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CONSTRUCTING MANIFOLDS
BY HOMOTOPY EQUIVALENCES 1.
AN OBSTRUCTION
TO CONSTRUCTING PL-MANIFOLDS
FROM HOMOLOGY MANIFOLDS

by Hajime SATO

0. Introduction.

A homology manifold can be given a canonical cell complex
structure, where cach cell is a contractible homology manifold. In
this paper, given a homology manifold M, we aim at constructing a
PL-manifold with a cell complex structure, where each cell is an
acyclic PL-manifold, which is cellularly equivalent to the canonical
cell complex structure of M. We obtain a theorem that, if the dimension
n of M is greater than 4 and if the boundary oM is a PL-manifold or
empty, there is a unique obstruction element in H, _, (M .4e3), where
%> is the group of 3-dimensional PL-homology spheres modulo those
which are the boundary of an acyclic PL-manifold. If the manifold is
compact, the constructed PL-manifold is simple homotopy equivalent
to M.

I have heard that similar results have been obtained independently
and previously by M. Cohen and D. Sullivan, refer [1] and [9].

I would like to thank Professors V. Poénaru and F. Laudenbach
for their kind support.

1. Definition of homology manifold with boundary(').

Let K be a locally finite simplicial complex and lct ¢ be a simplex
of K. We define the subcomplexes of K as follows.

(1) We can refer the chapter 5 of the book : C.R.F. Maunder, “Algebraic topology™,
Van Nostrand, London (1970).
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St(6,K) = St(0) ={r€K,3a>7,a>0}
dSt(0,K) = 3St(0) ={r ESt(0), 7 > 0}
Lk(0,K) = Lk(o) ={rE€St(0),7No =0}

We write by K', K", the first and the second barycentric subdi-
visions of K.

Let M be a locally finite full simplicial complex of dimension n.
We say that M is a homology manifold of dimension # if the following
equivalent condition holds :

LemMMA 1. — The followings are equivalent :

i) for any simplex o of dimension p,
H (Lk(o,M) = H(S""?") or O
ii) for any simplex o of dimension p,
H,(St(0,M)/8St(0, M) = H,(S*) or 0.

iii) for any point x of |M|, where | M| denotes the underlying
topological space of M,

H,(M|,IM|-x) = H(") or O.

The definition is invariant by the PL-homeomorphism in the ca-
tegory of simplicial complexes.

LemMMA 2. — For any p-simplex o of M, Lk(a,M) is a compact
(n — p — l)-dimensional homology manifold.

Proof. — It is compact because M is locally finite. Let 7. be a g-
simplex of Lk(o,M). We have

Lk(r,Lk(oc,M)) =Lk(t0,M) .

Hence ﬁi(Lk (r,Lk(o,M))= ﬁ,. (S" 7P~ 971 or 0, which completes the
proof.

Let us define the subset dM of M by
oM ={c €M |H,(c.M) = 0}

We call it as the boundary of M. If 0M = ¢, the manifold is classical
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and the following Poincaré duality is well known (see for example

(7: (1.4)D.

LEMMA 3. — Let M be an orientable compact n-dimensional ho-
mology manifold without boundary. Let A, D A, be subcomplexes of
M. Then we have the isomorphism

H(A,,A) =H,_ ;(IM|—|A,|,IMI—|A,].

Using this we will prove the followings. By lemma 2, for p-
simplex o, Lk(o,M) is a homology manifold and we can define
oLk (o, M).

LeMMA 4. — If 0Lk(o,M) # Q, Lk (0 ,M) is acyclic and 0Lk (0 ,M)
is an (n — p — 2)-dimensional homology manifold such that

H, (3Lk (0 ,M)) = H,(S"~P~?) .

PrROPOSITION 5. — If oM # (), oM is a subcomplex and is an
(n — 1)-dimensional homology manifold without boundary.

We prove that lemma 4 for n = k implies proposition 5 for
n = k and proposition 5 for n < k implies lemma 4 for n = k + 1.
Since lemma 4 holds for n = 1, we can continue by induction.

Lemma 4,_, = Proposition 5,_, . Let ¢ be a p-simplex of oM
and let o, < o0. Then we can write 0 = 0,0, . We have

H, (Lk(o, ,Lk(oy,M))) = H, (Lk(o,M)) =0 ,

which shows that o, € 0Lk(0,,M) and so dLk(o,,M) # Q. By the
lemma 4, Lk(0,,M) is acyclic and it follows that ¢, € 0M. Hence oM
is a well-defined subcomplex of M. A g-simplex 7 of Lk(0,M) is in
Lk(o,3M) if and only if H,(Lk(ro,M)) = 0. Since

Lk(ro ,M) = Lk(r,Lk(0,M)) ,

it is equivalent to that 7 belongs to 0Lk (o, M). Hence the complex
Lk(o,0M) coincides with 0Lk(o,M). By lemma 4,, we have
H,(3Lk(0,M)) = H,(S*"P~?), which shows that M is a (k — I)-
dimensional homology manifold without boundary.

Proposition 5,<, = Lemma 4,_,,, Let M be ahomology ma-
nifold of dimension k + 1. Let o be a p-simplex of M. By lemma 2,

19
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Lk (0 ,M) is a homology manifold of dimension kK — p. By proposition 5
forn =k — p, 0Lk(0,M) is a (k — p — 1)-dimensional homology ma-
nifold without boundary if it is not empty. Let 2Lk(0,M) be the
double of Lk(o,M), i.e.,

2Lk(o,M) = Lk(0, M) U Lk(o,M) .
OLk(o,M)

Let 7 be a g-simplex of 2Lk (a, V). If 7 is not a simplex of dLk(0 , M),
clearly,

H, (Lk(r, 2Lk (0, M))) = H,(Lk(r, Lk (0 ,M))) = H,(S*"7-97")
If 7 is a simplex of dLk(o,M), we have
Lk(r,2Lk(0,M))

= Lk(r,Lk(0,M)) U Lk(7,Lk(o,M)) .
Lk(7,0Lk (o ,M))
By definition ﬁ,-(Lk(T, Lk(o,M))) = 0 and by the proposition S for
n=k—p— 1, we have

H,(Lk(r, 8Lk (o, M))) = H,(S¥P9-2) .

Hence in any case ﬁ,.(Lk(T, 2Lk(0,M))) = ﬁi(S"“"""), which
shows that 2Lk(o,M) is a (k — p)-dimensional homology manifold
without boundary. Applying lemma 3, we have

H'(Lk(a,M), dLk(0,M)) = Hy , ;(Lk(o,M)| — |0Lk(o,M)]) .

Notice that for any homology manifold M, H;(IM| — | 0M|) = H;(M).
Hence H'(Lk(o,M), dLk(o,M)) =H,_ ,_ ,(s" Py or Hy _,_;(pt).
But if it is isomorphic to Hy_,_ ,(S" P), we have

H°(Lk(o,M), dLk(o,M)) =Z ,
which contradicts to the definition that H oLk (o, M)) = 0. Hence
Lk(o,M) is acyclic and consequently H (aLk(o M)) = H (Sk—P—1),
which completes the proof.

2. Cell decomposition of a homology manifold.

We mean by a homology cell (resp. pscudo homology ccll) of
dimension n or homology n-cell (resp. pseudo homology n-cell) a
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compact contractible (resp. acyclic) homology manifold of dimension
n with a boundary, the boundary being a homology sphere but not
necessarily simply connected. A (pseudo) homology cell complex is a
complex K with a locally finite family of (pseudo) homology cells
C ={Cq}, such that :

i) K=UC,

ii) Cy, C; €C implies dC,, Co N Cy are unions of cells in C

iii) If a # B, then Int Co, N Int Cy = Q.
If a homology manifold M has a (pseudo) homology cell complex
structure, we call it a (pseudo) cellular decomposition of M. Two
(pseudo) homology cell complexes K = UC,, K' =UC, are iso-
morphic if there exists a bijection k : C = C' such that both k and

k="' are incidence preserving. In such a case we say that they are
cellularly equivalent.

Now we have the following :

PROPOSITION 1. — If two finite homology cell complexes K, K'
are cellularly equivalent, then they are simple homotopy equivalent.

We can define a simplicial map f: K = K' inductively by the
dimension of the cells. Hence it is sufficient to prove the following
lemma.

LemMMma 2. — Let A]':(j =1,2,...,r) be subcomplex of simpli-
cial complexes B' for i = 1,2 respectively such that B' = U A',., and
i

let f: B! > B? be a simplicial map. For any subset sof{1,2,...,r},
let Ay = jr)s Aii and let f, be the restriction of f on A;. If f; is a

mapping from Asl to A: which is a simple homotopy equivalence for
any s, then f itself is a simple homotopy equivalence.
Proof. — First suppose that r = 2. We have the exact sequence
0 > C,(A)) = C,(B) > C,(A\NALY) » 0

of the chain complexes. Let g: AL/(A} NAL) = AZ/(AI N A2) be
the map induced by fand let us denote by w( ) the Whitehead torsion.
Then by theorem 10 of [8], we have
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w(f) =w(fp +w(g .
Remark here that f and g can easily be seen to be homotopy equiva-
lences. Further we have the exact sequence
0 - C, (AL NALY) - C, (ALY = C (AL/(AiNAL) - 0
which shows that
W(f{2}) = w(f{l’z}) + w(g) .

Since w(f(;}) = w(f5)) =w(f{y,5)) =0, we have w(f)=0. If
r 2 3, we can repeat this argument, which shows that f is a simple
homotopy equivalence for any r.

Now let 0 be a simplex of a locally finite simplicial complex K.
We denote by b, €K' its barycenter. We define dualcomplex D(o)
and its subcomplex 8§D (o) which are subcomplexes of K' by

D(0) = D(0,K) ={b, ...b, 10<0,<:-- <0, EK}

8D(0) = 8D(0,K) ={b, ...b, |0 i 0,< ---<0,EK}
The followings are easy to see.

i) if 0 <¢' = D(0)D D(0")

ii) D(o) = b, * 6D(0)

iii) 6D(0) = t;J D(7) where >0 and 7 # 0

iv) 8D(0) is isomorphic to Lk(o,K)'".

Let M be a homology manifold. For each simplex

0 =by b, - .b,

of M, where 0,° <0;! <...< 0. are a set of simplexes of M, we
have the duall cell D(o,M’). It is a compact homology manifold by
lemma 2 of § 1. Further we have

8D(0, M) = Lk(o,M)
= Lk(o,0,) * Lk(0, ,M)
-r-1

= g™ * Lk(o, ,M)
n,—r nr~-r—1
= Lk(o,,M) x D U (Lk(o,, M) * (pt.)) x S

’
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where = denotes that both sides are PL-homeomorphic and let

d,: 8D(a,M") > Lk(o,,M) x D"~ U (Lk(o, ,M) * (pr.)) xS~ "

be the PL-homeomorphism, which we call the trivialization of
8D(o,M"). If o is not in aM, 8D(o,M’) is a homology manifold
whose homology groups are isomorphic to those of S” !, boundary
being empty. If ¢ € oM, §D(o,M’) is an acyclic homology manifold
with the boundary Lk(o,d0M") which is PL-homeomorphic to
dLk(a,,M) x D" " U (3Lk(a,,M) * (pt.)) x S " ~'. The union
St(o,0M")U 8(0,M") = dD(o,M") is a homology manifold without
boundary whose homology groups are isomorphic to those of S"~'.
Hence in any case D(0,M’) is a homology cell. The union U D(0,M"),
o moving all simplexes of M’, gives the cellular decomposition of M,
which we call the canonical one.

We define the handle M; of index i by the disjoint union
M, =U D(bon‘_ )

where o changes all (n — i)-simplexes of M. We have 6D (b,) = U D(7),
where 0 <7 €E€M’, and it gives a cellular decomposition of M;. We
can devide the boundary as 6D(b,) = LD(b,) U HD(b,), which con-
sists of unions of celles attached to the handles of lower indexes and
higher indexes. We define them as

LD(b,) = 8D(b,) N (jL<Ji M,.)
HD(b,) = §D(b,) n(igi M,.) )
Letr=b, b, ...b, #0 bea simplex of M’, where

m m m
<t ' <71, TEM.

Then D(7) € LD(b,) if and only if 7, > o and D(7) € HD(b,) if and
only if 7, < o. It is easy to see that

LD(b,) = Lk(0,M) x p"-¢
HD(b,) = (Lk(0,M) * (pt.)) x "1,

and these isomorphism together give the trivialization dba of 8D(b,).
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Let A"~ ¢ be the standard (n — i}ysimplex and let

aAn—-i — Sn—i—l — Ld Ca

be the cell decomposition defined as above, which we call the
standard decomposition of S” /', The decomposition

HD@®,) =UD(7) .
is equal to the standard product decomposition

{Lk(a,M) * (pt.)} x (g ca) .

All the cells of HD(b,) which is not contained in LD (b,) N HD(d,) is
written as

(Lk(o,M) * (pt.)) x Cq .

Finally we define M;, the subcomplex of M composed of handles
whose indexes are inferior or equal to i, that is,

My=Y MCM.

A3

Then we have
M(,.) = M(,._l) UM,

attached on E:J LD(b,), o being (n — i)-simplexes.

3. PL-homology spheres.

We call an n-dimensional homology manifold whose homology
groups are isomorphic to those of S” a homology n-sphere or homo-
logy sphere of dimension n. If it is a PL-manifold, it is called a PL-
homology n-sphere.

If dimension is smaller than 3, a homology sphere is the natural
sphere. And so any 3-dimensional homology manifold is a PL-manifold.
In order to study higher dimensional cases we define the group ye3.

Let X* be the set of oriented 3-dimensional PL-homology
spheres. Note that any homology sphere is orientable. We say that
H? € X? is equivalent to H3 € X3 if H} # (— HJ) is the boundary of
an acyclic PL-manifold, where # denotes the connected sum and
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— H3 is Hj with the orientation inversed. Let #€* = X3/~ be the set
of equivalence classes. By the connected sum operation, ¥€> is an
abelian group. Let G be the binary dodecahedral group. The quotient
space S*/G is a PL-homology sphere whose class in #€> is non trivial.

On the contrary, for higher dimensions the following is known

(2] 6] [4].

ProprosiTION 1 (Hsiang-Hsiang, Tamura, Kervaire). — Any PL-
homology sphere is the boundary of a contractible PL-manifold, if the
dimension is greater than 3.

We will prove the followings, where x is a point in S i= 1.

PrOPOSITION 2. — Let H> € X>, then H>® x S' is the boundary
of a PL-manifold K* such that H, (K) = H, (S") and the inclusion

it o {xIxS'—> HxS'—> K

induce an isomorphism of the fundamental groups.

PROPOSITION 3. — Let H® € X3 and let i = 2. Then H> x §' is the
boundary of a PL-manifold K**! such that the inclusion

j:So{x}xS—H xS <K

induces a homotopy equivalence.

Proof of Proposition 2. — Since any orientable closed 3-dimen-
sional PL-manifold is a boundary of a 4-dimensional parallelizable
PL-manifold (See by example [3]), we have a parallelizable PL-
manifold L* such that 9L = H. By doing surgery we can assume that
m,(L) = 0. By the Poincaré duality theorem, H,(L) is free abelian.
Let p: L x S' - S' be the projection. Then it induces an isomor-
phism of the fundamental groups. Remark that if we have a manifold
K with boundary H?® x S! such that H,(K) = 0 and the inclusion
j : 8" < K induces the isomorphism of the fundamental groups, then,
by the Poincaré duality, we have H;(K) = 0 for i = 2. Hence it is
sufficient to kill H,(L x S'). Since H,(L) is free, so is H,(L x S").
We can follow the method of lemma 5.7 of Kervairc-Milnor [S]. Since
m, (L) = 0, the Hurewicz map of L, m,(L) = H, (L), is isomorphic,
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and so is the Hurewicz map of L x S'
h:my(LxS"Y) - Hy(LxS".

Hence we can represent any element of H, (L x S") by an embedded
sphere. In our case the boundary d(L x S') is H®> x S* and it does not
satisfy the hypothesis of that lemma. But since we have

H,(d(L xS') =0,
the result is the same.

Proof of Proposition 3. — Let K® be the S-dimensional PL-
manifold of proposition 2. Attach K with H®> x D? by the identity
map on H? x S'. The constructed manifold W* is a simply connected
PL-homology sphere, and by the generalized Poincaré conjecture, it
is the natural sphere S°. It shows that we can embed H* in S* with a
trivial normal bundle. By composing with the natural embedding
S* < §** we have an embedding of H® in S**' with the trivial
normal bundle. The manifold N which is the complement of the open
regular neighbourhood of H® in S**! has H® x S' as the boundary
and the inclusion j : 8 <> N induces an isomorphism of homology
groups, hence homotopy equivalence, which completes the proof.

4. An obstruction to constructing PL-manifold.

Let M be a homology manifold of dimension greater than 4. We
assume that the boundary oM is a PL-manifold if it is not empty. As
in § 2, it has the handle decomposition

M=M U M,

M~ o<gign

which has also the canonical homology cell complex structure. We
want to construct a PL-manifold with a pseudo homology cell complex
structure which is cellularly equivalent to M. Since M is a PL-
manifold, a problem first arises when we attach handles of index 4.

Let 0 be an (n — 4)-simplex in the interior of M. Then Lk (0, M)
is a 3-dimensional PL-homology spherc. Connecting o by a path from
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a fixed base point of M, we can give the orientation for the neigh-
bourhood of g, and hence for Lk (o, M).

Let Lk(o,M) be the class in the group ¥e3. To each (n — 4)-
simplex o of M, we define a function A(M) : {(n — 4)-simplex} - ¥¢°
by

AM) (o) = ‘ {Lk(c,M)} if o€Int M

l 0 otherwise.

Then A(M) is an element of the chain group C,_,(M, 3€3). The coef-
ficient may be twisted if the manifold is not orientable.

Lemma 1. — A(M) is a cycle.

Proof. — Let u be an (n — 5)-simplex. In the homology 4-sphere
Lk (u), the complex U Lk(o;) * (x;), where x; denotes the barycenter
of the Il-simplex b,b, and the sum extends to all the (n — 4)-

simplexes such that o; > u, is a subcomplex whose complement in
Lk(u) is a PL-manifold. So the connected-summed PL-manifold
Z Lk(o;) bounds an acyclic PL-manifold.

Hence A(M) represents an element {A(M)} of H, _,(M, 4¢3). Now
we have the theorem :

THEOREM. — Let M" be a homology manifold with the dimension
n > 4. Assume that oM is a PL-manifold if oM # Q. If the obstruction
class
{(NM)}E€H, _,(M, 5%

is zero, then there exists a PL-manifold N with a pseudo homology
cell decomposition which is cellularly equivalent to M.

Proof. — Since {A(M)} = 0, there exists a correspondance

g : {(n — 3)simplex} — ¥e3
such that

Y g(r,) ={Lk(a,M)}E8e> .
1,->o

We will inductively construct PL-manifolds N, and N, = v gp N,

with a pseudo homology cell decomposition N, = U E, where all
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pseudo cells are PL-manifolds such that N(p) is cellularly equivalent
to M
p) "

(a) p < 2. In this case, the manifolds Np s N(p) and their cells
are just equal to M,, M(p) and their cells. That is, for any j-simplex o,
j=2n — 2, we define the PL-manifolds as

E(b,) = D(b,)
N, = U{E(b,)|dimo =n — p} = U{D(b,)|dim o =n~p}=Mp

For any simplex 4 €M’ such that u>b,, we put

Ew) = D(u) .

Hence 0E(b,) = aD(b,) = U D(u) = U E(u), and N(p) = M(p).

(b) p = 3. Let 7; be an (n — 3)-simplex. Let H? be the 3-dimen-
sional PL-homology sphere which represents g(7;) and let K; be the
PL-manifold whose boundary is H,.3 x S"~* such that the inclusion
j: St e K, induces the isomorphisms of the fundamental groups
and the homology groups, whose existence is shown by propositions
2 and 3 of § 3. Let D’ CH; be a disc. Then D> x §"* C 3K, . We
have the PL-homeomorphism BD(bTi) =S2x D" 3uUD?x §"*. We

define the PL-manifolds E(bTi) and N; by
E(b,i) =D@,) U K,

1
p3xsn—4

N, = U E,)

where D(b,i) is attaced to K; by the identity map on D3 x §" 4.
It is easy to see that E(b,) is a homology cell. We will give the pseudo
cell decomposition for aé(b,i). First we devide aE(bTi) as the union
aE(bTi) = LE(bf,.) U HE(bT'_), where

LE(d,) = aD(b,) — D> x D3
HE(b,) = 9K; — D’ x "% = (7 - D) x "7 .
Since LE(b,) = LD(b,), we give the cell decomposition by that of
] 1

LD(b,). We give the pseudo cell decomposition in the interior of
13
HE(bTi) as
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3 3 n—4 __ 3 3 — 3 3
(H) - D*) xS —(Hi—D)x(gca)—g(Hi—D)xca,

where §"7% = U C, is the standard decomposition. These decompo-
sitions of LE(d,) and HE(b,) fit together on their intersection and
1 1

give the decomposition of aE(bTi), which is clearly cellular equivalent
to that of aD(bTi). For each simplex u > b”i , LEM', we denote by
E(u) the pseudo cell of 9E (b, ) which corresponds by the equivalence
to D(u) € aD(bTi). We have a‘E(bTi) = UE(u). We define Nm by

NGy = Ny UN;,

attached by the identity on LE(bT‘_). N(3) is cellularly equivalent to

Mg, .

(c) p =4. Let 0 be a (n — 4)simplex. Let UE(u) C aN(S) be
the union of pseudo cells such that b, <u €M', u# b, . Then by
the definition, it is PL-homeomorphic to the PL-manifold

(Lk(0) # Z(— H})) x D"7*
where H; represents g(r;) and the sum extends to all 7; > o.
Since {Lk(0)} = Z g(7,) in ge3, the PL-homology 3-sphere
H) = Lk(o) # Z(—- H})
is the boundary of an acyclic PL-manifold Wf,. The union
Wé x S""UH2 x D**

is a PL-homology (n — 1)-sphere. By the proposition 1 of § 3, it is
the boundary of a contractible PL-manifold Y,. We define the PL-
manifolds E(b,) and N, as

E,) =Y,
N, = UE(,) .

Further we define LE(b,) and HE(b,) by

LE(b,) = H) x D*~*
HE(b,) = Wi x §"75.

The pseudo cellular decomposition for LE(b,) is already defined and
we give for HE(b,) by the product with the standard decomposition
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of $"73. They give a pseudo cellular decomposition of
d0E(b,) = LE(b,) UHE(b,) ,

which is cellularly equivalent to that of dD(b,). For each simplex
u>b,,pne M’', we define E(u) by the pseudo cell which corresponds
to D(u) by this equivalence. We define N(4) by N(3)UN4 attached
by the identity of LE(d,), which is cellularly equivalent to M

(d) p=5. Leto beaj-simplexj<n— 5. Let UE(u) CON(,_;_

be the union of pseudo cells such that u > b, , u # b, . Then by our
definition, it is a PL-manifold

)

HP ! x D*°P

where H‘;" is a PL-homology (p — 1)-sphere, where p = n — j. By
the proposition 1 of § 3, H? ™! is the boundary of a contractible PL-
manifold W?. We define E(b,) by

E(b,) =Wl xD""P .
The other definitions are just similar to the case when p = 4.

Continuing this process, we obtain a PL-manifold N = N, which

is cellularly equivalent to M = M(n). Q.E.D.

5. Simple homotopy equivalence.

By the theorem of § 4, for the same M, if the obstruction class
is 0, we can construct a PL-manifold N. In this section, we prove the
following.

THEOREM. — [f M is compact, the constructed manifold N is
simple homotopy equivalent to M.

Let M®) denote the k-skelton of M. Let L be a subcomplex of
M) we define the PL-submanifold N*) of N by
N = U{E(b,) |0 EL}.
We put
N® = NMO) = G (Eb) |0 € MB)Y

By the induction of k, we prove the stronger
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LEMMA 1. — There exists a simple homotopy equivalence
f:M® 5 NE)
such that, for any (k + 1)-simplex u, f(du) C NO® gnd

flow : ou > NO»

is a simple homotopy equivalence.

Proof. — If kK = 0, it holds obviously. Now we will prove the
lemma for k + 1 assuming the lemma for k. Let u be a (k + 1)-
simplex. Since the collar of ou is PL-homeomorphic to S¥ x I, we
can write

p=S"x1USs* *b,)
where S§ =S¥ x{0}=09u and S§ =S*x {1} =S xINS* + B,).
Recall that
MU L) _ (k)
N ¥ =N"®u E@®,)
N® NE®,) = N NE@®,) = HE(b,) = W+~ x s*
where W,’:""' is an acyclic (or contractible) PL-manifold. Let x
be a point in the interior of W, and let d : sk - W, x S* be the
embedding defined by d(S¥) ={x}x S¥. We define a map
f:skusk » N®
by
Fi1sg=f
fisk=a.
Since 7| oM gives a simple homotopy equivalence du — N(a“), N

is homotopy equivalent to S", and so f | S'(‘, and f| S',c are homotopic.

Hence we can extend 7 on S¥ x L Further since E(b,) is contractible,
~ kKU

we can extend f to a map fromu = S*¥ x U S* * (b,) to N(M( ) “).

By the definition, f and f coincide on oy, and so we have a map

g=fUf :M®uy - NMOUL)
Repeating this for all (k + 1)simplexes of M, we obtain a map
g: ME*D » NE*D we have the exact sequences of chain groups,

0> C,M¥) > C,M*™)) > T C (w/ap) > 0
0 > C,(N¥) > C,(N*"V) > ¥ C,(E(b,)/HE(®,) ~> 0,

where we regard them as Z7, (M¥* ") = Z 7 (N**D)modules.
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The map g induces f, on the first elements and id.* on the third
elements. Since they are chain equivalences with trivial Whitehead
torsion, so is g, by [8]. Hence g is a simple homotopy equivalence.
It is easy to see that, for any (k + 2)-simplex 7, g induce a simple
homotopy equivalence

gloT : ot — NOD
Q.E.D.
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