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INFINITELY DIVISIBLE PROCESSES
AND THEIR POTENTIAL THEORY,
(IL. Part) (Y)

by S. C. PORT and C. J. STONE

16. Some Fourier Analysis.

The characteristic function §%(0), 0e®, is defined for
t>0 by

= [, <6, 2! (do) = [, <6, )P0, da).
It 1s jomtly continuous in ¢ and 6 and satisfies the equation
(16.1) a+(0) = p*(8)a4(0), s,t>0 and 6e@®.

For convenience we set {i(6) = {1(0).

Prorosition 16.1. — There is a uniquely defined function
log (8), 6@®, such that
4(0) = etlos O, t>0 and 0e®.

This function is continuous, vanishes at 6 = 0 and nowhere
else, and has non-positive real part.

Proof. — By (16.1) there is a uniquely defined number
9(0) such that

04(0) = e¥®, t>0 and be®.

Since §4(0) =1 for ¢t > 0, it follows that ¢(0) = 1. Suppose
¢(0p) = 1. Then {(6,) =1 for ¢t > 0. This implies that

(Y) The fist part was published in Ann. Inst. Fourier, tome 21, 2.



180 S. C. PORT AND C. J. STONE
each S, is contained in the subgroup
{ze®|<z, 0,) = 1}.

Therefore this subgroup equals the whole group and hence
6, = 0.

We will now show that ¢ 1is continuous. Let log z be
defined continuously for |z — 1] <1 so that log 1 =0.

Let N be a relatively compact open subset of . There is
a t, > 0 such that

[gf(0) — 1] < 1, 0<t<t, and 0 eN.

Thus log §%0) 1s well defined and continuous in ¢ and 6
for 0 <¢t<t, and 6eN. If s>0, t>0, s+t <t,
and 6eN, then

log (/(6) = log *(6) + log /().

Consequently there is a continuous function ¢(6), 6 e N,
such that

log 4(0) = t4(0), 0<t
It follows that
0N0) =D, 0 <t < ¢ and 6eN.
From (16.1) we see that
01(0) = ett®, 0<t< and 6eN,

N

to and 6 eN.

and consequently that ¢ agrees with ¢ on N. Since N
is any relatively compact open subset of &, we see that o

1s a continuous function on &. Since ¢(6) 1s a logarithm
of {(0), the proof of the proposition is complete.

Tueorem 16.1. — The function

R log 2(6)

s bounded for x in compact subsets of & and 0 in compact

subsets of the complement of the origin of &.
The proof of this result is an obvious modification of the
proof of Theorem 3.1 of [7] and will be omitted.
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ProrosiTion 16.2. — There is a relatively compact open
neighborhood Q of the origin of & such that
1 1
— < A .
» log a(0) » L1 —3(0) < 2, >0 and 6eQ
Proof. — There is a relatively compact open neighborhood
Q of the origin of & such that
. log (0
joe) — 4 > FEROLpcq,

and
[2(0) — 1 — log @(0)] < [log ¢.(8)]2, 6eQ.
It follows that

[x+1—a(e);>|ﬁ’%“<eﬂ, A>0 and 0eQ.

We also have that
A —log @(6)] > [loga(6)), *>0 and 6e@.
Thus for A > 0 and 0eQ

1 _ 1
A —log 0.(8)  A+1— p(o)

2(0) — 1 —log () _
A+ 1 — a0 — log (o) ~ ~

as desired.

Tueorem 16.2. — Let Q be a relatively compact open

neighborhood of the origin of ®. The process is transient or
recurrent according as

S g )

converges or diverges.

Proof. — Suppose the process is transient. Choose f(z),
ze®, such that feCr, J(f) > 0, and f is non-negative
and integrable. Then

N fO)
IO = i Tog 7

[
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By letting A | 0 and using Fatou’s Lemma, we find that

St (g

Since f(0)=J(f) >0 and log 2(6) % 0 for 6 = 0, we

see that
' 1
/Q & <10g 9-(6)> @
converges.
Suppose instead that the process is recurrent. Then by
Proposition 5.3 S, generates & for some t > 0. Without
loss of generality we can assume that S; generates &. Then

the random walk obtained by looking at the process at integer
times is a recurrent random walk on &. By Theorem 5.1

of [7] 1
Jr (=) ®

diverges. By Proposition 16.2
1 1
— ———) ) db
L, (@) + 2 (—aw)

converges. Thus
1
R <*—> o
Jo 2 g

diverges as desired.

>d6 < Gf(0) < .

17. The Recurrent Potential Operator.

Throughout this section it will be assumed that the process
1s recurrent. Let F*+ denote the collection of functions f(z),
ze@®, such that

(1) f 1s a continuous, non-negative and integrable function;
(11) f 1s supported by a compactly generated subgroup of &;

(i) f, the Fourier transform of f, has compact support;
and

(iv) there is a compact subset C of &, a constant ¢
such that 0 < ¢ < o, and an open neighborhood Q of
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the origin of @ such that
— RNF () < cmax (1 — R, 6)), 6eQ.
zeC

Properties of this family of functions were developed in [7].
Let F denote the collection of differences of elements of F+.

Recall that
G = [" NP fdt.
For » >0 and feF we have

GHf(e) = [ < ——f—x’ D19 g,

A — (0

Choose geJ*t such that g is symmetric and J(g) = 1.
For A > 0 set c*= G*g(0) and define A* for feJ and

ze® by
AM(z) = A(f) — GM().
Then 0J ) 9>f 0)
g - — (&, _
v = [N
Also
AN (z) Alf J {— ¥, ei 1_—1023:;(25))8( )de.

In the non-singular case it is convenient to modify the
definition of ¢*. Let p® be the distribution of X, when
X, =0 and define

ph = fo e Mu® dt.
Then we can write
ph = p} 4 ¢ * pd * ph
where, as 2|0, p} and u} increase to finite measures p,
and p, and ¢ 1is a probability measure having compact
support and a continuous density and is such that ¢ is

absolutely integrable. This decomposition is obtained as in

Port and Stone [8].
The measure ¢ * u} * u* is absolutely continuous and has

a continuous density p* given by

vy (< 3 056(0)03(0)
e R ey P T
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Set ¢* = p*0) and d*y) = ¢* — p*y). Then

[ (= (— g, 0)8(8)a}6)
W)= [ e
and

o (=, 05(1 — <x, 65)8(6)a)(0)
Ay — o) = @) = |, n—Togae)

We now define
AM(2) = MI(f) — GH(x)
then
AM(z) = [y aMy — 2)f(y) dy — [y e (dy)f(s + )

and

AM(z) — AM(0) = [y (s + y — 2) — (s + y))f () da
— Jovd (@A)(fz + 2 —y) — f(z — y)).

The process is said to be type II recurrent if & =R o H
or =7 o H, where H 1is compact, and the induced
process on R or Z has mean zero and finite variance.
Otherwise the process is said to be type I recurrent. In the
type II case we can assume that @& =R o H or Zo H
and Haar measure on & is the direct product of Lebesgue
measure on R or counting measure on Z and normalized
Haar measure on H. Let ¢ be the projection from & onto
R or Z and let o* denote the variance of ¢(X;). Then
¢(X,) has mean 0 and variance o*. We set

Ot = {ze®|¢(z) > 0} and G = {ze@|¢(z) < 0}.
By z— 4+ o or z—> — o we mean z—> o and ze®t

or ze®™

Prorosition 17.1. — Let Q be a relatively compact open
neighborhood of the origin of ®. Then

lim ] =<2, e> jdo
wo JoA — log (6
exists and is finite. In the type 1 case

1im1imf< Y, OU—<2, 0)) g9 — o,
o AV0 — log {.(0)
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In the type 11 case

K y,('))i-—(:l:,ﬁ))e__ &
kfolo lgrolf ~log (9) db = F o72{(x).
Proof. — We can assume that the random walk obtained

by looking at the process at integer times is a random walk
on &. Then by Proposition 16.2, the result reduces imme-
diately to Theorem 5.2 of [7].

Tueorem 17.1. — In the non-singular case there is a conti-
nuous function a(z), xe®, such that

lim a*(z) = a(z), =ze@.
Avo

In the type 1 case
lim (a(y — ) — a(y)) =0

Y>» o

and in the type 11 case

lim (a(y — 2) — a(y)) = F o7%}(a).

Y>xow

The conyergence in these limits is uniform for z in compacts.

Proof. — Let Q denote a relatively compact open neighbor-
hood of the origin of @. Set

a)(y) =fc(1 - i__yf(,?i( ()6) (3(6 ) de.

Then as A | 0, a}. converges uniformly on compacts to
(1 —<—y, 8)8(6)a,(0)
Aqe == ao.
() fc — log @(6)
By the Riemann-Lebesgue Lemma

: o $(8)p4(9)
lim (f)Po= fQ “Tog a(8) °

and hence

lim (aq(y — @) — aq,(y)) =0

y>x
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uniformly for z in compacts. Set

_ [ (=<~ y, 0))(8(0)X(6) — 1)
13y(y) = f(; A — log (0) do
= — [L (1 — <—y, 05)nX(6) db.

Thus, as A | 0, ,a}(y) converges uniformly on compacts to
1aqly) = — [ (1 — <{—y, 8>)a,(0) db.

Again by the Riemann-Lebesgue Lemma lim aq(y) exists
and is finite and hence v

lim (yaq(y — @) — 1aq(y)) =0

Y>o

uniformly for x in compacts.
Finally, set
1—<K—y 8
= > -2 de.
o A — log (6)
By Proposition 17.1, as A | 0, ,a} converges uniformly on
compacts to

. & 1 _ <— Y, e>
ary) =lim | ———L_72 (6.
204(y) awoJo A — log (8)

From the same theorem it follows that, uniformly for z in
compacts, in the type I case

lgf (2aq(y — @) — 2ao(y)) =0
and in the type II case

lim (zaq(y — @) — 2a0(y)) = F o 2¢(x).

Y> %o

This completes the proof of the theorem.

In order, to state results involving @ in the non-singular
case and F otherwise, we let F* = ® in the non-singular
case and F otherwise.

Tueorem 17.2. — Let feF*. Then for ze®
lim AM(z) = Af(z)
Ayo
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exists and is finite. In the type 1 case

lim (Afy(x) — Af(0)) =0
and in the type 11 case
Jim (Afy(z) — Af(0)) = F ¢(2)s*I ().
These limits are all uniform for z in compacts.

Proof. — In the non-singular case, this result follows from
Theorem 17.1. In the singular case it follows from Theorems

16.1 and 16.2, and Proposition 17.1.

In the type II recurrent case define
K(f) = [ ¥(@)f() da.

Taeorem 17.3. — Let fed with J(f) = 0. Then
lim G (z) = Gf()
X7

exists and is finite and the convergence is uniform for z in
compacts. In the type 1 case

lim Gf(z) =0

> o

and in the type 11 case
lim Gf(z) = + «2K(f).

ZT>x o

Proof. — In the non-singular case the result follows from
Theorem 17.1 and the formula

GMf(z) = [ (aX— 2) — My — @))f(y) dy + [ uh (dy)f(z+y).

In the general case it follows by the same argument used in
proving the corresponding result in discrete time, Theorem

5.8 of [7].
Cororrary 17.1. — Let f, f € 7. In the type 1 case

lim (J(£,)Af(2) — J(f)Afi(z)) = 0

&
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and in the type 11 case

Tim (J(R)Af(z) — IPAL) = F s HIEK() — KEI).

Prorosition 17.2. — Let C be a compact subset of &
and Q a relatively compact open neighborhood of the origin

of ®. Then there is an M such that 0 <M < o and

JROCICT P
A — log (6) h

for ye®, 2eC, and 1 > 0.

Proof. — By Proposition 16.2 this reduces immediately
to the corresponding result in discrete time, Theorem 5.13
of [7].

In stating the next several results it is convenient to set

a®=a and A°=A.

Tueorem 17.4. — In the non-singular case for any compact
subset C of & there is an M such that 0 <M < © and

oMy — x) —aMy)l < M, ye®, zeC, and 2 > 0.
Proof. — This result follows immediately from Proposition
17.2 and the definition of a*.
Tueorem 17.5. — Let feF and let C be a compact
subset of &. Then there is an M such that 0 < M < © and
|[AM(z) — AM,(0) <M, ye®, zeC, and A > 0.

- Proof. — In the non-singular case this result follows from
Theorem 17.4. In the singular case it follows from Proposition

17.2.

Tueorem 17.6. — In the non-singular case there is an M
such that 0 < M < © and
aMz) > — M, ze® and x> 0.

Taeorem 17.7. — Let feJd* with J(f) = 0. Then there
tsan M such that 0 < M < o and

AM@) > —M, 2e® and 23>0
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Proof of Theorems 17.6 and 17.7. Theorem 17.6 follows from
Proposition 16.2 and the arguments used in proving the
corresponding result in discrete time, Theorem 7.8 of [7].
Theorem 17.7 follows from Theorem 17.6 in the non-singular
case. Otherwise it follows from Proposition 16.2 and the
arguments used in proving the corresponding result in dis-
crete time, Theorem 5.15 of [7].

Tueorem 17.8. — Let fed* with J(f) = 0. Then there
tsan M such that 0 < M < © and

IGM@)| <M, 2e® and A > 0.

Proof. — This result 1s an immediate corollary of the
above theorem.

Tueorem 17.9. — Let the process be non-singular. If
O=ReoeH or =7 o H, where H 1is compact, there
is an L such that 0 < L < o and either

lim a(z) =L and lim a(z) = o
or
lim a(z) = o and lim a(z) = L.

If & ts not of the above type, then

lim a(z) = .

&> ®©

Taeorem 17.10. — If @ =R e H or @ =7 o H where

H is compact there is an L such that 0 < L < o and either

}iﬂ Af(z) = LJI(f) and lim Af(z) = oo

Z>—0

for all feF* with J(f) > 0 or
him Af(z) = o and lim Af(z) = LJ(f)

for all fed with J(f) > 0. If & is not of the above type,
then for all fed* with J(f) > 0

lim Af(z) = .

> o
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Proof of Theorems 17.9 and 17.10. — By using Proposition
16.2, we can extend Theorem 9.4 of [7] to continuous time.
From this point on, the proof of these two theorems is similar
to the arguments used in proving the corresponding discrete
time results in Section 9 of [7].

In the type I case let Cyo(®) be the collection of continuous
functions on (& which vanish at . In the type II case
let Co(®) denote the collection of continuous functions f
on & having finite imits f(4 o) and f(— o0) such that
f(+ ©) 4+ f(— ©) =0 then C¢@®) with sup norm 1s a

Banach space.

Prorosition 17.3. — Let t be such that S, generates @®.

Then
j;t Ps ds
maps Co(®) onto a dense subset of Co(®).

Proof. — Consider first the type I case. Let y be a bounded
signed measure such that

(v, [Pfds) =0, [eCy®).

Let p* denote the distribution of X; when X, = 0. Then

(v* [uds,f)=0, feCy®)
Consequently
Y * ‘/o“ pfds =0

and by taking Fourier transforms we see that

t
2(0) [ p:(8) ds = 0.
Thus 4(0) = 0. For each 6 # 0 thereisa ¢ # 0 such that

(0) = .
Then
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Since S, generates & it follows that {40) # 1 for 6 # 0.
Thus §(0)=0 for all 6 and hence y is the trivial measure.
This shows that the collection

fo ‘Pifds, feCo(®)

is dense in Co(®).
Consider next the type II case. Let « be a finite constant
and y a bounded signed measure such that

(v, [[Pfds) +af(+ ) =0,  feCo(®).
Then

(Y, fotP’fds>=O, feC,

and arguing as in the type I case we conclude that y is the
zero measure. This implies that « = 0. Thus the conclusion
in the type II case i1s also established.

Tueorem 17.11. — Suppose the process is non-singular.

Then {Af|feC, and J(f) = 0} is densein Cy(®).

Proof. — Since the process is non-singular S, generates
® for all ¢t >0 and in particular S, generates &. If
feC, and J(f) =0 then Af= — Gf. Let U denote the
analog of G for the random walk obtained by looking at
the process at integer times. Then

G=ﬁlP‘dsU.

By Theorem 12.1 of [7], {Uf, feC, and J(f) = 0} is dense
in Cy(®) and hence by Proposition 17.3

§Gf = ['P+ds UflfeC.  and  J(f) = 0]

is dense in C,(®) as desired.
From Theorem 17.11 we obtain

CororLrary 17.2. — Let geCf, J(g =1, and let

x = Co(®) ® {Ag}. In the non-singular case the linear mani-
fold {Af: feC,} 1is dense in ¥.
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18. The Behaviour of Gg.

Throughout this section the process is assumed to be recur-
rent. Recall that $ denotes the collection of relatively com-
pact Borel sets in . We let %, denote those sets Be®
such that C*B) > 0. If Be®,, then P Ty < 0)=1
ae. ze€@®. In the non-singular case if Be®, then
P, (Ts < ©)=1 for all ze@®. We let %, denote those
sets Be® such that Gg(x, A) 1s integrable on compacts
whenever A 1s compact. We let $; denote those Be®
such that for every compact set C there exist finite positive
constants t and 8 such that

P(Ts<t)>35  axeC.

It is clear that if Be®, then Gg(z, A) is bounded in z
whenever A s compact. Thus %H,2%;. If Be® and B
has a non-empty interior, then Be®;. We let #, be those
sets iIn % having a non-empty interior and such that
P(Ts =Ts) ae 2e@®. In general R2B,2R,2B;2%,.
Set #F = #, in the non-singular case and %} = B, other-
wise.

Prorosition 18.1. — In the non-singular case %, = R,.

Proof. — Let the process be non-singular and let B e ®,.
To prove that B e ®; it suffices to show that for some non-
empty open set P and finite positive constants ¢ and 3§

(18.1) P(Ts <t) >3, zeP.
Since Be®, we can find a set De® having positive mea-
sure and finite positive constants s and « such that
P(Ts < 5) 2 a, yeD.

Let yo,® be such that if Q 1s an open neighborhood of
Yo, then |Q N By > 0 (such a y, clearly exists). We can
find non-empty open sets P and Q such that y,eQ and
for some ¢ >0 and 0 <r < o

Pr(z, dy) > c dy, zeP and yeQ.
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Set t=r-+s and 8 =ac/Q N B,|. Then for zeP
P(Ts < &) > [y Pla, dyP(Ta<s) > [  Ca dy=3,
so that (18.1) holds as desired.

Prorosition 18.2. — The collection B, s the same for
the dual process as for the original process.

Proof. — Let A and C be compact and Be®. Then
S Ge(, A) dz = [ Ga(z, C) da.

Proof. — We can assume that A and C are relatively
compact non-empty open sets. Let A; and C; be compact
sets such that

(18.3) ;. Ga(z, A
We will first prove that
(18.4) S Ga(z, Ay) dz = .

Let C, be a compact subset of C having a non-empty
mterior. Clearly

Ga(z, As) < Go,(z, Ay) + [, He,(z, dy)Ga(y, Ay).
Since Gg,(z, A) 1s bounded in z it follows from (18.3) that

i dz . Ho(z, dy)Galy, As) = oo.

Let D be a non-empty open set such that D+ C, ¢ C
Then

(18.5)  [rdu [, dz [, Hyuc,(z, dy)Galy, Ay) = o

Equation (18.4) now follows from (18.5) and Proposition 18.3
For r a non-negative integer define.

Va(r) = mln 0‘/ 1a(X = ]
Then V,(0) =0, Vio(r) > as r—> o and for all zeG
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with P, probability one, V,(r) < o for all r. Thu:
Go(z, Ay) = E, [ "1,(X) de
= Y E, [/v.<r+1) 12,(X,); Ts > VA(r)].

r—o Valr)

There is an M < o such that

Ex [‘/'VA("'F]-) 1A‘(Xt); TB ? VA(")] S MP.‘B(TB > VA("))

Valr)

Hence

Gz, Ay) < M 3 P(Ty > Va(r)) < M(1 + Ga(z, A)).

r=o0

The conclusion of the theorem now follows from (18.4).

Tueorem 18.2. — There exist recurrent processes such that
for some Be®, |B] > 0 but Bef,.

Remark. — If Be® and |B| > 0, then Be®,, so the
theorem shows that B; may be strictly larger than %,.

Proof. — Consider a symmetric random walk on the line
which assigns mass 278" to the numbers + 27 n > 1,
the remainder of the mass being assigned to the origin. Then
the random walk has mean 0 and finite variance and hence
1s recurrent. We can convert the random walk into an infini-
tely divisible process on the real line by letting one unit of
time for the random walk correspond to an exponential
length of time with mean one for the infinitely divisible
process.

By the local central limit theorem we can find a compact
set A and a ¢ > 0 such that

[P (X, eA)ds > eV, t>0 and 1<a<2
Let Be®. Thenfor t >0 and 1 < z < 2
Go(z, A) = E, [ 14(X,) dz
> B[ [T 14(X,) ds; Ta > t] > eV/i — tP(Ts < o).

In order to construct the set B start out with [0, 1] and
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delete all points which, for some k > 2, are within 2-2*
of some number of the form j/2¥. Then Be® and |B| > 0.

Let 1 <2< 2 and k> 2. If z is within 272* of some
number of the form j/2¥, then the process starting at =
cannot hit B wuntil at least one non-trivial jump occurs
whose magnitude is strictly smaller than 27*. The probability
that a jump of magnitude smaller than 27 occurs by time
t 1s less than 27% and hence P, (Tp < t) < t27%. Conse-
quently

Go(z, A) > Vit — 1228,

Choose ¢ = 2%, Then
Go(z, A) > c22¢ — 1.
The measure of such z's is 2'=*. Thus
S Ga(w, A) do > 241 — 2%,
Since k can be made arbitrarily large
S Ga(x, A) dz = oo

and B e&®,, as desired.
We now begin to study the main properties of sets in %,
and %,.

Prorosition 18.4. — Let Be®R, and let A and C be

compact. Then
Lo Ga(z, A) dz
is bounded in z.
Proof. — Let F be a compact set such that AcF and

BcF. Let D be a relatively compact non-empty open set

such A— DcF and B— DcF.
For ueD

oGa(z A) dz = [ dz [H,.x(z, dy)Ga(y, A).
Thus

f Go(z, A) dz = ﬁ»iq-cdz fduf H,.x(z, 8)Gs(y, A).
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By Proposition 18.3

f Galz, A) dz < C= DL " Gy A)dy <
C |D| D+F

as desired.
Prorosition 18.5. — Let Be®B,. Let f be a continuous

non-negative function on & such that for some compact neigh-

borhood P of the origin of & the function fp defined by
fe(z) = max fly), ze@,

Yexz+P

is tntegrable. Then Ggf is integrable on compacts.

Proof. — Observe that

|P|Gof(2) = |P| [ Ga(x, dy)f(y)
= [dz [ Gula, dy)f( < [ dz fo(2)Galz, z + P).

Consequently

P fc Gof (@) da < [ dz folz) fc Ga(z, z + P) do
= [ dzfez) [ Gu(x, C) do

and the desired result follows from Proposition 18.4 applied
to the dual process.

Prorosition 18.6. — There exist functions feJF*+ and
geFt such that J(f) > J(g) > 0 and g — f is non-negative
outside of some sufficiently large compact set A.

Proof. — This result follows easily from the example on
& = R given on page 48 of [8] and the arguments used in
proving Theorem 3.4 of [7].

Let Be®,. For feF and 2 > 0 we have the usual
identity

(18.6) AM(x) — HjAM (2) = — Gif(2) + L) J\f).
Tueorem 18.3. — Let Be®B,. Then
(18.7) 1;511 Ly(z) = Lp(2), ze®,

0
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exists and Ly s non-negative, finite a.e. and integrable on
compacts. For any Ce®

(18.8) lim [ Li(z) do = | Lu(z) da.

AVO

If Be®y, then Ly s bounded on compacts and the conver-
gence in (18.7) is uniform on compacts.

Proof. — Let Be®, andlet feJ satisfy the assumptions
of Proposition 18.5. Now by monotone convergence

lim Gif(z) = Gef(2), ze®.
AV0

By Theorem 17.2
lim AM(z) = Af(z), ze@®,

AVO

uniformly for z in compacts and hence

lgn H3AM(z) = HpAf(z), ze@.

Thus by (18.6)
lim Li(z) = Ly(z)
AVO

exists for e @®. Since L} is non-negative so 1s Lg. Also
Lp(z) < o if and only if Ggf is finite. Since Gpf 1is inte-
grable on compacts it and Lp are both finite a.e. ze@.
If both Lg(z) and Ggf(z) are finite, then

Af(z) — HoAf(2) = — Gof(z) + La(2)J(f).

Since Ggpf is integrable on compacts, so is Lp. By monotone
convergence

lim [ G¥f(2) do = [ Guf(2) do

AVO

and (18.8) now follows from (18.6).
Suppose now that Be®;. Then for fed

lim (Gbf(2) — Lb(2)J(f)) = Af(2) — HoAf(2), 2<@.

Let f and g be as in Proposition 18.6 and let C be com-
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pact. Then since f < g outside of some sufficiently large
compact set

lim sup sup (Gif(z) — Glg(z)) < oo.

AvVO z€C
This implies that
lim sup sup Li(2)(J(f) — J(g)) < oo, ze®.

AVO zeC
Since J(f) > J(g) we see that

lim sup sup L}(2) < .
AV0  =zeC

This implies that Lg 1is finite everywhere and in fact bounded
on compacts.

For A > 0, Gif(z) < Gsf(z). Thus
(18.9) linllwsup sup (L*s(z) — Lg(z)) < 0.

z€C

Since f < g outside of some compact
lim sup sup (Ggf(z) — Gdf(z)) < lim sup sup (Ggpg(z) — Ghg(z)).
AVO z€C AVO z€C

This implies that

lin;vsoup sup J(f)(Lg(z) — L}(z))
< lim sup sup J(g)(Lgp(z) — Li(2)).

AVO z€C
Since J(f) > J(g) 2 0 and Ly 1s bounded on compacts
lim sup sup (Lg(z) — L}(z)) < 0.
(o}

AVO z€

Together with (18.9) this implies that L)(z) — Ly(x) as
A | 0 uniformly on compacts, as desired.

Tueorem 18.4. — Let Be %, and feF*. Then
(18.9) Af(z) — HeAf(z) = — Gof(2) + La(2)J(f), 2<6,

with the understanding that if J(f) =0 the term Ly(z)J(f)
is defined to be zero for all ze® (even if Lg(z) = o !). In
particular Ggf s integrable on compacts and if Be®R;, then
Gsf s bounded on compacts.
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Proof. — This result follows easily from equation (18.6)
and Theorem 18.4.
In the type II case set

Li(@) = La(®) + o~(4(x) — Hal(a)).

Then L3j 1is integrable on compacts and finite at exactly
those values of z. where Ly is finite. In particular Lg 1is
finite a.e. If Be®%; then Lj 1s bounded on compacts.
Also L3 is non-negative, as is evident from the following
result.

Tueorem 18.5. — Let Be®R,, fe ®*, and ¢ e ®. If the
process s type 1 recurrent, then

(18.10) l::g Gsfy(®) = Lg(2)J(f), Ls(z) < oo,
and

(18.11) lim (6, Gaf,) = J(f)(e, La)-
If the process is type 11 recurrent, then

(18.12) kin Gefy(z) = Ls(x)J(f), Ls(z) < oo,
and )

(18.13) lim (¢, Gafy) = J(f)(o, Li)-

If Be®,, then (18.10) and (18.12) hold for all ze® and the

convergence is uniform on compacts.

Proof. — For fed*, this result follows immediately from
Theorems 17.2 and 18.3 and the identity valid for Lg(z) < oo :

Afy(@) — Af,(0) — Hy(Af, — Af,(0))(2)
= — Gsfy(2) + La(2)J(f).

In the non-singular case we are done. In general however,
we must replace the collection F by C. This is easily done
by a standard « unsmoothness » argument based on Theorem

34 of [7].
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19. Asymptotic Behavior of Ggf(x) and Hjf(x).

Continuing our study of recurrent processes, we obtain
from Theorem 18.5 and duality

Taeorem 19.1. — Let Be®,, fe® and ¢ e ®*. If the
process is type 1 recurrent, then

Lim (9., Gof) = J(@)(£, Ln).
If the process is type 11 recurrent, then
lim (5., Gaf) = J(o)(f, L)

The existence of limiting hitting distributions is most
readily established by reduction to the discrete time case.

Treorem 19.2. — Let B e ®,. If the process is type 1 recur-

rent there is a probability measure ps supported by B and
such that for fe ® and ¢ e ®*

lim (¢,, Haf) = J(@)(f; wa).

If the process is type 11 recurrent there are probability measures
ws and us supported by B such that for fe® and 9eC,

Lim (9., Haf) = J(o)(f, u5)-

Remark. — In the type II case we set pp = (p% + p35)/2.

Proof. — By Proposition 5.3 we can assume that the random
walk obtained by looking at the process at integer times is a
recurrent random walk on &. Its typeis I or Il according
as the recurrent process i1s type I or II. Let

Tt = min[n > 0|X, e B]
and let
bf(2) = Bo[f(Xap); Th < o]

Lemma 19.1. — Let C be a compact subset of & and
e > 0. Then there is a compact subset K of & such that
CcK and

lim sup P (X €C) < «.

& >0
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Proof. — Let C; be a compact set containing C and
such that |dC,] = 0. Let n be a positive integer such that
n > 1. Let G, ..., C, betranslates of C; suchthat C,, ..., C,
are disjoint. Let L be a compact set containing C, U--- UC,
and such that |[dL| = 0.

Suppose the random walk 1s type I. Then by Theorem 5.7
of [7] for 1 <k < n

¢, = lim P, (X1 € Cp)
exists. Clearly ¢, + - + ¢, < 1. Thus there 1s a j such
that 1 <j<n and ¢; < 1/n < e. Let z; be such that
C;=ux; —|—C and set K =L — ;. Then

lim P,(Xg1 <Cy) =¢; < &

> o

Consequently
lim sup P(Xqy € C)

> o

N

€,

as desired. The proof in the type II case requires only obvious
modifications of the proof in the type I case.

Lemma 19.2. — Let B>®, and let ¢ > 0. Then there is
a compact set K such that for fe @

lim sup |Hef(2) — HkHaf ()] < elf.

Proof. — There is a compact set CcB such that
P,(X,eC for O0<t<1) >1/2  yeB.

By Lemma 19.1 there 1s a compact subset K of & such that
CcK and

lim sup P, (X € C) < ¢/4.
It follows that

Iim sup P,(Ts < Tk) < ¢/2,

> o

from which the conclusion of the lemma follows immediately.

Proof of Theorem 19.2. Suppose the process is type I. Then
by Theorem 5.6 of [7]

lim (¢, HkHsf) = J(o)(Hsf, uk),

> oo
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where pk 1s the limiting hitting distribution of K for the
random walk. Let ¢,—~0 as n—> o and let K, be the
corresponding compact sets in Lemma 19.2. There are pro-

bability measures p, supported by B such that
(Hsf, wk,) = (f, w.). We now have that

Lim (e, Hk,Hof) = J(o)(7, un)
and

lirgsup |92, Hk,Hof — Hsf| < e,lflI(e).

Consequently
lim sup |(9., Haf) — J(@)(f, wall < <lflI(e)-

This implies that (f, u,) 1s a Cauchy sequence in n for each
fe ®. Thus there is a number c¢; such that

lnl:f (f7 (“n) = Cp.

It Follows by Corollary 4 Dunford-Schwartz [3, p. 160]
that for some probability measure pp supported by B

1:12 (f) P’n) = (f’ “B)'
Therefore
11:2 (‘Px) HBf) = (ﬁ ELB)

as desired. Only obvious modifications are required to complete
the proof in the type II case.

Tueorem 19.3. — Let Be®7 and fe ®*. If the process

is type 1 recurrent, then
lim Hyf(z) = (£, va).

Proof. — Once we know that the appropriate limits of
Hyf exist we can identify these limits by means of Theorem
19.2. The proof that these limits exist reduces to the corres-
ponding discrete time results in [7] by using the same argu-
ment used to prove Theorem 19.2. In the general case, we
use Theorem 9.1. which states that if Be®,, then Hyf
is continuous a.e. ze@®.
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Taeorem 19.4. — Let Be®; and fe @*. If the process
s type 1 recurrent, then

lim Ggf(2) = (f, T_,B).

&> o

If the process is type 11 recurrent, then
lim Gof(a) = (f, L).

Proof. — Once we know that the indicated limits exist
we can immediately identify them by means of Theorem 19.1.

To show that the limits do exist choose a compact set
Ce®; such that BcC and f is supported by C. This
can be done by Theorem 9.4. Then Ggf = HcGpf. In the
non-singular case the existance of the desired limits now
follows immediately from Theorem 19.3. In the singular
case, one way of proceding is to choose a big enough compact
set K such that |[0K| =0 and HGsf(z) 1s close to
HiH:Gsf(z) = HkGpf(2) and using the fact from Theorem
9.1 that Ggf 1is continuous a.e. ze@®.

20. Robin’s Constant.

This section is devoted to associating a number k(B) to
sets in $B such that — oo < k(B) < . It will turn out
that k(B) > — oo if and only if Be®,. The constants
k(B) enter in a natural way when we study the time dependent
behavior of recurrent processes in the following several sec-
tions.

Prorosition 20.1. — Let fed. Then for Be®R;, Ggf
s a bounded function and for Be®, and C compact

L., Gof(y) dy

ts bounded in z.

Proof. — Let fe5,Be®,, and C be compact. Let f,e%
with J(f;) =1. Set g=/f— J(f)fi. Then ged, J(g) =0,

and on {z|Lgp(z) < oo}

Gg — HyGg = Gof — J(f)Gafi.
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Thus by Theorem 17.3
). Gafly) dy — J(f) [, Gafily) dy

is bounded in z. Consequently in order to prove the conclu-
sion for feJ it suffices to prove it for one such f.

By Proposition 18.6 we can find f; €F* and f, eF+ such
that J(fi) =1, J(fz) > 1 and f, < f; outside some compact
set A. Let M be the maximum of f, on A. Then for some
N < o and all ze®

J(f) [, Gofuy) dy — N < [ _Gufaly) dy
<M [ Guly, A) dy + [ _Gsfi(y) dy.
Thus for ze®

0< [, Gofily)dy < (N+M [, Goly, A)dy)/(J(f) — 1)
Since by Proposition 18.4

4G GB(y’ A) dy

is bounded in =z, it follows that

oo Gahily) dy

is bounded in =z, as desired.
The proof that Ggf is bounded for Be®; is the same,
except that it is no longer necessary to integrate over C.

Prorosition 20.2. — Let &, be a compactly generated
open subgroup of & andlet { be a continuous homomorphism
from &, onto a closed d-dimensional subgroup of some Eucli-
dean space R® such that {z) = 0 if and only of = is a com-
pact element of &,. In the type 11 case we let &, = & and
¢ as usual. Let fed*. If Be®Ry, then in the type 1 case

lim  (¢(2)) 7 Gefo(z) = 0

>0, zEQG

and in the type 11 case
Lim | () 2 Gef,(x) = 2672J(f).
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If Be®, and C is compact, then in the type 1 case
lim [§(@) " [ Gufulz) dz =0

> w0, TEQY,

and in the type 11 case
lim [¢(2)| 7 [, Gafilz) dz = 2672ClI().

Proof. — From Theorem 18.4 we see that if Lg(z) < oo,
then

Af(z — x) — HpAfi(z) = — Gofo(z) + La(2)J(f).
Consequently

Gofo(z) = (Af(x) + Af(— 2)) + (Af(z) — Af(z) — Af(z — a)
+ (HsAfi(z) — Afe(0)) — HeAf(z) + Gof(2).

Now Af(z) — Af(z) and Af(z —x) are bounded as z—=z
range over a compact. Also HgpAf,(z) — Af,(0) stays bounded
for z, z2e® (with Lg(z) < oo and hence Hpl(z) =1).
By Proposition 20.1, Ggf is bounded if B e ®; and otherwise

oo Guf(2) dz

stays bounded. In the type II case it follows from Theorem
17.2 that

lim [9(a)| 1 (Afl@) + Af(— 2)) = 20783(f).
In the type I case it follows from Theorem 17.2 that
lim (4(2)2(Af(@) + Af(— o)) = 0

1

From these results the proposition follows immediately.

Prorosition 203 — Let &, and ¢ be as in Proposition
20.2 and let A be compact. If B e$;, then in the type 1 case

lim  ($(2))Gplz,  + A) = 0

x> o, ze@,
and in the type 11 case
lim sup |¢(z)| 2Gs(z,  + A) < .
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If Be®, and C s compact, then in the type 1 case

lim  ($(2)* [ _Gu(z 2+ A) dz =0

z> o, ze€@,

and in the type 1I case
lim sup [¢(a)| = [ Ga(z, =+ A) dz < .

Proof. — This result follows immediately from Proposition
20.2. With more work one can show that in the type II case
the actual limits exist if |[dA| = 0.

Prorosition 20.4. — Let &, and ¢ be as in Proposition
20.2 and let A be compact. If Be®Rg, then

Go(z, y + A)/(1 + [d(y)l)
is bounded in 2ze® and ye®,. If Be®, and C s

compact, then
oo Golm y + M)+ 14()]
s bounded for xe® and ye®,.

Proof. — If Be®; the result follows immediately from
Proposition 20.4. Suppose Be %, and C is compact. Let E

be a compact set such that AcE. Let D be a compact

set having positive measure and such that A — DcE.
Then for UWeD

S @2 Gtz y 4 A) < [ dz Hypoin(z, do)Ga(v, y + A).
Consequently by Proposition 18.3

([ dzGalay + A) < 'C_D'f do Gao, y + A)
z+GC I Dl y+D+E

and the desired result now by Proposition 20.3.

Prorosition 20.5. — Let &, and ¢ be as in Proposition
20.2. Let feJ+ be supported by &, and such that (/z))*f ()
is bounded on &,. If Be®,, then in the type I case

lim Gf(z) = (f, Ls)
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and in the type 11 case
lim GBf(x) = (f7 T—‘;)7

>+

both limits being finite. If Be®, and ¢ eC, then in the
type I case .
lim (., Gaf) = J(e)(f, L)

and in the type 11 case
hm (92, Gsf) = J(o)(f, L&),

both limits being finute.

Proof. — Suppose Be®, and ¢ (. Now

(Pz’ GBf f CP:c f GB .’D, dy

Let E be a compact subset of &, with |E| > 0. By Propo-
sition 20.4 there is an M < o such that for y in &; and
sufficiently large

Jo2el#)Gu(z, y + E) dz < Ml§(y)l, z<@.
We can also assume that M is such that

flu) < M(b(y)™, u>y+E, ye6,.
Then there 1s a compact set D such that for e ®

S #ul2) dz [ dy [ Galz, du)f(u)
< M2J(9) S 14 dy

which can be made arbitrarily small by making D sufficiently
large (since necessarily d < 2 1in the recurrent case). Let
D; o D be a compact set such that (Di N &,;) — EcD-
Then

S @) dz [0 dy [ Guls, du)f(u)
_f% dzf Gs(z, du)f(u)| D¢ N (u — E)|
> |E| [ ¢.(2) dz [, Gu(z, du)f(w).
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In otherwords, given ¢ > 0 we can find a compact set D,
such that

‘f@ 9,(2) dz /;2 Gs(z, du)f(u) < e, rze®.
By Theorem 19.1 in the type I case
lim Sy 0el2) dz [ Gn(z, du)f(u) = J(e) J. f(2)Lu(a) da
and in the type II case

lim [ o.()dz [ Galz, du)f(u) = (o) A lf(x)iﬁ(x) da.

z>t o0

Since ¢ can be made arbitrarily small, the conclusion of
the proposition follows.

If Be®, the same proof works except that we need not
integrate with ¢, we use Theorem 19.4 instead of Theorem

19.1, and we choose D, such that |[2D,| = 0.

Tueorem 20.1. — Let Be®;i. In the type 1 case there is a
finite constant k(B) such that for feJ*

lim (Af(a) — La()J(f)) = kB)J(F).
In the type II case there exist finite constants k*(B) such
that for fed*
lim (Af(2) — La(@)J(f) = KB)J(f) F o—K(f).

z>% o0

Let B e®,. In the type 1 case there is a finite constant k(B)
such that for feJ and ¢ <C,

lim (9., Af — J(f)Ls) = J(o)k(B)J(f).

In the type 11 case there are finite constants k*(B) such that
for feF and ¢ eC,

lim (¢,, Af — J(f)Ls) = J(e)(k*(B)I(f) ¥ o=2K(f)).

z>E 0

Remark. — The Robin’s Constant is defined as k(B) in
the type I case and

k(B) = (k*(B) + k=(B))/2
in the type II case.
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Proof. — One can find an f; € F of the form of Proposition
20.5 with J(f;) = 1. It can also be assumed that in the type
IT case K(f;) = 0. Recall that

Afi(z) — HaAfy(2) = — Gsfy(X) + La(2).

Suppose Be®, and ¢ eC. Then by Theorem 19.2 and
Proposition 20.5, in the type I case there is a constant k(B)
such that

lim (9., Afy — Ls) = J(¢)k(B),

and in the type II case there exist finite constants k*(B) such
that

lim (9, Afy — Ls) = J(¢)k*(B).

&>+ 0

The desired result now follows by Corollary 17.1.
The proof for B e $; 1s similar.

Taeorem 20.2. — Let Be® and feF*. In the type 1

case
lim Gaf(z) = — k(B)I(f) + (Af, ua)

>

and in the type II case
lim Gof(2) = — k*(B)J(f) + o72K(f) 4 (Af; u3).

T>to

Let Be®,, feF, and ¢ €C,. In the type I case
lim (¢,, Gof) = J(@)(— A(B)I(f) + (Af, us)
and in the type 11 case

lim (¢, Gof) = J(o)(— K*B)I(f) + o™*K(f) + (Af, v7)).

Proof. — This result follows immediately from Theorems

18.4, 19.2, 19.3 and 20.1.
Tueorem 20.3. — Let Be®7 and feF*. Then

(f, Ln) = — k(B)J(f) + (Af, us)
and in the type 11 case

(f, L) = — k*(B)J(f) + o~2K(f) + (Af, u3).

9
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Proof. — If [ satisfies the assumptions of Proposition
20.5 the result follows from Proposition 20.5 and Theorem
20.2. The general case can easily be reduced to this special
case by arguing as in the proof of Theorem 5.12 of [7], since
Proposition 5.2 of [7] extends in an obvious manner to the
continuous time recurrent potential operator A.

CororLrary 20.1. — Let Be®; and feJ*. In the type 1
case

lim Gef () = (f, La)

&>

and in the type 11 case

lim Ggf(z) = (f, L§).

T>+x

Let Be®,, feF, and ¢ eC,. In the type 1 case
lim (o5, Gaf) = J(9)(f; Ly)

and n the type Il case
Km (¢, Gof) = J(e)(f; L3).

>+

Proof. — This result follows immediately from Theorems
20.2 and 20.3.

Prorosition 20.6. — Let Be® and let B,2B, B,| and
P,(lim,,, Ty, =Ts) =1 ae. 2®. If Be®, and ¢ <C,
then in the type 1 case

Lm (‘P) l"'B,.) = (cp, 4’13)

n>w

and in the type 11 case

Lim (¢, u5,) = (¢, ¥5).
n>wx
Proof. — Let C be a compact set such that C contains

B and B, n > 1 Consider first the type I case. Now
(9, us) = (Hpo, uc). Let D be a non-empty relatively com-
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pact open set such that B — D<cC. Then
1
(<P, f"B) =.I_Dl—_fl; dy (HB(Pa (-"y+C)

1 »
=To7 | e (@) f dy Hap(y — 2).
D
If also B, — DcC, n > 1, then

1
(¢ #n) =157 f we (d2) f dy Hyo(y + 2).

By quasi-left-continuity it follows that
lim Hp ¢(z) = Hpop(2) a.e. ze®

n>o

and hence that (¢, ws,) = (9, us) as n — oo,
The proof in the type II case is similar.

Prorosition 20.7. — Let B and B,, n > 1, be as in
Proposition 20.6 with Be®,. Let ¢ € ®. Then

lim (¢, Ls,) = (¢, L)

n>o

and in the type II case
lim (¢, L) = (¢, L3).

n>x

Proof. — Choose fed+t with J(f) = 1. Then
Af(x) — HpAf(z) = — Gof(z) + Lu(2)

and
Af(xz) — Hp Af(z) = — Gg,f(2) + L, (2).

Now

lim Hy Af(x) = HgAf(z) and 1:)12 Gg f(z) = Gaf(z)

n>w

for almost all ze@®. which implies that
lim (¢, L,) = (¢, Ls).

This implies the desired result in the type I case. The result
in the type II case now follows from the formula

B(x) = Lp(z) £ 672(¢(x) — Hpd(x)).
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Prorosition 20.8. — Let B and B,, n > 1, be as in
Proposition 20.6 with Be%B,. Let ¢eCr with J(p) > 0.
Then

lim (¢, Lp) =

and in the type 11 case

lim (9, L) = co.

n>»

Proof. — Choose feJt such that J(f) = 1. Then
Af(z) — Hp Af(z) = — Gp,f(2) + Lp,(2).
Now (9, HpAf) is bounded in n and
lim (¢, Gg,) = oo,

n>%

from which the desired results follow immediately.
We can extend the definition of k(B) to all sets in % by

setting k(B) = — oo whenever Be® but Be&¢®,. Simi-
larly in the type II case we extend A*(B) to all sets in %
by setting k*(B) = — o 1if Be% but Be®,.

Tueorem 20.4. — Let B and B,, n > 1, be as in Propo-
sition 20.6. Then
lim k(B,) = k(B)

and in the type 11 case
lim £*(B,) = k*(B).

n>o

Proof. — Let fed+ with J(f) = 1. We can assume that
B,e®, for n > 1. Then by Theorem 20.3

(20.1) k(B,) = — (f, Ln,) + (us,, Af).

Suppose first that B e $,. It follows from Proposition 20.6

that
lim (us,, Af) = (us, Af).

n>o0

By Theorem 18.5, Ly 4 as n4t. By Theorem 20.3 (f, L)
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is finite. Since f is non-negative it now follows by Proposition

20.7 that
lim (f, Ls,) = (f, Ls).

n>o

Thus
lim k(B,) = — (f, Ln) + (us, Af) = k(B)

as desired. The proof in the type II case is similar.
Suppose next that Be® but Be®, We will prove
that in the type I case

lim k(B,) = — oo.

By Proposition 20.8
lim (f, Lp) =

n>o0

Since (ws,, Af) 1s bounded in n it follows from equation
(20.1) that k(B,) - — o as n— . The proof in the type
IT case 1s similar.

Prorosition 20.9. — Let Be®R, and let Ce®B; contain
B. Suppose first that B e $;. Then

k(C) — k(B) = K(C) — k(B) = (La, o)-

Suppose next that BcC and let D be a relatively compact
non-empty open set such that B — DcC. Then

~

k(C) — k(B) = K(C) — k(B) = ,—})T [ dufLa, o)

Proof. — In the type II case by limits at c© we mean the
average of the limits at + oo and — oo.

Suppose BcC and let D be as in the statement of the
proposition. Let f, ¢ €C, sith J(f) = J(¢) = 1. Then for
ueD

(cPac’ Gu+ny) == (Cpan Gny) - (sz, Hu+CGny)‘
Consequently

‘/l;du((P.m Gu+ny) IDI Pas GB]‘;' f du CP:::’ u+CGny)'
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Letting y — o, we get from Theorem 18.5,

J; (@ Lusc) = Dl Ln) — [ du(@e, HavcLn).

Letting z — o we get from Theorems 19.2 and 20.1

|DI(K(C) — k(B)) =/, du(Ln, pyuc).

Reversing the process and first letting « — o0, we get from

Theorems 19.1 and 19.2
S dulfy, Luse) = IDI(fyy Ln) — f du(Gof,, tas).

Letting y — c© we get from Theorems 18.5 and 20.1 that
ID|(K(C) — k(B)) = [ du(L, pusc),

which completes the proof of the theorem.

. Tueorem 20.5. — Let B, B;, and B, all be in B,. Then
k(B) = k(B) =kl(—B). If B,cB,, then k(B,) < k(B,).
Finally k(B, U B,) < k(B;) + k(B,) — k(B; N B,).

Proof. — It 1is obvious from the definition of the dual
process that k(— B) =T%k(B). Let Ce®, be such that
—C=0C_ and BeC.

Then k(C) = k(— C) = k(C) so by Proposition 20.9

k(B) = k(B) + k(C) — k(C) = k(B).

Suppose C = B; and (B, U —B_Z)QC. Then by Proposition
20.9

k(B,) — k(By) = —= f du(Ly, — Ly, ttarc) > O.
IDI Jo
Finally observe that

Iy 20+ o >0 = Yy > quite, >0 + i, 7 AN[Ts, > 1]
<
=

Choose feC} with J(f) = 1. Then
Gp, + Gs,f < Gs,us,f + Gsusf.

[Tgynsy > ] + 1[Tn‘uxg >4 ﬂ]‘
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From Theorem 18.5 it follows that if B, N B,e®,, then
Lp,us, > Ls, + Ls, — Lg,us,
and by Proposition 20.9
k(B; U By) < k(B,) + k(By) — k(B; n By).

If Bl N B2 & 532, then k(Bl N Bz) = — O and thiS ine‘
quality still holds. This completes the proof of the theorem.

21. Time Dependent Behavior (Recurrent Case).

Throughout this section X, will denote a recurrent process.
For Be® and Ae® recall that

= [,z P(Ts < t, Xr, < A) da.

We also set for ¢ > 0
Es(t) = Es(t, B) = Ea(t, ®) = [ dz P,(Ts

Then Eg(t, A) and Eg(t) are zero unless Be®,. Eg(t, .)

defines a measure on B having total mass Eg(t).

ProrositioN 21.1. — For t > 0 and h > 0
Es(t + h, A) — Eg(t, A) = fP Ty > §)Py(Ts < h, Xg, € A) da.

Proof. — This result follows from the computations
Es(t + h, A) — Ex(t, A)
=f@dyPy(t < Ty < t+h X, cA)dy
— f@ dy f@ P,(Ts > t, X,edx) P,(Ty < h, Xr,cA)
=j@ P,(Ts > )P,(Ts < h, Xr, € A) da.

ProrosiTion 21.2. — If Be®,, then

lim Ex(t) = oo,

t>00

lim (Es(t + h) — Eg(t)) =0, & > 0,

t>00
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and
. EB(t —'— 8) .
bm =% =

uniformly for s in compacts.

Proof. — These results follow immediately from Propo-
sition 21.1 ans the definition of Eg(t), since P,(Tp < ) =1
ae. ze@® for Be®,.

Prorosition 21.3. — If Be®, and Ce®R,, then

. Eat)
bm & @

Proof. — We can assume that BcC. Let D be a relatively
compact non-empty open set such that B — DcC. Then
for s >0 and ueD

Es(t 4 s) > [, Eurolt, dy)Py(Ts < s)
= Jo Eolt, dy)Poy(Ts < 5).

= 1.

Consequently
14
Ex(t > — | Eg, d
B( +S‘) IDl J@ C( y)

Choose 0 < ¢ < 1. There is an s > 0 such that
1
m[ r+D
Then Eg(t 4+ s) > (1 — €)E¢(t). By Proposition 21.2
lim inf Eg(t)/Eq(t) > 1.

Since Ejy(t) < E¢(t), it follows that
lim Eg(¢)/Eq(t) = 1,

P,(Ts < s) du.
74D

P,(Ts < s)du >1—¢,yeC.

as desired.

ProrositioN 21.4. — Let Ae®B and 0 <t < . Then
for Be®,

JIPLTs > s, X, < A) ds
= [ Ga(z, dy)P(Ts < t, Xr,c A), 26,
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and for Be®, and CeR
Jodw [(P(Ty > s, Xp, < A) ds
= [ dz [ Go(z, dy)P,(Ts < 1, Xr,c A), 2.
Proof. — Let B e®;. Then
J. Gu(@, dy)P,(Ts < t, Xx, < A) -
— [ du fn Qi(, dy)P,(Tp < t, Xy, < A)
=fo°°du P,(u < Ty < u+t, Xg,eA)
= [[ds P(Ts > 5, Xn,  A).

The proof of the corresponding result for Be®, is similar.
Most of the remaining results in this section will be obtained

in the type I case, the corresponding results in the type II
case being deferred to Section 22.

Treorem 21.1. — Suppose the process is type 1. If B e %,
then

lim f ds P (Ts > s)/Eg(t) = Ly(2)

t>o0

uniformly for z in compacts. If Be®B, and Ce®B, then
ltgurolfdxfdsP (Ts > s)/Es(t) = | La(2)
Proof. — Let Be®;. By Proposition 31.4
S ds P(Ty > 5) = [ Ga(z, dy)P(Ts < 1), ze®.
Choose De@ with |D| > 0. Then
ID| | Gs(z, dy)P fdyf Gsl@, d2)P,(Ts < ).

Choose 0 < e < 1. We can find a ¢, > 0 such that for
ye®, zey+ D and t >0
(1 —e)P(Te <t —1t) <P, (Ts <t) <1+ ¢)P(Ts <t+1t).

It follows from Theorem 18.5 that, as # ranges over a com-
pact set, for y sufficiently large

(La(2) — ¢)|D| < Gu(z, y + D) < (Ls() + ¢) DI
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Thus for some M < ©

ID| /" Ga(=, dy)P,(Ts < ?)
( e) [ P,(Ts < t+ t,)Go(z, y + D) dy
+ (1 + ¢)(Ls(2) + <) D|Ex(t + %)

<
<M

and similarly for ¢ > ¢,

ID| J Ga(a, dy)P,(Ts < 1)
> — M+ (1 — ¢)(L(z) — <)| D|En(t — t).

The conclusion of the theorem now follows from Proposition
21.2.

Suppose now that Be®%, and Ce®B. Choose B, e,
such that B,2B. Since P,(Ts > s) > P,(Ts, > s) it follows
that

hmmffdx[dsp (Ts > )[Es() = [ La(z)

t>o

It now follows from Propositions 20.7 and 21.3 that

llmlnffdxfdsP (Ts > s)/Ex(t) fLB

t>00

On the other hand
Pz(TB < t) < Pz(TB, < t)

and by imitating the proof of Theorem 21.1 for the special
case Be®,;, we can show that

hmsupfdxfdsP (Ts > s)[Eg(t) fLB

t>o

and since, by Proposition 21.3, Eg(t)/Eg(t) -1 as t— o
the conclusion of the theorem now follows.

Tueorem 21.2. — Suppose the process is type 1. If B e %,
then for fe ®*

lim f ds E,(f(Xz,); Ts > s)/Es(t) = Ly()(f, us)

t>

uniformly for x in compacts.
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Proof. — This result follows easily from Theorems 19.3
and 21.1 and the facts that Eg(t) > 0 as ¢— o and for
any compact set K

fo “dsP(X,eK and Ts > s) = Gg(z, K)
is bounded for z in compacts.

Prorosition 21.5. — If Be®;, then for any t > 0 and
e > 0 there is a compact set K such that

j;, Gp(, dy)P,(Ts < t) < ¢, rze@®.

If Be®, and Ce®, then for any ¢ > 0 there is a compact
set K such that

Jodo [ Ga(z, dy)Py(Ts < 1) <5,  2<6.

We start the proof of this proposition with
Lemma 21.1. — Let Be®; and Ke®R. Then

J;. Galz, dy)P,(Ts < ¢)
< P (X, e K’ for some s such that Ty —t < s < Ths).

Proof. — Let t > 0. Then for u > 0

3 [ Qa, dy)Py(Ts < 1
< P(X;eK’ for some s such that Ty —t <s < Tjs).

If we integrate u in the left side of this inequality from 0
to ¢ we get

S du [ Qi dy)Py(Ts < &) = [, Ga(, dy)Py(Ta < 1),

from which the lemma follows.

Proof of Proposition 21.5. — Let Be®%; and t > 0 and
choose ¢ > 0. There is a compact set K,;2B such that

Py(TB 3 ) 3 8/3t, ye Ki.

By Theorem 19.2 and the argument used in proving Lemma
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19.1 it follows that we can choose a compact set K, such that

lim sup Hg(z, K,) < ¢/3t.

There is a compact set K;2K; such that

P,(X, e K; for some s suchthat Tg —t < s < Ts) < ¢/3¢
for all z e K,. These inequalities imply that
lim sup P (X, € K3 for some s such that Ts—¢ < s < Ts) < ¢ft.

&L o

By Lemma 21.1 it follows that there is a compact set L such
that

) Ga(z, dy)P(Ts < ) <&, @elS
It 1s easy to see that there is a compact set K2 Kj such that
/). Gule, dyPTs < t) < e, ael.

The set K 1is the desired set.
The proof of the proposition for B e %, rurs along similar
lines, but uses additionally Proposition 18.3.

Treorem 21.2. — Let Be®,. Then for t > 0 and Ae<®
[ Lo(y)Py(Ts < 1, Xr, € A) dy = tys(A),
and in the type 11 case
[ Li(y)Py(Tw < t, Xo, € A) dy = tu3(A).
Proof. — By Proposition 21.4
S ds Po(Ty > 5, Xe,e A) = [ G, dy)Py(Ts < 1, X, A),

Choose = > 0. By Proposition 21.5 there 1s a compact set
K such that

). Ga(z, dy)P(Ts < t, Xr,cA) < ¢, 2@,
Choose Ce@ such that |C| > 0. Then

Lo dz fK Ga(z, dy)P,(Ts < t, Xp, < A)
= fx Go(y, © + C)P,(Ts < t, Xp, € A).
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In the type I case as = — oo the last term approaches, by
Theorem 18.5,

1€l [ Lo(y)Py(Ts < t, Xa, < A).
On the other hand by Theorem 19.2
lim [ _dz f ds P(Ty > s, Xr, € A) = |C|tus(A).

&> 00

Since ¢ can be made arbitrarily small

Je Lo(y)Py(Ts < t, Xr, e A) = tus(A),

In the type II case we need only let z — + oo and use the
same argument.

Tueorem 21.3. — Suppose the process is type 1. Then for
Be®, and Aed.

lim Eg(t, A)/En(t) = us(A).

t>00

Proof. — Suppose first that B e ®,. By Proposition 21.1
for Ae®

Es(s + 1, A) — Ex(s, A) = [ deP,(T5 > s)P,(Ts < 1, Xr, « A)
and hence
[ (Bas + 1, A) — Ea(s, A)) ds

= [z P(Ty < 1, Xp,e A) [ ds P(Ts > 9).
Let K be compact. Then by Theorem 21.1

lim (Ey(t)) [ do Py(Ty < 1, X, < A) fdsp Ts > s)
:jl;deB .z‘ B\l’XTBEA)'
Moreover
t ~
S dw P(Ty < 1, Xp, e A) [ ds Py(Ts > s) |
< [, dz P(Ty < 1) [ da Py(Ty > o).

0

ﬁt (EB(S‘ + 1) — EB(S)) ds ~ EB(t)
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and by Theorem 21.2
[ La(2)P,(Ts < 1) do =1,

it follows that

) t
lim lim sup - /K. P,(Ts < 1) fo P,(Ts > s) ds = 0

and thus
lim f Es(s + 1, A) — Ex(s, A)) ds/Ex(?)

= [ dz Lo(2)Py(Ts < 1, Xz, € A) = ua(A)
and therefore that

Suppose now that Be®,. Let B, be a compact set in
#; containing B. Then

ff Es, (ds, dy)P,(Ty < t — s, X, € A)
a/thmmm
—ff Es, (ds, dy)P,(Ts > t — s, Xz, € A).

Now by Proposition 21.3

lim f En,(t, dy)Hy(y, A)/Ex(?)

t>c0

=1lim [ Ex(t, dy)Ha(y, A)/Ex,1)

t>00

=/];1 us, (dy)Ha(y, A) = ps(A).

Moreover

lim sup f f Es, (ds, dy)P(Ts > t — s, Xy, « A)/Ex(t)
< lim sup f f Es, (ds, dy)P,(Ts > t — s)/En(t)

t>0

= lim sup (En(t) Ex(t))/Es(t) = 0,

from which the conclusion of the theorem follows.
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Prorosition 21.6. — Let Be®R, and Ce®R,. Then

Proof. — This result is a direct consequence of Proposition
21.3. According to that proposition

f Ex(t — s)Eg (ds) f Ec(t — s)Ep (ds)
_f Ex(t — s)E¢ (ds) f Eq(t — s)Eg (ds)

According to Proposition 21.6 we can find a non-decreasing
function g(¢), ¢ > 0, such that for Be ®,

hmf Ex(t — s)Eg (ds)/g(2)

t>x0

Tueorem 21.4. — Suppose the process is type 1. Then for
Ce®R, and Be3R.

lim [" (Eq(s) — En(s)) ds/glt) = k(C) — k(B).

t>o0

Proof. — We use the notation fi(t) ~ f3(t) in this proof
to mean that

llfil (fu(t) — fa(2))[5(t) = 0.

Suppose first that Be®, and BcC. Let D be a rela-
tively compact non-empty open set such that B — DcC.
Then

ID|(Eq(s) — Enls)) = [ du [ [ B (dr, dy)Py(Ts > s — 7)
——fo_dec (dr, dy) fyﬂ)duPuTB > s —r).
Consequently
t
ID| /] (Ec(s) — Ea(s)) ds

—fo_fEc dsdyf Ldu [TP(Ty > 1) dr,
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which, by Theorem 21.1 and Proposition 21.3, is asymptotic
to

t
Ji_ Eclt — ) J2Ec (ds, dy) [/, La(u) du
_f Eqt — ) dstcs,dy)f+ La(u) du
= 7 (L Bolt — s, dy) S Inl )du)Ec(ds)
~fEct—sEc ds) fp.c (dy) f+ Ly(u) du
~ fD du(Ls, ty+c)
g(t)lDI (K(C) — k(B))
by Proposition 20.9.
From this it follows that the conclusion of the theorem

holds whenever B e #,. To complete the proof of the theorem
we need only show that if Be® but Be®,, then

(214)  lim [ (Ec(s) — Ea(s)) ds/g(t) = co.

But by Theorem 20.4 there exist sets B,e%, with B,2B
and lim %(B,) = — c. Thus

n>w

ll

lim inf f (Eq(s) — Ex(s)) ds/g(t)
t>o0
> lim [" Eq(s) — En,(s)) ds/g(t) = k(C) — kiB,)
and hence (21.1) holds, as desired.

22. Stronger Results
on the Time Dependent Behavior (Recurrent Case).

Throughout this section X, will be a recurrent i.d. process
that satisfies the additional

Condition 2. For some ge ()t with J(g) =1

im A1 H <%>_1 Grgla) = 1

AVO

uniformly in 2z on compacts for some constant «, 1 < « < 2
and some slowly varying function H.
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By essentially the same argument as used in [7] (see § 13)
we can show that this condition is satisfied for every type II
process with « =2 and H the constant function (202)712,
An easy Abelian argument shows that this condition holds
when @=R'e H or Z't @ H and the process ¢(X,)
1s in the domain of attraction of a stable law of exponent «
and thus, in particular, for the stable processes themselves.

For Be®, Ae® set

ei(t, A) = Eg(t + h, A) — Ep(¢, A)
and set
es(t) = ek(t, B).

Prorosition 22.1. — For any Be®,

flle
EB<t) ~ 1
H()T <1 + T{>
and
ht-—1+lla
h ~N —,
W~ HT(IT)
In particular, for any type I1 process
. Eg(t) _
lim 2(2[m)r2
im = )1 26
and

llm es(t)Vt = (2/x) 2.

Proof. — It follows from (3.7) that
E}BGlg— (1, HAG g) = (g HﬁGM)

S f g(@)E (e )

Thus

and thus by Karamata’s theorem.
tl/a
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Since

eb(t) = f@ P.(Ts > t)P,(Ts < h) da

1s monotonic in t it follows that

" he-1tHi/e
W~ Hrae)
as desired.
Tueorem 22.1. — For any Be®;, uniformly in z in
compacts,
—1+1/a
P(Ts > &) ~ Ly(z)i 112/

H()I'(1/a)
and for any Be®, and any Ce%

t—1+H/e
[P(T,,>t dx~ fL,, dx]H U

Proof. — By definition of Lj(z)

[T

and thus, uniformly in = on compacts,

f Py > e N dt ~ Lu(z) <ki>”“ H <_i.>".

The result for Be%; now follows by the usual Tauberian
arguments. The proof for Be %, is similar.

Cororrary 22.1. — For any type 11 process

lim V¢ P,(Ty > &) = \/ % oLy(z)

>

uniformly in z on compacts whenever Be®;. For Be®,,

lim Vi P(TB>tdx~\/—o‘fLB

t>0

Proof. — Immediate.
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Cororrary 22.2 — If the process is type 1 and Condition 2
holds then for any Be %, and any Ae®R

a(t, A Ap
eb(t, ) ~ ugn(A) H(t)P(1/OC)
Proof. — The result follows from Theorem 21.3 and Propo-
sition 22.1 and the fact that ej(¢, A) is monotonic in ¢t by
a standard Tauberian argument.

TaeorEM 22.2. — Suppose the process is type 11. Then for
any Be®,

lim V2 ex(t, A) = (2/7)12 cus(A).

t>00

Proof. — First suppose Be®,. We can write
PP

es(t, A) 1 -
=D f@ P,(Ts > )Po(Ts < 1, Xy, € A) da.

From Corollary 22.1

~

(22.0) lim lim —— [ Py(Ts > OP(Ts < 1, Xn,< A) dz

KA® t>o en(t) X

— f Ta(2)P.(Ts < 1, Xr, € A) dz — ua(A).
®
In particular this is true for A = B, and thus is must be that

(22.2) lim lim ——

KA® t>~ ep(l)

f P,(Ts > t)P,(Ts < 1) dz = 0.

Thus the theorem is true for any Be®,. Now let Be®,
and choose B, e®, such that B; > B. Since the theorem
is true for B; we see from (22.1) and an Abelian argument
that

Eg(t, A) ~ Ep(t)us,(A).

Arguing as in the conclusion of the proof of Theorem 21.3
we see that

Es(t, A) ~ Ep(t)us(A) ~ up(A)122(2[r) 26,
Since ep(t, A) 1s monotonic in ¢ 1t follows that

en(t, A) ~ up(A)12(2[r)Mg

as desired.
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Tueorem 22.3. — Suppose U Condition 2 is satisfied.
Then for and Ce®, and BeR

im [Ec(t) — Ex(t)] _ .

It” 70 k(B) — k(A) (22.3)
where
—1+2/a

——
ep( 2
H(1) r< : >
In particular, for every type 11 process
lim [Eo() — En(t)] = (20%)(K(C) — K(B)).

q(t) = [ ec(s)ec(t — s) ds ~ (22.4)

Proof. — First assume that Be®, and that C is such
that B<C. Let D be an open neighborhood of 0 such
that B — D<C. Observe that

t
IDI[Ec(t) — Ex()] = fg [, Ec(ds, dy) [, duPu(Ts > t—s)
By Theorem 22.1 and Corollary 22.1

fﬁl/ott E¢ (ds, dy) A/;)_ﬂ duP,(Ty > t — s)
~ fé./: Ec (ds, dy)es(t — s) fDH La(x) du

o
~ Z./é/;: Ec (ds, dy)es(t — s) fDH Ls(u) du

k=1
[t]

~Z/eck-—1 dyf Lip(u) du ep(t — k + 1)

k=1
[t]

~ Z elk — ec([t] — k + 1) [ uc (dy) [, La(u) du.

The desired result follows from this by Proposition 20.7 and
the fact that

[t]

Dealk — Dea([t] — k + 1) ~ [ ecls)ec(t — 5) ds = q(t).

k=1

Thus (22.3) holds for any Be®, and C as above and conse-
quently for any Ce®, and Bew®,. Now suppose Be®
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and Be¢®,. We must then show that
lim Ec(t) — Ex(?)
t>0 q(t)

The proof of this fact can be carried out by essentially the

same argument as used in the proof of Theorem 21.4 so we
omit the details.

= 00.

Tueorem 22.4. — Let BeBj and fe ®* Then if the
process is type |

E.[f(Xr,); Ts > t] ~ Ln(al:_}((;;,},‘ (];)/t;)lﬂla

uniformly for x in compacts.

Proof. — The result follows from Theorem 21.2 and Propo-
sition 22.1 by a familiar Tauberian argument.

We now turn our attention to establishing the correspon-
ding result in the type II case. To this end we will need to
extend a result of Belkin [1] from integer valued random
walks to type II processes. The proof i1s essentially that of
Belkin.

Prorosition 22.2. — Let X, be a type 11 process and let
Be®;. Then

lim VEPo((X)VE < b5 Ta > 1) = (2fx)s [*_fula)

where fp 1is

fo(a) = ﬁ gt [lal Ly(0) — “Eo“;gXT )].

Proof. — Let ¢(8) = Eo(¢™*%) and let ¢(8) = e~¥"2,
We can write
(22.6) Eo(exp(i0¢(X)/V1); T > t) = ¢,(8/V1)
— fo Po(Ty e ds)o,_,(0/V/1)
¢
+ Sy Jo Po(To < ds, $(X,) < dy)
[(Pt—x(e/\/t) - eie(-"l\/i)fPt—s(e/\/'t)]‘
Let M(6) = log ¢,(0). Then ¢,(0) = e™®. Integration by
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parts and some easy computations show that

(22.7) @(0/V1) — [ Po(Ty e ds)o,_(0/V/7)
= Py(Ts > 1) + [ Po(Ts > sM(O/V Do, ,(8/\/1) ds.
Let ¢ > 0 be given. Then uniformly in s, et < s < (1 — )t
Po(Ts > s)Vt ~ Ly(0)(2/n)120(t/s)112.
Also tM(0/\/t) - — 6262/2 and for 0 < s < (1 — ¢)t

Ps(0/V1) — @(8(1 — s/t)H2) — 0.
Thus

(22.8) Vi f T Po(Ts > $)oril a/\/z (0/V/1) ds

1—-e)t
+ Ly(0)(2/r) 6 f (tfs)2 2 o (0v/T = sft) ds — 0.
&t
But
(—
(22.9) f‘ P (gfsye e o(6(1 — sfor ) ds

t
S (7 x—1'2°2" o(8(1 — x)2) da.

€

In addition there i1s a t, such that for all s > ¢,,
Py(Ts > s)Vs < K < oo.

Thus for some K’ < o

(22.40) |7 Po(Ts > $)VEM(8/VD) o, (0] V) ds

1 N s—1l2 — ’ et —
\wah i ds 2K\/_\/t Vi)
Also
(22.41) | [ ds Po(Ts > s)VEM(8/Vi)ors| = O(1V/2).

Similarly for some constant C

‘/(‘lt—a)t PO(TB > S>\/EM(0/\/Z)t(Pt—s(e/\/{) dSl
< Ce(1 — )2 2,

(22.12) Tim

t>xo
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It follows from (22.8)-(22.12) that
(22.13) hm\ff Po(Ts > 8)o.s(8/V)M(B/\/2) ds

— (2/7)oLa(0 J "B p <— W) da.

Simple computations and integration by parts show that
(22.44) [ [ Po(Taeds, 4(X,) < dy)or-(0/V2)
X (1 — R )
— Jiz, Po(Ts > t, $(Xx,) e dy)(1 — ¢V7)
+ 20/V1) [ig Po(d(Xa,) e dy)(1 — e¥V7)

o fP(B)fo Po(Ts > s, $(Xr,) = dy)M(0/V1)
X (1 — é"0g,_(6/V1) ds

= I+ II 4 IIL
Now in view of Corollary 22.1
(22.15) [T|Vt = 0(t12)
and also
(22.16) | TII|V¢ = O(¢12).

On the other hand
(22.17) lim Vit 1T = — i0¢(0)E¢(Xr,).

t>o0

Thus from (22.14)-(22.17) we obtain
(2248) Lm v/t [ [ "Po(Ts e ds, $(X,) « dy)o._s(0/\/2)

t>o0

242

(1 — Vi) = — i0E¢(Xy,) exp <— 6—2—>
Thus by (22.6), (22.7), (22.13) and (22.18) we see that
lim <—"—>m VIR (eMEWT, Ty > ¢)

t>0 20’2
1 202 2 P
— L) [1 - 0 oxp <— 0_0'_2%__3;> do|

0o 2Vz

. 1/2 0252
— 6 <%> Eob(Xx,) exp <_ o )
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The Fourier transform on the right (see Belkin [1]) can be
shown to be that of the function

fole) = gz exp (= 55 [1a1La(0) — 55 Eub(Xe) |

This establishes the proposition.

CororLrLary 22.3. — Let Be®B; and let X, be a type 11
process. Then for any ze@®,

lim VP, (X, e ®*; Ty > t) = (i><3>m oLi(z).

t>o0 2 T
Proof. — Since

P(X) > 0; Ts > £) = Py <4’(\? > = ‘I‘i_"’); To_, > t>

it follows from Proposition 22.2 that

lim \/tP,($(X,) > 0; Ts > 1)

= (3) (3)" o [Lrat0) = 25 Bab(Xs )]
=(3)(2)" o [1alm) — 25 BLo(Xe) — v(a1]

- <%> <_12:_>”2 oLi(a).

The proof for X,e®~ is similar.

CororLrary 22.4. — Let Be®,. Then for any AeR for
a type 11 process

~ 1/2
limVe [ Pt < Ts <t & h; Xo,eA), = hui(A) (l) o/2.

t>o G* K1
Proof. — First suppose that Be®;. We can write

fwa(t < Ts <t+h; Xp,eA)dz
= [.P(Ts > t; X, e GHP,(Ts < b, X, < A) da.
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From Theorem 22.1 we see that for any compact set K

limsup P,(Ts > t, X, e ®+) V¢ < ]1msupP (Ts > t) Vit <

t>0 z€K >0

and thus

1im1im\/2f1‘) Te > t, X, e @N)P,(Ts < b, Xr, < A) do

RM® t>

_£$< )"2< ) f 14(@)P.(Ts < h, Xr, < A) = pi(A).

From (22.2) we see that

limlim Ve [ P(Ts > t; X,& @*)Py(Ts < h, Xr, A) dz = 0.

RAS t>w

Now let Be®; and choose B,e®; such that B,>B.
From what has already been proved and an Abelian argument

f P,(Ts, < t, Xr, < A) do ~ <%> ouih(A) V.

Using this and arguing as in the proof of Theorem 21.3 we
find that

f+PZ(TB <t Xr,eA)dz ~ <—7%—> oud(A \/t
(6]

and then by a Tuberian argument that

f Pt < Ty < t+h, Xo,cA)dz ~ h (%) <-72t—>”2 oud(A)n

as desired.

We may now establish the analogue of Theorem 22.4 for
a type II process.

Treorem 22.5. — Let X, be atype 11 process and let B « B,
Then for fe ®*.
lim E,[f(Xx,); Ts > ]Vt

T - (2)7 (5) Ui+ o)Lite) + Haf(— ) L(a)]
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Proof. — We can write

E.[f(Xz,); Ts > t] —f P,(Ts > t, X, e dy)Hsf(y)
= Jo. Pa(Ts > t, X, e dy) [Haf(y) — Haf(+ )]

+ Jy PulTs > t, X, e dy)[Haf(y) — Haf(— )]
+ Hof(+ ©)Py(Ts > t, X, G*)
+ Hpf(— 0)P,(Ts > t, X,e &).

It follows from Corollary 22.3 that as ¢-—> o the last two
terms are asymptotic to

[Hef(+ oo)Li(z) + Hpf(— o0)Lz(z)](0/2)(2[m ) 2t12,

Let ¢ > 0 be given. Then there is a compact subset K of
® such that K=K; & H, K; = R}, [3(K; N &)|ni =
and |Hgf(z) — Hpf(+ )| < ¢ for 2e &t n K'. Thus

./8;*" Pm(TB > t: XtEdy)lHBf(y) - HBf - w
< P,(Ts > &) + 2If|P. <T >ty "’%) < 12K, N @+).

By Proposition 22.2 and Corollary 22.1 we then see that
Em /7 fg. Po(Ts > £, X, < dy)| Haf(y) — Hef(+ )

<%>m Lyz)oe.
Similarly

Em \/7 fo Puo(Ts > t, X, & dy)| Hyf(y) — Hyf(— o)

t>o

N

This establishes the theorem.

23. Invariant Functions for Killed Processes.

Let B be a Borel set and let Qi be the transition operator
for the process killed on B, ie. Qif(z) = E,[f(X)); Ts > ¢].
Using the fact that

{f(Xins); To > t+ 5} = {f(X,00,); Tgo0, > ¢t, Tp > s}



INFINITELY DIVISIBLE PROCESSES 235
it follows that for f a bounded measurable function

Qif(z) = Eu[Exp[f(Xy); Ts > t]; Ts > s] = Qu(Qb)/(2)
so Q4 has the semi-group property.

DeriniTiON. — A measurable function f is said to be Qb
invariant if Qbf =1f for all t > 0. A measurable function
is called essentially Qf invariant if for each t > 0, Qif(z) = f(x)
a.e.

Our first task in this section will be to find all the bounded
invariant and essentially invariant functions.

Tueorem 23.1 — For any Borel set B the function
P, (Ts = ©) s a bounded Qf invariant function. For a non-
singular process the only bounded Qb invariant functions are
aP,(Tg = ®©) for « a constani. If B’ is relatively compact,
then 0 1is the only Qb invariant function. This is also the
case if the process is recurrent and P (Ty= o) =0. In
general, the only bounded essentially Qf invariant functions f
are f(z) = aP, (T = ©) a.e.

Remark. — In the general case even if we assume [ is a
bounded Qf invariant function the most we can conclude
is that f(z) = aP,(Tp = ) a.e.

We will prove this theorem by a sequence of lemmas.

Lemma 23.1. — Let B be a Borel set. Then P, (T =— o)

1s a bounded Q% invariant function.

Proof. — Since Qh®Pp(z) = P,(t < Ts < ), we see that
Jy Qb(@, dy)P,(Ts = ) = P,(T5 > ¢)

— P,(t < Ty < w0) =P, (Tsg = )
as desired.

Lemma 23.2. — Suppose h is bounded, measurable, and for
each t > 0, P'h(z) = h(z) a.e. Then for some constant «,
h(z) = o a.e.

Proof. — Let ¢<C, and set (z)= f@ o(D)h(t + ) dt.
An easy computation shows that P4(z) = ¢(z) for all
ze® and all ¢ > 0. But then AG = ¢, and as AG*0, dz)

is a probability measure on & whose supportis X it follows
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from the Choquet-Deny theorem and the basic assumption
that for some constant K, ¢(z) = K a.e. As h 1s bounded
and ¢ € C, the function ¢ is continuous and thus ¢(z) = K
for all ze®. Thus ¢(z) = ¢(0) for all 2e@. Hence for
any ¢ eC,

Sy 2@t 4 @) — f()] dt =0
and thus for some constant «, f(z) = « a.e.

Lemma 23.3. — Suppose f is bounded and essentially Qb
invariant. Then f(z) + || Po(Te = ©) 2 0 ae. If f 1is

bounded and Qb invariant, then this inequality holds everywhere.
Proof. — Note that for a.e. o (all z if f is invariant)
If (@) = |Qbf(2)] < |fl.Pu(Ts > 2)
and thus for a.e. z (all z if f is invariant)

[f(@)] < [flPo(Ts = o0).

Lemma 23.4. — Assume [ > 0 a.e. and essentially Qb
invariant. Then P"Hf > P*f ae.,, n=1, 2, ... and so lim

n>x

P*f = h exists a.e. The function h is essentially P' invariant.

Proof. — For any real ¢t > 0, P{f > Qbf =f a.e. and so
Pf > Psf a.e. Thus for some measurable A > 0, P*f\h
a.e. Let ¢ € ®t. Then

(e, Pf) = (oP', Pf) > (oP', f) = (o, PYf)
and so lim (¢, Pf) = a < 4 o exists. By monotone conver-
t>00
gence a = (¢, h). Thus by monotone convergence again
(¢, h) = lim (¢, P*"f) = Lim (oP', P"f) = (¢P", h) = (o, PR).

Consequently A = P'h a.e.
We may now establish Theorem 23.1.

Proof of Theorem 23.1. — By Lemma 23.1 and 23.3 it suffices
to prove the theorem for f > 0 a.e. Suppose this is the case.
Now for n=1, 2, .

(23.1)  P*f(z) = Qbf(2) + E,[f(X,); Ts
= f(x) + E;[f(X,); Ts <

N

n]

] ae.

S
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By Lemma 23.4 P*f}h a.e. and thus the limit
lim E,[f(X,); Ts < n] = Iy(x)

exists a.e. Observing that 5 (z) < [f|P.(Ts < ©) we see
that Qbhy(2) < |fIP(t < Ts < ©) so Qbhy(z){0. Thus

a.e. z,
(23.2) f(2) = lim Qah(a).

Now since f is bounded so is h (because P < [f]|) and
thus by Lemmas 23.4 and 23.2 h(z) =« a.e. z for some
constant «. Let ¢ e ®t. Then from (23.2) and (3.10) we
see that

(9, f) = lim (¢, Qsh) = lim (h, Qbe) = « lim (1, Qie)
—allm(cp,le —ocfP TB=oo) (x)dx,

and thus f(z) = aP,(Ts = ©) a.e. Suppose that f > 0
is Qb invariant. Then P/f}h everywhere and h is a bounded
invariant function. If the process is non-singular h(z) = «
for all 2. Using (23.1), which holds for all = if f 1s Qj
invariant, we see that

= f+ Hh

and as h = « it follows that f(z) = «P,(Ts = o0) for all .
If B’ is relatively compact and f is a bounded Q} invariant
function then for all ¢ > 0 and all ze@®,

If(@) < IfIP(Ts > t).

Now P.(Ts > t) {0 so f = 0. Also if the process is recurrent
and P, (T = ) =0 forall  then f=0.
This establishes the theorem.

Prorosition 23.1. — Let B be relatively compact set. For a
type 1 transient process the functions aP (T =) are the only
bounded Qb invariant functions having a limit at . For a
type 11 transient process oP,(Ts = ) are the only bounded
Q% invariant function having a limit as either z—> 4+ © if
m>0 oras z—— o if m<0.
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Proof. — By (3.19) there is a compact set K such that
P.(Ts < ©) < 2G(z, K). By the renewal theorem, in the
type I case, lim P,(Ts < o) = 0, while in the type II case

with m > 0, lim P(Ts < ) = 0. Thus P,(Ts = o) has
&>+ 0

the desired limit properties. Let f be a bounded Qb inva-
riant function having the stated limit properties. Suppose
the process 1s type I. Then as

f(@) = [, Q(e, dy)[f(y) — f()] + f(0)Py(Ts > ¢)

it follows that f(z) = f(©)P,(Ts = ). Now suppose that
the process s type II with m > 0. Then

fl@) = [,_ Qi dy)f(y) + [, Qbls, dy)[fly) — f(+ )] dy
+ f(+ ©)Qb(z, G).

Since P, (X;,—>-+4 ) =1 and f is bounded it follows that
the first two terms on the right converge to 0 as t— .
Moreover

P.Ts > t, X,e &) = Py(Ty > t) — P,(Ty > ¢, X,e &)

and thus
lim P(Ty > ¢, X, e &) = P,(Ts = ).

t>o
The proof in the type II case with m < 0 is similar. This
establishes the proposition.

For recurrent processes P,(Ts = ) =0 a.e. for all sets
Be®%, and so to get non-trivial Qf invariant functions we
must drop the requirement that the desired function is boun-
ded. We therefore now turn our attention to finding all Q}
invariant and essentially Q% invariant functions that are
locally bounded and bounded from below. Our first task will
be to show that there are such functions. Now for an arbi-
trary Borel set there may not be any functions bounded from
below and Q} invariant that are not also bounded. This
happens for example whenever B’ 1is relatively compact.
Hence to obtain non-trivial results we will restrict our atten-
tion to relatively compact sets.

An essential tool used in our investigation will be to show
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that Green’s function of B for the i.d. process are dominated
by a corresponding quantity for a random walk.

Prorosition 23.2. — Let B be relatively compact set such
that B # ¢. Let Ul(z, A) be defined by

Ub(z, A) = 3 Py(XpeA; T > nt)

where T§ =inf{nt > 0: X,,e B}. Then given A, relatively
compact there exists A > A;, A compact and B < © such
that

(23.3) Ga(z, Ay) < % Ul(, A).
Proof. — Set
En — ‘/’:‘(n+l)t 1A‘(Xx) ds

and let I, =1 if T =nt and let [, =0 otherwise. Then
E, [ 1,(X ds_zE[f 1,(X,) ds; Th = nt
— 3 B[]

n=0

=Ez Eigknd:EngkiIn

n=0 k=0 k=0 n=k+1

= 3 E[5 3 L|= 3 Bl Th> kil
Thus
E, [1,(X,) ds = 3 E, [f‘"“”h( ) ds; Th > nt]
= 2 f (nﬂ)l ; Th > nt] ds.

Let nt < s < (n+ 1)t. Then for any set A,
(23.5) Py(Xpuyp<A; Th > ni)
- f@ Py(Xuedy, Ts > nt)P(X, < A)
= [iPuXuedy; T > nt) [ P(X, e dd)P,(Xepnyoy < A)
> JyPelXuedy; To > nt) [ Py(X, e da)Po(Xarns < A).
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Now since A, is compact we can choose A compact, A > A,,
such that P,(X;eA, all s<t) >8>0 for all zeA,.
So choosen we see from (23.5) that for nt < s < (n + 1)t

P (Xosx€ A, Th > nt) > P(X, e Ay, To > nt)p

’

and thus
®© (n+1)t
D P (X;eA;; Th > nt) ds
n=0v pt
<L 3 P(Xpun<A; Th > ni)
n=0

P.(Xp+€A; Th = (n 4 1)t) < é

From (23.4) we then see that

Ui(z, A).

I

I
’CDIN- w
M 8

n

™
E, [ 1.(X,) ds < % Ul(z, A).
0
Since T4 > Tp it follows that
Ty T
E, [ "10(X) ds < B, [ 1,(X,) ds.

This establishes the proposition.

Tueorem 23.2. — (Recurrent process). Let B e ®,. Then
Lz s Qb invariant and in the type 11 case Li and Ly are
Qb  ingariant.

Let Be®,. Then Ly is essentially Qf invariant and in
the type 11 case Ly and Ly are essentially Qb ingariant.

We begin the proof of this theorem with some results
for discrete time recurrent random walks on G. The notation
for such random walks 1s that of [7].

Lemma 23.5. — (Recurrent random walks on &). Let
Be® have a non-empty interior. Then P4y = L.

Proof. — Let A be defined by A =D — I. Observe
that PHy = IIy and Uz = PGg + IIz. and recall from
Theorem 10.1 of [7] that PA = A + I. Choose feJ with
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J(f) = 1. By letting P act on the basic identity 10.1 of [7]
we get that

The identity (5.15) of [7] can be rewritten as
By subtraction it follows that PYp = Lg, as desired.
Lemma 23.6. — (Recurrent random walk on &) Let

Be% have a non-empty interior. Then for any ze®, AeB
and € > 0 there is a compact set K such that

Je Pla, d2)Calzm y + A) <5, ye®.

Proof. — We can assume that |[dA] =0. Now
UB = PGB + HB
and hence

Us(z,y + A) = [ P(z, dz)Ga(z, y + A) + Is(z, y + A).

If y is sufficiently large IIy(z, y + A) = 0, so that for any
compact set K,

Us(z, y + A) = [ P(z, dz)Gu(z, y + A)
—f (x, dz)Gs(z, y + A)
—I—f (z, d2)Gg(z, y + A).

Consider first the type I case. Choose ¢ > 0 and let K,
be a compact set such that

|Al(Lo(z) — [ P, d2)a(a)) < /2.

This can be done by Lemma 23.5 since 4 1is non-negative.
Now
lim Ug(z, y + A) = Lg(2)| Al

Y>xn

and

lim | Pz, dz)Gs(z, y + A) = j]; P(x, dz)4s(z)| Al.

o YK

10
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Thus there 1s a compact set D such that
/;I, P(z, dz)Gs(z, y + A) < ¢, yeD.
There 1s a compact set K2 K, such that

Jo P(e, d2)Ga(z, y + A) <,  yeD.

The set K 1s the desired set. The proof in the type II case
1s similar.

Lemma 23.7. — Let Be® have non-empty interior and let
t be such that S, generates &. Then for any ze@®, AeB
and € > 0 there 1s a compact set K such that

A, Pt('x’ dz)GB(Za Yy + A) < g, Yye @.

Proof. — This result follows by applying Lemma 23.6 to
the random walk obtained by looking at the process at integer
multiples of ¢ and using Proposition 23.2.

Lemma 23.8. — The conclusion of Lemma 23.7 holds if B

ts merely assumed to be in Rg.

Proof. — Let B, be a compact set containing B and
having a non-empty interior. Then

Go(z,y + A) — Gu(2,y + A) = | Hy(z, dz)Gu(z, y + A)
< sup sup Ge(z, y + A) < ©

z€B, yeG

and the desired result now follows from Lemma 23.7.

Lemma 23.9. — Let Be®; and let t be such that S, gene-
rates &. Then for any Ae®R, CeR and ¢ > 0 there is a
compact set K such that

f dz f Pz, dz)Gs(z, y + A) < &, ye®.

Proof. — This follows by essentially the same arguments
as led to Lemma 23.8 except that in the proof of the proper
analog of Lemma 23.6 (where we integrate on zeC) we use
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the fact that

f dx—fdzf (, dz)dp(2).

Lemma 23.10. — Let Be®, andlet t be such that S, gene-
rates ®. Then for any AeB, CeB, and ¢ > 0 there is a
compact set K such that

fdx PYz, dz)Gslz, y + A) <5, ye®.

Proof. — Let B, be a compact set such that BeB;.
There is a compact set D having positive measure and such
that B — D¢B;. It follows easily from Lemma 23.9 that
there i1s a compact set K; such that

I_lij—lf du rdx f, PYx, dz)Gyin,(2, y + A) < %, ue@.
D v G K3

Let K, be a compact set such that Kj — C2Kj; Then

1
DI

By Proposmon 19.3
f deBx,y—l—A Iledu[ dr Gn (@, y + A)

=|3| f du f dz f H,.n(2, d¢)Galo, y -+ A)
2+C

< =Dl " G Gale, y + A),
D] B+D

which by Theorem 18.5, is bounded uniformly in y and =z.
Consequently there is a compact set K; such that

[P0, dz) JogdoCom, y+A) <, ye®.
Let K be a compact set such that K’ — CcK;. Then

fc de [ Pz, dz)G(z, y + A)
/;P‘O dz) [ Gp(z,y + A) < ¢, ye@,

PO, &) [du G @,y + A) < <. ye®.

as desired.
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Proof of Theorem 23.2. — Let Be%; and suppose the
process 1s type I. Then

S Qilz, d2)Go(z, y + A) = Gu(z,y + A) — [ Qi y + A) ds.
Let Ae® with |A] >0 and [d2A] =0. It follows that

lim [ Qb(z, dz)Ga(z y + A) =lim Go(z, y + A) = La(a)] Al.
If K 1s compact then

lim fx , Qb(, d2)Galz, y + A) = |A| [ Qb(x, d2)Ln(z).

Since Qhz, dz) < Pz, dz) it follows from Lemma 23.8
that if S, generates &, then

La(z) = [ Qi(x, dz)La(z).

Now S, generates & except for countably many values
of t. Since Qg = QsQt it follows that Ly is Q% invariant
for all ¢ > 0.

The proof in the type II case is similar. The proof for
B e ®, is also similar except that Lemma 23.10 1s used instead
of Lemma 23.8. We get directly that if S, generates @,
then

fc dz (Ls(z) — QbLy(z)) dz =0, Ce 3.

It follows that Lp(z) = QiLs(z) a.e. ze@®. Again the
extension to all ¢ > 0 follows from the semi-group property
of Q5.

Now that we know that there are locally bounded Qjf
invariant functions that are bounded from below we shall
investigate the uniqueness of such functions. In general the
best we can hope to do is show that in say the type I case
multiples of Ly are the essentially unique such functions.
Since

f+M>0 forsome 0<M< oo,Qs(f+M)=f4+ QM |f

a.e. and thus every Qb invariant function that is bounded
from below must in fact be > 0 a.e. Thus with no loss in
generality we can assume that f is such a function.
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Tueorem 23.3. — Let Be®B, andlet h > 0 a.e. be locally
integrable and such that Qkh = h a.e. for ¢t > 0. Then in
the type 1 case h = CLy a.e. and in the type 11 case

h = C,L§ + C,Ls a.e.

Proof. — Consider a type I recurrent process. Let
K,cK,cK,< .- be compacts, UK,‘= ®. Define h,
by h, = min (h, nG(., K,)) and set "

(23.6) 3, = (h, — Qkh,).

Then
QBsn = Q%hn - Qf;+1h,,

SO
(23.7) f Qs3, ds=fo‘Qgh,,ds—f"“ th, ds.
But
Qih, < nQiGplx, = n f " Qulx, di.
Hence if ¢t < s < t+ 1,
Qsh, < n/f Qilx, ds|0, t— .
Thus
(23.8) lim [ “* Qgh, ds = 0.

t>x

Hence from (23.7) we see that
(23.9) Gad, = [ Qbh, ds.
Since h,}h and Qih = h a.e. we see that
(23.10) G, [ Qihds =h, ace.
Let K be compact. Then from (24.12)

S 3u(@) do = [ (hi(@) — Qbh(a) da
Thus

(2341) lim [ 8,2)do= [ h— [ Q4h=0.

n>w
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Now let ¢ € C} be such that (Lg, ¢) > 0. Since Gncp —> (Ls, @)

there is a compact A such that Gse(z) > 8 > 0, z¢A.
Define measures vy, (dy) by

Yo (dy) = Gso(y)8.(y) dy.

Yn(@) = (GB(P’ 8n) = ((p, GBsn) S (‘P? h) < .
Thus for any feC},

(f, Gad) = (3, Caf) = j Gaf (@) do + [ g;’ Yo (da).

By (23.10), (23.11) and the fact that Ggf is bounded on A

we see that

Then

(F, B) = lim [ S22 (an). 23.13)
we J i Gup(a)
By (23.11) for any compact set K, y,(K)—0. Also
Y2(®) = (¢, Gpd,) — (h, ¢) so we that for any compact K,
Yo(K’) = (¢, h). Let ¢ > 0 be given. Then there is a compact
set K 2 A such that

(?Bcp(w)_(:‘xw(oo)) < ek
Gof(z)  Gof(0)
Thus from (23.13) we see that

l(f, h) — 222 o, 1)l < <(a, .
GB(P(W)
Thus as ¢ 1s arbitrary
v h)
93.14 , L,(
Since (23.14) 1s true for all fe C} 1t follows that
h)
=R 1 e
Lo o) ™ ™

Consider now a type II recurrent process. We know that

Ls > 0. Suppose Li =0 a.e. Then
L(z) = o= [ Hy(, d2)d(z — 2) ace.



INFINITELY DIVISIBLE PROCESSES 247
and thus
8(z) + Lp(— z) = 0_2‘/]; [Hg(z, dz) + Hp(— z, dz)]¢(z) a.e.

However, the left hand side tends to o as x— oo while
the right hand side is bounded. Thus L = 0 a.e. is impossible
so L§ > 0 on a set of positive measure. A similar argument
shows that Ly > 0 on a set of positive measure. Using
Urysohn’s lemma we may find ¢ € Cf such that (Lg, ¢) > 0.

Since llm Gep(z) = (L3, @) we see that there is a compact
set A such that Ggo(z) > 8 >0 for ze¢A. Let vy, be
as before. From (23.18) we see that there is a subsequence
n;— o such that v,(®%) —at, v, (&) —=a" where
at 4+ a= = (h, ¢). Then as v, (K n®*) < y,(K)—>0 for

any compact K we see that

(23.15) lim v,(®* N K') = a*.

njé’n

We can choose K compact such that for z¢ K n @+

~

Gof(z) _ Gof (+ )

(23.16) : G <
Gso(z) Gpo(+ )
and for ze K n &~
(23.17) Gofl) _ Gaf(— )| _
{Gpe(z)  Gro(— o)

It now follows from (23.13) and (23.15)-(23.17) that

Gof (+ ) Gof (— )

By f) =ay 20T =/ 4 o 8" 7/

&1 = Gro(+ o )+ Gpp(— )
_ L k) L, (La ),
(LB, (P) e (LB7 cP)

Since this is true for all feC and «, and «, are indepen-
dent of f we see that

h=—2 14, Lz ae.
(B,CP) +(B,<P) xe

We can extend these uniqueness results to sets in $, as
follows.
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Tueorem 23.4. — Let Be®R;. Then in the type 1 recurrent
case the only Qb invariant functions that are locally bounded
and bounded from below coincide with CLy a.e. In the type 11
recurrent case the only such functions coincide a.e. with

G L% + GL3.

Proof. — Since Be%;, P, (T = ) = 0. Now for some M
Mf+M>0 andso Q&(f+ M) =f+ QsM | f,t— . Thus

f=Qs(f+ M) > 0. Choose Ae®B,;, A > B. Then

f(@) = Quf(z) = Qif(2) + [ PulTneds, Xr, < dy)Q*f(y)
= Qif(#) + E,[f(Xr,); Ta < t].

It follows that lim Q4{f = Q%f exists and is a QY invariant

function (by dominated convergence since Q4f|) and that

f = Q&f + Hif.

Hence by Theorem 23.3 in the type I case Qif = Cl, a.e.
and in the type II case Qif = C,Li + C,Li a.e. It is easily
checked that

Ly = Ly + HiLp

and in the type II case that
5= Li + HiLs.
Consequently in the type I case
f— CLs = H,(f — CLs) a.e.

Thus f— CLp 1s essentially bounded and Q} invariant.
Since Be®; the only such function is essentially 0. Thus
f=CLg a.e. A similar argument shows that in the type II
case f= C,L§ + CL3 a.e. This establishes the theorem.

24. Poisson Type Equations.

Let B be a closed set. The process X,B)= X,,r, 1s
process X, stopped when it hits B. Its transition operator
sP! 1s given by

sPf(2) = Qbf(2) + Eo[f(Xr,); Tn < .



INFINITELY DIVISIBLE PROCESSES 249

An easy computation shows that for any measurable function
f bounded from below gP+f = gP{(zP‘f) so P' has the
semi-group property.

Prorosition 24.1. — The function f= h + Hgp where o
is bounded from below and h is bounded from below and Qb
invariant is bounded from below and P! invariant. Conversely
every such P! invariant function is of this form.

Proof. — Suppose h is Qb invariant. Since
P (Xr,eB|Tg < ©)=1 and A=0
on B we see that 2 i1s gP! invariant. Also

sP'Hpe(2) = QsHso(2) + Eo[Hpp(Xr,); Ts < ¢]
= B.[o(Xg,); t < Tn < 0] + Ej[e(Xy,); Ts < 1]
= Hzo(z).

Suppose now that f> M > — oo and sP' invariant.
Then as f— M > 0 and

sP/(f — M) = sP!f — MP,(Tg > t) —MP (T < t)=f—M
it suffices to consider f > 0. But then
f(2) = Qbf(2) + E.[f(Xxr,); Ts < t]
and E,[f(Xr,); Ts < ¢]{ Hef(z). Consequently Qbf| Qsf and

dominated convergence shows that Qgf 1s Qb invariant.
This establishes the proposition.

Functions invariant for P’ play the role of functions
harmonic on B’ as we shall now explain.

Define the operator A on the measurable functions as
follows. The domain D(Ag) of Ap consists in all measurable
functions f such that

(24.1) sup sup oPf(e) — fla) _ M< o
z€® 0<t<1 t
and
1 oPf(@) — fla)
tvo 4

exists. For fe D(Ay)
(24.2) Asf (@) = im 2EL(2) = f(@)

tvo t
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When restricted to the bounded Borel functions Ap is just
the weak infinitesimal generator of the semi-group P! on
the space of bounded Borel Functions. For our purposes
however we will need to apply Ay to measurable functions
that are just bounded from below. Henceforth in this section
all measurable functions f will be assumed to be bounded
from below. It follows from (24.1) and the semi-group pro-
perty of Pf that

(24.3) |sPf(z) — f(z)] < Mt

SO

[sPf] < [f] + M.
Thus the Laplace transform zR* of yPY is well defined.

Prorosition 24.2. — If [ is bounded from below and
feD(Ag) then yP'f is continuous in ¢t for t >0 and right
continuous at 0. Also

BPt+hf — 5P

(24.4) lim 2 = PlAdf,

(24.5) WP — = [ Pof ds,
and

(24.6) sRAMA — Ag)f = f.

Proof. — It follows from (24.1) that for ¢t >0 and
0<hx<1
[sPH*f — 3P| < Mh

so pP!f 1s right continuous for ¢ > 0. Moreover for ¢ > 0
and 0 <h<1 and t—h > 0,

3P — 5P < [ PN, dy)lf(y) — P < MA

so pPYf is left continuous for ¢ > 0. Equation (24.4) follows
at once by dominated convergence from (24.1) and (24.2).
Now

L (" peuph
) PR — ) ds

1 t+h 1 h
-1 f oPfds — = | sPfds. (24.7)
R J, h Jo
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By dominated convergence the left hand side converges to
fo t PsApf ds as h|0. Using the continuity properties of

sP*f we see that the right hand side of (24.7) converges to
sP'f —f as h|0. This establishes (24.5). Equation (24.6)
follows by taking Laplace transforms.

CororLLArRY 24.1. — A function [ bounded from below is
sP! tnvariant if and only if Agf(z) =0 for all ze®.

Proof. — Immediate from (24.5).
If, in particular, we apply Proposition 24.2 to the closed
set B= @ we obtain the following.

Cororrary 24.2. — Let A, =A. If f is bounded from
belew and feD(A) then P'f is continuous for ¢ > 0 and
right continuous at t=0. Also

PUtf — PIf _

(24.8) lim = P! Af,

(24.9) Pf—f= [ P*Afds
and

(24.10) G*n — A)f = f.

In general a function feD(Ag) need not be in D(A).
However if fe D(A) then we have the following.

ProrositioN 24.3. — Let fe D(A) and let B be a closed
set. If Af(z) =0 for xeB’ then feD(Ag) and Agf=0.

Proof. — Set ¢ = Af. Thenas ¢ =0 on B’ we see that

G*¢ = H)G%p
and as feD(A) we see by (24.10) that
(24.11) f= G*x — A)f = AG M — GPo.
Also
GM = G}f + H}Gf
Hence

f+ Gl =[G + H3G]
= Gif + HY(f + o) = AGif + Hif + G,
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Thus
f = AG}f + H}f = jRM.

Hence a.e. ¢,
(24.12) f = sPY.

Since pP*f = gP! gP°f (24.12) must hold for all ¢ > 0.
Indeed given any ¢t > (C we can find ¢, & such that
t =1t + t, and sP"f = f1, sP*f = [, so the conclusion follows
by the semi-group property.

Let ¢ be a measurable function. A function fe D(A)
solves Poisson’s equation for ¢ if Af = . We shall investi-
gate the solutions of Poisson’s equation for ¢ e C, that are
bounded from below and continuous.

Prorosition 24.4. — Suppose the process X, is transient
and let ¢ e€C, The function Ge¢ 1is a bounded continuous
solution of Af = — ¢. The only bounded continuous solutions
of Af=— ¢ are f= Go 4+ a for « a constant. Moreover

every continuous solution bounded from below is given by

f=h-+ Go where h s continuous, bounded from below
and Ah = 0.

Proof. — Since
P'Go = Go — [ P ds

and P9 — ¢ uniformly as s — 0 it follows that G¢ e D(A)
‘and AGe = — ¢. Suppose [ is continuous, bounded from
below, and Af = — ¢. Then f— G¢ is bounded from below,
continuous and satisfies the equation A(f — G¢) = 0. Hence
by Corollary 24.1 (with B = &) f— Ge 1s P' invariant.
If f is assumed to be bounded then f— G¢ 1s a continuous,
bounded, P! invariant function so f— G¢ = « for some
constant «.

We now turn to consider Poissons equation for recurrent
processes. The main difference with the transient case is
that now there need be no solution in the general case and
even in the non-singular case there is no solution bounded
from below if J(p) < 0.

Let us first show that potentials A¢ provide solutions
in the non-singular case.
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Prorosition 24.5. — Let X, be a non-singular recurrent

processes and let ¢ eC. Then AAg = o.

Proof.— By replacing ¢ with — ¢ 1f necessary we can
assume that J(e¢) > 0. Then by Theorem 17.7 there is a
constant M such that Ap > — M. Now an easy compu-
tation shows that

PiA%p = Alp 4 [” e [Pl — Ptig] ds.
Since Pl¢ -0 as t—> oo we see that

(24.13) lim P‘A%p = Ag + [ Pio ds.
AVO 0

By Fatou’s lemma

g(z) = lim P'A%p(z) — P'A¢(z) > 0
Av0
But then

glz) = glz —y) = lli:rol P'AYo(z — y) — P'Ag(z — y)
= lim P‘Ag,(z) — P'Ag,(z),

AYO
SO

g (x) — gla) = 1;5101 P‘ANo, — ¢)(z) — P'A(p, — ¢)().

By Theorem 17.5, for fixed y, sup sup |[AN¢, — ¢)(z)| < o

0<AL1 z€QP
and thus by bounded convergence g,(z) — g(xz) = 0. Hence

g(z) = go = 0 for some constant g,. From (24.13) we then
see that

(24.14) P'Ap = Ap + [ Pigp ds — g,
Thus
(24.15) PeDAg = PrAg + P [ "Poy ds — g,.

Using (24.14) and (24.15) we easily get that

PeHYAp = Ap — (n+ 1)go + 3 P# [Py ds.
Jj=e
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Since Ap +M > 0
P Ag 4 M]

(24.16) 0 <

n+1
_.A(P+M___ ¢t t S, .
=22t E ot jgopzjopcpds.

Since P9 -0 as s—>
t
Jt s =
1335n+1§op fopq’ds ’

and so the right hand side of (24.16) converges to — g, as
n — . Since the left hand side > 0 for all n we see that
— g >0 so gy <0. Thus g, =0. Thus by (24.14)

P'Ao — Ao =fo‘PS<p ds

and as ¢ eC, it follows that A e D(A) and AA¢ =o.

Tueorem 24.1. — Suppose X, is a recurrent non-singular
process and let ¢ €C,. In order that the equation Af= ¢
have a continuous solution that is bounded from below it is
necessary that J(e) > 0. In that case for a type 1 process the
only such solutions are f= A¢ 4+ B for B a constant. For a
type 11 process the only such solutions are

f=Ae + («d(o)/s®)b + B
for o a constant such that |«| < 1

Proof. — Suppose [ is a continuous solution bounded
from below. Let B eB, be a compact set containing the sup-
port of ¢. Then Af(z) =0 for zeB’ so by Proposition
24.3 f is a P! invariant function. Consequently by Propo-
sition 24.1 and Theorem 24.4 for a type I process
f= aLs 4+ Hgf a.e. while for a type II process

f=ali + bLy + Hyf

a.e. Using essentially the same argument used to establish
Lemmas 10.8 and 10.9 in [7] 1t follows that J(¢) must be
>0 and f=A¢ — B ae. 1n the type I case and
f=Ao¢ + (aJ(¢)/6?)y — B ae. for |a|] <1 in the type I
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case. Since f, Ap and ¢ are continuous the theorem 1is
established.

We will next investigate the Poisson equation for the
stopped process Xg(t). Let C,/(B’) denote the continuous
functions having compact support contained in B'.

Prorosition 24.6. — Suppose X, is a transient process.
Let B be a closed set and let ¢ be a measurable function that
is bounded on B and let he C(B’). Then for any constant «,
the function ¢(z) = aP,(Ts = ©) 4+ Hze + Ggph is a bounded
solution of the equation system Agf = — h, f(z) = o(z), xeB.
In the non-singular case these are the only bounded solutions
and in the general case every bounded solution coincides with
one of these functions a.e. If B’ 1is relatively compact the unique
solution 1s ¢ = Hgp + Ggh. If B is compact then ¢ 1is
the unique solution having a limit at o in the type 1 case and
a limit at + oo in the type 11 case with m > 0.

Proof — Observe that Ggh = f Qbh dt. An easy compu-
tation shows that

QuGoh = Goh — | "Qsh ds
and since for ze¢B,

lim Q3h(z) = lim E [A(X,); Ty > s] = h(2)P,(Ts > 0) = h(z)
Vo

svo0

we see that

Jimg QGsh — Gsh

tvo t
But then as E,[Gsh(Xy); Ts < t] =0, GgheD(As) and
AgGph = — h. The function ¢ = «P,(Tp = ) + Hpe 1is
sP! invariant and so Agy = — h. It is clear that ¢ = ¢

on B. Let f be any bounded solution. Then f— Ggh 1is
a bounded solution of Ayg =0, g = ¢ on B. By Proposition
24.1 only bounded solutions of

Apg =0 are g =g + Hpg = g + Hszo;

where g’ is a bounded Qf invariant function. The remaining
assertions now follow from Theorem 23.1 and Proposition 23.1.
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Turning our attention to the recurrent case we have the
following,

Prorosition 24.7. — Suppose X, s a recurrent process
and let B e®; be compact. Then if ¢ is a bounded measurable
function on B and heC, the function ¢ = Hge + Ggh 1is
the unique bounded solution of Agf = — h, f=1¢ on B. The
function ¢ is also the unique solution of this system if B 1is
a closed set with such that B’ us relatively compact.

Proof. — The proof is similar to the previous proposition.
We omit the details.

In general the functions Hge, Ggh and P (Tz = ) do
not possess any continuity properties so our solutions to the
Poisson equation Agf= —h, h=¢ on B do not have
continuity properties in the ordinary sense. [In § 25 we will
show that for strong Feller processes the above functions,
for ¢ a continuous function, do have desirable continuity
properties.] However we will now show that our solutions
possess a certain stochastic continuity.

Prorosition 24.8. — Let B be a closed set and let ¢ be a
Borel function that is bounded on B. Then for any sequence
t, of stopping times such that ~,4 Ty a.s. P,

lim Hpo(X;) = ¢(Xy,) as. P, on [Tp < ]

and
Py (Ts=o)=1 as. P, on [Tz= ]
Proof. — By quasi-left continuity X; — Xy, a.s. P, on
[Ts < ©]. Let & be the ¢ field associated with the time
v, [see [2], Chapter I for details], and let F = c(Uan)

Since
Heo(X:,) = Ex, [9(X1,); Ts < 0] = E,[¢(Xr,); Ts < oo|F;,]

it follows by a well known result on conditional expectation
that a.s. P,

lim Hye(X,) = Efp(Xs); Ts < o0|7]
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Since X; — Xy, as. P, on [Tg < o] and X is &
measurable we see that ¢(Xp,) 1s & measurable and
[Ts < 0oed. Hence as. P,

Elo(Xe); Ta < ©|3] = ¢(Xz) on  [Ts < .

The proof in the second assertion in the proposition is similar.

Prorosition 24.9. — Let B be a closed set such that
sup Gy(z, K) = M(K) < o for each compact set K. Then

for any sequence =<, of stopping times such that ©,1 Ts a.s.
P and for any he ®

lim Gph(X;) =0 a.s. P,.
Proof. — Let <, and & be as in Proposition 24.8. Let
e > 0 be given. Then a.s. P,
lim P, (Ts < 7, + ¢|F;,) > lim P,(Ts < 7, 4 €|F;,) = Lir,c e

n>w n>»w

and thus a.s. P,
lim P(Ts < =7, + €|%;,) = 1.

n>o

Let K be compact and contain the support of h. Then

Ex, [ [ Ik(X)ldt] < Thle + M(K)|A[Px, (T5 > <)
— JRl[e + M(K)P.(T5 > =, + ¢|.).
Hence a.s. P,

T |Gah(Xs)| < [hle

as desired.

So far we have extended to notion of a harmonic function
on B’ from the point of view that such a function is one
whose Laplacian is zero on B’. Classically such functions
also can be characterized by means of an averaging property.
The extension of this idea is as follows.

DerinviTion 24.1. — Let B be a closed set. A universally
measurable function f on & is said to be harmounic on B’
if for any open set U having compact closure contained in

B, f(z) = E,[f(X+,)], e U. A harmonic function on B’
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is said to be stochastically regular if for every sequence =<, of
stopping times such that +,4 Ty a.s. P, f(X;) = f(Xg,) a.s.
P, on [Ty < o] and for some constant « f(X;)—>a a.s.
P, on [Ty = ©]. A harmonic function on B’ s said to be
regular if hm f(z) = o(r) for reB" and in the case of tran-

stent processes lim f(z) = f(o0) extsts if the process is type 1

transient and hm f(z) = f(4 o) eatsts if the process is type 11
&>+

transient with m > 0, or lm f(z) = f(— ©) exists if the

process is type 11 transient with m < 0.

Prorosition 24.10. Let B be a closed set and let ¢ be a
Borel function that is bounded on B. Then every function f
of the form f(z) = Hgp(z) + «P,(Ts = ) s a bounded
stochastically regular harmonic function on B’ and conversely
every bounded stochastically regular harmonic function on B’
is of this form.

Proof. — Let U be an open set having compact closure
contained in B’. Then Hy = HyHy and thus Hge 1s a
harmonic function on B’. In particular, for ¢ =1 we see
that P,(Ts < o) and thus also P (T = o) are harmonic
functions on B’. The regularity of these functions is the
contents of Proposition 24.8. Now suppose f is a stochasti-
cally regular bounded harmonic function on B’. Let U,
be open U, compact, U,<B’ and U,1B’. Then
Ty 4T < Tsy and by quasi-left continuity XTuh—> Xr a.s.
P, on [T < w]. Since B 1is closed X;eB and thus
T=Ts as. P, on [T < ©]. If T= o then Tsg=
so PT =Ts) =1. Now

f(@) = E [f(Xr,)] = E;[f(Xzy,);
Ts < o] + Ea:[f(XTu;,); Ty = o]

and using the stochastic regularity of f and letting n — oo
we see that [ 1s of the desired form.

The stochastic Dirichlet problem for a closed set B with
boundary function ¢ 1s as follows. Given a Borel function ¢
that is bounded on B find a bounded stochastically regular
harmonic function f such that f=¢ on B. It follows
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at once from Proposition 24.10 that the functions
f=Hyp + «P,(Ty = )

are the only solutions of this problem. From Proposition 24.6
we see that if X, 1s a transient process that is non-singular
the Dirichlet problem is equivalent to finding a bounded f
such that Agf=0, f=1¢ on B. This is also true for a sin-
gular transient process if B is compact or B’ is relatively
compact. For recurrent processes the two problems are equi-
valent whenever B 1is such that P (Ty = o) = 0. In parti-
cular, for any 1.d. process, if f 1is bounded, then Azf =0,
f=¢ on B if and only if f is a solution of the stochastic
Dirichlet problem for B with boundary function ¢ whenever
B is compact or B’ is compact.

The Dirichlet problem for a closed set B with boundary
function ¢ 1s as follows. Given a Borel function that is conti-
nuous on B find a bounded regular harmonic function f
such that f=¢ on B. In general this problem has no solu-
tion. For strong Feller 1.d. process there are solutions for closed
sets having the property that P, (X, e€B"Ts < ) =1 for
all zeB’ and are such that P Tz = o) has the correct
limiting behavior at oo. The next result is typical of what
can be proved. The proof uses continuity properties of Hpo(2)
that will be established in the next section.

Prorosition 24.11. — Suppose X, ts a strong Feller pro-
cess. Let B be a compact set such that P,(Xg, e B’|Ty < ) =1
for all zeB’. Let ¢ be a bounded function that is continuous
at each point of B". Then every function of the form
f(z) = Hpo(z) + aP,(Ts = ©) is a solution to the Dirichlet
problem with beundary function ¢ and conversely every solu-
tion of this problem s of this form.

Proof. — If [ 1s of the stated form then [ is harmonic
and the needed continuity properties follow from Theorem
25.1 and Proposition 3.6. Conversely if f is a solution of the
Dirichlet problem, then using the continuity properties of f
and the fact that P, (X; eB"|Ts < w) =1 for all zeB"
it easily follows that f is a stochastically regular harmonic
function on B’, and thus by Proposition 24.10 f must be
of the stated form.
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25. Continuity Properties of Strong Feller Processes.

If an 1.d. process has the strong Feller property i.e. Po(z)
is continuous in z whenever ¢ 1s bounded and measurable,
then the various functions associated with the process have
desirable continuity properties. These details will be spelled
out in the following propositions. The strong Feller property
holds whenever X, has a density p, for all ¢ Indeed, in
this situation Plo(z) 1is uniformly continuous because

|Plo(a + @) — Plo(o)] < lol [ |p(t, = + 2) + plt, 2) da

and the desired continuity follows from the continuity of
translation in the L; norm. Throughout this section we will
assume that X, 1s a strong Feller 1.d. process.

Prorosition 25.1. — Let B be a Borel set and let ¢ be a
bounded measurable function. Then for t > 0 the functions

Qie(z), Eofo(X)); Ts < t], Eg[o(Xn,); Ts < ¢], and Hyo(a)

are continuous for ze (B)'.

Proof. — Let se(0, t). Then

(25.1) Qbe(z) = QiQ5™e(z) = P*Qf ()
— E,[Q5%e(X,); Ts < s].

The first term on the right is continuous by the strong Feller
property. As to the second term we see that

IE[Q59(X,); Ts < s]| = [el.Ps (Ts < 5).

If z,e(B)" then there is a neighborhood U of 0 such that
U+ z, = (B)’. Let N be a neighborhood of 0 such that
N+ NcU. Given ¢ >0 we can choose s such that
Py(X,eN for all u<s)>1—e¢ and thus for zeN,
P,(X,eU for all u<s)>1-—c Consequently, for all
zeN + z,P,(Ts < s) < e. The continuity of Qke(z) for

z e (B)’ now follows from these facts. Since
E,[e(Xy); Ts < t] = Plp(z) — Qbo(2)
it follows that E,(p(X,); Ts < ) is continuous on (B).



INFINITELY DIVISIBLE PROCESSES 261

The continuity of Hzp on (B)’ follows from the fact that
P:Hpp 1s continuous and the estimate

|P*Hpp (@) — Hpo(z) < o). Po(Ts < s)
Since
Ez[‘P(XT,)5 Tp < t:' = HB<P - QtBHBCP

we see that it too is continuous on (B)".

Cororrary 25.1. — If the process is transient then Ggo(x)

is continuous on (B)’ whenever ¢ is bounded with compact
support.

Proof. — This follows at once from Proposition 25.1, the
fact that

Gpe = Go — HpGo,

and the fact that G¢ 1is continuous.
Recall that a point r is regular for B if P (Vs =0)=1.

Prorosition 25.2. — If r s a regular point of B and
X, s a strong Feller process then P (Vs < t) and P,(Ts < t)

are continuous at r.

Proof. — Observe that
P,(X,eB for some se(r, t]) = f@ P*(z, dy)P,(Tp < t — 7)
1s continuous in z and thus as

P, (X;eB forsome se(r,t])}P,(Vs<t) as |0

we see that P (Vp < t) is a lower-semi-continuous function.
Thus
lim P,(Vs <) > P(Vs < t) = 1.

z>r
Since P,(Vs < t) <1 we see that

lim P,(Vp < #) = 1.

Now P, (T <t) > P(Vs < ¢t) and thus
Iim P,(Ts < t) = 1.

Z>r

Also, P,(Ts < t) =1 because for reB this is obviously
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true while for r¢ B, P(Ts < t) = P(Vs < ¢). Thus P,(Ts < t)

is continuous at r.

CororrLary 25.2. — If r s a regular point of B then for
any t > 0 and any bounded measurable o,

e (r) = Efe(X)); Vs > t] =0
and Qbo(z), E[¢(X,); Vs > t] are continuous at r. Also
E.[e(Xy); Vb < t] = E.[o(X)); Ts < t] = Plo(r)
and E.[o(X); Vs < t], E[¢(X); Ty < t] are continuous at

r.

Proof. — These follow at once from the facts that
P(Ty =0) =P(Vyg =0) =1, Proposition 25.2, and the
relations

Plo(z) = E,[e(X)); Ts < t] + Qbo(x),
Plp(z) = E;[¢(Xy); Vs < ¢] + E;[o(X)); Vs > £].

Prorosition 25.3. — Let r be a regular point of B. Then
(25.2) Iim Hpe(z) = him yp(z) = ¢(r)

whenever r s also a point of continuity of . In addition for
such a point r for any t > 0,

(25.3)  Lim E,[¢(Xz,); Ts < t] = lim E,[o(X);

T>Tr

Vi < t] = o(r)

Proof. — We will prove the Proposition for Hpe and
E.(¢(Xy,); Ts < t]. The same argument also yields the
desired result for the other functions. Let U be any neigh-
borhood of 0, and let ¢ > 0 be given. Then there is a neigh-
borhood N of 0 and a time = such that P, (X,eU for
t<t)>1—¢ for zeN. Hence for all zeN + r,
P (Tsg < v, Xy, ¢U 4 r) < e. By Proposition 25.2 we
can find a neighborhood N; = N such that for zeN; + r,
P(Teg <t) >1—¢ec. Thus for z2eN;,+r, P, (Ts <,
Xr,eU+r) > 1 — 2:. Hence

lim P,(Ts < «, Xp,e U + 1) = 1.

T>r
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Now suppose ¢ 1is continuous at r. Then for some neigh-

borhood U +r of r, |o(x) — ¢(r)] < &, zer. Thus

|Hse(2) — ()l < [, Ha(z, d2)[o(2) — o(r)]

— 9(r)Py(Ty = ®) < & Ha(, U + 1)

+ 2|9 Py(Xr, ¢ U + r; Ts < o)

+ 9(r)P,(Te = ©) < & + 4lolec + o(r)e.
Thus

lim Hypo(z) = o(r).

>r

Since
E.[e(Xr,); Ts < t] = Hpe(z) — Qbo(x)

1t now follows from what has just geen proved and Corollary

95.2 that
lim E,[o(Xr,); Ts < t] = o(r).

T>Tr

This establishes the theorem.

Cororrary 25.3. — If ¢ s bounded and with compact
support and the process is transient then for r a regular point
of B,

lim Gge(z) = Gae(r) = 0.

Proof. — This follows at once from the fact that Go is
continuous, the first passage relation and Proposition 25.3.

The preceding results can be summed up as follows.

Tueorem 25.1. — Let ¢ be a bounded measurable function
and let B be a Borel set. Then the functions Qbo(z), and
E.[¢(X,); Ts < t] are continuous on B" U (B)'. If ¢ has
compact support then Gge 1s continuous on this set. Denote
the continuity points of ¢ by C,. Then Hyp and
E.[¢(Xr,); Ts < t) are continuous on (B" n C,) U (B)".

For recurrent processes we have the following

Tueorem 25.2. — Let Be®, and let 9o ®. Then Ao

is continuous and Gge and Ly are continuous on B"U (B)'.
In the type 11 case Lg are continuous on this set.
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Proof. — 1t is clear that A’ is continuous and since
A’ — A¢ uniformly on compacts so is Ag. Likewise by

Theorem 25.1, Gjp is continuous on BrU (B)’ and as
Gip — Gpe uniformly on compacts Gpp is continuous on
this set. By Proposition HpA¢ is continuous on B" U (B)’
and thus as

J(p)Ls = A¢ — HpA¢ + Ggo

we see that Lp is also continuous on B" U (B)’. Finally
the fact that in the type Il case Lj are continuous on

B" U (B)' follows from Theorem 25.1 and the fact that Ly
is continuous on the set. This establishes the proposition.
From Theorems 24.1 and 24.2 we obtain the following

CororLrary 25.4. — Let B be a closed set, let heC,B’)
and let ¢ be a measurable function that is bounded on B.
Then the only bounded solutions of Agf = —h, f=9¢ on B
are [f(z) = Ggh(z) + Hpo(z) 4+ aP,(Tpg = ®©) for « a cons-
tant. These solutions are continuous on B’ U (B") n C;) (G
is the set of continuity points of o).

Using our results on Q} invariant functions from § 24
plus Theorem 25.2 we obtain the following.

Cororrary 25.5. — Let X, be a recurrent process and let
B e ®,. Then in the type 1 case the only Qb invariant functions

f = 0 that are continuous on (B)' coincide with aLy on (B)'.
In the type 11 case every such function coincides with

a, Ly + e,z on (B).
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