
ANNALES DE L’INSTITUT FOURIER

SYLVAIN E. CAPPELL

JULIUS L. SHANESON
Submanifolds of codimension two and homology
equivalent manifolds
Annales de l’institut Fourier, tome 23, no 2 (1973), p. 19-30
<http://www.numdam.org/item?id=AIF_1973__23_2_19_0>

© Annales de l’institut Fourier, 1973, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1973__23_2_19_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
23, 2 (1973), 19-30.

SUBMANIFOLDS OF CODIMENSION
TWO AND HOMOLOGY

EQUIVALENT MANIFOLDS
by Sylvain E. CAPPELL ( l) and Julius L. SHANESON (1)

In this paper, we outline how new methods of classifying
smooth, piecewise linear (PI) or topological submanifolds are
developed as consequences of a classification theory for mani-
folds that are homology equivalent, over various systems of
coefficients [6] [7] [9]. These methods are particularily
suitable for the placement problem for submanifolds of codi-
mension two. The role of knot theory in this larger problem is
studied systematically by the introduction of the local knot
group of an arbitrary manifold. Computations of this group
are used to determine when sufficently close embeddings in
codimension two «; differ » by a knot. A geometric periodicity
is obtained for the knot cobordism groups. The homology
surgery and its geometric applications described below theory
also are used to obtain corresponding classification results for
non-locally flat PI and embeddings (see [10] and Jones [21].)

These methods can also be applied to get classification results
on submanifolds invariant under group actions and of subma-
nifolds fixed by group actions and to solve the general codi-
mension two splitting problem. In particular, equivariant knot
cobordism can be algebraically computed and geometric conse-
quences derived. Other applications include a general solution
of the surgery problem, given below, and corresponding results
on smoothings of Poincare embeddings in codimension two
and « non-locally flat smoothings » of Poincare embeddings.

(1) This paper was written while the author was a Sloan Foundation fellow and
was partially supported by National Science Foundation grant.
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The proofs of many of the results use computations of new
algebraic K-theory functors. A splitting theorem for odd-
dimensional homology equivalent manifolds plays an impor-
tant role in these computations.

In order to get significant classification results, the study of
embeddings in codimension two, i.e. embeddings of a manifold
M" in W""1"2, has usually been restricted to the ease in which
M and W are ^pheres, i.e. knot, thpory. The peculiar diffi-
culties in the study of codimension-two , embeddings of M
in W == are due to the fact tKe homomorphism
7Ti(W — M)-> 7Ci(W) though always surjective, may not be
an isomorphism. It is rather hard to conclude directly, from a
knowledge of M, W, and the homotopy class of the embedding,
enough information about 7Ti(W — M) or, more generally,
about the homotopy type of W — M to give satisfactory
geometric information about W — M. It is therefore natural
to use instead the weaker information consisting of the homo-
logy groups of W — M with coefficients in the local system
of T^iW. More precisely, we need a classification theory for
manifolds that afe only homotopy equivalent to W — M
in the weak sense defined by coefficients in TC^W, i.e. mani-
folds homology equivalent to W — M over the group ring
Z[7TiW]. In knot theory (M = S", W == S"^) for example,
while the homotopy type of the complement S'1"1"2 — S" may
be very complicated (2), it is in any cas^ always a homology
circle. Moreover, this ffiict together with other elementary data
serves to characterize knot complements. In [9] we develop
a general theory for classifying manifolds that are homology
equivalent over a local coefficient system and perform calcu-
lations in this theory to get results on codimension two embed-
dings.

Even in the case of knot theory, the systematic study of
homology equivalences leads to new understanding and new
results. For example, we prove geometric periodicity theorem
for high dimensional knot cobordism groups. Two embeddings
of manifolds, f,: X ~> Y, i = 0,1, are said to be concordant if
there is an embedding F : X X I -> Y X I with F(o?, i) = f,{x),

(') In [Cl] it was shown that even the relative simple homotopy type of a knot
complement does not uniquely determine a knot.
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i ==0,1. (In the P.L. and topological case, unless there is an
explicit statement to the contrary only locally that embed-
dings are under consideration.) Knots are said to be cobordant
if they are equivalent to concordant knots (3). This equivalence
relation was introduced by Fox and Milnor [12], in the classical
case X = S1, Y == S3. The cobordism classes of knots form
a group, with addition defined by connected sum. Kervaire [13]
studied analogous groups for higher dimensions and proved
that they vanish in even dimensions and are very large in
odd dimensions. Using our methods, we give in [9] a simple
conceptual proof of the vanishing of the even dimensional
knot cobordism groups, as a consequence of the vanishing of
the obstruction group to odd dimensional surgery to abtain an
(integral) homology equivalence. This proof extends to show
the vanishing of the even dimensional equivariant knot cobor-
dism groups.

Levine [14, 15] computed the odd dimensional P.L. or
smooth groups (except in the classical case) and deduced an
algebraic periodicity for high dimensional knot cobordism
groups. In [8], it was shown that for topological knots periodi-
city applies all the way down to the case of S3 in S5. In
our study of knots, we employ a new algebraic description of
knot cobordism in terms of Hermitian or skew-Hermitian
quadratic forms over Z[^, t~"1], the ring of finite Laurent
series with integer coefficients, which become unimodular
when one puts t = 1.

An especially simple formulation of geometric periodicity for
knots is obtained by comparing, for a simply connected closed
manifold M\ the embeddings of S" X M in S"+2 X 3M
with the embeddings of S" in S^2 and S"̂  in S"-̂ 2. A
cobordism class x represented by /'rS^-^S"'1"2 determines
the cobordism class 8(M, Ti){x) of embeddings of S" X M in
§n+2 ^ ]̂ [ represented by f X id^. A cobordism class y of
embeddings of S""̂  in S"4'*4"2 determines, by connected
sum with fe X id^ fo: S" —> S""̂ 2 the usual inclusion, a
cobordism class a(M,yi)(y) of embeddings of S" X M in
S"4"2 X M. Let G^(M) be the cobordism classes of embeddings
of S" X M in S^2 X M that are homotopic to /o X ^My

(8) For P. L. and topological knots, cobordism implies concordance.
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see [9] for the precise definition of cobordism in this context.
Let Gn =Gn(p(), the knot cobordism group.

THEOREM. — Assume n ^ 2 one? M^ 15 a simply-connected
closed P.L. or topological manifold. Then a(M, n): G^ -^G^M^)
15 an one-to-one, onto map,

In other words, up to cobordism every embeddings of
G^ in G^M^) can be pushed into the usual embedding
except in the neighborhood of a point, and this can be done
in a unique way.

THEOREM. — If k = 0 (mod 4) and M has index ± 1,
and if n > 3, in the P.L. case, or n ^3 , in the topological
case, then ^(M, n) : Gn—> G^M^ is a one-to-one, onto map.

In particular, let M == CP2, the space of lines in complex
three-space.

GEOMETRIE PERIODICITY THEOREM. — The map

a^P2,^-1 o a(CP2, M) : G,-> G^

in an isomorphism for n > 3, in the P.L. case, and n ^ 3,
in the topological case.

Our methods also apply to the study of knots invariant
under a free action of a cyclic group or fixed under a semi-free
action. S. Lopez de Medrano [16], [17] proved a number of
important results on knots invariant under free Z^-actions.
His work and the ideas of our earlier work [8], [19] suggested
the role that homology equivalences could play in codimension
two. For free actions of cyclic groups, the classification of
invariant codimension two spheres, in the neighborhood of
which the actions behaves « nicely » (i.e. linearly on the fibres
of a bundle neighborhood) is equivalent to the classification
of embeddings of the quotient spaces. Our analysis of invariant
spheres in codimension two breaks up naturally into two
problems; first the determination of which actions can be
obtained by the restriction of a given action to an invariant
sphere, and then the classification up to equivariant cobordism
od the equivariant embeddings of a given free action on a
sphere in another.

On even dimensional spheres, only the cyclic group Zg
can act freely, and Medrano has determined which actions



SUBMANIFOLDS OF CODIMENSION TWO AND HOMOLOGY 23

admit invariant spheres in codimension two; his result is
reproved and interpreted in our context in [9]. The following
result asserts that the even-dimensional equivariant knot
cobordism groups vanish:

THEOREM. — Let S2^2, k ^ 3, be a {homotopy) sphere
equipped with a free 7.^-action. Then any two invariant spheres of
^;afc+a Q^Q equivariantly cobordant.

On odd dimensional spheres, the results are slightly easier to
state if the group has odd order.

THEOREM. — Let S^4-1 and S^-1 be spheres with free P. L.
actions p and T, respectively of Z,, s odd. Then,

i) There is an equivariantly « nice » {i.e. smooth or equiva-
riantly locally flat) embedding of S2^"1 in S2^1 if and only if
^2fc-iy^ ^ homotopy equivalent and normally cobordant to a
desuspension of the homotopy lens space S2^1/? [9],

ii) there is an equivariant P.L. embedding of S2^"1 in
S^4-1 if and only if S2^1^ is homotopy equivalent to S2^1/?
W- r . . . . . .As a consequence of similar criteria for invariant spheres of
high codimension, one can prove the following:

COROLLARY. — Let T be a free action of Z, on the (homo-
topy) sphere S^+1 that is the restriction of the free action p
on S2^ to an invariant sphere. Assume s is odd. Then
S2-^1 is a characteristic sphere of p (i.e. S^+^T is a charac-
teristic submanifold of S2^/^ if and only if there is a tower

S^+1 c 2^+3 c: . . . c: S2^-1 c 22fc+i

of invariant spheres, i
Characteristic submanifolds are discussed in [16], [17], [2]

and [9]. An obstruction theory computation shows that for
1

2/ + 1 > "TT (2^ "1~ 1)? ^le quotient space of an invariant2i
sphere of dimension (2/+ 1) in an action on a {2k + 1)-
sphere is a characteristic submanifold if and only if its normal
bundle Splits into is a sum of»plane bundles.

The determination, for an action p of Z^, s = 2p, on
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S^4'1, of which actions appear as invariant spheres is some-
what more complicated. For p = 1, this w^s done by Medrano
The general situation, (see [9], is that corresponding to each
« homotopy desuspension » L of S2^1/? there is for A? odd,
precisely an entire normal cobordism class of homotopy lens
spaces (or projective spaces) homotopy equivalent to L occur-
ring as characteristic submanifolds of S2^1/?. For k even,
there is an obstruction in Zg to the existence of any charac-
teristic submanifold homotopy equivalent to L, and if it
vanishes, then an entire normal cobordism, class occurs.

Our calculation of equivariant knot cobordism (see [9] is
in terms of our new algebraic K-theoretic F-functors. A closely
related computation of the knots fixed by semi-free actions
yields the following:

THEOREM. — For any inter ger m and any knot x : S" —>• S^2,
n ^ 3, x# • • • # x (connected sum m times) is cobordant
to a knot fixed under a semi-free action of Z^. Moreover, every
element of Z, for n == — 1 (mod 4), or Zg, for n == 1(4),
occurs as the index, or Art invariant, of a knot fixed under a
semi-free action of Z^.

Of course, in the P.L. and topological cases only actions that
are « nice » in the neighborhood of the fixed points are here
under consideration. For n = 3, in the P.L. and smooth case
one can only realize 16Z.

Of course in codimension two, close embeddings need not be
isotopic; in [9], we study the question q when two sufficiently
close embeddings fo and /i of M" in W""^2 are concordant,
at least up to taking connected sum with a knot. If /i is
sufficiently close to ^o, it will lie in a bundle neighborhood.
We therefore consider cobordism classes of embeddings of M,
in the total space E(S) of a 2-plane bundle S over M,
homotopic to the zero-section. Such an embedding is called
a local knot of M in 2;, and the set of cobordism classes
is denoted C(M, S), or just C(M) if ^ is trivial. We also
write Co(M; S), CpL(M; S)? CropfM; S) to distinguish the
various categories; in the last two, local flatness is understood.
C(M, ^) is a monoid; the operation is called composition or
tunnel sum and is defined as the composition 1i4, where ii
and ig are local knots of M in ^ and ^ is a thickening of 4
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to an embedding of E(^) in, itself. We discuss only the case
when M is closed; various relativizations exist.

THEOREM. — For n = dim M ^ 3, C(M, S) is a group under
composition, and for n ^ 4 it is abelian. For n ^ 1, 0(8") is
isomorphic to the n-dimensional knot cobordism group. Connected
sum with the zero-section defines a homomorphism a :
0(8") —> C(M, ^). In the P.L. or topological case, a. is a mono-
morphism onto a direct summand provided S is trivial, and
n ^ 4.

We compute C(M, ^) in terms of an exact sequence invol-
ving the r-groups to be described below. In particular, for
dim M == 1 (mod 2), it is caught in an exact sequence of Wall
surgery groups and hence tends, to be fairly small. For example
one has.

THEOREM. — For n == dim M ^ 4 even, there is an injection

p:C(M)->L^(7r,M).
The map p has a geometric definition in t^rms of a surgery
obstruction of a type of Seifert surface for local knots.

On the other hand, for M odd-dimensional, C(M, S) is not,
in general, finitely generated. For simply-connected M, the
main result is the following:

THEOREM. — Let M be a simply-connected closed n'manifold
n ^ 4, and let S be a 2-plane bundle over M. Then a :
C(S") -> C(M, S) is onto, and is an isomorphism for S trivial,
in the P.L. and topological cases. For n even, C(M, ^) = 0.

We draw some consequences for the study of close embed-
dmgs.

THEOREM. — (See [9]. -- Let fe : M"-> W"+2 be an embedding
(locally flat, of course) of the closed, simply-connected manifold
M in the (not neccessarily compact) manifold W. Assume
n ^ 5. Let f be another embedding, sufficiently close to fo
in the Co topology. Then if the normal bundle S of f is trivial,
or if n is even and the Euler class of ^ is not divisible by two,
or if n =E 2 (mod 4) and the Euler class of ^ is divisible only
by two, then, after composition with a homeomorphism (or
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diffeomorphism or P.L. homeomorphism) of M homotopic to
the identity, f is concordant to fo for n even and ti the connected
sum of fo with a knot for n odd.

Of course if M is 2-connected, the normal bundle ^ must
be trivial. The importance of simple connectivity of M is
demonstrated by the next result.

THEOREM. — Let T" == S1 X • • • X S1, n ^ 4. Then, in the
P.L. category,

CC?) = 0(8") © ^(P - p(); G/PL],
and every element of C(T") can be represented by an embedding
arbitrarily close to the zero-section T1 <= T" X D2. C(T") is
generated by products with various T""^ c T" of the connected
sum of T1 <= T1 X D2 with knots of dimension i.

If n is even, this follows from the inject! vity of p, as
quoted above, and known results in ordinary surgery theory.
For n odd, it requires a splitting theorem for homology
equivalences and F-groups, to be discussed shortly.

The second summand in C(T") is a direct sum of copies of
Z and Z^ corresponding to the index or Art invariant of
knots sitting along various subtori of non-zero codimension,
as described in the theorem. This knots with vanishing index
or Art invariant — a huge supply of them exists — disappear
from sight when placed along a subtorus. In another paper [10],
we will show how exactly these knots reappear in the classifi-
cation of non-locally flat cobordism classes of non-locally flat
embeddings of T" in T" X D2.

Given a manifold or even a Poincare complex Y^2 and
a submanifold or Poincare complex X\ the problem
of making a homotopy equivalence f: W —> Y transverse
regular to X, with /'[/'^X^'^X-^X a homotopy equi-
valence, is called the ambient surgery problem. There is
always an abstract surgery obstruction, an element of ER^X),
to solving this problem. We solve the codimension two surgery
problem, i.e. the case k == n, using the methods of surgery to
obtain homology equivalences. The odd dimensional result
resembles the results of higher codimension [1]; if the abstract
surgery obstruction vanishes the problem can be solved and
all the manifolds homotopy equivalent to X in one normal
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cobordism class occur as jf^X, In even dimensions, there is
an additional obstruction to this problem, defined in terms of
the T-functors. Note that in codimension two, even if
ftf^X : f^X -> X is a homotopy equivalence, /'|W — f^X:
W — f^X -> Y — X need only be a Z [7TiY]-homology
equivalence.

As an application of our codimension two surgery, one can
study the problem of finding locally flat spines in codimension
two. This problem has been studied 'by Kato and Matsumoto,
using different methods of codimension two surgery in a special
case. In another paper [10],we apply our methods to the
classification of non-locally flat embeddings and, in parti-
cular to « non-locally » flat smopthings of Poincare embed-
dings. One consequence of this is the following.

THEOREM. — [10]. Let W14-2 and M", n odd or n^M. = 0,
be P.L. manifolds with M closed and i: M -> W a P.L.
embedding. If f: N —> M is a homotopy equivalence of closed pi
manifolds, then f^: N -> W is homotopy equivalent to a piece-
wise-linear, but not necessarily locally-flat, embedding.

Chapter I of [9] develops the theory of hondology surgery.
Let Z[7c] be the integral group ring of the group TT, with a
usual involution determined by a homomorphism ^ :
^ ̂  ̂  1}^ and let SF : Z[n] -> A be a homomorphism of
rings with unit and involution. Below we make the convenient,
though not always essential, assumption that 3F is surjective.
If ^F is induced by a map of fundamental groups
TCi(W — M) —> 7Ti(W), for M a codimension two submanifold
of W and n = ̂ (W - M) A= Z^W)], then ^ is, of
course, onto.

THEOREM. — Let (Y", ^)Y) be a manifold pair (or even just a
Poincare pair over A) with (T^Y, ^Y) = (TT, w), n ^ 5.
A normal map (f, &), f: (X, €)X)-> (Y, 5Y), of degree one,
inducing a homology equivalence ov^r A of boundaries, deter-
mines an element a{f, b) of an algebraically defined abelian
group ri(^). The element a {f, b) vanishes if and only if
(/, b) is normally cobordant, relative the boundary, to a homology
equivalence over A.

This result, together with a realization theorem for elements
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of r?(^) and a ; special study of liomology surgery for mani-
folds (Y, 6Y) ^ith Tti bY ===7tiY leads, by a procedure
analogous to [20, § 9] to a general relative theory for honiology
surgery. In this theory a periodicity theorem that asserts that
^(^ ^) ^ idcp*^==a(A ^) plays an important role. An
analogous theory for simple homology equivalences, with
absolute groups r^(^) === T^^), is also developed in [9].

It y is the identity of Z[7t], then r^(J^) is the Wall
group L^), and (r(/*, b) fe the usual surgery obstruction
of Wall [20].

Fo^ n == 2fr, r^(^) is defined as a Grothendieck group of
(—l^-symmetri^ Hermitian forms over ZTT that become
non-singular forms on stably free modules when tensored
into A. An element of tfeis group which is represented by a
module P equipped with a bilinear pairing and inner product
which restrict to 0 on a submodules Q, with Q ®z7cA
being a free module of half the rank of P ®ZTT;A, represents 0
element of r^,^). Using the surjectivity of ^r, or even a
weaker condition 6n ^r, it is straightforward to construct
for each element in T^(y} a representative for which the
underlying module of the Hermitian form is already free over
Z[7c]. If ^r is onto, so is the natural map F^(^') —> L^A).
For y onto, we show directly that I^-n^) is a subgroup
of L2^i(A). Geometrically, this implies that in odd dimen-
sions the vanishing of an obstruction in a Wall surgery group
is enough to permit completion of homology surgery. Using
the splitting theorem for homology equivalences, Theorem 15.1
of [9] we show that if A == Zn' and y is induced by a
group homomorphism TC-^TT', then r^^(^) = L^^n').

In [9] we prove the splitting theorem for F -groups alluled to
earlier. Assume still that y is induced by a group homo-
morphism. ,^

THEOREM. — Let y X Z denote the natural map from
Z[w X Z] to A X Z induced by y. Then

•nsf <y v 7\ _ psf <y\ ^ T h ( ̂ \\. n\y A ^) — 1 n\y,) W -L'n—lY'^/-

This is analogous to [18, 5.1] (see also [20, § 13]) for Wall
groups, and is in fact the same result for n odd or y =±=? id^
The result is proven using a geometric splitting theorem^for.
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homology equivalences in odd dimensions, analogous the
splitting theorem of Farrell-Hsiang [11] for homotopy equi-
valences. This homology splitting theoreni is proven by adap-
ting the methods of [4], [5]. It is definitely false for even
dimensions.

hi terms of F-groups one has a calculation of C(M; S).

THEOREM. — If n === dim M ^ 4 , then there is an exact
sequence

0 -> Cn(M, S) -^ 1^3(0) -^ coker SH,

H = = 0 , PL, TOP.
Here 0 is the diagram

idZ[^(e)E)]-^Z[7r^E)]

Z[^(^E)]^Z[^M],
P the projection of ^ and SH : [SE; G/H] -> U^PJ is the
usual map, E == E(^). This F-group is calculated by an exact
sequence involving absolute groups as the other terms. Our
results on equivariant knot cobordism [7] [9] are also obtai-
ned by using r-groups.
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