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CATASTROPHES
AND PARTIAL DIFFERENTIAL EQUATIONS

by John GUCKENHEIMER (*)

Introduction.

We reformulate here certain aspects of the theory of first
order partial differential equations whose origins, date at
least from Darboux [2]. Our aim is to describe the singularities
of solutions of first order partial differential equations in such
a way that the singularity theory of mappings can be applied
to describe the generic singularities which arise in the solution
of partial differential equations. The formalism we adopt is
based upon the concept of lagrangean manifold, introduced by
Arnold [1] and employed in contexts related to ours by
Hormander and Weinstein [4, 12].

In his forthcoming book [9], Thorn observes that the singu-
larities developed by wavefronts are related to the unfoldings
of singularities of real valued functions. The propogation of
wavefronts is determined by fitst order differential operators.
Porteous has described this situation in detail for the propo-
gation of waves in Euclidean 4-space corresponding to the
wave equation [8]. Neither Thorn nor Porteous elaborates
the way in which the theorems of singularity theory can be
explicitly applied to the situation at hand to describe those
singularities which are generic. They approach the subject from
the viewpoint of variational principles and initial value pro-
blems. This partially masks the local nature of the problem.
By working in the context of lagrangean manifolds of a cotan-
gent bundle, we clarify this situation somewhat.

(*) Supported by National Science Foundation grant GP 7952X3.
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We also point out here that this connection between catas-
trophes and partial differential equations allows one, in some
instances, to connect catastrophes more directly with physical
and biological phenomena than is possible with Thorn's
« metabolic model ». Physical laws are often stated in terms of
partial differential equations. Hormander and Duistermaat
have recently proved that for linear operators of principal
type, the singularities of solutions propogate along bicharac-
teristics [5]. The bicharacteristics in turn are determined by the
characteristic equation of the operator, and this is of first order.
This allows our theory to be applied to solutions of these
operators. This description of discontinuous physical pheno-
mena avoids certain technical difficulties which arise in using
a model based upon the bifurcation theory of vector fields [3].

I would like to thank Alan Weinstein, John Mather, Don
Spencer, Frangois Latour, Frank Quinn, and Arthur Wight-
man for helpful conversations. I would also like to acknowledge
the large debt I owe Rene Them for his provocative ideas.
My attempts to understand Christopher Zeeman's explanation
of light caustics originally motivated the development of
this paper.

1. First Order P.D.E.'s.

Classically, a first order partial differential equation is
written in one of the two forms

H(^ ,S)=0 (1)
H(^u ,S ) -0 (I')

Here, x and ^ are variables in R" and u is a variable in R.
A solution of either equation is a function f: R" -> R such

that if u == f{x) and ^ == —Lf then H(o:, S) or H(o;, u, ^)
is identically zero. l

We can view equation (1) in a coordinate-free manner in the
setting of manifolds by regarding x as an element of a smooth
n-dimensional manifold M and ^ as an element of the cotan-
gent space of M at x. Then H : T*M -> R is a function on
the cotangent bundle of M. A solution of H = 0 is a func-
tion f: M -> R such that the graph of df in T*M lies in the
hypersurface of zeros of H,
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One can also interpret equation ^1') in a coordinate-free
manner. Recall the definition of an r-jet. Two smooth func*
tions f, g : M -> R are said to be r-equivalent at ^ if the
Taylor series of f— g at x begins with terms of degree
r + i in some coordinate system. An r-jet is an equivalence
class with respect to r-equivalence at x. The r-jeta of func-
tions form a vector bundle J^M, R) over M. Given a func-
tion /*: M -> R, there is a natural map «?/: M -> J^M, R),
the r-jet extension of /, defined by ^f^x) = the r-jet of f
at x. The left hand side of equation (1') can be interpreted as a
function defined on J^M^ R). Then a solution of (1') is a
function f: M --> R such that J1/' lies in the hypersurface of
zeros of H.

J^M, R) is isomorphic as a vector bundle over M to
T*M X R. We can use this isomorphism to relate the study of
equations (1) and (!'). Let N == M X R. The cotangent
bundle T*N is the product T*M X T*R. Let (x, u) be
local coordinates on N == M X R and (S, ^]) the conjugate
coordinates in T»N. Define H': T*N -> R by

H'(^u,S, T))=H(^,U,-^ if T ] ^ O .
\ 7! /

Note that we identify the fibers of T*R with R in writing
this equation. Let f be a solution of W = 0 such that

A^o? ^o) = 0 and / (o^, Uo) ^0. On the hypersurface

f= 0 in M X R, we can then implicitly solve for u as a
function of x near {x^ Uo). That is, there is a function
g : M ~> R such that f{x, g{x)) vanishes in a neighborhood
of XQ. We calculate

^^M
bXi bXi/ OU

It follows that

H(.,g(.),^=HY.,u.^.^y (2)\ bay \ bx ^u/

on the hypersurface /== 0 of N in a neighborhood of
(a^, Uo)- Thus the restriction of a solution f of H' = 0 to the
hypersurface /= 0 in M X R leads to a solution of (1') if
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!\fJ- ^ 0. We shall make further use of this interpretation of

equation (1') in describing the singularities of its solutions in
section 5.

If we try to find global solutions of equations (1) or (1')
on a manifold M, certain pathologies may occur. In particular,
it may not be possible to describe a solution as a single valued
function. To avoid this difficulty, we give a geometric charac-
terization of solutions. This requires a brief digression concer-
ning symplectic geometry.

There is a canonical two form Q. on T*M which one may
define in local coordinates as follows. If (^i, . . . , x^) are
coordinates on an open set U <= M and p e U, then we
choose coordinates in T^M by setting (Si, .. ., Sn) to be the
coordinates of the covector ^ ^i dx,{p). Since (^, ...,;rJ
are coordinates on U c= M, dx^p), ..., dx^p) are linearly
independent covectors for each p eU. Hence (*ri, . . . ,^,
Si, . . ., Sn) define local coordinates in T?jM. ^ is the conjugate
coordinate of x,. In terms of these local coordinates,

Q{x^ ..., ̂ , Si, ..., Sn) == | ^A^. (3)

Note that we regard dx, here as a one form on T*M and
not on M. The canonical two form Q can also be defined
intrinsically via the following diagram:

T(T*M)
^/ N î

^ T*M T(M)
^i^ /^

M
The maps 7^1, TFg, 71:3 are the vector bundle projections. If X
is a vector field on T*M, define

0)(X)=7T3(X)(^(X)).

The expression of <x) in the local coordinates defined above is

^ <^ •..,^1, .. . ,SJ=S^^ W
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We shall call co the canonical one form on T*M. From
equations (3) and (4) it follows that 0. = rfco. Q has maximal
rank and consequently defines a bundle isomorphism between
T(T*M) and T*(T*M).

PROPOSITION. — Let Q be a closed one form on M an4 let i:
graph 6 -> T*M be the inclusion. Then i*Q = 0. Conversely,
if j: ^ -> T*M is a submanifold of T*M transverse to the
fibers of T*M and if j^Q = 0, then / (X) is locally the graph
of a closed one form.

COROLLARY. — A submanifold X of T*M is locally of the
form graph df for some function f: M -> R if and only if

1) 8 is transverse to the fibers of M, and
2) Q pulls back t6 zero on X.

Proof. — The implicit function theorem implies that a
necessary and sufficient condition for a submanifold X of
T*M to be locally the graph of a one form is that dn\^ be an
isomorphism. Here TC : T*M-> M is the projection. This
implies that X is transverse to the fibers of T*M. The
maximal dimension of a subspace of Tp(T*M) on which Q
vanishes is n, the dimension of M. Therefore, we may
assume that the dimension of X is n if it is to satisfy the
hypotheses of the second part of the proposition. This, together
with the transversality hypothesis, implies that X is locally
the graph of a one form 6. Suppose 6 can be written in local
coordinates

n

6(^, . . . , ^)= ^ a,{x) dx,
i=i

then

dQ{x,, . . ., ^) ==. S ̂  (^) dx^dx,.
ij ^J

It follows that dQ = 0 if and only if

bOi_ bq,
^Xj bXi

The graph of 6 is the set of points of the form (^, ..., x^
c^(x)^ ..., a^(x)). A basis for the tangent space of graph 6
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is given by
Y b _ bo, b . ,xi := ?r~ + 2 ."rr^ l == 1? • • • ? ^•b^ ^ 5^ ̂ . ?

We see that a(X,, X,) == 0 if and only if ^ == (bafc. Hence,
^ bXi

9 is closed it and only if Q vanishes on the tangent space 6.
This proves the proposition.

The corollary follows from the proposition by the Poincare
lemma. If 6 is a closed one form, f 6 depends only on the
homotopy class of the path y Therefore f{x) = P" 6 is
locally well defined and gives a function f such that 6^=== df.

The proposition and corollary allow us to characterize the
solutions of equation (1) geometrically: it M is simply con-
nected, a solution of equation (1) is an n-dimensional subma-
nifold / : \ -> T*M such that

i) X lies in the hypersurface of zeros of H,
ii) /*(Q) s 0, and
iii) X is transverse to the fibers of T*M.
If M is not simply connected, then we need the additional

hypothesis that ^ is the graph of an exact one form. However,
we propose to eliminate condition (iii) and make the following
definition.

DEFINITION. — A solution of equation (1) is an n-dimensional
submanifold X of T*M which satisfies conditions (i) and (ii)
above. A singularity of X is a point x e X such that X inter-
sects the fiber T^)M non-transversely at x.

The singularities are precisely the points at which there is an
obstruction to defining X as the graph of an exact one form.

We can treat solutions of equation (1') in a similar manner.
Observe that if f is a solution of the equation H'== 0 defined
by (2) and if c -^ 0, then f and cf lead to the same solution
of H === 0. Conversely, two soltitions of H' == 0 which lead
to the same solution of H = 0 are scalar multiples of one
another. The graph of d(cf) is obtained from the graph of df
by multiplying the fiber coordinates by c. In T*(M X R)
this gives us a cone X of dimension n + 1. It is easy ito
check that Q pulls back to zero on X. The generator of the
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cone is the restriction of graph df to the hypersurface of
zeros of f in M X R. We already have proved that Q pulls
back to zero on graph df, so it certainly pulls back to zero
on a submanifold of graph df. All that remains to prove is

( n ^ ^ \
that the radial tangent vector ^ ^ — in local coordinates )

f==i ^i /
is Q-orthogonal to the tangent space of graph df\^^. The
tangent space of graph df has as basis

Y —A- -L V ^f b ' — 4
^-o^ '^b^oa; ,^ , /"'15 • • • ? n

in local coordinates. ^ ^1^1 ls tangent to graph df\^^ if

^^=1^=0.
\.̂  &a;./ .̂  Sa-,

Now

( n ft » \ B
Q S ^—' S ".x,)= s ̂ ..

i=l "'ii i=l / i=l

.̂On graph df, ^ == • Hence Y a^i = 0 and Q pulls
^^i i=l

back to zero on X.
Thus we may identify the classical solutions of (1') with

n + 1 dimensional submanifolds X <= T*(M X R) — {0 sec-
tion} satisfying

i') X lies in the hypersurface of zeros of H' [H' is defined
by equation (2)],

ii') D pulls back to zero on X,
iii') X is homogeneous in the fiber coordinates,
iv') X is transverse to the fibers of the vector bundle

T^(M X R) -> M.
Once again we generalize the definition of solution by

dropping condition (iv7). The singularities of a solution are
the set of points where (iv') fails to hold.

This context is a special case of one which arises in studying
the characteristic equation of a linear partial differential
operator. There one obtains a first order equation H:
T*M— {0 section} —> R such that H is homogeneous in the
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fiber coordinates. In this context also, we may define a solution
to be a submanifold of T*M satisfying the conditions i), ii),
and hi'). The singularities of a solution X are then the points
at which corank TC^ > 1.

The primary goal of the rest of the paper is to describe the
local structure of the singularities of a generic set of solutions
of (1) and (!').

2. Lagrangean Manifolds.

In this section we describe the set of solutions of the equa-
tion H(rr, S) == 0 and give this set the structure of a topological
space. Arnold introduced the concept of a lagrangean sub-
manifold of a symplectic manifold which is basic to our
viewpoint. Let (P2", n) be a symplectic manifold of dimen-
sion 2n. Recall that this means that Q is a closed two form
of maximal rank on P.

DEFINITION. — A lagrangean submanifold of P is a sub-
manifold i: X —> P such that

1 .i) dim X == n = — dim P,
ii) i*{Q) = 0.
Thus the solutions of H == 0, H : T*M -> R, are lagrangean

submanifolds of T*M which lie in the hypersurface of zeros
of H.

We wish to give the set of lagrangean submanifolds of P
a topology so that we may speak about perturbations of
solutions of H = 0. Fix a manifold N of dimension n
and consider the lagrangean submanifolds of P diffeomorphic
to N as a subset of C^N, P). Interpreted this way, each
lagrangean manifold carries with it a specific parametrization.
Different embeddings of N with the same image are regarded
as different submanifolds. If we wish to regard a submanifold
as a subset of P and not as an embedding, then we must
divide (^(N, P) by the group D(N) of C°° diffeomorphisms
of N acting by composition on the right. It is clear that the
action of D(N) perserves the set of lagrangean submanifolds
in C°°(N, P). Denote the quotient of the set of lagrangean



CATASTROPHES AND PARTIAL DIFFERENTIAL EQUATIONS 39

subriianifolds by the action of D(N) by A(N). A(N) inherits
a topology as a subset of C°°(N, P)/D(N).

To understand more clearly the topological structure of
A(N), we begin by describing the set of germs of lagrangean
submanifolds of T*R" w R2". The set of linear lagrangean
subspaces of R2" is a closed subset of the Grassmannian G^n
of n-planes in R271. G^n 1s ^e homogeneous space
0(n) X 0(n)\0(2n). If the linear transformation A pre-
serves the quadratic form

.̂J)
i.e., A^QA == Q^ then A*Q. == Q. If A is also orthogonal,
then A^ == A'~1 and A preserves Q, if and only if it com-
mutes with Q. It we write A in block form

(AII A,i2^
, A.2i Aga/.

where each block is an n X n matrix, then the condition for
A to commute with Q is that

( Agi -"-22^ ( — Ai2 AH^
— An — Ai2/ \ A g 2 Agi/

THerefoTe A is of the form

^B — C ̂
< C B.

If we embed Q^, C) -> Gl^n, ̂  by
/r>B - ̂
;C B^B + iC

then the orthogonal matrices which preserve Q, are identified
^ith U(n). It follows that the set of lagrangean planes can be
identified with 0{n)\V(n) where 0{n) is embedded in
Gl(2n, R) as matrices of the form

/B 0\
\0 B;

0(n) is the stabilizer of the lagrangean plane represented by
the identity matrix.
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In the last section we noted that the lagrangean planes
which are transverse to the plane determined by Q can be
represented in the form graph df. In terms of the Grassman-
nian representation above, the transversality condition tor
the plane determined by

/B ~C\
\c a)

is that B be non-singular. In this case B-^C is a symmetric
matrix since

/B -CVB^ C ^ / I 0\
\C BA-^ B< ; '~VO l )

implies CB1 — BC^ = 0. B^C is independent of the particular
choice of matrix in U(n) determining a given lagrangean plane
since D 6 0(n) implies

(DB)^DC = B^C.
The lagrangean plane determined by

/B -C\
VC B
/B -C\
YC B;

is the span of the first n-column vectors. This is the same as the
span of

(a-ic)
if B is invertible. This span is graph df where f: R" -^ R.
is the quadratic function

f[x) = -I- {x^Cx).

Now we study the set of germs of lagrangean manifolds
through a given point with a given tangent plane. Choose local
coordinates so that the point is (0, 0) <= T*R" = R" X R"
and the tangent plane is R" X {0}. It X is a lagrangean
manifold through (0, 0) with this tangent plane, we can write
X == graph df near (0, 0) for some f: R" -> R. f is deter-
mined only up to a constant, so we may assume that /"(O) === 0.
Furthermore, df{0) == ^(O) == 0 since graph df passes



CATASTROPHES AND PARTIAL DIFFERENTIAL EQUATIONS 41

th^otegh (0, 0) e T*R11 and has a horizontal tangent plane
there. Thus we may identify the cube of the maximal ideal
of the ring of germs of functions on R" with the set of germs
of (unparametrized) lagrangean manifolds through a given point
with a given tangent plane. Denoting by Ao the set of germs
of lagrangean manifolds through (0, 0) e T^R", we obtain
the fibration

Ao -> 0(n)\U(n),

with fiber m^. Here m^ is the maximal ideal of the set of
germs of C°° functions defined on R" at the origin.
0(n)\U(n) is a smooth manifold of dimension n{n + 1)/2.

Next, we describe the set of germs of solutions of the first
order partial differential equation H(a;, S) == 0. Choose
coordinates so that H(0, 0) == 0. If (0, 0) is not a critical
point of H, we may choose local canonical coordinates so that
H is a coordinate function, say H(x, ^) = ^n. These coor-
dinates usually cannot be chosen to preserve the fibration of
T*M as well as the canonical two form.

The equation H(rc, i;) == ^ can be solved explicitly. The
classical solutions of this equation are functions f: R" —> R

such that —/- == 0. By continuity, it follows that the germs
^xn

of solutions of H === 0 through (0, 0) form a subset A^n
of Ao corresponding to those lagrangean manifolds com-
prising families of lines parallel to the a^-axis. This gives us the
fibration

Ao.H^O(n-l)\U(n-l)

with fiber m;Lr The set of germs of solutions of H == 0
through a given regular point of H can therefore be identified
with germs of lagrangean manifolds of T^R""1.

Return now to the study of lagrangean submanitolds of P
which are diffeomorphic to N. The proper C°° embeddings
of N in P form an open subset E ^ C°°(N, P). The lagran-
gean proper embeddings form a closed subset L <= E because
L is defined as the locus of zeros of equations which are
defined on the 1-jets of elements of E. We have the following:

THEOREM (Weinst^in [i3]). — L is a Frechet manifold
modeled on Z(N) © x(N). Here Z(N) is the vector space of
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closed C00 one forms on N anrf x(N) ^5 tAe vector space ef C^
vector fields on N. .

We briefly indicate the proof of this theorem. Let X :
N -> P be a lagrangean manifold of P. Weinstein proves
that there is a tubular neighborhood T of N in P and a
symplectic diffeomorphism h of T into T*N so that
h o X : N —> T*N is the inclusion of the zero section. Thus h
maps a neighborhood of X e L(P) into a neighborhood of
0-section e L(T*N). The unparametrized lagrangean subma-
nifolds close to the 0-section in L(T*N) are represented by
the graphs of small, closed one forms. The different parame-
trizations of a given parametrized submanifold form a space
isomorphic to D(N). A neighborhood of the identity in D(N)
is isomorphic to a neighborhood of 0 e ^(N). Putting these
facts together, we obtain a coordinate chart centered at X
diffeomorphic to an open subset of Z(N) ® /(N).

D(N) acts freely on L(N), yielding the following corollary :
let Apr(N) c= A(N) denote the set of embedded proper la-
grangean submanitolds of P.

COROLLARY. — Ap^(N) is a Frechet manifold modeled on the
vector space Z(N).

If N is not compact, then there is a choice to be made
among C^-topologies. The appropriate topology to use for
the study of singularities is the Whitney topology. Therefore
the C°°-topology will mean the Whitney C^-topology in this
paper [7].

If H : T*M —> R is a differential operator, then the proper
solutions of H == 0 clearly form a subvariety of Ap^ It 0
is not a critical value of H, then our local analysis of germs
of solution can be used to prove that the set of proper solutions
of H == 0 is a submanifold of Apy.

3. Equivalence and Stability of Lagrangean Manifolds.

We have defined lagrangean manifolds of T^M. Let us
now formally state the following:

DEFINITION. — If X c: T*M is a lagrangean manifold^
then the singular set of X, denoted S(X), is {x e X|X is not
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transverse to T^)M at x}. n : T*M —> M is the projection.
The caustic set of X is 7T(S(X)).

This definition of caustic agrees with the definition of
caustic in geometric optics when the lagrangean manifold X
is a solution of the (inhomogeneous) characteristic equation
of the wave equation.

There are a number of different equivalence relations defined
on the set of lagrangean manifolds which give different inter-
pretations to the statement: lagrangean manifolds X and X'
have equivalent singular sets. We state three of these :

I. Lagrangean manifolds X, X' <== T*M are equivalent if
there is a diffeomorphism h: M —> M which maps the caustic
set of X onto the caustic set of X'.

II. Lagrangean manifolds X, X' <= T*M are equivalent if
there is a fiber preserving diffeomorphism H : T*M -> T*M
defined in a neighborhood of X such that H(X) = X'.

In order to define Ill-equivalence, we need to discuss the
relationship between families of mappings and lagrangean
manifolds.

DEFINITION. — Let M, N and P be manifolds. A family
F of maps from N to P parametrized by M is a commutative
diagram

N X M-^P X M
^ /^2

M " ;

Tig is the projection onto the second factor.

PROPOSITION (Weinstein-Hormander [4, 12]). — Let

N X M-^R X M\ /
M

be a family of functions parametrized by M. Then
(1) The critical set S(F) of F is the set of points

I x , t) e N X M such that ^Fl (x, t) == 0. Here Fi== ̂  o F;
!)X

TCI : R X M —> R is projection.
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(2) For a generic set of families, S(F) is a manifold. There
is a map a : S(F) -> T*M defined by

!^F
<r(.r, 1} ^= <iFi(̂  t) == —1 (a;, () d(.

(3) \ == a(S(F)) 15 a lagrangean submanifold of T*M.
This proposition gives a canonical map C from generic

families of functions parametrized by M to lagrangean
submanifolds of T*M.

C(F) = o(S(F)).

III. If X, X' <= T*M are lagrangean manifolds in the
image of C, then X and }/ are equivalent if there exist
families of functions F, F' parametrized by M such that
X = C(F), X' = C(F'), and F is equivalent to F'.

The last condition means the following:

DEFINITION. — Let

N X M J- P X M and N' X M J- P' X M\ / \ /
M M

be families of maps, F and F' are equivalent if there is a
commutative diagram

N X M-^P X M\ /
M

N' X M -p P' X M

\ /
M

such that all of the vertical arrows are diffeomorphisms.
The three equivalence relations defined above are ordered

in the sense that X, X' Ill-equivalent implies X, X' II-equi-
valent, and X, X' II-equivalent implies X, X' I-equivalent.
I-equivalence is the intuitive concept which is most immediate
for describing the singularities of wave propagation, but the
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slightly stronger II-equivalence seems technically much easier
to work with. Ill-equivalence is excessively strong but lends
itself easily to applications of the theory of singularities of
maps.

Corresponding to each of these definitions of equivalence is
a corresponding definition of local equivalence for germs of
lagrangean manifolds. In this connection, one has the following:

PROPOSITION (Weinstein-Hormander [4, 12]). — Let M be
an n-dimensional manifold. The map C defined abwe is a
surjective map from germs of families of functions on R" to
germs of lagrangean manifolds of T*M.

Proof. — Let X <= T*M be a lagrangean manifold and let
p e A. Following Hormander, we can choose coordinates
(o;i, .. ., x^) for M in a neighborhood of 7c(p) so that in the
corresponding canonical coordinates for T*M at p, X is
transverse to the constant section of T*R" through p.
Therefore X is of the form graph df near p, where f:
(R")* -> R and we identify R" with (R")**. Define

Rn» x R" JL R x R"\ /
R"

by
F(Sl, . . ., ̂  ̂  • • • ? ^n) = (— f(^U • • • ? Sn)

n \+ S x^ x^ • • • ? ^»r1=1 /
We have

S(F)= j (S^)^==^; . - l , . . . ,n i .
( b^ )

If (S, x) e S(F), then o(S, x) = I x , bFl == (^ S)\ Therefore\ oa; /
(T is the identity on (R")* X R" == T*R". Furthermore
S(F) == graph df == A, proving the proposition.

For each of the definitions of equivalence for (germs of)
lagrangean manifolds, there is a definition of stability relative
to a topology on the space of (germs of) lagrangean manifolds.
Recall the definition of stability: If X is a topological space
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and ^ is an equivalence relation on X, then a ? e X is
^-stable if it is an interior point-of its ^ equivalence class.

As John Mather pointed out to me, a theorem of Latour [6]
applied to the family constructed in the proof of the proposition
allows us to state a necessary and sufficient condition for in-
stability at germs of lagrangean manifolds.

Let ^ c T*R" be a lagrangean inariifold passing through
(0, 0) so that X is transverse to the zero section R" X {0}
of T^ at (0,0). Let f: (R")* -> R be a function such that
f{0) == 0 arid X === graph df in a neighborhood of the origin.
(Here* we identify (R")** with R" as above.) Let C^R"*)
be the maximal ideal of the ring of germs of C°° functions at 0,
and let J be the ideajl generated by the germs of

^.^-» i == 1, . • ., n[- (Si, . . ., U are the coordinates of R"\

Then we have.

THEOREM (Criterion for Stability).—The germ of \ at 0
is Ill-stable if and only if the germs of i;i, . . ., ^ (mod J)
span C^oR^VJ- ^ is Ill-stable if and only if each germ of X
is stable.

The proof of this theorem is an immediate application of the
theorem of Latour [6], applied to the family

Rn* x R-I^R x R"

A / ., ,
R"

defined by F^, x) = - f(^ + J, ̂ .
1=1

We next dienxonstrate how the criterion for stability can be
used to locally identify the caustic set of a lagrangean manifold
with the catastrophe set of the unfolding of a singularity.
Recall the framework of catastrophes: Consider the ideal
Cg^R^) of C°° functions on R^ vanishing at the origin.
The group of diffeomorphisms of Rfc fixing the origin acts on
CS^R^) by composition on the right. This induces an action
of the group of germs of diffeomorphisms fixing the origin
on the gmns of functions C^R^) A germ feC^R^ has
codimension n if there is an n-dimensional complement to
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the orbit of f through f. Let 0 : R" -> (^(R^) be a map
transversal to the orbit of f at 0(0) = /*. From 0 we
construct an n-parameter family of functions

R/c ^ Rn ĵ . R X R"

\ /
Rn

defined by Fi(a;, ( )== €>(()(a?).
F is a universal unfolding of /*. It is universal in the sense

that every other family of functions through f maps into F,
and F is a minimal dimensional stable family passing through
/*. The catastrophe set of F is the set of t e R" such that
<&(() is not stable. The catastrophe set will consist of those t
satisfying either

(1) 0(() has a degenerate critical point, or

(2) 4>(() has two critical points with the same critical value.
The caustic set of a lagrangean manifold which we have
defined corresponds to the first condition; the second condition
corresponds to shock phenomena. For the purposes of this
paper, we do not wish to consider condition (2) as patholo-
gical, so we modify the definition of catastrophe set.

DEFINITION. — The c-catastrophe set of (^ is the set of
t e R" such that the germ of ^{t) is not stable for some x e R\
This definition of c-catastrophe set includes precisely those points
which satisfy condition (1) above.

The codimension of a germ f e (^(R^) can be calculated.
Let J be the Jacobian ideal generated by the first partial

derivatives \—L-) .... —/-? of f. Then the codimension of f(6^1 ox^
is the dimension of Co^R^/J as a real vector space. Assume
f has codimension n. Then a universal unfolding of f can be
constructed by selecting germs ^i, . . ., <^ such that ^i, .. ., ̂
(mod J) form a basis of Co^R^/J. The universal unfolding
F : R^ X R" -> R X R" is then defined by

F(^, t) = (f(x) + S ^(^), t\
\ 1=1 /
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Note that we may choose polynomial representatives for the
î.

Every catastrophe set can be constructed from the unfolding
of a function f: R^ -> R such that /•(0) = df{0) = d^O) ==0,
for the proper choice of k. In this case, we may choose
^n • * - ? ^n so that Pi === x^ . . ., ^ == ̂  in constructing the
unfolding of f since {o^, ..., x^} is linearly independent
(mod J). In order to apply the criterion of stability, we want
to replace f by a function g : R" -> R so that the universal
unfolding G of g is given by G(x, t) = (g{x) — S^t., t)
and C(G) == C(F). Then the stability of G implies that the
germ of the lagrangean manifold C(G) is stable.

Define g: R" -> R by
1 n

g(a;i, ..., x^) = f{x^ ..., x^) — -^ 5 {Xt — ^{x^ ..., x^Y.
^ l==k+l

The local algebra Co0^")/^) °^ 8 ls isomorphic to the
local algebra C^{Rk)|J{f) of f. We shall prove that an
unfolding of g is given by G: R" X R" ~> R X R" defined

by G(rc, t) == (g{x) — 2 (̂,, t\. that C(F) and C(G) are

equivalent by a fiber preserving symplectic diffeomorphism of
T*R", that the catastrophe sets of F and G are the same,
and that the caustic set of C(G) is the catastrophe set of G.

First we prove that G is the unfolding of g. The ideal J(g)

is generated by ^ — 0 > i == 1, ..., n[' If i < k
(^^i )

bg bf , " 5^, .—5====—L+ s (^"""" ^)-
^X, ^X, ^^ ^Xi

If i > k,

^e=^
&.K,

(a;. — P,).

Therefore, the ideal 3(g) is also generated by

( &/• fif )
te-"'^^1''^1' "^^-^\-

Recalling that v^ == x^ if i" < k, it is clear that ?i, ...,('„
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(modJ(/*)) span ^{Rk)|J(f} if and only it x^ . . . , ^
(modJ(g)) span C^(Rn}|J(g). Since

F(^ t) = (/^) + S t^), ()
\ 1=1 /

is the universal unfolding of /*, G is the universal unfolding
of g.

The c-catastrophe set of F is the set of t for which
n

f^x) == f{x) — ^ ^i(^) has a degenerate critical point.
1=1

The critical points of ft are given by the common zeros of

^>-.l''̂ - '=1- -'k- ^
A critical point is degenerate if

detf-^-^-^ =0 (6)
W,^ i=i ^j\^jjj,j.

Thus the set of ( for which the A* + 1 equations (5) and (6)
have a common solution is the c-catastrophe set of F.

The c-catastrophe set of G is given similarly as the set
of ( for which the following n + 1 equations have a common
solution:

^°^+ S |^,-.',)-<,=0; , = 1 , . . . , * (7)
OXj OXj (=k-n OXj

J^-^ -?,)-(,; / = = / c + l , . . . ,n (8)
03,/f

detf-^\a^ s^/
&/' i v \^^f!.^_^_^_^\^l\[ .̂̂ L j &2^ /^ _ p)TM\

l̂  ̂ )a;A &a;A&a;/. ' ' J&^ ^
a^ f
bx, I—/

^&a;;. i= î l̂  ̂ )a;A &a;A &a?/. ' ' J &^ ^o
a^
,̂ |1-

(9)
Using (8) with tj = — (xj — ^j) and recalling that ^y ==; Xj
for / ^ A*, we see that (7) and (8) together are equivalent
to (5) as equations for ( to satisfy. Again, substituting
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^ (x^ — Vj) for / > k gives

M. bv^
^ &a^|&a^

1
^Xj^X^

0

1
&P(
5a;,.

0

-1 flO)

Thus (8) implies that det f bgt =0 if and only if
( ^f \ W<^A^u^/

We conclude that F and G have thedet ( ——[1—} = 0. We conclude that
W\ ̂ J

same c-catastrophe sets.
The next step is to calculate C(G) and C(F). We have

already calculated the value of C for a family of the form
of G. C(G) is the set of (t, x) e T*R" whichsatisfy equations
(7) and (8). To calculate C(F), let [x, t) e Rk X R" be a
point satisfying (5). Then

a{x, t) = ((, - ̂ ), . . ., - ̂ )) e T-R"

Let H : T*R71 -^ T*R" be the map defined by

H((, X) = (?i, . . . , („, X^ . . . , X^ — tfc+i + ^fc+l? • • • ? — ^ + xn)'

H is a fiber preserving symplectic diffeomorphism. Comparing
equations (5) with (7) and (8), we find that H(C(F)) == C(G).

Finally, the caustic set of C(G) is the set of points in R"
for which C(G) is not transverse to the fibers of T*R". We
have previously seen that this is the set of t for which

detf ^gt {x)\=0\^^ 7
for some (a?, t) e C(G). This is precisely the catastrophe set
of F.

We summarize this discussion by stating

THEOREM. — Let fe (^(R^) ha^e a single critical point at 0.
Assume codimension f == n. Then the germ of the c-catastrophe
set of a universal unfolding of f occurs as the germ of a caustic
set of a Ill-stable lagrangean manifold of T^R^.

We end this section with some final remarks concerning
II-stability. There are many interesting questions concerning
this concept. Perhaps the most fundamental of these is to
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give practical necessary and sufficient conditions for a lagran-
gean manifold of T*M to be II-stable. In low dimensions
(in particular, for dimensions less than or equal four) moduli of
singularities do not arise. This raises the question whether
II-stability implies Ill-stability for these dimensions. When
does I-stability imply II-stability?

4. Solutions ofP.D.E.'s.

We would like to apply the results of the last section to the
solutions of a first order partial differential operator H:
T*M -> R. Consider two examples.

Example 1. — H : T*R71 -> R is defined by H{x, S) = Sn.
The classical solutions of H == 0 are given by functions
f'(a;i, . . ., x^) which do not depend upon x^ In other words,
every solution consists of an n — 1 dimensional family of lines
parallel to the x^ axis. Consequently, the c-catastrophe set
of a universal unfolding of a singularity of codimension n
will not occur as the caustic set of a solution. The caustic sets
of stable solutions of H == 0 will be of the form R X S
where S is the caustic set of a stable lagrangean manifold of
dimension n — 1.

Underlying this example is a theorem of Weinstein [13]
which states that a fiber-preserving symplectic diffeomorphism
of T*M is affine on each fiber. In this example, the linearity
of H on each fiber is an intrinsic property which is independent
of the coordinate system in' R^. The linearity of H on the
fibers is highly non-generic.

Example 2. — H(rc, ^) == x^ No solution of this equation is
transverse to the fibers of T*R" at any of its points. More
generally, if {H(rr, ^) = 0} is not transverse to the fibers of
T*R" at the point (a;o, So)? then no solution passing through
(^o? So) ean he transverse to the fibers of T^R" through XQ.
These non-transversal points cannot, in general, be avoided as
they have codimension n in {H = 0} and our solutions have
dimension n.

These two examples demonstrate that it is necessary to
make assumptions about H in order to make statements
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about the generic caustics of solutions of H. The first hypo-
thesis we make is that 0 is not a critical value of H. We
assume this throughout the remainder of this section. Note
that this hypothesis, like others to be made, leaves us with a
generic set of H.

The theorem which we want to prove should state that for
generic H, the stable caustics of solutions of H == 0 are the
stable caustics of lagrangean manifolds. The proof of such a
statement is to be an application of a transversality theorem.
Let us proceed to develop an appropriate setting for this
problem.

Denote by L the set of parametrized proper lagrangean
submanifolds of T*M diffeomorphic to an n-dimensional
manifold N. There is a map

L x C^T^M)-s-C°°(N) (11)
defined by S(X, H) == H o x. S-^O) n L X {H} is the set of
solutions of H == 0. Roughly speaking, we would like to
say that S'^O) is transversal to the stratification of L for
almost all H e C^T^M). One encounters here the difficulty
that all the spaces involved are infinite dimensional Frechet
manifolds. However, we are primarily interested in stable
n-dimensional lagrangean manifolds and these are determined
by their n + 2 jets.

If we work locally, the quotient map L —> A (see section 2)
has a section. Upon restriction to A, the map (11) induces a
map S,.

^(Ayx^MJ^T^-^J^R71)
^
T*M

The domain of Sr is the fiber product of the two factors as
bundles over T^M. Now S71(0) = {(V, H^ is the r-jet
of a solution X of an equation H whose r-jet is IP'}. J^A)
has a stratification induced by Ill-equivalence, and the asser-
tion we want to prove is the following:

THEOREM. — Let Sy be the map defined by (12). Then for
almost all W e J^T^M), S^^O) n J^A) X {H'} is transversal
to the stratification of <T(A) induced by 111-equiwlence.
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Before indicating the proof of this theorem, let us compute
some dimensions. Fix a point p G M, and consider the map S,.
restricted to Tp*M. As a bundle over M, the dimension of
the fiber of J^A) is the same as the dimension of

JS-^R") == ( n + r"^ 1N) — 1. This follows from associating

the r + 1 jet of feC^^) with the r-jet of graph df.

The dimension of J^R") is ( )• Therefore, we expect

that for generic fixed H, S^O) n J^A) X {H} should have
,. . / n + y + l \ /^+^\ ^ /n+r-l\ ,dimension ( • - --( — 1 = = ' ) -- 1

\ r+i } \ r / \ r+1 ^ ^
== the dimension of J^^R"""1). This agrees with our prior
observation that if 0 is not a critical value of H, then the
space of solutions of H is a manifold modeled on ^(R"^1).

Under our genericity hypothesis on H,

Sr^O) n J^A) x {H}

is a submanifold S(H) of J^A) of dimension ( , ) — 1.
\ r+i )

To prove the theorem, we must show that for generic H, S(H)
is transverse to the stratification of J^A). We indicate two
ways of proving this.

The simpler is to use a suitable version of the Thorn trans-
versality theorem. For example, one can use Lemma 3.2 of
Mather [7, V], If 0 is not a critical value of H, then the
map S^ is of maximal rank at every point of J^A) X {H}<
The inverse image of 0 is transverse to the stratification
induced by J^A) on J^A) X T*M at H. Consequently,
Mather's Lemma 3.2 implies that for generic H e T*M, S(H)
is transverse to the stratification of J^A).

A more interesting argument which yields more information
is based upon the facts that the map S^ is a real algebraic
map and that the stratification of J^A) is real algebraic.
Transversality of S(H) to the stratification of J^A) is an
open algebraic condition. Thus, the set of H in J^^M) for
which transversality is satisfied is the complement of a closed
algebraic subset of J^T^M). To conclude that this set is
dense we need only verify that for one particular H the trans-
versality condition is satisfied. A particularly nice choice of H
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to use for this verification is the inhomogeneous characteristic
equation of the wave equation in R\ This is defined by

H(^S)= |S1 2 - ! :
n ' • ''

where |S]2 = S S2 is the Euclidean norm. The analysis f̂ the1=1
solutions of H == 0 then become^ a study of the Riemannian
geometry of manifolds embedded in Euclidean space. A large
part of this analysis is carried out in the paper of Porteous [8]
where references to the classical literature may be found.

Summarizing/choosing r ^ n + 2 yields the following:

THEOREM. — For generic first order differential operators
H : T*M -> R, the caustics of Ill-stable solutions of the equation
H ==0 are the c-catastrophe sets of' n-dimensional, stable unfol"
dings of functions of codimension < n.

It would be interesting to write down explicitly the generic
set of H for which this theorecm/ is true.

5, The Homogeneous Case.

In this section we examine the modifications necessary to
apply the theory developed thus far to studying the singula-
rities of conic solutions of homogeneous partial differential
operators. Let Q7^1 be a manifold of dimension n + 1.
Denote the complement of the zero section in T*Q by
t^Q.

DEFINITION. — A lagrangean manifold \ c: t*Q is conic if
{x, \} ex implies (x, c^) e X for all c > 0. A differential
operator H : T*Q -> R is homogeneous^ if H is a homogeneous
function on each fiber of t^Q. If H : t*Q -^ R is a homoge-
neous differential operator, then a solution of H =0 is a conic
lagrangean manifold lying .^n the hypersur face of zeros of H.

We consider the problem of describing the generic singula-
rities of solutions of homogeneous first order partial differential
operators. The first task is to determine the structure of the
space of come lagrangean manifolds. We do this at the level of
germs. If X <= t*Q is a conic lagrangean manifold, then we
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can find fiber preserving canonical coordinates for T*Q at
p e X so that X is transverse to the constant sections of
T^R"^1 at p. If they are constructed from a coordinate
system on Q, these coordinates preserve the linear structure
of the fibers of T*Q. Locally, X can be represented as graph
df where /^(R^^^R is homogeneous of degree 1. Here
we identify (RT+1)^ and R^.

Conic lagrangean manifolds close to X can also be repre-
sented locally in the form graph dg with g : (R""1"1)* -> R
homogeneous of degree 1, As in section 2, this leads to a
representation for the set of germs of conic lagrangean mani-
folds at p e T*Q as a fibration with base 0(n)\U(^) and
fiber the cube of the maximal ideal of C^R").

To pass from germs to global conic lagrangean manifolds
we make use of Euler's equation:

PROPOSITION. — Let i: 7^—>• T*Q be a lagrangean manifold.
Let <o be the fundamental one form on T*Q. Then \ is
contained in a conic lagrangean manifold if and only if
i^) =0.

We verify this proposition in local coordinates. Assume
\ == graph df with f: (R"4'1)* —> R homogeneous of degree 1.
Then X is the set of points of the form {df (^), ^). In the local

n+l

coordinates, <o(a;, S) = S ^idx, the tangent space of X
has a basis l=l

5^ U-+-1 >^f <\

x .=^+S—^— ^i,.. .^+i.^ ^b^o^b^
We have

^f^W-l^A ^^^./==! ^Si ^^j

On X, -J- == Xi and therefore X is homogeneous if and only if

o>(Xi) == b for i = i, . . . , n + 1.
The proposition implies that the conic lagrangean subma-

nifolds of t*Q form a submanifold of the space A of proper
lagrangean submanifolds of t*Q. In order to make sense out
of the concept of perturbation of a conic lagrangean manifold,
w^ must1 be a bit careful about the topologies involved since
conic lagrangean manifolds are non-compact. A conic lagran-
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gean manifold induces a corresponding submanifold of the
unit sphere bundle on Q. We give the space of conic lagran-
gean manifolds the topology induced on it as a subspace of the
space of embeddings into the sphere bundle on Q.

There are at least two different interpretations of the meaning
of caustic of a conic lagrangean manifold X <= T*Q. If we
regard X as a lagrangean manifold of T*Q, then it is nowhere
transverse to the fibers of T*Q and therefore the entire
projection of X onto Q is its caustic set. On the other hand,
we can define the singularities of X to be the set of points at
which the corank of the projection of X onto Q is greater
than 1. The projection of the singularities onto Q then become
the caustic set. The second interpretation is more appropriate
when working with homogeneous operators which arise from
equation (!'). There one projects n(\) onto a submanifold M
of Q of codimension 1 in such a way that the projection is a
local diffeomorphism when restricted to the regular points of
^).

The local structure of the caustics of generic solutions of a
generic homogeneous first order differential equation remains
unchanged from the theory developed in section 4. In particu-
lar, the caustics of Ill-stable solutions of generic equations
are the catastrophe sets of stable unfoldings of singularities.

6. Bifurcation Theory of Gradient Vector Fields.

One can use our techniques to study a problem in the theory
of bifurcation of singular points of gradient dynamical systems.
Thorn makes the statement that the unfolding of a potential
function corresponds to the bifurcation of the corresponding
gradient dynamical system [9]. Here we explore the nature of
this correspondence.

Recall the relevant definitions. Let M be a smooth n-dimen-
sional manifold with a Riemannian metric and let f: M -^ R
be a smooth function. Then grad f is the vector field defined
by setting grad f(x) to be the tangent vector v at x such
that if w e T..M, then df{w) === w(f) === <^ w>. Thus
grad: (^(M) -^ x(M) where /(M) is the space of C00 vector
fields on M. ;
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The natural concept of geometric equivalence for vector
fields is topological conjugacy. Vector fields X, Y e %(M) are
topologically conjugate if there is a homeomorphism of M
mapping the integral curves of X to integral curves of Y.
If X is an interior point of its topological conjugacy class
(usually with respect to the C' topology), then X is structu-
rally stable.

For our purposes, topological conjugacy is too strong an
equivalence relation [3]. Smale has defined Q-conjugacy
which is a weaker equivalence relation than topological
conjugacy. For gradient vector fields with a finite number of
critical points, Q-conjugacy can be defined very simply:
grad f and grad g are Sl-conjugate if f and g have the same
number of critical points.

Bifurcation theory is the study of qualitative changes in the
structure of a vector field under deformation. One approaches
the subject in the following setting: A A-parameter family of
vector fields is a map 0 : R^-^^M). Given an equivalence
relation ^ on /(M), 0, Y: R^-^^M) are said to be ^
equivalent if there is a diffeomorphism (homeomorphism?)
h: R* -> R* such that 0(A(p)) ^ ^(p). One then wishes to
study a generic set of 0 and those properties which are ^
stable under perturbation of 0.

Bifurcation theory in this sense was first considered by
Poincare. Even now, however, the theory is in a primitive
state, Sotomayor has studied 1-parameter families of vector
fields on two-dimensional manifolds and Brunovsky has studied
1-parameter families of periodic orbits of diffeomorphisms. The
variation of periodic orbits of Hamiltonian vector fields on
energy surfaces has been considered by Robinson and Meyer.
Little is known about higher dimensional bifurcation theory.

We deal here with a more restrictive situation and make
only a few remarks about general bifurcation theory. Specifi-
cally, fix a Riemannian metric on the compact manifold M
and consider the set x^(M) of gradient vector fields on M.
As we remarked earlier grad : C°°(M) -> X^(M) is continuous
and has the constant functions as kernel. Let $ : R^ -> -^y
be a A'-paramet^r family of gradient vector fields. We can lift
0 to a map 6 : R^—^ C^M) so that grad 4> = 0. ^>(x) is
determined up to a constant. The main result of this section
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is the following:

PROPOSITION. — €> is an O."stable family of gradient sector
fields if and only if C(^) is a ll-stable lagrangean manifold of
T^.

C is the map defined in section 3.
By stable here, we mean stable within the class of families of

gradient vector fields. One could ask whether such a stable 0
is stable in the larger class of families of vector fields. The
following exairiple shows that this will not always be true.

Consider the function f: R2-^ R defined by

f{x, y) == x^ + y4.

This presents a degenerate minimum at 0 and hence a weak
source at 0 for grad f. It is an immediate consequence of the
singularity theory of maps that f can be embedded in a stable
family of functions. The, proposition then implies that grad/*
can be embedded in a gradient family stable within the spase
of families of gradient dynamical systems.

We have grad f{x, y) == a3 — + y3—• Consider the per-
turbation 6X ^v

Xs.e == (^ 4- ̂  + ey) ̂  -Ky3 + 8y - ̂ )^- i

For ^ == 0, we still have a weak source of Xo g at 0, but if
e ^ 0, it is now of codimension 1 in the space of all vector
fields and belongs to the class Sotomayor calls a center-node.
For 8 < 0 and very small, X§ g has a small limit cycle
surrounding the origin. Thus there are perturbations of grad f
which show oscillatory beha viour and cannot be Q-conjugate to
any element of a family of gradient vector fields. This shows
that the bifurcation theory of gradient vector fields in the class
Of gradient vector fields is much different from the bifurcation
theory of gradient vector fields in the class of all vector fields.

We sketch the proof of the proposition. Given a generic
family of functions F : R^ X M -> R, define fy: M -> R by
fy(x) = F(y, a:). There is the map a sending the critical points
of fy into T^ by a(y, x) == (y, dF{y, x)). The assertion
that grad F and grad G are £1 -equivalent families means that
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there is a diffeomorphism h: R^ -> Rk such that grad f^y) is
jQ-equivalent to grad gy. This means that there is a fiber
preserving map of C(F) to C(G) in T^R^. This is the content
of the proposition.
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