ANNALES DE L’INSTITUT FOURIER

SIDNEY C. PORT

CHARLESJ. STONE

Infinitely divisible processes and their
potential theory. I

Annales de Uinstitut Fourier, tome 21,n°2 (1971), p. 157-275
<http://www.numdam.org/item?id=AlF_1971__21_2_157 0>

© Annales de ’institut Fourier, 1971, tous droits réservés.

L’acces aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique 1’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1971__21_2_157_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Fourier, Grenoble
21, 2 (1971), 157-275.

INFINITELY DIVISIBLE PROCESSES
AND THEIR POTENTIAL THEORY
(First Part) (%)

by Sidney C. PORT and Charles J. STONE (%)

1. Introduction.

Let & be a locally compact, non-compact, second coun-
table Abelian group. An infinitely divisible (i.d.) process X,
on (& 1is a spatially homogeneous standard Markov process
having statesin . We will show that associated with every
such process is a corresponding potential theory that yields
definitive results on the asymptotic behavior of the process
in both space and time.

Our results are stated and proved in the general context
of an 1.d. process on an arbitrary second countable locally
compact Abelian group. Most of these results are new when
applied to and 1.d. process on Euclidean space.

The potential theory we develop for i1.d. processes, when
applied to Brownian processes (a particular family of i.d.
processes), yields that of classical Newtonian potentials for
Brownian motion processes on R d > 3 and that of loga-
rithmic potentials for planar Brownian motion. We may there-
fore view our potential theoretic results as an extension of
these classical results to the more general setting of i.d.
processes. In our development, both probabilistic and potential

1) The second part will be published in vol. 21, 3.
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158 SIDNEY C. PORT AND CHARLES J. STONE

theoretic, we have been guided on the one hand by the known
facts due to Doob, Hunt and Kac about Brownian motion
and to Port about stable processes and on the other hand by
our previous general results on random walks, which were
based in part on earlier work of Spitzer, Kesten, and Ornstein.

Basic notation and concepts used throughout this paper
are listed 1n § 2. The reader should refer to this section while
reading the introduction as the need arises.

Given any continuous convolution semi-group p' of pro-
bability measures on & a fundamental theorem (see [2]
Chapter I, § 9) on the construction of Markov processes assures
us that there 1s an 1.d. process X, such that

P(X,eA) = p{(A — ).

An i.d. process is called non-singular if for some ¢ > 0, p!
has a non-trivial absolutely continuous (with respect to Haar
measure) component. Otherwise the process is called singular.
As we shall see, the strongest possible results are usually valid
for non-singular processes. .

A point ze® 1s called possible if for each open neigh-
borhood N of 0 thereisa ¢ > 0 such that p{N 4 z) > 0.
The collection X of all possible points 1s a closed sub semi-
group of &. Throughout this paper we assume that the closed
group generated by X i1s &. This assumption entails no
loss in generality and is essential to the proper formulation
of our results.

The process is called recurrent if

Glz, A) = [ P(z, A) ds = o

for all non-empty open sets A and all points z e &. Otherwise
the process is called transient. For transient processes
G(z, A) < © for all ze® and all relatively compact sets
A. Everyi.d. process is either transient of recurrent, and for
any recurrent process X = (. These details can be found
m § 4. .

The i.d. process X, = — X, 1is called the dual process
(to X,). Quantities referring to this process are prefixed
with co-.

In § 3 we gather together various facts of a technical nature
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that are used throughout the remainder of the paper. Some of
these are of intrinsic interest.

Section 4, as mentioned above, gives the details of the
classification of an 1.d. process as transient or recurrent.

In § 5 we discuss the periodicities of the process and prove
some ratio limit theorems. These theorems take their nicest
form when the process satisfies

Condition 1. — For some compact set C
lim sup (w{(C))!/, = 1.

Condition 1 is necessarily satisfied for recurrent processes. It
1s convenient to let ®* denote the functions in ® (bounded,
measurable functions having compact support) if the process
i1s non-singular and the functions in C, (continuous with
compact support) otherwise. In Theorem 5.3 we suppose
that Condition 1 holds and let fe®* and ge®* with

0 J(g = ‘/(;j g(z) dz. We show that

i [ Pf(a) ds _ ()
t> ‘/:w Peg(z) ds J(g)

or

o Jo PT@) s J(f)
oo [“Pog(a) do (&)

according as the process is transient or recurrent.

For a measurable set B let Tg =inf {t > 0: X,e B} (=
if no such t) denote the first hitting time of B. In § 6 we
show that to each B and A > 0 there i1s a unique Radon

measure p} supported on the closure B of B such that
E,(e?p) dz = p)G* (dx).

The measure u} is called the A-capacitory measure of B

and its total mass CAB) is called the A-capacity of B. The

corresponding quantities @3 and CMB) are called the co-A-

capacitory measure and co-A-capacity of B. The quantity

C*(*) is a Choquet capacity on the Borel sets having the addi-

tional properties CAB + z) = C*(B) and C}*— B) = C*(B).
9
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For any Borel set B, CAB) = CAB). We call a Borel set B
essentially polar if P,(Ts < ) =0 a.e. and essentially co-

polar if P,(Ts < o) =0 a.e. The set B is essentially polar
if and only if C*B) =0 for some (and hence all) A > 0.
On the other hand if CA(B) > 0 and = = @, then

P, (Tg < ) >0

a.e. z and, in the non-singular case, for all z.

The A-capacity theory developed in § 6 is applied in § 7
to investigate when a one point set is essentially polar. We
show that one point sets are not essentially polar if and only
if G*0, dz) has a bounded density and moreover if this is
the case then a point a is regular for {a} if and only if G*(0, dx)
has a bounded continuous density. We apply these results
to processes on R? and prove the result (due to Kesten)
that one point sets are essentially polar whenever d > 2.
We also show that continuous paths having bounded variation
are also essentially polar when d > 3.

In § 8 we show that if B 1is a Borel set, then either
P,(Ts < ©) =1 ae. 2 or im P(X.eB forsome = > ¢)=10

t>0

a.e. Sets of the first type are called recurrent sets while those
of the latter type are called transient sets. For a recurrent
process every non-essentially polar set is a recurrent set. For
transient processes a set can be of either type but BeB (the
relatively compact Borel sets) is both transient and co-tran-
sient. One of the most important results about co-transient
sets is that associated with each such set is a unique Radon

measure up supported on B such that
P (Ts < ) dz = usG (dz).

The measure pp is called the equilibrium measure or capaci-
tory measure of B; its total mass C(B) is called the capacity
of B and C(B) < oo whenever B eB. In addition, C(B) =0
if and only if B is essentially polar. The measure pg can be
obtained as the vague limit of the measures p} as 240
and also as the vague limit of the measures

i (d2) = - [Bufa) — PHBy(a)] da,
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where ®p(z) = P,(Ts < ©). The measures w, have the
common mass C(B). The set function C(¢) is a Choquet
capacity on the relatively compact sets and C(B) = C(B)
for such sets. For non-relatively compact sets C(B) = C(B)
whenever B is both transient and co-transient.

Section 9 is of a technical nature. The class $, consists
of those Be® with non-empty interior having the property

P,(Ts =Ts) =1 ae. z. In this section we show that func-
tions such as

Hif (@) = E,[f(Xr,); Ts < ] and  Guf(a) = E.[ ;™ f(X,) di]

are continuous for a.e. £ when Be®, and feC(, These

results are needed for the work in later sections. We also show

that sets with a nice boundary in R? are in %,. For an

arbitrary & we show that given any relatively compact
set B we can find K>B, K compact and Ke®,.

A transient 1.d. process is said to be type I if hm Gf(z) =0
z> o

for every bounded measurable function f having compact
support. It is called type Il otherwise. In § 10 we first esta-
blish the renewal theorem. According to this theorem, the
process i1s type II only if G =ReH or G =ZeoH,
where H 1is compact. We suppose that & = ReH or
® = Zo H, Haar measure on & being chosen as the direct
product of normalized Haar measure on H and Lebesgue
measure on R or counting measure on Z. We let ¢ denote
the projection from & to R or Z. We say that - 4+ ©
or x - — o according as ¢(z) > + o or ¢(z) > — .
With this description, the process is type Il transient if and
only if ¢(X,) has finite non-zero mean m. In the type II
case if, say, m > 0, then for fe ®*

lim Gf(@) =0 and lim Gf(z) = L.

z>—x Zz>+®

Most of Section 10 is devoted to establishing the asymptotic
behavior of Hjf(z) for a type II process. Suppose m > 0.
Then C(B) < m for any co-transient set B and C(B) =m
for any co-transient recurrent set B. In addition, for any

¢ € C,, the smoothed hitting measure /(Vg dy o(y)Hs(z + y, *)
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converges strongly to the measure m™'J(e)up as z - — oo.
These smoothed results are the best possible for arbitrary
Borel sets and arbitrary transient type II processes. Sharper,
unsmoothed, results are obtained for special sets. For example,
if Be®,, then Hj(z, ) converges weakly to m™'uy as
z - — o and in the non-singular case the measure Hpy(z, *)
converges strongly to m™'up for any Be®.
For a Borel set B set

Es(t, A) = [ Pu(Ts < t, Xr,e A) do

and Eg(t) = Eg(t, B). In Section 11 we show that for a tran-
sient process

lim [Eg(t + h, A) — Eg(t, A)] = hus(A)

t>

forany Ae® and co-transient set B. In addition, for such
sets,

Jo Po(Ts < @, Xr, & A)P,(Ts = 0) dz = tun(A).
For a transient set B and any Borel set A
Jo Po(Ws < t, X, A) do = tiis(A),

where Wy, the last hitting time of B, is undefined on
[Ts = ©] and defined on [Ty < ©] by

Wi =sup {t > 0: X,eB}.

Sections 12-14 are concerned with the asymptotic behavior
of
PIHBf, E.z[f(XW,—); WB > t, TB < 00]
and

E [f(Xg,);t < Ty < o0]

for large ¢t when X, is a transient process satisfying Condi-
tion 1 and B is a relatively compact set. Let geC,, J(g) =1,
and set r(t) = ﬁw (g, P°g) ds. We show that if feC, and
Be®, then

PHaf (2) ~ r(t)(es, )

E.[f(Xw,); Wo > t, Ty < o] ~ r(t)(iis, ).

and
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For non-singular processes these results hold for any Be®
and any fe®. For singular processes we obtain results of
this type for sets in # and functions fe ® if we first smooth
out on .

A transient process is called strongly transient if

ST r(t) dt < .

It 1s called weakly transient if f = o0. For strongly
transient processes

j E.[ ;6 < T < ] dt = GeHgf ()
and
lim [Es(t, A) — tus(A)] = [ P.(Ts < 0)Hy(z, A) do

for any Be®, Ae® and fe®. For weakly transient pro-
cesses

Jo Bolf(Xn); = < Ty < 0] ds ~ ( f'r(x) d) (un, f)
and
[Es(t; A) — tus(A)] ~ ([ r(v) d=) C(B)us(A)

forsets B in %,, functions feC, and sets A such that
ve(|dA|) = 0. For non-singular processes we may enlarge
the class of sets and functions for which these results are valid.
If the process satisfies Condition 1 and also

sup(r(t)[r(2¢)) < o,

then these results can be strengthened (by omitting the inte-
gration on ¢ in the first result). Examples show however
that in general these stronger results need not be true.

For an arbitrary transient i.d. process examples show that in
general for f, geC, and J(g) # 0, theratios Gf(zr)/Gg(x)
need not have a limit as z — . In Section 15 we first show
that these ratio’s do have a limit if one goes to infinity along
the path of the dual process. More precisely we show that for

all ze@®,
P, | lim Gf(= X, J(f)] = 1.

= Gg(— X)) J(g)
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This result is used to show that for any Be®, and feC,

P, [lim E_x [f(Xe)| s < o] = 1] = 4

and for geC, J()#O,
Gof (—
P, |1 £ = = 1.
[LTGg( ﬁ” To= ) de] !

We also show that results of this type for arbitrary relatively
compact sets hold provided that we first smooth out on the
initial point — X,. We also show that for any B € B and
sets A and C in B such that |dA] =|2C| =0 and
[C] > 0,

GB"L' A+X> |Al
Pe [l,m GO, C+X) o b

(T = oo)] = 1.

Let {(0) denote the characteristic function of the distri-
bution of X, when X; = 0. In Section 16 we will show that
there 1s a continuous function log {(0) which vanishes only
at 6 = 0 and 1s such that

a0) =es &, >0 and 06e@.

We will show that the process is transient or recurrent accor-

ding as
Jo < 1 > 6
log 2(6)

converges or diverges for a compact neighborhood Q of the
origin of &.

In Section 17-22 the process X, is assumed to be recurrent.
In Section 17 we define a collection F of integrable functions
whose Fourier transforms have compact support and which
satisfy certain other conditions (described at the beginning
of Section 17). Properties of this family of functions were
developed in [7]. We let =g in general and F* = @
in the non-singular case. For suitable positive constants
¢, A > 0, operators A* are defined by

Xf = 33(f) — OF
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We will show that, for fe *, AMf has a finite limit as A | 0.
This limit defines the recurrent potential operator A acting
on J*. Various properties of the operators A* and A are
obtained in this section. In stating and proving these results
we must distinguish between type I and type II recurrent
processes. A recurrent process can be type II only if

&=>=ReH or G ~ZaoH.

Suppose & = ReoH or & =Ze H, Haar measure and ¢
being chosen as indicated above in our discussion of type II
transient processes investigated in Section 10. Then the recur-
rent process is type II if and only if ¢(X;) has mean 0 and
finite variance o2

In Section 18 we introduce a classification of the sets in $
corresponding to a recurrent process. %, denotes the sets
in % which are not essentially polar. %, denotes the sets
in $ such that Gg(z, A) 1s locally integrable for all compact
sets A. %3 denotes those sets in # such that Gg(z, A) i1s
bounded in z for all compact sets A. Finally #, denotes,
as discussed above, those sets in $ having a non-empty
interior and such that P, (Tg=Ts) =1 for almost all
ze®. Then B2%,2B,2%8;2%,. In the non-singular case
$, = B3. We construct an example of a process such that
some set in $ having positive measure is not in %,. Such
a set 1s not essentially polar so that in general %; need not
equal %,. We obtain a basic identity for sets Be %, :

Af(z) — HpAf(z) = — Gsf(z) + Ly(2)J(f)

for feF and ze@®. Here L is non-negative, vanishes
on B, and is locally integrable. If B e ®;, then Ly islocally
bounded. In the type Il case we set

L; - LB + 0'2(4} —_ HB“I))'

Using the above basic identity we determine the asymptotic
behavior of Ggf(z) as y—> ©. For Be®; and fe®*

lim Gof,(2) = La(2)J(f), 2@,

y>0

or

lim Ggf,(x) = Ls(2)J(f), ze®,

Y>+wo
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according as the process 1s type I or type II. For Be,®
similar results hold if we smooth out on =z.

In Section 19 we investigate the asymptotic behavior of
Gsf(z) and Hgf(z) as z— . In stating these results it is
convenient to let %} = %, 1in the non-singular case and %,
otherwise. If Be®] and fe ®* then

lim Gof(2) = (f, Ls)

z> 0

lim Gyf(z) = (f, Li)

T»too

or

according as the process 1s type I or type II. Similar results
hold for Be®, if we smooth out on z. There is an equili-

brium probability measure pp supported by B associated
with every Be®,. In the type II case there are also two
auxiliary probability measures ug and uy such that
wp = (ug + ©s)/2. I Be®B] and fe®* then

lim Hgf(z) = (f, us)

z> o

lim Hyf(2) = (f, u5)

T»t oo

or

according as the process 1s type I or type II. Similar results
hold for Be®, if we smooth out on z.

In Section 20 we show that there is a real-valued « Robin’s
constant » k(B) < oo associated with all sets in %. Moreover
k(B) > — o if and only if Be®%,. In particular, in the
non-singular case k(B) > — oo if and only if B 1is not
essentially polar. The construction described above shows
that there are singular processes having sets Be$% which
are not essentially polar but have — o for their Robin’s
constant. The Robin’s constant is related to the other potential
theoretic quantities. For instance, in the type I case for

Be® and feJ*
lim (Af(z) — La(2)J(f)) = k(B)J(f)

>

lim Gof (@) = (f, Ls) = — k(B)J(f) + (Af, ua).

T>wo

and

The Robin’s constant %(B) depends on B in a nice way. Let



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 167
Be® and let B,e®, n > 1, be such that B,| and

P(Tg,} Tz as n—> o0)=1 ae ze@.
Then
lim k(B,) = k(B).
We also show that k(B) defines a Choquet capacity on $
which is translation invariant and such that

%(B) = k(— B) = k(B).

In Section 21 we investigate the time dependent behavior
of the process (some of the results stated here in this introdue-
tion are not proved until Section 22 in the type II case). We
show that, for Be®,, Ep(¢t + s)/Ep(t) > 1 as t—> o and
for B and C both in %, Eg(¢)/Eg(t) > 1 as t— oo. If
Be®,, then
lim [“P,(Ts > s) ds/Es(t) = La(z)
and if Be®, similar results hold if we smooth out on z.
In the type I case we show that for Be®] and fe ®*

lim [ E,(f(Xr,); Ta > s) ds/Es(t) = La(2)(f, us)-

t>o0

(No corresponding results are obtained in general for sets B
in $, or evenin $B;). We obtain a formula for pp, B e %,
namely

Jo Ln(@)Py(Ts < t, Xnye A) dy = tus(A), Ae@.
-We show that for Be®,

. Eg(t, A)
lm =5

Finally we show that for a suitable positive function g(t),
t >0,

— us(A), Ae.

ltlmj (Ec(s) — Ex(s)) ds/g(t) = k(C) — k(B)
whenever B and C are both in % and k(B) and Kk(C)
are not both — .

A recurrent process satisfies Condition 2 if there is a ge ¥,
J(g) =1, such that for some «, 1 < « < 2, and some
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slowly varying function H, G’g(z) ~ A1*/2H(1/A), uni-
formly in = on compacts. This condition is satisfied for every
type Il process with « =2 and H the constant function
(2/r)126. On R or Z this condition is satisfied for any
process in the domain of attraction of a stable law with
exponent «. In Section 22 we show that considerable streng-
thenings of the results in Section 21 are possible for processes
satisfying this condition. As examples of these we show that
for every type II process

lim [Exs(t + h, A) — Eu(t, A) IVt = h(2/n)26up(A)

for any Be®, and any Borel set A, and that for any set
Be®%; and fe®7

lim E,[f(Xx,); Ts > ] Vt
= (2/m)"%(c [2)[p5(A)L5(2) + p5(A)L(2)].
For any process satisfying Condition 2

[Ec(t) — En(t)] ~ [k(C) — k(B)] H(z);:;‘-z/za:/:)

for Ce B, and B e %. Inparticular, for every type II process,
lim [E¢(t) — Eg(?)] = 26%[k(C) — k(B)].

We also show in this section that if the process 1s type II,
then for Be &%,

Jy= Palt < T < t + hy, Xp,e A) dz ~ h([2)(2[r)"2ui(A) 22,

Let Qif(z) = E.[f(Xr,); Ts > t]. A function f is said to
be essentially Q% invariant if for each ¢, Q4f =f a.e. If

4f(x) = f(z) for all z, then f is said to be Q} invariant.
In Section 23 we first show that every bounded essentially
Q4 invariant function is of the form «P (Ts = o) for
some constant «. For recurrent processes we show that Lg
(and Li in the type II case) are essentially Qb invariant
functions for sets B e ®,. For setsin %; the only Qf inva-
riant functions that are locally bounded and bounded from
below are multiples of Ly (and linear combinations of Lg
and Li in the type II case).
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Let B be a closed set, not necessarily relatively compact.
The process stopped on B has transition operator sP* given

by
sPYf(z) = Qbf(2) + Ez[f(Xqyy); Ts < t].

We define the operator -Ap as follows. The domain D(Ag)
consists of all measurable functions f such that

[sPf(2) — fl@)] _ 4

sup sup
0<t<1  zEH t
and
t _
limM exists.
tvo t

For feD(Ap) set y
Axf(2) = lim lz_f@_t":_f.(i)

tvo

In particular P! = P! and we set Ap = A. In Section 24
we investigate Poisson’s equation for A and Agp. Let heCg.
Then for transient processes the only continuous solutions of
Af = — h that are bounded from below are f=Gh -+ r
where r 1s bounded from below and Ar = 0. In particular
the only bounded solutions are f= Gh 4 B. For recurrent
processes in general there are no such solutions. For non-
singular processes there is such a solution if and only if J(k) < 0
and in that case the only such solutions are f= — Ah 4 8
in the type I case and f= — Ah — (aJ (h)[c®*)y + B in the
type Il case where |a| < 1. Suppose that B # g. Let
C.(B’) be the continuous functions having compact support
contained in B’. For ¢ a Borel function that is bounded on
B we show that the only bounded solutions of the equation
system Apf= —h, f=¢ on B, heC/(B’) are

f(2) = Guh(2) + Hap(2) + aPy(Ty = o)

for non-singular processes and in the general case every solution
coincides a.e. with such a function. In general there are no
continuous solutions because the functions Ggh, Hze and
P.(Ts = o) need have no continuity properties. We do show
however that these functions always possess the following
stochastic regularity properties: Let <, be stopping times

such that 7,4 Ty a.s. P,. Then as. P, Hpo(X;) = ¢(Xg,)
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on [Ty < o], Py (Ts=0o)—>1 on [Ts= «], and
Ggh(X;,) > 0. A measurable function f is said to be harmo-
nic on the complement B’ of a closed set B if for every
open set U having compact closure contained in B,

f(2) = E.[f(Xx,)].

A harmonic function is said to be stochastically regular if for
any sequence 1, of stopping times =t,}Tp as. P, it is
true that f(X;)— f(Xy,) as. P, on [Ty < ] and for
some constant «, f(X;)—>a as. P, on [Tg= ]. We
show that every function f of the form

f(z) = Hae(z) 4 «P,(Tp = )

for ¢ bounded on B 1s a stochastically regular harmonic
function and conversely every bounded stochastically regular
harmonic function is of this form. Using results from § 25
we show that if B 1s a compact set such that

P, (Xr,eB|Ty < ©) =1 forall zeB,

then for ¢ a bounded function that is continuous at each
point of B, the only bounded harmonic functions f on B’
such that lim f(z) = ¢(r) are f(z) = Hpo(z) 4+ «P, (Ts = ).

In Section 25 we show that for arbitrary Borel sets B the
functions Ggh, Hgp etc., have desirable continuity properties
whenever the 1.d. process 1s a strong Feller process, 1.e. when-
ever Pife C(®) for f a bounded Borel function. Every process
such that X, has a density for each ¢ is such a process. For
these processes and for closed sets B we can then find solutions
to the equation system Azf= —h, f=1¢ on B that are
continuous on B’u (B"n(C;) where C;, denotes the set of

continuity points of ¢ and B’ denotes the regular points
of B.

2. Notation.

In this section we introduce the notation and basic concepts
that will be used throughout this paper.

® will be a fixed locally compact, non-compact Abelian
group. The Borel sets of (& are the elements of the minimal
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o-field generated by the open sets. Haar measure on & will
be denoted by || or dz. The phrase almost everywhere
(a.e.) will always be with respect to Haar measure, and the
phrase essentially will mean except on a set of Haar measure 0.

The complement of a set B will be denoted by B’ or B-.

For a Borel set B, Ty =inf {t > 0: X,eB} (= o if no
such t) and Vy=1nf {t > 0: X,eB} (= o if no such ).
For Tg < o we define Wp=sup {t > 0: X,eB}. If
Ts = © the random time Wy is undefined.

A function [ defined on & 1is called universally measu-
rable if for any finite measure y on (& there are Borel
functions f; < f; such that f; < f < f, and

[ (@) — fi(a)) dz = 0.

These functions are needed because in general some of the
quantities we deal with e.g. E,[f(Xy,); Ts < ©] for B a
Borel set and f a Borel function are not Borel functions but
only universally measurable. We will state and prove our
results for Borel functions. In a few instances it will be neces-
sary to apply some of these results to universally measurable
functions. In the places where this occurs no difficulty arises
and we shall just do so without further explicit mention.

In our work we will need various classes of functions.
These are

® : All bounded Borel functions having compact support.
(The support of f 1s {x: f(z) # 0}.)

C(®): All bounded continuous function on .

Co(®): All continuous functions vanishing at 0.

Co(®): All continuous functions having compact support.

F: A certain collection of integrable functions defined in
Section 16 whose Fourier transforms have compact support
and satisfy some additional technical requirements.

®* = @ if the process 1s non-singular,
C, 1f the process 1s singular.
® if the process 1s non-singular,

= F 1if the process is singular.

I

!C}*

I

If x 1s any of the above class of functions y* denotes the
collection of non-negative functions in .
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We introduce the notation

)= Jof
(f, 8) = Jq [(@)8(z) dz
(0, f) = [ f(@)x (da)
fy(@) = flz — y).

For A > 0 we define operators on bounded Borel functions
or non-negative Borel functions as follows:

Cif(e) = [, e ¥Pfla) de = E, ["f(X
AMf(z) = J(f)c* ka (@ )
where ¢* is an appropriately choosen positive constant
Hif (z) = E,[e™V3f(Xr,); Ty < o]
M} (z) = E,[e% f(ng) VB < o]
Gif(@) = B, [ eMf(X
Ujf(z) = E. f,” e Mf(X )

If any of the above quantities are finite for A = 0 we denote
that operator by the same symbol without the 2, e.g.

Hyf(z) = Hif(2).

Other operators we will use are:
bf (2) = E.[f(X,); Ts > 1]
oPf(2) = Quf(2) + E.[f(Xr,); Ts < ¢]
RYf(z) = [;” Pf(a) ds

We define

En(t, A) = [3 Po(Ts < t, Xr,e A) da
Ey(t) = Ex(t, B)

eh(t, A) = Eg(t + h, A) — Eg(t, A)

es(t) = e};(t B)

E}(A) = [,"eMEs (dt, A) = [, Hi(z, A)
wh(A) = RE}(A)
CMB) = p)(B)
Li(z) = Ac* [,” Po(Ts> t)e™ dt

where c¢* is the constant that enters into the definition of AX.
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Some constants associated with sets are

C(B): The capacity of B. This is defined only for transient
processes (see § 8).

k(B): The Robin’s constant of B. This is defined only
for recurrent processes (see § 20).

k*(B): Constants related to the Robin’s constant for type I1
recurrent processes (see § 20).

up: The equilibrium measure of B. This is defined for
transient processes in § 8 and for recurrent processes in
§ 19.

5 : Measures supported on B related to the equilibrium
measure for type Il recurrent processes (see § 19).

Ly and Lg: Functions that occur in our study of recurrent
processes (see § 18).

Various classes of Borel sets will be used in our work. These are

%: all relatively compact Borel sets.

$, : all relatively compact sets that are not essentially polar.

By . all relatively compact set such that Gg(z, A) 1s locally
integrable for A a compact set.

$s: all relatively compact sets such that Gg(z, A) 1is
bounded for A a compact set.

$,: all relatively compact sets having non-empty interior
such that P (Tg=Ts) =1 a.e. =

$* =% 1in the non-singular case and H* =%, in the
singular case.

$; = B, 1in the non-singular case and B; = %, in genearl.

@ : all relatively compact sets whose boundaries have
zero Haar measure.

Of all groups &, two particular compactly generated
groups play a distinguished role. These are when & is iso-
morphic to either RoH or Ze& H, where H is a compact
group. In this case we will identify & with either Re H
or ZoH. Let ¢ denote the natural projection of Reo H
onto R orof ZeoH onto Z. The 1.d. process induced on R
or 7 is the process ¢(X,). If ¢(X,) has finite mean then
E¢(X, — Xo) = tm for some constant m. Similarly if
¢(X,) has finite variance then Var (X, — X;) = te?. We
set @t = {z: ¢(z) 2 0} and G = {z: {(z) < 0}.
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By lim f(z) = f(0) we mean that given ¢ > 0 we can

find a compact set K such that |f(z) — f(w) < ¢ for
z¢ K. When & can be identified with either Re H or
ZoH we define lim f(z)=f(+ o) as hm  f(z). We

TESE,L> ©

introduce the convention that

Lim, f(z) = (f(4 ©) + f(— ©))/2,
when & 1s one of our distinguished groups and Lim, = lim,
otherwise. .
The process X, = — X, 1is called the dual process. Quan-
tities that refer to this process are denoted by ~. For example
the quantity Hgf for the dual process is denoted by Hsf.

The quantity Ez[ﬂT"f(X,) dt] for the dual process is denoted

by either E,[[f(x) dt] or E[[™f(X) dt]. Quantities
that pertain to the dual process are prefixed by co-. For
example the quantity C(B), which is the quantity C(B)
for the dual process, 1s called the co-capacity of B.

A point e @® 1is said to be regular for B if P (Vy =0) = 1.
The collection of all regular points of B is denoted by Br. The
collection of all co-regular points is denoted by "B.

If v is a bounded measure then the Fourier transform
2(0) of vy 1s ?(e).:f@ {0, 2>y (dz) where 0 1s a character
of &. The Fourier transform f of a function feL,(®) is
f(6)= /{;(6, xzyf(z) dz. Haar measure is choosen so that

f(x)=ﬁ%<6, x>f(6) d6, whenever f is continuous and [

1s integrable.

3. Preliminaries.

In this section we will gather together some preliminary
facts of a technical nature that will be used throughout the
sequel.

The transition operator P‘ of an i.d. process has the pro-
perty that P/feC, if feC(,. Consequently, by a fundamental
result in the construction of Markov processes there is a reali-
zation of the process as a standard Markov process. Hence-
forth X, will always denote this realization of the process,
and in the future we will freely use the properties of standard
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processes. For a full discussion of the properties of standard
processes we refer the reader to [2] Chapter. 1.

The dual process to X, 1is the process 5(‘ =—X,. It
follows at once that for any two functions f, ge® or any
two non-negative functions that for any ¢ > 0,

(f, P'g) = (8, Pf),

and thus for any » > 0 (= 0 also in the transient case) that
(f, G*g) = (g, G*). A slightly deeper duality relation will be
given a shatly. These relations are some of the key tools used
in our development.

The hitting times Ty and Vjy are stopping times. An appli-
cation of the strong Markov property (valid for any standard
process) yields the first passage relations

(3.1) G* — HiG* = G}
and
(3.2) G* — MMG* = U}

These equations are the Laplace transform versions of the
relations

(33) P(X,eA)= [ [P,(Tpeds, X,edy)P (X, cA)

+ P(Tp > t, X, € A)
and

(3.4) P(X,eA)= [ [ P.(Vseds, Xy,edyP,(X, A

+ P, (Vs > t, X, € A)
respectively.

A zero-one law for stopping times (see [2], p. 30) asserts
that P, (Vg =0) =1 or 0. A point x is called regular for B
if P (Vyg=0)=1. Let B" denote the set of all regular
points of B. It is clear that B<cB'cB. Our next result
shows that B n (B")° has Haar measure zero.

Prorosition. 3.1. — For any Borel set B and any t > 0,
P(VB\ )——P(TB\ )xﬁB and P<TB\ )———-P< Bgt)
ae. xzeB. In particular, P (Vp=0)=P, (Tg=0)=1

a.e. z<B.

Proof. — It 1s clear that P (Vy < ) =P, (Ts < ¢t) for
z«B. To establish the last assertion we proceed as follows.
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On the one hand for A~ > 0 and ¢ > 0,

and
P,(Vs<t)<P,X,eB for some se[0, t])<P,(Vs<t) and
thus for any feC¢

(35) [ f@Pu(Ve<t)do< lim P} (dy)P, (TB<t)

< [, f() < 1) da-
On the other hand

JoPHAY)P(Ty < ) = [ P(Ts < )P'f(y) d
Let K be open, K compact, contain the support of f. Then
oo Py(Ts < OPf(y) dy < [ f(2)PHa, K) dz > 0, h - 0

SO
lim [0 P(Ts < O)Pf(y) dy = [_ P,(Ts < O)f(y) dy.

hvo

Thus from (3.5) and the above computation we see that

S f@P(Vo< ) dz < [ f(2)Po(Ts < ¢) da
< [ f@Po(Va < 1) da,

and thus for any ¢ > 0

S f@P(Vs < 1) do = [ f(@)P.(Ts < ¢) da.

Since feCF 1s arbitrary P,(Vs < &) =P (Ts < t) a.e.

Prorosition 3.2. — Let B be any Borel set and let fe ®*.
Then P[Ty < t) = P{Vs < t) is continuous on (0, o).

Proof. — Suppose 3t > 0 such that P{Ts=1¢) =¢ > 0.
Then for any 8, 0 < 3 < ¢

e =P[Ty = 1) < [ P (dy)P,(Tp = 3)
= .f@ P(Ts = 8)P*?f(y) dy,
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and thus [ P(Ty=3) dy >0 forall 5,0 <38 <t Let

K, be relatively compact with union &. Since
Jo P(Ts < ) dy < |K,| < oo
it can only be that
J<.P(Ts = 8) dy > 0 for countably many 3 in (0, #).

Consequently
S, dy P,(Tp = 5) zf (Tp = 3) dy

can only be positive for countably many 8 e (0, t) a contra-
diction. Thus P{Ts=1t) =0 for all ¢ > 0, as desired.

We are now in a position to establish the duality relation
alluled to above.

Prorosition 3.3. — Let B be a Borel set. Then for any two
functions f, ge ®*+, and » > 0

(3.6) (f, Gag) = (g Gaf),

(3.7) (f, HjG*g) = (g, H}GM),

(3.8) (f, Usg) = (8, U¥f)
and

(3.9) (f, I3G g) = (g, MGH).

Before proving this proposition we point out that it follows
at once from the proposition that it holds for A =0, and for
f, g arbitrary non-negative measurable functions, whenever
the quantities involved are finite. Also, the following holds.

CororLrLarY 3.1. — Let f, g be any two non-negative measur-
able functions. Then for any t > 0

(3.10) [ [ f(2)P TB>tXedy)()dx
= [ [ 8)P(Ts > t, X, do)f(x) dy

and

@BA1) [ [ f@P(Ve > ¢, X, edy) (y) dz
= [ [Le)P(Vs > t, X,edn)f(2) dy.
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Proof of Corollary. — It suffices to prove (3.10) since
P.(Ve >t, X,eA)=P,(Ts >t, X,eA), ze«Bn(B") and
IBn(B")| =0. Also (3.10) holds for all non-negative f
and g if and only if it holds for f, ge C¥. But for such f, g,
both terms in (3.10) are right continuous in ¢ and thus (3.10)
follows from (3.6) by the uniqueness of the Laplace transform.

Proof of Proposition. — The first passage relations show
that (3.6) and (3.7) are equivalent as are (3.8) and (3.9). Since
IBn (B")| =0 it follows that (3.6) and (3.8) are equivalent,
so i1t suffices to establish (3.6). We will first do this for an
open set B. Let B be an open set and let f, ge ®*. Then
as the paths are right continuous and B 1is open

(342) [ f(@)do [ P(X,eB forall se(0,1), X, <dy)gly)
_hmJ flz dfo (XyneBallj,0 <7 < n, X, edy)g(y)

— hm f‘ gly) dy j@ XineB,allj,0 < j < nX, edr)f(z)
= f@ ) dy [ y(XSQB all se(0,1), X, eda)f(z).
Also (again because X, is right continuous and B is open)

[X,eB all se(0,8)]=[X,«B all se<[0,1)],
[X,eB all se(0,0)]=[X,eB all se]0,1)]

and

(3.143) [X,¢B all se][0,1]]

:O [R.e Ba se<o, t—}—%—>]

(314) [X,¢B all sel0,1]] \
:(‘][xse Ball se<0,t—|—%)]~

It now follows from (3.12)-(3.14) that (3.6) holds for B open,
and thus (3.7) also holds for B open. We may rewrite (3.7)

(3.45)  EfeGrg(Xr,)] = E,[e?HGH(Xa,)]

Now let B be any Borel set. By theorem 10.20 of Chapter 1
of [2] there is a decreasing sequence of open sets B, such
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that Ts, } Ts a.e. P, and Tp 4 T ae. P, Also
Grg(Xr,) = fo ef(X,) dt § Ph(Xr,), n > w,

and likewise for G"f(XTM). Thus, setting B = B, and passing
to the limit we see that (3.7) holds for all B. Since (3.7) and

(3.6) are equivalent, (3.6) holds for all Borel sets B. This
establishes the proposition.

Another useful relation is the following

Prorosition 3.4. — Let A, B be Borel sets and let A c B.
Then for any fe®t and 2 > 0

(3.16) Hyf(z) = Hy(Hf)(2)
(3.47) Gif = Gif + HyGAf

Proof. — If AcB then T, > Ty so Ty = Ts+ Ta.0g,
Hence

Hif(z) = E [e774f(Xx,); Ta < o]

E, {e ™ gExry[e?"af(Xr,); Ta < ©]; Tp < o}
= Hj(Hif)(»).

In a similar manner

Gif(z) = B, [aeMf(X,) dt = E, [ e f(X
+ B, fr A e Mf(X) dt = Gif(a)

+ E,je BEX(TB)[fAe NF(X,) dt]!
= G}f(=) + H3GAf().

The following is a useful fact to know.

Prorosition 3.5. — Let B be any relatively compact set.

Then E, Ty < oo.

Proof. — Let K be a compact set such that B — Bc K.
Then for any xzeB,

P, (X,eB) = Py(X,e B — 2) < Py(X, = K),
and thus for zeB,

P, (X,eB) > Py(X,e K').
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Since K 1s compact thereis a ¢, > 0 such that
Py(X,eK) =8 >0
and thus inf P, X, eB’) >3 >0. Hence for zeB,
P(Tw < to) > Py(X,eB) > 5 so
sup P(Ts > t) < 1—3.

TEB

It easily follows that
sup P(Ty > nt)) < (1 — ¥)"

T€B

and thus for any zeB,

1
%1—8

If z¢B then P, (Ty =0)=1 so E,/ Ty =0.

The following simple estimates are of frequent use.

E, Ty <

< 00.

Prorosition 3.6. — Let B be relatively compact and let
t > 0. Then there is a compact set K, such that

(3.18) P.(Ts < t) < 2P, (X, e K)).
Also there 1s a compact set K such that for all t > 0,

(3.19) P, <2 [P P(X,eK) ds.

Proof. — Since the paths are bounded we can choose K,

compact such that P,(X;eK, for s <) > —%— for yeB
and thus

PX,eK) > [* [ P(Tpeds, Xn,edy)P,(X,, « K)

Similarly we can choose K compact such that

P,(X,e K for 0<s<1)>—;— for yeB
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and thus

S Pu(X, e K) ds _
> fo 7 P(Ts < 5, Xp, € dy)Py(Xpsa-, < K) ds

> <-21-> P,(Ts < 1).

When the resolvant G*(0, dz) is absolutely continuous with
respect to Haar measure then we expect that the first passage
relations should hold for nice versions of the densities of
GMz, dy) and G}(z, dy). We will spell out these details in the
next five propositions. Throughout this discussion A > 0 in
general and A > 0 in the transient case.

Recall that a non-negative function f is called A-excessive

if e NP < f and eNPULf, t40.

Prorosition 3.7. — If GO0, dz) € dr then \-excessive
functions are lower semi-continuous.

Proof. — Let gMx) be a density of GO0, dx). Then if

is bounded and measurable G*¢(z) is continuous. Indeed
¢ ’

|Gro(x + 20) — Gro(zo) < lol. [, 18y — 2) — g'y)| dy

and translations are continuous in the L,(®) norm. The
assertion now follows from this fact and the fact that given f
A-excessive there 1s a sequence ¢, of bounded measurable
functions such that G*p,} f. (See [2] Chapter 2, Proposition
2.6 and Exercise 2.19.)

Prorosition 3.8. — Let GM0, dz) < dx. If f and g are
A-excessive and [ = g a.e. then f(x) = g(z) for all z. Simi-
larly, if f > g a.e. then f(z) > gla) for all =.

N

Proof. — It follows at once from the resolvent equation
that GFf(0, dr) < dz for all B > 0. The assertions follow
at once from this and the fact that if f is A-excessive then

BGMIF} f, B — oo.

Prorosition 3.9. — Assume GMO, dx) < dx. Then there
is a version gNz) of the density of G0, dz) such that
gy — ) dy = Gz, dy) and gy — x) is h-excessive in u,
A-co-excessive in y and ghz) = gh(— z).
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Proof. — By Theorem 1.4 of Chapter 6 of [2] we know that
there is a function u*(z, y) such that

Gz, dy) = UMz, y) dy, GMy, dz) = Wz, y) da,

and uMz, y) is A-excessive in x and A-co-excessive in y.
To establish the proposition we need only show that
uMz, y) = uM0, y — z) for all z and y. To this end note
that u*(z,y) = u*(0,y — z) a.e.y and ul(z,y) = ur(z — y,0)
a.e. z. Thus
/é ub(x + a, 2)uMz, y + a) dz

= / uf(0,z —z — a)uMz — y — a, 0) dz

[%

—fw’xt Nt, y) dt.

Since u*(., y) is A-excessive it now follows from the above
by multiplying through by B and then taking the limit as
B — oo that

uMz + a, y + a) = vz, y).
Thus ghz) = u*(0, z) is the required density.
Note. — In view of Proposition 3.8 g*(x) is the unique
density with the stipulated properties.

Prorosition 3.10. — Assume G0, dz) < dv. Then for
any Borel set B

Jo My(w, da)ghy — 2) = [ Tij(y, dz)g(z — 2).
Proof. — This 1s Theorem 1.16 of Chapter VI of [2].

Prorosition 3.11. — Assume G*0, dz) < dz and let B
be any Borel set. Then Uj}(z, dy) has a density u}(z, y) such
that for all x and vy,

(3.20) iz, y) = @y, )
(3.21) gy —a) — 5 My(x, dz)gh(y — 2) = uj(z, y).
Moreover u}(z,y) = 0 if either = is a regular point or y is a

co-regular point of B.

Proof. — It is clear that for each fixed z (3.21) holds for
a.e. y. We can define u}(z, .) by the left hand side provided
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we know that it i1s non-negative for all y. Thus we must
show that for all y

(3.22) gy — =) fII z, dz)ghy — 2)
= J; Mz, dz)gMz — y).

We know that (3.22) holds for a.e. y. The function gh(y — =)
18 A-co-excessive 1n y. Also it 1s easily checked that for any

measure @ the function /é gMz — y)u (dz) is A-co-excessive.
Thus both sides of (3.22) are A-co-excessive functions of y.
The desired conclusion now follows from Proposition 3.8.
Now if z 1s regular for B, then II}(z, dz) is the unit mass
at z so1it follows from (3.21) that u}(z, y) = 0. By Proposition
3.10 and the fact that 1I}{y, dz) is the unit mass at y for y
a co-regular point of B we see that u)(z, y) =0 for y a
co-regular point. Finally (3.20) follows from (3.21) and Propo-
sition 3.10.

When the process X, 1s non-singular we know that there
isa t, > 0 and a non-trivial density p,(x) such that

P4(0, dz) = p,(x) dz + Q(0, dx).

Q*(0, ®) < QY0, §)Q (0, &)

it follows that QY0, &) 1s decreasing. Since Q%(0, &) < 1
it follows that Q™(0, &) < [Q%0, &)]*|{ 0 and thus

(3.23) m [ 5 2) do = 1.

t>o0 S

Since

4. Classification of an i.d. process.

In this section we will characterize an 1.d. process as being
recurrent or transient analogous to the corresponding classi-
fication for a random walk.

DérintTioN 4.1. — A point ze® is called possible if for
each neighborhood N of 0 there is a t >0 such that
Py(X,;e N 4 2) > 0. We denote the set of all possible points
by Z.
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Prorosition 4.1. — The set £ is a closed sub-semi-group

of .

Proof. — Let zeZXZ’. Then there is a neighborhood N
of 0 such that Py(X,e N + 2) =0 for all ¢ > 0. Let N,
be a neighborhood of 0 such that N; + N;cN and let
ye N, + z. Then for any ¢t > 0,

Py(X;eN; +y) < Py(X,eN + z) =0,

and thus yeZX’. Thus N; +2eX’ so Z' 1s open. To see
that X 1is a semi-group let N be a neighborhood of 0 and
let N; be a neighborhood of 0 such that N; — N; e N.
Then

PO(Xt+sE N+ az+ y)
2 Jsta Po(X, e dz)Py(X;e N + 2 + y — z)
> Po(X,eN; + 2)Po(X, e N; + y).

Thus if z any yeX sois z+ v.

Basic Assumption. Throughout this paper we assume that
the group generated by X is . This entails no loss in gene-
rality and is essential to the proper formulation of our results.

Prorosition 4.2. — If for some relatively compact open
neighborhood N of 0, G(0, N) < o, then G(z, K) <
for all z and all compact sets K. On the other hand if G(0, N) = oo
for all open neighborhoods of 0, then G(0, N+ z) = o
for all zeX.

Proof. — Suppose that G(0, N) < oo for an open neigh-
borhood N of 0. Let N; be an open neighborhood of 0
such that N, — N; c N, where N; is the closure of N;.
Then for any ze@®,

G(z, Ny) = [, Hy(2, dz)G(z, Ni) < SUP G(z, Ny)

ZE€N,

< G0, N; — N;) < G(0, N) < oo.

Given any compact set K we can cover K by finitely many
of the open sets N; — 2. Hence G(z, K) < oo forall ze®
and all compact sets K.

Suppose now that G(0, N) = oo for all open neighborhoods
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of 0. Let zeX. Then for any neighborhood N; of 0,
Py(Ty, < ©) > 0. Let N; be an open neighborhood of 0

such that N; — N; ¢ N. Then

G(0, N+ 2) > firz Hyal0, dy)G(0, N + 2 — y)
> Py(Ty,p < ) ;;i GO, N + z — y)
YEN+T
> Py(Tynue < 0)G(0, Ny).

Thus G(0, N 4 z) = 0.

DeriniTioNn 4.2. — An i.d. process is called transient if
G(0, N) < o for some relatively compact open neighborhood
of 0. Otherwise the process is called recurrent.

It follows from Proposition 4.2 that this is a disjunct classi-
fication. For general transient processes X need not be a
group. However for recurrent processes X 1s always a group,
and under our basic assumption, X = @.

Prorosition 4.3. — For a recurrent process £ =& and
G(z, K) = o a.e. & whenever |K| > 0. Moreover, a process
is recurrent if and only if for every open neighborhood N of 0
and every ze®, P (X,eN for some s>t =1 for all
t > 0.

Proof. — Let ® denote the collection of all points ze®,
such that Py(X;eN + 2z for some s> ¢) =1, for all
neighborhoods N of 0 and all ¢ > 0. We claim that if
zeZ and yeR then y —xzeR. To see this suppose it is
false. There then exists a ¢, > 0 and a neighborhood N of 0
such that Py(X,e¢N + (y —z)) for all s > ¢) > 0. Let
N, be an open neighborhood of 0 such that N; — N; ¢ N.
Now if X,eN;+2 and X, — X,eN 4 (y —2z) then
X,¢N; +y. Hence if we choose ¢ such that

Po(X,eN; +2) > 0

we see that

Po(X;e¢N; +y for all s > ¢, +¢)
> Py(X;e N, + 2)P(X;, — X, e N+ (y—z) forall s > t 4 ¢,)
= Po(X,eN; + 2)Po(X; e N+ (y — z) forall s > ¢) > 0.

This contradicts the fact that ye®R. From this fact it follows
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at once that either & =g orif ® # ¢ then R 1is a group
and R = X. Indeed, if R # ¢, then we see that if ye®
sois y—y=0. Hence also —y=0—yeR, and thus
for any zeX, 2 —0=2e®R. Thus we have shown that
either T =R or R =g.

Suppose that X, is recurrent. Let N be a neighborhood
of 0 and choose the sub neighborhood N, cN such that
N; + N; e N. Since for zeN,

P(X;eN forall s <h)> Py(X,eN; forall s < h)
and P(lim X, = X;) =1 we can choose A > 0 so that

)
sy —_—
P(X,eN forall s<h) =3 >0 forall zeN,. But then
for (n —1)h <t < nh,

Py(X,,eN) > j;‘ Py(X,e dy)P (Xt e N) > Py(X,eN,)3.

Hence

Thus the random walk X,,, n > 0, is recurrent, and by a
well-known result on random walks Py(X,, € N for some
n>ny) =1 for all n,. But then Py(X,eN for some
t >t) =1 for all ¢ and consequently O0e®R, so R #* g,
and therefore R = Z.

Now suppose that & = X andlet N and N; be as before.
Define stopping times T, < T, < --- as follows:

Tl - inf {t > 0: Xte Nl}
and

Ty =inf {t > T, + h: X, e N,}.

Since P,(X,eN; for some s > ¢)=1 for all ye® and
all ¢ > 0 it easily follows that

Po(X, e N, for some s>T,+h =1

for all n. Now

Eof [0 1(X,) ds|X(T,) = y] = [ P(X,eN)ds > hs:

T’l
and thus
Eof /" 1x(X,) ds] > h8Py(T, < ) = A3.

Ta
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Hence
hnd T,+h

GO, N) > 3 [Ey /1" 14(X,) ds] > 5 b8 = w

n=1 n=1

and thus the process X, 1s recurrent.
Finally suppose K 1s compact and |K| > 0. Then for
any compact set C, |C| > 0,

(41) [ G, K) do = f@ G(0, dy) [ 1x(y + 2) da.

Since ‘/; 1x(y + z) dz is a continuous function it follows from
Proposition 4.2 and the fact that © = & in the recurrent
case that the right hand side of (4.1) is infinite whenever the
process is recurrent. Thus _/; G(z, K) dz = o for every

compact set C, |C| > 0 and thus G(z, K) = «© a.e. (If not,
there 1s a compact set C and an N < o such that

G(z, K) < N for all ze(C, and so
J. Gz, K) dz < N|C| < o.)

PropositioN 4.4. — The process is transient if and only
if for every compact set B,

lim P,(X;eB forsome s>1t) =0,z2ze@®.

t>

Proof. — 1f (4.2) holds then by Proposition 4.3 the process
is transient. On the other hand if the process is transient then
from (3.19) we see that there i1s a compact set K such that

P.(Ts < ©) < 2G(z, K)

and so

P(X,eB forsome s3> 1) = [ Pi(z, dy)P(Ts < )
< 2P'G(z, K).

Since P!G(rx, K) | 0 as ¢— oo the result follows.

5. Periodicities and the ratio limit theorem.

In this section it will be convenient to work with the proba-
bility measures p‘ defined by p!(dz) = P{0, dz). Then
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ptHt=pssxpu’ for s >0 and ¢ >0 and p' is continuous
in ¢, in the sense of weak convergence. Let S, be the support
of p!. Then & 1s generated by

LJ s.

t>0

Prorosition 5.1. — The groups &, ¢t > 0, generated by
S, — S, are all equal to some fized group ®,.

Proof. We note first that S, =S, + S, for all s,¢ > 0.
Thus

Se4¢ — Sy =5, — 5, 4+ 5, — S,

Consequently
O, c Gt c G, + G,

and also &,c®,.,. It follows that O, = Ouue » and,
by a simple induction argument, that &, is independent of t.

From now on &; will denote the group generated by
St - St'

Prorosition 5.2. — In the non-singular case &, = ®.

Proof. — Let the process be non-singular. Then, for some
t > 0, u' has a density component that is positive on some
non-empty open set. Thus some S, has a non-empty interior
and hence some S, — S, has a non-empty interior. From
this it follows easily that &, is an open subgroup. Now p!
converges weakly to the probability measure concentrated
at the origin as ¢t — 0. Thus for ¢ sufficiently small S,
contains a point of &, and hence S,c®;. Since
Sqet=9S,+8S,, s, t >0, it follows that S,¢@®, for all
t > 0. Therefore &, = @, as desired.

Let A denote the annihilator of &;.

Prorosition 5.3. — If &/®, is compact, then A is coun-
table and there are only a countable number of times t such
that S, does not generate .

Proof. — Let &/®, be compact. Since A 1is isomorphic to
®/®,, it follows that A is discrete. Now & is second coun-

table and hence so is . This implies that A is countable.
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For t > 0, S, fails to generate & if and only if there is

a 6eG suchthat 6 % 0 and p4(0) = 1. (Here {' denotes
the characteristic function of p') This can happen only if
0 e A. For each such 0 there are only a countable number
of times ¢t such that {/0) = 1. Since A is countable, the
proof is complete.

Set H= &/®,. Let M be the natural map from & to
H. Then M(S,) i1s a single point. Thus we can define a func-
tion T: [0, o) - H by setting T(t) = M(S).

ProrositioN b.4. — The function T is continuous.

Proof. — Let U be an open set of H and let ¢, e [0, o)
be such that T(t,) e U. We need only find an ¢ > 0 such
that T(t)eU for ¢t > 0 and [t — ¢ < e.

Let P=M-1(U). Then P 1is open and P+ &, = P.
By assumption p* 1is supported by P. Thus we can find a
compact set CcP such that pb(C) > 0. By continuity
of u! we can find an ¢ > 0 such that p/(P) > 0 for ¢ > 0
and |t —t| < e. It follows that p' 1is supported by P
for such values of ¢ or, equivalently, that T({)eU for
t >0 and [t —t)| < e, as desired.

We can extend T to (— o, ©) by setting T(—t) = — T(¢)
for ¢ > 0. Then T is a continuous homomorphism from R

to H.

Prorosition 5.5. — T(R) is dense in H.

Proof. — Let U be a non-empty open subset of H. We
need only prove that there is a ¢t such that T(f) e U.

Set P = M-(U). Then P 1is open and P4+ &, =P.
There exist r> 0, s >0, zeS,, and yeS, such that
z—yeP. Set t=r—s. Then

T(§) = T(r — s) = T(r) — T(s) = M(a) — M(y) = M(& — ) < U,

as desired.

ProrosiTion 5.6. — Either H is compactor H isisomorphic
to R.

Proof. — By the previous proposition H is solenoidal and
the result follows (see Hewitt and Ross [4, pp. 84-5]).
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Prorosition 5.7. — Suppose H s not compact. Then
S, t > 0, lies in a closed semigroup of &. Also, for any
compact set C, p'(C) =0 for t sufficiently large.

Proof. — Since H 1is isomorphic to R, T(¢), ¢ > 0, ranges
over a proper closed semigroup in H and hence S, t > 0,
lies in a proper closed semigroup in &. We also have (since
H = R) that T(f) > © as |t| > o. If C is compact then
M(C) 1s compact and hence T(¢) n M(C) 1is empty for |¢
sufficiently large. Thus for ¢ sufficiently large S,nC is
empty and hence p/(C) = 0.

Prorosition 5.8. — Suppose H is compact. Then T(t),
t > 0, ranges over a dense subset of H.

Proof. — Let S be the closure of the range of T(t),t > 0.
Then S 1s a closed and hence compact sub-semigroup of H.
By Hewitt and Ross [4, p. 99] S must be a subgroup of H.

Since T(—t)= — T(t) for t > 0, S contains the range of
T(t), — o <t < o, and hence by Proposition 55 S 1s
all of H.

Prorosition 59. — For t > 0 define the operators

U®): H>H by Uh=h+T(t). Then U), t >0, is

an ergodic semigroup.

Proof. — Clearly U(t), ¢t > 0, defines a continuous semi-
group of invertible measure preserving operators.

Let I: H—- R be a bounded measurable function such
that, for all ¢ > 0, I(h 4 T(¢)) = I(h) a.e. h. We want to
prove that I 1is constant a.e.

Let {c(h), he H} be a complete orthonormal basis of
continuous characters in Y(H). Then there are constants
a, such that in 4(H) for ¢ > 0.

% acy(h) = I(h) = I(h + T(1))
= % aei(h + T(1))
= % akck(T(t))Ck(h)’

Consequently a,(c,(T(¢)) — 1) = 0,¢t > 0. Thus either a, =0
or ¢(T(t)) =1, t > 0. In the later case the fact that the
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range of T(t), t > 0, is dense in H implies that c¢,(h) =1,
he H. In other words, I is constant a.e., as desired.

Prorosition 5.10. — Let H be compact, let dh be norma-
lized Haar measure on H and let [ be a continuous real-
valued function on H. Then

hm—ffh+T = [ f(h)

>0

uniformly for heH. Moreover

hm—fmf ) ds = [ f(h) dh

t,g>»0 T

Proof. — The first conclusion of the proposition follows
from the previous proposition, the pointwise ergodic theorem
and the fact that f, being a continuous function on a compact
group, is uniformly continuous. The second conclusion follows

from the first since T(s 4+ t) = T(s) + T(¢) for s, ¢ > 0.

Prorosition 5.11. — Let H, dh, and [ be as in the previous
proposition. Let g and h be continuous bounded non-negative
functions on [0, ) such that g(t) is positive for t sufficiently
large,

lim 8(s +1) _
e ()

uniformly for s in compacts, and

} h(?) \
lim ( =< — f(T()) )= 0.
im (Lt — 7))
Under these conditions

.f“h@)ﬁ

lim h) dh
LIy = Juf(h)

Jo k(o)
llm__"__'
e Ju ) d

or

according as the integral of g over [0, ) converges or diverges.
10
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Proof. — The proof of this proposition is a straightforward
application of the second part of the previous proposition.

Set D,=S5,+@, t>0

Tueorem b.1. — Let A be a compact subset of &, and B
anopen subset of &, such that |Alg, > 0 and 0 < |B|g, < .
Then for any 0 <« < ©, ¢ > 0, and compact subset C
of &, thereisa 8 > 0 such that for t sufficiently large

pHe + y + A)f|Alg, < (1 + ez + B)/[Blg, + e

for xeD, yeD,nC, and — < < s < =
We begin the proof of this result with

Lemma 5.1. — The conclusion of Theorem 5.1 holds if s, t
are restricted to integer multiples of any fized o > 0.

Proof. — This lemma reduces immediately to Theorem 1
of Stone [10].

Let « > 0 be fixed. For t > 0 set t* = min [na|na > t]
and ¢~ = max [na|na < t].

Lemma 5.2. — Let A be a compact subset of &, such that
|Alg, > 0 and let € > 0. Then for sufficiently small « > 0
there is a compact subset A; of &, such that |Aylg, > 0 and
a compact subset C of & such that Dy._,nC # d,t> 0, and
for t sufficiently large

ple + A)[|Alg, < (1 + )"z + y + A1)/|Adlg,
for zeD, and yeD,._,nC.
Pr"oof. — There 1s a compact subset A; of &; such that
AcA, and
Ao = (1 + €)% [Alg,

The conclusion of the lemma now follows easily from the fact
that p' converges weakly as ¢t — 0 to a probability measure
concentrated at the origin.

Lemma 5.3. — Let B be an open subset of &, such that
0 <|Blg, < © and let ¢ > 0. Then for sufficiently small
« >0 there ts an open subset B, of &, such that
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0 < |By|lg, < © and a compact subset C of & such that
Di.-nC # g, t >0, and for t sufficiently large

v (@ +y + By)/|Bifg, < (1 + e)ui(z + B)/|Blg,
for zeD, and —yeD,,-nC(,.

Proof. — There is a relatively compact open subset B,
of @&, such that B,cB and

1
IBlg, < (1 + ¢) *[Biylg-

The conclusion of the lemma again follows easily from the
fact that u' converges weakly as ¢— 0 to a probability
measure concentrated at the origin.

Proof of Theorem 5.1. — The theorem follows easily from
Lemmas 5.1-5.3.

We will use Theorem 5.1 only when the process satisfies

Condition 1. — For some compact set C

lim sup (u!(C))" = 1.

By Proposition 5.7 we see that if Condition 1 holds, then
®/@®, is compact. It follows from Proposition 1 of Stone [13]
that for sufficiently large compact sets C

D,nC # ¢, t>0.
In the next several results z,e D,, ¢ > 0 and the z;s all lie

in some fixed compact set.

Prorosition 5.12. — Suppose Condition 1 holds and let B
be a non-empty open subset of &,. Then

lim (w(z, + B))# = 1.

Proof. — Let B; be a non-empty relatively compact open
subset of ®; such that B;cB. Let C; be a compact set
containing all z, ¢t > 0. Let C be a compact set containing
(C; — G — B;)u ;. By Theorem 5.1 for any 3 > 0 there
is a t, > 0 such that

we(By 4 y) > e, yeD, nC.
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Consequently

w2y, + By) > [ nym, B (d2)uM(m, — 7+ By)
> e Shpt—Dh(g, o + By).
Thus by induction
whe(z, + By) > e, k=1,2, ....
It now follows from Theorem 5.1 that

lim inf (p4(z, + B))1/* > e

Since 3 can be made arbitrarily small the proof of the propo-
sition 1s complete.

From Theorem 5.1 and Proposition 5.12 we obtain imme-
diately

Prorosition 5.13. — Suppose Condition 1 holds and let A

and B be respectively compact and non-empty open subsets

of &,. Then

g+ A) _ A
b S0P e+ B) < B

uniformly for s in compacts.
From this proposition we obtain immediately

Tueorem 5.2. — Suppose Condition 1 holds and let A and
B be relatively compact sets in &, such that |dA|y =|3B|g =0
and |B|g, > 0. Then

hm l‘-x“(xﬁc + A) IAI@1
S @ £ B)  [Bl,

uniformly for s in compacts.
Let f, denote a continuous non-negative function on &,
having compact support and such that

S fol@) do =1

(where dz here represents Haar measure on ;). Set

gt) = [t (dfily — =), t>0.

l
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If Condition 1 holds then by Theorem 5.2,
lim 8810
= g(1)
uniformly for s in compacts. From Theorem 5.2 we also have

Prorosition 5.14. — Suppose Condition 1 holds and let f
be a continuous function on &, having compact support. Then

.1 .
lim (1) fzeﬂsﬂl v (dy)fly — =) f f(z)
From this proposition we have

ProrosiTion 5.15. — Suppose Condition 1 holds. Let F
be a collection of continuous functions on &, such that the
functions in F are uniformly bounded, equicontinuous, and
supported by a common compact set. If f,eF for t > 0, then

i (5 g @0y — ) = [, fi@) d) =0,

Let ¢ be a continuous function on & having compact
support. Then as z ranges over a compact subset of & the
family F of functions ¢(z + y), ye ®,, satisfies the condi-
tions of Proposition 5.15. Thus from that proposition we obtain
immediately

Prorosition 5.16. — Let Condition 1 hold and let ¢ be a
continuous function in & having compact support. Then

tim (5 [ 10 (dy)oly) — [, oly + ) dy) = .

t>0

We now wish to apply Proposition 5.11 to the above result.
Let ¢ be a continuous function on & having compact
support. We can define a function f on H by setting

fh)= [ oly+a)dy if  h=M().

Then f 1s well defined and continuous on H. Furthermore
the functional 1 defined by

lo = [ f(k) dh
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1s a non-trivial translation invariant non-negative linear
functional on the continuous functions of & having compact
support. Thus for some positive number ¢ we have

Jaf(r) dh = ¢ [ o(z) da.
Finally we observe that
Sy oy +2) dy = f(T(R), ¢>0.
Therefore by Propositions 5.11 and 5.16 we have

Prorosition 5.17. — Suppose Condition 1 holds and let o,

and ¢, be continuous functions having compact support and
such that J(@y) # 0. Then

L e ds 3o

lim =
t>0 (us’ (PZ) dS J<(P2)

=[5

or

S

(' 91) ds _ J(q,)
(w, 0p) ds I(®2)

lim

t>o

R

according as the process is transient or recurrent.

In the non-singular case &, =@ and the discrete time
results of Stone [10] are easily extended to continuous time.
In particular we have

Prorosition 5.18. — Suppose Condition 1 holds and the
process is non-singular. Let Ae® and Be®B with |B|>0.
Then

ptz+ A) _ A
ki —
s @y +B)  [B|

and the convergence is uniform for x and y in compact subsets
of ® and s in compact subsets of (— oo, o).

Proof. — Let Ae®. Then for s > 0
f (A — 2z) dz = |A].

For any 0 < s, < o and ¢ > 0 there is a compact set C
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such that

JowA—a)dz > |Al —e,  0<s<s,

Using these results we easily reduce Proposition 5.18 to the
corresponding discrete time result, Corollary 5 of [10].

Let ¢ be a continuous function in @& having compact
support. Then as x ranges over a compact the collection
{9} 1s uniformly bounded, equicontinuous, and has common

compact support. Thus from Proposition 5.17 and 5.18 we
obtain

Tueorem b5.3. — Suppose Condition 1 holds and let fe¢*
and ge®* with J(g) # 0. If the process is transient, then

. I P‘f(ac) ds _ ()
e [ Pegly)ds (&)

uniformly for x and y in compacts. If the process is recurrent,

then
S Pfla > ds _ J(f)
lim [P = J(g)

uniformly for x and y in compacts.

Closely related to ratio limit theorems are local limit theo-
rems. We will assume that & 1s a closed subgroup of Euclidean
space R% For simplicity we will also assume that

® = Z"® R

and Haar measure on @& is chosen as the product of counting
measure on Z“ and Lebesgue measure on R*“%.

TueoreM b.4. — Let & be a closed subgroup of R* normal-
1zed as indicated above. Suppose there is a continuous strictly
positive function B, t > 0, such that B7X, is asymptotically
distributed as a stable distribution havmg density p. Let fe ®*
In the transient case (

hmf P+f( ds/[” B¢ ds = p(0)J(f)

t>o
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uniformly for xz in compacts. In the recurrent case

lim fo " Pf(a) ds/ fo ‘B~ ds = p(0)J(f)

t>0

uniformly for z in compacts.

Proof. — By arguing as in the usual local limit theorems
(Stone [10], [11], [12]) one can show that for an appropriate
positive constant ¢, as ¢ —> o0

P'f(z) = ap(O)B f5 f(@ + @ + y) dy + o(B?)
uniformly for z 1in compacts. It is necessarily true that

lim By =1

t> B‘

uniformly for s in compacts. It now follows from the ergodic
theorem thatas ¢, v— oo foranappropriate positive constant c,
t+T

[ Pf(a) ds = eup(0)J(f) [ Brids + o (

uniformly for z in compacts. By the same methods one can
show that as ¢, = > ©

(4T

B¢ ds)

t+T

SR (0) ds = o [T Brp(y/B) ds + o (]

uniformly for ye®. The only value of ¢, which is compa-
tible with this last formula, the assumptions on &,, and the
fact that X,/B, has as asymptotic distribution with density
p 1s ¢ =1. Thus

S Pof(a) ds = p(0)J(f) [ Brtds + o (T Br* ds)

uniformly for z in compacts as ¢, t —> . In the transient
case

B¢ ds)

/‘; N Bid¢dt < o

and in the recurrent case
f B4 dt = oo,

0

from which the conclusion of the theorem follows easily.
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The remaining two results of this section will be used in
Section 10 in reducing results in continuous time to the
corresponding results in discrete time.

Prorosition 5.19. — For fized © > 0, let @&, be the group
generated by S.. If &, is compactly generated, then so is ®.

Proof. — Let C, be a compact subset of @, that generates
®,. Let C, be a compact subset of & such that
Py(X,eC;) >0 for 0 <t <. Let & be the subgroup
of & generated by C, 4+ C;. Then @; contains C; and
hence ®; contains &,. Thus @; contains &,, where &,
is defined as usual. Since &; n S, 1s non-empty for 0 < ¢t < =,
it follows that ®; contains S,, 0 < ¢ < 7. Thus &; contains
S, 0 <t < o, and hence &; =@ as desired.

Our final result is rather special and will be needed only
in discussing type II transient processes.

Suppose @ =ReH or @ =ZoH, where H is a
compact group. If &/®, is not compact, then & = Re H,
®, = H, and the induced process on R moves determinis-
tically. Under these conditions we have the following

Taeorem 5.5. — Let & = Re H, where H is a compact
group and suppose that &, = H. Then there is some non-zero
constant m such that p' is supported by mt + H for ¢ > 0.
Let D and E be Borel subsets of & with |D| < . Then

1‘i:3fww(x+ mt+ E)do, yeH,

exists uniformly in y and the limit s independent of y.

Proof. — Let ¢' be the probability measure induced on
H by p' Since &, = H none of the measures ¢' are sup-
ported by the translate of a proper closed subgroup of H.
It follows from the Ito-Kawata Theorem that if f is a conti-
nuous function on H, then

lim [ o (@d0)f(s — y) = [, ) dw

uniformly in y, where dw is normalized Haar measure on

H.
For any subset A of @& let A, = {zeH|r+ zeA}.
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Then for reR and ze H

w(r+z+ E) = ¢'(z + Ep).
Thus
fm Yz + mt + E) da.

——f drf +z+4+ mt+ E)dz

=/"d f Yz + E_) dz

_.Lodrfﬂq; (dw) [ o, (w —y — 2)n,(z) dz.
For each r

Sle (w—2lo(z) dz, weH,

defines a continuous function. Therefore

hmfcp dw fir (w —y — z)1p () dz

=fﬂdw-/11‘1E'w—Z1D )dz
= |E_,|a|D/|a

uniformly in y. Since

S ID/Ja dr =|Dls < o
it follows that

. t . %0
lim [ u(e+ mt + E) do = /" ID,|IE_,| dr

t>00

uniformly for y e H, as desired.

6. A-Capacities.

Let © be a Radon measure on &, ie. p 1is a regular
measure on & such that p(K) < oo for all compact sets K.
The measure pG* is called the A-potential of w. For transient
processes we can also take A = 0. The measure pG is called
the potential of p. It is of vital importance to know that the
A-potential of a measure determines the measure under quite
general conditions.
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Taeorem 6.1. — Let A > 0, and in the transient case
A > 0. Suppose p is a Radon measure such that pG* is also
a Radon measure. Then pG* determines p. In particular,
if w is a finite measure then p.G* determines p.

Proof. — Suppose p(®) < . Then for any compact
set K,

wGHK) < u(®) sup G 2, K) < o,
TEK
and thus pG* is a Radon measure. Let ¢ be any measure
satisfying the conditions of the theorem. Let K be any
compact set. We can then find feC} such that
inf GM(z) > § > 0,

zeK

and thus from (3.2)
pII}(®) = wli}(K) < 871G < co.

Hence the measures pIl} are finite for all compact sets. The
assertion of the theorem now follows from Proposition 7.6
of [6]if A > 0. An examination of the proof of this proposi-
tion shows that it is also valid for 2 =0 provided that for
any excessive function [ there is an increasing sequence
of bounded non-negative functions ¢, such that Ge,}f.
That that is so in our case follows from Exercise 2.19 of Chapter
2 of [2] and the fact that sup G(z, K) < oo for all compact
sets K. cek
The following useful result i1s due to Hunt [5]

Prorosition 6.1. — If p and v are iwo Radon measures
such that pG*» < vG* then pIIJG* < vIIAG* for any Borel
set B. If the process is transient then this is also true for A = 0.

Proof. — Since for any fe ®*t, II}G*f is A-excessive, we
can find bounded f, > 0 such that G,} II}G*f. The

result follows from this.
Let B be a Borel set and let A > (. Define the measure

E} by
‘[g (z, A) dx,
and set p} = lEl);.
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Tueorem 6.2. — Let A > 0. The measure p} is the unique
measure supported on B whose A potential has the density
(relative to Haar measure) E,(e\T).

Proof. — The measure E} and hence p} is a Radon mea-
sure. Indeed, let K be a compact set and let feCr be
such that Glf( ) > 8 >0, ze K. Then from (3.1)

Hj(z, K) < 37H}G(2) < GM(a)

and thus E}(K) < |J(f)]/A8 < . Also from (3.1) we see
that for any fe @+

J(fp = BAGM + [, Gif(a) da
Now from (3.6) we have
Jo Gif(@) do = (1, G¥f) = (f, G}1)
= fof @) dz ["P(Ty > eMdt= [, f(a) du[1— B (e Ty,
Thus
(6.1) WG = [o E(e?D)f(2) da.

The uniqueness of the measure p} follows at once from

Theorem 6.1.

DeriniTION 6.1. — The measure p} is called the \-capacitory

measure of B; its total mass p)(B) = C*B), is called the
A-capacity of B. The corresponding quantities for the dual
process are called the co-\-capacitory measure and co-\-capacity

respectively and denoted by (s and CMB) respectively.
Prorosition 6.2. — For any Borel set B, CAB) = CAB).

Proof. — By definition, CA(B) = p}(®) =1 [, E,(e7%) da.
Let f,e® and f,11. Then from Theorem 6.2

. CA(B) = p}(®) = lim AE}GXf, = lim A Ia E, (e h)f,(x) da
=1 [y Eule™N) do = g}(®) = CA(B).
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Prorosition 6.3. — If for some A > 0, CNB) =0 then
CMB) =0 forall » > 0 and P,(Ty < ) = P (T < o) =0,
a.e. x. Conversely, if P,(Ty < ©) =0, a.e. z, then C}B) =0
for all » > 0.

Proof. — From (6.1) we see that CAB) = 0 if and only if
Jo Eo(e™) dz=0. Now, [ E.(e?h) do=0 if and only
if I:]x(e_mn) =0 a.. z, and E,(e*5) =0 if and only if
P,(Tg = ) = 1. The assertions of the theorem now follow
from these facts.

Tueorem 6.3. — Assume = = @. Thenfor » > 0,CXB) > 0
if and only if P(Ty < ©) > 0 a.e. z and P (T < ) > 0
a.e. x. In the non-singular case the d.e. x can be strengthened
to all .

To prove this theorem we will need the following.

Lemma 6.1. — Assume T =@®&. Then if A is a non-
empty open set, Gz,A) > 0 for all x. If |K| > 0 then

GMz, K) > 0 a.e. = and in the non-singular case for all =.

Proof. — The first assertion of the theorem follows at once
from the fact that £ = & and the fact that the paths are
right continuous. Now let |K| > 0 and let ge®* be such
that g(z) > 0 on a set of positive measure. Then

Jo @)GMz, K) do= [ GX0, dy) [, x(z+y)g(z) da.

The function f@ 1x(x + y)g(x) dr 1s continuous (because C,

is dense in L) and not identically 0. Thus by first part of
the theorem

Jo GNO, dy) [ 1x(z + y)g(x) dz > 0.

Hence for any such g, (g, GMx) > 0 and thus GMg(z) > 0
a.e. z. Finally if the process is non-singular, then for some
t >0,

PY0, dy) = p(t, y) dy + v(dy)

where p(t,y) > 0 for all y on some set of positive measure.
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But
Gz, K) > [, e™P!(z, dy)GMy, K)
> fo e plt, y — 2)GNy, K) dy

and by what was just proved Gy, K) > 0 a.e. y. Hence
Jo plt, y — 2)GMy, K) dy > 0. This establishes the lemma.

Proof of Theorem. — Suppose that C*B) > 0. Then by

Proposition 6.3 P,(Ts < o) > 0 on some set of positive
measure. Consequently, there is a compact set K having

positive measure such that inf,P,(Ts < ) > 8§ > 0. But
then

tP,(Ts < o) ffpxedy (Ts < o) ds
>st P,(X, e K) ds.

By Lemma 6.1, we know that G*z, K) > 0 a.e. 2 (and for
all z in the non-singular case). For each z such that

GMx, K) > 0 thereisa ¢ > 0 such that fP (X,eK)ds > 0.

Hence P,(Ts < ) > 0 a.e. z (and for all z in the non-
singular case).

Conversely, if P,(Ts < ) > 0 a.e. z then by Proposition
6.3 C}B) > 0. This establishes the theorem.

We will now show that C*(:) is a Choquet capacity.

Prorosrtion 6.4. — Let A > 0. Then C.) has the follo-

wing properties.
(a) If AcB, then C}A) < C*B).
b) CMA uB) 4+ CHA nB) < CHA) 4 C}B).
c¢) CMB) = sup CMK), K compact.

(
(
(d) CMB) = lnf CMU), U open.
(
(

¢) C\B + )——CK(B), all y.
f) CXB) = C¥— B).

Proof. — Suppose AcB. Then T, > Tg, so
E.(e?) < E (e7*).
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Assertion (a) follows at once from this last inequality. Assertion
(b) follows from the inequality

(6'2) P2<TAnB < t) < P.’r<TA S t, TB < t)
=P,(Ty < t) + P(Ts < t) — Py(Tays < ).

Let K be a compact set and let A, be relatively compact
open sets such that A, > A, ;> A,,; and m A, = m A, =K.

The T,, are an increasing sequence of stoppmg tlmes Let
T = lim Ta,. Then clearly T < Tx. By quasi-left continuity,

X(T,,) - X(T) as. P, for every . Now X(T)e [ A, =K,
so T > Tx. Thus T = Tx and therefore n

P,(X(T,,) - X(Tx)) = 1.
Hence

E,(e7x) | E (e7*x)

and therefore C*A,) | C*K). This shows that (d) holds
whenever B 1is compact. Similarly, it 1s quite easy to verify
that (c) holds whenever B 1is an open set. Indeed, if B
1s open there 1s a sequence of compact sets K,cK,c..,

such that |_J K, =B, so Tg, | Ts and thus
E,(e7*T) 4 E (e72Ts).

Hence C*K,)} C*B). Properties (a), (b)) and (d) for com-
pact sets show that C*.) is a Choquet capacity on the com-
pacts and thus by Choquet’s capacity theorem there i1s a
unique extension of C*(-) to the Borel sets. Denote this
extension by Ci(-). For any Borel set B we then have

(6.3) Ci(B) = sup C}(K), K compact
KcB
(6.4) CA(B) = inf CA(U), U open.
UDB

But by (a) if KecB, CXK) < C*B) and thus by (6.3)
CiB) < C¥B). Also if U>B, then CXU) > CXB) and so
by (6.4) CiB) > CAB). Hence C*B) = C}B), so C*.)
1s 1tself its extension from the compact sets to the Borel sets

and therefore (¢) and (d) hold for any Borel set B. To see
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that (e) holds note that
Ez+y(€_)‘Tn+y) — Em(e—)\TB)
and thus integrating on z we see that (e) holds. Finally (f)
holds because E,(eT:) = E_,(e=*s), and thus
CMB) = CM— B) = CN— B).

This completes the proof.

The following proposition is a simple consequence of Propo-
sition 6.3.

Prorosition 6.5. — Assume B,, n > 1 all have A-capacity

0. Then B =UB,, also has A-capacity 0.

Proof. — C*B,) =0 if and only if P,(Ts < ©)=0
a.e. Since this is true for all n, P,(Ts < ©) =0 a.e., and thus

CMB) = 0.

Prorosition 6.6. — Let A > 0 and let B be any Borel set.
Let K, be relatively compact sets such that K,1, K,c<B and

P(Tx, | Ts) =1 ae x Then uk —>u} vaguely and
CH(K,) + CA(B).

Proof. — From the assumption it follows that
E.(e ) 4 E (e7*T5) a.e.

and thus by montone convergence and Proposition 6.2

lim CYK,) = lim2 [ E,(¢7%) do = [, E,(e%) dz = CA(B).

R0

Also for any feC},

(6.5) (ud,y GH) P (eh, GM).

Let K be any compact set. Then we can find fe C such that
G*M(z) = 8 > 0, ze K, and thus

sul,(K) < (uh, GY) < o.

Thus there is a subsequence pk that vaguely converges to
a measure p. Fatou’s lemma shows that (g, G) < (1}, G*f)
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and thus pGMK) < o for any compact set K. Now by
Proposition 6.1. for any feC7,

w3 MG < udll}. G,

and since p3ll3.GAf [0 as K41 @, we see that given ¢ > 0
we can find a compact K such that for all n > 1,

pi I3GH < e
But then

(6:6) [ uk, (d2)GM(2) f ek, (dz) LG ()
< (uk, IRGH) <
Also,

(6.7) lim lim f #h,(d2) G (@)=lim f (dz)GM () = (1, Gf).

K&@n <o

It now follows from (6.6) and (6.7) that
lim (u},, GMf) = (&, G*f)-
f)@

Thus from (6.5), (¢, G*) = (1}, G*f) and it now follows from
Theorem 6.1 that p = uj}. If we had another vaguely con-
verging sequence we would again obtain that the limit measure
was p} so upg, —> uh vaguely.

Prorosition 6.7. — Let » > 0 and let B be a Borel set
and let U, be open, U,| and such that P,(Ty }Ts) =1
a.e. Then py, - pp vaguely and CNU,) | C}B)

Proof. — The proof is similar to the previous proposition
and will be omitted.

7. Applications of A-capacities.

In this section we will illustrate the use of the A-capacity
theory of the last section in finding criteria for when various
sets are hit or not. Mainly, we will focus our attention on one-
point sets but we shall also indicate how analogous results
can be given for other sets. These results are to be considered
only as examples of what can be done. No attempt has been
made to be exhaustive.
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By Proposition 6.4., for any ze ®, C*({z}) = C}{0}) = C*
so either every one-point set has positive capacity or every
such set has 0 capacity. Our first result gives a necessary
and sufficient condition for C* > 0.

Treorem 7.1. — In order that C* > 0 it is both necessary
and suﬂ‘icient that Gl(O dx) have a bounded density. In that
case there is a version g of the denszty such that al(y — x)
s h-excessive in x, A-co- excesswe in y and g\z) = g(— x).
For this version of the density

(7.0)  E,Je™il; Vy < 0] = Cgh(— 2), ze@.

Proof. — Assume C* > 0. By Theorem 6.2 applied to
B = {0} we then see that

(7.2)  E[e™il; Vy < 0] do = CAGN0, da).

Thus G*(0, dz) and hence G*0, dz) has a bounded density.
By Proposition 3.9 we may assume that the density g* 1is
choosen to have the properties stated in the theorem. From
(7.2) 1t follows that (7.1) holds for a.e. z. Since both sides
are A-excessive it follows from Proposition 3.8 that (7.1)
holds for all =.
Suppose now that G*0, dz) has a bounded density g

Again we may assume g* has the excessive function properties
stated in the theorem. By Proposition 3.11, for all z and y,

gy — 2) — [Tz, dz)gy — z) = u(=, y)-

Let B, be open, B, compact,

B,5B,5B,5 -, |B.=[ )B.= {0}.

Then as u} (z, 0) = 0 we see that for some K,0 < K < o

(7.3) g — @) = Eq[exp (— aVp)gH(— Xyv,); Vs < 0]
< KE,[exp (—AVg,); Vg, < ©].

Quasi-left continuity shows that for z # 0, V3 4V, and
Xy,, =~ 0 as. P, on [V, < ©]. Thus for z # 0

g — z) < KE, [e™Mio}; Vi, < 0],
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Since g*— z) > 0 on a set of positive measure we see that
E,[e™i; Vi < 0] > 0 on a set of positive measure and
thus by Proposition 6.3 C* > 0. This completes the proof.
Cororrary 7.1. — Suppose C* > 0. Then
P.(Viy < ) >0
Lfandonlyzf g (— x) > 0. The set Ty = {x: g(— x) > 0}

is a sub-semigroup of ®& contained in —X. If T =@
then Z,=@® and for all ze®

(7.4) Eu[eiot; Vig, < @] = Eo[eio1; Vy < oo]%(iﬁ.
Proof. — The first statement follows at once from equation
(7.1). Also by (3.21) applied to B = {b} we see that
=) = Eyle™Vini; Vi, < o]gh(z — b).
Using (7.1) again it follows that
(7.5) gz +y) > Cghz)gMy).

Hence z + ye X, whenever z and yeX,. Nowif ghz) > 0
then for any neighborhood N of 0

GM0, N+ 2) > Eo(e™e)GNz, N + )
—= Eo(e*<)GM0, N) > 0

so zeX. Finally, if £ =@ then by Theorem 6.3
E [e*i; Vi < 0] > 0

a.e. z and thus gN—2z) >0 ae. z. Given any ze@®
there are then points a, b such that x = a 4+ b and gi(a) > 0,
g (b) > 0. It follows from (7.5) that g'(z) > 0 for all ze@.
Thus X, = &. Equation (7.4) now follows from this fact
and equation (7.1). This establishes the corollary.

I C* > 0 it is natural to inquire if z is regular for {z}.
Now =z 1s regular for {z} if and only if

E,[eMist; Vi < 0] = 1.

Since E,[e™izl; Vi, < o] = Eg[e™Viol; Vi, < 0] either
every point 1s regular or no point is regular. ‘
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Cororrary 7.2. — If C* > 0 and E,[e™01;V,, < 0] =1
then the density g* in Theorem 7.1 is continuous on & and
gh0) > 0. Conversely if GO, dzx) has a bounded continuous
density then C» > 0 and E,[e™ ) Vi, < o] =1.

Proof. — Suppose C* > 0 and Eo[eiol; Vi, < 0] = 1.
From (7.1) we then see that

1 = E[e™Viol; Vi, < 0] = C*gX(0)
and thus g*0) > 0. Again from (7.1) we then see that
A
E [e*i01; Vg < 0] = & (—3)
[ 0 :l gl(o)
As A-excessive functions are lower semi-continuous in this
case (Proposition 3.7) we see that

lm E [e7™Vi01; Vi, < 0] > Egle™™Vor; V, < 0] = 1.

T>T

Thus E,[e*Vioi; Vi < o] and consequently gh(— z) is
continuous at 0. Now from (7.5) and the fact that here
C* = [g0)]* we have

(7.6) gz +y) > gha)gy)[gh0)]
Setting =z = a 1in (7.6) we see that
im gNa +y) > gNa).
Y=o
Now set z 4+ y=a in (7.6) to obtain

gMa) > gha — y)gMy)[g"0)].

gha) > hm gha — y).

>0

Thus

Hence g* is continuous at a.

Suppose now that G0, dz) has a bounded continuous
density u*(x). We will now show that u*(xz) = gh(z) where
g is the density given in Theorem 7.1. Since

B~ ) = w— 2

a.e. z and gM— z) is A-excessive it suffices by Proposition
3.8 to show that u*(— x) is A-excessive. Now as gh— 2)



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 211
1s A-excesslve
—Xt t b\ by
e [o Pz, dy)g(— y) < gi(— a),

and thus for a.e =z,

e [oPYx, dy)ur(— y) < uN— a).

As both sides are continuous in z this inequality must hold
for all z. Also as u* is bounded and continuous

Jo P, dy)ut(— y) > ul(— a)

as t| 0. Thus u*— z) is A-excessive. Now let B, be open
relatively compact neighborhoods of 0 such that B,| {0}.
-Then from (7.3) we see that for = # 0,

(7.7) g (— z) = E_[e™ioi; V(;) < o0]g*0).

Hence gM0) > 0 since otherwise g(— z) =0. On the other
hand from (7.1) for x = 0 we see that

Eole 015 Vi, < 0] = ChgX(0)
and thus (again by (7.1))

7.8) E,e*™0i; Vo < ©
{0}
. Eo]:e_”m; V,O} < oo]gl(— .’E)
N £N0) '

Comparing (7.7) with (7.8) we see that
Eo[e*Viol; Vigy < 0] = 1.
This completes the proof.

Remark. — In the above proof we used the continuity of the
density to show that it was the density g*. Only the conti-
nuity at 0 of the density g* was needed to establish the
regularity at 0. Thus alternately we could assume that
G*0, dzr) has a bounded density g* such that g(— =) is
A-excessive and continuous at 0.

The remainder of this section will be devoted to finding a
simple sufficient condition to guarantee that a set have zero
capacity. We will confine our attention to processes on R%
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Prorosition 7.1. — Let X(t), t > 0, be an infinitely divi-
stble process on R®. Then for any positive random variable T

(7.9)  lime® [TP(X(@)] <&, T > 1) dt = oo,

£€>0

Proof. — It suffices to prove this result under the added
assumption that X(t¢) does not have any jumps of magnitude
larger than 1 (for the time S to the first such jump is a posi-
tive random variable and we can consider the time min(S, T)).
Under this assumption the logarithm of the characteristic
function of X(t) can be written as

t(ia.0 4 [ (¢ — 1 — i0.2)y (da)).
For 0 <3 < o let Xj), t >0, denote an infinitely
divisible process whose characteristic function has logarithm
: i0.c _ .
t(zoc.e - I7"/\6(8 1 — 0.2 (dm))
Then Xj(t) has mean «t and

E[X5(t) — at]2 =t z|*v(dz) = o,

111$8|

where o; >0 as 8 — 0. By Tchebychef’s inequality for
e >0

2
P(I1Xslt) — ot] > ><’*——8t ¢ > 0.

2 e?
If 0<t<¢f2]af, then |at] <

2
40'8
22

¢/2. Consequently
P(Xa(t)] > ¢) <

) 0 <t<ef2q.

If 65 =0 forsome 8 > 0, then X(t),¢ > 0, is a pure jump
process and

STPX(t) =0,T > ) dt > 0,

from which (7.9) follows immediately. Thus in proving Propo-
sition 7.1 we can assume that o; > 0 for all § > 0.
Let 8 > 0 be fixed. There is an ¢, > 0 such that

c? €

) 0<8<50.
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Then for 0 < & < ¢, )
1 : e?

PIX(0] > ¢) < 50 0 <0< oy
Consequently there is an ¢; > 0 such that for 0 < e < ¢
P(X()<c and T>f)> —i— 0<t<8€_:§.

This shows that for 0 < & < ¢

Y 52
JOPIX(@E) <& T >t dt > o

Since ¢ >0 as & - 0 we see that (7.9) holds as desired.
In the next result & = R*@Z* and S,, r > 0, denotes

the points in & of the form (z,, ..., %444), Wwhere
X415 -+ -5 Ta4e are integers and

dy+de

Y <

i=1

TaeoReM 7.2. — Let & = R*a®Z* and let B be a Borel
set in &. If ’

(7.10) lim sup @' < o,
r>0

then CAB) = 0.

Proof. — We can assume that CMB) < . Then for any
Borel set A

Joud (d2)Gz, A) = [ E.e?do < |A].

Setting A =B + S,, we see that
1B+ 8| > [u}(de)GNz B + 8)

> u(B)GN0, S,) = CHB)GX0, S,).
By Proposition 7.1

A
lim S0 5)

r>0 r

If (7.10) holds, then

lim sup
r>0 r

IB + S|

2

< 00

and hence C*B) =0 as desired.
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Cororrary 7.3. — Let &= R%. Then C*{z}) =10 for
all ze@®.

CororLLAarRY 7.4. — Let & = R® and let B be the range of
a continuous curve having bounded variation. Then CMB) = 0.

Proof. — We can write
B = {p()0 < ¢ < 1},

where ¢ 1is a continuous function of total variation M < 0.
Choose r > 0 and set z, = ¢(0). Let z; be the first (in
the sense of least value of ¢) point, if any, along the curve
whose distance from xz, is r. If z,, exists let 2, be the
first point, if any, along the curve beyond =z,.; whose distance
from x,; 1s r. Let x, ..., zx be all points obtained by
this procedure. Then Nr < M and

N

B + S"g U (xf —l_ Szr)-
Jj=0
Consequently
IB+ S, < (N+1) % n(2r)® < 72 <3273tM + 3237tr>

and it follows from Theorem 7.2 that CAB) =0.

8. Transient and recurrent sets.

In this section we will first show that a Borel set B is
either such that P, (Vs < o) =1 ae. z or lim P (X,eB

t>x

for some s>t =0 a.e. x For a recurrent process,
P,(Vs < ©) =1 a.e. for any set having C*B) > 0. In the
transient case a Borel set may be of either type. A Borel set
such that P, (X;eB for some s> 1t) [0, ae. as t—>o
is called a transient set. Most of this section is devoted to
showing that associated with each such set is a unique Radon
measure {is, called the co-capacitory measure of B, such
that P,(Ts < o) dz = {isG(dz) and in investigating asso-
ciated capacity theory.
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Prorosition 8.1. — Let B be a Borel set. Then either
P.(Vs < ©) =1 a.e. (and for all x in the non-singular case)
or lim P, (X;eB for some s >t) =0 a.. (and for all =z

t>o0

in the non-singular case).

Proof. — Let ¢g(z) = P,(Vs < ©). Then as ¢p is an
excessive function, Plog(2) | r(z), t— 0. Let h(x)=¢p(z) — r(z).
Then ¢y =r+ h, Ph |0, and by dominated convergence

Pi(a) =, P, dy)[lim Pea(y)] = lim P*ga(a) = r(a),

$>00

so r(z) is P! invariant for each t. But then AG(z) = r(z).
Now AG*0, dz) is a probability measure on & and r is
bounded. Thus by the Choquet-Deny theorem there i1s a
constant « such that r(z) =« a.e. on the group generated
by the support of AG*(0, dz). It is quite easy to see however
that the support of this measure is just . Thus

(8.1) o8(x) = o« + h(z) a.e. ze@®.

In the non-singular case it follows from (3.23) that r(z) = «
so (8.1) holds for all ze@®. The conclusion of the theorem
now follows at once from (8.1) and the following

Lemma 81. — If « > 0 then P, (Vs < ©) =1 a.e. (and

for all z in the non-singular case).

Proof. — Let ge®* be such that J(g) = 1. Then the
measure P (Vg > t, X,edy) is absolutely continuous and
thus

P,(t < Vi < ) = [ Py(Vs > t, X, dy)P (Vs < )
> «P,(Vp > 1).
Thus for any t > 0,
P,(Vy < ©) > P,(Vy < t) + aPy(Vy > 1)

and so «P,(Vy= ) < 0. Since a > 0, P, (Vg = ) =0.
Since g was arbitrary, P, (Vg = o) =0 ae. z, and so
P.(Vs < ) =1, ae. ax. If the process is also non-singular,
then for some ¢, > 0,

P(0, dy) = p,(y) dy + u,, (dy)



216 SIDNEY C. PORT AND CHARLES J. STONE

where p,(y) > 0 on a set of positive measure. Hence for
t >t

P, (Vs < ) fd

Since (see 3.23) lim f ply) dy =1 we see that

P.(Vyg < 0)=1
for all z. This establishes the lemma.

CororLrary 81. — If the process is recurrent then
P, (Vs < ©) =1 a.e. (all z inthe non-singular case) whenever

CAB) > 0.

Proof. — Suppose false. Then in (8.1), « =0 so Ploy(z) | 0
a.e. Then for any ge®+ ’

82  (gGles — Plos)) = [ (gaP'ou) d.

Since by Proposition 4.3 G(z, K) = o a.e. if |K| >0 it
must be that o¢3 — Plog =0 a.e. for otherwise the left
hand side of (8.2) would be infinite which cannot be because
the right hand side is bounded by J(g). But then the left
hand side of (8.2) 1s 0. Let g,e®* J(g,) > 0 be such that
g.1 1. Then by monotone convergence,

0 = lim fo‘ (gw Plon) dt = [ (1, Plog) dt = [ on(a) d.

Thus ¢p(z) = 0 a.e. That is impossible since we are assuming
C*B) > 0. This establishes the corollary.

Dérinition 8.1. — A Borel set B s called recurrent if

P,(Ts < ©) =1 a.e. It is called co-recurrent if P,(Ts < 0) =1
a.e. It is called transient (respectively co-transient) if it is not
recurrent (respectively co-recurrent).

From Corollary 8.1 we see that if the process i1s recurrent
then any set B such that C*B) > 0 1is recurrent. Since
— X, is also a recurrent process and CMB) = CMB) every
such set 1s also co-recurrent.

Throughout the remainder of this section we will assume
that X, is a transient process. Our aim is to show that there
1s a capacitory measure that is attached to every co-transient
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set and to develop the relevant capacity theory. The major

results are summarized in Theorem 8.1.

Prorosition 8.2. — Let B be a co-transient set. Then there
is a unique Radon measure wg whose potential pgG has

P,(Ts < o) as its density function.

Proof. — Let §p(z)=P,(Vs< ) and let §,=[§p—P"3s]
Then G¢, < §s and G¢, | gs a.e. Thus for any feCg,

(8.3) (ns GF) = (f, Gn) 1 (f; Bu),

where p,(dz) = ¢,(2) dz. Given any compact set K we can
find feC% such that Gg(z) > 8 > 0, ze K and thus

(8.4) w(K) < 373(f, g) < co.

Let K, be a family of compacts K,cK,cK,c
|JK.=®. Then for feCj

(85) J,, u(da)Gf(a) = [ fiz) dz [ G(z, dy)bn(y)
= fof(a dfoK (2, dy)a(y) < [, f(e) dz AxFs(a).
Now for any fixed ¢ > 0,
Hx:3n(2) = E[38(Xny,)] < Po(Tx; < 1) + P'on(a).

But P‘$B¢O a.e. and Tx;Too ass. P, as r— 0. Thus
for any feC},

(8.6) lim [, Ax,3a(2)f(2) dz = 0.

r>0

1
3

Let € > 0 be given. Then from (8.5) and (8.6) we see that

there is an r, such that for all h, 0 < h < 1, and r > r,,
(8.7) Sy (d2)Gf(2) <

From (8.4) we see that there is a subsequence h,| 0 and a
Radon measure pp such that u, — pp vaguely. Now

B8) |(f, 38) — [ v (d2)CF(x)| < 1(F, &) — (n,, G|
+ Ji, e (d2)Gf ().
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Since Gf is a bounded continuous function it follows from

(8.3) and (8.7) that for all r > r,,
(@) — . o (d)Gf(2)] < <,

and thus letting r — o

|(f’ 53) — (B, Gf)l < e,

Since ¢ was arbitrary we see that (f, s) = (us, Gf). It is
clear that upG 1s a Radon measure and thus by Theorem 6.1
the measure up 1s unique. This establishes the proposition.

CororLrLarYy 8.2. — Let B be a co-transient set and let
wy (dz) =% [$p(z) — P'@p(x)] dx. Then for all h > 0,

er(®) = pp(®) and the measures p, converge vaguely to us
as h|O0.

Proof. — During the course of the proof of Proposition 8.2.
it was shown that p, - pp vaguely. To complete the proof

we must show that the p, have the common total mass
us(®). To this end let f,eC¢ be such that f,41. Then

(o o= (2=, )

By Proposition 8.1 (§s, f,) = (w8, Gf,) and so

(phqu’ fn) = (‘NPB’ thn) == (F"By Gthn)
Thus '

(“’h? fn) = % ‘/;h ((-LB, Psf,,) ds.

Letting n — o we see by monotone convergence that

P-r-(@) = (J-B(@)

as desired.

DeEriniTioN 8.2. — Let B be a co-transient set. The measure
wp tn Proposition 8.2 is called the capacitory measure or equi-
librium measure of B. Its total mass C(B) ts called the capacity
of B. Similarly if B us transient the corresponding measure
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fis is called the co-capacitory measure or co-equilibrium measure
of B and its total mass C(B) is called the co-capacity of B.

Prorosition 8.3. — If B 1is relatively compact then pg
is finite and supported on B. The measures p} — p, weakly

and C(B) = C(B).

Proof. — Let B be relatively compact. Then B is both
transient and co-transient. Consequently, for any feC},

© > [iPuTy < ©)f(a) do > [ B(e"D)f(2) do = phGM(a).

Choose feCF such that Gf(xz) > 3, z«B. Then for any
zeB and A < 1, GM(z) > Gif(z) > §, so

ui(B) < S’IAPz(TB < ©)f(z) dz.

Hence there is a sequence 1,} 0 and a finite measure p
supported on B such that u}» - p weakly. Since G4 Gf,
and Gf is a bounded continuous function, G*f - Gf uni-
formly on B and thus

@Mﬁ<wmﬂﬁﬁgM£W=mW%

Thus by the uniqueness of pp, ¢ = pp. It mow follows that
u3 - wp weakly. Since B is relatively compact,

lim CAB) = lim (4}, 1) = (us, 1) = C(B),
AYo AYoO

and as CMB) = CAB) we see that C(B) = C(B).

Remark. — In point of fact stronger results are true. For
any co-transient set B and for any relatively compact set

A, uM(A) — up(A). This will be established in § 11.

Prorosition 8.4. — The set function C(-) is a Choquet
capacity on the relatively compact sets that has the additional

properties that C(B + z) = C(B) forall x and C(— B) = C(B).

Proof. — We must show that properties (a) — (f) of Propo-
sition 6.4 hold for C(.). That (a) and (b) hold for C(B)
follows at once from the fact that C*(B) — C(B), 2 | 0. Let
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K be compact. We can then find relatively compact open sets
A, oA,>5A;> ... such that m A, = K. The times T,\,,'T Tx

a.s. P, and thus P,(T,, < oon)‘[,Pz(TK < ). Consequently,
for any feCg,

Jo PalTs, < 0)f(2) doy [ P(Tx < w)f(2) da,
and thus by Proposition 8.2,
(8.10) im (pa,, Gf) = vk, Gf).

n>o

Now u(A;) < o, and pa,(A;) and px(A,) are dominated
by us(A;). Thus there is a subsequence ta,, of the py,

that converge weakly to a measure p supported on A,.
If follows from (8.10) that w = px, and thus @, — px
weakly. Hence C(A,) | C(K). If U 1is a relatively compact
open set, then there are compact sets K,, K; c K, --. such

that UK,,=U. Arguing as above we find that px, — py
weaklynand thus C(K,)1 C(U). Thus C(s) is a Choquet

capacity on the compact sets. Let C, be its extension to the
Borel sets. What we have just proved about relatively compact
open sets shows that if U 1is such a set then C,(U) = C(U).
Arguing now as in the case of A-capacities we see that (c)
and (d) hold for all relatively compact sets. Properties (e)
and (f) follow from the fact that they are true for C*(B)
and C*B) — C(B).

The next result is a corollary of the proof of the previous
proposition.

Prorosition 8.5. — Let K be compact and let U, be open
relatively compact set > K such that U, | K. Then uy, - px
completely. Let U be an open relatively compact set and let
K, be compact K,cU and K,} U. Then ux, - uy comple-
tely.

3<7Ve will now show that for any co-transient set B, approxi-
mations from below are always possible. The approximation
from above may fail since there need not be any co-transient
open set oB if B is not relatively compact.
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Prorosition 8.6. — Let B be a co-transient set and suppose
AcB. Then A s co-transient and C(A) < C(B).
Proof. — Clearly A 1is co-transient and

P (T, < ) < P,(Tp < )
and thus for any f > 0,
(a5 Gf) < (w8, Gf).

Since 1 1s excessive we can find f, > 0 and bounded such

that Gf,1 1. Thus C(A) = pa(®) < ws(®) = C(B).

Prorosition 8.7. — Let B be a co-transient set. Then
sup{C(K): KeB, K compact} = C(B). Moreover if K,cB,
K, relatively compact, and XK,cK,c ..., are such that

P,(Tx, | Ts) = 1 a.e.then px, — ps 9qguely and C(K,) 1 C(B),

so if C(B) < oo then the convergence is complete.

Proof. — Let K, satisfy the hypothesis of the theorem.
Then

(8.11) (vx, Gf) 4 (w5, Gf).

By essentially the same argument as used in the proof of
Proposition 6.6 we can show that px, — wp vaguely so we
will omit these details. Now from Proposition 8.6 we know

that C(K,) < C(B) so lm C(K,) < C(B). On the other
hand, if feCf, 0 < f< 1, we know that

(b, f) < C(K,)
and thus (wp, f) < hm C(K,). Letting f41 we see that
CB) < li:n C(K,). Hence linm C(K, =C@B). If GB) < o

vague convergence becomes weak convergence and since we
have just shown there is no escape of mass the weak converge
1s complete. Finally, by 10.16 of Chapter 1 [2] we can find

compacts K,cB such that P, (Tx, 4 Ts) =1 ae. 2 and
thus C(K,) 1 C(B). Hence

sup{C(K): KB, K compact} = C(B).

This establishes the proposition.
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_ Cororrary 8.3. — If B is transient and co-transient then
C(B) = C(B).
Proof. — Immediate from the previous proposition and the

fact that for relatively compact sets K, C(K) = C(K).

Prorosition 8.8. — Let B, be co-transient sets such that

CB,) =0, n=1, 2, ... Then UB,, is co-transient and
(UB )=° "

Proof. — Since C(B,) =0 it follows from Proposition 8.2
that P (Ts, < ©) =0 a.e.,, and thus P, (TU s < oo) =0

a.e. Hence UB,, is co-transient and C (U B,,> = 0.

n n
The following is one of the most fundamental facts about
transient 1.d. processes.

Treorem 8.1. — Let B be a co-transient set. Then there is a
unique Radon measure pp supported on B such that
G (dz) = p(x) dz. The total mass C(B) of ws s finite
whenever B is compact. Whenever B is both transient and

co-transient C(B) = C(B).

Proof. — It follows from Proposition 8.2 that there is a

unique Radon measure pp whose potential is Fp(z) dz.
From Proposition 8.3 we see that if B 1s relatively compact

then up(®) < © and pp is supported on B. The fact
that in general pp 1is supported on B follows from this fact

and Proposition 8.7. The final assertion in the theorem is
just Corollary 8.3. This establishes the theorem.

9. On sets in 3,.

Recall that %, consists of those sets Be® having a non-
empty interior and such that P (Ti = Ts) =1 for almost
all ze@®. In this section we will develop some properties
of sets in %, and also find a sufficient condition for sets to
bein %, in the special case that & be isomorphic to a closed
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subgroup 1n Euclidean space. We will establish at the end of
this section that, in general, if B 1is a relatively compact
set there 1s a compact set B, e$%, containing B.

Prorosition 9.1. — Let B be a Borel set in & and let
Y, G with y, >0 as n—~> . Then

Px(hm TB—yn == TB) == 1

holds at all x such that P, (Ty = Ts) = 1.

Proof. — Let B, be the closed set consisting of all points
whose distance from B is no larger than the maximum
distance from the origin to y,, k > n. Then B, are closed
sets and B,| B as n — o. By quasi-left-continuity

P.(Tg, 4 Ts as n— o)=1, ze®.
Consequently
P, (lim inf Tp_, > Ts) =1, ze@®.

n>o0
It 1s also clear that

P, (lim sup Ts_,, < Ts) =1, rze®.

In other words

P,(Ts < him inf Ty_,, < lim sup Ty, < Tj) = 1.

n>w n>»o

Thus if P,(T3 = T5) = 1, then
P,(lim Ts_,, = Ts) = 1,

n>»w®

as desired.

Prorosition 9.2. — Let B be a Borel set having a non-
empty interior and let feC, Then Ggf and Hsf are conti-
nuous at every z such that P (T = Ts) = 1.

To prove that Ggf is continuous at z, we need only prove
thatif y, >0 as n — o, then Ggf(z + y,) > Gsf(z). Now

Guf(@ + ) = B [ f(X, + y2) dt.

Since B has a non-empty interior and f has compact support
11
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the desired result follows by dominated convergence and
Proposition 9.1.

To prove that Hpf is continuous at z, we need only prove
thatif y, > 0 as n — oo, then Hypf(x + y,) - Hpf(z). Now

HBf(x + yn) = Em{f(XTn_yn -+ y); ’1"]3._3,'l < oo}
To prove the desired result we need only show that
(9.1) P (Tg= o or XTB—yn_> X, as n— ) = 1.

To see that this is the case note that, except for a set of
P, probability zero, Xy, — Xr, as n-—> o on the set

(Ts < o), where B, 1s defined as in the proof of Propos1t10n
9.1. Since Tp, < TB, if Xop, —>XT, then either X, is

continuous at ¢t =Ty or Ty = Ts for n sufficiently large.
Since Tp_,, > Ts, and T, - Ts as n— o (except on
a P, null set), it follows that (9.1) holds, as desired.

From Proposition 9.2 we obtain immediately

Tueorem 9.1. — Let Be®, and let feC, Then Gsf
and Hgf are continuous for almost all ze®.
For t > 0 set

T = inf[s > ¢| X, e B].

Prorosition 9.3. — Let Be®,, t > 0, and y,eG with
Y.~ 0 as n—> . Then

Pw(lim Thy, = T‘B) =1 a.e. ze@®.

n>w

Proof. — Let [ be any probability density function on &
and set p = fP. Then p is absolutely continuous, so by
Proposition 9.1

1 = Py(lim Tp.,, = Tn)
= s (@) daP, (lim Ty, = Th).

Since f 1is an arbitrary probablhty density on &, the con-
clusion of Proposition 9.1 is valid.

CoroLrLary 9.1. — Suppose the process is transient. Let
Be®, t>0, and y,«e® with y,>0 as n—> . Then
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ae. ze@® P (To= o iff Thyy, = © for n sufficiently
large) = 1.

Proof. — This result follows from the fact that P (X, - oo

as t—> o) =1 and there is a compact set B; such that
B+ y,cB, for all n > 1.
Recall that if T < o, then

Wi = sup[t| X, e B].

Cororrary 9.2. — Suppose the process is transient. Let
Be®%, and let y,e® with y, >0 as n—> ©. Then

Pm(TB = o or limWg,, = WB) =1, ae ze@®.

n>®o

Proof. — Let 0 < s < . Then
(Wg < s)=(Tsg < ©)n(Th= o for ¢t > s and t¢rational).

Applying this to B 4+ y, and using Corollary 9.1 we see that
ae. ze€@®, P(Tg=o0 or Wy<s if Wy, <s for n
sufficiently large) = 1. The result now follows from this
fact.

Prorosition 9.4. — Let Be®R,. Then
P,(Ts < 0, Xw,_ # Xw,, and Xw,eB) =0 ae. ze@.

Proof. — This result 1s quite obvious. For from almost all
points in B the process moves with probability one, imme-
diately into B. Also if z has an absolutely continuous initial
distribution, then for any e > 0 and positive integer j
the location of the process after the ;" jump of magnitude
at least ¢ has an absolutely continuous distribution.

Prorosition 9.5. — Suppose the process is transient. Let
Be®, let feC, and let y,e® with y, >0 as n— oo.
Then ae. z<®

P(Te = o or lm f(Xw,, )= f(zw,)) = 1.

n>w

Proof. — We can suppose that Ty < o, Tp,, < o for
n sufficiently large, Wg,, - Wy as n—> oo, and if X,
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has a jump at =Wy, then Xw,¢B. If Xw,¢B, then
Ws,,, < Wy for n sufficiently large. Since X, has left-
hand limits, if follows that

[(Xwyg) > f(Xwyr)  as n—>o

as desired.
From the above results we obtain immediately

Tueorem 9.2. — Suppose the process is transient. Let B e &,,
let feC, and let 0 <t < . Then

E.(fXw,); Wa <t and Ts < o)

is continuous at almost all xe @.

Suppose now that & = R*@Z%. A subset A of & will
be called a sector if there are real numbers wu,, ..., u,, a,
and ¢ with w}+ - +ul >0,0a>0, and —1<c<1
such that

A = {xe@lxd‘H = =‘/z;d‘+d,:0)0 < w]2.+ te +w¢214 < a?
1
and xu; 4 - 4 U > c(al + - +xﬁl)2§.
(Here z = (2, ..., %y44,).) By definition sectors are open
in &.

Let B be a Borel subset of &. If A 1is a sector, then
D = {zed3B|z 4+ Ac<B}

is a closed subset of &. Clearly D 4+ AcB. We will show
next that |D] = 0. Let L be a line segment in & having
one end point at the origin and all other points of L lying
in A. Then for ze® the line segment x 4+ L contains
at most two points of D, as is geometrically evident from the
fact that (D 4+ A)nD 1s empty. Consequently

|IDn(z+4 A) =0 for ze®.
Thus

0= [4IDn(z+ A) dz= fydo [;o(y)laly — 2) dy
= | DJ|A].

Since |A] # 0, it follows that |D| = 0 as desired.
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TueoreMm 9.3. — Let & = R%“9Z* Let B be a Borel

set in & such that for some countable number of sectors A,
|LJ (z<?Bjz + A,«B} =3B.

Then |0B] =0 and P, (T3 =Ts) =1 ae ze@®.

Remark 1. — It 1s easily seen that sets having sufficiently
smooth boundaries are of the type covered by the theorem.
For example, if & = R% then polyhedrons and balls are of
the required type. It is also clear that the theorem could be
extended by allowing the boundary to behave wildly on a
subset of the boundary having zero A-capacity.

Remark 2. — The proof of the theorem does not use the fact
that & 1is generated by the union of the supports S, of X,
t > 0. This will be relevant to the proof of the following
theorem.

Proof of Theorem 9.3. — The fact that [d0B| = 0 1s obvious
from the discussion preceding the theorem. Suppose that the
other conclusion of the theorem 1s false. Then we can find
a sector A, an ¢ > 0, and an M < o such that if

D = {zed®B|z + A eB}
and

S={zeGP(Ts +¢ < T3 Ts < M, X45eD) > ¢},
then |S| > 0. Since

Jo18 0 (@ + ) do = [S]|a] > 0,

we can find an 7, ® such that |Sn (2, + A) > 0. Conse-
quently we can find a line segment L<@® such that one end
point is at z,, all other points of L arein z, + A, and L
contains infinitely many points of S.

Observe that

S = {|Po(Ts-e + ¢ < Tio Tso < M, Xr._eD — 2) > ¢}

Let Q Dbe the probability space for the process starting
out at the origin. Set

Q, = {o|Ts_, + ¢ < Ty, Ts_. < M, Xy; , €D — x}.
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Consider z, ye@® such that y —2zeA and 0eQ,nQ,.
Then

XTE_x—{—yeD—x—!—ygD—{—AgB.
Thus Ti_, < Ts-, < M and hence
Ty < Togey —e < M —ce.

Consider next z;, ..., z, allin & such that =z, —z;eA
for 1 <j<n and we niQ,. Then

0 <Ts,, <M—(n—1)

and hence n < 14 M.

It follows from the definition of L that for any positive
integer v we can find points y,, ..., yy€L nS such that
yy—yieA for 1 <i<j<v. Set Q=2Q,. Then
P(Q) > ¢ for 1 <j<v since y;eS. By the above para-
graph

v
> 1Qj(w) < 14 M, we

j=1

We thus have the inequality
o< 3 P(Q) = E(z lo0)) < 1 + M,
j=1 Jj=1 /

which implies that v < ¢ 4 ¢2M. This contradicts the
fact that v can be made arbitrarily large. Therefore the
conclusion of the theorem must be true.

It is not clear how to find useful sufficient conditions for a
set B in a general locally compact Abelian group & to be in
B, If @& is compactly generated, then & == R“ o Z%: o H,
where H is compact. It is clear from Theorem 9.3 that if B,
is a relatively compact subset of & and & is compactly
generated, then there is a compact subset B of & such
that B;cB and Bed,.

Let & be any locally compact Abelian group. Let B,
be a relatively compact subset of . Then there is an open
compactly generated subgroup &, of & such that B; c®,.
Consider the process Y,, t > 0, on &, obtained from X,
t > 0, by ignoring those times when X, & ®,. This process
satisfies all the assumptions for an infinitely divisible process
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on &, except that &, is not necessarily generated by the
union of the supports of Y, ¢ > 0. In Remark 2 following
the statement of Theorem 9.3, however, it was pointed out
that this 1s not necessary for Theorem 9.3 to be valid. Thus,
there is a compact subset B of &, containing B; and in
$, relative to the process Y, t > 0. It is clear that B 1s
in $, relative to the process X,, t > 0, as well. Thus we
have the following result (which will be needed later on).

Tueorem 9.4. — Let B; be a relatively compact subset of
®. Then there is a compact subset B of & such that B, <B
and B € :’34.

10. The Renewal Theorem and Type II Transient Processes.

We say the transient process if type I if
lim Gf(z) = 0, feC..

Otherwise the process is said to be type II. Suppose the ran-
dom walk obtained by looking at the process at integer times
is type I transient. It is then easily shown that the continuous
time process i1s type I transient. Suppose the random walk
is type II transient. Then the group &, generated by the
support S, of X, 1sisomorphic to either ReH or Ze H,
where H 1s compact (by results in [7]). In particular &,
is compactly generated. Thus by Proposition 519 & 1is
compactly generated. It now follows easily from the structure
theorem that & 1s isomorphic to ReH or ZeH for
some compact group H. If @ =ReH or ZeoH, the
induced process on R or Z has finite non-zero mean. This
also follows easily from the corresponding discrete time
results proved in [7].

Suppose now that @ =ReH or & =ZeH, where
H is compact. Let Haar measure dz on & be such that
dx = dr dy, where dy 1s normalized Haar measure on H
and dr 1s Lebesgue measure on R or counting measure on
Z. Define 4:® >R or & > Z by ¢(r+y)=r if yeH.
We set

Gt = {z<B|y(z) > 0}
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and

& = {z e ®|Y(2) < 0}.

By «z—> + 0 » or « x> — o » we mean z — o and
ze®t or ze® respectively. The induced process on R
or Z has finite mean if and only if for suitably defined m

(10.1) PY0) =mt, 0<t< o.

Tuarorem 10.1. — Let the process be type 11 transient. Then
@ =RoH or &=7ZoH, where H is compact. Suppose
S =RoeH or ZoH, H being compact and ¢ and Haar
measure being chosen as indicated above. Then (10.1) holds
for some finite non-zero m. Let + m > 0, then for fe ®*

Jim Gf(z) = |m{J(f) ~ and  lim Gf(z) =0.

Proof. — By what has been said we can assume that
G=ReH or ZeH, where H 1is compact and ¢
and Haar measure are chosen as indicated above. We can
also assume that (10.1) holds with, say, 0 < m < oo.

Suppose first that &/®, is compact. Then, by Proposition
5.3, S, generates & for some ¢ > 0. Without loss of
generality we can assume that S; generates &. Set

G =3 P,
Then =
G= [ PG d.
Choose fe®*. Then
Gf(2) = Gf-.(0) = [ P'Gf_,(0) dt.

Now G'f_,(y) =G'f(x+ y) 1s bounded in z and y and
for each y by Theorems 4.1 and 4.2 of [7]

lim Gf.(y) =0 and  lim Gf_(y) = mJ(f).

Z>+40

Thus
lim Gf(z) = lim fo ! PY0, dy)G'f_.(y) dt

= mJ(f) [ PY0, ®) dt
= mJ(f)
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and similarly

lim Gf(z) = 0

z> o

as desired.

Suppose next that &/®, is not compact. Then & = R @ H,
®, = H, and the process is singular. The induced process
on R moves deterministically with velocity m. Let feC..

Then clearly
lim Gf(z) =0

Z>40

so we need only prove that

lim Gf(z) = mJ(f).
By translating f if necessary, we can assume that f is
supported by &*. Then for ¢ > 0
Gf(— mt + y) = PGf(— mt +3),  yeH.

Let Q' denote the transition operator for the induced
process on H. We can let Q' act on functions on & by
considering H as embedded in & in the obvious way. Then

P'Gf(— mt +y) = QGf(y), yeH.
By the Ito-Kawata Theorem

lim QGf(y) = /. Gf(z) dz

t>o0 H

uniformly in y. An elementary computation shows that

fu Gf(z) dz = mJ(f).

Putting these facts together, we see that
lim Gf(z) = mJ(f)

Z>-—00

as desired.

For a type 1I transient process there is a non-trivial theory
of the asymptotic behaviour of Ggf () and Hyf(z) as z — «©
for any Borel set B. We now proceed to develop this theory.
Throughout the remainder of this section the process X,

will be assumed to be a type II transient process having
m > 0.
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Prorositron 10.1. — Let B be any co-transient set. Then
CB) < m and hm (®@y, f,) = (C(B)[m) J(f) for any function

Proof. — By Theorem 8.1 for any fe (9%,

(ws, Gfy) = (s, ;) < J(f).
Hence by Fatou’s lemma and Theorem 10.1,

J(f)
c) 2L < 3p)
so C(B) < m. Since Gf,(r) < M for some finite constant
M it now follows by dominated convergence and Theorem 10.1

that lim (@5, f;) = (C(B)/m)J(f).

Prorosition 10.2. — Let B be a co-transient and recurrent
set. Then C(B) = m.
Proof. — Note that Bn &+ cB, Bn®* 1is co-transient

and thus by Proposition 8.5 C(B) > C(B n &*). To establish
the proposition then it suffices to prove if for a recurrent subset
of @t. Let B besuchasetandlet K, be relatively compact
sets such that K;cK;c..., v, K,=B. Then &g } s
and so if B is recurrent we see that for any feC§,

(®x,, f) 4 J(f). Thus by Theorem 8.1
(10.2) (x, GF) } ()

and since

i, (®) =C(K,) < CB) < m

we can find a subsequence fix,, a finite measure y on @,
and a constant « such that for any bounded continuous
function ¢ having a limit ¢(+ o) at -+ oo,

(103)  lim (i, §) = (1, §) + sd(+ o).

Applied to ¢ = Gf it follows from (10.2) and (10.3) that for
any feC¢

(r, &f) + 210 = ().
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Thus
(10.4) vG (dz) + % dz = dz.

Letting the measures in (10.4) act on f and P‘f and using
the fact that Gf — GP’fz/:P“f ds we see that y =0

and « = m. The standard weak compactness argument
now shows that

lim (fix,, §) = my(4 ).

n>®

Thus the measures {ix, converge to the mass m at - oo,
so C(K,) = @, (®) - m. By Proposition 8.3 C(K,) = C(K,),
so by Propositions 10.1 and 8.7

m = lim C(K,) = lim C(K,) < C(B) < m.
Thus C(B) = m, as desired.

Cororrary 10.1. — If B s recurrent and co-transient then
for any fe o, ]
”1_)15_11 (®s, fy) = J(f).

Proof. — This follows at once from Proposition 10.1 and
10.2.

Tueorem 10.2. — Let B be any Borel set. Then for any
¢ @,

(10.5) lim Gag,(z) — % P.(Ts = o).

y>+o

Let ¢ €C,. If B s a co-transient set and f is any continuous
bounded function

(106)  lim fg oy(a)Huf(z) do = 2 (g, 1),

m

If B s a co-recurrent set then for any bounded Borel function f

having a limit f(— ©) at — oo,
(10.7)  lim [, 9,(0)Haf(2) do = f(— @)J(e)

and lim (9, ®p) = J(o).

y>—o
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Proof. — The first passage relation shows that
(10.8) Gupy = Go, — HiGo,.

Since Go,(z) = Go(z — y), and sup Ge(z) =M < o« (10.5)
follows from (10.8) and Theorem 10.1. Now let ¢ eC, and

let feC. Then as (¢, Gsf) = (f, Gsp,) we see from (10.5)
that

hm (9y, Gof) = f P, (Tg = oo)f(x) do
Applied to the dual process — X, ‘we see that

(10.9) lim (9,, Ggf) = j P.( f(z) da.

y>—

Thus using the first passage relation again we see that

(1040)  lim (,Ha, Gf) = L2 (3, f).

y>—o0 m

The total mass (¢,Hs, 1) = (9,, ®5) of the measures ¢,Hy
1s < J(p) and thus there is a subsequence y, > — o, a
finite measure y supported on B, and constants a, > 0,
ag > 0 such that for any bounded continuous function ¢
having limits at 4+ o and — oo,

lim (¢,,Ha, ¥) = (1, ) + axd(— ) + agh(+ o).

n>»oo

Applied to ¢ = Gf we see that

J = J
oty L@, )= (v, 6f) + w10
The total mass of the measures ¢,Hy is (9,, ®5) and thus
if B is recurrent they have the common mass J(¢). If B

is transient, it follows from Proposition 10.1 applied to the
reverse process that

~

(10.12) lim (¢, ®5) — —an—) J(e).

y>—o

Suppose now that B is co-transient. Then by Theorem 8.1
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and (10.11) we see that
10.43)  ®) LG (de) =G (do)+ L

m
Letting this act on f and P!f for feC, and using the facts
that Gf — GPf= [ Pf, and that Pf—f, s >0 uni-

formly, we can conclude from (10.13) that «; = 0 and that
v = (J(@)/m)ps. If we had another weakly converging sub-
sequence of the ¢,Hy the same argument would again show
that it converged to (J(¢)/m)up. Thus the measures ¢,Hg
converge weakly to (J(¢)/m)us. The total mass of this measure
is (C(B)/m)J(9). To show that the convergence is complete
we must now show that this 1s the same as the limiting total
mass of the ¢,Hs. If B 1is also recurrent then Proposition
10.2 shows that C(B) = m so in this case (J(¢)/m)up has
total mass J(p) which 1s just the common total mass of the
@¢,Hp. On the other hand if B 1s transient then Corollary

8.3 shows that C(B)= C(B) so that the total mass of
(J(¢)/m)us 1s the same as the limiting total mass of the
o,Hpg. Hence in all cases when B is co-transient the ¢,Hg
converge completely as y - — oo to the measure (J(p)/m)us.
Suppose now that B is co-recurrent. Then (10.11) shows

that

() gp — 4G (da) + 2 da.

m m
It follows from this that y = 0 and «;, = J(¢). Now assume
that B 1s also recurrent. Then (¢,Hs, 1) = (¢,, ®5) = J(o)
so 1n this case «; =0 and the measures ¢, Hy converge
to the mass J(¢) at — . On the other hand if B is tran-
sient, then (¢,Hs, 1) = (¢,, ®s) = (fs, G‘Py)*(J((P)/m)C(B),
as y - — . By Proposition 10.2, as B 1s also recurrent,
CB)=m so (¢,Hp, 1) > J(¢). Thus here too «, =0, so
9,,Hp converges to the mass J(p) at — co. This establishes
10.7 and thereby completes the proof of Theorem 10.2.

ProrosiTion 10.3. — Let B be any Borel set. Then for any
feo,

(10.14) lim Gsf,(z) = 0.

y>—
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Let o e®. If B s a transient set
(10.15) ' lim (p,, Hef) = 0.
y>+®

If B is a recurrent set then for any bounded continuous f
having a imit f(4- ©) at + o

(10.16) Lim (¢, Haf) = J(o)f(+ o).

Pro‘of. — Equation (10.14) follows at once from the renewal
theorem and the fact that |Gsf)] < G|f,]. Equation (10.15)
follows from the fact

(25, Hof)l < Ifl(l9)]s @) = Ifl(@s, Gloyl),

Proposition 10.2, and the renewal theorem.
Now assume B is recurrent and let ¢ e®. Then

(¢,, Hel) = (¢,, ®s) = J(9). Let ¢ eC. Then

((PyHB’ G‘l’) = (‘Py’ G‘I‘) - (‘Py, GB‘H-

By (10.14) and duality we see that the right hand side converges
to zero as y - + 0. Thus

(10.17) lim (p,Hg, GY) = 0.

There is a subsequence y, > + oo and a finite measure ¥y
on & and constants o,, «; such that for any bounded contin-
uous [ having limits at + o and — ©

lim (9, Hp, f) = (v, f) + aaf(— ) + ouf (+ ).
Applied to G¢ it follows from (10.17) and the above that
(v, Gb) + e T = p,

From this, it follows that y =0 and «, = 0. Thus as
(9, @) = J(¢), it must be that «; = J(¢). Thus the measures
o,Hp converge to the mass J(¢) at -+ oo. This completes
the proof.

The previous results may be stated more succinctly by
using the two point compactification &* of (. Take B*
to be B if B is relatively compact and take B* =B u {4 «}
if Bn® is relatively compact but B n &t is not. Similarly
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B *=Bu{— o} if Bn@®* 1is relatively compact but
Bn &~ i1s not. If neither Bn &* nor Bn &~ are relatively
compact then take B*=Bu{— o, 4+ ©}. Now define
wpr = wp if B 1s co-transient and define ug+ to be the mass
m at — oo if B is co-recurrent. The measure (g« is defined
similarly. The capacity C(B*) of B* 1is taken to be the total
mass of pp+. The function G(z, A) is extended to &* in
the obvious way. Then ug+ 1s the unique measure supported

on B* such that for any fel,(®)

(p+, ) = (wse, Gf).
Also for any ¢ eC, and any feC(®¥)

lim (9, Haf) = 2 (ugs, ).
In all cases C(B*) = C(B*) and C(B*)=m in all cases
except perhaps when B is both transient and co-transient.
Examples show that the smoothed limits in Theorem 10.2
are the best versions that can be given for general Borel sets.
We now examine conditions under which the smoothing can

be dropped.
Tueorem 10.3. — Let Be$B,. Then for any feC,

(10.18)  lim Guf(z) = —— f P, o)f(z) dx
and
(10.19) lim Hyf(z) = (un, f) -

Proof. — Let K be compact and KeB. Then there is a
symmetric open neighborhood N of 0 such that K — NcB.
(See [11].) Thus for any yeN, K —yecB so Tx_, > Ts.
Hence for ye N and feCf

(10.20) Gxf(z + y) = Eouy [ (X, |
=B, [ (X, +y) dt > B, [ (X

Similarly if U is open, U compact, and B<c U, then for
some symmetric open neighborhood N of 0 B— NcU so
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for ye N and feCg
(10.21) Gof(z +y) < E, [ (X)) dt = Gsf_,(a).

Now for feCé&, Gf(z) is uniformly continuous. Let ¢ > 0
be given. Then there is an open symmetric neighborhood
ScN such that |Gf, — Gf| < ¢, yeS. Now by the first

passage relation, for any set A,

(10.22) [ Gaf-y — Gafl < P(Tx < 0)|Gf-, — Gf]
+ 1Gf-, — Gfl < 2¢

Let ¢ e C& be such that the support of ¢ is contained in S.
Then from (10.20) and (10.22) and 10.9 we see that

(1023) L L [Pyt = w)fty) dy > Tm Gafly)

Yy>—c0

Similarly from (10.21) and (10.22) and 10.9 it follows that

(10.24) [@ (Tv = ©)f(y) dy < lim Ggf(x).
Choosing compacts K, |B and open sets U, | B and using
the fact that P, (Ts = T3) = 1 a.e. we see that (10.18) holds.
Using the first passage relation and (10.19) it follows that

lim HyGf(e) = 1 L [ PuTo < )f(a) do.
There is a measure yp supported on B and a sequence
z, > — o such that Hg(z,, dy) > ys weakly. Thus

(1 Gf) = —= [ Pu(Ts < w)f(a) da.

Hence by Theorem 8.1 yp = pg/m and the usual weak com-
pactness argument now shows that (10.19) holds. This com-
pletes the proof.

By appealing to results in discrete time we can obtain
significant . extensions of Theorems 10.2 and 10.3.

Turorem 10.4. — Let B be any co-transient set, let ¢ e C,,
and let f be a bounded Borel function. Then equation (10.6)
holds.
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Tueorem 10.5. — Suppose the process s non-singular. Let

Be® and fe®. Then (10.18) and (10.19) hold.

Remark. — It 1s also not hard to show that Theorems 10.3
and 10.5 can be extended to include sets B which are unboun-
ded to the right (i.e. Bn(z 4+ &*) 1s non-empty for all z).
We omit the details concerning this extension.

Proof of Theorem 10.4. — In order to obtain this extension
of Theorem 10.2 we need only show that if Be® and fe @+,
then

lim ﬁj 9,(x) Haf ( :v)
exists.
Suppose first that &/®, is compact. Then S, generates
& for some t > 0. Without loss of generality we can assume

that ¢t =1. For any ¢ > 0 there 1s a compact set K such
that for fe @+

| HkHef () — Hof(z)| < elfl, xe@®.

Here Hk denotes the analogy to Hx for the process viewed
at integer times. It 1s an easily shown result in discrete time
that

lim [, @,(x)HkHaf(z) do = C/J(o)

y>—o
exists for fe ®*, C, being a constant depending on f and
B. Consequently

lim sup| [, o,(@)Haf(z) — Cl(e)| < lf1 ().
Since ¢ can be made arbitrarily small

lim [§ o,(z)Hef (2) do

y>—0

exists as desired.

Suppose next that /@, is not compact. Then Theorem
5.5 is applicable. We can assume that & = Re(C, &, = C,
and the conclusion of Theorem 5.5 holds. It follows that for
fed+
lim [ @ -mesy(2)PHef (2) da

t>o

exists uniformly for yeC. The function ¢ can be chosen
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to have support far enough to the left so that
P'Hy = Hpg

for z in the support of ¢_,.,. Then

lim [ @—pi-y () Hof (@) do

exists uniformly for yeC, which implies that

lim [, o,(@)Haf () do

Yy>—x

exists where here ye®. This completes the proof of the
theorem. '

Proof of Theorem 10.5. — In the non-singular case &, = @®.
The discrete time form of this result is easily shown. The
reduction from continuous time to discrete time follows by
the same technique used in proving Theorem 10.4.

11. Global Time Dependent Behaviour (Transient Case).

Throughout this section X, will denote a transient i.d.
process. Let B be a Borel set and let

En(t, A) = [ Pu(Ts < t, Xr, € A) da.
Observe that for any Borel set A,
(11.1) P,(Ts < t, Xy,e A) < P(T, < ¢).
Now if A 1s relatively compact it follows from (3.18) that
Jo PulTa < ) do < oo,

From (11.1) we then see that Eg(t, A) < o whenever A
1s relatively compact.

Tueorem 11.1. — Let B be a co-transient set. Then for any
relatively compact set A and any h, 0 < h < o,

(11.2)  lim [Ep(t + h, A) — En(t, A)] = hus(A),
(11.3) lim Es(t, A)t = up(A),
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and for any Borel set A, and 0 < h < o,
(11.4) [ P(Ts = 0)Po(Ts < h; Xr, e A) dz = hu(A).

For a co-recurrent set B

lim [En(t + h, A) — Eg(t, A)] = 0

for any relatively compact set A.
Proof. — Let A Dbe relatively compact. Then
En(t + h, A) — Ea(t, A) = [ Po(t < To < t + h, Xr,e A) da
Jod@ [oPo(Ts > t, X,edy)P(Ty < h, Xr,eA)
= JoPy(Ts > OP,(Ts < h, Xr, € A) dy.
By dominated convergence we then see that
(11.5) ltim [Es(t + R, A) — Eg(t, A)]
” = [ P,(Ts = 0)P,(Ts < b, Xy, A) dy.
From (11.5) 1t follows easily that
JoPy(Ts = @)P,(Ty < h, Xr,e A) dy
1s a linear function of h so we can write
(11.6)  [; P(Ta = 0)P(Ta < h, XryeA) = hyn(A).

If B is co-recurrent, then P (Ts = ) = 0 a.e.so ys(A) = 0.
Suppose now that B is co-transient. Then vyp(A) 1s a Radon
measure and we shall now prove that ygp(A) = pp(A). To
this end suppose first that B is relatively compact. It follows
easily from (11.5) and (11.6) that

tim BB A) o a),

t>0

and thus by an easy Abelian argument

(11.7) lim fo " eMEp (dt, A) = yg(A).
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But kfow e Eg(dt, A) = p}(A), and thus by Proposition
8.3 for any Borel set A such that pp(|0A|) = 0, up(A) = ys(A)
and thus vyg(A) = pp(A) for all Borel sets A. Thus (11.2)
holds for B a relatively compact set. Now let B be any
co-transient set and let B, be relatively compact sets such

that B,4B. Then P, Ty, = o) P,(Ts = ), and for
any feCh, B[f(Xn); To < h] > B,[f(Xe); Ty < h]. If
A 1s compact and contains the support of f, then

E,[f(Xx, ); Ts, < h]Py(Ts, = o) < [f].P,(Ts < k)

and thus by dominated convergence,

lim Ay, f) _hme [f(Xr,); To, < h]P,(Ts, = o) dy
= Jo Eolf(Xa)); Ts < hIP,(Ts = o) dy.

Now by Proposition 8.7 (us, f) = (us, f) for feC, and thus
(vs, f) = (us, ) for all such f and thus ys=ps. Hence
(11.2) and (11.4) are valid for B any co-transient set. Finally
(11.3) follows easily from (11.2).

Remark. — If B is a co-transient, non-relatively compact
set then = Eg(t+ h, A) — Eg(t, A)] > o0, t > oo if
pwe(A) = . Howeverif pp(A) < oo and A is not relatively
compact it may be false that Eg(t + h, A) — Eg(t, A) - up(A)h.

In particular for a non-relatively compact set B,
Ex(t + h, B) — Eg(t, B)

can be o forall ¢ > 0 but yet: C(B) < .
We now turn our attention to the last hitting time of B.

DerinitioN. — Let B be a transient set. The last hitting
time Wy of B is Wy=sup{t>0: X,eB} if Tp < .
If Tg = o then Wy is undefined.

Prorosition 11.1 — Let re L,(®) and let B be a transient
set. Then for any t > 0, P.(Wg =1¢) = 0.

Proof. — It suffices to take re L (®). If
P:c(WBZ 0, TB < OO) #* O
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then 2 must be an irregular point of B that is in B. By
Proposition 3.1 the collection of such points has zero Haar
measure. Now suppose ¢ > 0. Then P, (Wj > t) is right
continuous. To see that it is also left continuous observe
that

(11.8) P(Wp > t — h; Tp < o)

= [y Pt (d2)P,(Vp < o)

= Jo Po(Ve < @)P*r(z) do

= s u(@)P~"r(x) dz = (@s, GP*r).
Since GP*"r < Gr and (@s, Gr) = (r, ®5) < © we see by

dominated convergence that the right hand side of (11.8)
converges to

(15, GP'r) = (@5, Pr) = [; P,(Vs < 00)P'r(z) dov = P,(Wx > 1).
Next we will find the distribution of the last hitting place
mn B.

Prorosition 11.2. — Let B be a transient set and let
reL,(®). Then for any Borel set A

(11.9) P,(Xw, e A; Ty < ) = [ s (dz)Gr(z)

Proof. — For Ty < o and Wg >t t >0, define
Y, = Xw,+. Let Y,=A elsewhere. For t=0 define
Yo = Xw,- if Ts < o and take Y, =A elsewhere. Take
f(A) = 0. It suffices to prove (11.9) for re Cf. We can write
for fe Ct,

E.§ [ f(Y)e™ dt; Ty < o
= E§ [ f(Xw,-)e™ dt; Ty < oo}
= E, §fwnf e K™ ds; Ty < oo
= Jo 7 P(X, e dy)E,[e; Ty < 0] ds
= Jorla dwaw dy)E, [ Ty < o0]f(y) dy
= [y Gry)E,[es; Ty < 0 f(y) dy.
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In other words

(11.10) E.$ [T f(Y)e™ def
—~f Griy)f(y)E,[e*Ws; Tp < ] dy.
Now for ¢ > 0
[P Wa > t)e ™ dt = GrMy(y)
and thus
Ey(e“‘lwn; Tp < ©) = @5 — AG Dy,

Using Theorem 3.2 and the resolvent equation we can write
for any ge @t

(1111) [ 8(y)Byle™™ 3 T < 0] dy=(®n, g)—(AG 0y, g)
= (gBG’ g) - )‘(ﬁBGG)\, g) = (ﬁB, G)\g)
Applying this to g = Gr.f and using (11.10) we find that

ngow f(Y)e™ di; Ty < °°§ = ﬂ@ﬁBGX (dy)Gr(y)f(y)
= [on (d2) [ Gz, dy)Gry)f(y).

Thus for a.e. t > 0

(1142) EJIf(Y); Ta < ] = [y fn (d2) [ Pz, dy)Griy)f(y).

Now the right hand side of (11.12) is continuous for ¢ > 0
and right continuous at ¢ = 0. Indeed, for any ¢ > 0

Jo Pz, dy)Gr(y)f(y) dy < |f1.Gr(z)

and (fis, Gr) = (r, ®s) < 0, so the statement follows by
dominated convergence. Also the left hand side is right
continuous at t = 0. To see this note that if Wy > 0 then
Wi >t for ¢ sufficiently small and thus as feC,
[f(Xw,—); Wp > t; Tg < 0] > [[(Xw,—0); Ws > 0, Ty < ].

Hence by bounded convergence,
Lim E[f(Y,); Ts < o] =lm E.[f(Xw,); Ws > ¢, Tsg < 0]
tvo tv0

= E,[f(Xw,-); W > 0, Ty < ].

It now follows from (11.12) and the fact that both sides are
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right continuous at 0 that
(11.13) P(Xw,-edy, W > 0, Ty < ) = Gr(y)is (dy).

By Proposition 11.1 P,(Wy > 0) =1, so (11.9) follows from
(11.13).

The following interesting and useful identity plays an
important role in finding the asymptotic behaviour of the last
hitting time.

Taeorem 11.2. — Let B be a transient set. Then for any
t > 0 and any Borel set A

(10.14)  [;P.(Ws < 1, Xw,€A; Ty < ) do = tiis(A).

Proof. — Let K, be relatively compact and K,4 ®&. Now
using Proposition 11.2 we see that

fP (Wp > t, Xw-eA; Tp < ®) dao
—fd:va‘xdy (Xwy- A; Tp < o)
—fP‘y, JP(Xw,-eA; Tp < ) dy
= J, s (d2) j&Gz, dy)P'(y, K,).
Thus again using Proposition 11.2
(11.45) [ [P.(Xw, <A, Tu < 1) do
AL Xwn €A, To< ©0)—P,(Wp>t, Xw, €A, Tg< o0)]dw
fAﬁ K,) — GPY(z, K,)] ngdsz‘zK ds.

Equation (11.14) now follows from (11.15) by letting n — oo.

12. Asymptotic Behaviour of P‘Hf.

Throughout this section X, will be a transient process
that satisfies Condition 1. Recall that whenever this condition
1s satisfied £ = @. Let heC} be such that J(h) =1 and

set r(t) = [ (h, P*h) ds. Then for any fe®@*, R ~ J(f)r(t
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and Rf - J(f)r(t). The function r(t) will serve as a reference
time function to measure how fast P'Hgpf goes to zero. Our
main result is the following.

Tueorem 12.1. — Let Be % and let f be a bounded mea-
surable function. Then for ¢ €C,

(12.1) lim i‘f—%{—f—) = J(o) (s f).

If moreover Be®* and f isin C(®), or, in the non-singular
case, i1s any bounded measurable function, then
. [1
(12.2) tim 220l (@) py
t>a r(t)
where the convergence s uniform on compacts.

The proof of (12.1) and (12.2) proceed in the same way so
we will only prove (12.2). The same arguments will prove
(12.1) provided =z is replaced by ¢. The strategy of the proof
1s as follows. First we show that (12.1) holds for fe C(®).
Next we show that the analogue of (12.2) holds for the random
walk X,, n=0, 1, 2, ... By suitable approximations we
then show that the desired limits exist in the stated generality.
Finally the identification of the limit is carried out via the
special case of the smoothed result (12.1) for fe C(®).

To get started on the proof we first show that (12.1) holds
for feC(®).

Lemma 12.1. — Let Be® and ¢ €C, and feC(®). Then

tim (2 2580) — (o), ).

Proof. — Since B is compact it follows from (3.19) that
there 1s a compact set K, [d0K| = 0, such that

Op(z) < 2G(z, K).
Thus for any compact set C, [oC| =0,

|P'Hsl(2)] _ 2RY0, K — C)
p r(t) S r(t)
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so by Theorem 5.3
¢ t
(12.3) Tim sup D Hsl(@) ) 2RY0, K — €)

t>o xeC r(t) t> r(t)

= 2K — (| < .

Thus there 1s a finite measure ys and a sequence t, -
such that the measures (o, P4Hg)/r(¢,). converge weakly to
v. In particular, as Gy e C(®) if ¢ e(C, we see that

1 r(tn) = (v, GY).

But by Proposition 3.3

(CP; PtHBGq)) ( cp, HBGV) (HBGP‘CP’ )
- (HBcha \I))

and thus by Theorems 5.3 and 8.1

im (@ P'HsGY) _ 1. (HaR'e, )
t> r(t) t>o0 r(t)
= J(9)(us, G¥).

Thus J(¢)(us, Gy) = (v, G¥) and as the potential of a finite
measure determines the measure we see that J(p)up = y.
The standard weak compactness argument now completes
the proof of the lemma.

We will now show that the analogue of (12.2) holds for the
random walk {X,, n > 0}. To this end let Hg and G’
denote the quantities HB and G for the random walk and
let ep denote the equilibrium measure of B for the random

walk.

= J(9)(®s, ¢)

Lemma 12.2. — Let Be$% in the non- singular case and let
Be® have [oB| = 0 wn general Assume [ is bounded and
continuous a.e. tn general or just bounded and measurable in
the non-singular case. Then uniformly in x on compacts,

lim DHbf (@) _ ( py.

n r(n)
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Proof. — Let Vy =1nf{n > 0: X,eB} (=0 1if no such n)
and let P®%x, dy) = P, (Xy, edy, Vs < o)1s(z). Then

n—1
P"Hpf = Hp — X Pi(Iy — P®)f.
Jj=0
Since P"Hpf — 0 as n — oo, we see that
(12.4) Hif = G'(Iy — PP)f.
Also

(1, (Is — P)f) ( » (Is — PP)f)

w ) = (o, Pf) = (f, 1a) — (f, P"1s)
fP (Vo = w)f(z) do = (en, )

From (12.4) we see that
(12.5) P*Hyf — P*G/(Ip — PP)f — ( 3 Pf> (I, — P)f.

Jj=n+1

H II

If |[d0B| =0 then by Lemma 2.1 of [8] (Iz — P®)f is conti-
nuous a.e. when feC(®)*. By Theorem 5.3, uniformly in z

®©

on compacts, < D Pf> (Is — PB)f(z) ~ r(n)(1, (Iz — P®)f).

Jj=n+1

This establishes the lemma.

Lemma 12.3. — Let Be®* and let feC(®) in general
or be just bounded and measurable in the non-singular case.

Then
i PH )
t> r( t>

exists, is finite, and ts independent of x. Moreover the conver-
gence is uniform on compacts.

= ¥(f)

Proof. — By Proposition 9.2, if B e %,, Hgf(z) is continuous
ae. if feC(®). Let K be compact K>B and |[2K| =0.
Then by Lemma 12.2) uniformly, in 2 on compacts

(12.6) POH,H,f(x) ~ r(t)(ex, Haf).

Let
«=1mf{t > Tg: X,eB].
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Then
HyHpf = E,[f(X:); * < ]
and

(12.7) |E,[f(X:); = < 0] — E,[f(Xx,), TB < °°]l
< 2|fIP,(v > Ts)
< 2llflIP (Tx > Ts).

Now choose B, e®, such that K>B;>B and such that

P,(X,eB,) > -%— for all zeB and 0 < ¢ < 1. Then

P,(Tx > Ts) < 2P, (X, eB,).
Since HxHyz = Hp we see from (12.7) and the above that
(12.8) |PY[Hx — Hx]Hsf(z)| < 4lfl PYHg1s,(z).

Since B, e #,,|3B,| =0, the function 15, is continuous a.e. Thus
by Lemma 12.2 the right hand side of (12.8) is asymptotic to
4| flr(t)ex(B,). Let € >0 be given. Then we can choose K such that
ex(B;) < . Indeed

ex(By) = fP (Vi = o) da

and as K} @®, P,(Vxg = {0 If K is so choosen then
(12.8) shows that umformly In z on compacts

PYHgHyf(z)  POHgHaf .
) O < 4|fle.

It now follows from (12.9) and (12.6) and the fact that
HxHp = Hp that uniformly in # on compacts,

(12.9) Tm

t>xo

. P[”an_ i (e _
(12.0)  lim 0 _}%u, Hsf) = v(f)

exists and is independent of z. Now
(12.11) |P'Hsf — PWHgf| < 2|f| .@P‘(az, dy)P,(Ts < 1).

By (3.18), P,(Ts < 1) < 2P,(X; eC) for some compact set
C such that |0C| = 0. Thus we see that the right hand side
of (12.11) 1s dominated by

2|fIPx(Xpsa € C). As  (Py(Xpsy € C))[r(t) >
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as t — oo uniformly in 2 on compacts, we see that uniformly
In z on compacts

(12.12) tim P28 — (),

This establishes the lemma.

Proof of Theorem 12.1. — It follows at once from Lemma
12.3 that for any ¢ €C,, :

t
(12.13) im & PH) g0y,
t>% r(t)
From (12.13) and Lemma 12.1 we see at once that for any

feC(®), v(f)=(us, ). In the non-singular case f can be
any bounded measurable function and we must show that
v(f) = (w8, f) for all bounded measurable functions f. From
Lemma 12.3 it follows by a theorem of Nikodym (see [3],
p- 160) that there is a finite measure y such that (v, f) = y(f).
Since every finite measure on & 1is regular and

(v, ) = x(f) = (o, f) forall feC(®)
we see that y = pp. This completes the proof.
Cororrary 12.1 — Let Be®. Then for any fe® and
¢ <C,
(12.14) 1imM (@) foPuf #(x) da.

t>o0

Moreover, if Beﬂﬁ* and fe®* then uniformly in z on
compacts,

(12.15) Lim

t>x

Proof. — Equatlons (12.14) and (12.15) follow at once
from (12.1) and (12.2) and Theorem 5.3 via the relation

P!Gyf = P'Gf — P'HyGf.

PGBf (P,(Tw = 0)f(x) da.

13. Asymptotic Behaviour of the Last Hitting Time.

Throughout this section we will assume that X, 1s a tran-
sient process and that B 1is a relatively compact set. We will
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also assume that X, satisfies Condition 1. Our purpose is to
investigate the behaviour of E,[f(Xw,.); Ws > ¢, Tz < 0]
for large t. Throughout this section r(f) will be the reference
time function introduced in § 12.

Prorosition 13.1. — Let Be®, fe®, and ¢ C, Then
(13.1) Eq[f(Xw,-); We>t, Ts< 0]~ J(o)(iZs, f)r(t), t—>oo0.
Proof. — Using Proposition 11.2 we can write

E,[f(Xw,); W > t, Ty < ]

Equation (13.1) now follows from Theorem 5.3.

We will now show that the unsmoothed version of this
result holds for nice sets in general or arbitrary sets in the
non-singular case. To this end we will need the following.

Lemma 13.1. — Let fe ®*. Then uniformly in z on com-
pacts and uniformly in © on compact time intervals,

(132)  limTm o f R¥(x, dy)P*f(y) =

Krf@ t>o r

Proof. — By Theorem 5.3 we know that uniformly in (z, 7)
on compacts,
. R*f(z) _
lim r(t) - J(f)7

t>o

and as
R*f(z) = fo Rz, dy)P*(y)

we see that uniformly in (a: 7) on compacts
3 = lim 75 s R, d)Pf(y)
But also uniformly in (z, 1') on compacts,

(13.4) limlim [ "’”’ dy)P ) = lim |* Pf(y) J(f).

EA@ t> | ¥

Equation (13.2) now follows from (13.3) and (13.4).
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Taeorem 13.1. — Let Be®* and let fe ®*. Then uni-
formly in x on compacts,

(135) lim E.[f(Xw,); V:’(;;)> t,Ts < 0] _ (m, ).

Proof. — It suffices to prove the theorem for fe(¢*)*.
Observe that for = > 0

(13.6) E.[f(Xw,), T < Ws < 7 + 1]
= Jo P(z, dy)E,[f(Xw,);Ws < 1, Ts < o]
and thus
(13.7)  f7 E[f(Xw, ), 7 < Wy < = + 1] d=
= [y Rz, dy)E,[f(Xw,); Ws < 1, T < oo].
Now by Theorem 9.2 E,[f(Xw,_); Ws <1, Tp < o] is

continuous a.e. y when Be%, and feC, and thus by
Theorem 5.3 and Theorem 11.2 :

(18.8) limlim R dy) E,[f(Xw,); Ws < 1, Tg < o]

_fE Xw,, p <1, Tp < o] dy = (s, f).

Now observe that
E[f(Xw,—); Ws <1, Ts < 0] < |fll.Py(Ts < 1)
and by (3.19) for some compact set C, |dC|] =0,
P,(Ts < 1) < 2P,(X,; eC).
Thus by Lemma 13.1
im Tm L [ Riz,dy) :
11{1;% lim . Je. r(t) E,[f(Xw,); wB <1, Ty < ©]dy
2|11 hm hm f (@, dy) Py, C) = 0.

We have thus shown that the right hand side of (13.7) 1s

asymptotic to r(t)(zs, f), the convergence being uniform
in z on compacts. Now

L7 Ef(Xw)s < Wa < =+ 1] d
= Esz(Xw, . Wa > s, Ta < @] ds



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 253

and so as (r(t -+ 1))/r(t) > 1, we see that uniformly in z
on compacts,
T E.[f(Xw,); W<Bt>> t; Tg < 0]
t>oo r
— T Bl (Xw,)s W > 0 415 Ts < @] r(t + 1)
t>0 rit+ 1) r(t)

and similarly

(s, f) < lim Eaolf(Xw,);Ws > t]

t>0 r<t>
Thus (13.5) holds.
There is a strengthening of Theorem 13.1 that is possible
when for some t > 0 the group &, 15 &.

< (uss f)

Taeorem 13.2. — Let Be®B* and let fe®*. Assume
that for some t > O the group &, is &. Then for any h > 0,
uniformly in x on compacts,

E.[f(Xw,-); t < Wg < t 4 h] ~ p(t)(us, f)h,
where p(t) = [2 Pth(a)h(z) da, he Cz, J(h) = 1.

Proof. — The proof follows from the ratio theorem by an
argument similar to that used to prove Theorem 13.1.The
details will be omitted.

Remark. — By Proposition 5.3 the assumptions of Theorem
13.2 are always satisfied if the process is non-singular.

14. Asymptotic Behaviour of the First Hitting Time.

Throughout this section we will assume that X, is a
transient process. If Condition 1 is not satisfied and fe ®*
R'f = 0(e™) for some constant y > 0, so in this case
fo“ Rif dt < . Suppose Condition 1 is satisfied. Then by
Theorem 5.3 either ‘/om Rifdt=co forall f e (®*)* with J(f) > O or

‘fom R'f dt < o for all such functions f. Once again r(t)

will be the reference time function introduced in § 12.
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DeriniTioN 14.1. — A transient process is called weakly

transient if /(; - r(t) dt = co. It is called strongly transient if

j(; ) r(t) dt < .
We now turn our attention to the asymptotic behaviour of
E.[f(Xg,);t < Ts < ©o]. We will first investigate

fo’ E,[f(Xz,); t < Ty < o] dt.

Tueorem 14.1. — If X, us strongly transient, then for any
fe® and any set Be®,

(14.1) fo " E,[f(Xz);t < Ts < o] dt = GeHyf(2).

On the other hand if X, s weakly transient then for B e #*
and fe ®*,
(14.2) [TE[f(Xs);t < Ty < o] dt
~ (s [)Po(Ts = o) [ r(t) dt
the convergence being uniform in x on compacts.

Proof. — It suffices to prove the theorem for f> 0. Assume
X, is strongly transient. By (3.19) we can find a compact set
K such that ®p(z) < 2G(z, K) and thus

P'Hef < |fIP'®s < Ri(z, K)|f]
and thus if X, is strongly transient we see that

ST PHL|f] dt < oo

Now
(14.3) E,[f(Xs,); t < Tp < ]
= [o.PuTs > t, X,edy)Hsf(y)

and as the right hand side is dominated by P'Hg|f| we see
that

S dt f, Pu(Ts > t, X, = dy)Haf(y) = GyHaf(2) < .
This establishes (14.1).
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Now assume X, is weakly transient, fe ®* and B e ®*.
From (14.3) we see that

(14.4) E.[f(Xr,); ¢t < Ty < ]
=PHyf — [ [ P(Tyeds, Xr,edy)P~Huf(y)
and thus
(145) [TE,[f(Xx); t < Ts < 0] di
= [TPHsfdt — [T [P(Ts < t, Xr, < dy)P~Hyf(y) dt

Now a weakly transient process must satisfy Condition 1

and thus from Theorem 12.1

S Hf (@) dt ~ (wn, f) [ () dt.

Also from that same theorem we see that given ¢ > 0 there
is a &, such that for ¢ > ¢, and all zeB

(1 — <)(ws, f)r(t) < P'Hof(x) < (1 + <) (us, )r(e)-
Thus
(14.6) [ [TUPTa < t, Xu, « dy)P—Hyf (y) dt
<+ )um ) [ PuTs < Or(x — 1) de
< (L4 €)us ) [ PulTs < t)r(z — 8) dt.

Since P, (Ty < t)4 P,(Ts < ) a simple summability argu-
ment shows that

(14.7) lim fot P,(Ts < t)r(v — 1) dt

“he S () de

= P,(Tp < o).
Also
fa T;., Py(Ty < t, Xe, e dy)P™"Hyf(y) dt

<Al [ [ PuTs < t, Xu, « dy)P—Hal(y)
<Ifl J7, PulTs < 1) dt < |f16Po(Ts < 7) < [flte.

12
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Thus

P.(Ts < ¢, Xa, < dy)P—H,
(14.8) fm J5.J Pl b Ko, e IPTILG) _,

T>0 r )

It follows from (14.6), (14.7) and (14.8) that

< t, Xq, e dy)P™H
(14.9) Tm f f 1, < dy) of ()

o fo r(t) dt

S (1 + s)(f"Ba f)Pw(TB < OO)

“

Similar arguments show that

(14.10) lim fifor Po(Ts < t, Xr, « dy)P™"Hyf(y)

= ST r(e) de

> (1 — ¢)(en, Po(T < o),

The desired result (15.2) now follows from (14.5), (14.9),
(14.10) and Theorem 12.1.

We will now obtain the second term in the asymptotic
expansion of Eg(t, A) for a set Be®. For this purpose it
is more convenient to deal with functions rather than sets.

Define E4if by
b = Jo Enlt, dy)f(y)-

Tueorem 14.2. — If X, is strongly transient then for any
relatively compact set B and any fe @t

(14.11) Eif — t(us, )1 fo Pu(To < ©)Hof(2) dz < oo

On the other hand, if X, is weakly transient, then for fe (®*)*
and Be®*

(14.12) Eif — tus, f) ~ C(B)(us, ) [ (<) d=.

Proof. — Suppose X, 1s strongly transient. By Theorem 11.1
we can write

en, ) = fo PolTo = @)E,[f(Xa); Ta < 1] da.

(The integral over & rather than B’ is permissible since
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P, (Ts = 0) =0 for zeB). Hence
(14.13) Eif—t(us, )= fy Po(To< 0)E,[f(Xx,); Ta<t] dz.

From (14.13) it 1s clear that E{f — t(us, f) is increasing with
t increasing. Also

|Eo[f(X,); Te < t]| < [fIP(Ts < 2).

Using Proposition 3.6 and Theorem 8.1 we see that there is
a compact set K such that for all ¢ > 0

(14.14)  fg Po(Ts < 00)P,(Tp < 1) da

— [ us (dy) [y Gly, d2)Po(Ts < ¢)
<2 fun(dy) [ Ry, K) ds

Since the process is strongly transient,

Jws (dy) [ Re(y, K) ds < co.
Consequently,

lim [ PTs < 0)E.[f(Xr); Tn < ) do
= fo Pu(Ts < oo)HBf( z) dz < o

as desired.

Assume now that X, is weakly transient and let f and
B be as stated in the hypothesis. Using (11.4) and our duality
relations we can write

E5"f — Ebf — (us, f)
= Jo Elf(Xn)5t < T < t + 1] dz — (s, f)
= Jo Jo Pu(Ts > ¢, X, € dy)E,[f(Xx,), Tn < 1] dz — (un, /)
= Ju Po(Ts > OB,[f(Xr,); Ts < 1] — (s, f)
= Jo. Pyt < Ta < ©)E,[f(Xz,); Ta < 1] dy.
In other words

(14.15) E&Hf — Ebf — (s, [)
— f P,(t < T < oO)Ey[f(XT,); Te < 1] dy

B’
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and thus

S LB — Ebf) — (e, )] de
= [Tdt [ Pyt < Ts < @)E,[f(Xx,); Ts < 1] dy.

Observe that

|7 (Bd#f — B — (s, f)] dt — [B5f — =(un, /)]
< E}lf] + |EEf — Eif|
< EMfl + Ifl fy Pu(Ta > ©)P.(Ts < 1) da
— E}|f| + IfIC(B) < © as *— o0,

and thus as ‘/o‘w r(t) dt = o we see that

(14.47) lim ﬁ__w ST (EPf — Bbf — (un, f)] dt
’ — [E3f — =(us, /)]l = 0.

Thus to establish (14.12) it suffices then to show that

(14.18) lim £ (Esf — Eif — (us, f)] dt

e () de
Let K be compact. Then by Theorem 14.1
St [Pyt < T < 0)E,[f(Xx,); Ts < 1] dy
lim
> Sty de
B) /. Py(Ts = 0)B,[f(Xx,); To < 1] dy.

By (11.4) as K4 @® the right hand side converges to
C(B)(us, f). Thus to establish the result we need to show that

(14.19)

= C(B)(s, f)-

dtf P,(t < Ts < 0)E,[f(Xr,); Ts < 1] dy
lim Iim ¢
KAQ t>w

fo r(t) dt

Now

= 0.

E,[f(Xr,); Ts < 1] < [fIP,(Ts < 1)
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so 1t suffices to show

limmfo’dt Jo Pyt < Tw < 0)Py(T5 < 1) dy

K4S e Sty de

Now using Theorem 8.1

Jo Pyt < To < 00)P,(Ts

= 0.

N

) dy

s POu(y)P(Ts < 1)1k (y) dy
By(x
us (dz

I

Il
\\\ >

) Jo, PHa, dy)P(Ts < 1) da
) Ji. RYz, dy)P,(Ts < 1).

By (3.18) we can find a compact set A, [9A| = 0, such that
forall ye@®, P(Ts < 1) < 2P(y, A). Hence

Jo Pyt < Tw < 0)P(Ts < 1) d
2fm, dz) [., RYz, dy)P(y, A).
We then know by Lemma 13.1 that uniformly on compacts,

_ Rz, dy)P,(Ts < 1
lim Iim <& (= dy)Py| ) = 0.
KAQ t>xo r(t)

Since fo ) r(t) dt = oo it follows that uniformly on compacts,

= 0.

" dr [, Ri(z, dy)P,(T5 < 1)
lim im
K t>w0
1o JALCK”

This completes the proof.
Examples show that, in general, Théorem 14.2 is the
best one can do on the asymptotic behaviour of

Pz(t < TB < O, XTBE A.).

However, under more restrictive conditions, stronger results
are possible.

Tueorem 143. — Let Be®* and fe®* If

sup r(t)[r(2t) < oo,
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then, uniformly in z on compacts,

(1620) E[f(Xx), t < Ta < @] ~ Py(Ts = o0)(unf)r(t).
Also for any h > 0 and fe®* for Be %"

(16.20) B < Bf — hun, £) ~ C(B)(n)r(0)

Proof. — It suffices to consider f > 0. From (14.4) we
know that

E.[f(Xs,); t < Ts < o]
=PHy — [ [P(Toeds, X, edy)P—~Huf(y)
By Theorem 12.1
P'Hyf(z) ~ (18, f)r(t)
and also by Theorem 12.1

L Sl PTaeds, Xa, e dyPHaf(y)
T3>0 .t->ao r( t)

—lim P,(Ta < )(en, f) = Pul(Ta < )(un, /).

To»00

Thus to establish (14.20) we need to show that

(14.22) lim hm—— [P, (Toeds, X, «dy)P—~Haf(y) =

T>% t>® r\

To this end, decompose f as ‘/Tl ;ﬁtl2+ t:r—{—

Now

fo S PTyeds, X, < dy)P=Hy f§/2>
< IfLL L™ PuTaeds, X, = dy)P—0s.

2

Since Py is decreasing as t increases, P'~®y < P72y,

© < s < t/2. Thus

L [ PToeds, X, < dy)P—Haf(y)
< Ifl [ Pulx < To < t[2, Xu, « dy)P20y(y).

It follows from Theorem 12.1 and the fact that r(t) is decrea-
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sing and strictly positive for all ¢ > 0 that there is a constant
« < o such that P'‘®s < ar(t), t > 0. Thus

lim G —— [ [ P(Ty e ds, X,  dy)P~Hyf (y)

T»0 t>w r(t) B J71

< lim sup T2) GIAICB)P.(s < Ty < w) = 0.

o t>0 It

Now, again using the monotonicity of P‘®s, we find that

k f/ A(Taeds, X, edy)P—~Hyf(y)
< LIfIP.(t2 < To < t — =, Xx, « dy)P®a(y)
< |flar(z)P.(t/2 < Ty < o).
But
P.(t/2 < Ty < o) < P!20y(z) < ar(t/2).
Hence

limFm — [ P,(Ta e ds, X, < dy)P~"Haf(y)

T>0 t>w r(t)

< lim ||f]«? sup r(t2) r(z) = 0.
>0 t>0 T
Finally,

k f (Tseds, X, edy)P “‘HBf(y) < |fIP(t — = < Ts < 0.

Once again using the fact that there is an A e®, |dA| =0,
such that P (Tp < 7) < 2P(X; e A) we see that
P_,c(t—"l' < TB < t)
<2 [[P(Ts > t — 7, X, . e dy)P,(X. € A)
< 2 [ PX,cedy)P(X. e A) = 2P,(X,c A).
But
lim P (X,eA)

t>o0 r(t) - 0

SO

4 —~ -
lim 5 . fyPo(To e ds, X, & dy)P=Thaf(y) =

t>x I

This establishes (14.20).
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To establish (14.21) note that by the same computation
that yielded (14.15) we can show that

E§tf — E'f — h(ps, f) A
:f' Pyt < Tp < ©)E,]f(Xy,); Te < h] dy

B

Using (14.20) one easily shows that

im lim f(t < Ts < 0)E,[f(Xe,); T < h] _
W f r(2) = C(B)(ws, )k

so to establish (14.21) it must be shown that

lim fim —— f P,(t < Ts < ©)E,[f(Xz,); Ta < k] dy = 0.

K¢@ t>»o r

But this follows from Lemma 13.1, (3.18), and the estimate

Jo Pt < Ts < @)E,[f(Xn,); Ty < ]
< Ifl [, P®s(y)P,(Ts < h) dy
= 1fl 5 s (d2) [, Rz, dy)P,(Ts < k)
< 2fl s (d)R¥(z, dy)PH(y, A)

for a suitable set A e®, |9A| = 0. This establishes the
theorem.

15. Behavior Along the Path.

Throughout this section X, will be a transient i.d. process.
For Brownian motion on R% d > 3, it is well known that
for any feC, and any geC, such that J(g) # 0,

a5 tm CEY) _ 3()

== Gg,(0)  J(g

Examples show however that even for quite nice 1.d. process
the ratio’s Gf,(y)/Gg.(0) in general have no limit as z - .
Note however that whenever these ratios have a limit then
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for any ze @,

- Gfx(y) _ ()] _
(15.2) P. [I,LT Ggx,(0) J(g)] =1

Now 1t 1s plausable that (15.2) may hold in wide generality
even if the limits in (15.1) fail to exist. Indeed, from our results
in § 10 we know that for any type II process with m > 0,
lim Gf,(y) = J(f), and as P,J[X,—> 4+ o]=1 for all

ze® it follows easily that (15.2) holds for any type II process.
We will now show that this is true for any i.d. process.

TaeoreM 15.1. — Let fe® andlet ge® have J(g) # 0.
Then for ae. ze@,

- Gfx(y) _ J()] _
(15.3) Pe [1,‘31‘ Ggx,(0) J(g)] =1

Moreover, if f and geC,, then (15.3) holds for all ze@®.

To prove the theorem we will need several lemmas.

Lemma 15.1. — There is a function re C(®)n L,(®), r > 0,

Jir)=1 and Gr > 0 and continuous.

Proof. — Such an r is easily constructed using Urysohn’s
lemma and the second countability of &. We omit the details.

Lemma 15.2. — Let r be as in Lemma 15.1 and assume the
process X, 1is started with density r. Let B be a relatively
compact set having positive capacity and define Y, t > 0 as
follows: Yy = Xw,- if Ts < o0 and Y, =A elsewhere.
For t >0 take Y,= Xw,, if W >t and Ty < © and
take Y, = A elsewhere. Then Y, is a sub-Markoy process on
[Ts < ©] having transition operator QYz, dy) given by

t P{(x, dy)Gr(y)
d —_ L -
Q (x? y) Gr(x)
and initial measure fp (dz)Gr(z).

Proof. — A function defined on & will be extended to
G u {A} Dbe defining f(A) =0.
Let fi, 0 < k < n bein C/ and let

0O<h <hy< -+ <h, < .
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Then

ST B (YA (Yen,) -+ fulYen ) Je de
= fom Er{fo(Xw,—g)ﬂ(Xw,_,_,,,) cee
f(XW., —t-n); Wy >t+h, Ty < o}le™ dt

= E %fw _h" n : "— {X“+hn n—q) e
fo(Xgin,)e X Ws™—9 ds; Ty < 0}

= Jor@) dy fg - Jo [ dsP(y, iz

. Ph"—h"_’(xm dxn—l)fn l(xn—l) s Ph’(xl’ dxo)fo(xo)
. E,(e7Ws; Tp < )

= Jo r(y dy@ - [y Gly, dz)fu(z,)

Ph —h"_‘<mm dmn— )fn—-l(xn—l) LR Ph‘(m’ dx‘))
£ (20) B 6-%; Ty < o).

Now f G(y, dz,) dy has density Gr(z,), so applying

our duahty relatlons we see that

(15.4)  [TEAf(Y) - ful Yo )e dt}

= o o Ao Ty < 0)fal0) P20, da)fu(a) -

Pintns(2,_y,  da,)fu(2,)Gr(x,).
By (11.11) we see that

E,(e*%s; Ty < ) dzy = GsGda,)
and thus the right hand side of (15.4) can be written as

(15.5)  fo -+ fo EnGHdzo)fo(@)P*(z0, dzy)fy(z1) - ..
Platos(z,_y, da,)fo(@) Gr(z,).

Thus for a.e. ¢
(15.6) E[fo(Y) ... failYun)] = Ié, 2P (dzo)fo(2o)d (o)

where

b(zo) = f f Pl’ (2o, dzy) ...
Phtoci(@, g, da)fy(@1) - - - ful@a)Gr(,)-

Since Gr(z) is continuous so is ¢(z). Hence the right hand
side of (15.6) is right continuous for ¢t > 0. Arguing as the
proof of Proposition 11.2 we can show that the left hand side



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 265

of (15.6) is right continuous at 0 and thus from (15.6) we see
that

(15.7) B lfo(Yo)fu(Yn) - fulYa)) = [ s (da)folzo)b(0)

= [y @s (dzo)fo(ao) [y -- - fo P"(z, day) ...

Phro—tns(x,_1, da,)fy(@y) .. . fu(2a)Gr(,).
Using the fact that Gr > 0 we can rewrite (15.7) as

(158) Er[fO(YO) A fn(Yh,.)]
— [ fo e (dao)Gr{z)Q(wo, day) - .. Qnte(z, .y, da,)
. f0<IL‘0) e fn(xn)’

This establishes the lemma.

Lemma 15.3. — Let r and Y, be as in Lemma 15.2. For
fe® define K. f(z) by
Gf(x)
K, f(z) = 2%,
Then

(15.9) P, [lim K.f(X) = J(f)] = 1.

t>»oo

The proof of this lemma uses the clever Martlngale argument

of Hunt [6].
Proof. — It suffices to consider f> 0. Let s < t. Then
E{Kf ,Yua u < sp= E{Krf(Yt)le} -
_ /@; Q=(Y,, dz)K.f(z) = f P=(Y,, dz)Gr(z) Gf(x)

pt—sY LG CFY Gr(Y,) Gr(z)
Jo ) crm = K.f(Y).

It follows from this that K,f(Y,) 1s a supermartingale. Let
0 < a < b < . The number of downcrossings of (a, b) by
K, f(X,) on [0, Wg] is the same as the number of upcros-
sings of (a, 0) by K.(Y,). Let U(a, b) denote this number
of upcrossings. Then by the upcrossing inequality for super-
martingales we see that

(b — a)EU(a, b) < E[Kf(Yo)].
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Letting D(a, b) be the number of downcrossings of (a, b)
by K.f(X,) we see that

(b — a)ED(a, b) < E.[Kf(Yo)] = E[K,f(Xw,-); Ts < o].
But using Proposition 11.2
(15.10) E,[K,f(Xw,-); Ts < ] f (do)G f< ) da
=fﬁ (dz)G
= (f, ®s)
Thus
(b — a)E,D(a, b) < (f, ®s).

As B} ®, Wy} 0 and Tg| O so that the number of down-
crossmgs of (a, b) by K,f(X,) for te(0, ©) is bounded
mn expectation by (b — a)‘lJ(f). It follows that K,f(X,)
has a limit a.s. as ¢t — co. Denote this mit by &. Hence
P(lim K,f(X,) = &) = 1. Then for integer n

P.(lm K, f(X,) =&) = 1.
But then £ 1s measurable on the o-field of sets invariant
under a finite permutation of coordinates X, — X, ,,
n=1,2, ... so by the Hewitt-Savage 0 — 1 law for some

constant «(f) (that may depend also on r) P (§ = «(f)) =1
and thus

(15.11) P,(lim K,f(X,) = a(f)) = 1.

From (15.10) we see that
(15.12) lim E[K,f(Xw,_); Ts < o] = hm (f, ®5) = J(f).
BAG B\G®

Since Wy} oo as B} ® we see from (15.11) and (15.12)
that

(15.13)  o(f) = E[lim K f(X)] =lim E,Kf(X,

It follows from (15.12) and (15.13) that «(f) = J(f) and thus
P, [lim K,f(X) = J(f)] = 1

as desired.
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We may now prove the theorem.

Proof of Theorem 15.1. — For any z and ye®
Gfy(z) = Gf(z — y) = Gf-o(— y)

and thus
(15.14) Gf-y(X)) = Gf-x,(y) = Gfz,(y)

Hence applying Lemma 15.3 to the reverse process for the
function f_, we see that

P, [tim Sfxly) 3] =1

= Gry,(0)
By taking ratio’s it follows from this that if J(g) # 0 then
Gfx(y) _ J()Y
15.15 P, | hm =240 = = 1.
o1 i Gan®) ~ 1)

Finally, as r > 0 we see from (15.15) that (15.3) holds for

a.e. .
We will now show that for f and geC, we can strengthen
the a.e. 2 to all z. From (15.3) we know that

Lim G(— X¢7A+x)= |Al
S G(—X,B+ta) B

for any two relatively compact sets such that |B| > 0. Assume
now that A and B are also such that |[dA| = |0B| = 0. By
Propositions 2.1 and 2.2 of [11] we can then find compact
sets A, and B, open sets A, and B, and symmetric
neighborhoods S, of 0 such that

A, + S,cAcAl+ S,
B, +S,cBcB, + 5,

and |A, — A, < —ri? B, — B,| < % Hence there are

P,

=1, ae. =z

points z, and y,eS, such that

p, [tim &= Xu A, +2) _ |A|
>0 G(— X,, B, + z,) | B,

and

Gl— Xy AL+y) _ AYT7
Py [lim GO = ] =t
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But as

G(— Xy Ay +a) _ G(— X
G(— X, B, + ) - G(— X,

we see that

1A _ X, A) _ ——G(—X
P"[|B'| < ,Si‘ G( X, B) S R GCX,

Letting n —> o we see that

G(— X, A) _|A]7 _
P, [{LTG( X, B)“|B|]"1'

Since [d(A 4 z)|] = |dA]| 1t follows that for any ze®

G(— X, A7 _
(15.16) P, [13) n G(—x—,,B—)] =1.

But, keeping B fixed (15.16) asserts that the measures
G(— X, +)/G(— X,, B) converge weakly a.s. P, to |.|/|B].
It follows that for any feC,

Gf(—X) _ I _
(1547) P, [{L‘i‘ G(— X, B) |B|]—1’

and thus by taking ratios we see that (15.3) holds for all =z
whenever fe(C, and ge(, This completes the proof.

Cororrary 151, — Let f and ¢e® and let geC,
J(g) # 0. Then for all ze@®,

- (Gfsy 0) _ J(NI(@)] _
(1518) P, [lim el = SHE] =1

Proof. — Note that
Jo Gfey)o(y) dy = [; G0, dz) [; fu(z + y)o(y) dy
= G¢Xt<0)

where {¢(z f f(x + y)¢(y). Using the fact that ¢ eC,
we see that (15.18) follows from Theorem 15.1.
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CoroLLARrY 15.2. — Let B be a relatively compact set. For
any fe® and ge®, J(g) #0

Gofe) _ I pm _ o] — e
(1549) P, |lim o 0 — J(g)Py(TB——oo)]-—ia.e.x .

Moreover iof f and geC, then (15.19) holds for all ze@®.
In addition if feC, geC, and ¢ € ® then for z®,

Gof: cp

15.20) P, lim { BXL’ P(T dy|=1.
(15.20) I e (0 f ) (y) y]
Proof. — It suffices to prove these results for f > 0. Given

such an f we can find an reCy, J(r) # 0 such that

sup f_,(x) < r(z).

YEB

But then for any yeB,

0 < Gfxy) = Gf(—
= [y G(— X, da)f-,(z) < Gr(— X)) = Grx(0).

Thus if Grg,(0) > 0 we see that

Gfx,(y)
(1521) 0 < ‘(—}—r‘x—:@ <1
and also
Gfx,( y Gfxt Gfo,(y)
(15:22) Gre(0) — J; Haly, d Gra(0) — Gre,(0)

The first two assertions of the corollary now follow from (15.22)
and Theorem 15.1. Similarly, the last assertion of the corollary
follows from (15.21), (15.22), Theorem 15.1 and Corollary
15.1.

CororrLary 15.3. — Let B be a relatively compact set. Let
fy 0e® and let ge®, J(g) # 0. Then for ae. 2@

(15.23) P, [lim (f- e GB‘*’ f P(Tu=0)e(y) dy|=1.

t>0

Moreover (15.23) holds for all ze® if f and geC..
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Proof. — Using our duality relations we see that
g y

(f-xo Gso) = (¢, Gof-x,) = (¢, Gofz,)-

The assertions of the theorem now follow from Corollary

15.2.

An unsmoothed version of (15.23) will be given in Theorem
15.3.

For Brownian motion on R% d > 3 it is well-known that
for any Be® and any feC,

i (X0 T < o] = ()

Examples show that in general an 1.d. process does not have
such limits existing. Our next result will be to show that such
limits always exist if we go to infinity along the path of the
reverse process. We first state a smoothed version of this
result. The unsmoothed version (valid for sets in %,) will
be taken up after this.

Taeorem 15.2. — Let B be any relatively compact set
andlet f,geC,J(g) # 0 andlet ¢ € C(®). Then forall ze®,

- (f_x, Hyo) _ J(f) _
(15.24) P, [lim Xy = T ?)] =1

and if C(B) > 0 then for all €@,

(1525) P, [lim Bfgfo(Xe)|Ts < ] = 28] —1

Proof. — It suffices to prove the theorem for functions
f, ¢ and g that are non-negative. Henceforth in the proof
we will assume this is the case. Now

(f-xo HuGe) = (f-x, Go) — (f-x, Guo)
and so by Corollaries 15.1 and 15.3 we see that for all ze ®,

o (Foxe HoGe) _ 3(f) g 1 _
i e WS (P (@ o)) =1

and so by Theorem 8.1, for all ze @,

- (f-xp, HeGo) _ J(f) _
(15:26) P, [1,‘33 Gex0) — J(g W Gq’)] =t
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Since feCy and B is compact we can find reC} such that
J(r) > 0 and such that

sup f_,(z) < r(z)

YEB

and thus for all yeB,
0 < Gfx(y) = Gf_,(X) < Gr(X,).
Now by Theorem 8.1 and the above
(15.27) (fx, ®s) = (&s, Gf-x) < C(B)Gr(X))
and thus if Gr(X,) > 0

(foxp P8) _ &
0 < —m < C(B)

Thus by dominated convergence and Theorem 15.1, for all

ze®,

- (foxp Ps) _ I(f) & _
(1528) P, |lim e = T C(B)]_i.

Consequently there 1s a subsequence t,(w) - c© and a finite
measure y(w, dy) supported on B such that for any ¢ € C(®),

_x,, Hg
w20 P fim Gpe it — g, o] =1

In particular, G¢ € C(®) whenever ¢ eC, and thus from
(15.29) and (15.26) we see that for all ze ®,

1530 P.[(r, Go) = 3, Go)]= 1.

Since & is 2'nd countable C}(®) 1s separable and so
we can find a sequence {¢,}, ¢, C+ such that any ¢ eC;}
can be uniformly approximated by a subsequence of the o,
all of whose supports are contained in some fixed compact
set (depending on ¢ of course). From (15.30) it follows that

P, [(Y, Go,) = ig% (ks, Go,), n =1, 2, ] =1

13
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and thus by the usual 3 epsilon argument for any ¢ eC}

P. [(v, Go) = T un, Go)] = 1.

J(r)
Consequently, by Theorem 6.1 (for A = 0) we see that
_JN 1=
(15.31) Pm[y-—-JU>uB]-—-L

If there was another subsequence of the measures
f—szB/Gr( Xt)

that converged weakly a.s. P, the same argument would
show the limit measure to be [J(f)/J(r)]us. Thus we have
shown that for any ¢ eC(®

Tlim (f-x,, Hed) _ J(f) _
P, [tim T oW = T em 0] = 1.

Equation (15.24) follows at once from this by taking
ratios in using Theorem 15.1. Finally if C(B) > 0 then
(15.25) follows from (15.22) by applying it to the functions ¢
and 1 and taking ratios. This completes the proof.

In general the smoothed results in Theorem 15.2 and in
Corollary 15.3 are the best that are possible for arbitrary
sets in $. We will now show that the smoothing can be
dropped for sets in &,.

Tueorem 15.3. — Let Be®B, and let ¢ € C(®). Then for
geC, J(g) # 0 and all 2 ®,

(15.33) P, [lim Hgo(— X)) _ (1-By ‘P)] —1

e Gg(X,) J(g)
and
: __ (“‘B, <P) _
umgnqgﬂmmwn<m_1®ﬂ_L
Also, for any ¢ € C, and geC, such that J(g) # 0,
(15.35) P, [lim S22(= %)
e Gg(Xy)

for all ze@®.
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Proof. — It suffices to consider ¢ and non-negative.
g g

Let A be compact and let AcB. By Proposition 2.1 of
[11] we can then find a symmetric open neighborhood S

of 0 such that A — ScB. Thus for any yebS, Ty, > Ty
and so for feCg

(15.36) E, [~ f(Xc+y)de < B, [7f(X) di

Suppose [ is such that Gf(z) > 0 for all 2 eB. Then given
e > 0 there is an open neighborhood N of 0, NecS and
[oN] =0 such that for ye N and xzeB,

(15.37) (1 — )Gf(z) < Gf_,(z) < (1 + ¢)Gf(z).
For such an [ then we see from (15.36) and (15.37) that for
all ze®,
JoHAG (@ + y) dy < (1 + <)| N HuGf ().

From Theorem 15.2 we then obtain

(0 GF) _ g o oy g HoGF(— X)7 _
P”[ I <o Gg(X,) ] !

and as & 1s arbitrary we see that for any feC¢ such that

Gf>0 on B

(ea> Gf) < lim HpGf(— X)) —
(15.38) Pm[ T < lim o) ] 1.

Similarly, if U is a relatively compact open set, U>B and

Gf >0 on B then by an essentially the same argument
we obtain

—— HyGf(— X)) _ (w0, G _
(15.39) P, [Tim GeX) I |=2

Let A, n>1 be compact subsets of B, AjcA,c---,
UA,,:B and let U, n >1 be relatively compact open

sets, U;oU,> .-, nU,, = ﬂUn = B. It then follows
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from (15.38) and (15.39) that

(e, 1) ¢ i I X ¢ g BB X)
P"B, Gf

Now by Theorem 8.1 (us, Gf) = (f, ®3) and (ps, Gf) (f, ©z).
Since Be®,, Px(TB = TB) =1 ae. z and thus &5 = ®;

a.e. But then & = &3 = &5 a.e. and so by the uniqueness
of the equilibrium measure pg = py = pp. Thus from (15.40)

we see that for any feC, such that Gf > 0 on B

. HyGf(— (ws, Gf)
15.41) P, |lim =2 i = 1.
5.41) P, [tim Sl S = fe ]
Actually, (15.41) holds for all feC} because if Gf > 0 on

B and ¢eC! then G(f+ ¢) >0 on B. Hence (15.41)
holds for f and f -+ ¢ and therefore for .

We will now show that (15.33) holds by a weak compactness
argument using (15.41) to identify the limit function. To this
end let U be a relatively compact open set such that U > B.
By Proposition 2.1 of [11] we can find a symmetric open
neighborhood N of 0 such that B + NcU. Then for
any yeN, ®y(z) < Oy(z + y). Let heC}, J(h) =1 have
support contained in N. Then

< Jo Puly — X)h(y) dy = (h_x, Pv)
and so by Theorem 15.2 for any ze ®,

os(— X)) _ CU)T _
(15.42) P, [Fm o) J(g)]__i.

It follows from (15.42) that there 1s a sequence ¢,(w) —

and a finite measure y(w, dy) supported on B such that
for any ¢ e C(®),

(1543) P, [lim Hzg;&f)“ = (re)] =1

for all ze@®. Equation (15.33) now follows from (15.41)




INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 27D

and (15.43) by essentially the same argument used to prove
the smoothed version in Theorem 15.2. We will omit these
details. Equation (15.34) 1s a direct consequence of (15.33)
and the fact that C(B) > 0 for any Be®,. Let re(C,
J(r) = 1. Then

(Gg—x,, r) = (8-xp Gr) = (g, erz)
and thus by Corollary 15.1 and Theorem 15.1 for all ze @,
P, [lim Go(— X)) _ ;, Goxf0) (Geoxor) _ Jlo)) _ ¢
oo Ggx,(0) o= (g Gr,) Ggx(0) J(g).

Equation (15.35) now follows from this relation and (15.33)
via the first passage relation. This completes the proof.
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