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HOMOGENEOUS ALGEBRAS ON THE CIRCLE :
I. — IDEALS OF ANALYTIC FUNCTIONS

by Colin BENNETT and John E. GILBERT

1. Introduction.

A Banach algebra QL is said to be homogeneous on 3D, the boun-
dary of the open unit disk D, if

(H.O) OLis a commutative semi-simple complex Banach algebra,
(H.I) the maximal ideal space ofOL is 3D,
(H.2) for each e^ C 3D and f e QL, a contains the translate

T(t)f of / ( T ( t ) f ) ( 6 ) = f(Q - t),

(H.3) the mapping of e^ -> T ( t ) is a strongly continuous repre-
sentation of 3D in QL.

(cf. [15, 18]). QL is thus an algebra (under pointwise multiplication)
of continuous functions on 3D containing all trigonometric polyno-
mials as a dense subalgebra ; without loss of generality we may also
assume T(0 is a contraction :

l|T(t)f||^ ^ ||/||^ , ^ € E 3D , /GO:.

Only regular homogeneous algebras will be considered here.

Throughout this paper QL^ will denote the closed subalgebra of
QL of all functions having analytic extensions into D. Since OL^ contains
the characters {X" : X(t) ^ e^, n > 0 },(̂  is homogeneous on 3D
under the more general definition introduced by de Leeuw ([14,
p. 375]). In particular, QL^ contains the trigonometric polynomials
generated by {X" : n > 0} as a dense subalgebra and the maximal
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ideal space can be identified with D U 3D. The Beurling-Rudin
theorem ([8, p. 644]) when QLis the Banach algebra <° (3D) of all con-
tinuous functions on 3D and QL^ is then the usual disk algebra
suggests the following conjecture :

CONJECTURE (2). - Let I be closed ideal in QL+ and I ^ the
closed ideal in OL generated by L Then I has the form

I = qH°(D) 0 l a (1)

where q is the greatest common divisor of the inner functions in
the factorization in H°°(D) of the functions in I.

Frequently 1^ can be described more explicitly. For if

Z( l )= n r'W , Z ( l ^ )== g, g-^O)
/EI g A

are the zero-sets of I and 1^ respectively, then Z(I^) = Z(I) 0 3D.
When each such set Z(I) n 3D is a set of synthesis for (X(for instance
when every closed set in 3D is a set of synthesis for QQ conjecture (2)
simplifies to

(2)' each closed ideal I in OL^ is of the form

1 = ^H°°(D) n I JK), K = Z(I) n 3D, (2)

where I^(K) = {/ E QL : /-^O) D K>.

The Beurling-Rudin theorem confirms (2)' for QC = <°(3D). On
the other hand, when OC is the Wiener algebra ^(^(Z)), conjecture
(2)' fails (via a tensor algebra argument) though very likely (2)
remains true with each closed ideal I in QL^ being of the special
form (2) whenever Z(I) H 3D is a set of synthesis for ^'(C1 (Z)).
Because single points in 3D are sets of synthesis for ^(^(Z)),
Kahane's result ([10], cf. also [7]) confirms (2) in the case

a = ^(^(Z))

(and even a larger class of algebras) for closed ideals I in (^ for
which Z(I) is a single point in 3D.

Clearly (2)' must be modified when functions in OL are all
sufficiently smooth so that differentiation is allowed as, for instance,
when QL = (°<") (3D) the Banach subalgebra of e(3D) of functions
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with continuous derivatives up to order n. The ideal I<a (K) must then
be the intersection of closed primary ideals rather than merely closed
maximal ideals. We omit these modifications since (S) does not need
to be modified. Taylor and Williams ([19]) have established (2) in
the case OL = C^ (3D) for closed ideals I mOL^ for which Z(I)H 3D
is finite ; more generally, a result of theirs ([19, theorem 5.3]) can
be interpreted as completely confirming (£) for the Frechet algebra

QL == <3°°OD) = ^HO e(n) (8D)-

In this paper we shall consider conjecture (£) for the algebra
OL^ with QL homogeneous on 3D. Some restriction on the smoothness
and spectral synthesis properties of QL (or O^) seems to be necessary.
We say that QL satisfies the Ditkin Condition if for each / c QL with
/(O) = 0 (see ( ])) there is a sequence {r^} C QL such that

(a) r^ == 1 in a neighborhood of 1 (= e10),

(b) lim H/Tj l^ = 0
n

(cf. [11, p. 225]). If { r ^ } can be chosen independently of/, QL is
said to satisfy the Strong Ditkin Condition. For 0^ the natural
analogue is the Analytic Ditkin Condition : for each / G (^+ with
/(O) = 0 there is a sequence {r^ }C QL^ such that

(a)' rJO) = 1 , (b/ lim ||/rj|^ = 0.
n

If {r } C QL^ can be chosen independently of / we say QL satisfies
the Strong Analytic Ditkin Condition. Two conditions will be imposed
on QL.

CONDITION (1) : OL contains e°°(3D), in particular, QL is regular.

CONDITION (2) : QL satisfies the Analytic Ditkin condition.

The main theorem to be proved in this paper is the following :

THKORKM A. — Suppose OL is a homogeneous algebra on 3D
satisfying conditions ( I ) and (2). Then a closed ideal I in QL+ is
of the form

(^The value of / at e^ E 3D is denoted by /(/).
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/ = qHW(D) H I,, (K) , K = Z(I) n 30,

q an inner function, whenever Z(I) 0 3D is at most countable.
When differentiation is permitted in QL (condition (2) prohibits

differentiation) a different version of the Analytic Ditkin Condition
is needed. Denote by M^ the largest integer n for which QL ^ G^
(3D). Then a is said to satisfy the Analytic Ditkin Condition if for
each / G QC- with /<"> (0) = 0, 0 ̂  n < M^, there is a sequence
{r^} C Q^ such that

(a/ ^(0) = 1, (b/ lim ||/rj|^ = 0

The corresponding modifications in the other Ditkin Conditions are
clear. A weaker version of theorem A holds when M^ > 1.

THEOREM B. — Let QL be a homogeneous algebra on 3D containing
Q°°(9D) and such that M^ > 1. Then, if QL satisfies the Analytic
Ditkin Condition, a closed ideal I in ^+ is of the form

I = ^H°°(D) n !„,

q an inner function, whenever Z(I) H 3D is finite.

The proof of theorem B will be omitted (a proof appeals in
[2]). A proof of theorem A is given in section 4 of this paper after
the Carleman Transform has been introduced in section 2 and impor-
tant estimates for the Carleman Transform obtained in section 3.

Part II of this series is devoted to the construction of two large
classes of homogeneous algebras both of which satisfy the Strong
Ditkin and Strong Analytic Ditkin Conditions. These two classes
contain virtually all homogeneous algebras considered previously
(as well as many new ones).

We wish to thank Professors Kahane, Taylor and Williams for
showing us their papers in pre-publication form. However, the proof
of theorem A given here is substantially the one used by one of
us to characterize certain closed ideals in a Beurling algebra of
functions analytic in a half-plane ; this latter result was obtained
independently of [10] and [19] in 1967, 1968 and was announced
in outline in [6].
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2. Carleman Transform.

Until further notice (cf. (4.2)) we shall assume only that QL
is a (Silov-) homogeneous algebra on 3D satisfying condition (1).
As a Banach space, QL is an essential LK9D) - Banach module via
convolution ; consequently

Im ||̂  */- f\\^ = 0 , feQL. (3)

for any uniformly norm-bounded approximate identity {k }in L1 (3D),
say the Poisson Kernel

P. = ^(K^) ' 0 < r < 1.

00

The Fourier series of any / in C(3D) is given by ^ f(n) X" with
_ 1 /•

fW = — J / " . I f such a function / has an analytic extension
^ 3o ^

/(z) into D then
00

f(z) = ̂  /(^)zw = /* P, , z = rX .
o

Since trigonometric polynomials are dense in QL a closed linear subspace
J of QL is an ideal in CX if and only if V1 f G J for all integers n and
/ in J while a closed linear subspace I in QC is an ideal in Q^ if and
only if X" / G I for all n > 0 and / in I.

Condition (1) on QL is stronger than first appearances might
suggest : in fact when C^ (3D) C QL there is a continuous embedding

®N)OD) ^ QL , N = N^, (4)

of C^ (3D) into a for some sufficiently large N (cf. [15, p. 57],
[18, p. 54]). Hence there is a continuous embedding of the dual
space PMci of QL into ((^OD))*, N = N^ . The elements of
PM ̂  will be referred to as (^-pseudo-measures by analogy with the
dual space of ^(C1 (Z)). The bilinear form linking any space with
its dual space will always be denoted by < • ? • > .
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The Fourier series of a distribution S € ^'(SD) = (e"°(3D)) *
00

is defined by ^ SO?) X" with SO?) = <S , X~"> , the convolution
— 00

S*/ by (S*/) (e11) = <S, T(r)/ >, / G (TOD). Denote by H^
the functions analytic in D satisfying (for some N)

S(0) = 0 , S(r^) = 0(k - H"^0), r -> 1-,

and by H_ those functions s analytic in C\(D U 3D) satisfying
(for some H)

s^) == 0(1) , r -> °o , s^e^) = 0(|r - H-^0), r -^ 1-K

It is known that S belongs to H^ if and only if 8(^0 = S^P,
for some S .̂ G (D\3D) with S^(^) =0, ^ < 0, while s e H_ precisely

^hensf-e^} == S * P for some S e<D'OD)withS {n)-Q,n> 0.V A - / - r - ~
Furthermore, for fixed t,

lim S(^'Q = S, , lim s^re^) = S_
r -> 1 - r-> I +

weakly, and hence strongly, in fi/(3D).

Suppose now that 0 £ PM^ (C (3/(3D)). Then functions

o
0^) = E 0(^ , 0. (^) = Z 0(^)^

i -°°

belong respectively to H^, H_. The distributional boundary values
of 0+(^) and <t>_(z) on 3D will be denoted by 0^, 0_ respectively
(the 'Riesz projections' of 0). One consequence of (4) is that

|0^)|< const. ||0||̂  (1 + 1^1^), -oo <n <oo,

for some constant independant of 0 G PM^, 11011 p^ being the norm
of 0 in PM^. The Carleman Transform of 0 as the term is used in
this paper is an extension of 0_ to a function meromorphic in D.
Our definition incorporates modifications introduced by Nyman([16 ,
chap. 2]) and used explicitly or implicitly by many subsequent
authors (cf. [9], [13] or [19]).
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Given / G Q^ and 0 e PM^, then 0 is orthogonal to the ideal
\y generated in QL^ by / if and only if < 0, X" f> = 0, ^ > 0. Hence,
if 0 is orthogonal to I and V/ £ PM ̂  is given by

< V / , A > = <0,/z/> , A G a, (5)

<• °° A

then ^(n) = 0, ^ < 0, and ^/(z) --= ̂  ^(^ belongs to H,.
i

(2.1) DEFINITION. - TAe Carleman Transform ^ of (f> is the
function

$(z) = 0_(z), |z| > 1 ; $(z) = V/(z)//(z) - 0^(z) , |zi < 1.

Since V/(z) g(z) = <0, ^/T(r)P^> for all g G a^ it is not hard to
check that V/(z)//(z), hence <&(z), is independent of the particular
pair /, V/ in (5).

(2.2) REMARK. - 4> == 0 if and only if <t> e(K = { p G PM^ :
P(n) = 0, AZ < 0}. r/?^ $ determines 0 uniquely not as an element
of PM^ but as an element of PM^AB, the dual space of (ST.

For the remainder of this section I will denote a closed ideal
in (^+ and $ the Carleman Transform of an (X-pseudo-measure 0
orthogonal to I. The cospectrum cosp(I) of I is the set of common
zeros (counted according to multiplicity) of functions in I ; Z(I)
is thus the set of distinct elements in cosp(I).

(2.3) THEOREM. - If ZQ ^ 3D does not belong to Z(I) then $
is analytic in some neighborhood of z -

(2.4) THEOREM. - If z^ £ D belongs to cosp(I) with multiplicity
k then $ has a pole at z^ of order at most k.

Remarks. - (a) Some form of (2.3) always is true for the Carleman
Transform whatever the definition (cf. [16, p. 50], [ 11 , p. 180],
[13, lemma 8]). (b) In the special examples with which he was con-
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cemed Nyman completed the characterization of the singularities of
4> by proving that <& analytic in some neighborhood of z E 3D
implies z^ E Z(I). However, there is some doubt about his proof
([12, pp. 121-124]).

Proof of {1.3).- We can assume z^ = 1. There is a function / in
I and a neighborhood STC of 1 such that f(z) ̂  0, z E 91 0 D ; $ is
thus analytic in SIN^D. Since re16 -> 6 + z log r maps 91 onto a
neighborhood of 0 in the complex plane, (2.3) follows by exhibiting
a sequence {<^.} of functions all analytic in some neighborhood OTc
of 1, J1Z C £T(, such that 4>. -> $ pointwise in3Tc\aD and

1$. (re^)! < const. k - \\-(^ , re'^E 01Z\3D, (6)

uniformly in / (cf. [11, p. 180]).

Let{9<_.} be a nested sequence of 3D-neighborhoods (all suitably
small) shrinking to 1 as / -^ oo and{a .}C (^(aD) (C QL) functions
satisfying

a. > 0, a.(-0) = a ( 6 ) , 1 f a = 1, supp (a) CJC,.
—^ ()D

This family {^.} is thus a positive summability kernel on 3D ([11,
p. 10]). Set

<& (re'Q = — f ^>(re10) a (t - Q) dQ , r ^ 1.7 27T 3D /

Clearly all $ are analytic inOTl\8D for OTIC 91, and $. -^ $ pointwise
in CTC\3D. Also the estimates (6) hold since ̂  belongs to H^., 0_
belongs to H and /(z) =^= 0 when z e5itn D. To check the analyticity
of^. on 01Zn BD, fix e11 G ^c n aD and fix /. Then

lim $ (re'Q = (0 *a.) (^'r),
r-M+ / ~ /

1 /»
lim — J ^(re16) o_(Q - t) d6 = (0*a.)(e^Q.r->i - 2ir ^u ^ i + /
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On the other hand, in view of the regularity of QL and the choice
of o^ the functions ̂  = (T(0 a.)/(/* P^.) belong to QL provided, say
r ;> r^, and satisfy

11^11^ = ^(1) , r -> 1- ;

with this it is easy to see that gy -^ g^ as r -^ 1 - (use also (3) and (4)).
But then

^- f W/)(^0) a (t - 6 ) d 6 = < V / , ^ * P >
27T OD / r r

^ < V / , ^ > = < 0 , T ( Q a . > = (0*a.) ^'Q

as r -> 1 —. Consequently,

lim <I>,(^) = (<p_ * or.) (^) = lim 0. (^'Q.
r->l - ' s r - > l + 7

Since 0_ * a. is continuous, Morera's theorem shows that $. analytic in
^YC 0 3D completing the proof.

3. Estimates for the Carleman transform.

Denote by ^ the set of all functions G analytic except possibly
on 3D and satisfying :

^(i). outside 3D, (7 belongs to H_ ,

^(ii). inside 3D,G has a representation G = g/f with g G H^.
^zd / G H°°(D).

The Carleman Transform $ belongs to ^ provided $ is analytic in D.
For each G € §, M(z) = log|G(z)| is subharmonic except possibly

on 3D and, by ̂  (0,

u^re16) = 0(\r - 1|~1), r -> 1+.

To estimate G inside 3D let G = g / f . Then, for some disk D centered
at ZQ = r^ e16^ in D of sufficiently small radius p
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"(^) < -L (( M^o + oe")l -^slAZo + ae'^odadO.0 wp2 ^Dp

Since we may assume |/(z)| ^ 1 , z e D,

u(z^) <-^ ff W l^o + oe"?)l + H°glAZo + 0 )̂11) adadO.
TTp * l̂ p

Changing to polar coordinates with origin at z^ we deduce

^n) < -L ff Wl^10)! -h |log|/(^)||} rdrdO = I, + I,
0 ^?2 JJ^

where S is the sector

^ - p < r < ^ + p , 0o - TrpAo < 0 < 0o + Trp/ro

(p small). Then, for some constant independent of p,

const. /^o^ , ,, / , . ,I, < ——— / log (1/1 -r)dr
P ^O-P

since g e H^. ; and so with p == -^ (1 - ̂ ).

Ii = 0(|1 - rj-1) , ^ -> 1-.

On the other hand, since / has bounded characteristic,

1 < const sup f2 ' |log|/(^)|| d6 - 0(|1 - rj-1)
2 p 0<r<l "o

as r -> 1-. Hence u(re16) = 0(|1 - r|-1), r -> 1+. Application of results
of Domar ([5]) in the form given in [19] (lemma (5.3)) gives :

(3.1) THEOREM . - When u(z) = tog|G(z)|, G e §, is subharmonic
except possibly on a closed subset E of 3D, then

u(z)< A/d(z,E) , z ^ E,
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for some constant A, where d(z , E) is the distance from z to E.
If ZQ is an isolated point of E, (3.1) gives

G(z) = 0(exp[a|z - zj-1]) , z -^ z^,

for some constant a. This estimate is used to derive the more precise
estimates for G needed later. Let/= B .̂ S 0 be the usual factorization
of / in H°°(D) ([9, p. 67]) and let 11 = ̂  4- ̂  be the decomposition
into continuous and discrete parts of the unique positive singular
measure defining S . We write (with obvious meaning)

^ = s m^ 5^QD

where m-(t) ̂  0 and 8^ is the point mass at e^ £ 3D ; we then define
m^(t) by

m^ 0) = inf m^(t) , e11 e 3D,

the infimum being taken over all/^ H°°(D) occuring in representations
G = gif of G as an element of .̂ The following estimate will be
vital.

(3.2) THKORKM. - Suppose G E § has an isolated singularity
at z^ = e^o G 3D. Then

(i) for every £ > 0

G(z) = 0(exp[(m^(^) + c ) | z - zj-1 ]), z -^ z^,

(ii) if m^t^) = 0

G(z) = <9(|z - zj-1^), z -> z^ ,

/or ^om^ integer N.
It is enough to consider z^ = 1. Let a; be the mapping co :

? "̂  ^ = (? - !)/(? + 1) which, in particular, takes the right hand
half plane onto D ; define functions F, 7, 0 , . . . in this half-plane
corresponding to functions G, g, /,. .. in D by F = G o a?, 7 = g o a;,
0 = /o a;,. . . . When G satisfies the hypotheses of (3.2) with z =1 ,
F(?) is analytic outside some disk Dy = {? : |?| < i;}, u large, and by
the preliminary estimate for G
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r(?) = o(e^) , in -* °°.
for some ft ̂  0. In the left hand half plane

n i"
r(S + n?) < const. _ (1 + I?!) , ^ < 0,

N a suitable integer, and, if G = g/fm D so that r = 7/0 in(RK(?) > 0,
the function 0 belongs to H°°(R) ([9, p. 130) while

[ 1 IN
TO + "?) < const. ij, (1 + 1?D > £ > 0 , (8)

for some integer N. As a function in H°°(R),

0(?) = e-^ B, S, 0, (9)

([9, p. 133]), B , S and 0 having the obvious meanings.

(3.3) THEOREM. - When 0 G H°°(R) has the factorization (9),

lim log-^{p et)1- = - w ( 0 ) cos 0 (10)
p - » o o p J

for almost all 0, - 7T/2 < 0 < Tr/2.

Pwo/ - Assertion (10) is the content of the Ahlfors-Heins
theorem applied to log |0| ([!]). The proofs of Boas ([3, pp. 114-123] )
contain all the difficulties.

Proof of (3.2). — (i) Given c > 0 choose a representation

G = gif of G in D such that m^O) < m^(0) + — £ . We prove that

r^=o(eV^) , |?|— . (ID

Choose OQ and ^ with - 7r/2 < 6^ < 0, 0 < ̂  < Tr/2 for which
(10) exists, 0 being the function 0 = /oco corresponding to the
special choice of /. Then by (8) and (10),
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rW0,) = 0(exp[(w^(0) + £ ) p c o s 0^]), p -> oo,

7 = 0,1. Now divide C\D^ into four sectors :

So = {? : 0o <arg(?)<0^} ,. S, ={? : 6, <arg(?)< 0, + 7T/2},

S, = {? : 0^ - 7T/2 < arg(?) < 0, + 7T/2},

83 = { ? : 0^ -7r/2<arg(n<0^}.

Since F is bounded on 3D^ and (7) holds, the Phragmen-Lindelof
theorem shows that (11) holds in S^. In the remaining sectors the

function A(?) == ̂  - -^-N r(?), N sufficiently large, is uniformly

bounded on all boundaries except arg(?) = 0^ and 0^ and on these

A(P^'0/) = 0(exp[(m^(0) + c) p cos 0^]) , p ^ oo,

/ = 0, 1. Thus A is uniformly bounded throughout S while in S
and S.,j

AO) = 0(exp[(^(0) +£)|?|]) , |?| ^ oo,

again using the Phragmen-Lindelof theorem ([3, theorems 1.4.2, 6.2.3]).
This proves(11).

(ii) If m^(0) = 0, then r js of minimal type as part (i)
shows. But A(^) is bounded on (R£(?) = v. Hence A is bounded
throughout C \ D^ ([3, theorem 6.2.4]) and so

r(?) = 0(1 + |?n , |?| -.00. (i2)

Converting both (11) and (12) to estimates for G we obtain (3.1).

4. Proof of theorem A.

Let I be a closed ideal in QL^, q the greatest common divisor
of the inner functions in the factorization in VT(D) of the functions
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in I. Set K = Z(I) H 3D (no restrictions on K for the moment).
Now certainly

I C ^H°°(D) H I^(K). (13)

To prove the reverse inclusion choose any g E qH°°(D) 0 I^(K)
and define 0 E PM^ by

<<t>^h> = <0,/^> , h e Oi.

Then g E I if and only if 0^ E (B(cf. (2.2)) for all 0 G PM^ ortho-
gonal to I. Now, if $ denotes the Carleman Transform of 0 ,
automatically 4> (0) == 0 and $ = 0 ( 1 ) at infinity. Hence g £ I

A "

if and only 4> is entire whenever, as we shall henceforth assume,
0 is an QL -pseudo-measure orthogonal to I.

(4.1) LEMMA . - The Carleman Transform $ of 0 is given by

<t>, (z), |z| > 1, g ( z ) (\^(z)/f(z)) - 0^(z), \z\ < 1, (14)

for some 0^ E H_ and 0^ E H^, where (^ / f - <t>^)is a representation
of $ in D. Furthermore, the singularities of 4> must lie in Z(I) H 3D<

Proo/ - To establish (14) define ^ € PM^ by

<^,A>=<0^,/%>=<0,^> , A eff,

/ fixed in I. Then, with ^ C PM^ defined by (5),

V^) = <0,^T(QP,>

<0,/T(r)P,>^(2) = ^ ( z ) g ( z )

for 2 € D. Hence (14) holds.
By (2.4) the function q(^lf) is analytic in D. Thus g(\l^/f), hence

$ , is analytic in D since q divides g in H°°(D). Consequently, the
only possible singularities of $ must lie m Z(I) H 3D (cf. (2.3)).

Representing $ in D by (g\p —/0^) / /we see from (4.1) that
<I> belongs to the class §. In addition, since q divides both g and
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/ in H°°(D), i.e. q g and q f E H°°(D), 4^ admits a representation

^ = (^V/ - ~qf^)lqf, z E D,

as a function in .̂ Now, with the notation of § 3,

m At) = inf m,(t) , e^ E 3D.
^ /Ei ;

Thus

^ (0 = 0 , ^ E 3D.
K

Estimate (3.2) (ii) shows, therefore, that any isolated singularity of
$ necessarily is a pole.

(4.2) Remark. - Only now is the Analytic Ditkin condition
imposed. Its effect will be to rule out the possiblity of $ having
any isolated singularities at all.

(4.3) THEOREM. - If QL satisfies the Analytic Ditkin condition
then <t> does not have any isolated singularities.

Proof. - Suppose $ has a pole at z = 1 with order M, say

<^(z) = a(z - 1)^ + . . . , a = ^ 0 , (15)

near 1 (so, in particular, 1 e Z(I) H 3D). Let { r^} be a sequence
in Q^ such that T^(O) = 1 and Tj^ -^ 0 in norm in (^+ as N -> oo.
Approximating each T^, by a Taylor polynomial P^ in C£ (via (3)
and the Cesaro kernel for instance) we obtain a sequence { P }
satisfying

(a) P ^ g -^ 0 in ^+, (b) P^(0) ^ 1, (16)

as N -^oo. With 0j^ e PM,, defined by <<^ , h> = <0 , P ^ A >,
(16) (a) shows that {0^} converges weak* to 0. In particular, {0 }
is uniformly bounded in norm in PM^. Furthermore, as a sequence
in ®'(3D), {0^} converges weakly, hence strongly, to 0. But then
(0^ )^ also converges strongly to 0 in <x)'(3D) since the 'Riesz pro-
jections' are continuous on ®'(3D). Thus
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(0^00-^0, | z |< l , (0j,)_(z)->0, | z |> l .

On the other hand, defining ̂  E PM ̂  by <^ , h> = <0^ , fh>,
/fixed in 1, we can soon check that ^(z) = P^(z) g ( z ) ^(z). Hence
the Carleman Transform $ of 0 is given by

PN^//) - (0,,), . M < 1 ; (0^)_ . bl > 1.

Consequently <^(z) -» 0 whenever z ^ 3D since P^g -^ 0 in QL.

There is an alternative description of $^ : fix n > 0 and define
^ ^ ̂ '^ = <0^,X^>, /; G a. A calculation shows that the
Carleman Transform $ of 0 is

^^00 +z" | f 0Mz^ .
L i -" J

Hence, for each N, there is a function Q^ analytic in C such that

^(z) = P^) ^(z) + QN^)'

in particular, a neighborhood 31 of 1 in which each function (z - 1 ̂
^ is analytic. By (15) and (16) (b)

(z - ̂  P^(z) $/z) ̂  a, z ^ 1, N -^ oo ;

thus (z - l)1^ 4>^(z) -^ a(^ 0) as z -> 1, N -> oo. We shall prove,
however, that some subsequence of{(z - l)1^ $^} converge uniformly
to 0 as N -^ oo in some neighborhood DTT of 1. This contradiction shows
that 4> cannot have a pole at z = 1.

That some subsequence o f{ (z - l)^ ^} converges uniformly
to 0 as N -^ oo follows provided (z - l)^ ^ is uniformly bounded
in some neighborhood of 1 since ̂  (z) -> 0, z ^ 3D. Choose a suitable
contour F containing 1 as^ an interior point and a function / in I
such that / =^ 0 on r n D (such a choice is always possible). Now,
by (4) and the uniform boundedness of the 0 's,

10N^)1 < const (1 + IA) ;

hence
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10N)± (rei0^ < const I 1 - ̂ ^i) . ^ 1 »

uniformly in N. A similar calculation shows that

|^(re10)) < const. |1 - rl^^ r ^ 1,

again uniformly in N. Thus

|(z - l)1^ <^(z) | < const. |1 - Izll-^ci4-1)

whenever z G F, |z| ^ 1. Hence (cf. proof of lemma (8.3) in [11,
p. 180]) the functions (z - l)^ 4^ (z) are uniformly bounded in some
disk centered at 1. This completes the proof of theorem (4.3).

Completion of the proof of theorem (A) : When K = Z(I) 0 3D
is at most countable there is a decreasing chain of subspaces K^
of K defined inductively as follows (cf. [17, p. 40]) : K^ = K and
K^ is the derived set of K., a == j3 + 1, if a is not a limit ordinal,
or K- == 0 K,, if a is a limit ordinal. There will be a first ordinal,a 0 <a ^
say 7, necessarily a non-limit ordinal, such that K^ is empty ; conse-
quently there is a last ordinal X such that K. is non-empty. Now by
(4.1) the singularities of $ must lie in K^. Suppose that any singula-
rity of $ lies in each K., j8 < a. Now either K = H K., ors P p<a p

a = j8 + 1 and KAK^ consists of isolated points. Since $ cannot
have isolated singularities each singularity of $ must therefore lie
in K,.. Hence by transfinite induction the singularities must all lie
in K.. But K. is finite and a singularity in K^ would have to be
isolated. Thus <& is entire which as we remarked earlier ensures :

gE^H°°(D) n I^(K)=^£ I,

the reverse inclusion to (13).
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