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DUALITY AND THE MARTIN COMPACTIFICATION

by J.C. TAYLOR

Introduction.

Since P.A. Meyer showed, assuming the constants harmonic, that
the cone of non-negative hyperharmonic functions defined by a Brelot
sheaf coincided with the cone of functions excessive with respect to
a Hunt process, axiomatic potential theory has been widely conside-
red to be a special case of the probabilistic theory of potential.

In both potential theories Martin compactifications of the state
space X can be constructed, given suitable assumptions, c.f. [8] and
[14]. Except in the case of a Brownian motion it was not known
whether the axiomatic Martin compactification could be obtained
by the probabilistic procedure from a corresponding Hunt process.
The aim of this article is to show that this is indeed possible.

The probabilistic Martin compactifications constructed by H.
Kunita and T. Watanabe in [8] exist when the Hunt process has
a suitable dual. It is shown in theorem 5.4 that, with certain assump-
tions, to each harmonic sheaf 96 there corresponds a Hunt process
which has a dual in the sense of [8]. Further, if G is a suitable Green
function for the given sheaf 36, then in proposition 6.6 it is shown
that, for XQ E X, there exists a "normalizing" measure p E OTI^X)
with y -> j G(x, y ) p ( d x ) = G(XQ , y ) outside a compact neigh-
bourhood of XQ. By combining these two results it is then shown
in theorem 6.9 that the corresponding axiomatic Martin compacti-
fication of X can be obtained by probabilistic methods.

In paragraph one an exposition is given of some results due to
Sieveking in [13] which are used in paragraph two to give a refi-
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nement of the following result from [13] : for any strict Bauer sheaf
96 that possesses a Green function there exists a Hunt process with
the property that whenever the adjoint sheaf 96* exists then the
cone of non-negative *-hyperharmonic functions coincides with the
corresponding cone of excessive functions.

In paragraphs three and four the relationship between this
"adjoint" process and a "direct" process (corresponding to the sheaf
96) is axiomatized to cover a certain class of Hunt processes. If G is
tjie intervening "Green" function it is shown in theorem 3.2 that
RE (x , G^) = R* (^ , G^), where G(x , y ) = Gy(x) =- G^(y) and "*"
indicates balayage with respect to the "adjoint" process.

This formula is then used to find a measure m for which the
kernels VQc, dy) == G(x , y) m (dy) and V*(^ , dx) = G(x , y ) m ( d x )
define dual Hunt processes with the "direct" process corresponding to
the sheaf 96 and its dual being an "adjoint" process (see theorem 5.4).

Paragraph six concludes the article with a solution of the pro-
blem posed at the beginning of this introduction.

The author wishes to thank M. Sieveking for his kind permission
to make use of [13] and also of another unpublished work in which
the duality question was investigated. In this second work the sheaf 96
was essentially assumed to have an adjoint sheaf 96*. The author has
been able, by refining [13], to use the "adjoint" process in place of
the adjoint sheaf and to extend, in paragraphs three and four, Sie-
veking's unpublished results on duality to a fairly extensive class of
Hunt processes.

The subscripts "6", "c" and "o" are used to denote "bounded",
"compact support" and "vanishing at infinity" in the following sense :
OTl^(X) is the set of bounded positive Radon measures on X, etc.

The author thanks N.X. Loc for pointing out an error in an
earlier proof of lemma 3.1.

1. Basic Lemmas.

The lemmas and proposition in this paragraph are due to Sie-
veking [13]. Let X denote a locally compact space with countable base
and 96 a strict harmonic sheaf (in the sense of Bauer [ 1 ]) on X for
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which 1 is superharmonic. Let & denote the cone of non-negative
hyperharmonic functions.

If A C X and u G S, let R^u and R^u denote respectively the
reduite and balayee of u relative to A. For ^GOTl^(X) denote by
^A the balayee of ^ relative to A. Denote by R^ the map /-> R^/,
where R^/(x) = <c^, />. The value of R^/at jc will also be deno-
ted by R^(x , /). Then R^ is a kernel on (X , (B), (^ the a-field of uni-
versally measurable subsets of X and ^A == ^n R^ .

Let S C § be the cone of superharmonic functions. The T-topo-
logy on S is the weak topology defined by the linear maps u -> R<p u(x\
with $ € (°^(X) and x ^ supp <&. The operator R^ is defined by
setting R^u(x) = J R(^>^O-)A, u G S. The basic properties
of the T-topology can be found in [4] or [12].

For each $ € <°^(X) and x E X there is a unique measure £^ such
that R^ M(JC) = <e^ , u> , V M e §. The T-topology is metrizable and
there exists (^) C 01̂  W, each ^ of the form E^, x ^ supp $,
such that, for (i^) C S, lim ^ = u e S if and only if

lim < ̂ , u^> == < ̂  , u >

for all n.

LEMMA 1.1. - £6?r IJL E ^ll+(X) &^ ^c/z that

(1) < ^ , M > < ~ V ^ e ^ and ( 2 ) ^ ^ < ^ , M >

is continuous. If A C X i? semipolar then ^(A) = 0.

.Rw/. - It suffices to consider A compact and totally thin.
Let p be a bounded, continuous, strict potential. Then R^p(x) < p(x),
V x e X and A = {x \ R^p(x) ̂  R^P^)}.

There is a decreasing sequence (()„) of open sets with A == n ()„

and R^P = inf RO P ' Since R^P = lim RQ P,

< ^ , R A P > = < ^ I , R A P > -

DEFINITION 1.2. - A function G : X x X -> R"^ will be called a
Green function for 9€ if the following conditions are satisfied :
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1) G is lower semi-continuous, continuous off the diagonal ;
2) V y e X, x -> G(x , y) = G^(x) M- a potential with support {y};

3) each potential p is of the form p(x) = f G(x,y)^(dy),
^ e OTT^X) (.11 is r/!^ ^rn^e [12]) ; and

4) y -> Gy is continuous.

Remark. — If 96 satisfies the axioms of Brelot and the hypothesis
of proportionality, Mme. Herve proved that a Green function for 96
exists (see [7], Proposition 18.1).

From now on it will be assumed that 9€ has a Green function.

If ft, a E Ol̂  (X) define Go(x) = / G(x, y ) a(dy) and

G*^) ={ G(x, y ) ^(dx) =f G*(y , x) /i (dx)

where G(x, ^) = G*(^, x). Then it follows that

< ^ , G a > = <a ,G* / i> .

LEMMA 1.3. - £^ ^ G OTl+(X) a^d /^ a € W^(X) nor c/za^
any semi-polar set. Then

G^i > G*a if G^Cy) > G*o(y) , V^ G A = supp a.

Proo/ — Let p be a bounded strict potential. Then

<a , RA?> = < o , RA?> = <a ,p>.

Hence (^ = aR^ = a.

Now G*jnOQ > ,/RA^ , Gy) ^(dx) = <^ , Gv> =<v,G^^>

> < v , G* a > = < a , Gi/> = fR^ (x , G? a(dx)

= < aA ,G^ > == G*a(^),

because if R^G = Gi/, then supp v C A.
Let /, g be non-negative functions on X. Set f^o(g) if for any

£ > o there exists a compact set K C X with f(x) < £^(x) on X\K
(see [3]).
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LEMMA 1.4. - Let a eOTC^(X) be finite and continuous on S.
Then there exists ju G ̂ (X) ^cA rtor : (1) G*a E o(G*^> ;
(2) G*/x <= <°(X) ; fl/2rf (3) AI > o.

Proof. — There exists an increasing sequence (A^) of compact
subsets A^ of X with A = supp a C A^ C A^ C A ^ + ^ , V^, and
X = ^ A^. Let ^ E ©(X) be such that IX\A^ < ̂  < I X \ A ^ -

For each n, set /^(^) = <(7, R^, G >. The function /„ is conti-
nuous. Let x G A. The measures £ ^w are carried by the compact set
K^ = A^+i \A^ . The continuity of G implies, since ||£^|| < 1, that
on X\K^ the functions y -> R (x , Gy) are equicontinuous. Hence,
/„ is continuous on X\K^. If y^ -^ ^ with (^j^) C X \ A ^ _ i , the
functions^- -^ R^, (x , Gy ) < G(x , ̂ ) and x -> R^, (x , G^,) < G(x , >0
are uniformly bounded on the compact set A. Hence, since

^n^-"^^0"^

the Lebesgue Dominated Convergence theorem implies that

<o,R^G^>^<o,R^Gy>.

Since Gy is a potential, R Gy ^ 0 as n -^ °°. Hence, the func-
•• " w '

tions /„ 4- 0 locally uniformly and so there exists m(n) = m with
^m(^) < 2-" on A^. Consequently, the function /= S.4,(^®(X).

w

Let r^ = aR^. Then since f^(y) = G*T^(^) = G*o(y) on C A ^ + i

it follows that G*aG o(/). Set ^ = a 4-^ r^^y
n

With the aid of this lemma it can be shown that there exists a
Green function for 96 which decreases to zero at infinity in the
variable y in a certain sense.

PROPOSITION 1.5. — There exists a Green function G for 9€
such that :

1) V o €^H^(X) finite, continuous on §
G*a E e^(X) ; and

2) ST? G OTI^X) with G*r? = 1.
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Proof. — Let G be a Green function for 9€ and let (?„) C JH^X)
be a sequence that defines the T-topology on S. Let

X = U A^A^CA^CA^
w

compact, Vw, and set ?„„, == ?„ |A^. Write the family (?„,„) as
a sequence (r^). For each y E X there exists n with <r^ , Gy>^0
as otherwise G = 0.

For each n, let ^ € ^(X) be such that :

(1) G*r^Eo(G*^) , (2) G^GC^X), and (3)^>r^ .

By induction on <7 it can be shown that there exists a sequence
of sequences (b ) C R^ with the following properties :

1) V q , ̂  6^ (G* ̂  I A^) converges in the supremum norm
n

to a continuous function on A^- ;

2) V <7 , S^ (/iJA^) e ^(A^) ; and
»

3 ) V « , V < ? ^(,.,)< &„,.

Set a, = &„„. Then g =^a^G*^€. 6(X) and
n

^I^^,6311^)-
w

Let o € OH^ (X) be finite and continuous on S. Then G* a E o(g\
There exists a finite sequence n^, . . . , n^ and a constant b > 0 such

/ m \ •that b ( V G* r^ ) > G a on supp o^ and hence by lemma 1.3
i = i

m . . m .
on X. Clearly, ^ G* r^. € o ( ̂  G* ̂ .) and so G* a G o(^).

1-1 ' ' i - i '

Define G, (x, y ) = GQc, y)lg(y). This is a Green function for
S^ and has the desired properties.
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2. Adjoint Resolvents.

In this paragraph let G be a fixed Green function for 96 such
that (1) aGOlZ^(X), finite, continuous on S implies G* a E ^(X)
and (2) there exists T? E OIZ^X) with G* T? = 1.

Denote by 8* the convex cone of functions / which are the
limit of an increasing sequence of functions of the form

G^^E^X).

DEFINITION 2.1. — A submarkovian resolvent (Y\\^>Q is said to
be adjoint to 96 (relative to G) if @* is the corresponding cone of
excessive functions. A kernel V is said to be adjoint to 36 (relative
to G) if it has a resolvent which is adjoint to 9€.

Remark — Multiplication of G(x , y) by f(y), f continuous
strictly positive leads to another Green function

G , ( x , y ) = G ( x , y ) f ( y ) .

The resolvent (W^\>o with W^ , g) = f(y) V^(y , g/f) is ad-
joint to 96 relative to G i , and submarkovian if I If is supermedian rela-
tive to (V,),>,.

DEFINITION 2.2. - A measure ^ G OTI^X) is said to be admissable
if it has the following properties :

1 ) 0 = 0 fine open, universally measurable =^ î(O) > 0 ;

2) A C X semipolar ^ jn(A) = 0 ;

3) G*^ G Co(X) ;

4) there exists (?„) C OK^X) which defines the T-topology
and such that each p^ is absolutely continuous with respect to jn .

PROPOSITION 2.3. — Admissable measures exist.

Proof. - Let (?„) C OH^X) be a sequence that defines the T-
topology on S and let (A^) be an increasing sequence of compact
sets with X = U A^.

fn
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Defme Pnm == Pn I A^ and write the family (p^) as a sequence
(r^) Then there exists (^) C R^ such that

(1)^ ^(G*^) ^ <°o(X) and (2) ̂  ^^(X) < + oo.
" n

Let ^ = ̂  ̂  r^. Clearly AI satisfies (2), (3) and (4) of definition

2.2. Let 0 =5^ 0 be fine open and let p be a bounded, continuous,
strict potential. Then R^ p ^ p and so

< ^ , p > X^i ,R^ p > = < ^ R ^ p>.

Hence, ^(0) > 0 if 0 is universally measurable.

PROPOSITION 14. - Let tJi € yr^CX) be an admissable measure
and denote by W* the kernel W*(^,dx) = G*(y ,x) ^i(rfjc). //
^ p , \1^ e e^ and

1 + W* ̂  > W* ^ on (^ > 0),

rA^ 1 + W* ̂  > W* ̂  .
Hence, W* satisfies the complete maximum principle.

Proof. - Let ^ = max (^ , l / n ) - l / n . By considering these
functions it can be seen that it suffices to prove that 1 + W*(p >W* ̂
given that the inequality holds on supp ^ = A.

Denote by a the measure a{dx) == ^ (x) ^(dx). Then A = supp a.
If T? E OTI^X) is such that G*T? = 1 then

1 + W * ( ^ = = G * r , r = r ? +^.^.

Lemma 1.3 implies G* r > G* a, i.e. 1 + W* ̂  > W* ^.
The remark (b) following theorem XT4 in [9] shows that W* sa-

tisfies the complete maximum principle.

THEOREM 2.5. - Let W* be the kernel

W ( y , d x ) = G * ( y ^ x ) f J L ( d x )

with p. an admissable measure. Then W* satisfies the hypotheses of
Hunt's theorem, i.e. the following conditions :
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1) W* is a continuous dispersion kernel ;
2) W* tends to zero at infinity ;
3) W*(e,,) is dense in Co ;
4) W* satisfies the complete maximum principle.

Further, W*l G (°o(X) and /e 6^ implies W*/ is lower semi-
continuous.

proof. - (1) and (2) are clear and (4) has been proved.
Let H = { W* <p -h a | ̂  E Q^ , a E R}. Then if X^ is the one-point

compactification of X, H C e(XJ. Suppose m e OTI(XJ is such that
< m , A > == 0 V A E H. Denote m± I X by ^+ and let p± = i/±W*
Then p+ = p_ .

Let /„ G ̂  be such that p^dx) = f^(x) ^(dx), where

(?„) C CTl^X)

is a sequence that defines the T-topology with each ?„ absolutely conti-
nuous with respect to ^n. Then it follows that

<P±Jn>-<v±^ w*^ > = ff^Y) G*^ - ̂ W ^dz)

=<Pn .G^±>.

Hence, v+ = i/_ if the functions G^± are superharmonic, i.e.
finite on a dense set.

Let D = {x\Gv^.(x) < °°} and let 0 be open with 0 0 D = 0.
Then ^i(O) (+ oo) = ff v^dy) G{x, y) ^(dx)

= (^ W*(^ 1) v^dy) < +00.
"o

Hence, 0 = 0 .
This contradiction implies that H is dense in 6(XJ since clearly

m^.((j^) = w_(o?) if co is the point at infinity.

Remarks. - 1) The proof that H is dense in 6(XJ is due to
Sieveking [13].
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2) Unless G is such that 1 E &* the complete maximum prin-
ciple appears false. At any rate W* will satisfy the principle of domi-
nation. When 1 G g* then for c > 0 there exists r G ^^(X) with

G * r < l and (1 4-£) G* r + W*<p > W* ^

on supp ^ (and hence on X) whenever 1 + W* <^ > W* \(/ on supp ^ .
Consequently proposition 2.4 is still valid.

PROPOSITION 2.6. — Z^ /x f^ an admissable measure. The kernel
W*(^, dx) = G*(^, jc) fji(dx) is adjoint to 96.

Proof, — Since W* is a Hunt kernel it is the potential kernel of
a Feller semigroup. As a result it has a submarkovian resolvent (W^)^>Q.

Any (W^)^>o excessive function is the limit of an increasing
sequence of functions of the form W*/, /G tf^, and so is in g*.

Let JLI G OK^X). Then since G*^ is lower semi-continuous the
proof of theorem XT4 in [9] shows that G*/x is supermedian. The
resolvent (W^>o is such that XW^Cx , <^) ->- (p(x) as X -> oo,V jc EX
and <?€:<?, , and hence (see proposition 6 in [2]) a lower semi-
continuous supermedian function is excessive

The cone <S* is the cone of excessive functions relative to a
Feller semigroup. Further, the hypothesis (L) of P.A. Meyer is sa-
tisfied and so, for any set E C X and u € §*, the reduite and ba-
layee of u relative to E are defined. They will be denoted by R^and
R(*K respectively. The operator R^* is a kernel, usually denoted in
probabilistic theory by P^. The functions R^u and R^u, u E <g*
depend only on the cone S* and not on the particular process which
is used to define them. The prefix "*" will be used to indicate that
the object is to be understood relative to S* or (W^)^>o.

PROPOSITION 2.7. - Let 0 C X be open and x , y C 0. Then it
follows that :

1) R^Gy =Gy \and
1*) R^G; = G,* ;

where Gy(x) = G^(y) = G(x , y). Further, (1*) holds ifO is fine open
and universally measurable.
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Proof, — (1) is well known. It is an immediate consequence of
Korollar 2.4.3 in [1].

To prove (1*) for 0 fine open, universally measurable, let A C 0
be universally measurable. Then

f G ( x ^ y ) \^x)^(dx) = W * ( ^ , A ) = RS^ .W*!^)

= ff^^ - dz) G^ ' z) ^00 AI(AC).

Hence, V ^ G X fixed, h^x)= G(x , y) > h,(x) == R$(^ ,G^)
agree ^ — a.e. on 0. Condition (1) in definition 2.2 implies h^ = A^
on 0.

Let IJL denote a fixed admissable measure and denote by
S* = S*QLI) C §*, the cone of excessive functions (with respect to
W*(^, dx) = G*(^, x) fJi(dx)) which are finite except on a set A
of potential W*l^ equal to zero.

Mokobodzki has shown (see for example [11] proposition 7)
that there is a positive measure v on X and an increasing sequence
(X^) of universally measurable sets X^ with the following properties :

1) for A universally measurable, i/(A) = 0 ^> W* 1^ = 0 ;

2) V ^ , u E §* ^ f (̂  < + oo ;
Jx^

3) ^(X\UXJ = o ;
n

4) the topology T on S* defined by the family (?„) of semi-
norms p with p (u — v) = / I M - yl r f i / , is such that S* is a union

x
of metrizable caps K.

Further, the caps K referred to in (4) are such that u < v, v E K
implies u €E K.

Let (u^) C S* be monotone decreasing. Then, in view of the
property of the caps, if u = (inf \x^) it follows that u = Um u^,

n n

with respect to T. Let w = lim u^ . Then w = inf u^ = u^ a.e.
n ^ n ^

dv. Since u = inf u^ a.e. rfi/ it follows that u = w.
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DEFINITION 2.8. — Let C be a cone of non-negative measurable
functions on a measure space (X , 0S). An element p G (° is said to
be strict if, for any two non-negative bounded measures IJL , v on
(B, the following condition holds :

< ^ , / x > « ^ , ^ > , V ^ ^ < ° and

<|JL,p>:=<V,p><+oo

implies ^ = v.

When e generates tf? and is the cone of excessive functions,
relative to a submarkovian resolvent (V^)^>Q with V = VQ proper
then there exist finite (even bounded) strict excessive functions of
the form Vf (c.f. [15]). If V is bounded then VI is strict. Here one
assumes that 1 is excessive and that the minimum of two excessive
functions is excessive.

PROPOSITION 2.9. - Let a G JTC^X) be finite and T-continuous
on S*. Then, if A is ^-semipolar (i.e. wrt W*) a(A) = 0.

Proof. — As before it suffices to consider A totally thin. Then
if p is a finite strict *-excessive function, for example p = W*l, it
follows that A == {x G X | R^p(x) > R^p(x)}.

Since the hypothesis (L) of P.A. Meyer is satisfied, there exists
a decreasing sequence (w^) C S* with

inf w^ > R^p > (inf w^f = R^p
n n

(see [ 10]). The continuity of a implies

< a, inf w^ > = < a , (inf H^ ) >.'n r ^ ̂  9 v"" ^nn

If z G X, G^ is a potential and so G^(z) = + oo implies {z}is a
polar set and hence ^ ((^}) = 0. Consequently, \f x ^. X, G^ ES*.

PROPOSITION 2.10. — Let 0 ̂  0 be a *-fine open universally
measurable set. Then there exists a nontrivial measure 17 € Wi^ (X)
such that :

1) GT? < -h oo everywhere ; and
2) r?(X\0) = 0.
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Proof. — Let p be a finite strict *-excessive function. Then
R^oP =^ p and so there exists a G OTI^X) finite and continuous on
S* with < a , R^o^ ̂  <^ ,P>' Since < a , R^op>=<a,R^p>
this implies a(0) > 0.

LetT? =a |O.ThenG7?(x)<Ga(x) = <a,G^> 4- oo ,V jcG X.

Remark. — The "dual" of this proposition is clearly true in
view of lemma 1.1.

PROPOSITION 2.11. — There exist Radon measures 17 , a on X
with the following properties :•

1) the potential p = Gr] is bounded, continuous and strict ;
2) G*7? is finite on a dense set ;
(1*) a is admissable ; and
(2*) Go is finite on a dense set.

Proof. — Let i /E OTT^X) be such that Gv is bounded, conti-
nuous and strict. Let (>„) C W^(X) be such that v = y i^.Then

n

there exists (a^) C (0 ,1) such that :

0) S^/(G^)^< + °° ; and
n

(ii) S a,, (Gyj € e^(X).
n

Let 77 = ̂ a^v^. Then GT? satisfies (1). Suppose G*i7 is infinite
n

on an open set 0. In view of (i) < 77 , p > < + °° and so

+ o o > < 7 ^ > = ffG(x,y) ri(dx)ri(dy) >

>fG*T7(»r7(^)=(+oo)r?(0)
^o

The same argument applies when v is taken to be an admissable
measure.
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This section concludes with a proposition that relates the two
theories of balayage.

PROPOSITION 2.12. - if E C X is closed or open,

R^x,G^)=R^,G;) .

Proof. — Assume E is open and fix y E X. Thenjc -^ R|(^ , G^)
is an excessive function which by proposition 2.7 (1*) agrees with
G(x, y ) on E. Hence, R^(y , G^) > Ry(x , Gy) and the result follows
by symmetry,

Assume E is closed and x ^ E. Then G^ is continuous on a
neighbourhood of E and so

R^,G;)=infR$0.,G:)

=inf Ro(x,GJ
o '

>R, , (x ,Gy) ,

where the infimum is taken over the family of open sets O D E .
Fix x ^ E. Let h^y) == Rg(^ , G^) and

^(^) = ^(^ . Gy) = Rg(x , Gy).

The function /z^ is *-excessive and h^ > A^ . Hence, if

^00=1^0^)
then /?3 > /z^.

Let A = (/?3 > /z^). Then A C E . If not there exists, as a
consequence of proposition 2.10, a compact set B C A\E and a
nontrivial measure 77 G OTS^X) carried by B with Gr] everywhere
finite. The function GT? is continuous on a neighbourhood of E.
Consequently,

<T? , /?2> = KE^ G7?) = inf PO^ ^G r?)o

= inf <r? , Ro(^ , G.)> = inf <r? , R$(< , G^)>

> < 7 ? , R ^ G ^ > = < 7 ? , / 2 3 > ,
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where the infimum is taken over the family of open sets O D E .
This contradiction implies A D E.

The lemma 2.13 below implies h^ = G*a for some a E OII^X)
and by definition h^ = G*|3, j3(rfz) = R^(x, dz). Let p = Gm be a
finite strict continuous potential for the sheaf S€. Then, if A =^ 0,
m(A)>0. This follows from the observation that h^ > h^ implies
j3-^ a and m(A) = 0 implies

<P,p> =<m, /!2> =<m,/23>=<a,p>«m,G^>

= p(;c) < + oo.

The type of argument used in the proof of proposition 2.7 to
prove (1*) for a fine open set 0 shows that, for x fixed,

{ y e E \ G ( x ^ y ) > R ^ ( x , G y ) }

is a null set for m. Consequently, A = 0 and h^= h^.
Fix y E X and let g ^ ( x ) = R^(y , G^) and g^x) = R^(x , G^).

These two excessive functions agree on X\E and on the fine inter-
ior of E g^x) = G(x , y ) > g,(x). Hence, R^x , Gy) > R^y , G^).

The dual argument proceeds in exactly the same way up to
the moment where it is shown that A C E implies A = 0. In the
dual case the set A is fine open and so by proposition 2.7 if x €: A,

h^(x) = R^y , G^) > R^(y , G^) = G(x , y ) > h^(x).

Hence, A = 0. The remainder of the argument is formal.

Remark. — The basic idea of this proof is due to Sieveking (in
the axiomatic context referred to in the introduction).

LEMMA 2.13. — Let u < G^ be a ^-excessive function. Then
there exists a G CTc^X) with u = G*a.

Proof. — There exists an increasing sequence (G*^) with
u = sup G*7?y,. The sequence of measures (17^) is increasing for the

n
balayage order -^ defined by the sheaf and is dominated by E^
(relative to -<). Consequently, this sequence has a weak limit a.
Since G*a < lim inf G*r^ = u it suffices to prove T^ ̂  a, for each n.
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Since the continuous potentials with compact support determine
-^ it is enough to show that <r]^,q>!!^<a,q>ifq is continuous
and < p, where p is a finite continuous strict potential.

Let r be a continuous finite potential with p E o(r). Then,
if £ > 0 there exists ^ E Q^(x) with (i) 0 < ̂  < 1 and (ii) p < er
on (<^ < 1). Hence, if 0 < q < p is a continuous potential, for each
n, < r\^,q > « ̂  , q^p > + £r(^) and so

< 7 ^ , < 7 > « a , ^ > + 2er(x)

in n is sufficiently great.

3. Balayage and *-balayage

Let X be locally compact with a countable base and let (f^ be the
a-field of universally measurable sets. Denote by (V^)^ and (V^\>o the
resolvent families of two Hunt semigroups on X, each of which satisfies
the hypothesis (L) of P.A. Meyer. Denote by S and 8?* the correspon-
ding cones of excessive functions finite except on a set of potential
zero. Assume 1 G S 0 S*. For E C X, denote by R^, R^ and R^,
R^ the corresponding operators defining the reduite and the balayee
of an excessive function.

Let G : X x X -> R^ be lower semi-continuous and satisfy the
following conditions :

1) G ( x , y ) < + oo if x 1=- y ;

2) V x , y G X, Gy E S and G^ E S*, where

Gy(x) = G^(y) = G ( x ^ y ) = G*(^x) ;

3) there exist v , v* E OTZ^X) such that for V = V^, V* = V^

VQc, dj0 = G(x , >Q ^(rfy) and

V*Cy,cfcc) = G*^.^) i/*(^) ;

4) V and V* are proper and V x , y € X,

V ( x , d y ) + 0 ,V*(^ , r fx ) ^ 0 ;
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5) Let 0 =7^ 0 be measurable and fine (resp. *-fine) open.

Then there exists i? ^ 0 in OTI^X) such that

(i) G*?7 < 4- oo everywhere (resp. GT? < + oo everywhere) ;
and

(ii) rKX\0) = 0.

6) E C X closed, x ^ y E X, imply R^(y , G^) = R^(x, Gy) ;

7) The a-fields generated by the excessive and *-excessive func-
tions both contain all Borel sets.

Note that '^-fine open" means "fine open relative to the resol-
vent (V^\>o". The prefix *-will be consistently used in this manner.

Remark. — Let (V\)^>o be the resolvent defined by a bounded
continuous strict potential p. Let G be a Green function of the type
considered in paragraph two. Let (V^\>o be the resolvent defined
by an admissable measure. Then the above hypotheses are satisfied.

LEMMA 3.1. - Let 0 be a *-fine open Ky-set. Then, V x , y E X,

R$C^GS)== Ro(^G^).

Proof. — Let 0 = U £„, (E^) an increasing sequence of closed
sets. Then, (6) implies that

^(V , G!) = R^(y , G^) = lim R^ (y , G:)
n n

=lim R£^,G^) = Ro(x.G^).

Since the excessive and *-excessive functions are lower semi-
continuous the following result is a formal consequence of lemma
3.1. The proof, which is a variant of the proof of proposition 2.12,
is given in full detail for the reader's convenience.

THEOREM 3.2. - V E C X,

R^(^ ,G^=R^,G^) .
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Proof. - If x ^ E,

R E O ^ G ^ ) = i n f R $ ( ^ , G ^ )

= i n f R o ( x , G ^ )

>R^,G^),

where the infimum is taken over the family of *-fine open K^-sets
O D E .

Fix x ^ E. Let h,(y) = R^(y , G;") and

^OQ = RE^.G^) = / R K O c , r f z ) G ( z , ^ ) .

The function h^ is *-excessive and h^> h^. Hence, if

^O^RE^.G,*)

it follows that h^ > Tz^.
Let A = (A3 > /^). If A ̂  0 then (5) implies there exists

T? e ̂ (X), r] ^ 0, with GT? < 4- oo and T? ^ 0, with GT? < + oo and
T?(X\A) = 0. Consequently,

<ri,h^> = R^(x ,Gr?) = in fRo(x ,G7?) = inf <r] , R^CX , G.)>

= y < r? , R$ (•, G;)» < rf , R,* G,* > == < r? , h 3 >,

where the infimum is taken over the family of fine open K^-sets O D E
and the "dual" form of lemma 3.1 is used. Hence, A = 0 and so,
i f^E, R^.G^) = R y ( x ^ G y ) .

Fix y G X. Let g, (x) = R^(y , G^) and let ^(^) = RE^ . G^)-
These two excessive functions agree on X\E and on the fine inter-
ior of E g^(x) == G(x , y ) > g^ (x). Hence, Ry(x , Gy) > R^(y , G^*).

Remark - This proof, but using open sets in place of fine open
sets and making more use of continuity, was given by Sieveking in
the axiomatic setting referred to in the introduction.

COROLLARY 3.3. - Assume the hypotheses of paragraph two.
The Hunt process defined by an admissable measure }JL is a diffusion.
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Proof. — The theorem implies that for any open set 0 and y E 0
the measure R^o^Y 5 -) is carried by 90. Hence by a lemma ofCourrege
and Priouret c.f. lemma 6.1 [16], the Feller semigroup (P^>o for
which f P,dt = W*, where W*(^ , dx) = G*(^ , x) ^(dx), is a diffu-
sion.

COROLLARY 3.4. - Z^r 9€ be a Brelot sheafwhich has a positive
potential and which satisfies the hypothesis of proportionality. Denote
by G a Green function for 96 which satisfies the conditions in propo-
sition 7.5. Then, V y G X, V E C X, the measure R^(y , dx) = o^(dx\
where a^dx) is the measure defined by Mm. Herve (see [7]) for
which RpGy = Ga^y.

Proof. - In view of the remark preceding lemma 3.1 the mea-
sure R^(y ,-), intrinsically defined by §* and also by any admissable
measure, satisfies R^(y , G^) = Ry(x , Gy) where this second balayee
is intrinsically defined by the sheaf 36.

COROLLARY 3.5. - Let 3€ and G satisfy the hypotheses of the
previous corollary and let W* be the kernel defined by means of an
admissable measure ^ and G. //G defines an adjoint sheaf W (see [7])
then the cone of excessive functions, relative to W*, coincides with
the cone <°* of non-negative *-hyperharmonic functions.

Proof. -^ As W*((^.) is dense in Q^ corollaire I* p. 552 in [7]
implies that R^ is the corresponding balayage kernel for ge*. Hence,
u E e* implies M + W * < ^ > W * I / / if it holds on {^ > 0} and so
<3* C 8*\ the cone of *-supermedian functions. Corollary 3.4 implies
8* C C* and as W*l is strict for & * , & * = C* by [16] corollary 1.8.

COROLLARY 3.6. - Let A C X and let s = G^LI, /A E OTt^X). Then,
for all n > 0,

(R^r ( x , s ) = f G(x, y) Ox [(R^)" ]) (rf^)

-G^tR^riXjc).
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Proof. - R^(x , s) =ffR^(x , dz) G(z , y) fi(dy)

=fR^(y G!)^(dy)

=<^ ,G^>=GOiR^)Oc) .

The general case is proved by an easy induction on n.

PROPOSITION 3.7. — The semipolar and the *-semipolar sets coin-
cide.

Proof. — Since V is proper, a finite, strict, strictly positive,
excessive function of the form p = Va = Gp. exists (see [15] and (7)).
In [15] it is shown that A C X is semipolar if and only if A = U A^,

m
with lim (R^ )" u = 0 Vw, where M is a finite, strictly positive,

n->°o m

excessive function.
Let A be semipolar. To prove that A is *-semipolar it suffices

to show that lim (R^)" P = 0 implies that A is *-semipolar
n-»-°°

For r? E OlÎ X),

<T?,(RA)"P> = <r? ,G(/x[(R^)"])> = <(i [(R^] , G%>

=</i,(RX)"G\>.

Denote by w = w(r]) the infimum of the functions (R^)" G*77.
Let / € B+ be such that 0 < V* / < w. Then,

0 = < ^ , V * />=</. ̂ *,^>

and so /. (/* = 0. Hence, V* / = 0 and w = 0.
Choose 77 so that G*77 is finite and strictly positive. Then

A = A' U A" with

A' *-semipolar and (R^)" G*T? 4. 0 on A". Let

^^yeAfl\(Ry~l(y.G^)<^G^(y))

Then, A" = U A. and
n>l "
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(R^G^^^G^.

Hence, each A^ is *-semipolar.

LEMMA 3.8. - Let y i , v EJn^X) &6? ^c/z r/^r G/A < Gv. Then
p. -^* y, where -< * f5 ̂  balayage order defined by the cone 8>* of
^-excessive functions u. That is, u € S* implies <^,u><.<v,u>.

In particular, Gp. = Gv implies ^ = v.

Proof. - Let a E OH^X). Then < a , G^> « a , Gi/> and
so <p., G^o > < < ^ , G*a>. Since each *-excessive function M is
the limit of an increasing sequence of functions of the form G*a
the result is established.

If GfJi == Gv then jn and v agree on *-excessive functions. In
view of (7) yi = v since the cone of bounded ""-excessive functions
is infimum closed and contains 1 (see IT20 in [9]).

4. Regular Potentials.

In this paragraph several results of Constantinescu in [5] are
obtained in a more general setting. In addition to the hypotheses
of the preceding paragraph, the resolvents (\\\^o are assumed
to satisfy the following conditions :

(C) <^ € < .̂ implies \\p and V*<^ finite, continuous ;

(S) if x 1=- y then

V(x , -) ̂  V(y , -) (resp. V*(x , -) ̂  ̂ (y , -))

(G) G is continuous off the diagonal.

Remarks. — 1) (S) is equivalent to saying that the cones of
excessive and *-excessive functions both separate the points of X.

2) These hypotheses are satisfied by the resolvents considered
in the remark preceding lemma 3.1.
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DEFINITION 4.1. - Let ^EJn^X). The potential G^ is said
to be regular (or of class M in [5]) if there exists (^) C ^(X)
such that

00

1) ^ = ^ ^ ; and
n=0

2) V^z, G^C Q,.

In what follows use will be made of the next lemma, which is
a corollary of Bauer's Minimum Principle (c.f. [ 1 ]).

LEMMA 4.2. — Let K be a compact space and let g be a finite
non-negative upper semicontinuous function. Denote by ^ a set of
lower semicontinuous functions f : K -> (— °°, + o°] which separate
the points of K. For each x G K let

^={|l^WL+(K)\<n,g>=g(x),<^J>

</(x) V / G ^ , and ^(1)< 1}.

Then, ifg + 0, r/z^ cjoy^ x. e K wY/z OTI.. = {r }." "o o

Proo/. - Let a = sup g(x). I f g ^ O then a > 0. Denote by L
jcEK

the set { g = a}. If x E L and ^ G OTI^ then

a = </i ?^ ̂ a-^ ̂ ^^a-^}^

<(a- ^)^ -^(^a) -a^-^d) -^/^<a/z(l),

( 1 i
where ̂  = ^ i ^ ^ a — — ^ . Hence, a > 0 implies ^i(l) =- 1.

If jL i{g<a}>0, for some n, a^ > 0 and so a < a j L i ( l ) < a .
Consequently, x G L and ^ G OH^ => ^i(K\L) = 0.

Let S = { A | /z = f\ L, /G §"}. Then S satisfies the hypotheses
of Bauer's Minimum Principle. Consequently, there is a point XQ E L
with 91^ = {•x'0^ where

^ = { ^ L I G ^(L) |<^,AX/z(x) V A G g}.

Now x G L ^^t^ = ^l^ which completes the proof.
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PROPOSITION 4.3. - Let /AEOTI^X) be such that A semipolar
implies ^i(A) = 0. Let ^ / ( x . d y ) = G(x , y ) }Ji(dy). Then,

^(^a) = ^B' VB Etfs-

Proof. - Let BQ = {j^ <£ B | R^(y , -) ^ £^}. This measurable set
is semipolar and so ^(B^) = 0 implies

R^(x , Wig) ==ffR^(x , rfz) G(z , y ) \^(y) ^(dy)

=fR^x,Gy) \^(y)vi(dy)

^XXB ^B^^Gy) ̂ (y)M)

=^X\B ^^ ^O^^-Wl^).

PROPOSITION 4.4. — Z^^ v be the measure for "which

V ( x , d y ) = G ( x ^ y ) v ( d y \

Then, A semipolar implies v(A) = 0.

Proof. — It suffices to assume A is compact and totally thin.
Then Vl^ is a continuous finite function with RA^IA^^A-

Let K D A be compact and let g = (Vl^) I K. Denote by ^ the
set{f\f=u\K,u G§>.

Lemma 4.2 implies g = 0 since, V;c G K,£^ G ̂  andc^ ^e^.
Hence, Vl^ = 0 and so if a = v \ A it follows that Go = 0. Lemma 3.8
implies a = 0.

The following sequence of lemmas will be used to relate the
conclusion of proposition 4.3 to the notion of a regular potential.

LEMMA 4.5. - Let p. GOH^(X) and let s = GfJi. If AC X is such
that R^s == s and ifV 3 supp p. is open, then R^ou s = s-

Proof, — Proposition 7.3 in the appendix implies that
^A ̂  ^AOu 4. ^*A\U ^

where jn*17 = /iR^. The measure ^i*^13 is carried by X \ U and hence
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j G { x , y ) ̂ (y)^A(dy)<fG(x^y) \^(y) ̂ Anu (dy)

^/GO^jO^A00 (^)=R^ ^)<^(jc)

(see corollary 3.6).

RA^ == s implies G^LI = G^A and lemma 3.8 implies JLI = JH*A.
Hence, ^(x) = f G(x, y ) \^(y) ̂ (dy) and so R^nu s = ^

LEMMA 4.6. - Let s = G^ and let A C X compact be such that:
1) supp p. C A ;
2) 5 | A /^ /?m7e a^rf continuous ; and
3) R^5 = 5.

77^n 5 Z5 continuous.

Proof. - (see [5] lemma 3.2). Since G is continuous outside the
diagonal, s is continuous and finite on X \ A. Hence, the result is
true if 3A = 0.

Let XQ E 3A and consider the family ^ of functions ^ G (0+

with 0 < (^ < 1 and <^ = 1 on a neighbourhood of jc^. Set

W(x,r fy)= G(x,j0/i(^)

and let ^ = { W ( p | < ^ E }̂. Let s ' = inf ^. Then, by corollary 7.2 in
the appendix, s ' is excessive and s ' -^ s, i.e. 5 - s ' is excessive. Hence,
s ' and also each W<^, <p G g, are continuous on A.

Dini's theorem implies, £ > 0 given, that there exists <po E ^
with W<^ < 5' + e on A if ^ G ^ and (^ < ̂ . Let X E R be such that
A-^o) < x <S'(XQ) + £ and let U be a neighbourhood of XQ with
s ' < \ < s9^ + £ on U H A. Then ̂  G g, and ̂  < <^o implies W<^ < X + £
on A 0 U and so RAHU (w<^) < X + £.

Choose <^ E g, ^ < ̂  with supp ^ C U. Since W<^-^ 5, R^5 = 5
implies RJWp) = W<^. Lemma 4.5 implies RAH^^) = W<^?. Hence,

lim sup WpOc) < X + £ < ^(^o) + 2e < W<p(;Co) + 2e.
x -^•^0
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From this it follows that

lim sup s(x) < Urn sup W<p(x) 4- lim sup W(l - <^) (x)
X->XQ X-^XQ X->XQ

<5(Xo)4 -2£ .

since W(l — <^) is continuous on a neighbourhood of XQ.

PROPOSITION 4.7. — (see Lemma 3.3 in [5]). Let

s = GJLI^GOTT^X)

te 5KC/Z rtfl^ :

1) s is finite on a dense subset of X ; and

2) V A C X compact, ^(Wl^) = Wl^, w/z^

H/(X,^)==G(JC,^(^).

r/z^^z GfJL is a regular potential

Proof. — (Constantinescu [5]). As G is lower semi-continuous
E = {s = + 00} is a polar set. Then (2) implies Wig = 0 and so ^i(E)= 0.

Let A C X be compact and such that s | A is finite and continuous,
Then Wl^ is finite and continuous on A. Lemma 4.6 implies Wl^ con-
tinuous.

Let X = U Ay, , A^ compact with \ C A^ + ̂  Lusin's theorem

implies that, for each n, there is a sequence (By,^) of disjoint compact
subsets B^ C A^ \(E U A^_i) such that

(i) M(A^\(E U A^_,) ) = ̂  ^i(B^) and (ii) 5 | B^
w

is finite and continuous for each m.

Let ^nm = ^ l^m- Then ^nm = ^B^ is a bounded COUti-

nuous function and ju = V p.

COROLLARY 4.8. - Let yi GOU^X) be such that :
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1) ^LI(A) = 0 , V A C X semipolar ; and

2) Op. and G*fJi are finite on dense sets.

Then G/x and G*^ are both regular potentials. Further, there

exists (^) C ^(X) with ^ = ̂  ̂  anrf, /or ^cA n, G^ and,
n

G*^®.-

Proof. — Propositions 4.3 and 4.7 imply that both Gjnand G*jn
are regular potentials.

Let ^ = ̂  ̂  with G^ E 6^ , VAZ. Then if 0 < v < /x, ^ = ̂  ^
«

with ^ < ̂ , Vw and hence each G^ G e^ (since Go is lower semi-
continuous for any a E OTT^X)). Let ^t =^ ^ with G*^ E e^ ,V^2.

M
Then, V^, there exists (ju^) C ^(X) with ^ = ̂  jn^ and

w
Vm, G^^ E e^. Since G*/A^ 06^ \/n, m, the result follows.

5. Application to Duality Theory.

The hypotheses made in paragraphs one and two are assumed
to hold.

DEFINITION 5.1. — A resolvent (V\\>o is said to correspond to
a sheaf 9€ if the cone of excessive functions coincides with the cone
of non-negative hyperharmonic functions.

If 36 is a strict Bauer sheaf then it is well known that there exist
submarkovian resolvents that correspond to 96 which are the resol-
vents of Hunt semigroups (theorem 2, Kapitel III in [6] or [16]).

DEFINITION 5.2. - Let m e OTI^X) and let V, V* be two kernels
on (X, d3). They are said to be in duality with respect to m if,
V / , ^ E (K\

<^f,8>m = </, V*^>^, where <h,k>^ = fh(x) k(x)m(dx).
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Two resolvents (V^)^o and (V^)^^o are said to be in duality
"with respect to m if, V X > 0, \\ and V^ are in duality with respect
to m.

DEFINITION 5.3. - Let (V^\^o be a resolvent on (X, (B). //
TO^X) is a resolvent on (X ,<B) and m E ̂ (X) then ((^\^m)
is called a Kunita-Watanabe (or KW) dual o/(V^\^o if the following
conditions are satisfied :

(KW1) V x e: X , £^VQ ^ absolutely continuous with respect
to m ;

(KW2) (V^\>o and (V!\^o ar^ m duality with respect to m;
and

(KW3) the resolvent (V^\>o ^ 5McA that :

1) lim X V^Cy ,<^) = (^00, uniformly on the compact subsets
\->°»

ofx, v<^ ^e^ ;^rf
2) V X > 0 , V / ^ ^^ w^/z {/ > 0} compact, V^ / e C^.

One of the principal results of this article is the following
theorem which shows that KW-duals exist in the setting of axiomatic
potential theory.

THEOREM 5.4. - Let 9€ be a strict Bauer sheaf on X which
has a Green function. Denote by G a Green function for 9€ that sa-
tisfies the conditions in proposition 1.5.

Then there exists a positive Radon measure m on X such that
the kernels

VQc, dy) = G(x , y ) m(dy) and

V ( y , d x ) = G * ( y , x ) m ( d x )

have the following properties :

1) the resolvents (V^\>o and (^\>Q of \ and V* both exist:

2) the resolvent (V^\^ corresponds to 9€ and the resolvent
(V^\^o is adjoint to 9€ (relative to G) ,
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3) (TOoo ̂ ) ^ ^ KW d^Z of (V,̂  ̂ j ((V^ , m)
is a KW rf^/ o/ (V^\>o ; ̂ rf

4) both resolvents are the resolvents associated with the tran-
sition semigroups of diffusions.

Further, if 96 is a Brelot sheaf ofr which G defines an adjoint
sheaf^*, then (V^^ corresponds to 3C*

Proof. - Let ^ G ^(X) be such that (a) Gv(x) is bounded
continuous and strict and (b) G*v is finite on a dense set (see pro-
position 2.11). The kernel W(x , dy) = G{x , y ) v(dy) has a resolvent
which corresponds to 96 and is the resolvent of a Hunt semigroup
(see [16]).

Let v* be an admissable measure with Gv* finite on a dense
set (proposition 2.11).

Corollary 4.8 implies that there exists (^) C <X^(X) with
(i) V n, GT^ and G*T^ continuous bounded, and (ii) v + v* ̂  ^ 7^.

yi

Let (^) C (0 , 1) be such that

(a) S ̂  G^ E <0. and (b) ^ ̂  G*^ E (3,
w w

(proposition 3.7 and lemma 1.3 imply G*T^ G e.).

Denote by m the measure ^ ^ ̂ . It is clearly admissable.
n

Further, the potential p = Gm can be seen to be strict in the sense
of [16].

Clearly, V and V* are in duality with respect to m if

V(x , dy) = G(x , y ) m(dy) and V*(y , dx) = G*0 , x) m(dx).

It follows that the corresponding resolvents (V^)^ and (V^)^o,
which exist in view of the choice of w, are in duality [8].

It remains to consider condition (KW3). For the resolvent
(^Oo it is clearly satisfied since V* is the potential kernel
of a Feller semigroup and V* is strong Feller in the sense of [2]. In
the case of (V^\^ for (KW3) (1) it suffices to note that each
^ G 6^ is the uniform limit of a sequence of differences of conti-
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nuous bounded superharmonic functions (see the approximation
theorem of Mme Herve in [7]). The second condition, (KW3) (2),
holds because V is a strong Feller kernel.

The last statement follows from corollary 3.5 while the fourth
statement follows from corollary 3.3 and proposition 4.1 in [16].

6. Application to the Martin Compactification.

The sheaf 96 will now be supposed to be a Brelot sheaf possessing
a positive potential, with 1 superharmonic, and such that the hypo-
thesis of proportionality is satisfied. For such a sheaf Green functions
exist. Let G be a Green function for 96 satisfying the conditions in
proposition 1.5.

Let (Krt)d^A ^e a fa^ly °f continuous functions K^ : X \D^ -> R,
D^ compact V a E A. Then there is a unique compactification X of
X such that (1) all the functions K^ have continuous extensions to
X\D^, and (2) their extensions separate the points of the boundary
X \ X (c.f. proposition 1 in [14]).

DEFINITION 6.1. The compactification X is said to be defined
by ^AEA-

Let XQ e X and set K ( x , y ) = 1 if

x = y = XQ and = G(x , y)/G(Xo , y )

otherwise^ Define K^O) = K(jc, y).

DEFINITION 6.2. — The Martin compactification of X (correspon-
ding to 9€) is the compactification defined by the family (Kj^^./r
mil be denoted by X = X U A.

It is not hard to show that this compactification is independent
of the point XQ and that it can be identified with the subspace
^(A), A a base of the cone ^ (c.f. [14]).

Denote by n* a continuous, finite and strictly positive function
which coincides with G(XQ , -) outside a compact neighbourhood A
of XQ.
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PROPOSITION 6.3. - The Martin compactification of X is the
compactification ofX defined by the functions ( l / n * ) (V*<^), <p G e ,
if V*(j , rfx) == G* (y , .x) ii(dx) is a kernel that maps 6^ into Q.

Proof. - If y ^ A then

(l/^* 0)) V*(y , ̂ ) =y K(x , y) (^Oc) JLI(^).

Let y G A and let (y^)^ be a net in X which converges to y . The
functions K(- , y ^ ) converge in the topology of uniform convergence
on compact sets to a harmonic function h = K(- ,JQ. Hence.

lim (1A2*(^)) V*(^ ,<p) = /K(x, y) ^(x) ^(dy).

The_extensions of the functions ( l / n * ) (V*</?) separate the points
of A = X\X. If^i ex there exists (<^) C e^, such that

0 supp ̂ ^ C supp ̂ , Vm,

ii) {^1} = ^ supp ̂ , and

iii) <Ai,^> = 1 Vm.

The measures ̂ . ^i converge weakly to s^ and since their supports
are contained in a fixed compact set,

K ( ^ , J Q = lim (l/^*)(V*^)(p),
W-^o®

where (l/^*) (V*<^) also denotes its extension to X.
Let (V\)^o be the closed resolvent of a Hunt semigroup that

corresponds to 96 and let ((V^>o , m) be a KW dual of (V^>o.
Then there is a unique measurable function G : X x X -> R4' such
that :

1) Vy E X , x -> G(x , y) is excessive

Vx G A", y -^ G(^, y ) is *-excessive

2) V(x, dy) = G(x ,y) w(rfy) and V*(y, dx) = G(x,y)m(dx),

(see [8]). It is called the o-potential kernel

PROPOSITION 6.4. - With the above hypotheses, the o-potential
kernel G is a Green function /or9€.
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Proof. — (KW3) (1) implies that any *-supermedian lower semi-
continuous function is *-excessive. Hence, 1 is *-excessive. Since by
(KW3) (2) any *-excessive function is lower semi-continuous, this
implies that the minimum of two *-excessive functions is *-excessive.

Let YQ £ X and ^ E <^(E) be such that ^ < 1 == ^(y^). Let
0 = {\p > 0}. Since (V^)^Q is closed an arguement used in propo-
sition 2.7 implies that, for all x € X, if

D(JC) = {y | G(JC , 3.) > RQ (x , Gy)}

then m(D(x) H 0) = 0. The set D(x) is *-fine open and measu-
rable and so by proposition 1.2 in [15], lim \V^(yo,D(x)) = 1

\->00

whenever y^ G D(x).

If Y Q ^ D ( X ) then

1 = lim XV^o , ̂ ) < iim XV^o . D(;c) H 0)
A.->00 \-^0

+ lim XV^o,CD((x)=0.
\->^

Consequently, for all x ^ X, y^ G D(^), i.e. Gy = RoGy . Hence,
for all ^ G X, G is a potential of support {y}.

Since 96 satisfies the hypothesis of proportionality there exists
a strictly positive finite measurable function / with

GoOc,jO=GOc,jO/(y)

a Green function for 96. Let \p G ̂ . Then, since G(x, >0 > 0 V (x , y )
and Go is a Green function the condition (KW3) (2) implies/is conti-
nuous on X\supp (p in view of the formula,

f(y)= [f'Go^ , y ) y?(jc) m(dx)] / [f G(x , y ) <p0c) m(dx)].

Consequently, / is continuous on X and so G is a Green function.

COROLLARY 6.5. — With the above hypotheses, (V^)^o is adjoint
to 9€ (relative to the o-potential kernel GA

PROPOSITION 6.6. — Let XQ ^ X and let G be a Green function
for H€ that satisfies the conditions in proposition 7.5. There exists
p G OIZ^X) such that ifn* == G*p then :
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1) 0 < n*(y) < + 00 ;

2) n* is continuous ; and

3) w* = G(XQ ,-) outside a compact neghbourhood of XQ.

Proof. — In view of the ̂ results of paragraphs two and three,
A C X implies R^o ' Gy) = ^XO^»G^ ), where R^ is the operator
defining balayage for the cone @* and G ( x ) = G^Q/) = G(x , y ) .

If ^o ^ 0, an open relatively compact set with A = 0, then
proposition 2.7 implies G^ = R^G^. The measure c^ = R^O-s-)
is carried by 30 if y ^ 0 = A^ since R^Gy = Ge^, which is har-
monic on 0 U (X\A) if y ^ 0.

Let a G OT^(X) be continuous and finite on the cone S? and
such that G*a > 1 on 80. Let a = sup G0:n , v ) < 4 - o o . Then,

_ y^o
if >/ ^ 0, it follows that

G^ (y) < flR^Q., G*a) < aG*a(y)

and hence G* vanishes at infinity.XQ
Consequently, if 0 < X < G(x^ ,XQ) it follows that

n* = inf (G^ , X)

is a finite, continuous function which coincides with G* outside aocompact neighbourhood of XQ ,
Since n* < G* the result follows from lemma 2.13.xo
Let (V^\>o be a resolvent on (X , tf3) and let ((V^)^ , w)

be a KW dual of (V^)^g. Denote by G the o-potential kernel.

DEFINITION 6.7. — A measure p is called a normalizing measure
if G*p is finite, continuous and strictly positive.

DEFINITION 6.8. - The Kunita-Watanabe compactification of X
defined by (V^)^o and a normalizing measure p is the compactifi-
cation defined by the functions (l/G*p) (V*<^) , <p E 6^,.

THEOREM 6.9. - Let 9€ be a Brelot sheaf which has a positive
potential, satisfies the hypothesis of proportionality, and for which
1 is superharmonic.
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Then there exists a resolvent (V\\^ that corresponds to 96
which has a KW dual ((V^\>o > ^ ) ^d a normalizing measure p
such that the Martin compactiflcation of X corresponding to 9€ is
the Kunita-Watanabe compactification of X defined by (V^)^o
and p .

Proof. - By theorem 5.4 there exists a KW dual ((V^)^o,m)
for (V^)^Q. Further, proposition 6.6 implies that if, as may be
assumed, the o-potential kernel G is a Green kernel for 96 satisfying
the conditions in proposition 1.5, then a normalizing measure p
exists such that G*p coincides with G^ outside a compact neigh-
bourhood of XQ. Hence, the result follows from proposition 6.3.

7. Appendix

The hypothesis (L) is assumed.

LEMMA 7.1. — Let u, v be excessive. The following conditions
are equivalent :

1) u -< v (i.e. v — u is excessive) ; and

2) V X> 0, XV^Qc, v) + u(x) <XV^Oc,^)+v(x)cm(^<+oo).

Proof. — Clearly, v = u + w, w excessive implies (2).

Assume (2) and set s(x) = v(x) — u(x) if u(x) < + oo and
s(x) == -h oo if u{x) = + °°. Then, s is surmedian and v = u + s.
Let w = 5.

COROLLARY 7.2. — Let ^ be a family of excessive functions such
that u^ , u^ G ^ implies there exists u E ̂  w^/z M < î .. Z/e^ i/o 6^
^xc^yn^ flwri ^c/z ^Afl^ u CE ^? implies u -< UQ . Then, inf ^ -^ MQ
anrf inf ^(^) == inf ^ (x) o^ (^^ < + oo). Further, ifv^ u V u, \/u^,
then VQ -< inf ̂  .

Proof. — Let inf Si = (infw^) , (Wy,) C §? decreasing. I fw=infvi^
then,
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V X > 0, \V^(x , u^) + w(x) < \V^(x , w) + ̂ (x) on (^ < oo).

Since these inequalities hold for inf ^ = w the first result follows.
Also UQ = vi^ + ^, V^z and so ̂  = w 4- r, ^ excessive. Hence,

w(x) = w(^) on (UQ < oo).
If VQ^ u , \fu E^, then VQ 4- ̂  = w^, ^ excessive. Hence,

PO + v = w, y = inf v^ and so VQ + y = w.
n

PROPOSITION 7.3. - Z/^r (V^\>o &e ^^ resolvent of a Hunt
semigroup on X that satisfies (L) a^d /5 such that the a-field gene-
rated by the excessive functions contains all the Borel sets. Then, if
E , F C X

!) ^EUF u ^ ̂ u + ^K^' VM excessive ; and
2) ^ E U F ^^ 4- ^F, V ^ G <5T^(X).

Proo/ - Let G, H be fine open sets. Then, on G U H,

^GUH u + mln WG^ » RH^} = RG^ + ^H^-
Since the cone of excessive functions is closed under min, it follows
that R^H u 4- ^(G , H) = R^ + R^u on X, if

^(G , H) = R^,jH (min {R^u, RH^}).

Let « be finite on X and let E C G, F C H be fine open neigh-
bourhoods. It follows (from the fact that R^u = inf R^u, G fine
open D E) that

RI,(J,, u + inf u(G , H) = R^ + Ryu.
G , H J

Denote by ^ (E ,F ) the regularisation of inf u(G ,H). Then
G , H

^EUF u + U(E' F) == ^E^ + ^i^' This proves (1) for u finite. Note
that u < u implies u(E , F) < M'(E , F). Hence, (1) follows for ar-
bitrary u by passing to the limit, using u^ == min (u, n).

Let ^ G X and let K(u - v) = u(E , F ) ( x ) - r (E,F) (^), where
u, v are bounded excessive functions. Then £ is a positive linear form
on E, the vector space of differences of bounded excessive functions.
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In view of the above, ^uv + £ = £^ + £^ on E and so £
satisfies the Daniell condition : (/„) C & and/„ 4< 0 implies J^UO.
Since g is a subvector lattice of tf3^ it follows that there is a unique
measure c ̂ 'F) which represents £ on &. Clearly,

^Ul. +^E,F) ̂  +^

and further, the family (^'^^ex ls a kernel R,^ ^.

Let ^ E ^(X). Then ^EUF + ^R(E,F) = ^E + ^F.

Remark. - The result is true without the hypothesis (L) if E
and F are taken to be nearly Borel.
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