with G(0)#0. If we now
calculate. ¥'2, we obtain ¥2(z)=z—2.22.G(0)4 terms of
order > 2l in z; hence we have k = 2] 4+ 1 which is odd.

‘Let § = + 2 and @ € R be such that there is a diffeomor-
phism g, such that % o7 1(z) =8z*+ax?*1 + some flat func-

tion.of z. § and « exist and are uniquely determined by
the (2k — 1)-jet of ¥ (see proposition (2,4)). Next we
define Y5 o : (R, 0) - (R, 0), for

8=t 1, R by Wpo(2)=— 2+ 82 4 ot

Then W% . (2)=z—28,22" 1+ (383.(204+1)—2a)2%+* 4 terms
of order > 4l + 2 in . Using proposition (2,4) and the
fact that k=2l + 1 it is clear that there is a diffeomor-
phism & such that the o -jet of oY 7181 and ¥i . are
the same if and only if —28,=3 and (83.(2l4+1) —2a,)=7x.
This last pair of equations has a unique solution for fixed §
and «; call it 3, «. From the proof of proposition (2,4)
it is clear that the oo-jets of ¢ and § are not uniquely

determined. For ¢ we simply make a choice and then keep
it fixed. Now we make the co-jet of  unique by requiring
that the k-jet (= the (21 4 1)-jet) of & is the k-jet of the
1dentity.

Finally we have to show that the oo-jets of §Yo glg—1
and ¥; , arethe same. This follows from the following calcula-
tion in which = means that the oo-jets on both sides are the

-~

same. We know that § is uniquely determined by

(a) the k-jet of & 1s the k-jet of the identity;

(b) ¥5%@(e o) =5

Now we define ¢ by ¢ = ¥5i3(pTe2). As the k-jets
of W5, and Vo1 are the same, the k-jet of $ equals the
k-jet of the identity. @ also satisfies (b) above so § = .
This means that § = ¥53i§(p e 1) or ¥p,=dp o 1571

Hence, for ¢ = §¢, we have

e¥ol(z) = — z + 2% 4 aa®* ! 4 g(z)
for some flat function g and 38 = + 1, « € R. The fact that
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8 and « are uniquely determined follows from the way
in which they were constructed.

Lemma (2,7). — Let X be a vectorfield on R of the form
X =x"F(x)£; with k > 2 and F(0) # 0. ¥ : (R, 0)—(R, 0)

denotes the map 9Dx,. Let 3x= + 1, axeR, dy =+ 1
and a«y € R be such that there are orientation preserying
diffeomorphisms ¢,, @,: (R, 0)— (R% 0) such that the
w-jet of (p1)y(X) is given by (3x7* -+ axx*"“l);; and the
o-Jet of 93 ¥zl by x> x + Sya* + aypa?*l. Then 3x=38y

and (a, + -%- k) — ay.

Proof. — Without loss of generality we may assume
that X is already in the form X = (8zx2* + ax2®*? 4 terms

. [
of order > 2k in 2z) Pyn We want to compute

2%—1
Dx(z, t) = [ Y at).2' 4+ terms of order > 2k in x]

i=1
It is clear that a,(t) =1, a4(t) = --- = a,4(t) =0. To
compute a,(t), ..., ag.1(t) we use % (2x(z, 1)) = X(2x(z, t));

this gives, modulo terms of order > 2k in =z,

S ailow =3xS a) +ox(Z alek)”

i=1 i=1 i=1

Using the fact that ¢, =1 and ay=--- =a_, =0 we
get (again modulo z%*):
2k—-1
Y al(t)af = 5xa* + kSxay(t)a? + axa,
i=1
From this we obtain, using that 9x(z, 0) = z for all z € R?,
or g(0)=0 for ¢ > 1:
ai(t) = 8x, which implies a,(t) = 8x.t;
ak+1(t) = e = azk_z(t) = 0 and a;k‘l(t) - k.8x.sx.t —I‘ xx,

which implies a5,4(t) = —;— kt? 4 axt.
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. Hence the (2k — 1)-jet of ¥ 1is given by
T+—z + 3x2* + <ocx + —%—k) k-1,
From this and proposition (2,4) the lemma follows.

Prorosition (2,8). — Let X = X + X, b— be a C*-
T

vectorfield on R? such that the 1-jet of Xy, resp. Xz, in

the origin equals the 1-jet of — 2mz,, resp. 2mz,. Then

either there is a C*-diffeomorphism ¢: (R2 0) - (R?,0) such
that

%(X) = flat + ) (m 1o — 7 5) + X

where f is a C®-function, f(0) # 0 and Xl, X, are
flat C*-functions (1.e., the o-jet of both X; and X,
1s zero in the origin),

or there is a C*-diffeomorphism ¢: (R2, 0) - (R2%, 0) such

bxz

that
2u(X) = f(a1, 2) [2an o — 2ny 2+ (3(ad + i)
et + ) (m o o )| R R

with f a C®-function, f(0,0) =1, X, and X, flat
C*-functions and 8 = + 1, «aeR, k> 1.3, « and k
are uniquely determined by the co-jet of X 1in the
origin.

Proof. — According to [b] one may assume that X has
the following form

0 0
X = Iy(a} + 23) (21::61 P 2nz, b_xl>

2

(ot ) (m g )+ R4 Ky

bw2

with hy, hy, X,, X, C* -functions, hy(0) =1, hy(0) =0 and
X,, X, flat. If h, is a flat function, we are done: we then
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have the first of the two alternatives in the conclusion of
proposition (2,8).
Next we assume that A, is not flat.

Let X = (hy(ad + a8). X;

this 1s, at least in a neighbourhood of the origin, well deﬁned;
The o -jet of X equals

Ez(mez)( 2 ta; >+2m15—2m2

2 b-”’l

. «

where Eg(x?+x§)=(h1(x"{—|—x§))“1.(hg(:c’{—l—w%)); %, is not flat.
We now want to show that there is a C*-diffeomorphism ¢ :
(R2, O) — (R2,0) such that the co-jet of ¢,(X) has the form

21:.'1:1 ry" 27::1:2 — —|— (8(at + x3)*
+ (i + xg)zk) <x1 — + x bx>

for some k> 1,83= + 1 and « €R.

The k, occuring above, is the integer for which we have
hy(22 + 23) = (23 + 28)*.H(a} + 23) for some C*-function H
with H(0) # 0. To construct ¢, we make again a sequence
of diffeomorphisms ¢;: (R2%0)—> (R%0), :=0,1,2, ...,
such that

(1) for each i, the 2i-jet of ¢; equals the 2i-jet of the
identity;

(1) @; 1s the time 1 integral 9y,, of a vectorfield

Y, = a2t + i) (v"& %; + 6_3:_2> for some q;€R;
(ii1) the (2k + 2 + 1)-jet of (@), --. (9o)sX has the
required form. The construction of this sequence ¢4, @, ..
and the proof that the required diffeomorphism ¢ exists
goes exactly in the same way as in the proof of proposition (2,3).
Finally we have to show that %k, 8§ and o« are uniquely
determined by the oo-jet of X. To do so, we first have to
define the Poincaré map for a vectorfield X as above. Let :
(R, 0) > (R2,(0,0)) be some embedding; then the Poincaré
map P, x, associated with X and [/, is a map from a
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neighbourhood . U of 0eR to R such that, for z€e U,
I(P, x(x)) 1s the first intersection of the positive integral
curve of X, starting in I(z), with [(0,) if z > 0 and
with [(— ©,0) if <0, P,x(0)=0. Using the blow
up construction in [5], it is easy to see (a) that P,y is
a local diffeomorphism, (b) that, if I': (R, 0) - (R2, (0, 0))
1s another embedding, there i1s a diffeomorphism 2,,:
(R,0) - (R,0) such that (in a neighbourhood of 0 e R)
AP x(My) =P, x and (¢) that the oo-jet of P, x is
determined by the oo-jet of X. From these properties of
P, x and proposition (2,4) it follows that for some 2, the
-jet of AP, xA~' equals the oco-jet of ¢+t 3t% |- af2+1
forsome k > 2,85= + 1 and «aeR; k8 and « are uni-
quely determined by the oo-jet of X (the case that the
o-jet of P, x equals the co-jet of the identity is excluded
because we assumed that h, is not flat). From the defini-
tions it is clear that k, §, « do not change if we replace X
by ¢,X) for any diffeomorphism ¢: (R2 0)— (R2 0).
We proved the existence of a map ¢ such that

?u(X) = flm, ) [ 27 5 — 2mw o+ (3(ad + )

+ et + a0 (m g+ m g )| R+ R

0T,

with f(0,0)=1,8=+1,k>1, «cR and X, X, flat
functions. Using lemma (2,7) it follows that k, 3, « and k,
3, « are related in the following way :

%4+ 1=Fk; =75, <a—l—-—;—ic — % This implies that

also k, 8 and « are uniquely determined by the oo-jet
of X.

3. The proof of theorem 1.

To derive theorem 1 from proposition (2,3) it is enough
to prove the following.

Prorosition (3,1). — Let X and X be two C=-vector-
fieldson R* of the form X = &*F(a) - resp. X = oF(z) =,
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with k> 2, FO) #0 and F(0) # 0. If the (2% — 1)-jets
of X and X are the same, then there is a C*-orientation pre-
serving  diffeomorphism ¢ : (R, 0) - (RY,0) such that
9.(X) = X holds in a neighbourhood of 0 e R

~ Proof. — We define on R? the vectorfield X by

X = (2*F(z) + y.2*.(F(z) — F(x)) gb; In lemma (3,2) below

we show that there is a vectorfield Y on R? of the form
Y = G(z, y) % + % such that G(0, ) = 0 and such that,

in a neighbourhood of I, = {(z, y)|ze[0,1], y =0},
[Y,X] = 0. We show now, assuming the existence of such a
vectorfield Y, that there is a diffeomorphism as in the conclu-
sion of proposition (3,1). We take ¢ such that, for z near
0eRY (2,0) and (¢(z), 1) are on the same integral curve
of Y, or (9(z), 1) = Py ,(2,0). Because [Y, X]=0 in
a neighbourhood of I,, 2y, and 9%, commute as long
as all the integral curves in question are close to I,. This
means in particular that for z close to zero and ¢ small,
Dy, D%z, 0) = D3,y Pv,1(z,0). This, together with the
fact that X|{y =0} =X and X|{y =1} =X, implies
that ¢,(X) = X in a neighbourhood of 0 e R

Lemma (3,2) (see also [6])
Let X = (2*.F(z) + y.2*. H(z)) %}

be a vectorfield on Rz,b k> 2 and F(0) # 0. Then there is a
vectorfield Y = z*.K(z, y) 52—); + Sbg such that [X,Y]=0
on a neighbourhood of Ix = {(z, y)|z € [0,1],y = 0}.

Proof. — Writing out [Y, X] =0, we obtain

. K(z,y).[k.2*1.F(z) + 2*.F'(z) + 2k.y.2*** . H(z)
- 4 y.a** H'(2)] + 2**.H(z) — («*.F(2)

+ y.x"‘.H(x)).(k.a,"—l.K(x, y) +mk.9:—:(x, y)) —0.
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The termes with z2*—1 cancel, so we can devide by a** and
obtaln

K | ,
— 35 (@& Y)(Fl@) +y.2%" H(z)) + Kz, y)(F'(2)

+2k.y. 2t H(z)+y.2*. H (z)—k.y.2*1 . H(z)) 4+ H(z)=

We have to solve K from this equation; the functions F
and H are given. For each fixed y the above equation 1s an
ordinary differential equation without « singularities » near
2 =10 (because F(0) # 0 and hence F(z) + y.z*.H(z) # 0
for z near 0). By the existence (and smoothness) theorem
for solutions of differential equations depending on a parameter
there is a solution (near I,) of the above equation; this
solution can be made unique by requmng that K(0,y) =0
for all y e R.

4. Existence and uniqueness of solutions
of a certain functional equation.

In this § we want to prove the following.

‘Taeorem (4,1). — Let A: R'—>R' be a C=-diffeomor-
phism, depending on real parameters p,, ...,u, which is
of the form A(z; wy, ..., ) =+ 2*.Flz; py, ..., 0,) with:

@ k>2; |
(1) FO5pyy oosmy) # 0 forall py,y ..., u;

(1) F is a C>-function of (x; g1, ..., 1,) and its oo-jet,
as function of =z, is the same for all points (0; u,, ...,u,),
1.e., F can be written as

F(.’D; Ky - :, p‘r) = Fl(x) + Fz(“’? S PRI f‘fr))
wzth F. flat in all points (0, (TP T
Let Y = gz S By < ey p.,.) — be a C*-vectorfield, depending

smoothly on iy, ..., u, wzth & flat in all points
(05 gy« ooy )- ond "

Then there is, for each positive C, an € > 0 and a unique
C=-vectorfield Z on R! N {|z| < e}, flat in 0eR' and
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depending smoothly on p,, ..., u,, suchthat A(Z)+ Y =17
on R N {|z| < e} for each (pq, ..., u,), with |p} < C
for all i =1,...,r, for some extention Z of 7 to the
whole real line.

Before we come to the real proof of the theorem (4,1)¢
we have to introduce some notation, apply some coordinate

changes and reformulate the theorem.

a) Some notation and definitions.

. From now on we shall denote (y;, ...,u,) by p; we
shall also sometimes denote A(z;p) by Au(z). On T(R?), the
tangent space of R!; we introduce coordlnates (,v); =
giving the position on R! and ¢ measuring the length
of vectors. A induces in a natural way a diffeomorphism
A, : T(R!) > T(R!), depending on p, which has the form

Az, 05 p) = (z + 2¥.F(z; u),
1+ k.22 Fz; u) + 2. F(z; u)]9),

where F'(z; u) ='2—}; (z50). A, is defined by

A[-l*(x, V) = A*(x’ Y5 U-)-

Next we choose a vectorfield X on R! (independent of
w) such that Py, = AP for all u (we use the symbol * to
indicate that only the oo-jets in {z = 0} are equal); such
a vectorfield X exists because the co-jet of A, in {z = 0}
is independent of p and because for each orientation preser-
ving diffeomorphism ¢ : (R}, 0) — (R, 0) there is a vector-
field X on R! such that Dy, = 4. It is clear that® X

can be written in the form X = z*.F(2) Sb; with F(z) # 0
Also X induces a vectorfield on T(R!) which is given by
X, = z*.F(x ) -l— (k.z*1 . F(z) + 2. F'()). vsb;; Clearly we

have EDX 1= A (1.e., co-jets are equal in all points of
{z = 0}) *for all . (The only reason why we introduced
the vectorfields X and X, is that they will turn out to
be very helpfull to carry out one of the necessary coordlnate
transformations.) :
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Finally we define the diffeomorphism’. @ : T(Rl) - T(R?Y),
depending on u, by

O(z, 05 ) = Au(@, 05 1) + (0, glz; 1)) = (z + o*.F(z; »),

M4 k.o Fla;p) + . F(z;w)].¢ + g(z; u)), where g is
the function defining Y (see the statement of theorem (4,1)).
®,(z,¢) is defined by @,(z, ¢) = @(z, v; p);

®: T(R!) X R" > T(R!) X R"
is defined by ®(z, v; p) = (®(z, ¢; p); »). Clearly we have

A

SADX.' ©, =, forall p.

b) Furst restatement of the theorem.

Using the notation, introduced in a), we can give the follo-
wing restatement of theorem (4,1):

For each C > 0 thereisan ¢ > 0 ‘and an unique smooth
C”-submanifold W of dimension r -+ 1 inthe (=, ¢;p)-space
such that:

+ (1) W 1s of the form W = {(z, ¢; pu)|v = h(z; u), |w| < C
t=1,...,r and |z < ¢} for some C‘”-functlon h - which
1s flat in all points (0; u);

(11) there is an extension W of W, ie.,

, W= (@ v;u)le =hi;w)
with A(z; )| {|z] < ¢, |ul € C} = h’, such that

(BOW) N fla] < e lud < C} =W _
= (@(W)) 0 2] < &, |ul < C

¢) The first coordinate transformation.

As new coordinates on T(R!) we take ¥ =2 *.¢ and
T = z. This change of coordinates is of coarse smgular along
z=0, but ® and X,, expressed in these coordinates,
are still smooth; this follows from the explicit form of @,
and X,, with respect to these coordinates, which we shall
calculate now.

- From the definition of Z and ¥, we obtain directly
0= 5 21 =%, — =7*.— and — = -15 9.
’ &Y % or - °% —kz Y
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Using this we see that X, has, with respect to the (z,9)
coordinates, the form

X, = 7.F& )(55 k3 a%) + (k.21 F (@)
+ 7. F(@).5 5.5 ab—a — 7 F(z) 5?5 +3*.5.F(z) b%;

this is still C~. _
For @, expressed in the (7,?) coordinates we obtain

0@, 7 1) = (7 + 2 F@; ),

1+ k.z1.FZ; p) + 2. F(Z;n).7°.9 + g@; )>
@ + z“.F@; u)*

It is clear that g(Z;u) = (E—}—zg“c("i’l‘"z% “)')k s still C* and

flat in all points of {Z =0} for all . Furthermore,
Z + z*.F@; u) =21 + k.71 F(Z; p) + terms of order
> k in Z). ‘Hence there is some C*-function F(Z; p) such
(1 4+ k.z*1.F(z; y.) + z¢. F'(Z; u) .79
(w + . F(z; 1))

we obtain ®(Z, 7; ) = (% + z*. F(@;0), 2F(7; u).9+8(F; u)).
From the deﬁmtlon of F and the condition (iii) imposed
upon F in theorem (4,1) it follows that the co-jet of F(z; y.),
as function of z, 13 the same 1n all points (0; p).

Next we show that 9y ;= &, still holds after the coor-
dinate change (thlS 1s not ev1dent because along '

{x——O} {x =0},

that 'x"‘.F(ZE; p) = ; SO

our coordinate change 1s smgular) We first observe that
the oo-jet of @ along {Z = 0}, in the (Z,7) coordinates,
18 completely determined by the oo-jet of F along {z = 0}.
Next we write 9x,; in the form

D, 1w, ¢) = u+fw@m+kfﬂmm+wﬁww>

for some function F. From the way X was chosen and X
was defined, it is clear that such F exists; furthermore the
oo -jet of F in {z =0} equals the o-jet of F(:v,p.) as
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function of z, in {z = 0} for.all p. From this it follows
that if we now write 2x,, in the (%, ¥)-coordinates we
find along {Z = 0} the same o -jets.as for @ along {x =0}
Hence we have also in the Z, ¢ coordinates fDx = (DlJL

Finally, let W = {(z, ¢; p)|v = h(z; p), le < e, |w| < C}
be a submanifold of the (z,¢;u)-space as in the conclusmn
of restatement b.. Then the same manifold W is given in
the (?c', v)-coordinates by

= (@, 7; w7 =2 .h(E; p), 7] < < |ul < C).

As h was flat 1n all pomts of {x =0}, Z*.h(Z; ) is still
smooth and flat in all points of {Z = 0}.

Resuming, we have the following: by the coordinate
transformation ¢ = x~*.¢, T =z, we changed the form of
® but apart from that the problem to be solved (finding W
as in b.) remained the same.

d) The second coordinate change.

This coordinate change will be obtained by using the vec-
torfield X,. As we have seen under c., the vectorfield X,
has, with respect to the (7, v)- coordinates, the form

X, =z*.F(@) 5% + z*.9.F'(7) ':_a

Hence, if we devide by”:‘v"‘, we get again a smooth vector-
field z*.X, = F(2) bb_:? + ¢.F'(z) —:—5 Because F(0) # 0,

z7*.X, has no zero- pomts for |z| small Usmg integral
curves of Z*.X, it is easy to see that there is a regular
coordinate change % =79(Z,9), t=Z with ¥(0,7) =

such that X, = F(@) 0

‘nd hence -

81 I

dx dT

X, =2.F@) = =2F@) %

(at least for |Z|, or |7|, small). From this it follows that ®,
in the (T, %) coordinates, has the form :

(7,9, 1) = (z + 2*.F(@; 1), % + G(z,%; 1))
with F asin b.and G- flat in all points of {z = 0}.
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e) The second restatement of the theorem.

From b) and the properties of the coordinate transforma-
tions described under ¢) and d) it follows that theorem (4,1)
1s a consequence of ‘

ProrosiTion (4,2). — Let ®: R? > R? be a C*-diffeo-
morphism, depending on p = (u, ..., 1), which is of the
form  ®(z, 0;p) = (z + 2. F(z; u), ¢ + G(z, v; 1)) with
F(z;u) = Fi(2) + Fy(z; ), Fo and G flat along {z = 0}
and F;(0) #0. ®:R2 X R"— R? X R" denotes the map
B(z, 0; 1) = (O(z, v51); 1)

Then there is for each C >0 an e > 0 and a unique
submanifold W of R2** such that

(1) W s of the form W = {(z, ¢;p)ly = h(z; p), 7| < ¢
and |u| < Cv=1,...,r} for some C>-function h which
is flat in all points (0;p);

(ii) there is an estension W of W, ie.,

W = {( 03 p)le = h(z; u)}
with h(z;u) = h(z;u) if || < ¢ and || < C, such that

(W) N {la] < e, [l <C}=W = 3W) N {|a| <¢, |wl <C}.

Notice that we simplified our notation (symbols) compared

with d..

f) Reduction to the expansion case. ,

If ® satisfies the conditions in the assumption of propo-
sition (4,2), then also ®~! satisfies them. If W is invariant
under @ (in the sense of (i) above), then W is also inva-
riant under ®~'. With this in mind, one can carry out the
following simplification.

For any C > 0, there is an & > 0 such that if
lw < C for t=1,...,r and O < |z|] <&  then
|(z + z*.F(z; u))|: # |#|. Let now U, resp. U_, be the set
of points (z;u), || < e, |u] < C, such that

|z + 2*.F(z;u)} = |2|, resp. |z 4 «*.F(z;u)| < |2.
Depending on the sign of: F(0; 1) and the value of k (even
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or odd), we have one of the following four situations :

1. U_ is everything

2. U, is everythin

3. sz{lxl <y0}, §+={l3’| >0} ( 28 subsets of |z| <, |u| <C.
4 U_={|2] >0}, Us={|a| <0} ]

Below we shall prove that there is an invariant mamfold

W . of the form
Wi = {(z, o5 w)|(z; 1) € Us, 2] < &', 0 = he(z; 1)}

which satisfies the conditions (i), (i) in proposition (4,2)
if everything is restricted to the set of points (z, ¢;p) with
(z; u) € Us+. The same construction, using ®~! instead of @,
gives a manifold W_. In case 1, resp. 2, above W_,
resp. Wy, is already the required manifold. In case 3. or 4.,
one has to take W= W_ UW,; as W_ and W, have,
along {# = ¢ =0} oo-order contact with {y = 0},

W=W_nW,

i1s a smooth manifold which has all the required properties.
Hence in the proof of proposition (4,2) we may restrict our
attention to those points (z, ¢;p) with (z;u) e Us.

g) Some definitions.

We define ¥: R® - R2? by W(z,¢)= (z+ 2*.Fi(2),¢)
and ¥:R? X R"—> R? X R" by ‘T’(m viw) = (Y(z, ¢); u);
F, is as in the statement of pr0p0s1t10n (4,2). It 1s clear
that ¥ = (D for each u, 1.e., the oo-jets are equal along
{z = 0}.

For a, ¢ > 0, we define D, = {(z,¢;u)|lv =0, |z| < ¢

lw] <a for i=1,...,r, |z+2*Fi(z) > |2 and
|z 4+ z*.F(z; p)| > |m|}, note that for given a and ¢ small
enough D,.={(z,o;0)|lv =0, |z|] <¢ [l < for

1=1,...,r and |z + z*.F(z; p)l. > || }- -Points Qf D, .

are sometimes.denoted- by (z;w) instead of (z,0;p). :
Let #,. be the set of real valued functions on D,,. The

maps I'e, M'y: &, > #,. aredefined, foreacha,c > 0, by:

[®({z, f(z; )5 &})] N {(z, ¢; w)|(z, 0; ) € D, ¢}
o ‘ = {z, (Tof )(z; u); 1},
[T({z, f(z; )5 u})] N {(=, ¢; u)l(x, 05 ) € D, ¢}

‘ = {z, (Dyf)(z; w); 1}
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for all fe #,, Using the above definitions and the reduc-
tion described under f., it follows that, in order to prove
proposition (4,2), it is enough to prove.

ProrosiTioN (4,3). — For each a, there is an € > 0 such
that To: F,o—> F,. restricted to C*-functions which are
flat along {x = 0}, has a unique fizedpoint.

For the proof of this proposition we need a sequence of
lemmas which 1s stated and proved below.

h) Some lemmas and the proof of proposition (4,3).
For any ector a€ T o lL){v =0} of the form
a——a——l—Eaia;— we define llal] Va:+al+ - + a
i=1 bl 1t 4

If D is some l-linear function on T, q;y{¢ = 0}, we define

[D| by
IDI = sup  Jal™ ... la)™.|D(ay, ..., a)

LR
9, € T(z, 0; wylv=0}

Lemma (4,4). — For each a >0 and each pair of positive
integers h and m, thereisan ¢ > 0 such that for any C"-func-
tion fe #,, with |D'f(z;u)] < |z|™, and

IDf(z; W)l < |2f™+

for all i1=1,...,h—=1 in each point (z;p)eD,,
| DX Dypf)(z; )] < la:l”' (1 — 472 |a)* 2. |F,(0)]) for all

(x; 1) € Dy s;

the norm of the i** derivative D'f(z;p) is the norm as i-linear
function.

Proof. — We define Fy(z;p) = (z + 2*.Fy(z); p). From
the definition of Ly, we obtain that I'yf = fF;1. For such
compositions it is easy to obtain the following estimate

ID(fF) (s w)l < IDY(NFT s )l - IDF (s W)™
| + 3 GIDAFT (=5 e,

where G, ..., Chpy depend on the derivatives of order
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4, ...,h—1 of F{* in (z;p). We now choose, for some
e, > 0, the constants C,, ...,C,; such that the above
formula is valid for any (z;p) e D, :

From the definition of D,, it follows that for
some ¢,,0 < g5 < ¢; we have (ID‘(F 1)(:::, ©)| = 1 whene-
ver (z;u) € D, .

€3, 0 < €3 < &y, is then choosen so that for (x, ®) € D, o,
the a:-coordmate of Fi(z;p) 1is, in absolute value,
< |z| — Ix“ F,(0 )|. Now we come back to the estimate

for the norm of D*fF ). Applying the above formula
in points (z;u)€ D,, to any C'function fe &, ., satis-
fying the assumptions of lemma (4,4), we obtain:

IDA(Fi)(a; ] < (Ja-coordinate of Fi(as u)"
+ 2 Clal*, (1 — 2 IF(0)]. |x|"-1>"' ||

+3 el = [af". (1 . m.[Fy0) -Jaf*>)

-+ terms of order > m + k in 2.

Fiﬂally we take g, 0 < & < &3, so small that for |:z;| < g,
1
(1= IR -le"")"‘-lwl"‘
+3 Cla|™* < (1 — i, AR O)][af*). |l

i=1

It is then clear that for ‘any (x; w) € D, and.anSf C*-func-
tion fe #,., satisfying the assumptions of lemma -(4,4),
we bave [DHfFt)(z; )] < [2l™.(1 — 4. [Fy(0)] |al*2.

. LEmMa (4,5). — For each a > 0 and positive integer 1,
there is an € > 0, such that for any C'-function fe #,,
with |D'f (z; u)] < |2[***¢D for all 1=1,...,1 and all
(#; 1) € Dy, | .

ID{(Twf)(@; w)l < |20 (1 — 471 a1 | Fy(0)),
forall =1, 1 and (z;u) €D,

" Proof. — This lemma follows by induction from lemma (4 4)
First we take ¢;, 0 < ¢; < 1. such that the conclusion of
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lemma (4,4) holds with h =1 and m = 1. Then we have
for any Cl-function fe #,, with |Dif(z;p)| < le“‘" (=h
forall :=1,...,1 and all (z;u)e D, that

ID(Cuf)(as )l < Jaft. (L — 4“-[?”]"“1-,IF1( )

for all (z;u) e D,,. Then we take e, 0 <3 < e as in
the conclusion of lemma (4,4) with h=1—1 and m=1+4k.
Then the conclusion of lemma (4,5) holds for functions
fe #F.., as far as D' and D! of (I'yf) are concerned.
Going on this way we find the required ¢ in [ steps.-

Lemma (4,6). — For any a > 0 and positive integer I,
there is an ¢ > 0 such that for any fe #,. with f |{z=0}=0
and |Df (z; )] < |2 for all i=1,...,1 and
(; 1) € Dgey ’

IDHTof)(; w)] < |2+ forall i =1, ..., 1
and (z;u) € D,..

Proof. — We define #!, < #,. to be the set of C'-func-
tions fe #,, with fl|[{x =0} =0 and

(D) (x; )] < |zftT*¢D forall e =1, ...,1

and (z; w)eD,,. From the definition of TIg and
P\p it is clear that there is a continuous flat function

: Ry > R4(Ry = [0, )) (flat means here that for any n
there is an ¢, > 0 such that «(z) < 2* if z <¢,) such
that for any fe #.,, |D{(Twf) — (Tof))(e; )l < a(a) for
all :=1,...,l; we do not exclude that « also depends
on a.

From this and lemma (4,5) it follows that, for ¢ small
e.nougha P‘b(fi,s) < yft,t k

DeriniTION (4,7). —},‘,",1 denotes the closure of ..
(defined in the proof of lemma (4,6)) in the C'—*-topology.

Remark (4,8). — By lemma (4,6) there is, for each a > 0,
and . positive .integer I, an ' ¢,, > 0 such .that for any
0 <e<e Pe(Fi)s F51. Furthermore, #.3! is com-
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pact with respect to the C'~*-topology. This follows from the
fact that the family of partial derivatives of order (I — 1)
of all fe #.7! is equicontinuoys (compactness then follows
from Ascoli’s theorem [1]). ‘

Lemma (4,9). — For each a > 0 there is an ¢ > 0 and
a unique continuous function f € &, such that for any C*-func-
tion fe F,. which is flat in all points.of {xz =0} and
such that |f(z; < |z| forall (z;u)eD,,, hm (To)f) =T
(this is the hmzt zn the CO-topology).

Proof. — Wlth the same methods as we used in the proofs
of lemma (4,4), (4,5) and (4,6) it easily follows that there is
an ¢ > 0 such that for any pair of functions fi,fo€e #,.
with |fi(z; u)| < |2] and [fi(z; ) — fa(z; )] € C.|2| for all
(z; ) €D, (C 1s a constant < 2 depending on f;, f3)
we have [(Tof)(z; )] < |z| and

ITofi(as #) — Tafiz; 0] < C-lal. (1= 5 [FO)] |af*)

for all (z;u)eD,.. .

We shall show that, with ¢ as above, the conclusion of
lemma (4,9) holds. Let f; € #,. be a smooth function, flat
in all points of {z =0} and with | fy(z;u)| < |2 for all
(z; ) e D, Let [ 2> 2 be some integer; then, for some
0<¢ <e f4o|Dyewe £71. We may, and do, assume that
¢ <'e,, (see remark (4,8)) sothat we have for f; = (T'¢)'fs,
fID. o€ #52 From the definition of #.2, it follows that
Ifi(z; w)| < |2|"* for |z] < ¢'. Next we define 0 < < Cy<2
to be the smallest constant Asuch that

Ifi(z; w) — filzs )| < Cylal

for all (z;p)eD,; from our choice of ¢ it follows that
Cit1s j+1 < Gy In order to show that llm fi exists, it 1s

enough to show that hm C,;=0. Suppose the contrary :

e
let C=lm ( sup C; ,) > 0 we shall derive a contradiction
N> \j, j>N '

from this. - i [ 1

Take: i, J such that 'C ;€. 5 C, Z_C]; we shall compute
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an upperbound for €, P From the properties of ¢ and
e, we know that :

fsalas ) — fales ) < G ol .(1 — 5 IFO).[=/*)

for (z;-w)eD,. and |[fia(z; ) — fin(z; u.) lz|* for
(x; ) € D,, ¢ It 1s now easy to see that there 1s some & > 0,

1
~2—c,2c].

Coyelal - (1——|F< ). le"‘1> < (Cyy— 8).]a]

depending on C " only, such that, for any C,, e[

for ¢ < |z < e and
" min 3(:,, e .(1—%‘|F(0);;|x|kjl>, jal 2 < (Cy—8).la]
for 0 < |z| < ¢’. Hence for each i, with C,.,e[l

we have Cg+1'j..i.1 < Ci,j.'—' 3. ‘ 2 ‘
Now we take some N(3) such that if ¢ j > N(§), then

C, 2(:]

C,; < min. 32C G+ —-—b‘g From the above argument it follows
that, for any _ e .

i, > N@) + ‘1va..‘,,' < max.%—%— G, C— —;—8{ < C.
This however leads to G =lim ( sup G, ,) < C which. is
the required contradlctlon Nees N JEN

- Finally we have to show that if we take another smooth

function f;e #,,, which is flat in all points of {z = 0}
and such that |f'(z;u)| < |z| for all (z; w) eD, & then

lm f{ = hm fis where fi = (Te)fo and f,= (Fcb)ﬂ

>

For t]:us one defines C; to be the smallest constant such
that Ifi(z; w) — filz; &) < Cla| for all (z; u) € D,.. From
the propertles of ¢ it follows that Cy; < C. The assump-
tion hm ¢=C-> OIeads, with the same arguments as

above for C, toa 'contradiction (in this case we have to
replace ¢’ by ¢” < g, which is such that both f{|D,,-

and''f; |D, « arein F41). ‘Hence we have ' lim fi = hm fie

i» o
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LemMa (4,10) (= "ProrosiTioN (4,3)). — For each a > 0
there is an ¢ > 0 such that there is a unique C”-function
fe F,. which s flat along {xr = 0} and suchthat Te(f) =f.

Proof. — We denote the map (z; ) — (z + 2*.F(z; p); u)
(see proposition (4,2)) by ®. We take our ¢ such that the
conclusion of lemma (4,9) is valid and such that for any
0 < ¢ < ¢ there 1s an integer N(¢') such that

(D, o) D,

It is clear that if there is a function fe #,, with the
required properties, it 1s umque (because of lemma (4,9)).
Hence it is enough to show that the « limit-function » fe &,
the existence of which was asserted in lemma (4,9), is C~
(it is clear that T'¢(f)=7F). To show this we prove that
for any given integer [ > 1, f is C-.

Let f, € #,. be some C*-function, flat in all points of
{z =0} and such that | fo(z; u)| < |2| forall (z;p)eD,,.
Let 0 < ¢ < min (e,e,,) be such that f|D, . e F:1 We
shall denote T%(f,) by fi and T%(f,|D,e) by fie #i2
(clearly f; = fi|Ds¢). As FL1 is compact, {fi}, must
have at least one accumulation point (with respect to the
C-1-topology). Because f; converges in the C°topology,
{fi}~, must have exactly one accumulation point in the
C1-topology (if there would be two different accumulation
points, they would have C-distance zero which is impossible).
Hence {fi}, converges in the C'-topology and hence
f|D,e is C-'. Finally f is C-! because I'¢f =7 and
hence the graph of f can be obtained by applying @Y
to the graph of [ |D,¢.

5. The proofs of the theorems 2, 3 ﬁ.nd 4.

.- Proof of theorem 2 (orientation preserving case). — From the
results in § 2 it follows that we only have to show that for
any diffeomorphism ¥ : (R, 0) - (R%, 0), which is:of the
form ¥(z) =z + 82* + «a?*! 4 g(z), where g is a flat
function, 8 = # 1, a € R and..k > 2, there is an orienta-



190 ; FLORIS TAKENS -
tion preserving diffeomorphism ¢: (R!, 0) - (R, 0) such
that Vo~ l(z) = z + 3z* 4 az?*1. -

We define ¥: Rt > R? by

P (z, 1) = (z + 82* + a1 + pg(a), 1);

‘T"F is defined by (¥ u(®), p) = P(z,n). Now we want a

vectorfield Z = Z(z, p) b—x
{z = 0} and such that ¥,(Z) = Z holds in a neighbourhood
of I={(z,n)]z=0,0 <p <1}. The existence of such a
vectorfield Z follows from theorem (4,1): '

We take ZH to be the vectorfield on R!, depending on
w, defined by ZF = Z(z, p')b—b.; The vectorfield Y is defined

+- :_p.’ with Z flat in all points

ot (2) 2 - Y s
by Y _..‘P'* (ﬁ) i Y(z, @) 52 It 1s ~c}ear that the
function Y is flat in all points of {x=0}. Y, is defined to

. bo) .
be the vectorfield Y(z, p.)— on R!' depending on p.

It follows that ¥ ,(Z)=(Z) is equlvalent with ¥, (Z )—|—Y -—Z
for all p; this last equation is just the equatlon whlch was
solved in theorem (4,1).

The diffeomorphism ¢ : (R, 0) - (R, 0) 1s now obtained
from Z by requiring that, for |z| small, (z,1) and (¢(z), 0)
are on the same integral curve of Z. The fact that
$%Z) =7 implies that (¥ (z)) = Fo(p(z)). From this
and the definition of ¥ it follows that ¢ is such that

Vo 1(z) = z + 32* + aa? L.

To prove theorem 2 for the non-orientation preserving
case 1t is convenient to use theorem 4, which can be proved
using the orientation preserving case of theorem 2. This
is the reason that we are now first going to prove theorem 4.

~ Proof of theorem 4. — We have again ¥ : (R!, O) (R1, 0)
of the form ¥ (z) = z + 2*.F(z2) with F(0) # 0 and. k > 2.
According to theorem 2 (orientation preserving case) just
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proved, there is an orientation preserving diffeomorphism ¢,
such that ‘¢, Vo7 =z + 82* 4+ «a?*! for some &= + 1
and « € R. Let X be the vectorfield

X = (8:17" + (« - ik)ﬂkﬂ) 2
2 dz
wheére 8 and « are the same as in the formula for ¢, ¥ ¢7(z).
It follows from lemma (2,7) that the (2k — 1)-jets of
o, ¥o;! and 9z, are the same. Hence we can apply theorem
2 again and obtain ¢, such that ¢,9%,9;1 = ¢,¥o7? or
%—l%@x,l(q’flj?z)—l =¥ or Drtont,1 = Y. Hence
X = (¢719,),X 1is the required vectorfield.
We shall use the following corollary of theorem 4:

Prorosition (5,1). — Let ¥: (R, 0)— (R, 0) be a
diffeomorphism of the form ¥(z) =z + 2*.F(z) with k > 2
and F(0) # 0. Then the only germ of a diffeomorphism o :
(R, 0) - (R, 0) which has in 0 € R' the same o-jet as the
udentity and which commutes with ¥, is the germ of the iden-
tity mapping.

Proof. — Let X be a vectorfield on R! such that 2x,=¥
(at least in a neighbourhood of the origin). Let ¢ be a (germ
of) a diffeomorphism ¢: (R, 0) - (R, 0) which has the
same oo -jet as the identity. Then there is a (germ of) a conti-
nuous function f;:R! - R such that, near the origin,
o(x) = Dx(x, fo(x )) Clearly ¢(0) = 0. ¢ commutes with ¥
if and only if f, is invariant under ¥, i.e., fq,( (z)) = fo(=).
As, for each z e R! close enough to the origin, lim ¥i(z)

=00

or lim ¥i(z) is the origin, f, is invariant under ¥ if and

only if f, = 0. Hence if ¢ has, in the origin, the same
co-jet as the i1dentity mapping and if ¢¥ = ¥¢ holds in a
neighbourhood of the origin, then ¢ = identity (in a neigh-
bourhood of the origin). .

" Remark (5,2). — We proved (proof of theorem 2) that if
¥: (R, 0) - (R 0) has the form

Y(z) =z + 32* + «a® 1 4 g(x)
with 8=+ 1, k> 2, «e R and g a flat function, then
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there i1s a €”-orientation preserving diffeomorphism ¢:
(R, 0) - (R 0) - such that o¥o¢i(z)=a + 3z* 4 az?*?
and such that the co-jet of ¢ in 0 is the oo-jet of the iden-
tity. Using proposition (5,1) it follows that the germ of ¢
is uniquely determined by the above two properties : namely
if there were another such ¢, say ¢, ¢~¢ would commute
with ¥ and hence it’s germ would be the germ of the iden-
tity. :

Proof of theorem 2 (orientation reversing case). — We have
now Y(z)= — 24 82" + a1 + g(z) with k> 2, k
odd, 3=+ 1, «€eR and g a flat function. We define
Y, by Y(z) = — z+ 82* + az®* 1. We want to find a
diﬁeomorphism ¢ such that ¢¥¢! = ¥,. From the orien-
tation preservmg case and remark (5,2) we know that there
is a unique germ of a diffeomorphism ¢: (R 0) — (R, 0)
such that ¢¥2¢' = ¥ and such that ¢ has in 0 the
same oo -jet as the identity. ¢ = ¥;'¢¥ has also these two
properties. Hence, in some neighbourhood of 0 e R!, ¢ = ¢,
and hence ¢¥o!=Y¥,.

The next lemma will be applied in the proof of theorem 3.

Lemma (5,3). — Let f: R®—>R be some function. If
f(r cos @, r.sin ¢), as function of r and ¢, is C®, and flat
in all pomts of {r—— 0}, then f, as functwn on R2, s C~,
and flat in the origin.

Proof. — The fact that f, as a function of r and o,
is C=, and flat in all points of {r = 0}, is equivalent with:
fIR™N0 is C° and (D,)(Dy)f is continuous and flat for
each i,7; D, is defined by D,f=uz bf —l—xzaf and D,

Ty T

0 .
is defined by Dof = =, Y. °f — 5;’[; a continuous function
2 1

g 1is flat in the origin if there is for each integer ! > 0 an
e, > 0 such that |g(z)] < |2|' f |z| < &. Using the fact

that (2% 4 23) bixl = z;D, — z,D, and

(x&+x§)g};= 2D, + D,
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one easily obtains that on R2*\0

dkH :+J<k+z Quios(s, 7) |
: DiD}, where Q. ,(zs,
o2 bx% i,J>0 (2* + ad)k 04 where Qi1 (21, %)

are polynomials in z;, z,. This implies that also

bk+l
aﬁa@f
is continuous and flat for all k,1 > 0; this implies that f
1s C*, and flat in the origin. : '

The proof of theorem 3. — From proposition (2,8) it
follows that we only have to prove that if the vectorfield X
on R? is of the form

X = f(21, z,) [21::51————2 a;,b—z;
+ {sm + )+ oot + ) (5 )]
. |
+XRio =+ X, — ~
with f, X,, X, C= vfunctions, X, X, flatin 0 eR?, f(0) =
>

and « € R, then there i1s a C"’-dlffeomor-

3=+ 1, % 1
(R2,0) - (R2, 0) such that

phism o:

o 0
‘P*(X) T(xla x2 2na, b—x; — 2mxy — oz,

+ (3(ad + 2)* + «(ad + ) (f‘l ;71 T SDE>]

for some smooth function f with f(0) =1. We define g:
R? - R by gz, z) = 51X, — 5,X, and h: R2 >R by
h(zy, 23) = X, + 7, X,. Because g and h are C* and
flat in the origin, also z+— |z]~*g(z) and z+—-|z|*h(z)
are (C* and flat in the orlgm 2|2 = 2% + 23. It is clear
that .

R + Ko = 1ot [hlan, ) (a0 2 + 0 )

+ g(-’fl, 9| (371 O_Q; - %)]

L
oz
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Hence we can write X in the form . .
X = f (@, 2 [ 2nm 5 = v o (300d + )
+ (2 + x%)zk + g(xb )} <x1——9— + =z i)]’

bxl 2 bxg

where g is C=, and flat in the origin. Now we define X to
be the vectorﬁeld f*.X, or :

R = 2may — — may o+ (3ot + ad)* + oa} + R
;. 2 1 ‘ .
-+ g(xl’ -7’2)} (xl bixl + zp 3‘)

o,
and define

~ ) )
Xt = 211:371 %{;— —_ 21!:132 g —|— {8("15% “|‘ xg)k
- 3 1

ox, 0x,

+ (e + ) + t.g(z, 7)) <w 2 4 —°—>~

Now we want to show that there 1s a unique germ of a C*-
diffeomorphism ¢ : (R2,0) - (R2?/0) such that:

(1) the co-jet of ¢ in the originis the co-jet of the identity;

(i) for each z: 2,0 and ¢(z) lie on a straight line;

(ili) ¢Pz,,97! = Pg,1.

The existence of such a ¢ is proved using polar coordinates
r, ¢ (z;=r.cos0, z =r.sin0). For any 6, we have
that 923,.:{0 = 0,} = 25,,{0 = 0,} = {6 = 6,}. Hence,
restricted to each {6 = 6,}, we can apply the method of
proof of theorem 2 (orlentatmn preserving case). To show
that ¢, thus obtained, is smooth with respect to the polar
coordinates, we only have to take 0 as the second parameter
e on the moment where we apply theorem (4,1). ¢ 1s
obtained by integrating a vectorfield of the form

Zr,t,0) = Z(r,1,0) - + =

on R2 X R with Z a C*-function of (r, t, 6) and flat
along {r =0}. Hence Z 1is also C* with respect to the z,
x, coordinates and flat in {z, = 2, = 0} (see lemma (5,3)).
Hence ¢ has all the required properties.
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The fact that the germ of ¢ 1is uniquely determined by (i),
(11) and (ii1) follows from proposition (5,1) and remark (5,2).

Finally we want to show that (p_il = 5(0. For any ¢t we
define ¢, = 2%} ¢%z,, where ¢ 1is the diffeomorphism
constructed above. From a simple calculation we see that
0:9D%,19; = P%,1 hence ¢, satisfies (ii1) above. Both
9%, and 9g,,, for any t, map straight lines through
the origin to straight lines through the origin; hence o,
maps straight lines through the origin to straight lines through
the origin. As the co-jets of X; and X, are the same in the
origin, the oo-jet of ¢, in the origin is the oo-jet of the
identity; hence ¢, satisfies (1) above. From (i) and the
fact that ¢, maps staight lines through the origin to straight
lines through the origin, 1t follows that ¢, satisfies (i1).
Hence the germs of ¢ and ¢, are equal. From this it follows
that o, = 25 ,9:9%,, for all ¢t and hence

-~ ~

(PI*XI = ?*Xl = XO’
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