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HOMOGENEOUS ALGEBRAS ON THE CIRCLE :
II. — MULTIPLIERS, DITKIN CONDITIONS

by Colin BENNETT and John E. GILBERT

1. Introduction.

For a homogeneous Banach algebra QL on the circle group the
translation operators {T(0 : 0 < t < 00} by definition give a strongly
continuous representation of (0 , o°) in QL, i.e. {T(^) : 0 < t < 00}
is a semi-group of contraction operators of class ((° ) (cf. §1 part 1).
The infinitesimal generator of this semi-group is the differential ope-

d / d \k
rator — ; the domain of definition of powers ( — ) , k = 1 , 2 , . . . ,

d^ ^d^
will be denoted by QL(k). These spaces QL, QL^^ provide a natural
setting for applications of methods from interpolation space theory,
either real methods (cf. [5, 13]) or complex methods (cf. [6]) although
only the K-method of Peetre will be used here.

If A (a, p ; QL) , a > 0, is the interpolation space

A ( a , p , O L ) = (^Q^^K - 0 = a/k , l.<p^,

then A (a , p ; QL) can be identified with the functions in QL satisfying

(/^^IKTO)-^/!^)"^)1"v —— \ lr < 00.

t / (1)

Thus A ( a , p ,QL) is a Lipschitz subspace of OL. By considering QL,
QL(k) and A ( a , p ; QL) within this framework of interpolation space
theory we can exploit for arbitrary homogeneous algebras OL the
fundamental theorems of stability (or re-iteration) and interpolation
as well as the characterization (1). For instance, by (1) and the
stability theorem, each space A (a , p ; QL) is a Banach algebra and,
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whenever Q^ is dense in A (a ,p ;(St) (in particular when p < °°),
A (a, p ; (20 is a homogeneous Banach algebra on the circle group.
More important for our purposes is the interpolation property enjoyed
by all interpolation spaces. Using this theorem together with the
stability theorem we derive estimates for the multiplier norm on
closed primary ideals in A(a ,p \QL) and ft'.^. With these estimates
the various Ditkin conditions defined in part I of this series can be
readily established. The difficulties involved here are very subtle
because, as we show, the multiplier norm on a closed primary ideal
is not equivalent to the multiplier norm on A ( a , p ; ( S C ) , a > 0.

More generally, the interpolation space A ( a , p ; X ) can be
constructed when {T(0 : 0 < / < °°}is any semi-group of contraction
operators of class (3^) on a Banach space X . Taking say X as

L^T) , 1 <,p < oo , e(T) , T circle group,

and {T(0 : 0 < t < 00} the usual translation operators, or

C^Z) , K p < o o , c^(Z),

and {X(t) : 0 < t < 00} multiplication by characters,

X(D : {^}->{^ n t ^}

we construct within this unifying framework of interpolation space
theory two large classes of examples illustrating the general theory
developed. Many algebras of interest previously studied in isolation
are produced.

A complete discussion of many applications of interpolation
space theory to Banach algebras more general than the theory given
here appears in [7].

2. Applications of interpolation space theory.

The interpolation theory used in this paper will be that arising
from the K-method of Peetre (i.e. a "real method"). For an excellent
discussion of this method as well as of other material used here see
[5] (esp. sections 1.1, 3.3, 3.4).
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Let (X, I I ( . ) I I X ) be a Banach space on which acts a semi-group
{T(0 : 0 < / <°°}of contraction operators of class (c° ) and infi-
nitesimal generator A. The domain of definition of powers Ak of A
is

X^ = = { / : / , A / , . . . , AV^ 3C) , ^ > 1 .

Under the "graph norm"

11/11̂  = 11/11^ + IIA^/11^ , / G X W , (2)

X^ becomes a Banach space on which

k

f^ S IIA^/IL , / G X(^) (3)
C=o x

defines an equivalent norm ([4, p. 12]). For each t, 0 < t < °°
set

K0, / )= KO, / ;3£ ,y< f c ) )= inf ( | | / J lx+r | | / j | ^^ ) , /G X ,

the infimum being taken over all representations / = /o + /, with
/Q e X a n d / ^ € X < ^ ) .

(2.1) DEFINITION. - Given any a > 0 and integer k > a the
interpolation space A(a,p ;3£), 1 ^ p^ °°, is the subspace of X o/
^// ffor "which

11/11^ ^=(/(^0K(^/;X,X ( f c ))p-^) l / p , 0=a/^ (4)

is finite (obvious modifications when p = °°)(1).

Under the norm ||/|| .v, A(a,p ; X) becomes a Banach space.
As is usual in the subject we adopt the convention that, for Banach
spaces, 91 ̂  C gTC means the identity embedding STC^ -> 51 o is conti-
nuous. Then

X<^ C A ( a , p ;X) C X , k > a,

(1) With the notation of [5 p. 167], A ( a , p ; X ) = .X,^^ .^
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and X^ is dense in A ( a , p ; X) at least when p ¥= °°. We denote
by X(a ,oo ; 30 the closure of XW in A ( a , o o ; X ) . The important
stability (or re-iteration) theorem for interpolation spaces shows that
A (a,/? ; X) is independent (up to norm equivalence) of the integer
k in (4) (cf. [5, pp. 198-202]). Important also is the interpolation
theorem : suppose T is a bounded linear operator

T : X -> 1 , T : X^ -> XW

with respective norms M^ , M ^ . Then T is a bounded linear operator

T : A ( a , ^ ; X ) ^ A ( a , p ; 30

whose norm satisfies the convexity inequality

||T|| < M^-° Mf , 6 = a/k.

The Lipschitz character of A ( a , p ; X) is well-known : A(a ,p ; X)
consists of all / in X for which

/ y00 drx1^( [ (t-^ IKTO) - 1̂  f\\^f — ) , k>a, (5)
^ o r

is finite ([5, theorem 3.4.2]). A very useful estimate is

11/11^ ^ <const. (ll/llxV-^ (11/11^)°^ , /e XW (6)

(essentially this is [5, theorems 3.2.12, 3.2.36], see also [13, pp. 12-13]
for a proof for an equivalent real interpolation method).

Now suppose 1̂ is a Banach algebra such that
(a) X is a right Banach module over a under an operation °,

(b) {T(Q : 0 < t < 00} acts on a and

T(0 (fog) = (T^)/)o (T(O^) , /€ ^ , gC a

(2.2) THEOREM. - When T.andU satisfy conditions (a), ( b )

\\fog\\a^,yi< const. {||/ll9j 11^11^ 3^ ll/lla,p;X 11^1^ ^

for all f^g in ^10 A(a,^ ; X).
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Proof. - (cf. [10, proof lemma (1.5)J). Use the stability theorem
for A (a , p ; X) and the Leibnitz formula

k
(TO) - i)^ (fog) = ^ (^) [(TO) - \yf\ o [(TO) - D^'Toy^

/ = o
in the characterization (5).

It will be convenient to speak of a Banach space which is an
algebra with jointly continuous multipliciation as a Banach algebra
without renorming the space so that the norm necessarily is sub-
multiplicative.

(2.3) COROLLARY. - Suppose A(c^, 1 ; X) C Z\for some o^. Then
A (a, p ; X) is a Banach subalgebra of °I whenever

a > ^o ' P = } » a > ^o ' l <P <°°' (8)

M^z^ W W&

ll/o^p ;x < const ^kp.-X l^lkp.-X (9)

for all f^g G A(a,p;X).

Proof. - Inequality (9) follows form (7) provided A (a, p ; X) C ^1,
in particular when a = c^ , p = 1. But A (a , p ; X) C A (o^ , 1 ; X)
if a > OQ , 1 < p < °°, and so A (a , p ; X) is a Banach subalgebra of a
whose norm satisfies (9) when (8) holds.

(2.4) COROLLARY. — // X is a Banach algebra for which

T0)(/o^) = T(D/oTO)g

then A (a , p ; X) is a Banach algebra for all a > 0, 1 <, p < °°, whose
norm satisfies (9).

For the remainder of this section and all of §3 we shall take
for X a Banach algebra QL homogeneous on T in the sense of Silov,
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Le. satisfying (H.O), (H.I), (H.2), (H.3) in §1 of part 1(2). As
in part I we assume the translation operators {T(0 : 0 < t < 00}
are contractions and that

e°°(T) C QL C (3(T) : (10)

the infinitesimal generator of the semi-group {T(Q : 0 < t < 00}

is D = -—. From (10) it follows that
^

(S°°(T) C QLW C A ( a , p , O L ) C e(T) , k > a > 0. (11)

(2.5) THEOREM. - Let QL be a Banach algebra homogeneous
on the circle group T. Then for a > 0, 1 < p < oo the spaces
A (a , p ,QL) , X (a, oo ; (%) and QL^ are all Banach algebras. Further-
more, A (a , p ; QL) , X(a, oo ; QL) and QL(k) are homogeneous Banach
algebras on T provided a > 0, 1 < p < oo.

Proof. - The first assertion is clear (cf. corollary (2.4) and
(9)). That T is the maximal ideal space of OL(k) has been proved
by Loy ([14, p. 312]). But. in view of the inner inclusion rela-
tion in (11), the spectral radius norm on A (a , p ,QL) and X(a ,p ; QL)
is dominated by that on QL^. Hence, since QL^ is dense in
A(a ,p ;a ) , p ^ oo, and in X(a,oo;a) , it follows that T is the
maximal ideal space of A (a , p ; QL) and \(a, p ; QL) also when p ^ oo
([14, p. 312]). On the other hand, the operators {T(0 : 0 < t < 00}
are strongly continuous on OL^^ and hence, by (6), on the dense
subspace OL(k) of A ( a , p , Q L ) , X(a ,oo,a) , p + oo. Thus

A ( a , p ;oo) , X(a ,p ,QL)
and Q^ are homogeneous on T.

For well-known technical reasons of no interest here, the spaces
A(a ,p;Q;) , \(a,oo;QL) with a an integer, i.e. a = [a], will not
be considered ; instead, O^^, ^ = 1 , 2 , . . . , will be discussed, albeit
briefly.

By a multiplier on a Banach Function algebra 1̂ we shall always
mean a complex-valued function a such that the pointwise product
(2) the notation changes from Part I : T(r) always denotes an operator from some

semi-group {T(r) : 0 < t < 00} sometimes specified sometimes arbitrary,
but T (sic) denotes the circle group originally denoted by 3D. D will here

be reserved for the differential operator —.
d^
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of belongs to U for all/G^I. The operator/-?- a/necessarily is bounded
(closed-graph theorem). On QL and A(a ,p ',QL), of course, the mul-
tipliers are just QL, A ( a , p ;0) respectively and the multiplier norm
is equivalent to ||(.)||^ I I C ) l l a , p ; ci • Als0' ^Y ° G A ( a , p ; Q ; ) i s
a multiplier on any closed ideal I in A(a , p ;&).

For a > 0 and k > 0 set

^(So)^/^^,^) '' ASo) = ' " - D^l/O^ 0},

Iw ^o) - </^ a^ ^ /(So) = • • • = D^/O,) = o},
where e^o ^ T. Thus I (^) and I^ (^) are closed primary
ideals in A ( a , p ; (2), ^(k) respectively (though not necessarily the
smallest closed primary ideal in the appropriate maximal ideal if
functions in QL are all sufficiently smooth). For two quite general
classes of algebras we shall derive precise estimates for the multiplier
norm on 1̂  ̂  (^), I^ (^) (cf. theorems (3.2), (4.1)). By homo-
geneity it is enough to consider ^ = 0 only. The Strong Ditkin
and Strong Analytic Ditkin conditions for A (a , p ; OQ, X(a , oo ; Oi)
and (St^, p ^ oo, follow provided the smoothness of functions in
QL is suitably restricted. Interest in these results arises on the one
hand from the importance of the two Ditkin conditions in the har-
monic analysis of A ( a , p ; QQ, QL(k) (cf. part 1 and [12, §39] [20,
chaps. 1, 2]) and on the other from the fact that the multiplier norm
on I (^) must be markedly different from the multiplier norm
on A (a, p ; QL), a > 0. In contrast, for QL itself, the multipliers on
^(So) (= ̂  (So)) "^y well coincide with CY as Meyer has shown
for the Wiener algebra ^(fiUZ)) ([15]). The proofs given are also
of technical interest ; for we use a group of automorphisms on T
(introduced by one of us in [1]) with play exactly the same role for
the circle group as the dilation group does for the real line. Amusingly
enough, although these operators do not give automorphisms of, say
^(^(Z)), classical results such as Bernstein's theorem enable us to
derive all the results we need (cf. (4.2), (4.3), (4.4)).

As the proofs for the two classes differ only in detail some
preliminary explanation will be instructive. Define v(^) on T by
v(^) = e1^ - 1 and set
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6 = -̂ - = -^-^D;
rî

thus
fc

VD" = S ^0) e" (12)"=i
with ^ e e"(T). When $ : / ^ $/ is defined by

$/(f) = -^- (/(^) - /(O)) , / e e(T),

it is easy to check that

(a) for each f in O^"')

m - i
/a) - *?o rr *'* (^ 0<t /(0) = l'"' e'" (/) E ̂ ~1) (0) • w> 1, (13)

(b)/or a/// w a<"') aMrf o in e<">(T), M < w,

e"[^*'"(/)o] = v ' " - " \ ^ (") $'"-£(QC y)^"- CQS 0)1(14)
' e - o x f

In particular,

ye 1(^-0 ( 0 ) ^ / = (/m $'"(/•). (15)

Now, by the stability theorem for A (a , p ; a),

A(a ,P ;a) = (a0"", Q^'^), ̂  , Q = a - [a], (16)

provided a =/= (a]. Suppose for the moment we have established

(A) for all f £ c^l"') and a e <2°°(T)

•a) ^

/" £ FT l/t ^/(0) '̂C0" ̂  const- '^"d"') ̂ ^
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(B) for all f G 0^1+1) W a E e°°(T)

( l a l 1 1
1 1 / - E n" ^Q'AO)) all <const l l f l l M (a)( ^-o ^ ! ) ( la i -n)-^ consL '^"((ai+i)1"1!^^

Then, by (15) and the interpolation theorem applied to (16),

||/a|̂  < const. 11/11^^ M^a)^1-0^ (a^-^l (17)

for / e I^^(O), a ^ [a]. This estimates the multiplier norm on
1^(0), hence on I^^(^).

We deal first with estimate (B). The left hand side is

n^^(/)ai^ + iiD^^.na]!^ , /ea^),
where b = [a] 4- 1. Using (12) and (14) we can thus reduce the
proof of (B) to the establishing of

h n

^ S II^-^-W/)^-^-^!!. <const.||/|L,M.(a). (18)
n~0 ̂  w

The proof for (A) is identical except for one additional (but tri-
vial) technical complication : with a = [a] write

/- ^ ,-^©^/(0) = ^^(/) - 1 ^^/(O).
f c = o k ' a !

Hence, just as for (B), (A) reduces to the establishing of

^ ^ 11^-" ̂ -W/) ^" -^Q^-^a l l ^
/l=0 fi=0

( a

+ 11^1(.) S 11̂  "^lla < ^"st. ||/||̂  M^(a). (19)
( ^=o

Since QL is a Banach algebra we can see that what is now wanted is
an estimate for W ^n {Q9-f)\\ ̂  or for some similar expression. This
is the heart of the proof.
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The multiplier norm on the primary ideal I^^O) in QL(k) is
estimated by (A) alone with k == [a].

3. Lipschitz algebras on T.

Let 0^., - 1 < r < 1, be the linear fractional transformation

^'f^-^ - ^T.

Define ^ : £(T) -^ C(T) by $//) = /o 0^. Throughout this section
we shall impose on QL the following condition.

CONDITION (R). - For r, -1 < r < 7, <&. ^ a linear operator on
QL with

11^(1 + cos S)/)lla <P^(r) 11/11 „ , /CO, (20)

/or 5om^ function p .

(3.1) Remarks. - Clearly each ^ is an isometric automorphism
ofC(T) hence bounded on QL if ^ maps tt into QL. However, (20)
is a more convenient (and natural) formulation of this boundedness
requirement. As later examples show, P^(r) is closely related to tlie
index function associated with L^-spaces and general rearrangement-
invariant Banach Function spaces on T where the index function
is important in interpolation theory (cf. [4] ; in [1] there is a syste-
matic study of properties stemming from condition (R)). Here we
show that p^ (r) is crucial in describing the properties of OL and
its Banach subalgebras A (a , p ; QL) , X (a , oo ; QL). Throughout we shall

P,,(^> 1 , - 1 < r < 0 ; (21)

in practice (21) always is satisfied.

The next theorem and theorem (3.6) are the main results of
this section.
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(3.2) THFORKM . — Let OL be a homogeneous Bamch algebra on
T satisfying condition (R). Then, provided a ^ [a],

ll/o.(^ + 1)^^ < const. (/ p ^ ( - r ) d^ 11/11^^ N(a,a)

/or a// / m /7z6? primary ideal 1̂  (0) ^ A (a , p ; QL), 1 < ^ < °°,
^rf a in e°°(T), w/z^^

( a i + i
(i) N ( o , a ) = S l l s i n ^ ^ D ^ a l l ,

k^O

(ii) ^ > ([a] + 1) ([a] + 2 ) , 5 integer.

(3.3) Remarks. - (i) The method of proof of (3.2) can be
used to show : when s > (m + 1) (m + 2)

\\fa.(e1^ + l)5!!^ < const. (V11 p^ (-r) rfr)5 ||/||^^ N(a,^)

for al l / in I^>(0) in a (w) and o ine°°(T) where

m +1

N(a , r ) = S Usin^D^all .
k=o a

( z — 1 \(ii) Under the usual mapping z -> i — — ) of the unit disk onto
z + 1 /

the upper half-planer = e~i7T = — 1 maps onto <» and 0 to the dilation
/ 1 + r\

operator x -> ^-———jx. For any Banach algebra tf3 with (-00,00) as

maximal ideal space, automatically functions in (B vanish at ± oo ;
in contrast, for Banach algebras QL on T, functions in 1̂  (0) do not
all vanish at z = — 1. The factor (^ + I)5 builds in the "zero at
-1" property seemingly necessary for all applications of the ope-
rator $ .
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(iii) On (°(T) {^ : -1 < r < 1} is a group of contraction ope-
rators of class G°^). In view of the expressions for N(a , a) and N(a , r)
it is interesting to note that the infinitesimal generator of this group

d
is (sin ^) — .

d^

(iv) For the practical significance of estimate (3.2) (i) see (29)
and (31) where a^ = $/a), a E eTT).

Because of the discussion in §2 we have only to show :

(A/ for / E QL^

^ ^ 11^-" ^a-^(^f)vn-^ e^a^ + i)5 a)||
n--0 £-0

+ 11 /11 ( , ) $^ \\vkDk ((^ + \Y a)||^ < const. 11/H^ M^(a);

(B/ for/ £a ( & )

& /<
^ ^ ll^-^^-^e^^-^e^-^^+iy^iixconstji/iL.M,^

"-o ^=0 v )

with
a a

^(^ = (/1^ (-r)^) S llsin^D^all,,o / ^-o

^1 \ &
M / a ) = ( / p^(-r)^) ^ Usin^D^al l^

(recall a == [a], 6 = [a] 4- 1). Now by (12)

/ n 9.
^-» Q^-9. ̂  ^ ^s o)= (^ + 1)^-" ^ ^ (^ sin^D^a

( fc - o

with 77^ E e°°(T), T^ independent of a. Consequently, both (A)'
and (B/ follow easily from the second of the following two lemmas.



HOMOGENEOUS ALGEBRAS ON THE CIRCLE 33

When these have been proved (the first lemma is the most important
step in the proof of the second) theorem (3.2) will finally have
been established.

(3.4) LKMMA . - Suppose ^ is defined bv ^f = —(/(^)-/(O)).
v

Then, for each integer m > 0.

||(̂  + D^^COII^ const. (^ (-r)dr) \\f\\^^

for all f in Q^0.

(3.5) LhMMA. - For each integer m > 0

||(^ + 1)" ^(mi^ < const. (/ p^-r)drY \\f\\^ (22)

for all f C a<w) whenever n > m2.

Proof of (3.4). — We have to estimate

\\(^^ i ) 2 m +i$(/)| |^ +110^ [(^+l)2w+l$(/)]|| , /ea(w + l).(23)

Now
1 ^ / » » ^t 4- i

^fW=—j ( D f ) ( t ) d t = i j 4> ,(D/)--——————^^rv^o "0 r (e1^ + r ) (1 4- re^)

changing variables so that ^s = ^.(^r). Thus

(^ + ! ) $ / = 2// <^ ((1 + cos ^)D/) ^ . (24)

When m = 0 condition (R) gives

\\(e^ + 1) $/|̂  < 2 /' ||4>_, ((1 + cos $) D/)||^ rfr

< 2 (r'P.J-^d^llD/ll^ ,
o
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and so

IK^ + 1 ) ̂ ^(/'p^ (-r)dr) ||/|| . (25)
o

For the case m > 0 only the second of the terms in (23) requires
further proof since, by (25),

||(̂  + l) î $/||^ < const. (/'p^ (-r)dr) ||/||̂ ^ (26)

whenever / £ <a^'"+i) gy^

D[^/]-^^1^^ ^(D/).

Thus

[(6^ + I)2 0] $_//) = (-l———r-) ^_/^^ + 1)2 t^A

This last result coupled with a routine induction argument shows
that for each integer k and g G e^T) there exist ̂ ,. .. , ̂  G L^O,!)
and^,. .. , ̂ , /ZQ, . . . , ̂  G e°°(T) such that

[(^ + l)2^^ $_^/) = ^ ^(r)^(S) $_,((1 +cos^)^DC/).
£=0

But then, by (12) and (24) there exist functions J Q , . . . , J ^ in
e°°(T) so that

HD"1 [(^ + l)2^1 $/]||^< const. 5 / ||$ ^((1 + cos^ D^Hdr.
fi=0 0

This combined with (26) gives

||(̂  + l)2'"^ $/||̂  < const. (j[' P^-r)rfr)l|/)|^^

because of condition (R). The proof is now complete
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Proof of (3.5). - We have

<&[(^ + \Y ^(f)] = (^ + \Y ^^(f) + 7($) e^/(0)

with 7 a function in e°°(T). Thus, if g(^) = (e1^ + 1),

^ ^CO = ^^[(^ + I)'"1 $w-l (/)] + 6($) O^AO)

(5 G ^(T)) and so

II^^Cnil „ < const. (/^ (-r)^) {||^-1 $w-l(/)^^ + ll/ll^_i) >

using (21) and lemma (3.4). Continuing this proof we see by induc-
tion that

11^ ^w COIL < const. ( f 1 p^ (-r) dr)^
^^o

X{||^P ^-^nil^^+ll/ll^.i)}

for/G (St(w) and integer p, Kp < w, where

^ = 1 + (2 + 1) + (4 4- 1) + . . . ( 2 ( p - 1) +1) = p1.

Inequality (22) follows easily.

Important applications of theorem (3.2) follow from the next
theorem. Frequently we shall require a to be a function in (^(T)
satisfying

(e———l}ma G Qw^ ' 0 < m < [a] + 3.^ e " + 1 /

(3.6) THEOREM. - For any a E (S^T) satisfying (25) set

r, == (e^ + I)5 $/a) , ^ = ([a] + I)2 .
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Suppose that the function p ^ ( r ) satisfies

(a) f p ^ ( - r ) d r < °o , (b) p ^ ( r ) = 0(1), r -> 1 -.

Then

lim 11/rJI^.^ = = 0 , a ^ [a], (28)

for all f in the ideal 1̂  (0) in A (a , ̂  ; ff), p ^ °°, or m X(a , °° ;ff).

We postpone for the moment the proof of (3.6).

(3.7) COROLLARY. - Under hypotheses ( a ) and ( b ) of theorem ( 3 . 6 )
for a ^ [a] the algebras A (a , p ; (S£), p i=- o°, and \(a, oo ; QQ satisfy
the Strong Ditkin condition. In fact there exists a sequence

{ r ^ c e - c D
such that

(i) T ({) = 1 in a neighborhood of 0,

(ii) Jim 11/rJI^^, = 0 , /ei^(O).
M —>•<»

Proof of (3.7). - Choose any a G e°°(T) such that a(^) = 1
in a neighborhood of 0 while a(^) = 0 in a neighborhood o f r r -
Then for 0 < r < 1,

(i)' $ (a) = 1 in a neighborhood of 0 (depending on /-),

(ii/ $ (a) = 0 in a neighborhood of TT {independent of r).

Because of (ii)' there exists 7 E G^T), such that

7<I>/a) = <3>,(a) , 0 < r < 1 , (^ + 1)-^ 7 ^ e°°(T) , A: > 0.

Now, with r = 1 — 1/^2, set

r = $ (a) = (^ + I)8 ((^ + I)-5 7)$ (a).
" ^n r"
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Then {r^} has property (i) and, by (28), since (27) automatically
is satisfied,

lim II^JIa^ex = lim IICA(^ + 1)-'7)(^ + O^^ILp.a = °lt-><x> t r->|-

so that{ r^ } also has property (ii).

(3.8) COROLLARY. - Under hypotheses ( a ) and ( b ) of theorem
( 3 . 6 ) for a ¥= [a] the algebras A (a , p ; (2), p ^ oo, and X(a, oo; (X)
satisfy the Strong Analytic Ditkin condition. In fact there exists a
sequence {r^} C e°°(T) satisfying

(i) r^ Aa5 a/2 analytic extension into the open unit disk,

(ii) r^(0) = 1 /o/- a// ^

(in) Jî  11/rJI^^ = 0 , /el^(0).

Piroo/ - Choose any a E e°°(T) satisfying (27) and such that
a(0) = 1. If a also has an analytic extension into the open unit
disk then, with

r, = 2-5 (^ + iy ^ (a) , ^ == 1 - 1//2,
n

clearly { r^ } has the required properties.

The practical importance of the estimates in theorem (3.2) lies
in the next two theorems from which theorem (3.6) will follow easily.

(3.9) THEOREM. - For any function a G e^T) the function
°r-

a, = $/a) , 0 < r < 1,

satisfies

/ k+l /^ _ i \ \
llsin^ S D |̂| „ < const. p ̂ r) ( $: II (-^——) D- a|| „ )(29)

m =0 ^ ' ^

uniformly in r, 0 < r < 1.
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Proof. - Now

k
(e1^ - \^ D^ ^ = ^ 7^) [(^ - i) D]^ ^ (30)

where 7^, . . . , 7^ are functions in e°°(T). But

Da^ie"^^)^ ^(DCT)

so

(e2^ - 1)D a .̂ = ̂  ̂  ((^2U - l)Da).

Using this last result and (30) we deduce that

k
llsin^iy aj|^ < const. ^ ||̂  ([^2^ - 1) D^ a)||^

w =0

< const. p,(r)( ^ ||(————)D"' a||j.
W=0 " • 1

This establishes (29).

f c + i ,^ _ i
E - /

W=0

(3.10) THEORI-M - For any a e e°°(T)

llsin* ^'^{(e^ - 1) a^}\\a.

< const. (-^) ?,(.)( ,̂1 (̂ )2< const. (-^) ?,(.)( ^l|l(-^^)2D'"a||,) (31)

uniformly in r, 0 < T- < 1.

/^roo/ - Now

(^H _ ^k Qk {^ _ 1) ̂  ̂  5 ^ ̂  _ ̂ ^ _ ^ p^^

m =-0 ''

with 6( , , . . . , 6^ in e°° (T). Since

^-0*,(.).^+,,(^)^(^.,,)

we obtain (31) exactly as in (3.9).
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In the next theorem 3C* denotes the dual space of 3£ and D^
the (distributional) derivative of the Dirac measure 5 at 0.

(3.11) THEOREM. - The distributions 8^ , D8^,... . , D10^ 5
belong to A(a,p ; QL)* for all QL but i f p ^ ( r ) =0(1) as r -^ 1 -
then D10^^ does not belong to A(a ,p ; a )* , 1 ^ p <i oo

Proof. - Since A ( a , p ; a ) C A(a,p;e(T)) C e^'CDthe
first assertion is clear. Now set

0^) = (e1^ + 1)21^1+2 ^(^U + i ) 2 )

= (1 - r)2 (^ 4- 1 )21^1+4 (i -re^Y1

Then

11^11^ < const. ||̂  ((^ + I) 2 ) ||^ < const. p^r).

But

(^ + I)2 D^(.) = ̂  ( -̂ -̂ ) $, ([(^ + I)2 D](.)).\ 1 — /* /

Hence (much as in the proof of (3.9)) we obtain

R , 1 -L Y . w pnnot
IIIV- aj|^ < const. ?,(/•) ̂  (^) < ̂ ons^ p^r) , k>0.

Consequently (cf. (6))

\^\\a,p^ < con{>t• (1 - /a"0' P^(r). (32)

Now define {^}o<,<i i" A ( a , P ; ff) by ^ = (1 - r)01^. By
(32) this is a uniformly norm bounded family in A (a , p ;QL) whenever
?„(/•)= 0(1),/--^ 1 -. But

lim sup < ^, D10"41 §o > = lim sup D1"^1 j8 (0)
r_> 1 — r-> 1— /'

= const. lim sup (1 - r)0^2 D101^ [1/(1 - re'^)2] (0) = °°.
r->.l -

Hence D'0 ' '41 5^ G A(a,p ; a)*.
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(3.12) COROLLARY. - When p ^ ( r ) = 0(1), r -» 1 -, the family

{(e^ - 1)1^1 + i 0 : 0 Ee°°(T)}

is dense in 1^(0), p ^ oo ^rf m 1̂  JO) n X(a,oo;a:).

We can finally prove theorem (3.6).

Proof of (3.6). Choose any a in e°°(T) satisfying (27). Then
for each / in 1̂  (0)

ll^"a,p;ez = ^-(^D^lla,?^ < const. p^(r) ||/||̂ ^ ̂ (33)

uniformly in r, 0 < r < 1, substituting (29) in theorem (3.2). Given
£ > 0 choose 0 E 6 TO with

1|/-(^- 1 ) 1 0 1 . 2 ̂ ^ ̂

Then, by (33),

IL/^l la ,p;ex < ^"st. p^r) c + ||(̂  - D l ^ t ^ 0.{(^-i)^}|^^^.

Since (^ - l)^!^ 0 belongs to 1^(0), substitution of estimate

(31) in theorem (3.2) clearly gives (28) provided f p (-r)dr<^
"o A

and p^(r) = 0(1), r -> 1 -.

(3.13) Remark. - It can be shown that

'Ma.p^ -^(o -'r^ , ^i-,
is the best possible estimate for{r,}. Hence {r\^^ ^ is unbounded
in the multiplier norm on A (a, p ; QL) but bounded in the multiplier
norm on 1̂  ^(0), a > 0.

Some important examples illustrate the general theory of this
section. (For formal definitions and extended discussion see [5,
pp. 226-232], [23, chap. VIII]). Denote by W^T), 1 < q < oo^
m > 0, the Sobolev spaces :
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W^ (T) = {/ : /, D/,. . . , D^"/ E L^(T)} , 1 < q < oo,

W^ (T) = { / : / , D/, . . . , D^/ G e (T)} , q = oo.

The interpolation spaces

B^(T) = (L^(T) , W^(T)), ^ , <7 < oo
} 6 == a/m,

B^(T) = (C(T) , W^(T)),^ , q = oo

are just the classical periodic Besov spaces (cf. [2]). Appendix I of
[8] and stability indicate why we have chosen to define B^ via
the space (°(T) rather than via L°°(T) which at first sight might seem
more natural. It is known that

B^ ce(T) , a = l / q ,

(a simple proof for the non-periodic case appears in [8, p. 240],
cf. also [11, p. 289)]. For convenience of notation we set

C^-B^CD , i^^oo ; ^^ecr) , (7=00 .

Then, by the stability theorem,

A(a,p;^) -B^P , j 3 = a + l A 7 , a > 0,

Hence (cf. also [19, ex. 2.3] for an entirely different proof) :

(3.14) THKORKM. - The Besov spaces B^CT) are Banach alge-
bras for

a > 1 A? p = I ; a > l / q , 1 .<P<°°,

-r/^ so-called SCHAUDER ALGEBRAS. Furthermore, (^q,

A ( a , p ; d 3 ^ ) , p ^ oo and X(a ,p ; (B^ )

ar^ homogeneous algebras on T.

Proo/; - Apply corollary (2.3). That T is the maximal ideal
space ofay, hence of A (a, p ; (^q), p ^ oo^ and X(a , p ; ̂ ) is clear.
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We now estimate p (r) where

11^ (d + cos aoii^ < p^) ii/iî
For q == oo, obviously

Pj^) = 1 , - 1 < r < 1.

Now, when q < °°,

f 7r 1^(0,0))r7 ̂  = / [^(^l^ P_,0)dt

where P (^) is the Poisson kernel, — 1 < r < 1. But

(1 + cos t) P_/r) < 2(—— z) , -1 <r< 1

(notice again the importance of the factor (1 -h cost)). Consequently,

||̂  ((1 + cos^f)\\^ <2 (^f)1^ 11/11̂

On the other hand, since

f^Mg^W d^< (1 - H)1-^ [ \DgW dt,
4) "O

we deduce that

||̂  ((1 + cos i)f) ||^i ^ const. (1 4- rr^ (1 - rr^\\f\\^
n ^

where a = min (^ , q ' ) . The interpolation theorem thus gives :

(3.15) THEOREM. - For the algebras (JS^CT),

p^(r) < const. (1 + r)-1^ , -1 < r < 1,

1
where b == — q (min (^ , 2)). /n particular, ^(T) satisfies condition

(R) when q > 1.
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Consequently, the theory developed in this section applies to
all the Schauder algebras (B^, W)^ and \(a,p\ay\ provided
q > 1.

(3.16) Remarks. - (i) The algebras

X(a ,oo ;<o(T) and A( l ,oo;e(T))

i.e. X(a,oo;(B°°) and A(l , oo :(?3°°) in our notation, are of course
the familiar Lipschitz algebras lip (T , c^), Lip (T , rf) respectively
discussed extensively in [22].

(ii) The spaces L^T) can be replaced with Lorentz L^-spaces
or, more generally, rearrangement invariant Banach Function spaces
on T (cf. [1]).

(iii) The Strong Ditkin condition has been established directly for
the analogous spaces (^(R") where the problem is very easy (cf. [11,
p. 295]).

4. Subalgebras of £1 (Z).

Let <x(Z) be a convolution Banach subalgebra of £1 (Z) with
maximal ideal space T and Gelfand Transform the usual Fourier
Transform.

00

^ '' ^-^m) = X /, ̂  ;/„ J v-^ ——— ./„

throughout this section Q;(T) == §i (a(Z)). We shall always assume
t h a t { X ( r t : 0 < t < oo},

X(rt :{^}->{^n t / ,} , { / „ }& a(Z),

is a semi-group of contraction operators on ^I(Z) of class (Q ). Thus
(Sl(T) is a homogeneous algebra on T in the sense of Silov which
we suppose satisfies also : e°°(T) C (2(T). The infinitesimal generator
of {X(rt : 0 < / < 00} is M : {/^} -» {f^}. From corollary (2.4) we
deduce that the interpolation space
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A(a,p ; a(Z)) = (a(Z) , aW(Z)),^ 0 = a/fe,

is a convolution Banach subalgebra of ^(Z) for all a > 0 and 1 < p ^ °°.
Of course, with obvious notation,

g?(A(a,p;a(Z))) = A(a,p;a(T))

and A (a, p ;(S£(T)) is a Banach subalgebra of the Wiener algebra
^(^(Z)) ; in fact, A(a ,p ;(Sl(T)) has maximal ideal space T, while
A(a,p;a(T)) , p ^ °°, X(a,oo ;Q;(T)) and a^CT) are homo-
geneous algebras on T all containing e°°(T).

To overcome the fact that (very likely) the operators $ do not
map a(T) into 0 (T) (cf. [21, chap 4] for the example @<(£1 (Z)))
we introduce two conditions the second of which is of considerable
technical interest. These conditions will be imposed as needed.

CONDITION (H - L). — The Banach algebra a(Z) is said to satisfy
the Hardy-Littlewood condition if the operator F : {/^} -^{F^} defined
by

F, = 1 /, , n>0 , F, =-(i4) , n<Q
n+l -°°

satisfies

1|{F^}||^< const. IK/JÎ .) , {/,.}ea^O(Z),

/o^ ^ac/z integer k >_ 0.

The significance of the operator F is clear : for by summation

by parts, when /U) = ^ f^ ̂ ,

($/) 0) = ]- (/(O - /(O)) = ^ F^ e1^ = g? {F,}. (33)

CONDITION (B). - The Banach algebra QL'^T) (= F(a(Z))) is said
to satisfy the Bernstein condition if there is a homogeneous Banach al-
gebra ( K ( T ) on T satisfying condition (R) wth (B(T) C d;(T).
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The closed primary ideals 1̂  ̂ (^) and I^C^inACa,? ;a(T)),
(SK^^T) respectively are defined exactly as in §2.

(4.1) THK)RKM. - Suppose ^I(Z) satisfies the condition (H - L)
and QL (T) = ^(a(Z)). 77 ,̂ provided a 1=- [a].

/ la ]+l \
l l^ l la ,p ;a <const• ll^la,?.,. ( 1 11̂  D' < ) <34)

fc^O

/o^ all f in the ideal I^p(O) in A (a, p ;a;(T)) a^rf a ^ e^T).

Proo/ - In view of (34) and the Hardy-Littlewood condition,
inequalities (18) and (19) hold with

|a] ( a i + i
M^a) = ^ ||̂  Dk a\\^ , M,(a) = ^ ||̂  D^ a||^

k = 0 k + 1

Inequality (34) follows by interpolation.
Estimate (34) thus shows that

/la]+l \
\\fo.(e^ + D'^Vp^ ^ const- Ma.p;a ( S llsin^ ̂ a||^ ),

Ac — 0

for all / in Ia,p(0) and a in e°°(T). If (2:(T) satisfies also the
Bernstein condition, sayd5(T) C 0(T) where (B(T) satisfies condition
(R),then

r / I O t j + 1 s
||/a.(^ + 1)̂  '+11|̂  ̂  < const. H/ll^ ̂  ^ ( ^ Usin^ SD^H )(35)

fc=0

for all / in I^^(O) and a in e°°(T). Choose any a in e°°(T) satisfying
(27) and set

^ = <&/a) , r,(S) = l(^ + l)10^ ] ̂  , 0 < r < 1.

(4.2) THKORKM. - Suppose o(Z) satisfies the Hardy-Littlewood
condition and QL(J) (=^(a(Z))) r/z^ Bernstein condition for some
Banach algebra tfS(T). // p . (r) = 0(1), r -> 1 -, rA^,

t»5

^lim 11/Tjl^p^ = 0 , a + [a],
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for all f in the closed ideal 1^ (0) in A (a, p ; (SK(T)), p ^ oo, or in
X(a,oo;ci(T)).

The proof of (4.2) follows from the multiplier inequality (35) and
estimates (29), (31) applied to (B(T). The analogues of theorem (3.11)
and corollary (3.12) for A (a , p ;a(T)) hold because

A(a ,p ;^(T)) C A(a ,p ;dl(T)) C A(a,^ ;e(T))

(using the Lipschitz characterization (5) or interpolation, for instance).
We omit the details.

Exactly as in corollaries (3.7) and (3.8) of theorem (3.6) we
deduce from theorem (4.2) the following important results.

(4.3) COROLLARY. - Under the hypotheses of theorem ( 4 . 2 ) the
Banach algebras A (a , p ; (^(T)), p ^ oo and X(a , p ; (X(T) satisfy
the Strong Ditkin and Strong Analytic Ditkin conditions whenever
a i=- [a].

Finally, we discuss some examples of algebras satisfying the
Hardy-Littlewood and Bernstein conditions. On ^(Z), 1 < q < oo,
and Cy (Z) the family {X(t) : 0 < t < °°}is a semi-group of contraction
operators of class (<°o). For convenience of notation we define ^(Z)
by

^(z) = {/,}: ( s t(i + w i/jr7)1^00!

with obvious modifications when q = °°. Then C^(Z), A: = 1,2,. . . ,
is the domain of definition of M^. The Beurling space bap(Z) is
the interpolation space

^(Z) = A(a,p ;TO)) = (J^(Z) , C^(Z )),^^ 0 = aA,

and similarly for q = oo. It is known that b^Z) C £1 (Z) whenevo-

^ ̂  1 - l/^ , P = 1 ; a > 1 - l / q , 1 .< p < oo,

(essentially this is contained in proposition 2.1 of [II], however,
see [7] for alternative proof). Set
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^(Z) = Z^(Z) , ^ = 1 - 1 A 7 ; ^ (Z^f i^Z) ;

then by stability

A(a ,p ;^(Z)) = ^(Z) , 7 = a + ( l - l/^),

and by corollary (2.3) we have :

(4.4) THKORKM. — The Beurling spaces Z/^Z) are convolution
Banach subalgebras of £1 (Z) whenever

a > 1 - \jq , p =- \ ; a > 1 - \/q , 1 < p <_ oo,

-^e so-called BEURLING ALGEBRAS. Furthermore.

M^) , ^ (A(a ,p ;^) ) , p^.oo and ^(X(a,oo;^))

a^e homogeneous algebras on T.

Pwo/ - That T is the maximal ideal space of bq, hence of
A ( a , p ; Z / 7 ) , p =^ oo, and of ^(a.oo;^), is easy to establish as
are the remaining homogeneity properties.

Particular examples of the algebras bq, A (a, p ; bq) have been
widely studied in the literature with a completely different definition.
For instance :

(i) A (a, 1 ;6 1 ) is the classical Beurling algebra J^(Z) (cf. [17,
18] and [20, p. 137]).

(ii) A ( l — 1 / ^ , 1 ̂ L i.e. the Banach algebra bq, is precisely
the discrete analogue of the algebra fl^(R") introduced by Beurling
([3, p. 10] ; cf. also [ I I ] , [18, theorem (2.2)]).
We shall prove that the algebras bq satisfy the Hardy-Littlewood
condition and ^ W) the Bernstein condition so that the harmonic
analysis of these particular examples can be developed within the
framework of this paper.

(4.5) THKORKM. - The algebras bq (Z) and A (a, p ; bq), 1 <q < o°,
all satisfy the Hardy-Littlewood condition.
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Proof. - Certainly F is bounded

^W^"^2) ' i ^< - , ^ = 0 , 1 , . . . ,
(cf. [9, p. 143]). Hence, by interpolation, F is bounded

F : A(a + l , p ;^) -> A(a ,p ;^).

The theorem follows.

(4.6) THEOREM. - For each algebra ^i(bq), 1 < q < oo, there is
a homogeneous Banach algebra c0 on T satisfying condition (R)
together with

(i) 03 C W) (ii) p^r) = 0 ( 1 ) , r -^ 1 -. (36)

/^ particular, ^(6^) satisfies the Bernstein condition, 1 .< (7 < oo.

Proo/ - Taking Fourier Transforms we see that ^(b2) = (82.
That

(S- C^(^(Z)) =^(^1)

is Bernstein's theorem (or least a weak variant of it). Now it is
known that bq\ C_ b^ whenever q^ > q^ (essentially this is [ 1 1 ,
proposition 2.1 (iii)]). Hence

df = W) C ̂ ) C ^(b1) , 1 < q ^ 2.

On the other hand, by the Hausdorff-Young theorem and theLipschitz
characterization (5),

^-'(ay^cb^1 , 2<^oo , l+l-i
q q

Hence, in all cases, there exists a Besov space (8s such that(%5 C^(^).
Theorem (3.15) shows that part (ii) of (36) holds also.

(4.7) Remarks. - (i) All the theory developed in this section
applies to bq, A ( a , p ;6^) as well as to Banach algebras obtained
by replacing V with, say, a rearrangement invariant Banach Function
space on Z.
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(ii) The Ditkin condition for J^(Z) (= A (a , 1 ; £1)) has been
established by Reiter ([20, p. 137]) by entirely different methods.

(iii) Entirely analogous results hold for the Banach algebras
aW(Z) or the special examples (A^/^, k = 1, 2 , . . . .
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