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INFINITELY DIVISIBLE PROCESSES
AND THEIR POTENTIAL THEORY,

(II. Part) C)

by S. C. PORT and C. J. STONE

16. Some Fourier Analysis.

The characteristic function p-^O), 6 e ®, is defined for
( ^ 0 by

W =^<e, ̂  {dx) =/^<6, ̂ (0, dx).

It is jointly continuous in t and 6 and satisfies the equation

(16.1) y+\Q) = ̂ (O^e), s, t^ 0 and 6 e ( .̂

For convenience we set [1(6) == ^(O).

PROPOSITION 16.1. — There is a uniquely defined function
l°g P^6)? 9 e ̂ , 5ucA t/ia(

^(6)=^10^6), ^0 and 6 e ̂ .

77ii5 function is continuous^ vanishes at 6 = 0 and nowhere
else, and has non-positive real part.

Proof. — By (16.1) there is a uniquely defined number
<p(6) such that

^(6) = e^\ t ^ 0 and 6 e ̂ .

Since p/(0) ==1 for ^ ^ 0, it follows that <p(0) == 1. Suppose
9(60) = 1. Then ^(60) ==1 for t ^ 0. This implies that

(1) The fist part was published in Ann. Inst. Fourier, tome 21, 2.
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each S( is contained in the subgroup

{^e®l<^6o>=l } .

Therefore this subgroup equals the whole group and hence
60 = 0.

We will now show that 9 is continuous. Let log z be
defined continuously for \z — 1| < 1 so that log 1 = 0.
Let N be a relatively compact open subset of @. There is
a to > 0 such that

|^(6) - 1| < 1, 0 ^ t ^ to and 6 e N.

Thus log p/(6) is well defined and continuous in t and 6
for 0 ^ t ^ to and 6 e N. If s ^ 0, ( ^ 0, s + ( ^ to,
and 6 e N, then

log ^(6) = log ^(6) + log ^(6).

Consequently there is a continuous function 4'(6), 6 e N,
such that

log p/(6) = ̂ (6), 0 ^ t ^ to and 6 e N.

It follows that

p/(6) = e^\ 0 ^ t ^ to and 6 es N.

From (16.1) we see that

^(6) = eW, 0 ^ t < oo and 6 e N,

and consequently that ^ agrees with 9 on N. Since N
is any relatively compact open subset of @, we see that <p
is a continuous function on @. Since 9(6) is a logarithm
of p-(6), the proof of the proposition is complete.

THEOREM 16.1. — The function

l - %<^ e>
91 log m

is bounded for x in compact subsets of ® and 6 in compact
subsets of the complement of the origin of @.

The proof of this result is an obvious modification of the
proof of Theorem 3.1 of [7] and will be omitted.
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PROPOSITION 16.2. — There is a relatively compact open
neighborhood Q of the origin of @ such that

1——— — ———1——— ^2 , X > 0 and 6 e Q.
X-log jl(6) X+l-( l(6)

Proof. — There is a relatively compact open neighborhood
Q of the origin of ^ such that

l^e) _ i| , l10 !̂! e.Q,
and

]gl(6) _ 1 - log jl(6)| ^ |log (1(6)|2, 6 e Q.

It follows that
|X + 1 - (1(6)1 ^ l-10^6)!, X > 0 and 6 e Q.

We also have that
1^-log {1(6)1 ^ |log pL(6)| , X > 0 and 6 e ( .̂

Thus for X > 0 and 9 <= Q

1 1
^-log (1(6) X+l -pL(6) |

|il(6)-l-logil(6)| ^ ^
| ^ + l _ p , ( 6 ) ] | x - l o g (1(6)| " '5

as desired.

THEOREM 16.2. — Let Q be a relatively compact open
neighborhood of the origin of ^. The process is transient or
recurrent according as

JXioAe))"8

converges or diverges.

Proof. — Suppose the process is transient. Choose f{x\
a;e@, such that /*€= C^-, 3{f) > 0, and f is non-negative
and integrable. Then^'-x^^9-
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By letting X ^ 0 and using Fatou's Lemma, we find that

f ^{Qm (r~^ dQ ^ W) < 00-J® V^g t^6)/
Since f{0) = J{f) > 0 and log (1(6) ^ 0 for 6 ^ 0 , we
see that

( ^ (-1——} dQJo Vog ^(9)/
converges.

Suppose instead that the process is recurrent. Then by
Proposition 5.3 S< generates @ for some t ^ 0. Without
loss of generality we can assume that Si generates @. Then
the random walk obtained by looking at the process at integer
times is a recurrent random walk on @. By Theorem 5 1
of [7]

^(r^,))"8

diverges. By Proposition 16.2

XK-o^+^r^w))'16

converges. Thus

/^(iogV^
diverges as desired.

17. The Recurrent Potential Operator.

Throughout this section it will be assumed that the process
is recurrent. Let 3?+ denote the collection of functions f{x),
x e= ®, such that

(i) f is a continuous, non-negative and integrable function;
(ii) f is supported by a compactly generated subgroup of @;
(111) f, the Fourier transform of /*, has compact support,

and
(iv) there is a compact subset C of @, a constant c

such that 0 < c < oo, and an open neighborhood Q of



INFINITELY DIVISIBLE PROCESSES 183

the origin of (^ such that
J(f) - %f(6) ^ c max (1 - ̂ x, 6», 6 e Q.

a*6G

Properties of this family of functions were developed in [7].
Let 9 denote the collection of differences of elements of S "̂.
Recall that

G^f^f^e-^fdt.

For X > 0 and f <= 9 we have

^^^ey^-
Choose §'e9'+ such that g is symmetric and J(g) = 1.

For X > 0 set c^ = G^O) and define A^ for /'e5 and
a?e® by

AY(a;) = ^J(/") - GY(a;).
Then AV^) - r g(- ̂ j^) - <a;> 6>^-e) rfeA /w - Ja ^ - log ^(e)
Also

AY.(.) - AW) ̂ ^^ ÎfiA
In the non-singular case it is convenient to modify the

definition of c\ Let (A^ be the distribution of X^ when
Xo = 0 and define

^ = P e-^pî  ri(.

Then we can write

^ === l4 + <? * ̂  * ̂

where, as X \ 0, ^ and (JL^ increase to finite measures ^
and (Jig and 9 is a probability measure having compact
support and a continuous density and is such that y is
absolutely integrable. This decomposition is obtained as in
Port and Stone [8].

The measure <p * [L^ * ̂  is absolutely continuous and has
a continuous density p^ given by

^ - f <- y, 9>y(e)^(e) ̂
p y ! ~ h ^ - log Pt(6)
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Set c^ = p\0) and a\t/) = c^ - p\y). Then

^)=r(i^^i2W)Mw^
J<g X — log (1(6)

and
a\y - ,) - o^y) = f <-»,W-<^mW „

J@ ^ — log (Ji(6)
We now define

AY(^) = ^J(/*) - GY(.r)
then

Ax/^) = ̂  ^(2/ - x)f{y} dy-f, ̂  {dy)f(s + y)
and

AY,(^) - AY,(0) == ^ (a\z + y - x) - a\z + y))f^ dz
- f@ ^2 W(f(z + x - y} - f{z - ?/)).

The process is said to be type II recurrent if ® ̂  R © H
or ® ̂  Z e H, where H is compact, and the induced
process on R or Z has mean zero and finite variance.
Otherwise the process is said to be type I recurrent. In the
type II case we can assume that @ = R e H or Z © H
and Haar measure on @ is the direct product of Lebesgue
measure on R or counting measure on Z and normalized
Haar measure on H. Let ^ be the projection from @ onto
R or Z and let a2 denote the variance of ^(Xi). Then
<F(X() has mean 0 and variance o2^. We set

©+= {^€=@|^) > 0} and ®- == {x^@\^{x) < 0}.

By x -> + °o or x -> — oo we mean x -> oo and x e @+
or x e @+.

PROPOSITION 17.1. -— Let Q be a relatively compact open
neighborhood of the origin of (̂ . Then

Inn f j - <^ 9> ^e
x+o JQX — log (1(6)

exists and is finite. In the type I case

limlim^-y-^-.^^ft
y^ ^o JQ X — log (1(6)
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In the type II case

lim Urn F-^1-^8^ = T .-W.v»+o° ^o JQ X — log (Ji(6)

Proof. — We can assume that the random walk obtained
by looking at the process at integer times is a random walk
on ®. Then by Proposition 16.2, the result reduces imme-
diately to Theorem 5.2 of [7].

THEOREM 17.1. — In the non-singular case there is a conti-
nuous function a{x), x e ®, such that

lim a\x) == a{x), x e ®.
X ^ o

In the type I case

lim (a(y — ^) — a(t/)) == 0
y->oo

<m^ in the type II ca5^

lim {a{y — x) — a{y)) == T <T-2^).
y->±oo

T/ie convergence in these limits is uniform for x in compacts.

Proof. — Let Q denote a relatively compact open neighbor-
hood of the origin of (^. Set

^-x11^^™®--
Then as X ^ 0, a^c converges uniformly on compacts to

^-^-^y^-
By the Riemann-Lebesgue Lemma

lim W.= f l̂ 6- dQ
y>°° v / JQC — log a(6)

and hence
I3m (^(y — x) — ^(y)) = °y>oo
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uniformly for x in compacts. Set

^ - C ^ - <- ̂  ̂ W}W - ̂  rfe
lw ~ JQ ^ - log (1(6)

--/Q^-^y'W^6)^-

Thus, as X i 0, i<A(y) converges uniformly on compacts to

^{y} = - /Q (1 - <- y, e»(l,(e) dQ.

Again by the Riemann-Lebesgue Lemma lim ^{y) exists
and is finite and hence yi'"

lim {^a^y — x) — lO^y)) = 0
y>oo

uniformly for x in compacts.
Finally, set

ĵ;1.-̂ 6-
By Proposition 17.1, as X [ 0, 2^ converges uniformly on
compacts to

^(y) = lim r 1 ~ <" ̂ .^ dO.2 ̂  X^JQ X - l o g (1(6)

From the same theorem it follows that, uniformly for x in
compacts, in the type I case

lim (^q{y — ^) — 2»o(y)) = 0
y>oo

and in the type II case

lim (^q(y — x) — 2^o(2/)) = ^ <s~^{x).
y->± oo

This completes the proof of the theorem.
In order, to state results involving $ in the non-singular

case and 9 otherwise, we let y = $ in the non-singular
case and 9 otherwise.

THEOREM 17.2. — Let f^y. Then for xe®

lim AY(^) = A^f(x)
Uo
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exists and is finite. In the type I case

lim {Af,{x) - Af,(0)) = 0
y^-oo

and in the type II case

lim (Af,(x) - A/;(0)) = =F ^^J^).
y->±oo

These limits are all uniform for x in compacts,

Proof. — In the non-singular case, this result follows from
Theorem 17.1. In the singular case it follows from Theorems
16.1 and 16.2, and Proposition 17.1.

In the type II recurrent case define

K{f)=f^^x)f(x)dx.

THEOREM 17.3. — Let fe9* with J(f) = 0. Then

lim GY(^) == Gf(x)
\^o

exists and is finite and the convergence is uniform for x in
compacts. In the type I case

lim Gf(x) = 0
X-> oo

and in the type II case

lim Gf{x) = ± a-^f).
3D-> ± oo

Proof. — In the non-singular case the result follows from
Theorem 17.1 and the formula

Gx/^) = ̂  (^(- ̂  - a\V - ^)f(y) dy + ̂  v.\ {dy}f{x + y).

In the general case it follows by the same argument used in
proving the corresponding result in discrete time, Theorem
5.8 of [7].

COROLLARY 17.1. — Let f, f^ e 3 .̂ In the type I case

lim (J(/i)A/^) - J(/WA)) = 0
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and in the type II case

lim (J(/i)A/N - J(/Wi(^)) - ^ ^WiW) - K(/i)J(/')).
.,C.>±oo

PROPOSITION 17.2. — Let C be a compact subset of @
and Q a relatively compact open neighborhood of the origin
of (^. Then there is an M such that 0 < M < oo and

r ^ e > « ^ e > - i ) ^ ̂
JQ ^ - log pt(6)/Q ^ — lOg

/or t/ e @, ^ e C, anrf X > 0.

Proof. — By Proposition 16.2 this reduces immediately
to the corresponding result in discrete time, Theorem 5.13
of [7].

In stating the next several results it is convenient to set
a° = a and A° = A.

THEOREM 17.4. — In the non-singular case for any compact
subset C of @ there is an M such that 0 < M < oo and

\a\y — x) — a\y}\ ^ M, ye®, xeC, and X ^ 0.
Proof. — This result follows immediately from Proposition

17.2 and the definition of a\

THEOREM 17.5. — Let fe9* and let C be a compact
subset of ®. Then there is an M such that 0 < M < oo and

\^fy{x) - AYy(0)| ^ M, ye ®, x e C, and X ^ 0.

Proof. — In the non-singular case this result follows from
Theorem 17.4. In the singular case it follows from Proposition
17.2.

THEOREM 17.6. — In the non-singular case there is an M
such that 0 < M < oo and

a\x) ^ — M, x e ® and X ^ 0.

THEOREM 17.7. — Let f^y with J(f) ^ 0. Then there
is an M such that 0 < M < oo and

AY(rr) ^ — M, x e (̂  and X ^ 0.
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Proof of Theorems 17.6 and 17.7. Theorem 17.6 follows from
Proposition 16.2 and the arguments used in proving the
corresponding result in discrete time, Theorem 7.8 of [7].
Theorem 17.7 follows from Theorem 17.6 in the non-singular
case. Otherwise it follows from Proposition 46.2 and the
arguments used in proving the corresponding result in dis-
crete time, Theorem 5.15 of [7].

THEOREM 17.8. — Let f^y with J{f) = 0. Then there
is an M such that 0 < M < oo and

|GY(^)| ^ M, xe@ and X ^ 0.

Proof. — This result is an immediate corollary of the
above theorem.

THEOREM 17.9. — Let the process be non-singular. If
@ ^ R © H or ® c^ Z (B H, where H is compact, there
is an L such that 0 ^ L ^ oo and either

lim a{x) = L and lim a{x) == oo
x->—v> a;'>+ao

or
lim a[x) = oo and lim a[x) = L.

a;->—ao a?»+oo

If ® is not of the above type, then

lim a(x) = oo.
X-> oo

THEOREM 17.10. — J/' @ ̂  R © H or @ ^ Z © H where
H is compact there is an L such that 0 < L ^ oo and either

lim A/*(rc) == LJ(/*) anrf lim A/*(^) == oo
SO+OO X->—W

for all fe^ with J(f) > 0 or

lim A/'(^) == oo and lim A/'(rc) == LJ(/*)
as^+ao a; ->—oo

for all f^y with J(f) > 0. If @ ^ not of the above type,
then for all feS* with J(f) > 0

lim A.f{x) = oo.
X-> oo
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Proof of Theorems 17.9 and 17.10. — By using Proposition
16.2, we can extend Theorem 9.4 of [7] to continuous time.
From this point on, the proof of these two theorems is similar
to the arguments used in proving the corresponding discrete
time results in Section 9 of [7].

In the type I case let Co(@) be the collection of continuous
functions on @ which vanish at oo. In the type II case
let Co(@) denote the collection of continuous functions f
on ® having finite limits /*(+ oo) and f(— oo) such that
/'(+ oo) + /*(— oo) ==0 then Co(@) with sup norm is a
Banach space.

PROPOSITION 17.3. — Let t be such that S^ generates ®.
Then

FP5 ds
Jo

maps Co(@) onto a dense subset of Co(@).

Proof. — Consider first the type I case. Let y be a bounded
signed measure such that

(Y,^PY^)=0, /-eCo(®).

Let (JL^ denote the distribution of X, when Xo == 0. Then

(Y*^^^ , / - )=0 , /•eCo(@).

Consequently
Y * f^y." ds =0

and by taking Fourier transforms we see that

Y(6)yVf6) ds=0.

Thus y(0) == 0- F01' eac!1 6 ^ 0 there is a c ^ 0 such that

^(6) == e«.
Then

f^e)^6^—1^6)-1.
Jo c c
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Since B( generates ® it follows that p/(6) ^ 1 for 6 ^ 0 .
Thus Y(O) ==0 for all 6 and hence y ls the trivial measure.
This shows that the collection

f^P'fds, /•eCo(@)

is dense in Co(@).
Consider next the type II case. Let a be a finite constant

and Y a bounded signed measure such that

(r, f^P'fds) + a/-(+ w) = 0, /-e Co(@).

Then

(r ,^PY^)=0, /•eC,

and arguing as in the type I case we conclude that y is the
zero measure. This implies that a = 0. Thus the conclusion
in the type II case is also established.

THEOREM 17.11. — Suppose the process is non-singular.
Then {A/VeC, and J{f) = 0} is dense in Co(@).

Proof. — Since the process is non-singular S^ generates
® for all t > 0 and in particular Sj generates @. If
/•eC, and J(/ ' )==0 then Af=—Gf. Let U denote the
analog of G for the random walk obtained by looking at
the process at integer times. Then

G = FP5 ds U.
Jo

By Theorem 12.1 of [7], {Uf, f^C, and J(f) = 0} is dense
in Co(@) and hence by Proposition 17.3

^Gf=f^sdsVf\f^C, and J(U-OJ

is dense in Co(@) as desired.
From Theorem 17.11 we obtain

COROLLARY 17.2. — Let geC^-, J(g) == 1, and let
X = Co(@) ® {Ag}. In the non-singular case the linear mani-
fold {Af: feCc} is dense in ^.
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18. The Behaviour of Gp.

Throughout this section the process is assumed to be recur-
rent. Recall that % denotes the collection of relatively com-
pact Borel sets in @. We let ^3 denote those sets B e S>
such that C\B) > 0. If Be %i, then P^TB < oo) = 1
a.e. x e= ®. In the non-singular case if B e %i then
P..(TB < oo) == 1 for all xe@. We let ^ denote those
sets B e S> such that Ga(^, A) is integrable on compacts
whenever A is compact. We let ^3 denote those B e %
such that for every compact set C there exist finite positive
constants t and 8 such that

P^TB ^ t) ^ S, x e C.

It is clear that if B e %, then G^{x, A) is bounded in x
whenever A is compact. Thus ^g^^s- It B e % and B
has a non-empty interior, then B e ̂ 3. We let ^4 be those
sets in S> having a non-empty interior and such that
P^TB == Ta) a.e. ^e®. In general %3 %i ̂  2%3 2 ̂ 4.
Set ^ = %i in the non-singular case and S>^ == ^4 other-
wise.

PROPOSITION 18.1. — In the non-singular case %i = ^3.

Proof. — Let the process be non-singular and let B e 3 .̂
To prove that B e ̂ 3 it suffices to show that for some non-
empty open set P and finite positive constants ( and 8

(18.1) P,(TB ^ <) ^ 8, x^P.

Since B e %i we can find a set D e 33 having positive mea-
sure and finite positive constants s and a such that

P,(TB ^ s) ^ a, t /eD.

Let VQ e ® be such that if Q is an open neighborhood of
z/o, then |Q n Bi] > 0 (such a 2/0 clearly exists). We can
find non-empty open sets P and Q such that z/o e= Q and
for some c > 0 and 0 < r < oo

P^rr, dy) ^ c dy, x e P and y e Q.
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Set ( = r + s and 8 = ac|Q n Bi|. Then for xe P

P,(TB ^ 0 ̂  P^, A/)P,(TB ̂ ) ^ ̂  Ca dy = 8,

so that (18.1) holds as desired.

PROPOSITION 18.2. — The collection S>^ is the same for
the dual process as for the original process.

Proof. — Let A and C be compact and B e %. Then

/ GB(^? A) dx = I Ga(^, C) dx.
ty C tv A

Proof. — We can assume that A and C are relatively
compact non-empty open sets. Let Ai and €3 be compact
sets such that

(18.3) f^G^A,)dz= oo.

We will first prove that

(18.4) f^{z,A,)dz= oo.

Let Cg be a compact subset of C having a non-empty
interior. Clearly

GB(Z, Ai) ^ Gc^, Ai) +^Hc^, dy)G^y, A,).

Since GG,(JS, A) is bounded in z it follows from (18.3) that

f^dzf^Hc^ dy)G^{y, Ai) = oo.

Let D be a non-empty open set such that D + Cg c C
Then

(18.5) f^duf^dzf^ H^c^, dy)G^(y, A^) = 03.

Equation (18.4) now follows from (18.5) and Proposition 18.3
For r a non-negative integer define.

VA(F) = min [( ^ 0\f\^X,) ds ^ r].

Then VA(O) = 0, VA(r) -> oo as r —> oo and for all x e G
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with Pa, probability one, VA^) < oo for all r. Thiit-

G^x,A,)=^f^i^X,)dt

=jf^[f^l)i-W''T^^)].
There is an M < oo such that

Ex LCT1'1^5 TB ^ VA^] ^ MP•C(TB ^ VA^-
Hence

G»{x, Ai) < M 1 P,(TB ^ V^r)) <s M(l + GB(.T, A)).
r==o

The conclusion of the theorem now follows from (18.4).

THEOREM 18.2. — There exist recurrent processes such that
for some B e % , |B| > 0 but B ^ ̂

Remark. — If B e 9S and |B[ > 0, then B e ̂ , so the
theorem shows that Bi may be strictly larger than %a.

Proof. — Consider a symmetric random walk on the line
which assigns mass 2~8ft to the numbers ± 2-n, n > 1,
the remainder of the mass being assigned to the origin. Then
the random walk has mean 0 and finite variance and hence
is recurrent. We can convert the random walk into an infini-
tely divisible process on the real line by letting one unit of
time for the random walk correspond to an exponential
length of time with mean one for the infinitely divisible
process.

By the local central limit theorem we can find a compact
set A and a c > 0 such that

f^ P^(X, e A) ds ^ c\/t, t ^ 0 and 1 ^ x ^ 2.

Let B e ^B. Then for t ^ 0 and 1 ^ x ^ 2

G^x, A) = E^f^ l^XJ dx

^ ^LC"1^ ^; TB ^ (] ^ c\/t- ^P,(TB < t).
In order to construct the set B start out with [0, 1] and
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delete all points which, for some k ^ 2, are within 2-2k

of some number of the form jl^. Then B e % and |B[ > 0.
Let 1 ̂  x ^ 2 and /c ^ 2. If ^ is within 2-^ of some

number of the form J l ^ y then the process starting at x
cannot hit B until at least one non-trivial jump occurs
whose magnitude is strictly smaller than 2-/c. The probability
that a jump of magnitude smaller than 2~k occurs by time
( is less than (2-^ and hence P.,(TB ^ () ^ ^-^ Conse-
quently

GB( ,̂ A) ^ \Tt — t^-^.

Choose ( == 2^. Then

G^(x, A) ^ cl^ - 1.
The measure of such x ' s is 21~k. Thus

^GB^, A) dx ^ 2k+lc - 21-\

Since k can be made arbitrarily large
/*2
j Ge(x, A) dx = oo

and B ^ ^25 as desired.
We now begin to study the main properties of sets in ^

and ^63.

PROPOSITION 18.4. — Let B e ̂  and let A and C be
compact. Then

f^G^z,A)dz
is bounded in x.

Proof. — Let F be a compact set such that A c F and
B c F. Let D be a relatively compact non-empty open set
such A — D c F and B — D c F.

For u e D

f^G^z, A) dz =f^dzfH^ dy)G^y, A).
Thus

( Ga(^ A) dz =-_ ( dz \ du \ H^+p(z, g)G^{y, A).
Jsc+C \u\ ̂ x+C » - D J
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By Proposition 18.3

f GB(^, A) dz < IC—DI f GB(?/, A) dy <B(?/, A) rfy < oo
•c+C I1-7! ^D+FJ x+G \u\ JD+F

as desired.

PROPOSITION 18.5. —- Let B €= %g. L^ f be a continuous
non-negative function on ® 5uc/i that for some compact neigh-
borhood P of the origin of @ the function fp defined by

fp{x) = max f(y), x e @ ,
yex+p

is integrable. Then Gef is integrable on compacts.

Proof. — Observe that

\P\G^f{x)=\P\fG^ dy)f(y)
=fdz X+pG^ ̂ f^ ^ f d z f^^z +p)-

Consequently

P| f G^f(x) dx ^ fdz f^z) ( G^x, z + P) dx
^ C t/ »y G

= f dz fp(z) f^ GB(^, C) dx

and the desired result follows from Proposition 18.4 applied
to the dual process.

PROPOSITION 18.6. — There exist functions /*€=3H- and
g <= ̂ + such that J(/*) > J(g) > 0 and g — f is non-negative
outside of some sufficiently large compact set A.

Proof. — This result follows easily from the example on
@ == R given on page 48 of [8] and the arguments used in
proving Theorem 3.4 of [7].

Let B e ^2. For feS and X > 0 we have the usual
identity

(18.6) A^f(x) - H^AY(a-) = - G^(,r) + L^)^/-).

THEOREM 18.3. — Let Be ̂ . Then

(18.7) lim U(aQ = L^(x), x e @,
x+o
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exists and La is non-negative, finite a.e. and integrable on
compacts. For any C e S>

(18.8) lim ̂  U(^) dx = f^ L^x) dx.

If B e %3, </ien LB is bounded on compacts and the conver-
gence in (18.7) is uniform on compacts.

Proof. — Let B e %g and let feS satisfy the assumptions
of Proposition 18.5. Now by monotone convergence

limGV^) = G^f(x), ^®-
\^o

By Theorem 17.2

limAY(^) =A/1^), rpe®,
^o

uniformly for a; in compacts and hence

lim HiAY(;r) == HaA/^), ^ e ®.
x^o

Thus by (18.6)
lim L^(x) == La(^)
) i^o

exists for x e ®. Since L^ is non-negative so is LB. Also
La(^) < oo if and only if G^f is finite. Since G^f is inte-
grable on compacts it and LB are both finite a.e. x e ®.
If both LB(^) and Gef{x) are finite, then

A/^) ~ HaAA^) == - GB/"^) + LB^)J(/').

Since GB/^ is integrable on compacts, so is LB. By monotone
convergence

lim ( G^f(x) dx = ( G^f{x) dx
^o J c J c

and (18.8) now follows from (18.6).
Suppose now that B e ̂ 3. Then for f^S

lim (G^) - U{x)J{f)) = Af{x) - HaA/*^), x^®.
\^0

Let f and g be as in Proposition 18.6 and let C be com-
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pact. Then since f < g outside of some sufficiently large
compact set

lim sup sup (G^f{x) — G^g{x)) < oo.
X ^ o xec

This implies that

lim sup sup L^)(J(/*) — J(g)) < oo, xe@.
X^o a?ec

Since 3{f) > J(g) we see that

lim sup sup L^(a?) < oo.
X ^ o xec

This implies that LB is finite everywhere and in fact bounded
on compacts.

For X > 0, G],f{x) ^ GB/^). Thus

(18.9) lim sup sup (L\{x) — LB^)) ^ 0.
\^o xec

Since f ̂  g outside of some compact

lim sup sup (GB/*(^) — G],f(x)) ^ lim sup sup (Gag^) — GWrr)).
\^o xec \^o scec ' "v / ov / /

This implies that

lim supsupjy^LB^) — U(^))
\^0 XGG

^ lim supsupJ(g)(LB(^) — U(rc)).
X ^ o xec

Since J(/') > J(g) ^ 0 and LB is bounded on compacts

lim supsup(La(^) — U(a;)) < 0.
X4'o xec

Together with (18.9) this implies that L^(x) -> L^{x) as
X ^ 0 uniformly on compacts, as desired.

THEOREM 18.4. — Let Be ̂  and /*eg?*. Then

(18.9) A/*^) - HaA/^) = - GaA^) + LB^)J(/*), x e ®,
w^A ^ understanding that if J(f) = 0 ^ term LB(^)J(/*)
15 defined to be zero for all xe@ [even if L^(x) == oo !). In
particular Gaf is integrable on compacts and if B e ^3, then
GB/* is bounded on compacts.
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Proof. — This result follows easily from equation (18.6)
and Theorem 18.4.

In the type II case set

LS(^) = L^x) ± ^{x) - HB+(O;)).

Then La is integrable on compacts and finite at exactly
those values of x^ where LB is finite. In particular La is
finite a.e. If B e ^3 then LS is bounded on compacts.
Also LS is non-negative, as is evident from the following
result.

THEOREM 18.5. — Let Be%2, / '€=<&*, and <p e 0. If the
process is type I recurrent^ then

(18.10) lim G^fy(x) = LB^)J(/'), La(^) < oo,
j/>00

and

(18.11) lim (y, GB^) = J(/-)(V, LB).
y>oo

If the process is type II recurrent, then

(18.12) lim GB^) == LB^W), LB^) < 0),
1/>+00

and

(18.13) lim (9, GB^) = J(/*)(9, LB).
y>-+-oo

J/1 B e %3, ^en fl8.10) and (18.12) AoM /or aM xe @ and ̂
convergence is uniform on compacts.

Proof. — For /*e9?*, this result follows immediately from
Theorems 17.2 and 18.3 and the identity valid for La(^) < oo :

Af,(x) - A^(0) - Ha(A^ - A/,(0))(^)
= - G^{x) + LB(^)J(^).

In the non-singular case we are done. In general however,
we must replace the collection 3s by Cp. This is easily done
by a standard « unsmoothness » argument based on Theorem
3.4 of [7].
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19. Asymptotic Behavior of GB/QV) and HB/(^).

Continuing our study of recurrent processes, we obtain
from Theorem 18.5 and duality

THEOREM 19.1. - Let Be^, /e<D and 9 e <&*. If the
process is type I recurrent, then

Ûm (9., Ga/) = J(9)(/; La).

If the process is type II recurrent, then

.i™. ̂  GB/>) = J((p)^ Ls)-
The existence of limiting hitting distributions is most

readily established by reduction to the discrete time case.

THEOREM 19.2. — Let Be %i. If the process is type I recur'
rent there is a probability measure ^ supported by B and
such that for fe 0 and 9 e O*

Ĥm (9,, HB/*) == J(9)(/; pta).

If the process is type II recurrent there are probability measures
(A? and [L-B supported by B such that for fe 0 amf 9 e C,

J^ (9., HB/') == J(9)(A ^).

Remark. — In the type II case we set ^ = (^ + (Jii)/2.

Proof. — By Proposition 5.3 we can assume that the random
walk obtained by looking at the process at integer times is a
recurrent random walk on ®. Its type is I or II according
as the recurrent process is type I or II. Let

T^==min[7z ^ 0|X,e=B]
and let

HV(^)==E,[/*(X^);TB < oo].

LEMMA 19.1. — Let C be a compact subset of @ and
e > 0. Then there is a compact subset K of @ such that
C c K and

lim sup P^XTJ, e C) ^ e.
X-><xi
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Proof. — Let Ci be a compact set containing C and
such that |^Ci[ ==0. Let n be a positive integer such that
en ^ 1. Let Ca, ..., C^ be translates of Ci such that Ci, ..., C^
are disjoint. Let L be a compact set containing Ci u • • • uC^
and such that |bL| ==0.

Suppose the random walk is type I. Then by Theorem 5.7
of [7] for 1 ̂  k ^ n

^ = lim P.,(XT^ <= C/,)
X->oo

exists. Clearly c^ + • • • + c^ ^ 1. Thus there is a / such
that 1 ̂  / ^ n and Cj ^ I/M ^ s. Let Xj be such that
Cj = Xj + Ci and set K == L — Xj. Then

lim P^XTJ, < Ci) == Cj < s.
.»•> 00

Consequently
lim sup P^(XT^ e C) ^ s,

X-> oo

as desired. The proof in the type II case requires only obvious
modifications of the proof in the type I case.

LEMMA 19.2. — Let B > ̂  and let e > 0. Then there is
a compact set K such that for fe 0

lim sup|HB/^) - ̂ W{x)\ ^ e\\f\\.
X^ 00

Proof. — There is a compact set C s B such that

P^(X, e C for 0 ^ t ^ 1) ^ 1/2, y e B.

By Lemma 19.1 there is a compact subset K of @ such that
C c K and

lim sup P^XT^ e C) < e/4.
X-> oo

It follows that
lim sup P,(TB ^ Ti) ^ e/2,

X-> oo

from which the conclusion of the lemma follows immediately.

Proof of Theorem 19.2. Suppose the process is type I. Then
by Theorem 5.6 of [7]

lim (<p,, HW) = J(y)(HB/-, i^),
X-> 00
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where p.̂ . is the limiting hitting distribution of K for the
random walk. Let s^ —> 0 as n —> oo and let K^ be the
corresponding compact sets in Lemma 19.2. There are pro-
bability measures (^ supported by B such that
(HB/*, (JitJ = (/*, ^n). We now have that

lim (<?„ H^HB/*) = J(9)(A ^)
a?-> oo

and
lim sup |<p., H^HB/*- HB/'J ^ sJ/1|J(9).

.!;•> oo

Consequently

lim sup |(<p., Haf) - J(<p)(A ^)| < ^^^(y).
.C-> 00

This implies that (/*, (JiJ is a Cauchy sequence in n for each
fe 0. Thus there is a number Cj- such that

lim (/; (ij == .̂
n>oo

It Follows by Corollary 4 Dunford-Schwartz [3, p. 160]
that for some probability measure (AB supported by B

lim (/; (ij = (/*, p-a).
n>oo

Therefore
lim (9.,, HB/') = (/*, (AB)
a?->oo

as desired. Only obvious modifications are required to complete
the proof in the type II case.

THEOREM 19.3. — Let B €E g^ and fe <&*. If the process
is type I recurrent, then

lim Ha/^) = (/*, pta).
.C->oo

Proof. — Once we know that the appropriate limits of
HB/* exist we can identify these limits by means of Theorem
19.2. The proof that these limits exist reduces to the corres-
ponding discrete time results in [7] by using the same argu-
ment used to prove Theorem 19.2. In the general case, we
use Theorem 9.1. which states that if Be ^4, then HB/'
is continuous a.e. x e ®.
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THEOREM 19.4. — Let B e ̂  and /*e O*. If the process
is type I recurrent^ then

lim GB/^) = (/; LB).
X-> 00

J/' ̂  process is type II recurrent, then

lim Ga/^) = (A LB).
x->± oo

Proof. — Once we know that the indicated limits exist
we can immediately identify them by means of Theorem 19.1.

To show that the limits do exist choose a compact set
C e 3^ such that B c C and f is supported by C. This
can be done by Theorem 9.4. Then G^f = HcGa/*. In the
non-singular case the existance of the desired limits now
follows immediately from Theorem 19.3. In the singular
case, one way of preceding is to choose a big enough compact
set K such that |()K| ==0 and HoGa/*^) is close to
H^HcGa/^) == H^Ga/^) and using the fact from Theorem
9.1 that G^f is continuous a.e. x e @.

20. Robin's Constant.

This section is devoted to associating a number A*(B) to
sets in £8 such that — oo ^ /c(B) < oo. It will turn out
that A"(B) > — oo if and only if Be ^Bg. The constants
/c(B) enter in a natural way when we study the time dependent
behavior of recurrent processes in the following several sec-
tions.

PROPOSITION 20.1. — Let f^S. Then for B e £83, Q^f
is a bounded function and for B e %g and C compact

£cG^) ̂
is bounded in x.

Proof. — Let /*e 3?, B e £83, and C be compact. Let /i e= 9
with J(A)=1. Set g=f-J{f)f,. Then g < = ^ J ( g ) = 0 ,
and on {x\Lj^(x) < 00}

Gg-H^Gg=G^f-J(f)G^



204 S. C. PORT AND C. J. STONE

Thus by Theorem 17.3

f^f(y) dy - J(f) f^G^(y) dy

is bounded in x. Consequently in order to prove the conclu-
sion for fe 9 it suffices to prove it for one such jfi.

By Proposition 18.6 we can find /i e 3?+ and /g e ^+ such
that J(/i) = 1, J(/2) > 1 ^d /2 ^ A outside some compact
set A. Let M be the maximum of /g on A. Then for some
N < oo and all x e= ®

J^) ̂ c Ca^^ ̂  - N ^ .L Gs^ ^
<M^cGB^A)^+X.cGB^^•

Thus for x e @

0 ^ ^+c GB/1(2/) ̂  ^ (N + M Lc GB(1/? A^ ̂ /^ - 1)
Since by Proposition 18.4

f^G^{y,A.)dy

is bounded in x, it follows that

f^G^{y)dy

is bounded in x, as desired.
The proof that G^f is bounded for B e ̂ 3 is the same,

except that it is no longer necessary to integrate over C.

PROPOSITION 20.2. — Let ®i be a compactly generated
open subgroup of ® and let ^ be a continuous homomorphism
from @i onto a closed d-dimensional subgroup of some Eucli-
dean space R^ such that ^(x) = 0 if and only of x is a com-
pact element of ®i. In the type II case we lei @i = ® and
^ as usual. Let /*e3^. If B e ^3, then in the type I case

lim ^{x^G^x) = 0
a»oo, a?e@i

anrf in the type II ca^e

liml^l-^GB^) = 2o-2J(/•).
.Z;-> oo
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If B e S>^ and C is compact, then in the type I case

Urn |^)|-1/, G^{z)dz=0
x-> oo, a?e@i ^a?+C

and in the type II case

lim |̂ )|-1 L^W dz = 2<r-2|C|J(/-).
a?->oo ^a?+c

Proof. — From Theorem 18.4 we see that if La(z) < oo,
then

Af{z - x) - HBA^) = - G^(z) + LB(Z)J(/').

Consequently

G^{z) = (Af{x) + Af{- x)) + {Af{z) - Af(x) - Af(z - x))
+ (HBA/,(Z) - A^(0)) - HBA/*(Z) + GBA^).

Now A/'(jz) — A/*(a;) and A/*(z — rK) are bounded as z — x
range over a compact. Also HaA/*^) — A^(0) stays bounded
for x, jse® (with L^z) < oo and hence Hpl^) == 1).
By Proposition 20.1, GB/' is bounded if B e ̂ 3 and otherwise

( G^f{z) dz
Jx+C ' •

stays bounded. In the type II case it follows from Theorem
17.2 that

lim I^I-W^) + Ay(- x)) = 2o-2J(/t).
X->00

In the type I case it follows from Theorem 17.2 that

lim (^))-W(^) + Af{- x)) = 0
x->oo, .ce@i

From these results the proposition follows immediately.

PROPOSITION 20 3 — Let ®i and ^ be as in Proposition
20.2 and let A be compact. If B e ^3, then in the type I case

lim (^(a;))-^^, x + A) = 0
x-> oo, a?e@i

and in the type II ca^e

lim sup [^(^I^GB^, x + A) < oo.
X-> 00
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If B e 3^ and C is compact, then in the type I case

lim (+(rc))-1 ( G^(z, x + A) dz == 0
.c->oo,.ce@< v v / / ^+c v ? /

and in the type II case

lim sup |+(^)|"~1 / GB^, ^ + A) dz < oo.
a;->oo ^'a?+c

Proof. — This result follows immediately from Proposition
20.2. With more work one can show that in the type II case
the actual limits exist if [&A| = 0.

PROPOSITION 20.4. — Let ®i and ^ be as in Proposition
20.2 and let A be compact. If B e ^3, then

GB(^+A)/(I+|^)|)

is bounded in x e @ and y e @j. J/* B e %g and C 15
compact, then

^GB(Z,Z/+A)/(I+I^) |
is bounded for x e @ and ?/ e ©3.

Proof. — If B e= ^3 the result follows immediately from
Proposition 20.4. Suppose B e 3^ and C is compact. Let E
be a compact set such that A c E. Let D be a compact
set having positive measure and such that A — D c E.
Then for °ll e D

f^dz GB^, y + A) ^ f^dz H^+E(Z, d^G^, y + A).

Consequently by Proposition 18.3

f dz Gn(., y + A) ^ LC——DI f ^ Ga(^ y + A)
^.K+C |-u! Jy+D+E

and the desired result now by Proposition 20.3.

PROPOSITION 20.5. — Let @i and ^ be as in Proposition
20.2. Let /'e3H- be supported by @i and such that (^^))Y(a?)
is bounded on ®i. If B e ^4, ^Aen in ^e <ype I case

lim G^f(x) = (/•, LB)
X-> oo
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and in the type II case

lim GB/N = (A U),
a?->± oo

60^ limits being finite. If B e %g and <p e Cc, ^eyz in (Ae
type I ca^e

lim (y,, GB/-) = J(y)(/; La)
•c-> oo

and in the type II case

lim (y,, GB/-) = J(y)(/-, LB*),
a?-»-± oo

both limits being finite.

Proof. — Suppose B e %g and 9 e C^. Now

(9., GaH = f^)f,G^ dy)f{y).

Let E be a compact subset of ®i with | E| > 0. By Propo-
sition 20.4 there is an M < oo such that for y in ®i and
sufficiently large

f^{z)G^ y + E) dz ^ M|+(z/)|, ^re®.

We can also assume that M is such that

/•(u) ^ M(<{^))-4, u > t / + E , ye®i.

Then there is a compact set D such that for x e ®

^ V.(z) ̂  J^^^ d</ f^ Ga(z, rf^)A")

^ M2J^)^n@Jt^^l-3^
which can be made arbitrarily small by making D sufficiently
large (since necessarily d ^ 2 in the recurrent case). Let
DI a D be a compact set such that (D[ n ®i) — E s D".
Then

^ ̂  dz f^ dy f^ G»(z, du)f{u)

= f^ <p,(z) dz f^ GB(Z, ^u)/-(u)| D" n (u - E)|

^ |E|^<p,(z)^^GB(z,du)/(u).
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In otherwords, given s > 0 we can find a compact set Di
such that

f^ 9^) dz f^ GB(^, du)f(u) < e, x e ®.

By Theorem 19.1 in the type I case

lim I 9^(z) dz / Ga(^, du)f(u) = J(cp) f /'(^LB^) ̂
gc->w ^ ® •7 D! ^ D!

and in the type II case

lim f 9,(z) dz f GB(Z, ^u)/'(u) = J(9) ^ f{x)U[x) dx.
X-> ± oo ty ® l/ DI t/ DI

Since e can be made arbitrarily small, the conclusion of
the proposition follows.

If B e 35 4 the same proof works except that we need not
integrate with 9, we use Theorem 19.4 instead of Theorem
19.1, and we choose Di such that |()Di| ===0.

THEOREM 20.1. — Let B e %^. In the type I case there is a
finite constant A*(B) such that for /"e^*

lim (Af(x) - L^x)J(f)) = /ciB)^/1).
x^-oa

In the type II case there exist finite constants Ar^B) such
that for fe9*

lim {Kf(x) - Ls(x)J{f)) = k^B^f) T a-2^).
X->± oo

Let B e %2. In the type I case there is a finite constant /c(B)
such that for f e. S and 9 e Cg

lim (9., Af- J(/*)LB) = J(9)/cfB)J(/1).
a;->oo

JTZ the type II ca5<° ^re are finite constants A-^B) 5ucA that
for fe 9 and 9 e Cg

lim (y,, A/-- J^LB) == J(9)(/c±(B)J(/•) q= ^K{f)).
!C->± 00

Remark. — The Robin's Constant is defined as ^(B) in
the type I case and

k(B) = (A-+(B) + /c-(B))/2
in the type II case.
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Proof. — One can find an f^ e 9 of the form of Proposition
20.5 with J(/3) = 1. It can also be assumed that in the type
II case K(/3) = 0. Recall that

Kf^x) - HaA^) = - GaA(X) + LB^).

Suppose B e %g and 9 e= Cc. Then by Theorem 19.2 and
Proposition 20.5, in the type I case there is a constant /c(B)
such that

lim (9,, A/i - LB) = J(?)/c(B),
X->W

and in the type II case there exist finite constants /c^B) such
that

lim (9,, Af, - La) = J(9)^(B).
a?-> ± oo

The desired result now follows by Corollary 17.1.
The proof for B e 3^ is similar.

THEOREM 20.2. — Let Be 3^ and f^y. In the type I
case

lim GB/^) = - ̂ (BW) + (A/; (xa)
.C->00

and in the type II case

lim GB/^) - - ̂ (B)J(/*) ± o-2K(/*) + (A/*, (xt).
•C->±oo

Let B e %2, /*e 9?, an^ 9 e Cc. In the type I ca^e

lim (9., GBH = J(9)(- ^B)^) + (A/', (XB)
a?->oo

and in the type II case

Urn (<p,, €„/•) = J(<p)(- /c±(B)J(/•) ± <T-^K(n + (A/-, (^)).
a?->oo

Proof. — This result follows immediately from Theorems
18.4, 19.2, 19.3 and 20.1.

THEOREM 20.3. — Let Be.^ and /*e9<*. Then

(/•, La) = - k{B)J(f) + (A/1, (xa)

amf in ̂  type II case

(/•, La) - - ̂ BW) + ^^K^) + (A/', (.1).
9



210 S. C. PORT AND C. J. STONE

Proof. -— If f satisfies the assumptions of Proposition
20.5 the result follows from Proposition 20.5 and Theorem
20.2. The general case can easily be reduced to this special
case by arguing as in the proof of Theorem 5.12 of [7], since
Proposition 5.2 of [7] extends in an obvious manner to the
continuous time recurrent potential operator A.

COROLLARY 20.1. — Let Be^ and fe9*. In the type I
case

lim Ga/^) = (A La)

and in the type II case

lim GB/*^) = (/*, La).
a; •>-+-<»

Let B e= %g, fe S, and 9 e Cc. In the type I case

lim (9., GB/') = J(9)(/; LB)
X-^-OO

and in the type II case

lim (9., GB/*) - J(9)(/; La).
a;->+oo

Proof. — This result follows immediately from Theorems
20.2 and 20.3.

PROPOSITION 20.6. — Let B e % and let B^B, B^ and
P,(lim^ TB, = Ta) = 1 a.e. ^ e ®. J/' B e ̂  and <p e C,,
then in the type I case

lim(9, (AB,) = (?, ^a)
n>oo

and in (/ie type II ca^e

lim (9, (AB,) = (9, ^B).
n»oo

Proof. — Let C be a compact set such that C contains
B and B^, n ^ 1. Consider first the type I case. Now
(9? ^e) = ̂ H^p, ^c). Let D be a non-empty relatively corn-
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pact open set such that B — D c C. Then

1 C
(9^ ^a) =TQ\ j ^ (MB?, ^y+c)

= ipj- j ^c {dz) j dy H^{y — z).

If also B^ — D c C, n ^ 1, then

(^ ^B,) =_- J ( i c {dz} f rfy HB?^ + z).

By quasi-left-continuity it follows that

lim HB^(^) = Hay^) a.e. x e @
M>oo

and hence that (9, (ABJ ~> (y? (^B) as n —> oo.
The proof in the type II case is similar.

PROPOSITION 20.7. — Let B and B^, n ^ 1, 6e 05 m
Proposition 20.6 wi(/i B e ̂ . Le( 9 e= $. T/ieM

lim (9, LaJ == (9, La)
n>oo

and in the type II case

lim (9, L|j = (9, LI).
re>=o

Proo/". — Choose fe9+ with J(/") = 1. Then

Kf{x) - H^f(x) = - G»f{x) + Ls{x)
and

Kf{x) - HBAA^) - - GB/(^) + L^x).
Now

lim H^Af(x) = H^f{x) and lim Gv/{x) = Ga^a;)
n>oo n>oo

for almost all .re®, which implies that

lim (9, LaJ = (9, LB).
ra->-oo

This implies the desired result in the type I case. The result
in the type II case now follows from the formula

L^(x) = La(^) ± cr-2^) - HB^)).
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PROPOSITION 20.8. — Let B and B^, n > 1, be as in
Proposition 20.6 with B ^ %g. Le^ 9 e C^ w^A J(<p) > 0.
Then

lim (9, LaJ = oo
n>oo

and! m ̂  type II ca^e

lim (9, La,) == oo.
n>3o

Proo/*. — Choose /'e^+ such that J(/*) == 1. Then

A/*(^) - HB,A^) = - GBJ(^) + LB».

Now (9, HB A/') is bounded in n and

lim (y, GBJ = oo,
n>ao

from which the desired results follow immediately.
We can extend the definition of /c(B) to all sets in S> by

setting /c(B) == — oo whenever B e % but B ^ %g. Simi-
larly in the type II case we extend ^(B) to all sets in S>
by setting /^(B) = — oo if B e 93 but B $ S>^

THEOREM 20.4. — Let B and B^, n ^ 1, 6e as in Propo-
sition 20.6. Then

lim /c(BJ = /c(B)
n>=»

one? m ̂  (ype II case

lim /c^BJ = /c^B).
re>oo

Proof. — Let fe^ with J(/') == 1. We can assume that
B, e %a for re > 1. Then by Theorem 20.3

(20.1) /c(BJ = - (f, L^) + ((^, A/-).

Suppose first that B e ^2. It follows from Proposition 20.6
that

lim (^, A/') = ((IB, A/*).
n^-oo

By Theorem 18.5, L^ f as n f . By Theorem 20.3 (/", Le)
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is finite. Since f is non-negative it now follows by Proposition
20.7 that

Thus
lim (f, La,.) = (f, La).
n>oo

lim /c(BJ == - (/-, LB) + (^B, A/*) = /c(B)

as desired. The proof in the type II case is similar.
Suppose next that B e % but B ^ %a. We will prove

that in the type I case

lim /c(BJ = — oo.
ra>oo

By Proposition 20.8
lim (/*, LaJ == oo.
n>oo

Since (^B^? A/*) is bounded in n it follows from equation
(20.1) that /c(BJ -> — oo as n—^co. The proof in the type
II case is similar.

PROPOSITION 20.9. — Let B e %2 and let C <= ^3 contain
B. Suppose first that B e %g. TAey?

/c(C) - /c(B) = /c(C) - /c(B) - (LB, (.c).

Suppose next that Bc C and let D be a relatively compact
non-empty open set such that B — D c C. Then

/c(C) - /c(B) = k{C) - k{B) =—— fdu(LB, ̂ c).
\Ly\ JD

Proof. -— In the type II case by limits at oo we mean the
average of the limits at + °° and — oo.

Suppose B £ C and let D be as in the statement of the
proposition. Let /*, 9 e C^ sith J(/*) == J(<p) == 1. Then for
u e D

(9.C5 Gu+cjfy) = (9a;5 GB^) — (<Pa;, Hn+cGB^).

Consequently

^du(9., G^cfy) = |D|(9., Ga^) - f^du{^ H^cGe^).
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Letting y-^ oo, we get from Theorem 18.5,

f^du{^, L^c) = |D|(y,, Ls) - f^du{^, H^LB).

Letting x-> oo we get from Theorems 19.2 and 20.1

|D|(/c(C) - k(B)) == /^u(La, ^c).

Reversing the process and first letting x —> oo, we get from
Theorems 19.1 and 19.2

f^du(f,, L»,c) = |D|(^, La) - f^du(G^, ̂ c).

Letting y -> oo we get from Theorems 18.5 and 20.1 that

|D|(/c(C)-/c(B))=^u(LB,^,c),

which completes the proof of the theorem.

^ THEOREM 20.5. — Let B, B^, and Bg aZZ &e in ^. Then
k(B) = /c(B) == /cr- B). //• Bi cB,, then k(B,} < /f(B,).
Finally /c(Bi U B^) ^ k(B^ + ̂ (Ba) - /c(Bi n Bg).

Proo/'. — It is obvious from the definition of the dual
process that k{- B) == k{B). Let C e ̂ 3 be such that
- C = C and BcC.

Then ^(C) = k{- C) = /c(C) so by Proposition 20.9

k{B) = k(B) + ~k{C) - k(C) = k{B).

Suppose C = %3 and (Bi U Bg) c C. Then by Proposition
20.9

k(B,) - k{B,) == —— ̂  du(L^ - LB,, ̂ a) > 0.

Finally observe that

^T.iSi.t] + 1[T^>(] = l[T„>t]U[T.^t] + ^T^XIntT^X]

< ^^.nB^t] + ̂ T^^X]]-

Choose fe C^ with J(/') == 1. Then

GB,+GB/^ GB,UB/+GB.UB,/'.
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From Theorem 18.5 it follows that if B^ n Bg e S>^ then

LB^UB^ ^ LB^ "h LB, — LB^UB,

and by Proposition 20.9

k(B, u Ba) ^ /c(Bi) + /c(B2) - /c(Bi n B^).

If BI n Bg ^ %a? ^en /c(Bi n B^) == — oo and this ine-
quality still holds. This completes the proof of the theorem.

21. Time Dependent Behavior (Recurrent Case).

Throughout this section X^ will denote a recurrent process.
For B e % and A e % recall that

E^t, A) = fdx P,(TB ^ t, Xr.eA) dx.»/ @
We also set for t > 0

Ea(() = EB((, B) = EB(t, @)=f^dx P,(TB < <).

Then EB^, A) and Ea(() are zero unless Be%i. EB(^, .)
defines a measure on B having total mass EB(().

PROPOSITION 21.1. — For t ^ 0 and h ^ 0

E^t + A, A) - Ea((, A) = f^ P,(TB > ^)P.(TB ^ h, XT, e A) dx.

Proof. — This result follows from the computations

Ea(t + h, A) - Ea(t, A)
= f dy Py{t < TB ^ < + h, XT, e A) dy

= V,^ /P,(TB > (, X<e^) P,(TB ^ h, X^eA)
t/ (3) «/ (a)

= /PA > t)P^ < A, XT.CA) dx.
t/@

PROPOSITION 21.2. — If Be^i, (Aera

lim EB(() = oo,

lim (EB(( + h) — Es(t)) =0, h ^ 0,
(•>oo
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and
,. EM + s) ,hm _- • / = 1
t->» I^B[t)

uniformly for s in compacts.

Proof. — These results follow immediately from Propo-
sition 21.1 ans the definition of Ea(^), since P^(TB < oo) == 1
a.e. rce® for Be^.

PROPOSITION 21.3. — If B e %i anrf C e %i, ^en
-.. Ea(ri ,<
llm P~^ == 1-ooo JcLc^}

Proof. — We can assume that B c C. Let D be a relatively
compact non-empty open set such that B — D c C. Then
for s > 0 and u e D

EB(< + s) > ̂  E^c(<, ^)P/TB ^ ^)

== ̂  Ec(<, rfy)P^(TB ^ 5).
Consequently

Ea(( + s) ^ —— C Ec((, dy) I P^(TB ^ s) du.
\1J\ J@ Jy+T>

Choose 0 < e < 1. There is an s > 0 such that

—— f P^TB ^ s)du ^ l - s , z / e C .
l1^! Jy+D

Then EB(( + s) ^ (1 — £)Ec(<). By Proposition 21.2
lim inf EB(()/EC(<) ^ 1.

(•>00

Since Ea(<) ^ Ec((), it follows that
lim EB(^)/EC(() - 1,t>w

as desired.

PROPOSITION 21.4. — Let A e % and 0 ^. t < oo. Then
for Be%3

^'P,(TB > s,Xr^A)ds

= f^, GH{X, )̂P,(TB ^ (, XT. e A), a; e @,
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and for B e ̂  ararf C e %

f^dxf^P^ > s,Xr^A.)ds

= X ̂  X- GB(a;' WC^ < (' x^. e A)^ ^ e ®.
Proo/'. — Let B e= %g. Then

,̂ Ga^, (^)Py(TB <S ( ,XT.eA)

= Jo'0 du L ̂  ̂ y)1'̂ '1'" < t' XT. ̂  A)

= f" du P^u < TB ^ u + t, XT. e A)

==^^P,(TB > ^Xr.eA).

The proof of the corresponding result for B e ̂  is similar.
Most of the remaining results in this section will be obtained

in the type I case, the corresponding results in the type II
case being deferred to Section 22.

THEOREM 21.1. — Suppose the process is type I. If B e ̂ 3,
then

Urn r ds P,(TB > s)IE^(t) == L»(x)
(^00 ®

uniformly for x in compacts. If B e %a and C e S, then

lim ̂  dx f^ ds P.,(TB > «)/EB(() = / La(a;) (fo;.

Proof. — Let B e ^3. By Proposition 31.4

^ ds P,(TB > s) == / GB ,̂ rfy)Py(TB < (), a; e ®.

Choose DeOL with |D| > 0. Then

\D\fG»{x,dy)P,(T» < t)=.f^dyf^G»{x,dz)P^ ^ t).

Choose 0 < e < 1. We can find a ty > 0 such that for
ye@, z e y + D and t ^ 0

(1 - e)Py(TB < ( - to) ^ P,(TB ^ () < (1 + S)P,(TB < (+ <o).

It follows from Theorem 18.5 that, as x ranges over a com-
pact set, for y sufficiently large

(LB )̂ - e)|D| < G^x, y + D) < (LB(^) + e)|D|.
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Thus for some M < oo

|D| / GB^, dy)P,(T» ^ t)

< (1 + e) / P,(TB < ( + t^x, y + D) dy
< M + (1 + s)(La(a;) + £)|D|EB(( + to)

and similarly for t > ty

|D| / GB^, A/)P,(TB < ()
> - M + (1 - e)(LB(a;) - e)|D|EB(( - <o).

The conclusion of the theorem now follows from Proposition
21.2.

Suppose now that B s ̂  and C e S>. Choose Bj e ̂ 3
such that BI a B. Since P.,(TB > s) > P.,(TB. ^ s) it follows
that

lim inf ( dx F ds P^(Ta > «)/EB.(() = f Ly{x) dx.
Ooo ^ C *-'0 ^ C

It now follows from Propositions 20.7 and 21.3 that

lim inf ( dx F ds P^Te > ^/EB^) ^ ( L^x) dx.
t^-ao - C t/ 0 v C

On the other hand

P.(TB ^ t) < P,(TB, ^ ()

and by imitating the proof of Theorem 21.1 for the special
case B e %3, we can show that

lim sup f dx F ds P^TB > s)IE^(t) ^ ( Le{x) dx
t^w ^ A. ^Q ^C

and since, by Proposition 21.3, EB(()/EB,(() —> 1 as t —> oo
the conclusion of the theorem now follows.

THEOREM 21.2. — Suppose the process is type I. If Be 3 ,̂
then for f^ <&*

lun^ E,(AXT,); Ta > s)IE^t) = LB^)(/*, (xa)

uniformly for x in compacts.
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Proof. — This result follows easily from Theorems 19.3
and 21.1 and the facts that Ej^{t) -> oo as t-> oo and for
any compact set K

^ ds P,(X, e K and TB > s) == G^x, K)

is bounded for x in compacts.

PROPOSITION 21.5. — If Bes%3, then for any t > 0 and
e > 0 there is a compact set K such that

^GB(^,^)P,(TB ^ t) ^ £, ^E=®.

If B e= %g and C e %, then for any e > 0 there is a compact
set K such that

f^dxf^ G^(x, A/)P,(TB ^) < c, x<®.

We start the proof of this proposition with

LEMMA 21.1. — Let Be%3 and Ke=%. Then

f^ G^(x, ^)P,(TB ^ ()
^ <P.c(X^ e K' for some s such that TB — ( ^ s ^ Ta).

Proof. — L e t ( > 0. Then for u ^ 0

i r QS-" ,̂ ^/)P,(TB ^ t)
n=o K

^ P^(X,e K' for some s such that TB -— ( < s < Ta).

If we integrate u in the left side of this inequality from 0
to ( we get

^ duf^ Q£(^ A/)P,(TB < () = f^ GB^, rfy)P,(TB < t),

from which the lemma follows.

Proof of Proposition 21.5. — Let B e ^83 and ( > 0 and
choose e > 0. There is a compact set Ki 2 B such that

P^(TB ^ () < s/3(, y e Ki.

By Theorem 19.2 and the argument used in proving Lemma
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19.1 it follows that we can choose a compact set Kg such that
Urn sup HK,(^, K^) < s/3(.

X->ao

There is a compact set Kg 2 Ka such that
P^(X,e K^ for some s such that TB — t ^ s ^ T^) ^ e/3(

for all x e Kg. These inequalities imply that
lim sup P.c(X, e Kg for some s such that TB— < ^ s ^ Ta) < e/(.

.C>oo

By Lemma 21.1 it follows that there is a compact set L such
that

f^G^x, A/)P,(TB < t) ^ e, x^L°.

It is easy to see that there is a compact set K 2 Kg such that

J G^{x, dy)Py[T^ < t) ^ e, a;eL.

The set K is the desired set.
The proof of the proposition for B e %g rurs along similar

lines, but uses additionally Proposition 18.3.

THEOREM 21.2. — Let Be ^83. Then for t > 0 and A e%

f LB(I/)P,(TB < t, XT. e A) dy = <PLB(A),

and in the type II case

f Lg(2/)P,(Ta ^ (, X^ e A) A/ = <^(A).

Proof. — By Proposition 21.4

J^ P,(TB > 5, X^eA; = f^ GB(^, ^)P,(TB ^ t, X^eA).

Choose e > 0. By Proposition 21.5 there is a compact set
K such that

f^ G^X, ^)P,(TB ^ (, XT, e A) ^ e, X e ®.

Choose C e (9L such that | C | > 0. Then

f^dzf^z, ̂ )P,(TB ^ (, X^eA)

= f^ GB(y, x + C)P,(TB ^ (, XT, e A).



INFINITELY DIVISIBLE PROCESSES 221

In the type I case as x -> oo the last term approaches, by
Theorem 18.5,

|C|^LB(I/)P,(TB ^ ^Xr.eA).

On the other hand by Theorem 19.2

l^ f^c dz f^ ds PZ(TB > ^ XT" e A) == I^WA).

Since s can be made arbitrarily small

^LB(y)P,(TB ^ t, X^eA) = ̂ a(A).

In the type II case we need only let x —> ± oo and use the
same argument.

THEOREM 21.3. — Suppose the process is type I. Then for
B e ̂  and A e %.

lim EB(<, A)/Ea(<) == (XB(A).
<->QO

Proof. — Suppose first that B e %g. By Proposition 21.1
for A e %

Ea(5 + 1, A) - EB(^, A)=fdx P,(Ta > 5)P,(Ta ^ 1, XT, e A)

and hence

^ (EB(^ + 1, A) - Ea(^, A)) ̂
= ̂  dx P,(TB ^ 1, XT, e A) ̂  ̂  P,(Ta > s).

Let K be compact. Then by Theorem 21.1

lim (EaO))-1 / dx P,(TB ^ 1, X^ e A) F d s P,(TB > s)
t->x> u K. f 0

= ̂  & LB(:C)P,(TB < 1, XT. e A).
Moreover

^ dx P,(TB < 1, XT. e A) ̂ ' ̂  P,(TB > s)

< ̂  & P,(TB < 1) ^ dx P.,(TB > s).
Since

^( (Ee(^ + 1) - EB(^)) rfs ~ EB(()
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and by Theorem 21.2

/ LB(;»)P,(TB < 1) dx = 1,
it follows that

limlim s u p 1 — C P,(TB ^ 1) FP^TB > s) ds == 0
K4@ <*» lina[t)Js.' JQ

and thus

limf^E^s + 1, A) - Ea(s, A)) ds^t)

=fdx LB(a;)P,(Ta < 1, XT. e A) == ^(A.)

and therefore that
,. EB((, A) , , . ,
llm F (t\ = [AB A •<•»•«> iii-B\t)

Suppose now that B e %i. Let B, be a compact set in
%2 containing B. Then

EB((, A) =^^EB. {ds, < )̂P,(TB ^ t - s , X^eA)
1 =^EB.((,rfi/)HB(i/,A)

-^^EB. ( ,̂ ^)P,(TB > t - s, XT.CA).

Now by Proposition 21.3

l imf EB/(, dy)H»{y, A)/Ea(()
t->oo v "l

=lun^EB.((, dyWy, A)/Ea.(()

"^B/8* W^y'A-) == (AB(A)•
Moreover

lim sup r ( EB. ( ,̂ ^y)Py(TB > ( - s, XT.6A)/EB(t)
Oao t / 0 t^B^

< lim supf'f EB. (<fc, rfy)Py(TB > ( — S)/EB(/)

= lim'sup (EB/t1) - EB(<))/EB(() = 0,
t-f'X)

froin which the conclusion of the theorem follows.
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PROPOSITION 21.6. — Let B e %i and C e %i. Then

lim^^~S ) E S (ds) -1.
t*00 /*_ Ec(( - «) Ec (rfs)

Proof. — This result is a direct consequence of Proposition
21.3. According to that proposition

r EB^ - «)EB (rfs) ~ r Ec(< - S)EB (d«)»/ o— *^ o~~'

= ̂  EB(( - s)Ec (ds} ~ f^ Ec(t - s}Ec (ds)

According to Proposition 21.6 we can find a non-decreasing
function g{t), t > 0, such that for B e ̂

lim f Ea(t - S)EB {ds}lg(t) = 1.
(->ao v 0—

THEOREM 21.4. — Suppose the process is type I. Then for
C e %2 and B e %.

lim r(Ec(^) - EB^)) ^/g(() == /c(C) - /c(B).
(^c» ty 0

Proof. — We use the notation f^(t) ^ f^{t) in this proof
to mean that

lim(f,(t)-f,{t))lg(t)=0.
(•>ao

Suppose first that B e %g and B £ C. Let D be a rela-
tively compact non-empty open set such that B — D £ C.
Then

|D|(Ec(^) - EB(^)) =f^duf^_f^E^(dr,dy)P^ > s - r)

-^X-^^^^D^^^ >s-^^

Consequently

|D| ̂ (Ec^) - E^s}) ds

== fi /c ̂  (^ ^^n^X"^"^8 > r) ̂
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which, by Theorem 21.1 and Proposition 21.3, is asymptotic
to

j^_ Ec(( - s) ^ Ec {ds, dy) f^ L^{u) du

= f^_ Ec{t -s)ds f^ Ec{s, dy) f^ L^u) du

= fi (fc E^ - s' ̂  f^ W DC^U)Ec W
~ f^ Ec{t — s)Ec (ds) f^ [AC {dy) f^ L^u) du

~ g{t) f^ du{Ls, (A,+c)
= g(W(k{C.) - k(B))

by Proposition 20.9.
From this it follows that the conclusion of the theorem

holds whenever B e %a. To complete the proof of the theorem
we need only show that if B e % but B < S^, then

(21.1) lim f (Ec(^) - EB^)) dslg{t) = oo.
<>oo ^O

But by Theorem 20.4 there exist sets B^e^ with B^3B
and lim A*(BJ == — oo. Thus

R»-oo

lim inf f (Ec(s) - E^{s)) dslg(t)

^ l imr Ec(^) - EB,(^)) dslg(t) == k(C) - k^)
(>oo v 0

and hence (21.1) holds, as desired.

22. Stronger Results
on the Time Dependent Behavior (Recurrent Case).

Throughout this section X< will be a recurrent i.d. process
that satisfies the additional

Condition 2. For some g e (3*)+ with J(g) = 1

lim ̂ -̂ H (-i-\~l G^g{x) = 1
)^o \ x /

uniformly in x on compacts for some constant a, 1 ^ a < 2
and some slowly varying function H.
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By essentially the same argument as used in [7] (see § 13)
we can show that this condition is satisfied for every type II
process with a = 2 and H the constant function (2CT2)~1/2.
An easy Abelian argument shows that this condition holds
when ® == R1 © H or Z1 e H and the process ^(X^)
is in the domain of attraction of a stable law of exponent a
and thus, in particular, for the stable processes themselves.

For B e %, A e % set
ei(t, A) = E^t + A, A) - EB((, A)

and set
^(t) = e\(t, B).

PROPOSITION 22.1. — For any B e %,
^l/a

EB(<)
Wr (i + ̂

and
ht-w-eWB v ; H(<)r(i/a)

In particular, for any type II process

and

lim EB(? == 2{Wta
<>" y(

lim e^{t}\/t = (2/7t)l/2(I.

Proof. — It follows from (3.7) that
E^g = (1, H^g) = (g, fi^l)

1 f g(x)E^e-^) dx.A J<s
Thus

x-1/'E^(B)""\"/ / .1

"(^
and thus by Karamata's theorem.

(l/a
EB(()

H«)r (i + ̂ ).
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Since

^)= LPX{TB > t)px{TB ^ h ) dx

is monotonic in t it follows that
Lf-l+lfa

h / \ IweB(t) ~ H(<)r(i/a)
as desired.

THEOREM 22.1. — For any B e ^3, uniformly in x in
compacts^

p(T > t\ ~ L"(a;)rl+l/gPJTB > () H(t)r(l/a)
and for any B e £82 aa<^ any C e %

/» r r ^ /-i+i/a
//•^'^-[X^'^HwrdW

Proof. — By definition of U(o;)

J;P.(T.>,)«-»*=^

and thus, uniformly in x on compacts,
^oo / \ \l/a / 'I \-l
f P,(TB > ^)^ ̂  - LB^) (-) H (^-) .

J o \ A / \ A 7
The result for B e ̂ 3 now follows by the usual Tauberian
arguments. The proof for B e %g is similar.

COROLLARY 22.1. — For any type II process

/ 2 ~
lim \/<P.(TB > t) = \/ — aL^x)
t->w V 7^

uniformly in x on compacts whenever B e %3. J^or B e ^2?

lim \/7 f P,/TB > <) ̂  - \/-2- CT r LB(̂ ) ̂ .
t^ JG V 7T Jc

Proof. — Immediate.
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COROLLARY 22.2 — If the process is type I and Condition 2
holds then for any B e %i and any A e %

/—l+l/a

^'•^-^iwxiw
Proof. — The result follows from Theorem 21.3 and Propo-

sition 22.1 and the fact that e^t, A) is monotonic in ( by
a standard Tauberian argument.

THEOREM 22.2. — Suppose the process is type II. Then for
any B e 3?i

lim Vte^t, A) = (2/7^)l/2 CT^A).
Ooo

Proof. — First suppose B e %g. We can write

e£?tA) =——— C ^(TB > <)P,(TB ^ 1, X,.eA) dx.
^B\t) e^\i) J ®

From Corollary 22.1

(22.1) lim lim 1 C P,(TB > t)P^ < 1, X^ e A) dx
K^@ <>°° ^Bt^ jK

= f LB(^)P,(TB ^ 1, XT, ̂ A) dx= (XB(A).
^@

In particular this is true for A = B, and thus is must be that

(22.2) lim lim 1 f P,(Ta > t)P^ ^ 1) dx = 0.
K.^@ <»oo eB^J JK'

Thus the theorem is true for any B e %g. Now let B e 3^
and choose Bi e %g such that Bi ^ B. Since the theorem
is true for B^ we see from (22.1) and an Abelian argument
that

EB^, A) - EB^B,(A).

Arguing as in the conclusion of the proof of Theorem 21.3
we see that

E^t, A) - EB(t)(iB(A) - (lB(A)(l/22(2/7^)^(7.
Since e^(t^ A) is monotonic in ( it follows that

e^t, A) - |XB(A)r^(2/7r)^
as desired.
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THEOREM 22.3. — Suppose U Condition 2 is satisfied.
Then for and C e S>^ and B e %

lun [EC(^EB(f)1 = k(B) - k(A) (22.3)

where
nt f—1+2 /a

»(') = J. '""('M' - " ) A ~ —-—TTJT • (22.4)H(.).r(A)
7n particular, for every type II process

lim [Ec(() - EB(()] = (2o2)(/f(C) - k(B)).
t->00

Proof. — First assume that B e %g and that C is such
that B<= C. Let D be an open neighborhood of 0 such
that B — D c: C. Observe that

| D| [Ec(<) - EB(Q] = ̂  ̂  Ec {ds, dy) f^ du P»(TB > ( ~ s),

By Theorem 22 1 and Corollary 22.1

f^^(ds,dy)f^duP^>t-s)

^ fc £ Ec ̂  ̂ ^ ~ 5) f^y LB(U) du

W

~ 2 /c ̂ x Ec ^s' ^)eB(< - ") f^ LB(U) du
fc=lw

- 2 ̂  ̂ (/c - ̂  ^) ̂ ^ ̂ (^du e^ -k +1)
k=l
[t]

- ̂  ec(k - l)ec([t] - k + 1) ̂  (xc W ^,LB(U) rfu.
/c=l

The desired result follows from this by Proposition 20.7 and
the fact that

w
^ec(k - l)ec([t] - k + 1) - Fe^ecd - s) ds = q{t).
k=l °

Thus (22.3) holds for any B e ̂  and C as above and conse-
quently for any C e ̂  and B e ^3. Now suppose B e S>
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and B « %2. We must then show that

lim^-^^oo.
<»oo g(()

The proof of this fact can be carried out by essentially the
same argument as used in the proof of Theorem 21.4 so we
omit the details.

THEOREM 22.4. — Let BeB? and fe <&*. Then if the
process is type I

F r^x ^ . T > ^ W^B, f)t-^E,[AXrJ, TB > t] - H(0r(l/a)

uniformly for x in compacts.

Proof. — The result follows from Theorem 21.2 and Propo-
sition 22.1 by a familiar Tauberian argument.

We now turn our attention to establishing the correspon-
ding result in the type II case. To this end we will need to
extend a result of Belkin [1] from integer valued random
walks to type II processes. The proof is essentially that of
Belkin.

PROPOSITION 22.2. — Let X( be a type II process and let
Be%3. Then

lim \/(Po(^(X()/\A ^ &; TB > t) == (2/7r)1^ F /B(a) da
(•>"30

where /B is
W = ̂ e^ [|a|WO) - "M .̂

Proof. - Let <p,(6) = E,̂ 10^) and let 9(6) = e-^i2.
We can write

(22.6) Et^exp^e^X^V't); TB > t} = q>»(e/\/7)
-^'Po(TBe(fc)<p^6/\/()

+/?(i)Xtpo(TBe^^x^e^
[Vt-^/V^) - e-^/^^^e/^)].

Let M(6) = log <pi(6). Then yt(6) == e'^. Integration by
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parts and some easy computations show that

f22.7) y/O/^f) - ̂ PO(TB e <fc)v._/6/\/7)

= PO(TB > () +^PO(TB > ^)M(6/^)y^6/V^) .̂

Let e > 0 be given. Then uniformly in s, st < s <S (1 — e)(

PO(TB > S^t ~ I^O^/Tr)1/2^/;?)^.

Also (M(e/\/() -» — e2^^ and for 0 ^ s ^ (1 — e)(

yt-,(6/\/() - 9(6(1 - sit)1!2) -^ 0.
Thus

(22.8) \ft C Po(Ta > s)v,-,(e/\/()M(9/v/() ̂
t/E(

/^(1—£)( A 2 2 _________

+ LB(0)(2/7r)^ ^ (^u— 9(6^1 - ̂ ) ̂  ->0.
^6t zr

But

ri—6)t fi 2 -2
(22.9) ((/,)!/2°^-y(e(l_^)l/2)^

/^1-e 02.-2
-> J ^1 /2 -y- y(6(l - a;)1 ^) ̂ .

In addition there is a (o such that for all s ^ to,

PO(TB > s)^s ^ K < oo.

Thus for some K' < oo

(22.10) |^PO(TB > ^\^M(e/\/^^(e/v^) ds
< K' 1 r ̂ -1 ^ ds = 2K' 1 [̂  - \/^].

V^ ^fo v^
Also

(22.11) f^ds Po(Ta > s)\/tM{Ql\/t)<?^ = Od/^).

Similarly for some constant C

(22.12) I™ f^ P,,(TB > s)\/(M(6/\/(")(y,_,f6/\/() ̂

< Ce(l — e)-1^.
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It follows from (22.8)-(22.12) that

(22.13) lim \Tt f PO(TB > ;?)¥,-,(9/\A~)M(e/\A~) ds
t: - (2/^L.(0) f ̂  exp (- 62CT2^) ̂

Jo 2\/x \ " /
Simple computations and integration by parts show that

(22.14) f^ f^ PO(TB e ds, +(X,) e dy)^{Ql\^t)
X (1 _ g.ey//t-)

= - f^ po(TB > (' ̂ XT') e ̂ (1 - eiey/v/T)
+ 9.(e/V^) ̂  PO(+(XT.) e A/)(l - ̂ ^

- ̂  f, Po(Ts > ^, +(XT.) «= rfi/)M(e/\/^
x (l _ ^^^^(e/v/t) ̂
= l+ n + ill.

Now in view of Corollary 22.1

(22.15) |I|\A~==0(r1/2)
and also

f22.16) |III|\/^0(r1/2).
On the other hand

(22.17) lim \Tt II = - i6<p(6)Eo^(XT.).
t->00

Thus from (22.14)-(22.17) we obtain

r22.18) lim \/~t f.- /" PQ(TB e ds, <KX,) e dy)^,,{Ql\/t)
t-^ao €7 T(B) t/0

(1 - e1^7) = - i6Eo+(XT.) exp (- ^V
\ 2 /

Thus by (22.6), (22.7), (22.13) and f22.18) we see that

lim (—Y'2 v/lEo^W^; Ta > t)
(*.oo \Z(T- /

T /^ r. r1 <T262 / Q'^C1 — A j i= LB(O) 1 - ——= exp ( - ——^———) dx
L Jo 2\/x \ L ] -I- le (^y2 EO+(XTB) exp (- T)'
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The Fourier transform on the right (see Belkin [1]) can be
shown to be that of the function

W = ̂  exp (- ̂  [HLB(O) - ̂  E^(XT.)}

This establishes the proposition.

r.w = ̂  exp (- —) [HLB(O) - -^ E^(XT.

COROLLARY 22.3. -- Let Be%3 and let X, be a type II
process. Then for any x e ®,

Hm v/-^(X,. ®-; TB > t)= (-|-)(^)1/2 .LB(^).

Proof. — Since

P.(W) > o; TB > <) = p, (̂  > ̂ ); TB-. > A\ Vt \/t ]
it follows from Proposition 22.2 that

limV/fP^X,) > O;TB > ()
t-Xx> '

/ 1 \ / 2 \l/2 r \ -i= (?)(-;-) •'[1L-(0)-^E•^'(XI"']
/ 1 \ / 2 \112 r 1 --.

"(T)^) "[^^"^^^^-^^J
- » ^{x).

The proof for X<e@- is similar.

COROLLARY 22.4. — Let Be ̂ . Then for any A e % for
a type II process

lim\/t r P,(( < TB < t + h, XT. e A), ^/^(A)^1^.
°° ^ ©* \ TC /

Proo/'. — First suppose that B e ̂ 3. We can write

/^p^ < TB < < + h; XT. e A) dx

=^P,(TB > (; X(6®+)P,(TB < h, XT. 6 A) ̂ .
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From Theorem 22.1 we see that for any compact set K

Kin sup ]^(TB > t, Xt e ©+) \/« Hin sup P^TB > () \/t < oo
Ooo a?eK. <->w SDGK

and thus

limlimv^ f ^(TB > t, X^®+)P^Tj, < A, X^eA) ̂
K^@ 0°o ^ ^

= lim (Ay^ ̂  f L^)P,(TB < /<, XT, e A) == ^(A).
K^® \7r / \ ^ /JK.

From (22.2) we see that

lim lim \/^ ( ^(Ta > t\ X(e®+)P^(TB < A, X^e A) ̂  = 0.
K^@ <-><» l7Kr

Now let B e %i and choose Bi G %g such that B^B.
From what has already been proved and an Abelian argument

f P,(TB, ^ t, XT, eA) dx - ('A-Y^o^A)^
J^ i V ^ /

Using this and arguing as in the proof of Theorem 21.3 we
find that

r / 9 \1/2 /-( ^P,(TB < t, XT, e A) dx - ( —) (T^(A) \/<
^® \ 7r /

and then by a Tuberian argument that

f P,(̂  < Ta ^ t + h, XT, e= A) dx - h ( G } (^-Y a^{A.)t-1!2
J^ \ 2 / \ n /

as desired.
We may now establish the analogue of Theorem 22.4 for

a type II process.

THEOREM 22.5. — Let X( be a type II process and let B e %^.
Then for /•<= O*.

limE^XT^Ta > t]\/t
<>00

( 0 \ 1/2 / \
== ^ (^ [HB^(+ o>)L^) + HB/-(- w)Li^)].
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Proof. — We can write

E,[/-(XJ, TB > (] = ̂  P.(TB > t, X^dyW(y)
= f P, (TB >t,X^ dy)[H»f(y) - Ha/-(+ ^)]

t7 (a)'"

+ ^_P.(TB > t, X,e<^)[HBA!/) - HaA- 0))]
+HB/U OO)P,(TB > t,X^®+)
+HB/-(- OO)P,(TB > t,X^®-).

It follows from Corollary 22.3 that as (—'-00 the last two
terms are asymptotic to

[HB/-(+ oo)U(^) + HB/-(- a>)LB(^](<T/2)(2/7t)^-^.

Let s > 0 be given. Then there is a compact subset K of
® such that K = Ki ® H, Ki <= R1, |o(Ki n ®+)|R. == 0
and |HB/'(a;) - HB/'(+ oo)| < s for xe@+ n K'. Thus

^p,(Ta > (, x^e^iHaAy) - HaA- °o)l
< £P,(TB > t) + 2|1/-||P. (T > <B, ̂  e t-^K, n ®+).

By Proposition 22.2 and Corollary 22.1 we then see that

^Vtf^P.^ > t, X^dy)W(y) - HB/\+ <»)!
t*" [ 2 \11^

^ ( — ) Ls{x)ae.
\Tt ]

Similarly

^^^-^B > ^ X,e^)|HBA2/) - HBA- 00)1

^00 / 2 V^
^ ( — ) LiB^cre.

V 7 C /

This establishes the theorem.

23. Invariant Functions for Killed Processes.

Let B be a Borel set and let Qe be the transition operator
for the process killed on B, i.e. Qaf{x) = E^X^); TB > t].
Using the fact that

{/•(X^); TB > t + s } = {AX, 06,); Ta-e, > t, TB > s}
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it follows that for f a bounded measurable function

QB-Y )̂ = E,[EX(,)[AX<); TB > t]', TB > s] = QB(QB)/^)

so QB has the semi-group property.

DEFINITION. — A measurable function f is said to be Qa
invariant if Qef == f for all t > 0. A measurable function
is called essentially QB invariant if for each t > 0, QB/T^) == f(^)
a.e.

Our first task in this section will be to find all the bounded
invariant and essentially invariant functions.

THEOREM 23.1 — For any Borel set B the function
P^(TB = oo) is a bounded Qa invariant function. For a non-
singular process the only bounded Qa invariant functions are
aP^(Ta == oo) for a a constant. If B' is relatively compact,
then 0 is the only QB invariant function. This is also the
case if the process is recurrent and P^(TB = oo) == 0. In
general, the only bounded essentially QB invariant functions f
are f(x) = aP^Ta == oo) a.e.

Remark. — In the general case even if we assume f is a
bounded Qa invariant function the most we can conclude
is that f(x) = aP^(Ta = oo) a.e.

We will prove this theorem by a sequence of lemmas.

LEMMA 23.1. — Let B be a Borel set. Then P^(TB — oo)
is a bounded Qa invariant function.

Proof. — Since QB$B^) = ?x(t < TB < oo), we see that
^ QB(^, A/)P,(TB = oo) = P,(TB > t)

- P^t < TB < 00) = P,(TB = 00)

as desired.

LEMMA 23.2. — Suppose h is bounded, measurable, and for
each t > 0, PV^) == h{x) a.e. Then for some constant a,
h^x) = a a.e.

Proof. — Let <p e C^ and set ^{x) = / ^{t)h{t + x) dt.»/@
An easy computation shows that P^{x) = ̂ /(x) for all
xe@ and all t > 0. But then XG^ == ^, and as XG^O, <te)
is a probability measure on ® whose support is S it follows
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from the Choquet-Deny theorem and the basic assumption
that for some constant K, ^(x) == K a.e. As h is bounded
and 9 e Cp the function ^ is continuous and thus ^i[x) = K
for all ^e=®. Thus ^{x) = ̂ (0) for all ^e®. Hence for
any 9 e C,

f^W[f{t+^-fW]dt=0

and thus for some constant a, /*(^) == a a.e.

LEMMA 23.3. — Suppose f is bounded and essentially Qa
invariant. Then f(x} + H/ILP^TB = oo) ^ 0 a.e. J/1 /• ?5
bounded and QB invariant^ then this inequality holds everywhere.

Proof. — Note that for a.e. x (all x if /* is invariant)

1/^)1 =!QB^)I < II/IJW > <)
and thus for a.e. x (all x ii f is invariant)

I/NI ^ unioop^TB^ <x>).
LEMMA 23.4. — Assume f ^ 0 a.e. anrf essentially Qa

invariant. Then P^f ̂  PY a.e., M = 1, 2, ... and 50 lim
n>»

P"/* == /i exists a.e. The function h is essentially P1 invariant.

Proof. — For any real t > 0, P^ ^ QB/' = /* a.e. and so
P^f ^ Py a.e. Thus for some measurable h ^ 0, PYfA
a.e. Let 9 e 0+. Then

(9, p^n = (yp^ PY) ^ (^P^ n = (9, PD
and so lim (9, P^/*) ==== a ^ + 00 exists. By monotone conver-

(•>00

gence a == (9, h). Thus by monotone convergence again

(y, h) = lim (cp, P'+Y) = lim (yP', Pf) = (yP1, A) = (y, P'A).
n>3o n

Consequently h = P^ a.e.
We may now establish Theorem 23.1.

Proof of Theorem 23.1. — By Lemma 23.1 and 23.3 it suffices
to prove the theorem for f ̂  0 a.e. Suppose this is the case.
Now for n == 1, 2, ...

(23.1) P"/^) = Q.W + E,[/*(XJ; Ta ^ n]
-/^)+E,[/PC,);TB < n] a.e.
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By Lemma 23.4 P"/* \ h a.e. and thus the limit

limE^X^Ta < n]=h,{x)
n>'»

exists a.e. Observing that h^{x) ^ [[/'[IP^TB ^ oo) we see
that QB^) ^ ||/'1|P..(( < TB < oo) so QB/^HO. Thus
a.e. x,

(23.2) f{x) == lim (&h{x).
n

Now since f is bounded so is h (because Py ^ [I/*]!) and
thus by Lemmas 23.4 and 23.2 h{x) = a a.e. x for some
constant a. Let 9 e 0+. Then from (23.2) and (3.10) we
see that

(9, /•) == lim (9, Q£A) = lim (^ Q^) = a lim (1, Qa<p)
ra>oo n>oo n>oo

= a lim (9, Qal) = a /. P,(TB == ^{x) dx,
K>00 t /®

and thus f[x) = aPa;(Ta == oo) a.e. Suppose that f > 0
is QB invariant. Then Py \ h everywhere and h is a bounded
invariant function. If the process is non-singular h{x) = a
for all x. Using (23.1), which holds for all x if f is Qa
invariant, we see that

h=f+ HB/I

and as h = a it follows that f{x) === aP^(Ta = oo) for all re.
If B' is relatively compact and f is a bounded QB invariant
function then for all t > 0 and all x e @,

|/^)| ^ ||/I|P.(TB > ^).

Now P^TB > t) ^ 0 so /* == 0. Also if the process is recurrent
and P,.(TB = oo) = 0 for all x then /* == 0.

This establishes the theorem.

PROPOSITION 23.1. — Let B be relatively compact set. For a
type I transient process the functions aP^Ta ==oo) are the only
bounded QB invariant functions having a limit at oo. For a
type II transient process aP^(Ta = oo) are the only bounded
QB invariant function having a limit as either x —> 4" °° if
m > 0 or as x —> — oo if m < 0.
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Proof. — By (3.19) there is a compact set K such that
P^(TB < oo) ^ 2G(^, K). By the renewal theorem, in the
type I case, lim P^TB ^ oo) == 0, while in the type II case
with m > 0, "Hm P.,(TB < oo) = 0. Thus P.,(TB =00) has

a»+oo

the desired limit properties. Let f be a bounded Qa inva-
riant function having the stated limit properties. Suppose
the process is type I. Then as

f^ = X QB^9 dymy} -/>(a))] + A^)P.(TB > t)
it follows that f(x) = /'(OO)P^TB == oo). Now suppose that
the process is type II with m > 0. Then

f^ == X- Q8^ w^) + X.QB(5? ̂ ^ - ̂ + ^ d y
+ A+ °O)QB(^ ©+).

Since P^(X(->+ °°) == 1 ^d /^ ]s bounded it follows that
the first two terms on the right converge to 0 as t-> oo.
Moreover

P^TB > (, X,e@+) = P,(TB > t) - P,(TB > t, X,e®-)

and thus
lim P,(TB > t, X,e ®+) = P,(TB = oo).

The proof in the type II case with m < 0 is similar. This
establishes the proposition.

For recurrent processes P^TB == oo) == 0 a.e. for all sets
B e 3^ and so to get non-trivial Qa invariant functions we
must drop the requirement that the desired function is boun-
ded. We therefore now turn our attention to finding all Qa
invariant and essentially Qa invariant functions that are
locally bounded and bounded from below. Our first task will
be to show that there are such functions. Now for an arbi-
trary Borel set there may not be any functions bounded from
below and QB invariant that are not also bounded. This
happens for example whenever B' is relatively compact.
Hence to obtain non-trivial results we will restrict our atten-
tion to relatively compact sets.

An essential tool used in our investigation will be to show
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that Green's function of B for the i.d. process are dominated
by a corresponding quantity for a random walk.

PROPOSITION 23.2. — Let B be relatively compact set such
that B + 9. Let UpO, A) be defined by

UB(^, A) = I; P,(X,,eA; TB > nt)
71=1

where TB = in!{nt > 0: X^eB}. Then given Ai relatively
compact there exists A ^ Ai, A compact and (B < oo such
that

(23.3) G^x, Ai) < p UB(̂ , A).
l/

Proof. — Set ^,/r'wx^
and let !„ = 1 if TB == nt and let !„ == 0 otherwise. Then

E, r^ IA/X,) ̂  = S E, [F 1^(X,) ^; Ta = ntl
7l==0

= i E,fi uJ
ra==o •-fc=o -1

=E,ri i\iJ=E,i^ i L
•-71=0 fc=0 -I fc=0 7l=fc+l

= 1 E, [s, i ij = 1 E,[^; TB > kt].
k=o L n=fc+l -• fc=o

Thus

E,^i./X,) ds ̂ J^E^^l^X,) d.; TB > ^]

= 5 r^E^lA/X,); Ti, > nt} ds.
n=o nl

Let nt < s ^ (n + 1)(. Then for any set A,

(23.5) P,(X(^)^A; TB > nt)
== f^ P,(X,( e dy, TB > nt)P^ e A)

=f^P^^dy; Ta > ^P,(X,_,,.rfz)P,(X^_,eA)

^X^^8^51" > ^^P^^-'.^^P^^-^A).
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Now since Si is compact we can choose A compact, A => Si,
such that P^X^eA, all s ^ t) ^ (B > 0 for all zeSi.
So choosen we see from (23.5) that for nt ^ s ^ [n + 1)^?

P.(X^eA, TB > nt) ^ P,(X,eAi, Ta > n()P

and thus
-.(n+Dtoo /-.(n+Dt

S ( P,(X,<=AI;TB > nt)ds
i=0 ̂  ntn=0 t/ n(

^-5P.(X(^eA;TB > nt)
P 71=0

=— S P.(X(^eA; TB > (n + 1)<) < -UB^, A).
P n=l P

From (23.4) we then see that

E, rs^x,)^ ^-U B^A)•
Jo P

Since TB ^ TB it follows that

E,^TBlA.(X,) ̂  < E,^1^(X,) ds.

This establishes the proposition.

THEOREM 23.2. — (Recurrent process). Let B e ̂ 3. TAeyi
La is QB invariant and in the type II ca^e La" and La" are
QB invariant.

Let B e %2. TTien LB is essentially QB invariant and in
the type II ca^e LB" and LB are essentially QB invariant.

We begin the proof of this theorem with some results
for discrete time recurrent random walks on G. The notation
for such random walks is that of [7].

LEMMA 23.5. — (Recurrent random walks on ®). Let
B e S) have a non-empty interior. Then P^a == LB.

Proof. — Let A be defined by A == D — I. Observe
that PHa = !IB and Ua == PGa + IIa. and recall from
Theorem 10.1 of [7] that PA = A + I. Choose f^9 with
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J(/*) = 1. By letting P act on the basic identity 10.1 of [7]
we get that

Af + f - IlBA/ = P^a - PCa/-.

The identity (5.15) of [7] can be rewritten as

Af + f - Tl^Af = La - PGB/'.

By subtraction it follows that P^a == LB, as desired.

LEMMA 23.6. — (Recurrent random walk on ®) Let
B <= S> have a non-empty interior. Then for any x e ®, A e %
and s > 0 (Aere '̂s a compact set K ^ucA that

f^, P(x, dz)G^z, y + A) ^ c, ye®.

Proof. — We can assume that |e)A| == 0. Now

UB == PGa + HB
and hence

UB(^, y + A) = f P(x, dz)G^(z, y + A) + IIa^, y + A).

If y is sufficiently large H^x, y + A) == 0, so that for any
compact set Ki

UB^, y+A)==f P(x, dz)G^{z, y + A)

== ̂  P(x, dz)G^z, y + A)

+^P(^)GB(^I/+A).

Consider first the type I case. Choose s > 0 and let K.i
be a compact set such that

|A|(LB(^) - f P{x, dz)^{z)) ^ s/2.
t/K!

This can be done by Lemma 23.5 since â is non-negative.
Now

l i m U B ( ^ y + A ) = LB(^)|AI
y>ao

and

£? X,p(^ ^GB^ ^ + A)= = X p ^ 3 ^B(^)|A|.
10
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Thus there is a compact set D such that

j^ P(x, dz)G^{z, y + A) ^ s, y e D\

There is a compact set K 2 Ki such that

f^P(x,dz)G^y-}-A) ^ s, z / eD.

The set K is the desired set. The proof in the type II case
is similar.

LEMMA 23.7. — Let B e % have non-empty interior and let
t be such that S; generates ®. Then for any x e @, A e %
and e > 0 there is a compact set K such that

f^ P^, dz)G^(z, y + A) ^ s, ye®.

Proof. — This result follows by applying Lemma 23.6 to
the random walk obtained by looking at the process at integer
multiples of t and using Proposition 23.2.

LEMMA 23.8. — The conclusion of Lemma 23.7 holds if B
is merely assumed to be in %g.

Proof. — Let B^ be a compact set containing B and
having a non-empty interior. Then

Ga^, y + A) - Ga^, y + A) - f^ HB^, dz)G^{z, y + A)
^ sup sup GB(^, y + A) < oo

zeB, jeG

and the desired result now follows from Lemma 23.7.

LEMMA 23.9. — Let B e %3 and let t be such that S< gene-
rates ®. Then for any A e %, C e % and e > 0 there is a
compact set K such that

f dx f\ P\x, dz)G^z, y + A) < e, y e @.

Proof. — This follows by essentially the same arguments
as led to Lemma 23.8 except that in the proof of the proper
analog of Lemma 23.6 (where we integrate on x e C) we use
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the fact that

^ LB(^) dx = ̂  dx f^ P{x, dz)W.

LEMMA 23.10. — Let B e ̂  anrf fc( ^ fee 5uc/i tAa( S^ gene-
rates ®. Then for any A e %, C e %, and e > 0 there is a
compact set K such that

f dx f\ P^, dz)G^(z, y + A) ^ s, ye®.

Proof. — Let B^ be a compact set such that B^Bi.
There is a compact set D having positive measure and such
that B — DcBi. It follows easily from Lemma 23.9 that
there is a compact set Ki such that

— f du f dx f P\x, dz)G^{z, y + A) ^ — u e ®.
M JD Jc JK[ ^

Let Kg be a compact set such that Ki — C 2 Kg. Then

— f P^O, dz) f du f ^ G^B/^, y + A) ^ ̂  ye® .
M jKg JD .̂ +C ^

By Proposition 19.3
/^* \ r* r*

0 ^ d!a; GB(^ y + A) — -_ „ du dx G^ ̂ (x, y + A)
^-2H-C j17! J J z+C

/I /^* /^» /^

= |D| / u J rfa; I KU+B/^, ^)GB(C, y + A)

^ Jcl^^DI f rip ̂ (^ ^ + A)'\LJ\ ^Bi+D

which by Theorem 18.5, is bounded uniformly in y and z.
Consequently there is a compact set K3 such that

X pt^ dz) X+cdx Gs^ y + A) < e. y e ®.
Let K be a compact set such that K' — C c Kg. Then

^ ̂ ^, P^^GB^, y + A)
< ̂  P^O, rfz) ̂  GB(.., </ + A) ^ e, y e @,

as desired.
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Proof of Theorem 23.2. — Let B e ̂ 3 and suppose the
process is type I. Then

/ QB(^, dz)G^z, y + A) == G^x, y + A) - ̂  Q ,̂ y + A) ds.

Let A e % with |A| > 0 and |oA| == 0. It follows that

lim f QB(^, dz)G^{z, y + A) = lim GB^, y + A) == LB^)|A|.
y>oo t/ y>oo

If K is compact then

lim f, Qa(^ ^)Ga(^ y + A) == |A| f Qa(^ ^)LB(Z).
y ^ w ^ K . ^K.

Since QB^? dz) ^ P\^, dz) it follows from Lemma 23.8
that if S( generates ®, then

LB(rr) = f Qa(^, ^)LB(^).

Now S( generates ® except for countably many values
of (. Since Q^ == Q^QB it follows that La is QB invariant
for all ( > 0.

The proof in the type II case is similar. The proof for
B e 3^2 is also similar except that Lemma 23.10 is used instead
of Lemma 23.8. We get directly that if S^ generates ®,
then

f dx (LB(^) - QaLB^)) dx = 0, C e %.

It follows that La(^) == QBLB(^) a.e. x e ®. Again the
extension to all t > 0 follows from the semi-group property
of Qa.

Now that we know that there are locally bounded Qs
invariant functions that are bounded from below we shall
investigate the uniqueness of such functions. In general the
best we can hope to do is show that in say the type I case
multiples of LB are the essentially unique such functions.
Since
/ •+M ^ 0 forsome 0 ^ M < O^QB^+M) =f-{-Q^M^f

a.e. and thus every Qa invariant function that is bounded
from below must in fact be ^ 0 a.e. Thus with no loss in
generality we can assume that f is such a function.
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THEOREM 23.3. — Let B e % 4 and let h ^ 0 a.e. be locally
integrable and such that Q^h == h a.e. for t > 0. Then in
the type I case h = CL.B a.e. am^ in the type II ca^e

h = CiL? + CaLi a.e.

Proof. — Consider a type I recurrent process. Let
KI <= Kg c: Kg c: . . . be compacts, (J K^ = ®. Define h^

n
by A, = min (/», nG(., KJ) and set

(23.6) §„ = (A, - Q^).

Then
QB&, = Ql̂  - Q^ ,̂

so

(23.7) ^ QBS, ̂  = ^ Q ,̂ ̂  - ̂ <+1 Q ,̂, ds.

But
QB/I, < nQaGBl^ = n r QelK, dt.

Hence if ( < s < ( + 1,

QB^ ^ n f" QalK, ̂  ^ 0, t -^ oo.
Thus

/»(+!
(23.8) lim / Qa^ rfs = 0.

(*00 ^t

Hence from (23.7) we see that

(23.9) GB^= F^ds.»/o

Since h^\h and Qa^ = A a.e. we see that

(23.10) GvS^ ̂  Qsh ds = h, a.e.

Let K be compact. Then from (24.12)

^ S,{x} dx = f^ {h,{x) - (^h,(x) dx.
Thus

(23.11) lim C S,{x) dx== f h- ( QU = 0.
• „>» ^K. • ' «/K ^K -



246 S. C. PORT AND C. J. STONE

Now let 9 e C^" be such that (LB, 9) > 0. Since Gap —> (La, 9)
there is a compact A such that GB?(^) ^ 8 > 0, r p ^ A .
Define measures Yn (^/) t>y

Yn W = G^{y)Sn{y} dy.
Then

Yn(®) = (Gap, 8J = (?, GaSJ ^ (9, ^) < oo.
Thus for any /*e C^,

(/, GBSJ = (§„, GB/-) - f GBA^)8n(^) dx + f GB^ Y, ((^).
^A jA'GB<p(a;)

By (23.10), (23.11) and the fact that Gvf is bounded on A
we see that

(/•,/.)-lim f ^l^y,^). ^23.13)
">00 JA' Ga9(^)

By (23.11) for any compact set K, y^K) -> 0. Also
Y^(@) == (y, GBSJ —>• {h, ^) so we that for any compact K,
y^(K') — (9, A). Let s > 0 be given. Then there is a compact
set K ==> A such that

GBP(^) GB<P(O°) r^K.< £,

|GBA^) GB^^)
Thus from (23.13) we see that

^^^GBAOO)^^ ^ ̂ ^

GB<P(°O)
Thus as s is arbitrary

(23.14) (^)^(LB,n-^(LB, <p)

Since (23.14) is true for all feC^ it follows that

, (9, h) fh = vr? / La a.e.(LB, y)
Consider now a type II recurrent process. We know that

La ^ 0. Suppose La" == 0 a.e. Then

LB(^) == (r~2 f HB(rc, rfz)^(;s — x) a.e.



INFINITELY DIVISIBLE PROCESSES 247

and thus

LB(^) + LB(— x) = a-2 f [H^x, dz) + HB(— x, dz)]^{z) a.e.

However, the left hand side tends to oo as x —> oo while
the right hand side is bounded. Thus La" == 0 a.e. is impossible
so L? > 0 on a set of positive measure. A similar argument
shows that Li > 0 on a set of positive measure. Using
Urysohn's lemma we may find 9 e C^" such that (Lp, 9) > 0.
Since lim G^{x) = (LB, 9) we see that there is a compact

X>± oo ^

set A such that G^{x) ^ 8 > 0 for x^A.. Let y^ be
as before. From (23.18) we see that there is a subsequence
rij —> oo such that Yn/®"^) -> a+, Yra,(®~) ~~^ a- where
a++ a-= (h, 9). Then as Yn(K n ©^ ^ y^K)^0 for
any compact K we see that

(23.15) lim y,/®" n K') = a".
n,->ao

We can choose K compact such that for x ^ K n ©+

(23.16) GB^ - GB^ co)
G^{x) GBV(+ oo)

< £

and for x « K n ®~

|GB/'̂ ) GB/~(- °0)(23.17) < s.
GB?^) GB<P(— 00)

It now follows from (23.13) and (23.15)-(23.17) that

(k,f)=.,^-al+,.e^-
GB9(+ 00) CjB9(— oo)

^a.^^^+a,!1-^).
(LB, 9) (LB, ?)

Since this is true for all /*€= C^" and 003 and o^ are indepen-
dent of f we see that

h= (LB, y) LS,+ a2

(Li, 9)
La a.e.

We can extend these uniqueness results to sets in ^63 as
follows.
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THEOREM 23.4. — Let B e ̂ 3. Then in the type I recurrent
case the only Qa invariant functions that are locally bounded
and bounded from below coincide with CLa a.e. In the type II
recurrent case the only such functions coincide a.e. with
CI.LB T OgLa.

Proof. — Since B e ̂ 3, P^TB = oo) =EE 0. Now for some M
Mf+M > 0 and so Q^{f+ M) = f+ QUM ^f, t -> oo. Thus
/•= QB /̂̂  M) ^ 0. Choose A e ̂ , A ^ B. Then

/W = QB/"^) = QVN + ^ f^ P^TB e ds, XT, e ^)QB-Y(Z/)
=Q^(^)+E,y(XTj; T^ ^ (].

It follows that lim Q^f = Q^f exists and is a Qi invariant
Ooo

function (by dominated convergence since QV^) and that

f=W+H^
Hence by Theorem 23.3 in the type I case Q^f == QA a.e.
and in the type II case Q?/*= CiLf + C^L~^ a.e. It is easily
checked that

LB == LA + HALB
and in the type II case that

LS = LA + HALI.

Consequently in the type I case

/•-CLa—HA^-CLa) a.e.

Thus f — CLa is essentially bounded and Qa invariant.
Since B e %3 the only such function is essentially 0. Thus
f= CLa a.e. A similar argument shows that in the type II
case /*==CiLB+CLi a.e. This establishes the theorem.

24. Poisson Type Equations.

Let B be a closed set. The process X((B) == X^r, is
process X^ stopped when it hits B. Its transition operator
aP^ is given by

Bpy^) = Wx) + E,[/*(XTJ; Ta ^ t].
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An easy computation shows that for any measurable function
f bounded from below aP^ == aP^Py) so aP^ has the
semi-group property.

PROPOSITION 24.1. — The function f= h + HB<P where 9
is bounded from below and h is bounded from below and Qa
invariant is bounded from below and pP' invariant. Conversely
every such ^t invariant function is of this form.

Proof. — Suppose h is Qa invariant. Since
P^(X^ CE BjTa < oo) = 1 and h = 0

on B we see that h is aP^ invariant. Also

B^HB^) = W^{x) + E,[HB9(XrJ; Ta < (]
= E,[<P(XT,)$ t < Ta < o>] + E,[<P(XT.)$ Ta < t]
= Hay^).

Suppose now that f ^ M > — oo and aP^ invariant.
Then as f— M ^ 0 and

spy- M) = Bpy- MP^TB > < ) - MP,(TB ̂ t)=f-M
it suffices to consider f ̂  0. But then

/N-QB^+E^/PC^TB^ (]

and E,[/'(XT,)$TB < ^fHaf^). Consequently QB/^ QS/' and
dominated convergence shows that Qg/* is Qa invariant.
This establishes the proposition.

Functions invariant for eP1 play the role of functions
harmonic on B' as we shall now explain.

Define the operator Aa on the measurable functions as
follows. The domain D(Aa) of AB consists in all measurable
functions f such that

(24.1) sup sup aPVN - f(x) _ M < oo
xe.® o<t^l t

and
lim Bp'̂  - ̂
t^O t

exists. For fe'D(^)

(24.2) ^f(x) == lim eptf{x) ~ ̂ \
(to (
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When restricted to the bounded Borel functions Ae is just
the weak infinitesimal generator of the semi-group aP* on
the space of bounded Borel Functions. For our purposes
however we will need to apply AB to measurable functions
that are just bounded from below. Henceforth in this section
all measurable functions f will be assumed to be bounded
from below. It follows from (24.1) and the semi-group pro-
perty of aP^ that

(24.3) \^fW-fW\ < M(
so

IBPTI ^ 1/1+Mt.
Thus the Laplace transform ^ of aP^ is well defined.

PROPOSITION 24.2. — If f is bounded from below and
/*eD(AB) then ^f is continuous in t for t > 0 and right
continuous at 0. Also

(24.4) lim aP^Y - ̂  _ p^
/»to n

(24.5) aPT* - f= f^^f ̂
and

(24.6) BR^-AB^A
Proof. — It follows from (24.1) that for t ^ 0 and

0 < h ^ 1
IBP^Y-BPTI ^ MA

so aPT* is right continuous for ( ^ 0. Moreover for ( > 0
and 0 < h < 1 and ( — h > 0,

IBP^-Y- BP71 ^ ^aP^, dy)\f{y) - PY(z/)| ^ Mh

so aPy is left continuous for ( > 0. Equation (24.4) follows
at once by dominated convergence from (24.1) and (24.2).
Now

-|-J\pw-/')^
1 ^t-\-h \ ^h

=i- BPY^-— ^fds. (24.7)
it J t ll J 0
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By dominated convergence the left hand side converges to
J P^AB/* ds as h\ 0. Using the continuity properties of
a?5/* we see that the right hand side of (24.7) converges to
aPy—/ ' as h\0. This establishes (24.5). Equation (24.6)
follows by taking Laplace transforms.

COROLLARY 24.1. — A function f bounded from below is
aP* invariant if and only if Ap/Y^) == 0 for all x e ®.

Proof. — Immediate from (24.5).
If, in particular, we apply Proposition 24.2 to the closed

set B === 0 we obtain the following.

COROLLARY 24.2. — Let A^ = A. If f is bounded from
below and fe D(A) then P^ is continuous for t > 0 and
right continuous at t = 0. Also

(24.8) lim P^Y - Py ̂  pt ^
h^O h

(24.9) pif-f^^p^fds
and

(24.10) G\\- A)/*=/'.

In general a function fe D(Aa) need not be in D(A).
However if fe D(A) then we have the following.

PROPOSITION 24.3. — Let fe D(A) and let B be a closed
set. If ^f[x)=0 for x ^ B ' then f^ D(Aa) and AB/'==O.

Proof. — Set 9 == A/*. Then as <p = 0 on B' we see that
G\ == H^cp

and as /*eD(A) we see by (24.10) that
(24.11) f = G\\ - A)/1 = XGY - GV

Also
GY=G^+H^GY

Hence

/ •+G^=X[G^+H^GY]
= XG^+ H^(/-+ G^y) = XG^+ H^+ G\p.
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Thus
/ •=XG^+H^=»RV

Hence a.e. t,

(24.12) f=W
Since BP^/* == aP* BPY (24.12) must hold for all ( > 0.
Indeed given any t > 0 we can find t^ t^ such that
t == t! + ^2 ^d aPy == /'I, BPY == /? so the conclusion follows
by the semi-group property.

Let 9 be a measurable function. A function fe DfA)
solves Poisson's equation for <p if A/'= 9. We shall investi-
gate the solutions of Poisson's equation for 9 e Cc that are
bounded from below and continuous.

PROPOSITION 24.4. — Suppose the process X^ is transient
and let 9 e Cp. The function G<p is a bounded continuous
solution of A/* = — 9. The only bounded continuous solutions
of A/* == — 9 are f = €9 + a /^r a ^ constant. Moreover
every continuous solution bounded from below is given by
f == h 4- G9 where h is continuous^ bounded from below
and AA == 0.

Proof. — Since
P<G9 = €9 — FP^ ds»/o

and P^ -^ 9 uniformly as s -> 0 it follows that €9 e D(A)
and AG9 = = = — 9 . Suppose f is continuous, bounded from
below, and A/' == — 9. Then f — G^ is bounded from below,
continuous and satisfies the equation A(/'— €9) == 0. Hence
by Corollary 24.1 (with B = 0) f— G^ is P1 invariant.
If f is assumed to be bounded then f — €9 is a continuous,
bounded, P' invariant function so f— € 9 = 0 for some
constant a.

We now turn to consider Poissons equation for recurrent
processes. The main difference with the transient case is
that now there need be no solution in the general case and
even in the non-singular case there is no solution bounded
from below if J(9) < 0.

Let us first show that potentials A 9 provide solutions
in the non-singular case.
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PROPOSITION 24.5. — Let X( be a non-singular recurrent
processes and let 9 e Cg. Then AAy == <p.

Proof. — By replacing 9 with — 9 if necessary we can
assume that J(<p) ^ 0. Then by Theorem 17.7 there is a
constant M such that Acp ^ — M. Now an easy compu-
tation shows that

P^A^ = A^ + f e-^P^ — P^<p] ds.

Since P^ -> 0 as t —> co we see that

(24.13) lim P^cp = Ay + f P^ d5.
Xto l/o

By Fatou's lemma

g{x) = lim P'A^) - P^A9(^) ^ 0
)^o

But then

gry(:r) == S^ ~ V) = lim PtAX9(^ — y) — P<A9(a; — y)\^o
= lim P^yy^) — P'Acp^),

x^o
so

g,(.r) - g{x) = lim P'A^y, - <?){x} - P'A^ - <p)(^).
\^Q

By Theorem 17.5, for fixed y, sup s u p j A ^ c p y — 9 ) ( ^ ) 1 < °°
o<x<i ae®

and thus by bounded convergence gy{x) — g{x) == 0. Hence
g{x) = go ^ 0 for some constant go. From (24.13) we then
see that

(24.14) P^Acp = A<p + r P'<P ds - go.
t/O

Thus

(24.15) B^)^ = P^Acp + P^ ̂  P^p d5 - go.

Using f24.14) and (24.15) we easily get that

p(-WA<p = Ay - (n + l)go + S P^ f P^ ^.
y=o ^o



254 S. C. PORT AND C. J. STONE

Since Acp + M > 0

(24.16) Q^P'-^A^+MI

=nW-"+^^l^p"f"^d'-n + 1 M + 1 y=o Jo

Since P^<p -> 0 as s -> oo

lim —1 S P^ F P^ ^ = 0
<->oo 7 7 + 1 J'=0 Jo

and so the right hand side of (24.16) converges to — go as
^ -> oo. Since the left hand side ^ 0 for all n we see that
- go ^ 0 so go ^ 0. Thus go = 0. Thus by (24.14)

P^A<p — Ay == FP'9 6fc
</0

and as <p e= Cc it follows that A<p e D(A) and AAy = 9.

THEOREM 24.1. — Suppose X( is a recurrent non-singular
process and let <p e Cc. In order that the equation A/* == 9
have a continuous solution that is bounded from below it is
necessary that J(cp) ^ 0. In that case for a type I process the
only such solutions are f = Ay + (B for (B a constant. For a
type II process the only such solutions are

f= A<p + (aJ(9)/^)+ + P

for a a constant such that |a| ^ 1.

Proof. — Suppose f is a continuous solution bounded
from below. Let B e 84 be a compact set containing the sup-
port of 9. Then A/*(^) ==0 for x e B' so by Proposition
24.3 f is a aP^ invariant function. Consequently by Propo-
sition 24.1 and Theorem 24.4 for a type I process
f= aL.B + HB/* a.e. while for a type II process

f == aLB + &Li + HB/*

a.e. Using essentially the same argument used to establish
Lemmas 10.8 and 10.9 in [7] it follows that J(9) must be
^ 0 and f = Acp — (B a.e. in the type I case and
f = ̂ 9 + (aJ(9)/<r2)^ — P a.e. for |a| ^ 1 in the type I
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case. Since /*, A<p and ^ are continuous the theorem is
established.

We will next investigate the Poisson equation for the
stopped process XB^). Let Cc(B') denote the continuous
functions having compact support contained in B'.

PROPOSITION 24.6. — Suppose X( is a transient process.
Let B be a closed set and let <p be a measurable function that
is bounded on B and let h e Cc(B'). Then for any constant a,
the function ^(x) = aP^Ta === oo) + H p̂ + Gj^h is a bounded
solution of the equation system ^f= — h, f(x) = cp(^), rceB.
In the non-singular case these are the only bounded solutions
and in the general case every bounded solution coincides with
one of these functions a.e. If B' is relatively compact the unique
solution is ^ = HB<P + G^h. If B is compact then ^ is
the unique solution having a limit at oo in the type I case and
a limit at + °° ln the type II case with m > 0.

Proof. — Observe that G^h == f Q^h dt. An easy compu-
tation shows that

Q^GB/I = GB/I - r Qah ds*J o

and since for x ^ B,

lim Qah{x) = lim E^AfX,); Te > s] = h{x)P^ > 0) = h{x)
s^O s^O

we see that

lim Q6^ - G^ == - k.
t^O t

But then as E,[GB/I(XT,); TB ^ (] = 0, G^h e D(Aa) and
AaGaA === — h. The function ^ == aP^(TB = oo) + Ha9 is
^P1 invariant and so Aa^ = — A. It is clear that ^ = cp
on B. Let f be any bounded solution. Then f — G^h is
a bounded solution of Apg = 0, g = <p on B. By Proposition
24.1 only bounded solutions of

AB^ =0 are g = g + Hag = g' + H^ ;

where g' is a bounded QB invariant function. The remaining
assertions now follow from Theorem 23.1 and Proposition 23.1.
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Turning our attention to the recurrent case we have the
following,

PROPOSITION 24.7. — Suppose X^ is a recurrent process
and let B e ^3 be compact. Then if 9 is a bounded measurable
function on B and h e= Cc the function ^ == Ha9 + Gj^h is
the unique bounded solution of A a/* == — A, f = 9 on B. The
function ^ is also the unique solution of this system if B is
a closed set with such that B' is relatively compact.

Proof. — The proof is similar to the previous proposition.
We omit the details.

In general the functions Ha9, G^h and P^TB =00) do
not possess any continuity properties so our solutions to the
Poisson equation A B / * = — h , h = 9 on B do not have
continuity properties in the ordinary sense, fin § 25 we will
show that for strong Feller processes the above functions,
for 9 a continuous function, do have desirable continuity
properties.] However we will now show that our solutions
possess a certain stochastic continuity.

PROPOSITION 24.8. — Let B be a closed set and let 9 be a
Borel function that is bounded on B. Then for any sequence
T^ of stopping times such that T^ f TB a.s. P^

lim Ha9(XJ = 9(XrJ a.s. P^ on [TB < oo]
n>oo

and
PxJTa = oo) = 1 a.s. P, on [TB = oo].

Proof. -— By quasi-left continuity X^ —> X^ a.s. P^ on
[TB < oo ]. Let ^ be the a field associated with the time
T^ [see [2], Chapter I for details], and let 9 = a [[_J^V
Since ^ n /

Ha9(XJ = Exj9(XrJ; TB < oo] = E^XrJ; TB < ooj^J

it follows by a well known result on conditional expectation
that a.s. P^,

lim Ha9(XJ = E,[9(XrJ; Ta < oo|3?].
n>oo



INFINITELY DIVISIBLE PROCESSES 257

Since X^-> XT, a.s. P., on [TB < oo] and X^ is ^
measurable we see that 9(X-rJ is 9 measurable and
[TB < oo e 9. Hence a.s. P^

E,[9(XrJ; TB < oo|3?] = 9(XrJ on [TB < oo].

The proof in the second assertion in the proposition is similar.

PROPOSITION 24.9. — Let B be a closed set such that
sup Ga(^, K) = M(K) < oo for each compact set K. Then

x
for any sequence T^ of stopping times such that T^ \ TB a.s.
P and for any h e 0

lim GB^(XJ = 0 a.5. P,.
n>ao

Proof. — Let T^ and 3^ be as in Proposition 24.8. Let
s > 0 be given. Then a.s. P^

Urn P,(TB ^ T, + ̂ J ^ lim P,(TB ^ T, + s|9?J = ICT^T.+EJ
n>oo n>oe

and thus a.s. P^

limP,(TB ^ T.+el^J^l .
n*-ao

Let K be compact and contain the support of h. Then

Ex, [f^^X^dt] < Ws + M(K)||/I|IP^(TB > e)
= ||A| [e + M(K)P,(TB > T, + e|^).

Hence a.s. Pa;,
Hm|GB/i(XJ| < 1| h\\ e
n>oo

as desired.
So far we have extended to notion of a harmonic function

on B' from the point of view that such a function is one
whose Laplacian is zero on B'. Classically such functions
also can be characterized by means of an averaging property.
The extension of this idea is as follows.

DEFINITION 24.1. — Let B be a closed set. A universally
measurable function f on @ is said to be harmonic on B'
if for any open set U having compact closure contained in
B', f(x} = E^[/'(X-i^)], xeV. A harmonic function on B'
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is said to be stochastically regular if for every sequence T^ of
stopping times such that T^ f TB a.s. P ,̂ /*(X^) -> /'(X^) a.s.
P^ on [TB < co] and for some constant a /*(X^ ) •—>• a a.s.
P^ OM [TB == oo ]. A harmonic function on B' 15 56urf ^o be
regular if lim /*(^) = cp(r) /or r e B7' OTzJ m ̂  ca^ of tran-

x->r

sient processes lim f(x) == /'(oo) exists if the process is type I
3C-XX)

transient and lim f(x) ==/*(+ oo) ea;̂ 5 i/*^ process is type II
a;->4-oo

transient with m > 0, or lim /'(a;) ==/*(— oo) orrî  I/' (Ae
a;->—ao

process is type II transient with m < 0.

PROPOSITION 24.10. Le^ B ^ a closed set and let <p be a
Borel function that is bounded on B. Then every function f
of the form f(x) = HB<P(^) + aP^Ta =00) is a bounded
stochastically regular harmonic function on B' and conversely
every bounded stochastically regular harmonic function on B'
is of this form.

Proof. — Let U be an open set having compact closure
contained in B'. Then HB == Hu.Ha and thus H^y ^s a
harmonic function on B'. In particular, for 9 == 1 we see
that P^(TB < oo) and thus also P^TB == oo) are harmonic
functions on B'. The regularity of these functions is the
contents of Proposition 24.8. Now suppose f is a stochasti-
cally regular bounded harmonic function on B'. Let U^
be open U^ compact, TL<=B' and U^ f B'. Then
Tu^ f T < TB and by quasi-left continuity X^, -> XT a.s.
P^ on [T < oo J. Since B is closed XT e= B and thus
T = T B a.s. P, on [T ^ oo]. If T = oo then Ta = oo
w P^T = Ta) = 1. Now

f(x)=E^f(X^)]=^[f(X^)^
TB < O)]+E^(XTJ; Ta= oo]

and using the stochastic regularity of f and letting n -> oo
we see that f is of the desired form.

The stochastic Dirichlet problem for a closed set B with
boundary function 9 is as follows. Given a Borel function y
that is bounded on B find a bounded stochastically regular
harmonic function f such that f = 9 on B. It follows
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at once from Proposition 24.10 that the functions

f= HB<? +OCP,(TB= oo)
are the only solutions of this problem. From Proposition 24.6
we see that if X^ is a transient process that is non-singular
the Dirichlet problem is equivalent to finding a bounded f
such that AB^==O, f = <p on B. This is also true for a sin-
gular transient process if B is compact or B' is relatively
compact. For recurrent processes the two problems are equi-
valent whenever B is such that P^TB = oo) =: 0. In parti-
cular, for any i.d. process, if f is bounded, then AB^==O,
f = 9 on B if and only if f is a solution of the stochastic
Dirichlet problem for B with boundary function 9 whenever
B is compact or B' is compact.

The Dirichlet problem for a closed set B with boundary
function 9 is as follows. Given a Borel function that is conti-
nuous on B find a bounded regular harmonic function f
such that f = 9 on B. In general this problem has no solu-
tion. For strong Feller i.d. process there are solutions for closed
sets having the property that P^X-i-g e B^TB < oo) = 1 for
all x e B' and are such that P^(TB == oo) has the correct
limiting behavior at oo. The next result is typical of what
can be proved. The proof uses continuity properties of Ha<p(^)
that will be established in the next section.

PROPOSITION 24.11. — Suppose X( is a strong Feller pro-
cess. Let B be a compact set such that P^XT^B^TB < oo) == 1
for all xe B'. Let 9 be a bounded function that is continuous
at each point of B7'. Then every function of the form
f^x) = Ha<p(^) + aPa;(Ta = oo) is a solution to the Dirichlet
problem with boundary function 9 and conversely every solu-
tion of this problem is of this form.

Proof. — If f is of the stated form then f is harmonic
and the needed continuity properties follow from Theorem
25.1 and Proposition 3.6. Conversely if f is a solution of the
Dirichlet problem, then using the continuity properties of f
and the fact that P,(XT, e B^Tp < oo) == 1 for all x e B71

it easily follows that f is a stochastically regular harmonic
function on B', and thus by Proposition 24.10 f must be
of the stated form.
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25. Continuity Properties of Strong Feller Processes.

If an i.d. process has the strong Feller property i.e. Pt({^(x)
is continuous in x whenever 9 is bounded and measurable,
then the various functions associated with the process have
desirable continuity properties. These details will be spelled
out in the following propositions. The strong Feller property
holds whenever X^ has a density p^ for all t. Indeed, in
this situation P^rc) is uniformly continuous because

|P^ + ^o) - P^o)! ^ U?L / \p(t, x + z) + p(t, z)| dz

and the desired continuity follows from the continuity of
translation in the Li norm. Throughout this section we will
assume that X( is a strong Feller i.d. process.

PROPOSITION 25.1. — Let B be a Borel set and let 9 be a
bounded measurable function. Then for t > 0 the functions
QB9(^), E,[<p(X,); TB ^_t] , E,[9(XrJ; TB ^ t], and H^(x)
are continuous for rce(B)'.

Proof. — Let s e (0, t). Then

(25.1) QB<p(aQ = QBQB-W - P'QB-W
-E,[QB-9(X,); TB ^ .].

The first term on the right is continuous by the strong Feller
property. As to the second term we see that

|E,[QSr9(XJ$ TB ^ s]\ = hLP. (TB ^ s).

If XQ e (B)' then there is a neighborhood U of 0 such that
U + XQ <== (B)'. Let N be a neighborhood of 0 such that
N + N <= U. Given e > 0 we can choose s such that
P o ( X u € = N for all u ^ s) ^ 1 — e, and thus for a;eN,
P^(Xg<=U for all u ^ s) ^ 1 — e. Consequently, for all
^eN+^oP.r(TB < s) < e. The continuity of QB<P(^) tor
xe (B)' now follows from these facts. Since

E,[<p(X<); TB < t] = PW - QB^)
it follows that E^yfX^); TB ^ () is continuous on fB)'.
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The continuity of Ha<p on (B)' follows from the fact that
P^Ha^ is continuous and the estimate

|P-HB<P(^) - HB^)] ^ II<P|LP.(TB ^ s)
Since

E,[9(XrJ; TB ^ t] = HB<? - QBHa9

we see that it too is continuous on (B)'.

COROLLARY 25.1. — I f the process is transient then G^[x)
is continuous on (B)' whenever 9 is bounded with compact
support.

Proof. — This follows at once from Proposition 25.1, the
fact that

GB<P === G<p — HaGy,

and the fact that G<p is continuous.
Recall that a point r is regular for B if P^VB ===0) == 1.

PROPOSITION 25.2. — If r is a regular point of B and
X( is a strong Feller process then P^VB ^ t) and P^Ta < t)
are continuous at r.

Proof. — Observe that

P.,(X,eB for some s e (r, t]) = f P^, dy)Py{T^ ^ t — r)

is continuous in x and thus as

P^(X^eB for some 5e(r , ^P^Va ^ t) as T ^ O

we see that P^VB ^ t) Is a lower-semi-continuous function.
Thus

limP,(VB ^ t) ^ P,(Va < t) -1.
x-^-r

Since P^(VB ^ t) ^ 1 we see that

lim P,(VB ^ <) == 1.
3c'>r

Now P.,(TB < t) S? P.,(VB < <) and thus

Hm P^(TB <( )=! .
.c-^-r

Also, Pr(Ta ^ t) = 1 because for r e B this is obviously
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true while for r « B, P,(TB < t) = P,(VB < t). Thus P.,(TB ^ t}
is continuous at r.

COROLLARY 25.2. — If r is a regular point of B then for
any t > 0 and any bounded measurable 9,

QB<p(r)=E,[<p(X,);VB > f ] ==0
and QB<P(;K), Ea;[<p(X(); VB > t] are continuous at r. Also

E,[y(X<); VB <( ] = E,[9(X<); Ta < t] = PW

and Ea;[<p(X(); VB ^ t], Ea;[cp(X(); TB < t] are continuous at
r.

Proof. — These follow at once from the facts that
P,(TB = 0) = P/VB == 0) === 1, Proposition 25.2, and the
relations

P^)-E,[<P(X,);TB ^ ^]+QB<P(^
P^x) = E,[<p(X<); VB ^ t] + E,[<p(X,); VB > <].

PROPOSITION 25.3. — Let r be a regular point of B. Then

(25.2) lim HB<P(^) = lim IIa?^) == <p(r)
.c->r a;->r

whenever r is also a point of continuity of <p. In addition for
such a point r for any t ^ 0,

(25.3) lim E,[<p(XrJ ; Ta ^ t] == lim E,[9(X,);
x->r x->r

VB ^ t\ = <p(r)

Proof. — We will prove the Proposition for Ha<p and
E^(<P(XTJ; TB ^ ^]. The same argument also yields the
desired result for the other functions. Let U be any neigh-
borhood of 0, and let s > 0 be given. Then there is a neigh-
borhood N of 0 and a time T such that Pa;(X( e U for
t ^ r) > 1 — c for x e N. Hence for all x e N 4" r?
P^TB ^ T, XT^U + r) < e. By Proposition 25.2 we
can find a neighborhood N] c N such that for x e N1 + ^y
P..(TB ^ t) > 1 ~ s. Thus for ^e= N3 + r, P^TB < T,
X^ €= U + r) > 1 — 2s. Hence

limP,(TB ^ T, X ^ e U + ^ - l .
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Now suppose <p is continuous at r. Then for some neigh-
borhood U + r of r, \<p{x) — <p(r)| < s, xer. Thus

|HB )̂ - 9MI < ^HB(.T, dz)[cp(z) - 9(r)]
- <p(r)P,(TB = oo) ^ e HB ,̂ U + r)
+2Hyl|P,(XT.«U+r;TB < oo)
+ <p(r)P,(TB = oo) < s + 4||y||e + <p(r)e.

Thus

Since
Urn HB<p(a;) = <p(r).

E,[<P(XT.); TB ^ (] = HBV(^) - QBV(:C)

it now follows from what has just geen proved and Corollary
25.2 that

limE,[<p(XT.);TB < <]=<p(r).
x->r

This establishes the theorem.

COROLLARY 25.3. — If <p is bounded and with compact
support and the process is transient then for r a regular point
of B,

lim GB?(^) == GB<p(r) == 0.
x->r

Proof. — This follows at once from the fact that G<p is
continuous, the first passage relation and Proposition 25.3.

The preceding results can be summed up as follows.

THEOREM 25.1. — Let q? be a bounded measurable function
and let B he a Borel set. Then the functions QB?(^)? and
E^[<p(X(); TB ^ t] are continuous on Br u ^B)'. If 9 has
compact support then Ga9 is continuous on this set. Denote
the continuity points of 9 by C^. Then HB<P and
Ea;[(p(XTj; TB ^ t) are continuous on (Br r\ Cy) u (B)'.

For recurrent processes we have the following

THEOREM 25.2. — Let B e ̂  and let 9 e 0. Then A<p
is continuous and GB<P and La are continuous on B^'^B)'.
In the type II case La are continuous on this set.
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Proof, — It is clear that A.\ is continuous and since
A^y -> A<p uniformly on compacts so is Ay. Likewise by
Theorem 25.1, G^<p is continuous on B^'u (B)' and as
G^9 —^ Gay uniformly on compacts GB<P is continuous on
this set. By Proposition HaAy is continuous on B7' U (B)'
and thus as

J(<P)LB === Ay — HaAcp + GB<P

we see that La is also continuous on B'' U (5)'. Finally
the fact that in the type II case LB are continuous on
B7* U (B)' follows from Theorem 25.1 and the fact that La
is continuous on the set. This establishes the proposition.

From Theorems 24.1 and 24.2 we obtain the following

COROLLARY 25.4. — Let B be a closed set, let h e Cc(B')
and let <p be a measurable function that is bounded on B.
Then the only bounded solutions of Aa/* == — h, f = 9 on B
are f(x) == Geh{x) + HB<?(^) + aP^(Ta == oo) for a a cons-
tant. These solutions are continuous on B' u (B7') n Cy) (C^
is the set of continuity points of 9).

Using our results on Qs invariant functions from § 24
plus Theorem 25.2 we obtain the following.

COROLLARY 25.5. — Let X( be a recurrent process and let
B e %i. Then in the type I case the only QB invariant functions
f ̂  0 that are continuous on (B)' coincide with aLa on (B)'»
In the type II case every such function coincides with
OC^LB + a^Li on (B)'.
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