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INFINITELY DIVISIBLE PROCESSES
AND THEIR POTENTIAL THEORY

(First Part) Q

by Sidney C. PORT and Charles J. STONE (2)

1. Introduction.

Let @ be a locally compact, non-compact, second coun-
table Abelian group. An infinitely divisible (i.d.) process X^
on @ is a spatially homogeneous standard Markov process
having states in ®. We will show that associated with every
such process is a corresponding potential theory that yields
definitive results on the asymptotic behavior of the process
in both space and time.

Our results are stated and proved in the general context
of an i.d. process on an arbitrary second countable locally
compact Abelian group. Most of these results are new when
applied to and i.d. process on Euclidean space.

The potential theory we develop tor i.d. processes, when
applied to Brownian processes (a particular family of i.d.
processes), yields that of classical Newtonian potentials for
Brownian motion processes on R^ d ^ 3 and that of loga-
rithmic potentials for planar Brownian motion. We may there-
fore view our potential theoretic results as an extension of
these classical results to the more general setting of i.d.
processes. In our development, both probabilistic and potential

(1) The second part will be published in vol. 21, 3.
(2) The preparation of this paper was sponsored in part by NSF Grant GP-8049.
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theoretic, we have been guided on the one hand by the known
facts due to Doob, Hunt and Kac about Brownian motion
and to Port about stable processes and on the other hand by
our previous general results on random walks, which were
based in part on earlier work of Spitzer, Kesten, and Ornstein.

Basic notation and concepts used throughout this paper
are listed in § 2. The reader should refer to this section while
reading the introduction as the need arises.

Given any continuous convolution semi-group [L1 of pro-
bability measures on ® a fundamental theorem (see [2]
Chapter I, § 9) on the construction of Markov processes assures
us that there is an i.d. process X^ such that

P,(X^A)=^(A~rr).

An i.d. process is called non-singular if for some ( > 0, [L1

has a non-trivial absolutely continuous (with respect to Haar
measure) component. Otherwise the process is called singular.
As we shall see, the strongest possible results are usually valid
for non-singular processes.

A point x e @ is called possible if for each open neigh-
borhood N of 0 there is a t > 0 such that ^(N -}- x) > 0.
The collection S of all possible points is a closed sub semi-
group of @. Throughout this paper we assume that the closed
group generated by S is ®. This assumption entails no
loss in generality and is essential to the proper formulation
of our results.

The process is called recurrent if

G(x, A) = r°° P^, A) ds = oo

for all non-empty open sets A and all points x e @. Otherwise
the process is called transient. For transient processes
G{x, A) < oo for all x e ® and all relatively compact sets
A. Every i.d. process is either transient of recurrent, and for
any recurrent process S = @. These details can be found
in § 4.

The i.d. process X^ = — X^ is called the dual process
(to X(). Quantities referring to this process are prefixed
with co-.

In § 3 we gather together various facts of a technical nature
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that are used throughout the remainder of the paper. Some of
these are of intrinsic interest.

Section 4, as mentioned above, gives the details of the
classification of an i.d. process as transient or recurrent.

In § 5 we discuss the periodicities of the process and prove
some ratio limit theorems. These theorems take their nicest
form when the process satisfies

Condition 1. — For some compact set C

lim sup ((.'(C))1/, = 1.
t->x

Condition 1 is necessarily satisfied for recurrent processes. It
is convenient to let O* denote the functions in 0 (bounded,
measurable functions having compact support) if the process
is non-singular and the functions in C<; (continuous with
compact support) otherwise. In Theorem 5.3 we suppose
that Condition 1 holds and let /"eO* and geO* with
0 ^ J(g) == f g(x) dx. We show that

or

i^.rp^)^j(n
t*" f^ P'g^x) ds J^)

^f;PY(.) ^j(y-)
C' P'gix] dx s^}
^itw / Ds

<y 0

according as the process is transient or recurrent.
For a measurable set B let TB = inf {( ^ 0 : X( e B} (== oo

if no such () denote the first hitting time of B. In § 6 we
show that to each B and X > 0 there is a unique Radon
measure ^ supported on the closure B of B such that

E,(^T») dx = ̂  {dx).

The measure ^ is called the X-capacitory measure of B
and its total mass C^B) is called the X-capacity of B. The
corresponding quantities (X^ and C^B) are called the co-X-
capacitory measure and co-X-capacity of B. The quantity
C^') is a Choquet capacity on the Borel sets having the addi-
tional properties C^B + x) = C\B) and C^— B) == C^B).
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For any Borel set B, C\B) = C\B). We call a Borel set B
essentially polar if P^(TB < oo) = 0 a.e. and essentially co-
polar if P,(.(TB < oo) == 0 a.e. The set B is essentially polar
if and only if C^(B) = 0 for some (and hence all) X > 0.
On the other hand if C\B) > 0 and S == ©, then

P.(TB < oo) > 0

a.e. x and, in the non-singular case, for all x.
The X-capacity theory developed in § 6 is applied in § 7

to investigate when a one point set is essentially polar. We
show that one point sets are not essentially polar if and only
if G^(0, dx) has a bounded density and moreover if this is
the case then a point a is regular for {a} if and only if G^O, dx)
has a bounded continuous density. We apply these results
to processes on R^ and prove the result (due to Kesten)
that one point sets are essentially polar whenever d > 2.
We also show that continuous paths having bounded variation
are also essentially polar when d ^ 3.

In § 8 we show that if B is a Borel set, then either
P^(TB < oo) = 1 a.e. x or lim P^(X^ e B for some T ^ t) = 0

t->00

a.e. Sets of the first type are called recurrent sets while those
of the latter type are called transient sets. For a recurrent
process every non-essentially polar set is a recurrent set. For
transient processes a set can be of either type but B e B (the
relatively compact Borel sets) is both transient and co-tran-
sient. One of the most important results about co-transient
sets is that associated with each such set is a unique Radon
measure [L^ supported on B such that

P.,(TB < oo) dx = ̂ G {dx).

The measure p-a is called the equilibrium measure or capaci-
tory measure of B; its total mass C(B) is called the capacity
of B and C(B) < oo whenever B e= B. In addition, C(B) = 0
if and only if B is essentially polar. The measure (IB can be
obtained as the vague limit of the measures (Jig as X ^ 0
and also as the vague limit of the measures

(x, {dx) == ̂  [OB^) - P^)] dx,
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where OB(^) == P^TB < oo). The measures (JL^ have the
common mass C(B). The set function €(•) is a Choquet
capacity on the relatively compact sets and C(B) = C(B)
for such sets. For non-relatively compact sets C(B) == C(B)
whenever B is both transient and co-transient.

Section 9 is of a technical nature. The class ^4 consists
of those B e S) with non-empty interior having the property
P^(TB == Ta) = 1 a.e. x. In this section we show that func-
tions such as

HB/^) = E,[/-(XT.) ; TB < w] and GB/N = E,[̂ 1- /-(X,) dt]

are continuous for a.e. x when B e ^4 and jfe Cg. These
results are needed for the work in later sections. We also show
that sets with a nice boundary in R^ are in ^64. For an
arbitrary ® we show that given any relatively compact
set B we can find K D B, K compact and K e ^4.

A transient i.d. process is said to be type I if lim Gf{x) = 0
X->oo

for every bounded measurable function f having compact
support. It is called type II otherwise. In § 10 we first esta-
blish the renewal theorem. According to this theorem, the
process is type II only it @ ^ R © H or (S^ZoH,
where H is compact. We suppose that ® = R ® H or
® = Z e H, Haar measure on ® being chosen as the direct
product of normalized Haar measure on H and Lebesgue
measure on R or counting measure on Z. We let ^ denote
the projection from ® to R or Z. We say that x -> + °°
or x -> — oo according as ^(x) -> + °° or ^>{x) -> — oo.
With this description, the process is type II transient if and
only if ^(X^) has finite non-zero mean m. In the type II
case if, say, m > 0, then for /*e O*

lim Gf(x) = 0 and lim Gf{x) = J^.
3;->—oo a;->-+-a0 JTl

Most of Section 10 is devoted to establishing the asymptotic
behavior of HB/^) for a type II process. Suppose m > 0.
Then C(B) < m for any co-transient set B and C(B) == m
for any co-transient recurrent set B. In addition, for any
<p e Cg, the smoothed hitting measure f^ dy ^(y)Vi^x + ? / ? * )
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converges strongly to the measure m'^J^^B as x -> — oo.
These smoothed results are the best possible for arbitrary
Borel sets and arbitrary transient type II processes. Sharper,
unsmoothed, results are obtained for special sets. For example,
if B e %4, then HB(^, ••) converges weakly to mr1^ as
x —> — oo and in the non-singular case the measure Ha(^, •)
converges strongly to m"1^ for any B e ^6.

For a Borel set B set

EB((, A) = j^ P,(TB ^ t, XT, e A) dx

and EB(<) = Ea(^ B). In Section 11 we show that for a tran-
sient process

lim [EB(< + h, A) - EB((, A)] = /^(A)
Ooo

for any A e % and co-transient set B. In addition, for such
sets,

f^ P,(TB < 00, XT,C A)P,(TB = 00) Cb == ^B(A).

For a transient set B and any Borel set A

f^ P,(WB ^ t, Xw,-e A) dx == ((XB(A),

where WB, the last hitting time of B, is undefined on
[TB == oo ] and defined on [TB < oo] by

Wa=sup {t ^ 0: X,eB}.

Sections 12-14 are concerned with the asymptotic behavior
of

P^HBAE^XW^WB > < , T B < 0)]
and

E,[AXTJ;( < TB < oo]

for large ( when X^ is a transient process satisfying Condi-
tion 1 and B is a relatively compact set. Let g e Cc, J(g) = 1,
and set r(() == f°° (g, P ' g ) ds. We show that if fe C, and
B e ^4 then

P^HB/^) - r{t){^ f)
and

E.[AXw^; Wa > t, TB < oo] - r(t)(pB, f).
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For non-singular processes these results hold for any B e %
and any /*e O. For singular processes we obtain results of
this type for sets in 93 and functions fe 0 if we first smooth
out on x.

A transient process is called strongly transient if

f^r(t) dt < oo.

It is called weakly transient if P° r(t) dt = oo. For strongly
transient processes

/°° E,[/\XTJ; t < TB < oo] dt = GaHB/^)
and

luii [EB^ A) - ̂ B(A)] = f^ P,(Ta < OO)HB(O;, A) dx

for any B e S>, A e % and fe 0. For weakly transient pro-
cesses

J^E^X^); T < TB < oo] dr - (/;r(r) ̂ ) (pL^)

and
[Ea(<; A) - ̂ a(A)] - (^r(r) rfr) C(B)(IB(A)

for sets B in ^4, functions /"eCc, and sets A such that
(AB(|^A|) = 0. For non-singular processes we may enlarge
the class of sets and functions for which these results are valid.
If the process satisfies Condition 1 and also

sup<(r(()/r(2()) < oo,

then these results can be strengthened (by omitting the inte-
gration on t in the first result). Examples show however
that in general these stronger results need not be true.

For an arbitrary transient i.d. process examples show that in
general for /*, geC,, and J(g) + 0, the ratios Gf{x)fGg[x)
need not have a limit as x -> oo. In Section 15 we first show
that these ratio's do have a limit if one goes to infinity along
the path of the dual process. More precisely we show that for
all n-e®,

P riirn G^- xt) - J-̂ 1 - 1L x L^ Gg(- X,) - J(g)J - "
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This result is used to show that for any B e ^4 and fe C,

P, [lim E.^AXrJTa < oo] = 1̂ )1 = 1
L<*» M") -1

and for g e C,, J^) ^ 0,

p-[lun^^f=J^^P-(TB=TO)^^]=l•

We also show that results of this type for arbitrary relatively
compact sets hold provided that we first smooth out on the
initial point — X^. We also show that for any B e B and
sets A and C in B such that |^A| = \bC\ =0 and
|C| > 0,

p r^Ga^A+X,) |A| -oo^l-i
' G™ G(0, C + X<) ~ |C| X[LB ~~ ^J ~ 1-

Let p.^O) denote the characteristic function of the distri-
bution of X( when XQ == 0. In Section 16 we will show that
there is a continuous function log jl(6) which vanishes only
at 6 == 0 and is such that

^(6) = e1 ̂  A6), t ^ 0 and 6 e ( .̂

We will show that the process is transient or recurrent accor-
ding as

L 91 (——1——^ dQ
JQ Vog (1(6)/

converges or diverges for a compact neighborhood Q of the
origin of (^.

In Section 17-22 the process X^ is assumed to be recurrent.
In Section 17 we define a collection 9 of integrable functions
whose Fourier transforms have compact support and which
satisfy certain other conditions (described at the beginning
of Section 17). Properties of this family of functions were
developed in [7]. We let ^?* = 9 in general and ^* = 0
in the non-singular case. For suitable positive constants
c\ X > 0, operators A^ are defined by

AY^^J^-GY.
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We will show that, for /*e 9?*, A^f has a finite limit as X ^ 0.
This limit defines the recurrent potential operator A acting
on y. Various properties of the operators A^ and A are
obtained in this section. In stating and proving these results
we must distinguish between type I and type II recurrent
processes. A recurrent process can be type II only if

® ^ R e H or ® ^ Z e H .
Suppose ® = = R © H or ® = Z © H, Haar measure and ^
being chosen as indicated above in our discussion of type II
transient processes investigated in Section 10. Then the recur-
rent process is type II if and only if ^(^i) has mean 0 and
finite variance o2.

In Section 18 we introduce a classification of the sets in £B
corresponding to a recurrent process. £Bi denotes the sets
in £B which are not essentially polar. £83 denotes the sets
in £B such that Ga^, A) is locally integrable for all compact
sets A. £63 denotes those sets in £B such that Ga{x, A) is
bounded in x for all compact sets A. Finally £84 denotes,
as discussed above, those sets in S> having a non-empty
interior and such that P^TB == Ta) == 1 for almost all
a;e=@. Then £B 2 £Bi 2 £83 3 £63 2 £64. In the non-singular case
%i == £63. We construct an example of a process such that
some set in £B having positive measure is not in £83. Such
a set is not essentially polar so that in general £81 need not
equal £62. We obtain a basic identity for sets B e £63 :

Af(x) - HBA/^) = - G^f(x) + L^{x)J{f)
for fe y and r r < = @ . Here La is non-negative, vanishes
on B, and is locally integrable. If B e £63, then LB is locally
bounded. In the type II case we set

La = La ± a2^ - HB+).

Using the above basic identity we determine the asymptotic
behavior of G^fy{x) as y -> oo. For B e £63 and fe. O*

or

lim G^{x) = LB^)J(/'), x e ®,
y>ao

lim G»f,{x) = U{x)3{f), x e @,
V.».±aoy->±w
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according as the process is type I or type II. For B e= g%
similar results hold if we smooth out on x.

In Section 19 we investigate the asymptotic behavior of
Gaf^) and HB/*(^) as x-> oo. In stating these results it is
convenient to let ^ == %i in the non-singular case and ^4
otherwise. If B e ̂  and /*€$*, then

lim G^f(x) = (/•, LB)
X-XX)

or
lim GB/^) = (/•, La)

a-.>±oo

according as the process is type I or type II. Similar results
hold for B e %2 if we smooth out on x. There is an equili-
brium probability measure (IB supported by B associated
with every B e %i. In the type II case there are also two
auxiliary probability measures (JL^ and (XB such that
piB == (^ + ^i)/2. If Be^ and fe$*, then

lim HB/^) = (A ^a)
or

lim HB/^) = (A ^)

according as the process is type I or type II. Similar results
hold for B e %i if we smooth out on x.

In Section 20 we show that there is a real-valued « Robin's
constant » A"(B) < oo associated with all sets in 35. Moreover
/c(B) > — oo if and only if B e %g. In particular, in the
non-singular case A"(B) > — oo if and only if B is not
essentially polar. The construction described above shows
that there are singular processes having sets B e & which
are not essentially polar but have — oo for their Robin's
constant. The Robin's constant is related to the other potential
theoretic quantities. For instance, in the type I case for
Be 3^ and /'e3?*

lim (A/^) - LB^)J(/*)) == k(B)J(f)
and

lim G^f(x) = (/•, La) = - k{B)J(f) + (A/; (.a).

The Robin's constant /c(B) depends on B in a nice way. Let
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B 6 S> and let B,, e S>, n 5? 1, be such that B, { and

P.,(TB, f TB as n — oo) = 1 a.e. xe ®.
Then

Hm/c(B,)=/c(B).
n>3o

We also show that /c(B) defines a Choquet capacity on %
which is translation invariant and such that

k{B) = /c(- B) = fr(B).
In Section 21 we investigate the time dependent behavior

of the process (some of the results stated here in this introduc-
tion are not proved until Section 22 in the type II case). We
show that, for B e ̂  Ee{t + s)IEa{t) -> 1 as ( -> oo and
for B and C both in %i, EB^)/EC(<) -> i as (-> oo. If
B e %3, then

lim r P,(TB ^ ^) ^/EB(^) = L^x)t->x J v

and if B eS>^ similar results hold if we smooth out on x.
In the type I case we show that for B e £B^ and fe (S>*

lim ̂  E^XrJ; TB > 5) ds/E^t) = LB^)(A ?XB).

(No corresponding results are obtained in general for sets B
in %a or even in %g). We obtain a formula tor (AB? B e ^3,
namely

^ La(y)P,(TB ^ (, XTB e A) dy = ^B(A), A e %.

We show that for B e ̂

lim ̂ -^ - ^a(A), A e % .
Ooo JiLB^}

Finally we show that for a suitable positive function g(t),
t ^ 0,

Hm^ (Ec(^) - Ea^)) ^/g(<) - ̂ (C) - /c(B)

whenever B and C are both in £B and /c(B) and /c(C)
are not both — oo.

A recurrent process satisfies Condition 2 if there is a ge ^*,
J(g) == 1^ such that for some a, 1 ̂  a ^ 2, and some
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slowly varying function H, G^g{x) ^ X"1"1"1 !̂-!̂ !/̂ ), uni-
formly in x on compacts. This condition is satisfied for every
type II process with a == 2 and H the constant function
(2/7^:)l/2(7. On R or Z this condition is satisfied for any
process in the domain of attraction of a stable law with
exponent a. In Section 22 we show that considerable streng-
thenings of the results in Section 21 are possible for processes
satisfying this condition. As examples of these we show that
for every type II process

lim [EB(< + A, A) - EB(^, A)]\A~== h^l^a^A.)
t->v>

for any B e %i and any Borel set A, and that tor any set
Be^ and /'e=<D^

limE,[/'(X^);TB > t}\Tt
= (2|n)l'2{a|2)[^{A)Lt{x) + ̂ B(A)LB^)].

For any process satisfying Condition 2
—l+2/a

[Ec(t) - EB(()] ~ [/c(C) - A(B)] H(^F(2/«)

for C e %2 and B e S>. In particular, for every type II process,

lim [Ec(() - EB(t)] = 2(T2[/c(C) - /c(B)].
(•>•<»

We also show in this section that if the process is type II,
then for B e ̂

f^_ P,(( < TB ^ t + A, X^eA) dx - A(o/2)(2/7r)^^(A)r1/2.

Let Wx) = E,[/'(XT,); TB > t]. A function f is said to
be essentially Qa invariant if for each t, QB/* = f a.e. If
Qy(^) = f(x} for all x, then /* is said to be Qa invariant.
In Section 23 we first show that every bounded essentially
QB invariant function is of the form aP^(Ta = oo) for
some constant a. For recurrent processes we show that LB
(and La in the type II case) are essentially Qa invariant
functions for sets B e= %a. For sets in ^3 the only Qa inva-
riant functions that are locally bounded and bounded from
below are multiples of La (and linear combinations of L^
and Li in the type II case).
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Let B be a closed set, not necessarily relatively compact.
The process stopped on B has transition operator aP^ given
by apy^) = Wx) + E^AXra); TB ^ t].
We define the operator AB as follows. The domain D(Aa)
consists of all measurable functions f such that

laP^N -f{x)\ ,sup sup ' ! v /——1 v / 1 ^ 1
o^«l a-e^

and
,. ^f{x) - f(x)lim -—'————'——L exists.
t^O t

For / 'eD(AB) set
A fl \ V aP^) - fWAB/(rc) = lim -—'-———L-—-

t^o t

In particular 9?* == P*, and we set Ay == A. In Section 24
we investigate Poisson's equation for A and AB. Let h e Cc.
Then for transient processes the only continuous solutions of
A/* == — h that are bounded from below are f == Gh + ^
where r is bounded from below and Ar = 0. In particular
the only bounded solutions are f = Gh + P. For recurrent
processes in general there are no such solutions. For non-
singular processes there is such a solution if and only if J(A) ^ 0
and in that case the only such solutions are f = — A.h + P
in the type I case and f = — A.h — (aj (A)/<72)^ + P m the
type II case where |a| ^1. Suppose that B ^ ^. Let
C^B7) be the continuous functions having compact support
contained in B'. For 9 a Borel function that is bounded on
B we show that the only bounded solutions of the equation
system AB^== — h, f = 9 on B, A e C ^ B ^ ) are

f{x) = G^h{x) + HB<P(^) + aP,(TB = (X))

for non-singular processes and in the general case every solution
coincides a.e. with such a function. In general there are no
continuous solutions because the functions G^h, Hey and
P^(TB = oo) need have no continuity properties. We do show
however that these functions always possess the following
stochastic regularity properties : Let T^ be stopping times
such that T^ ^ TB a.s. P,p. Then a.s. P^ HB?(X^) -> <P(XT,)
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on [TB < oo], PxJTa = oo) -^ 1 on [TB == oo], and
GB^(X^) —> 0. A measurable function f is said to be harmo-
nic on the complement B' of a closed set B if for every
open set U having compact closure contained in B7,

f{x) = E,[/'(XrJ].

A harmonic function is said to be stochastically regular if for
any sequence T^ of stopping times T^ \ TB a.s. P^, it is
true that f(XJ -> f(X^) a.s. P., on [TB < oo] and for
some constant a, /*(X^) -> a a.s. P^ on [TB =00]. We
show that every function f of the form

f(x) = Ha9^) + aP,(Ta = oo)

for 9 bounded on B is a stochastically regular harmonic
function and conversely every bounded stochastically regular
harmonic function is of this form. Using results from § 25
we show that if B is a compact set such that

P,(XT, e B^TB < oo) = 1 for all x e B^

then for <p a bounded function that is continuous at each
point of B^ the only bounded harmonic functions f on B'
such that \imf{x) = 9(r) are f(x) = H^(x) + aPJTa = oo).

a?->r

In Section 25 we show that for arbitrary Borel sets B the
functions Geh, Ha9 etc., have desirable continuity properties
whenever the i.d. process is a strong Feller process, i.e. when-
ever P^e C(®) for f a bounded Borel function. Every process
such that X( has a density for each t is such a process. For
these processes and for closed sets B we can then find solutions
to the equation system ^f = — A, f = 9 on B that are
continuous on B' u (B'' n Cy) where Cy denotes the set of
continuity points of 9 and B'* denotes the regular points
of B.

2. Notation.

In this section we introduce the notation and basic concepts
that will be used throughout this paper.

@ will be a fixed locally compact, non-compact Abelian
group. The Borel sets of ® are the elements of the minimal
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cr-field generated by the open sets. Haar measure on @ will
be denoted by |-| or dx. The phrase almost everywhere
(a.e.) will always be with respect to Haar measure, and the
phrase essentially will mean except on a set of Haar measure 0.

The complement of a set B will be denoted by B' or B0.
For a Borel set B, TB = inf { ( ^ 0 : X^ e B} (= oo if no

such () and Va = inf {( > 0 : X^eB} (= oo if no such t).
For TB < oo we define WB = sup {t ^ 0: X^eB}. If
TB = oo the random time WB is undefined.

A function f defined on ® is called universally measu-
rable if for any finite measure y on ® there are Borel
functions /i ^ /g such that f^ ^ f ̂  /g and

^ (/^) - f,(x)) dx - 0.

These functions are needed because in general some of the
quantities we deal with e.g. E^/^X-rJ; TB < oo] for B a
Borel set and f a Borel function are not Borel functions but
only universally measurable. We will state and prove our
results for Borel functions. In a few instances it will be neces-
sary to apply some of these results to universally measurable
functions. In the places where this occurs no difficulty arises
and we shall just do so without further explicit mention.

In our work we will need various classes of functions.
These are

0 : All bounded Borel functions having compact support.
(The support of f is {x: f{x) ^ 0}.)

C(@) : All bounded continuous function on ®.
Co(@) : All continuous functions vanishing at oo.
Cc(®) : All continuous functions having compact support.
9: A certain collection of integrable functions defined in

Section 16 whose Fourier transforms have compact support
and satisfy some additional technical requirements.

O* = $ if the process is non-singular,
= Cc if the process is singular.

y == 0 if the process is non-singular,
= S if the process is singular.

If ^ is any of the above class of functions /+ denotes the
collection of non-negative functions in ^.
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We introduce the notation

•W = f<s fW dx

{f, g) = f^ f(x)g(x} dx

(^ /')= ̂  f^ w
f,{x) = f{x - y).

For X > 0 we define operators on bounded Borel functions
or non-negative Borel functions as follows :

GY(^) = f; e-^x) dt = E, f; fW dt
AY(^) = W - GY(^),

where c^ is an appropriately choosen positive constant

H )̂ = E^e-^Xr.); TB < oo]
^^)=E,[^v./•(XvJ;VB< oo]
G )̂ =E,pe-^(X,)rf(
U^(a;)=E,//-.-^(X,)^.

If any of the above quantities are finite for X = 0 we denote
that operator by the same symbol without the X, e.g.
HB/-^) = HB/-(.»).

Other operators we will use are:

QB/-(;r)=E,[/TO;TB > t]
aP^-r) = Wx) + E,[/-(X^); TB < (]
R^x) == f; P-fix) ds.

We define
EB((, A) = ̂  P,(TB < f, XT. e A) ̂

EB(() = EB((, B)
CB((, A) = Ea(( + A, A) - EB((, A)

e^(t} = e},{t, B)
Ea(A) = J;00 ^'EB (^, A) = F H^a;, A) ̂
(XB(A) == XE^(A)
C^B) = ^(B)
^(a;)=Xcx^ooP,(TB> t)^^

where c^ is the constant that enters into the definition of A\
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Some constants associated with sets are
C(B) : The capacity of B. This is defined only for transient

processes (see § 8).
/c(B) : The Robin's constant of B. This is defined only

for recurrent processes (see § 20).
/c^B) : Constants related to the Robin's constant for type II

recurrent processes (see § 20).
(IB ^ The equilibrium measure of B. This is defined for

transient processes in § 8 and for recurrent processes in
§ 19.

(AB : Measures supported on B related to the equilibrium
measure for type II recurrent processes (see § 19).

La and La : Functions that occur in our study of recurrent
processes (see § 18).

Various classes of Borel sets will be used in our work. These are
S ) : all relatively compact Borel sets.
%i : all relatively compact sets that are not essentially polar.
^2 f" ^l relatively compact set such that Ga(^, A) is locally

integrable for A a compact set.
%3 : all relatively compact sets such that Ga(^, A) is

bounded for A a compact set.
%4 : all relatively compact sets having non-empty interior

such that P^(TB = Ta) = 1 a.e. x.
%* == % in the non-singular case and %* == ^4 in the

singular case.
g^ = ̂  in the non-singular case and 9S^ = £64 in genearl.
0L: all relatively compact sets whose boundaries have

zero Haar measure.

Of all groups ®, two particular compactly generated
groups play a distinguished role. These are when @ is iso-
morphic to either R © H or Z © H, where H is a compact
group. In this case we will identify @ with either R © H
or Z©H. Let ^ denote the natural projection of R © H
onto R or of Z © H onto Z. The i.d. process induced on R
or Z is the process ^(X^). If ^(X() has finite mean then
E^(X( — Xo) == tm for some constant m. Similarly if
^(X() has finite variance then Var ^(X^ — Xo) = to2. We
set ©+= {x: ^{x) ^ 0} and ®- = [x: ^{x) < 0}.
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By lim f(x) ==/*(oo) we mean that given e > 0 we can
•D->oo

find a compact set K such that \f{x) — /'(oo)| < s for
x ^ K. When ® can be identified with either R ® H or
Z e H we define lim f{x) = f{ ± oo) as lim f{x). We

X->±ao ;Z'e@±,;Z*-> QO

introduce the convention that

Lim, f{x) =(/•(+ oo) + A- °o))/2,
when ® is one of our distinguished groups and Lim^. == lirOp
otherwise.

The process X^ == — X^ is called the dual process. Quan-
tities that refer to this process are denoted by \ For example
the quantity HB/^ for the dual process is denoted by fief'
The quantity Ea;[ j Y(X() dt\ for the dual process is denoted

by either EJ /^(Xt) dt] or ^[/o^A^) ^]- Quantities
that pertain to the dual process are prefixed by co-. For
example the quantity C(B), which is the quantity C(B)
for the dual process, is called the co-capacity of B.

A point x e ® is said to be regular for B if P^(VB = 0) = 1.
The collection of all regular points of B is denoted by B''. The
collection of all co-regular points is denoted by "^B.

If Y is a bounded measure then the Fourier transform
•y(O) of Y ls vW = f ^? x^ (^) ^ere 6 is a character
of @. The Fourier transform f of a function fe Li(@) is
f(Q)= f <6, xyf(x) dx. Haar measure is choosen so that

fl^x) === ^ <6, xyf(Q) dQ, whenever f is continuous and f
is integrable.

3. Preliminaries.

In this section we will gather together some preliminary
facts of a technical nature that will be used throughout the
sequel.

The transition operator P1 of an i.d. process has the pro-
perty that P^fe Co if f ^ Co. Consequently, by a fundamental
result in the construction of Markov processes there is a reali-
zation of the process as a standard Markov process. Hence-
forth X( will always denote this realization of the process,
and in the future we will freely use the properties of standard
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processes. For a full discussion of the properties of standard
processes we refer the reader to [2] Chapter. 1.

The dual process to X( is the process X^ = — X^. It
follows at once that for any two functions /*, g e 0 or any
two non-negative functions that for any ( > 0,

(A p'g) = (g, pn
and thus for any X > 0 (== 0 also in the transient case) that
(/*, G^g) = (g, GY). A slightly deeper duality relation will be
given a shatly. These relations are some of the key tools used
in our development.

The hitting times TB and VB are stopping times. An appli-
cation of the strong Markov property (valid for any standard
process) yields the first passage relations

(3.1) G> - H^ = G&
and

(3.2) G^ - n^y = UB.
These equations are the Laplace transform versions of the
relations

(3.3) P,(X, e A) = ^ /; P,(TB e ds, X, e dy)P,(X^ e A.)

+P,(TB > t, X,eA)
and

(3.4) P,(X, e A) = ̂  P,(Va e ds, Xy, e dy)P,{X^ e A)
+P.(VB>^,X^A)

respectively.
A zero-one law for stopping times (see [2], p. 30) asserts

that P^(VB = 0) = 1 or 0. A point x is called regular for B
if P^VB = 0) = 1. Let B'' denote the set of all regular
points of B. It is clear that B c B7' c B. Our next result
shows that B n (B^0 has Haar measure zero.

PROPOSITION. 3.1. — For any Borel set B and any t ^ 0,
P.(Va ^ t) == P,(TB ^ (),^B, and P,(Ta ^ t) = P,(Va ^ t)
a.e. x e B. In particular, P^VB = 0) == P^(TB = 0) = 1
a.e. rceB.

Proof. — It is clear that P,(VB ^ t) = P^(TB ^ t) for
x ^ B. To establish the last assertion we proceed as follows.
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On the one hand for h > 0 and ( > 0,

f^ P^x, (^)Py(Ta < () = P^X, e B for some s «= [h, t + h)}
-^ P,(X, e B for some s e (0, (]), h -> 0,

and

Px(Va < <) < P«(X, e B for some s e [0, <])<P.,(VB«) and

thus for any fe C^

(3.5) /^ /^)P.(VB «) ̂  < Km PJ> (<^)P,(TB < f)

^X/NP-^B^ t)^'
On the other hand

J;P^)P,(TB <t)=f^ P,(Ta < <)PY(y) ̂ .
Let K be open, K compact, contain the support of /*. Then

f^ P,(TB < <)PY(y) dy ^ f^ fW\x, K6) dx -> 0, A -^ 0

so

l^m /^ P,(Ta < ^)PY(y) ̂  = f^ P,(Ta < ^)/'(y) ̂ .

Thus from (3.5) and the above computation we see that

/^)P,(VB< t) dx ^ J^/NP.(TB < <) dx
< j'f(x)P^ < t) rf.r,

»/ W

and thus for any t ^ 0

/^ A^)P.(VB ^ t) ̂  - /^ A^)P.(TB < t) dx.

Since fe C^ is arbitrary P^VB ^ t) = P^(TB < t) a.e.

PROPOSITION 3.2. — Let B 6<° any Borel set and let fe O4".
Then P/TB ^ t) == P/(VB ^ ^) ^5 continuous on (0, oo).

Proof. — Suppose 3^ > 0 such that P/TB === t) = e > 0.
Then for any 8, 0 < 8 < t

s = P/Ta = t) ^ f^ P^ {dy)P^ = 8)
= ^ P,(Ta = S)?^^!/) dy,
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and thus f^ P^(TB == 8) dy > 0 for all 8, 0 < 8 < (. Let
K^ be relatively compact with union @. Since

^P.(TB ^ t ) d y ^ |KJ < oo

it can only be that

J^ Py(Ta = 8) dy > 0 for countably many 8 in (0, ().

Consequently

^ dy P,(TB = 8) ^ 5 /^ P,(TB = 8) dy
/t

can only be positive for countably many 8 <= (0, () a contra-
diction. Thus P/TB == () = 0 for all t > 0, as desired.

We are now in a position to establish the duality relation
alluled to above.

PROPOSITION 3.3. — Let B be a Borel set. Then for any two
functions /, g e <D+, and X > 0

(3-6) (A G,g) = (g, G^),
(3.7) (/*, H^g) = (g, H^GY),
(S-S) (A U^g) == (g, U,/')

one?

(3-9) (A n^g) = (g, n^Y).
Before proving this proposition we point out that it follows

at once from the proposition that it holds for X = 0, and for
/*, g arbitrary non-negative measurable functions, whenever
the quantities involved are finite. Also, the following holds.

COROLLARY 3.1. — Let /*, g be any two non-negative measur-
able functions. Then for any t > 0

(3-10) L L /^)P.(TB > (, X, e dy)g{y) dx
= L L ̂ )^(TB > (, X, e dx)f{x) dy

and

(3-11) X L /^)P.(VB > t, X. e ̂ )g(y) ̂

=XX^)P.(VB > t, X^dx)f{x) dy.
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Proof of Corollary. — It suffices to prove (3.10) since
P^VB > (, X, <= A) = P,(TB > t, X,6=A), x ^ B ^ ( B r ) f and
|B n (B^l = 0. Also (3.10) holds for all non-negative f
and g if and only if it holds for /*, g e Q". But for such /*, g,
both terms in (3.10) are right continuous in ( and thus (3.10)
follows from (3.6) by the uniqueness of the Laplace transform.

Proof of Proposition. — The first passage relations show
that (3.6) and (3.7) are equivalent as are (3.8) and (3.9). Since
|B n (B71 = 0 it follows that (3.6) and (3.8) are equivalent,
so it suffices to establish (3.6). We will first do this for an
open set B. Let B be an open set and let /*, ge<]>+. Then
as the paths are right continuous and B is open

(3.12) ^ f{x) dx f^ P,(X, < B for all s e (0, t), X, e dy}g{y}

= lira J^ f{x) dx f^ P.,(Xy/» o= B all /', 0 < / < n, X, e dy)g{y)

^ lim J^ g{y) dy j^ Py(Xy,, < B, all /, 0 < /' < n, X< e dx)f{x)

= f^ g(y) dy j'^ P,(X,* B all ^ (0, t), X,e dx)f{x}.

Also (again because X( is right continuous and B is open)

[X^B all se(0, t)] = [X,^B all se[0 , t ) ] ,
[X^B all se(0, ()] = [X,^B all se [0 , ( ) ]

and

(3.13) [X^B all s e [0 , t ] ]
= f~} [X^ Ball s e (0, t + -^)]

(3.14) [X,^B all 5e[0,(] ]
=f~)[x,< Ball 56(o,t+-^)].

It now follows from (3.12)-(3.14) that (3.6) holds for B open,
and thus (3.7) also holds for B open. We may rewrite (3.7)
as

(3.15) E,[^Wg(XJ] = E,[e-^Wf{X^]

Now let B be any Borel set. By theorem 10.20 of Chapter 1
of [2] there is a decreasing sequence of open sets B^ such
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that TB, f TB a.e. P^ and T\ f TB a.e. P,. Also

G^(XrJ = f^ e-^f(X,) dt \ G^(X,J, ^oo,

and likewise for GY(XT^). Thus, setting B == B^ and passing
to the limit we see that (3.7) holds for all B. Since (3.7) and
(3.6) are equivalent, (3.6) holds for all Borel sets B. This
establishes the proposition.

Another useful relation is the following

PROPOSITION 3.4. — Let A, B be Borel sets and let A c B.
Then for any /*e0+ and X ^ 0

(3.16) H\f{x) = Hmf)(x)
(3.17) Gy=G^+H^Gy

Proof. — If A c B then TA ^ TB so TA = TB + TA . 9^.
Hence

H\f(x) == E,[^Y(XTJ; TA < oo]
= E^e-^Ex^Ee-^AXrJ; TA < oo]; TB < 00}
= H^(H^)(.r).

In a similar manner

G\f(x) = E, f^ e-^f{X,) dt = E, f^ e-^f(X,) dt
+E,^Ae-^(X,)^=G^)
+^e-^E^[f^e-^f(X,)dt]\
= G],f{x) + H^f(x).

The following is a useful fact to know.

PROPOSITION 3.5. — Let B be any relatively compact set.
Then E^TB' < oo.

Proof. — Let K be a compact set such that B — B c K.
Then for any x e B,

P,(X, e B) = Po(X, e B - x) ^ Po(X, e K),

and thus for x e B,

P^X^B7) ^ P^X^K').
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Since K is compact there is a ty > 0 such that

Po(X,, e K0) = 8 > 0

and thus inf P,(X( eB') > 8 > 0. Hence for xeB
•CCB '

P.,(TB. < <o) ^ P.,(X(,6B') > 8 so

sup P^(TB. > fo) < 1 - 8.
a?€B

It easily follows that

sup P,(TB- > nt,) ^ (1 - 8)"
a;€B

and thus tor any x e B,

E^TB' ^ <o A ~ ^ < 00-

If a; ^ B then P^TB = 0) == 1 so E,TB' = 0.
The following simple estimates are of frequent use.

PROPOSITION 3.6. — Let B be relatively compact and let
t > 0. Then there is a compact set K( such that

(3.18) P,(Ta ^ t) ^ 2P,(X,eK,).

Also there is a compact set K such that for all t > 0,

(3.19) P,(TB ^ () ^ 2 f^ P,(X, e K) ^.

Proof. — Since the paths are bounded we can choose K(
A _

compact such that Py(X,eK( for s ^ t) > — for y e = B
and thus -

P,(X,eK,)^ P rP.(TBe^,X^e^)P,(X^eK<)
i/O »/ B

> ̂  P,(TB < ().

Similarly we can choose K compact such that

Py(X, e K for 0 < s < 1) > 1 for </ s B.z



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 181

and thus

f^ P,(X,eK) ds

^ Jaff^ p^ ^ ^ x^ e WA^i-. ̂  K) ds

^ (-\ P,(TB ^ t).

When the resolvant G^(0, dx) is absolutely continuous with
respect to Haar measure then we expect that the first passage
relations should hold for nice versions of the densities of
G'k(x^ dy) and G^(x, dy). We will spell out these details in the
next five propositions. Throughout this discussion X > 0 in
general and X ^ 0 in the transient case.

Recall that a non-negative function f is called X-excessive
if e-^f^f and e-^f \ f, t \ Q.

PROPOSITION 3.7. — If G^O, dx} < dx then ^-excessive
functions are lower semi-continuous.

Proof. — Let g\x) be a density of G^O, dx). Then if
<p is bounded and measurable G^{x) is continuous. Indeed,

\G\{x + x,) - GM^o)! ^ 11?L/^ \g\V - x) - g\y)\ dy

and translations are continuous in the Li(@) norm. The
assertion now follows from this fact and the fact that given f
X-excessive there is a sequence <p^ of bounded measurable
functions such that G^^ ^ /*. (See [2] Chapter 2, Proposition
2.6 and Exercise 2.19.)

PROPOSITION 3.8. — Let G^O, dx) <^ dx. If f and g are
^-excessive and f = g a.e. then f(x) = g[x) for all x. Simi-
larly^ if f ̂  g a.e. then f [x) ^ g{x) for all x.

Proof. — It follows at once from the resolvent equation
that G^(0, dx) < dx for all (B > 0. The assertions follow
at once from this and the fact that if f is X-excessive then
PG^f/-, (B-> 0).

PROPOSITION 3.9. — Assume G^O, dx) < dx. Then there
is a version g\x) of the density of G^(0, dx) such that
g\y — x) dy = G\x, dy) and g\y — x) is \-excesswe in x,
^-co-excessive in y and g\x) = g^— x).
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Proof, — By Theorem 1.4 of Chapter 6 of [2] we know that
there is a function u\x, y) such that

G\x, dy) = u\x, y} dy, (j\y, dx) = u\x, y} dx,

and u\x, y) is X-excessive in x and X-co-excessive in y.
To establish the proposition we need only show that
u\x, y} = u\0, y — x) for all x and y . To this end note
that u\x, y) = u^(0, y — x) a.e. y and u\x, y) == u\x — y , 0)
a.e. x. Thus

/ u^(x + ^? z)u\z, y + a) dz•/ <s?
•===• f ^(0, z — x — a)u\z — y — a, 0) dz

= f^ uP(rr, t)u\t, y) dt.

Since u^(., y) is X-excessive it now follows from the above
by multiplying through by (3 and then taking the limit as
(3 -^ oo that

u\x + a, y + a) == u^rc, y).

Thus g\x) = u\0, x) is the required density.

Note. — In view of Proposition 3.8 g\x) is the unique
density with the stipulated properties.

PROPOSITION 3.10. — Assume G\0, dx) < dx. Then for
any Borel set B

' ^ n^, dz}g\y - z) - / r4(z/, ̂ Cr - z).
Proo/'. — This is Theorem 1.16 of Chapter VI of [2].

PROPOSITION 3.11. — Assume G^O, dx) <€ dx and let B
be any Borel set. Then U^(a?, dy) has a density u^(rc, y) such
that for all x and y ,

(3.20) u^, y) = ^(y, ^)
(3.21) ^(y - x) - ̂  n^, dz)g\y -z)= u^ y).

Moreover u^x, y) = 0 if either x is a regular point or y is a
co-regular point of B.

Proof. — It is clear that for each fixed x (3.21) holds for
a.e. y. We can define u^{x, .) by the left hand side provided
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we know that it is non-negative for all y. Thus we must
show that for all y

(3.22) g\y - x) ^ ^ 11̂ , dz)g\y - z)

= ^ n^, dz)g\z - y).

We know that (3.22) holds for a.e. y. The function g\y — x)
is X-co-excessive in y. Also it is easily checked that for any
measure (A the function j g\z — y)[L {dz) is X-co-excessive.
Thus both sides of (3.22) are X-co-excessive functions of y.
The desired conclusion now follows from Proposition 3.8.
Now if x is regular for B, then n^(rc, dz) is the unit mass
at x so it follows from (3.21) that u^(x, y) ==0. By Proposition
3.10 and the fact that ft^y, dz) is the unit mass at y for y
a co-regular point of B we see that u^{x, y) = 0 for y a
co-regular point. Finally (3.20) follows from (3.21) and Propo-
sition 3.10.

When the process X^ is non-singular we know that there
is a IQ > 0 and a non-trivial density pi^x) such that

Since
P^o(0, dx) = p^x) dx + Q^O, dx).

Q^(0,®)< QW ®)Q-(0, @)

it follows that Q^O, ®) is decreasing. Since (^(0, ®) < 1
it follows that Q^O, ®) < [0^(0, ©)]" \ 0 and thus

(^^ lnn f^ P^) dx = 1.

4. Classification of an i.d. process.

In this section we will characterize an i.d. process as being
recurrent or transient analogous to the corresponding classi-
fication for a random walk.

DEFINITION 4.1. — A point xe(^ is called possible if for
each neighborhood N of 0 there is a t > 0 such that
PO(X( e N + x) > 0. We denote the set of all possible points
by 2.
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PROPOSITION 4.1. — The set S is a closed sub-semi-group
of ®.

Proof. — Let x e T i ' . Then there is a neighborhood N
of 0 such that Po(X,e N + x) == 0 for all t > 0. Let N1
be a neighborhood of 0 such that N^ + N1 c N and let
y e NI + ^- Then for any ^ > 0,

Po(X, e Ni + y) ^ Po(X< e N + x) = 0,

and thus yeS'. Thus N i ^ - ^ ^ ^ ' so ^/ is open. To see
that S is a semi-group let N be a neighborhood of 0 and
let NI be a neighborhood of 0 such that N^ — N1 c N.
Then

P o ( X ^ e N + ^ + 2 / )
^ ̂  Po(X, e (fc)Po(X, e N + . r + y - ^ )
^ Po(X<e Ni + ^)Po(X,e Ni + y).

Thus if x any y e S so is .r 4" y-

Basic Assumption. Throughout this paper we assume that
the group generated by S is @. This entails no loss in gene-
rality and is essential to the proper formulation of our results.

PROPOSITION 4.2. — If for some relatively compact open
neighborhood N of 0, G(0, N) < oo, then G{x, K) < oo
for all x and all compact sets K. On the other hand if G(0, N) == oo
for all open neighborhoods of 0, then G(0, N + x) = °°
for all x e 2.

Proof. — Suppose that G(0, N) < oo for an open neigh-
borhood N of 0. Let NI be an open neighborhood of 0
such that NI — NI c N, where N^ is the closure of N1.
Then for any x e ®,

G(.r, N1) = ̂  H^, ^)G(^, N1) ^ ̂  G(z, N,)
^ G(0, Ni — N i ) ^ G(0, Nf^oo.

Given any compact set K we can cover K by finitely many
of the open sets Nj^ — x. Hence G(x, K) < oo for all x e @
and all compact sets K.

Suppose now that G(0, N) == oo for all open neighborhoods
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of 0. Let rceS. Then for any neighborhood Ni of 0,
Po(TN+a. < oo) > 0. Let Ni be an open neighborhood of 0
such that NI — NI c N. Then

G(0, N + x) ^ f^ H^,(0, A/)G(0, N + x - y)
> Po(T^ < a)) inf G(0, N + x - y)

yev^+x
^ Po(T^, < O))G(O, Ni).

Thus G(0, N + x) = oo.

DEFINITION 4.2. — An 1.6?. process is called transient if
G(0, N) < oo for some relatively compact open neighborhood
of 0. Otherwise the process is called recurrent.

It follows from Proposition 4.2 that this is a disjunct classi-
fication. For general transient processes S need not be a
group. However for recurrent processes S is always a group,
and under our basic assumption, S === @.

PROPOSITION 4.3. — For a recurrent process S = @ and
G(x, K) == oo a.e. x whenever | K| > 0. Moreover^ a process
is recurrent if and only if for every open neighborhood N of 0
and every x e ®, P;p(X, e N /br some s ^ t) = 1 for all
t ^ 0.

Proof. — Let 9{ denote the collection of all points x e @ ,
such that Po(X,e N + x for some s ^ t) == 1, for all
neighborhoods N of 0 and all t > 0. We claim that if
x e S and y e 91 then y — ^ e 91. To see this suppose it is
false. There then exists a t^ > 0 and a neighborhood N of 0
such that Po(X,^ N + (y — ^)) for all s ^ to) > 0. Let
NI be an open neighborhood of 0 such that Ni — N^ c N.
Now if X( e Ni + x and X, — X^ N + (y — x) then
X, ̂  Ni 4" y- Hence if we choose t such that

Po(X,eNi+^) > 0
we see that

Po(X^ ^ Ni + y for all s ^ to + t)
> Po(X< es Ni + .r)P(X, — X^ N + (t/ - x} for all 5 ^ (+ (o)
== Po(X( e Ni + ^)Po(X,« N + (y — a;) for all 5 ^ <o) > 0.

This contradicts the fact that y e 91. From this fact it follows
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at once that either 3{ = ̂  or if S{ ^ ^ then 31 is a group
and S{ == S. Indeed, if 3{ ^ 9, then we see that if y e S{
so is y — y = 0. Hence also — y = 0 — z/egl, and thus
for any rceS, ^ — 0 = a ; e ^ R . Thus we have shown that
either S = 3{ or 31 == ^.

Suppose that X^ is recurrent. Let N be a neighborhood
of 0 and choose the sub neighborhood N1 c N such that
Ni + NI c N. Since for x e N,

P,(X, €E N for all s ^ h) ^ Po(X, e N^ for all s ^ h)

and P(lim X^ == Xo) = = 1 we can choose h > 0 so that
s^O __

P,,(X,€= N for all s ^ h} = 8 > 0 for all rce N1. But then
for (n — i)h ^ t ^ nh,

Po(X,,eN) ^ ^ Po(X,e^)P,(X^_^N) ^ Po(X,eNi)8.

Hence

§ Po(X^N) ^ -^G^N,).
n=l Al

Thus the random walk X^, n > 0, is recurrent, and by a
well-known result on random walks Po(X^ e N for some
n ^ no} === 1 for all rio. But then Po(X(eN for some
t ^ to) = i for all <o and consequently 0 e= ^R/, so S{ ^ ^,
and therefore 31 == S.

Now suppose that 9{ = S and let N and N^ be as before.
Define stopping times Ti < Tg < • • • as follows :

Ti =inf {( > 0: X^eNi}
and

T ^ = i n f { ( > T , + A : X.eNi}.

Since Py(X,c=Ni for some s ^ () == 1 for all y e= ® and
all < ^ 0 it easily follows that

Po(X, e NI for some s ^ T^ + h) = 1

for all n. Now

Eot/^l^X^^IX^^z/] ̂ "P^oN)^ ^ AS:

and thus

Eolj^l^X,) ̂ ] > A8Po(T, < oo) = AS.
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Hence

G(O, N) > i [Eo r^ i,(x,) ds\ > i hs = oo
n==i L l/ 1" -1 n==i

and thus the process X^ is recurrent.
Finally suppose K is compact and [K| > 0. Then for

any compact set C, |C| > 0,

(4.1) ^ G(x, K) dx = f^ G(0, dy) ^ i^y + x) dx.

Since j ij^{y + x) dx is a continuous function it follows from
Proposition 4.2 and the fact that S == @ in the recurrent
case that the right hand side of (4.1) is infinite whenever the
process is recurrent. Thus / G(x, K) dx == oo for every
compact set C, |C| > 0 and thus G(x, K) = oo a.e. (If not,
there is a compact set C and an N < oo such that
G{x, K) ^ N for all x e C, and so

f^G{x, K ) d x ^ N|C| < oo.)

PROPOSITION 4.4. — The process is transient if and only
if for every compact set B,

lim P.c(X, e B for some s ^ () = 0, x e= ®.
t-><x>

Proof. — If (4.2) holds then by Proposition 4.3 the process
is transient. On the other hand if the process is transient then
from (3.19) we see that there is a compact set K such that

P,(TB < oo) ^ 2G{x, K)
and so

P^X,e B for some s ^ t) = f P\x, dy)Py{T^ < oo)
^ 2PtG(x, K).

Since P'G(^, K) ^ 0 as t -> oo the result follows.

5. Periodicities and the ratio limit theorem.

In this section it will be convenient to work with the proba-
bility measures ^ defined by \L\dx) == P^O, dx). Then
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^s+t ̂  ^s ^ ^t ^p s > 0 and t > 0 and ^t is continuous
in t, in the sense of weak convergence. Let S( be the support
of (J^. Then ® is generated by

U^
t>0

PROPOSITION 5.1. — The groups @(, t > 0, generated by
S( — S( are all equal to some fixed group @i.

Proof. We note first that S,+( = S, + S^ for all 5, t ^ 0.
Thus

°s+t — S,4.( == S, — S^ + S( — S(.

Consequently
®,c(^c(^+(^

and also ©< c (S .̂ It follows that (S^+( = @max(,, o and,
by a simple induction argument, that ©^ is independent of t.

From now on @i will denote the group generated by
s, - s,.

PROPOSITION 5.2. — In the non-singular case ®i == @.

Proof. — Let the process be non-singular. Then, for some
t > 0, [L1 has a density component that is positive on some
non-empty open set. Thus some S< has a non-empty interior
and hence some S^ — S^ has a non-empty interior. From
this it follows easily that ®i is an open subgroup. Now ^
converges weakly to the probability measure concentrated
at the origin as t -> 0. Thus for t sufficiently small S<
contains a point of ®i and hence S(C@i. Since
S,+( = S, + S(, 5, t > 0, it follows that S< c ®i for all
( > 0. Therefore @i == ®? as desired.

Let A denote the annihilator of @i.

PROPOSITION 5.3. — If ®/®i is compact, then A is coun-
table and there are only a countable number of times t such
that S( does not generate ®.

Proof. — Let @/@i be compact. Since A is isomorphic to
®/®i, it follows that A is discrete. Now ® is second coun-
table and hence so is (^. This implies that A is countable.



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 189

For ( > 0, S( fails to generate ® if and only if there is
a 6 e G such that 6 ^ 0 and p/(6) = 1. (Here p/ denotes
the characteristic function of (JL^) This can happen only if
6 e A. For each such 6 there are only a countable number
of times t such that p/(9) == 1. Since A is countable, the
proof is complete.

Set H == ®/@r Let M be the natural map from @ to
H. Then M(S() is a single point. Thus we can define a func-
tion T: [0, oo) -> H by setting T(() = M(S<).

PROPOSITION 5.4. — The function T is continuous.

Proof. — Let U be an open set of H and let (o e [0, oo)
be such that T(<o) e U. We need only find an e > 0 such
that T( ( )eU for t ^ 0 and \t — to\ ^ s.

Let P = M-^U). Then P is open and P + ®i = P.
By assumption [L^ is supported by P. Thus we can find a
compact set C c P such that ^°(C) > 0. By continuity
of [L1 we can find an s > 0 such that ^(P) > 0 for t ^ 0
and 1 ^ — t o l ^ s . It follows that p/ is supported by P
for such values of t or, equivalently, that T(() e U for
t ^ 0 and |( — to\ ^ s, as desired.

We can extend T to (— oo, oo) by setting T(— t) == — T{t)
for ( > 0. Then T is a continuous homomorphism from R
to H.

PROPOSITION 5.5. — T(R) is dense in H.

Proof. — Let U be a non-empty open subset of H. We
need only prove that there is a ( such that T(() e U.

Set P = M-^U). Then P is open and P + ®i = P.
There exist r ^ 0, 5 ^ 0 , x e Sp, and y e S^ such that
x — y e P. Set t = r — s. Then

T(() == T(r - s} = T(r) - T(^) = M{x) - M(y) = M{x - y) e U,

as desired.

PROPOSITION 5.6. — Either H is compact or H is isomorphic
to R.

Proof. — By the previous proposition H is solenoidal and
the result follows (see Hewitt and Ross [4, pp. 84-5]).
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PROPOSITION 5.7. — Suppose H is not compact. Then
S(, t ^ 0, lies in a closed semigroup of @. Also, for any
compact set C, (^(C) == 0 for t sufficiently large.

Proof. — Since H is isomorphic to R, T((), t ^ 0, ranges
over a proper closed semigroup in H and hence S^, ( ^ 0,
lies in a proper closed semigroup in ®. We also have (since
H ̂  R) that T(() -> oo as |(| -> oo. If C is compact then
M(C) is compact and hence T(t) n M(C) is empty for |(|
sufficiently large. Thus for ( sufficiently large S< n C is
empty and hence (^(C) == 0.

PROPOSITION 5.8. — Suppose H is compact. Then T(<),
t ^ 0, ranges over a dense subset of H.

Proof. — Let S be the closure of the range of T((), ( ^ 0.
Then S is a closed and hence compact sub-semigroup of H.
By Hewitt and Ross [4, p. 99] S must be a subgroup of H.
Since T(— () = — T(() for ( > 0, S contains the range of
T((), -— oo < t < oo, and hence by Proposition 5.5 S is
all of H.

PROPOSITION 5.9. — For t ^ 0 define the operators
U(() : H -> H by U(t)h = h + T((). Then U((), ( ^ 0, is
an ergodic semigroup.

Proof. — Clearly U(t), ( ^ 0, defines a continuous semi-
group of invertible measure preserving operators.

Let I : H -> R be a bounded measurable function such
that, for all ( ^ 0, I(A + T(()) = l{h) a.e. h. We want to
prove that I is constant a.e.

Let {c/((^), A e H } be a complete orthonormal basis of
continuous characters in ^a(H). Then there are constants
^ such that in ^(H) for ( ^ 0.

S a,c,(h) = l(h) = l(h + T(())

= S a,c,{h + T(())

= S a^(T(())c,(A).
k

Consequently a^c^T^)} — 1) = 0, ( ^ 0. Thus either a^ = 0
or <^(T(()) = 1, ( ^ 0. In the later case the fact that the
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range of T((), t ^ 0, is dense in H implies that c^h) == 1,
h e H. In other words, I is constant a.e., as desired.

PROPOSITION 5.10. — Let H be compact, let dh be norma-
lized Haar measure on H and let f be a continuous real-
valued function on H. Then

lun A- ̂ ' f{h + T(.)) ds - ̂  f(^) dh

uniformly for A e H. Moreover

Um̂  A. J^ ^(T(.)) (fo == f^ f(h} dh.

Proof. — The first conclusion of the proposition follows
from the previous proposition, the pointwise ergodic theorem
and the fact that f, being a continuous function on a compact
group, is uniformly continuous. The second conclusion follows
from the first since T(^ + () == T(s) + T(^) for s, t > 0.

PROPOSITION 5.11. — Let H, dh, and f be as in the previous
proposition. Let g and h be continuous bounded non-negative
functions on [0, oo) such that g(t) is positive for t sufficiently
large,

lim g(^ + l) ̂  i
tw g{t)

uniformly for s in compacts, and

tu^-«T«)))=0.

Under these conditions

F h(s) ds
lim J————— == f fW dh
^f g ( s } d s Js

or
f1 h{s) ds „

lun•7———-=JHW^
— Jo g{s} dstw I 8 sJo

according as the integral of g over [0, oo) converges or diverges.
10
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Proof. — The proof of this proposition is a straightforward
application of the second part of the previous proposition.

Set D( = S< + ®i, t ^ 0.

THEOREM 5.1. — Let A. be a compact subset of ®i and B
an open subset of ®i such that |A|^ > 0 and 0 < |B[^ < oo.
Then for any O < T < oo, e > 0, and compact subset C
of ®, there is a 8 > 0 such that for t sufficiently large

^{x + y + A)/|A|^ ^ (1 + c)^ + B)/|B|^ + ̂

for x €E Df, t/ €E D, n C, and — T ^ s ^ T.
We begin the proof of this result with

LEMMA 5.1. — The conclusion of Theorem 5.1 holds if s, t
are restricted to integer multiples of any fixed a > 0.

Proof. — This lemma reduces immediately to Theorem 1
of Stone [10].

Let a > 0 be fixed. For t ^ 0 set (+ == min [najna ^ (]
and t~ = max [na]na ^ (].

LEMMA 5.2. — Let A be a compact subset of ®i such that
|A|@, > 0 and let s > 0. Then for sufficiently small a > 0
there is a compact subset Ai of ®i such that |Ai|@^ > 0 and
a compact subset C o / * ® such that D(+_( n C ^ ^, ( ^ 0, and
for t sufficiently large

V.\x + A)/|A|@, < (1 + ̂ (x + y + Ai)/|A^

for x e D( and y e D(+«( n C.

Proof. — There is a compact subset Ai of ©i such that
A c Ai and

|A^-(1+^|A|,,,
The conclusion of the lemma now follows easily from the fact
that p/ converges weakly as ( -> 0 to a probability measure
concentrated at the origin.

LEMMA 5.3. — Let B be an open subset of ®i such that
0 < |B|(^ < oo and let s > 0. Then for sufficiently small
a > 0 there is an open subset Bi of @i such that
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0 < l^l®, < °o and a compact subset C of @ such that
D(_(- n C ^ f^, t ̂  0, and for t sufficiently large

(^ + y + Bi)/|B^ < (1 + e)^ + B)/|B|<g.
for x 6 D( and — y e D(_(- n Ci.

Proo/'. — There ^s a relatively compact open subset Bi
of @i such that Bi£B and

|B|^ < (1 + s) i|Bi|^.

The conclusion of the lemma again follows easily from the
fact that (x' converges weakly as t -> 0 to a probability
measure concentrated at the origin.

Proof of Theorem 5.1. — The theorem follows easily from
Lemmas 5.1-5.3.

We will use Theorem 5.1 only when the process satisfies

Condition 1. — For some compact set C

lim sup ((^(C))"' == 1.
<->00

By Proposition 5.7 we see that if Condition 1 holds, then
®/@i is compact. It follows from Proposition 1 of Stone [13]
that for sufficiently large compact sets C

D( n C ^ fi, t > 0.

In the next several results a;, e D(, ( ^ 0 and the x\s all lie
in some fixed compact set.

PROPOSITION 5.12. — Suppose Condition 1 holds and let B
be a non-empty open subset of @r Then

lim ((i^ + B))'/' = 1.
(->00

Proof. — Let B^ be a non-empty relatively compact open
subset of @i such that Bi=B. Let Ci be a compact set
containing all ^, ( ^ 0. Let C be a compact set containing
(Ci — Ci — Bi) u Ci. By Theorem 5.1 for any S > 0 there
is a ty > 0 such that

^(Bi +</) > e-6^, y e D ^ n C .
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Consequently

(̂ (a^ + Bi) ^ f^^^ t̂ -̂  {dzWx^ - z + Bi)
^ e-6V^(^_^ + B,).

Thus by induction

(^(rr^+B,) > e^S k = i, 2, ....

It now follows from Theorem 5.1 that

Urn inf (v.'{Xt + B))1/* > e-8.
(•>oo

Since 8 can be made arbitrarily small the proof of the propo-
sition is complete.

From Theorem 5.1 and Proposition 5.12 we obtain imme-
diately

PROPOSITION 5.13. — Suppose Condition 1 holds and let A
and B be respectively compact and non-empty open subsets
of ®i. Then

,. p^U+t + A) |A|
lim sup ^ ^s+tr^ / ^ ±-L

^o" P^+B) B|

uniformly for s in compacts.
From this proposition we obtain immediately

THEOREM 5.2. — Suppose Condition 1 holds and let A and
B be relatively compact sets in ®i such that \ bA| ̂  = \ bB[ @i == 0
and |B|@, > 0. Then

H^^(^+A)_|A|^
^ ^+B) |B|^

uniformly for s in compacts.
Let fy denote a continuous non-negative function on ®i

having compact support and such that

f Ux) dx == 1
i/(5>i

(where dx here represents Haar measure on ®i). Set

g{t) = f ^ {dy)f,{y - ̂ ), ( > 0.
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If Condition 1 holds then by Theorem 5.2,

,. g(s + t) .hm ^—-—'- = 1(^ g(t)

uniformly for s in compacts. From Theorem 5.2 we also have

PROPOSITION 5.14. — Suppose Condition 1 holds and let f
be a continuous function on ®i having compact support. Then

^^x^^w^-^-x^^-
From this proposition we have

PROPOSITION 5.15. — Suppose Condition 1 holds. Let F
be a collection of continuous functions on ®i such that the
functions in F are uniformly bounded, equicontinuous, and
supported by a common compact set. If ft e F for t ^ 0, then

hm (g|) f.^ ̂  ̂ v - ̂  - L f^dx) = °-
Let 9 be a continuous function on @ having compact

support. Then as x ranges over a compact subset of @ the
family F of functions (p(rr 4- y), ye®i, satisfies the condi-
tions of Proposition 5.15. Thus from that proposition we obtain
immediately

PROPOSITION 5.16. — Let Condition 1 hold and let 9 be a
continuous function in ® having compact support. Then

"""(î 9 (^My) - f^v + ̂  ̂ )= o.
We now wish to apply Proposition 5.11 to the above result.

Let 9 be a continuous function on ® having compact
support. We can define a function f on H by setting

/W^,9^^ if h=M{x).
Then f is well defined and continuous on H. Furthermore
the functional I defined by

l<p^f^f{h)dh
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is a non-trivial translation invariant non-negative linear
functional on the continuous functions of ® having compact
support. Thus for some positive number c we have

f^f(h)dh= cf^{x}dx.

Finally we observe that

f^{y + x,) dy = /•(T(()), t^ 0.

Therefore by Propositions 5.11 and 5.16 we have

PROPOSITION 5.17. — Suppose Condition 1 holds and let <pi
and (pa be continuous functions having compact support and
such that J(<p2) ^ 0. Then

^r^^^^j^)^ r ̂  ̂ ds J(92)
H

^t
or

lim^91^^)
-00 ^ (^ 92) ds J(^2)
lim^
<»°o ^ • / .^

^9

according as the process is transient or recurrent.
In the non-singular case ®i = ® and the discrete time

results of Stone [10] are easily extended to continuous time.
In particular we have

PROPOSITION 5.18. — Suppose Condition 1 holds and the
process is non-singular. Let A e % and B e S> with |B| > 0
Then • ' '

l^l^+A) |A|
— ^{y+B) |B|

and the convergence is uniform for x and y in compact subsets
of ® and s in compact subsets of (— oo, oo).

Proof. — Let A e S>. Then for s ^ 0

f^{P,-x)dx=\K\.

For any 0 ^ SQ < oo and e > 0 there is a compact set C
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such that

f^ ^(A — x) dx ^ |A| — e, 0 ^ 5 ^ so.

Using these results we easily reduce Proposition 5.18 to the
corresponding discrete time result, Corollary 5 of [10].

Let 9 be a continuous function in @ having compact
support. Then as x ranges over a compact the collection
{<pa;} is uniformly bounded, equicontinuous, and has common
compact support. Thus from Proposition 5.17 and 5.18 we
obtain

THEOREM 5.3. — Suppose Condition 1 holds and let fecp*
and g e O* with J(g) ^ 0. If the process is transient, then

i^r^)^^)
^f^PWds J^)

uniformly for x and y in compacts. If the process is recurrent,
then

,,^'P-/N<fe_JOT
^f^'gWds J(^)

uniformly for x and y in compacts.
Closely related to ratio limit theorems are local limit theo-

rems. We will assume that @ is a closed subgroup of Euclidean
space R^. For simplicity we will also assume that

© — Z ^ e R ^

and Haar measure on ® is chosen as the product of counting
measure on Z^ and Lebesgue measure on R^"^.

THEOREM 5.4. — Let ® be a closed subgroup of R'^ normal-
ized as indicated above. Suppose there is a continuous strictly
positive function B(, ( ^ 0, such that B^X^ is asymptotically
distributed as a stable distribution having density p. Let fe O*.
In the transient case

s rpsf(x) ̂ irB7d ds = ̂ °w)
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uniformly for x in compacts. In the recurrent case

Hm ̂  P^x) dsif^ B-̂  ds = p(0)J(f}

uniformly for x in compacts.

Proof. — By arguing as in the usual local limit theorems
(Stone [10], [il], [12]) one can show that for an appropriate
positive constant Ci as ( -> oo

P'f(x) = c^pWB^ f^f{x + x, + y) dy + o^}

uniformly for x in compacts. It is necessarily true that

lim^-^1
t->w -D(

uniformly for s in compacts. It now follows from the ergodic
theorem that as (,T->OO for an appropriate positive constant Cg

f^ PW ds = c,p{0)J{f) f^ B^ ds + o (f^ Br4 ds)

uniformly for x in compacts. By the same methods one can
show that as <, T -> oo

f^ PY,(O) ds = c, f^ B^<ip(y/B.) ds + o (f^ Br" ds)
uniformly for ye®. The only value of Cg which is compa-
tible with this last formula, the assumptions on ®i, and the
fact that XJB( has as asymptotic distribution with density
p is Cg == 1. Thus

f^ P^x) ds = p{0}3{f) f^ Br" ds + o (^'+T Br" d.)

uniformly for x in compacts as (, T ->- oo. In the transient
case

r Br^ dt < ooJQ
and in the recurrent case

r ̂  ̂ = ̂
from which the conclusion of the theorem follows easily.
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The remaining two results of this section will be used in
Section 10 in reducing results in continuous time to the
corresponding results in discrete time.

PROPOSITION 5.19. — For fixed T > 0, let ©2 be the group
generated by S^. If ©2 ts compactly generated, then so is @.

Proof. — Let Ci be a compact subset of ©2 that generates
©2. Let Cg be a compact subset of © such that
Po(X(€=C2) > 0 for 0 ^ ( < T. Let ©3 be the subgroup
of © generated by C^ + Cg. Then ©3 contains Ci and
hence ©3 contains ©2. Thus ©3 contains ©i, where ©i
is defined as usual. Since ©3 n S< is non-empty for 0 < ( < T,
it follows that ©3 contains S^, 0 < t ^ T. Thus ©3 contains
S(, 0 ^ t < oo, and hence ©3 == ® as desired.

Our final result is rather special and will be needed only
in discussing type II transient processes.

Suppose © = R e H or © == Z e H, where H is a
compact group. If ©/®i is not compact, then © == ReH,
©i == H, and the induced process on R moves determinis-
tically. Under these conditions we have the following

THEOREM 5.5. — Let ® == ReH, where H is a compact
group and suppose that ®i == H. Then there is some non-zero
constant m such that ^ is supported by mt -}- H for t ^ 0.
Let D and E be Borel subsets of © with |D| < oo. Then

l imf \L\X + mt + E) dx, y ® H ,

exists uniformly in y and the limit is independent of y.

Proof. — Let ^ be the probability measure induced on
H by [L1. Since ©i == H none of the measures 9* are sup-
ported by the translate of a proper closed subgroup of H.
It follows from the Ito-Kawata Theorem that if f is a conti-
nuous function on H, then

lim f <P' {dw)f(w — y) = f f{w} dw
t->ao * -H •>H

uniformly in y , where dw is normalized Haar measure on
H.

For any subset A of © let Ap = {z e H|r + z e A}.
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Then for r e R and z e H

y.\r + z + E) == y'(z + E^_,).
Thus

J^ (̂ (a; + mt + E) da;.
= fldr f^ ̂ r + z + TO( + E) dz

= f" dr f (p'(z + E_,) dz
J-oo «/y+Dr '

:=f-°ldrfn ̂  (^) X 1E- (w - y - ̂ Wz) ^.
For each r

f^l^{w-z)l^{z)dz, w e H ,

defines a continuous function. Therefore

l^Jg?' (^)^IE_,(W - y — z)Wz) ̂
= Xdw X 1E-(W ~z) 1D-(Z) <i(z
-IE-.IHID.IH

uniformly in y. Since

F |D,IH dr = |D|@ < oo
<-' —'00

it follows that

l imf pi^+ m(+ E)dx= f^ \D,\\E.,\ dr
t->ao •'D+.y <y--oo

uniformly for y e H, as desired.

6. X-Capacities.

Let [L be a Radon measure on @, i.e. pi is a regular
measure on ® such that (i(K) < oo for all compact sets K.
The measure (iG^ is called the X-potential of (JL. For transient
processes we can also take X = 0. The measure (iG is called
the potential of (A. It is of vital importance to know that the
X-potential of a measure determines the measure under quite
general conditions.
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THEOREM 6.1. — Let X > 0, and in the transient case
\ > 0. Suppose (A is a Radon measure such that (xG^ is also
a Radon measure. Then p-G^ determines (A. In particular,
if (JL is a finite measure then piG^ determines pi.

Proof. — Suppose p.(®) < oo. Then for any compact
set K,

piG^K) ^ (JL(@) sup G(X x, K) < oo,
a-eK

and thus (iG^ is a Radon measure. Let [L be any measure
satisfying the conditions of the theorem. Let K be any
compact set. We can then find fe C^" such that

inf GY(^) ^ 8 > 0,
xeK

and thus from (3.2)

(xn^(@) = (An^(K) < 8-^GY < oo.

Hence the measures ^n^ are finite for all compact sets. The
assertion of the theorem now follows from Proposition 7.6
of [5] if X > 0. An examination of the proof of this proposi-
tion shows that it is also valid for X == 0 provided that for
any excessive function f there is an increasing sequence
of bounded non-negative functions <pn such that G^n f /*•
That that is so in our case follows from Exercise 2.19 of Chapter
2 of [2] and the fact that sup G(x, K) < oo for all compact
sets K. xeJL

The following useful result is due to Hunt [5]

PROPOSITION 6.1. — If (A and v are two Radon measures
such that (iG^ ^ vG^ then (A 11̂  < vll^ for any Borel
set B. If the process is transient then this is also true for X == 0.

Proof. — Since for any /*e O4-, II^GY is X-excessive, we
can find bounded /n > 0 such that G^fn f II ̂ GY. The
result follows from this.

Let B be a Borel set and let X > 0. Define the measure
E^ by

E^(A) - ̂  H^, A) dx,
and set (JL^ = XE^.
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ISTHEOREM 6.2. — Let \ > 0. The measure (JL^ is the unique
measure supported on B whose X potential has the density
(relative to Haar measure) E^e""^).

Proof. — The measure E^ and hence ^ is a Radon mea-
sure. Indeed, let K be a compact set and let /e C,4- be
such that G^f{x) ^ S > 0, rce K. Then from (3.1)

H^, K) ^ 8-^GY(^) ^ GY(^)

and thus E^(K) ^ |J(/')|/X8 < oo. Also from (3.1) we see
that for any /e O4-

J(/>-1 = E^GY + ̂  G^(^) d^.

Now from (3.6) we have

^ GW dx = (1, G^) = (/•, G^l)=f^x)dx^p^ > <)^^=J;^)^[I-E,(^T.)]X-I.
Thus

(6.1) ^GV-^E,^-^.)/-^)^.

The uniqueness of the measure (A^ follows at once from
Theorem 6.1.

DEFINITION 6.1. — The measure [JL^ is called the \-capacitory
measure of B; its total mass ^(B) = C\B), is called the
^-capacity of B. The corresponding quantities for the dual
process are called the co-^-capacitory measure and co-^-capacity
respectively and denoted by y.y and C\B) respectively.

PROPOSITION 6.2. — For any Borel set B, C\B) = C^B).

Proof. - By definition, C\B) = ̂ (@) = X^E^e-^.) dx.
Let / ,6<D and f^ 1. Then from Theorem 6.2

/ C^(B) = ^(®) == limXE^GY, = limX^E,^-^.)/^) dx

= X^E^.) dx == (Z^(@) = C^(B).
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PROPOSITION 6.3. — If for some X > 0, C\B) = 0 then
C\B) = 0 for all X > 0 and P^TB < oo) = P^TB < oo) = 0,
a.e. x. Conversely, if P^(TB < oo) = 0, a.e. a;, ^yz C^B) == 0
/or aM X > 0.

Proof. — From (6.1) we see that C^(B) == 0 if and only if
f^ E^- .̂) dx = 0. Now, f^ E,( .̂) dx = 0 if and only
if E^-^a) == 0 a.e. a;, and E,^-^) = 0 if and only if
P^(TB == oo) = 1. The assertions of the theorem now follow
from these facts.

THEOREM 6.3. — Assume S == ®. Then for X > 0, C\B) > 0
if and only if P^(TB < oo) > 0 a.e. x and P^(TB < oo) > 0
a.e. x. In the non-singular case the a.e. x can be strengthened
to all x.

To prove this theorem we will need the following.

LEMMA 6.1. — Assume S == ®. Then if A. is a non-
empty open set, G\x,A.) > 0 for all x. If |K| > 0 then
G\x, K) > 0 a.e. x and in the non-singular case for all x.

Proof. — The first assertion of the theorem follows at once
from the fact that S = ® and the fact that the paths are
right continuous. Now let | K| > 0 and let g e= $+ be such
that g(x) > 0 on a set of positive measure. Then

^ g{x)G\x, K) dx=f^G\0, dy) f^ i^x+y)g{x) dx.

The function j^ ij^(x + y)g(^) dx is continuous (because Cc
is dense in Li) and not identically 0. Thus by first part of
the theorem

f^G\0,dy}f^i^x+y)g(x)dx> 0.

Hence for any such g, (g, G^ls) > 0 and thus G^l^a-) > 0
a.e. x. Finally if the process is non-singular, then for some
( > 0,

P'(0, dy) == p{t, y) dy + f,(dy}

where p(t, y) > 0 for all y on some set of positive measure.
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But

G^,K) ^ f^e^P\x,dy)G\y,K)
^ f^e-^p{t,y-x)G\y,K) dy

and by what was just proved G\y, K) > 0 a.e. y. Hence
j p{t, y—x)G\y, K) dy > 0. This establishes the lemma.

Proof of Theorem. — Suppose that C^B) > 0. Then by
Proposition 6.3 P^TB < oo) > 0 on some set of positive
measure. Consequently, there is a compact set K having
positive measure such that inf^eKP^Ta < oo) ^ S > 0. But
then

(P,(TB < 00) > ^^P^X^^P^TB < 00) ds

^ 8^P,(X,eK)^.

By Lemma 6.1, we know that Cj^x, K) > 0 a.e. x (and for
all x in the non-singular case). For each x such that
Q\x, K) > 0 there is a t > 0 such that F P.,(X, e K) ds > 0.
Hence P^TB < oo) > 0 a.e. x (and for all x in the non-
singular case).

Conversely, if P.r(Ta < oo) > 0 a.e. x then by Proposition
6.3 C^B) > 0. This establishes the theorem.

We will now show that C^*) is a Choquet capacity.

PROPOSITION 6.4. — Let X > 0. Then C^-) has the follo-
wing properties.

(a) If A c B, then C\A.) < C^(B).
(fc) C^(A u B) + C^A n B) ^ C^A) + C^B).
(c) C\B) = sup C^K), K compact.

KCB

(rf) C\B) = inf C^U), U open.
UDB

(e) C\B + y) == C^(B), aM y .
(/•) C^(B) = C^(- B).

Proof. — Suppose A c B. Then TA > TB, so

E,(c-^) < E,(e-^.).
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Assertion (a) follows at once from this last inequality. Assertion
(&) follows from the inequality

(6.2) P,(TAHB ^ <) ^ P.(TA ^ t, TB ^ <)
= P,(TA ^ () + P,(TB ^ t)- P,(TAUB ^ <).

Let K be a compact set and let A^ be relatively compact
open sets such that A^ 3 A^+i =? A^i and ( j A^ == j ^ A^ == K.

71 71

The TA^ are an increasing sequence of stopping times. Let
T = lim"TA^. Then clearly T ^ TK. By quasi-left continuity,
X(TAJ-> X(T) a.s. P, for every x. Now X(T) e f^|A^= K,
so T" ̂  TK. Thus T = TK and therefore

Hence
P,(X(TJ -> X(TK)) = 1.

E^-^n) ^ E,(.- .̂)

and therefore C^A,) ^ C^K). This shows that (d) holds
whenever B is compact. Similarly, it is quite easy to verify
that (c) holds whenever B is an open set. Indeed, if B
is open there is a sequence of compact sets Ki c Kg c ...,
such that [ J K^ === B, so T^ ^ TB and thus

E^-^n) f E^-^.).

Hence C\K^) f ^(B). Properties (a), (fc) and (d) for com-
pact sets show that C^ •) is a Choquet capacity on the com-
pacts and thus by Choquet's capacity theorem there is a
unique extension of C^-) to the Borel sets. Denote this
extension by Q(-). For any Borel set B we then have

(6.3) Q(B) == sup (^(K), K compact
KCB

(6.4) C^(B) == inf C^U), U open.
TT—»HUDB

But by (a) if K c B, C\K) ^ C\B) and thus by (6.3)
Q(B) ^ C^B). Also if U D B , thenC^U) > C^B) and so
by (6.4) Q(B) ^ C^B). Hence C^B) = C^(B), so C^.)
is itself its extension from the compact sets to the Borel sets
and therefore (c) and (d) hold for any Borel set B. To see
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that (e) holds note that

E^ .̂.) - E .̂)
and thus integrating on x we see that (e) holds. Finally (/*)
holds because E^e""^) == E^e^-a), and thus

C\B) == C^- B) = C\- B).
This completes the proof.

The following proposition is a simple consequence of Propo-
sition 6.3.

PROPOSITION 6.5. — Assume B^, n ^ 1 all have ^-capacity
0. Then B == ^ J B^ also has ^'capacity 0.

n

Proof. — C\B^) == 0 if and only if P,(TB^ < oo) == 0
a.e. Since this is true for all n, P.z;(Tp < oo) == 0 a.e., and thus
C^B) == 0.

PROPOSITION 6.6. — Let X > 0 and let B be any Borel set.
Let K^ be relatively compact sets such that K^ f , K^ c B and
P^(TK ^ Tp) = 1 a.e. x. Then p.̂  -> (JL^ vaguely and
C^K,) f C^B).

Proof. — From the assumption it follows that

E,(^n) f E^e-^.) a.e.

and thus by montone convergence and Proposition 6.2

lim C^(K,) == limX C,E^e-^n) dx = X ^E^^-^) ̂  == C^B).
n>oo n t/w >/

Also for any fe C^",

(6.5) (^GY)f((4,GY).

Let K be any compact set. Then we can find f^C^ such that
GY(rr) ^ 8 > 0, x e K, and thus

8^(K) ^ (^, GY) < oo.

Thus there is a subsequence (A^ that vaguely converges to
a measure {JL. Fatou's lemma shows that ([JL, G^f) < (|x^, GY)
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and thus p.G^(K) < oo for any compact set K. Now by
Proposition 6.1. for any /*e C^",

^nWf ^ ^n^ GY,
and since ^II^GY^O as K f @, we see that given e > 0
we can find a compact K such that for all n ^ 1,

(ji^n^Gy ^ e.
But then

(6.6) ^ ̂  {dx)G^f{x) = f^ ̂  {dx) Tli.G^f(x)
^ (^, n^Gy) ^ e.

Also,

(6.7) lim lim f ^^.(^)GY(^)=lim f ̂ (dx)G^f(x) = ((x, G/*).
K ^ ® ^ ^ ^ ^ ^ J K^^K ' ' ' v t ' / /

It now follows from (6.6) and (6.7) that

lim Q4 GY)=(^GY).
n ••> oo /

Thus from (6.5), (^, G^f) = (^ G^f) and it now follows from
Theorem 6.1 that p. = (JL^. If we had another vaguely con-
verging sequence we would again obtain that the limit measure
was ^ so (JL^ -> [L^ vaguely.

PROPOSITION 6.7. — Let X > 0 and let B be a Borel set
and let U^ be open, U^ [ and such that P^(Tu, f Ta) == 1
a.e. TA^TZ piu^ -> (AB vaguely and ^(UJ ^ C^B).

Proof. — The proof is similar to the previous proposition
and will be omitted.

7. Applications of X-capacities.

In this section we will illustrate the use of the X-capacity
theory of the last section in finding criteria for when various
sets are hit or not. Mainly, we will focus our attention on one-
point sets but we shall also indicate how analogous results
can be given for other sets. These results are to be considered
only as examples of what can be done. No attempt has been
made to be exhaustive.
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By Proposition 6.4., for any rce®, C\{x}) = C\{0}) == C1

so either every one-point set has positive capacity or every
such set has 0 capacity. Our first result gives a necessary
and sufficient condition for C^ > 0.

THEOREM 7.1. — In order that C^ > 0 it is both necessary
and sufficient that G^O, dx) have a bounded density. In that
case there is a version g^{x) of the density such that g^{y — x)
is ^-excessive in x, ^-co-excessive in y and g^(x) == g^(— x).
For this version of the density

(7.1) E.^-^M; Vo < oo] == C^- x), rre®.

Proof. — Assume C^ > 0. By Theorem 6.2 applied to
B == {0} we then see that

(7.2) E^-^l; Vo < oo] dx = 0^(0, dx).

Thus G^(0, dx) and hence G^(0, dx) has a bounded density.
By Proposition 3.9 we may assume that the density g^ is
choosen to have the properties stated in the theorem. From
(7.2) it follows that (7.1) holds for a.e. x. Since both sides
are X-excessive it follows from Proposition 3.8 that (7.1)
holds for all x.

Suppose now that G^(0, dx) has a bounded density g\
Again we may assume g^ has the excessive function properties
stated in the theorem. By Proposition 3.11, for all x and y,

g\y ~~ x) ~ j^ n^ ^s^y — z) = u^ y ) '
Let B^ be open, B^ compact,

B,DB^B,3...,f^B,=F|B,== {0}.
n n

Then as u^ (a;, 0) = 0 we see that for some K, 0 < K < oo

(7.3) ^(-.r)=E,[exp(-XVB,.)^(-XvJ;VB < o>]
< KE,[exp(-XVB,);V^< a)].

Quasi-left continuity shows that for x -^ 0, VB^ \ Vo and
X^ -> 0 a.s. P., on [Vjoj < oo]. Thus for x ^ 0

g\-x) < KE.Ie-^Vsoi < <x>].
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Since g\— x) > 0 on a set of positive measure we see that
E.^""^^; V[Q\ < oo ] > 0 on a set of positive measure and
thus by Proposition 6.3 C^ > 0. This completes the proof.

COROLLARY 7.1. — Suppose C^ > 0. Then

P.(V^o| < OD) > 0

if and only if g\— x} > 0. The set So = {x: g\~~ x) > 0}
is a sub-semigroup of ® contained in — S. If S = ®
then So === @ and for all x e ®

(7.4) E^-^o^o, < <x)]=E,[<'-^io!;Vo < ^}st:^——

Proof. — The first statement follows at once from equation
(7.1). Also by (3.21) applied to B = { & } we see that

g\x) ^ Eo^W; V^ < ^]g\x- &).

Using (7.1) again it follows that

(7.5) g\x+y) > W(x)g\y).

Hence x + y e So whenever x and z/eSo. Now if g^(^) > 0
then for any neighborhood N of 0

G^O, N + x) ^ E,{e-^)G\x, N + x)
= Eo^-^G^O, N) > 0

so ^e2. Finally, if S == @ then by Theorem 6.3

E^-^;V^ < oo] > 0

a.e. x and thus g\—x) > 0 a.e. a;. Given any xe@
there are then points a, b such that x = a + b and g^(a) > 0,
g\b) > 0. It follows from (7.5) that g\x) > 0 for all x e @.
Thus So == ®. Equation (7.4) now follows from this fact
and equation (7.1). This establishes the corollary.

If C^ > 0 it is natural to inquire if x is regular for {x}.
Now x is regular for {x} if and only if

E^-^t;V^ < c x ) ] = = l .

Since E^-^t; V^ < oo] == Eo[e~^W; V^ < oo] either
every point is regular or no point is regular.
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COROLLARY 7.2. - If 0- > 0 and E^e-^W; V,,, < oo] = 1
then the density g^ in Theorem 7.1 is continuous on ® and
g\0) > 0. Conversely if G\0, dx} has a bounded continuous
density then C^ > 0 and E^e-^W V^ < oo] = 1.

Proof. — Suppose C^ > 0 and Eo[e-^Soi; Y),, < oo] = 1
From (7.1) we then see that

1 == Eo[c-^loi; V^ < oo] = C^(0)
and thus g\0) > 0. Again from (7.1) we then see that

E,[<^lo!;Vo< oo] =i^-^.
^(0)

As X-excessive functions are lower semi-continuous in this
case (Proposition 3.7) we see that

lim EJe- îoi; V^ < oo] ^ Eo[e-^W; Vo < oo] = 1.
X-^Xa JX->XQ

Thus E^^-^ioi; V(oj < oo] and consequently g\—x) is
continuous at 0. Now from (7.5) and the fact that here
cx = [^(O)]-1 we have

(7.6) g\x+y) > g\x)g\y)[g\0)]-\

Setting x == a in (7.6) we see that

Km g\a + y) ^ g\a).

Now set x + y = a in (7.6) to obtain

g\a) ^ g\a - y)g\y)[g\0)]-\
Thus

g\a) > Urn g\a — y}.
7»-0

Hence g^ is continuous at a.
Suppose now that G\0, dx) has a bounded continuous

density u\x). We will now show that u\x} = g^(x) where
^ is the density given in Theorem 7.1. Since

g\— x) = u\— x)

a.e. x and g\— x) is X-excessive it suffices by Proposition
3.8 to show that u\— x) is X-excessive. Now as g\— x)
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is X-excessive

e^f^^dy)g\-y) ^ g\-^ x\

and thus for a.e x,

e-^ f^\x, dy)u\- y} < u\-x).

As both sides are continuous in x this inequality must hold
for all rr. Also as u^ is bounded and continuous

f^(x, dy)u\- y) -^ u\- x)

as (^ 0. Thus u\— x) is X-excessive. Now let B^ be open
relatively compact neighborhoods of 0 such that B^^ {0}.
Then from (7.3) we see that for x + 0,

(7.7) g\- x) = E^-^; V(o) < oo]g^(0).

Hence g\0) > 0 since otherwise g\— x) ̂ 0. On the other
hand from (7.1) for x = 0 we see that

Eo^-^V^ ' < oo]=C^(0)

and thus (again by (7.1))

(7.8) E^-^ot; V^ < ex)]
^Eo^-^ot; V,o, < ^]g\-x)

g\0)
Comparing (7.7) with (7.8) we see that

Eo[.-^o|;V^ < oo] =1.

This completes the proof.

Remark. — In the above proof we used the continuity of the
density to show that it was the density g\ Only the conti-
nuity at 0 of the density g^ was needed to establish the
regularity at 0. Thus alternately we could assume that
G^O, dx) has a bounded density g^ such that g\— x) is
X-excessive and continuous at 0.

The remainder of this section will be devoted to finding a
simple sufficient condition to guarantee that a set have zero
capacity. We will confine our attention to processes on R^.



^ SIDNEY C. PORT AND CHARLES J. STONE

PROPOSITION 7.1. - Let X{t), t^ 0, be an infinitely divi-
sible process on R". Then for any positive random variable T

(7-9) ln" e-2 ̂  P(|X(()| <£ e, T > () dt = oo.

Proo/'. — It suffices to prove this result under the added
assumption that X(t) does not have any jumps of magnitude
larger than 1 (for the time S to the first such jump is a posi-
tive random variable and we can consider the time min(S, T))
Under this assumption the logarithm of the characteristic
function of X(t) can be written as

(( l a•6 +X''(eio'a: -1 - ̂ -^ w)-
For 0 < S < co let Xg((), ( > Q, denote an infinitely
divisible process whose characteristic function has logarithm

<( la•e+X,<8^- l- l6•• r)v(^))•

Then X§(() has mean cut and

E|Xs(() - a^ = tf^Wdx) = ̂ t,

where og -^ 0 as 8 -> 0. By Tchebychef's inequality for

P(lX^)-a(|^)<4^. ^0.

If 0 < ( < e/2|a[, then |a(| < e/2. Consequently

P(|X6(^ e) <^, 0 < « e/2|a|.

If CTS = 0 for some 8 > 0, then X((), t ^ 0, is a pure jump
process and

J^°P(X(()=0,T > t ) d t > 0,

from which (7.9) follows immediately. Thus in proving Propo-
sition 7.1 we can assume that <Tg > 0 for all 8 > 0.

Let 8 > 0 be fixed. There is an Sy > 0 such that

-62- s

8(r| ^ 2[aT 0 < s < SQ.
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Then for 0 < e ^ £o
P(|X^)| > e) <-|^ 0 < ̂  ̂ .

Consequently there is an £i > 0 such that for 0 < e ^ £3.

P(|X(()| 0 and T > () ^ 1 0 ^ ( ^ ^
^fc 0(7§

This shows that for 0 < e ^ £1

f;P(\X(t)\^,^>t)dt^^

Since CTJ -> 0 as 8 -> 0 we see that (7.9) holds as desired.
In the next result ® = R^eZ^2 and S^, r > 0, denotes

the points in ® of the form (a-i, . . . , ^+d,), where
^d,+i? • • • ? ^+2 are integers and

di+df

S ^ < r.
1=1

THEOREM 7.2. — Le^ @ == R^eZ^2 and fc( B be a Borel
set in ®. If

(7.10) l imsup^ "̂  ^1 < oo,

(A^ C^B) == 0.
Proo/1. — We can assume that (^(B) < oo. Then for any

Borel set A

J^ (^)G^, A) =f^e-^ dx ^ |A|.

Setting A === B + Sr? we see ^at

|B+S,| ^^^(^)G^,B+S,)_
^ (i^(B)G^(O, S,) = CX(B)GX(0, S,).

By Proposition 7.1
r G^O, S,)hm —v——r/ == oo.
r->0 r

If (7.10) holds, then
r I8 + SJlim sup '——-—rj < oo

r->o r-

and hence (^(B) == 0 as desired.
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COROLLARY 7.3. — Let ®==R 2 . Then C\{x}) = 0 for
all x e ®.

COROLLARY 7.4. — Let @ === R3 and ̂  B fee tAe range of
a continuous curve having bounded variation. Then C^B) == 0.

Proof. — We can write

B = {9(1), 0 ^ ̂  1} ,

where 9 is a continuous function of total variation M < oo.
Choose r > 0 and set XQ === 9(0). Let x^ be the first (in
the sense of least value of t) point, if any, along the curve
whose distance from XQ is r. If x^-i exists let x^ be the
first point, if any, along the curve beyond a^_i whose distance
from Xn-i is r. Let XQ, . . ., x^ be all points obtained by
this procedure. Then Nr ^ M and

B+S,c |^J(^+S,,).
J==o

Consequently

|B + SJ ^ (N + 1)4 nW < ̂ (^ + ̂

and it follows from Theorem 7.2 that C^B) == 0.

8. Transient and recurrent sets.

In this section we will first show that a Borel set B is
either such that P^VB < oo) === 1 a.e. x or lim P^(X^eB

Ooo

for some s ^ () == 0 a.e. rr. For a recurrent process,
P^(VB < oo) === 1 a.e. for any set having C^B) > 0. In the
transient case a Borel set may be of either type. A Borel set
such that Pa.(X,eB for some s ^ () ^ 0, a.e. as t—> oo
is called a transient set. Most of this section is devoted to
showing that associated with each such set is a unique Radon
measure pa, called the co-capacitory measure of B, such
that P.Z;(TB < oo) dx = ̂ i^s[dx) and in investigating asso-
ciated capacity theory.
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PROPOSITION 8.1. — Let B be a Borel set. Then either
P^VB < oo) == 1 a.e. (and for all x in the non-singular case)
or lim P.r(X, e B for some s ^ t) == 0 a.e. (and for all x

t->00

in the non-singular case).

Proof. — Let <pa(^) = P^(VB < °o). Then as <PB is an
excessive function, P^^x) ^ r{x), t-> oo. Let h[x)=^^^{x)—r{x).
Then ^^ = r -\~ h^ P^A ^ 0, and by dominated convergence

P'r(^) = ̂  P^, A/)[l^m PW2/)]= l^a P^a;) == r(^,

so r[x) is P^ invariant for each t. But then xG^r^) == y*(^).
Now XG^O, dx) is a probability measure on ® and r is
bounded. Thus by the Choquet-Deny theorem there is a
constant a such that r{x) = a a.e. on the group generated
by the support of XG^O, dx). It is quite easy to see however
that the support of this measure is just S. Thus

(8.1) ^{x) = a + h{x) a.e. x e ®.

In the non-singular case it follows from (3.23) that r{x) = a
so (8.1) holds for all ^e@. The conclusion of the theorem
now follows at once from (8.1) and the following

LEMMA 8.1. — If a > 0 then P^(VB < oo) === 1 a.e. (and
for all x in the non-singular case).

Proof. — Let g e $+ be such that J(g) === 1. Then the
measure P^(VB > t, X< e dy) is absolutely continuous and
thus

P,(t < Va < o>) ==J;P,(Va > (, X^dy)P^ < co)
^ aP,(Va > ().

Thus for any t > 0,

P,(VB < 0)) ^ P,(Va ^ t) + aP,(Va > t)

and so aP^Va == oo) ^ 0. Since a > 0, P^(VB == oo) = 0.
Since g was arbitrary, P^VB = oo) = 0 a.e. x, and so
P^(VB < oo) === 1, a.e. x. If the process is also non-singular,
then for some ^o > 0,

P'»(0, dy) = pjy) dy + (^ (<^)
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where pt{y) > 0 on a set of positive measure. Hence for
t ^ tQ

P,(Va < 0)) ^ ^ d,{y) dy.

Since (see 3.23) lim Pt[y} dy = 1 we see that
t->ao t/"

P,(VB < 00) = 1

for all x. This establishes the lemma.

COROLLARY 8.1. — If the process is recurrent then
P^(VB < oo) = 1 a.e. {all x in the non-singular case) whenever
C\B) > 0.

Proof. — Suppose false. Then in (8.1), a = 0 so P^B^) \ 0
a.e. Then tor any g e 0+

(8.2) (g^B - P^B)) = ̂  (gsP^B) .̂

Since by Proposition 4.3 G(^, K) == oo a.e. if |K| > 0 it
must be that (pa — P^B = 0 a.e. for otherwise the left
hand side of (8.2) would be infinite which cannot be because
the right hand side is bounded by J(g). But then the left
hand side of (8.2) is 0. Let g^e=0+, J(gJ > 0 be such that
g^ ^ 1. Then by monotone convergence,

0 = lim f^ (g^, P^a) dt = f^ (1, P^s) dt = f^ ̂ {x) dx.

Thus 9B(^) == 0 a.e. That is impossible since we are assuming
(^(B) > 0. This establishes the corollary.

DEFINITION 8.1. — A Borel set B is called recurrent if
P^(TB < oo) == 1 a.e. It is called co-recurrent if P^TB < oo) == 1
a.e. It is called transient (respectively co-transient) if it is not
recurrent {respectively co-recurrent).

From Corollary 8.1 we see that if the process is recurrent
then any set B such that (^(B) > 0 is recurrent. Since
— X( is also a recurrent process and C^(B) = C^fB) every
such set is also co-recurrent.

Throughout the remainder of this section we will assume
that X( is a transient process. Our aim is to show that there
is a capacitory measure that is attached to every co-transient
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set and to develop the relevant capacity theory. The major
results are summarized in Theorem 8.1.

PROPOSITION 8.2. — Let B be a co-transient set. Then there
is a unique Radon measure [AB whose potential [L^G has
P^TB < oo) as its density function.

Proof. — Let ^(x)==P^B< oo) and let ^^^B—P^B] -^-'
Then G^ < ya and G^ ^ 90 a.e. Thus for any fe C^,

(8.3) (^, Gf) = (/; G^) f (/•, ?B),

where ^(^lr) === 4'/i(^) c^x' Given any compact set K we can
find jfe C^ such that Gg(rc) ^ 8 > 0, xeK. and thus

(8.4) (I,(K) < 8-i(/-, .pa) < w.

Let K^ be a family of compacts Ki c ̂  c Ka c • • • ,
UK,==®. Then for /•eC^,

n

(8.5) f^{dx)Qf{x) =fsf(x) dxf^Q{x, dy)^(y)

= ̂  /-(a;) dx f^ fl^{x, dy)^{y) ^ f^ f(x) dx fi^{x).

Now for any fixed ( > 0,

fi^W == E.[ys(X^)] < P,(TK, < t} + P^x).

But P '^B^O a.e. and T^f oo a.s. P^ as r-^ oo. Thus
for any fe Cf,

(8.6) limfH^BWx)dx=0.
r-><x>

Let s > 0 be given. Then from (8.5) and (8.6) we see that
there is an 7*0 such that for all h, 0 < h ^ 1, and r > 7*0,

(8.7) f^(dx)Gf{x) ^ s.

From (8.4) we see that there is a subsequence h^ \, 0 and a
Radon measure (AB such that ^ -> [XB vaguely. Now

(8.8) (f, ys) -J^ ̂  (^)G/-^) < !(/-, ?B) - ( ,̂ Gf)\
+f^.^{dx)Gf{x).



218 SIDNEY C. PORT AND CHARLES J. STONE

Since Gif is a bounded continuous function it follows from
(8.3) and (8.7) that for all r > ro,

(A VB) - / ^ B {dx)Gf{x) < e,
^r

and thus letting r -> oo

|(A?B)-(^G/')| ^ S.

Since s was arbitrary we see that (/*, 93) == (p-a? Gf). It is
clear that [L^G is a Radon measure and thus by Theorem 6.1
the measure ^a is unique. This establishes the proposition.

COROLLARY 8.2. — Let B be a co-transient set and let

^ (dx) == 1 [^(x) — P^B^)] dx. Then for all h > 0,

P'h(®) === {JlB(®) a^d the measures (JL^ converge vaguely to [LB
as h ^ 0.

Proof. — During the course of the proof of Proposition 8.2.
it was shown that ^ -> [L^ vaguely. To complete the proof
we must show that the p.^ have the common total mass
^B(©). To this end let /n s C^ be such that / n f l . Then

, . _ /[?B - P^a] . \(^ / re ~ [——h——J fn)
By Proposition 8.1 (^B, fn) = (^B, Gfn) and so

(P'9B, fn) = (?B, PYJ = (ptB, GPY,).

Thus

(^, A)= = -{- ̂  (^ PYJ ^.
Letting n -> oo we see by monotone convergence that

^(®) = (XB(@)
as desired.

DEFINITION 8.2. — Let B fee a co-transient set. The measure
pis in Proposition 8.2 i5 called the capacitory measure or equi-
librium measure of B. Its total mass C(B) is called the capacity
of B. Similarly if B is transient the corresponding measure
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(IB is called the co-capacitory measure or co-equilibrium measure
of B and its total mass C(B) is called the co-capacity of B.

PROPOSITION 8.3. — If_B is relatively compact then |AB
is finite and supported on B. The measures ^ -> (ig weakly
and C(B) == C(B).

Proof. — Let B be relatively compact. Then B is both
transient and co-transient. Consequently, for any feC^

00 > f@ RA < °°)/N dx ^ f^ E^e-^)f(x) dx = ^f(x).

Choose feC^- such that G1/^) ^ 8, o;eB. Then for any
o;eB and X ^ 1, GY(a;) ^ G1/'^) ^ 8, so

(̂H) < S-^P^TB < oo)y(rr) ̂ .

Hence there is_ a sequence \ ^ 0 and a finite measure (JL
supported on B such that (4" -> (JL weakly. Since G^f^ Gf,
and Gf is ja bounded continuous function, G^f -> G/* uni"
formly on B and thus

f@ PA < oo)/^) ̂  == lim (^ GY) = (., Gf).
^o

Thus by the uniqueness of ^ p. == ̂  It mow follows that
^ -> ^B weakly. Since B is relatively compact,

l̂ m C^B) = lim (^, 1) = (^, 1) = C(B),

and as C^B) = C^(B) we see that C(B) = C(B).

Remark. — In point of fact stronger results are true. For
any co-transient set B and for any relatively compact set
A, (JI^(A) — (JIB(A). This will be established in § 11.

PROPOSITION 8.4. — The set function C ( - ) is a Choquet
capacity on the relatively compact sets that has the additional
properties that C(B + x) = C(B) for all x and C(— B) == C(B).

Proof. — We must show that properties (a) — (f) of Propo-
sition 6.4 hold for C(-) . That (a) and {b) hold for C(B)
follows at once from the fact that C^B) -> C(B), X ^ 0. Let



220 SIDNEY C. PORT AND CHARLES J. STONE

K be compact. We can then find relatively compact open sets
AI D Sg => Ag => . . . such that F^ A^ = K. The times T^ f TK

n »
a.s. P^ and thus P^TA,, < oo) ^ P^TK < oo). Consequently,
for any fe C^,

^PA, < co)f(x) dx^ /P,(TK < oo )/^) dx,

and thus by Proposition 8.2,

(8.10) lim (^, Gf) = ̂  Gf).
n>oo

Now ptA,(Si) < oo, and ^(Ki) and ^(Ki) are dominated
by (iA/^i). Thus there is a subsequence (A A of the pi A
that converge weakly to a measure (A supported on Si.
If follows from (8.10) that (JL = [AK, and thus (A A, -> (^.K
weakly. Hence C(AJ ^ C(K). If U is a relatively compact
open set, then there are compact sets K^, Ki c Kg c • . • such
that ^ j K ^ = = U . Arguing as above we find that p.^->(iu

weakly'and thus C(KJ f C(U). Thus C(.) is a Choquet
capacity on the compact sets. Let C^ be its extension to the
Borel sets. What we have just proved about relatively compact
open sets shows that if U is such a set then C^(U) = C(U).
Arguing now as in the case of X-capacities we see that (c)
and (d) hold for all relatively compact sets. Properties (e)
and (/*) follow from the fact that they are true for (^(B)
and C\B) -> C(B).

The next result is a corollary of the proof of the previous
proposition.

PROPOSITION 8.5. — Let K be compact and let U^ be open
relatively compact set D K such that V^ ^ K. Then (AU -> ^K
completely. Let U be an open relatively compact set and let
K^ be compact K^ c U and K^ ^ U. Then (JL^ —^ p-u comple-
tely.

We will now show that for any co-transient set B, approxi-
mations from below are always possible. The approximation
from above may fail since there need not be any co-transient
open set => B if B is not relatively compact.
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PROPOSITION 8.6. — Let B be a co-transient set and suppose
A c B . Then A is co-transient and C(A) ^ C(B).

Proof. — Clearly A is co-transient and

PA < 00) ^ P,(TB < 00)

and thus for any f ̂  0,

(^, Gf) ^ (^ Gf).

Since 1 is excessive we can find f n ^ O and bounded such
that G/^f 1. Thus C(A) = ^(®) ^ ^(®) = C(B).

PROPOSITION 8.7. — Let B be a co-transient set. Then
sup{C(K): KcB , K compact} = C(B). Moreover if K^cB,
K^ relatively compact, and Ki c Kg c ..., are such that
P^TK, ^ Ta) = 1 a.e. then (JL^ -> (AB vaguely and C(KJ f C(B),
so if C(B) < oo then the convergence is complete.

Proof. — Let K^ satisfy the hypothesis of the theorem
Then

(8.11) (^, Gf) f (ixa, Gf).
By essentially the same argument as used in the proof of
Proposition 6.6 we can show that ^ -> ̂  vaguely so we
will omit these details. Now from Proposition 8.6 we know
that C(KJ ^ C(B) so lim C(K,) ^ C(B). On the other
hand, if fe C^-, 0 ^ f ̂  1, we know that

(^, f) ^ C(KJ
and thus (^, f) ^ lim C(K^). Letting f^ 1 we see that
C(B) ^ lim C(K^). Hence lim C(K,) = C(B). If C(B) < oo

n n

vague convergence becomes weak convergence and since we
have just shown there is no escape of mass the weak converge
is complete. Finally, by 10.16 of Chapter i [2] we can find
compacts K^cB such that P^T^ f Ta) = 1 a.e. x and
thus C(KJfC(B) . Hence

sup{C(K) : K c B, K compact} = C(B).

This establishes the proposition.
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COROLLARY 8.3. — If B is transient and co-transient then
C(B) = C(B).

Proof. — Immediate from the previous proposition and the
fact that for relatively compact sets K, C(K) == C(K).

PROPOSITION 8.8. — Let B^ be co-transient sets such that
C(BJ ==0, n = 1, 2, ... Then [ J B^ is co-transient and
C(LJB.)-0.

Proof. — Since C(BJ = 0 it follows from Proposition 8.2
that P^(TB, < oo) =0 a.e., and thus P^/Tr < oo \=0

a.e. Hence |̂ J B^ is co-transient and C / I J B^\ == 0.

The following is one of the most fundamental facts about
transient i.d. processes.

THEOREM 8.1. — Let B be a co-transient set. Then there is a
unique Radon measure ^ supported on B such that
(IBG {dx) = 9a(^) dx. The total mass C(B) of ^ is finite
whenever B is compact. Whenever B is both transient and
co-transient C(B) = C(B).

Proof. — It follows from Proposition 8.2 that there is a
unique Radon measure (AB whose potential is 9a(^) dx.
From Proposition 8.3 we see that if B is relatively compact
then (AB(@) < oo and (AB is supported on B. The fact
that in general ^ is supported on B follows from this fact
and Proposition 8.7. The final assertion in the theorem is
just Corollary 8.3. This establishes the theorem.

9. On sets in '(/4.

Recall that ^4 consists of those sets B e S> having a non-
empty interior and such that P,(TB = Ta) = 1 for almost
all x e ®. In this section we will develop some properties
of sets in ^64 and also find a sufficient condition for sets to
be in ^4 in the special case that @ be isomorphic to a closed
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subgroup in Euclidean space. We will establish at the end of
this section that, in general, if B is a relatively compact
set there is a compact set 84 e ^4 containing B.

PROPOSITION 9.1. — Let B be a Borel set in ® and let
y^ e G with y^ -> 0 as n -^ oo. Then

P,(lim TB-,, = TB) - 1
ra^-oo

holds at all x such that P^(TB = Ta) = 1.

Proof. — Let B^ be the closed set consisting of all points
whose distance from B is no larger than the maximum
distance from the origin to y^ k ^ n. Then B^ are closed
sets and B^ ^ B as n -> oo. By quasi-left-continuity

P,(TBJTB as n - ^ o o ) = i , a;e@.

Consequently

P,(lim inf TB-^ > Ta) = 1, ^ e ®.
n>oo

It is also clear that

P,(lim sup TB-^ ^ Ta) == 1, x^ ®.
n->-oo

In other words

P.,(TB ^ lim inf TB-^ ^ lim sup TB-^ ^ Ta) == 1.
n><» n>oo

Thus if P.,(TB = Tg) = 1, then

P,(lim TB-,,. = Ta) = 1,
n>ao

as desired.

PROPOSITION 9.2. — Let B be a Borel set having a non-
empty interior and let fe Cc. Then Gef and H^f are conti-
nuous at every x such that P^(TB = Ta) === 1.

To prove that GB/* is continuous at x, we need only prove
that if ^ -> 0 as n -> oo, then Gaf{x + y^) -> Gef{x). Now

Wx + yn) = ̂ f^f^X, + y^) dt.

Since B has a non-empty interior and f has compact support
ll
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the desired result follows by dominated convergence and
Proposition 9.1.

To prove that Hp/* is continuous at x, we need only prove
that if ^ -> 0 as n -> oo, then HB/^ + 2/J -> HB/^). Now

HB/^ + 2/n) = EJAXr^ + y); Ta^ < oo}.
To prove the desired result we need only show that

(9.1) P,(TB = oo or X^ -> XT, as n -> oo) = 1.

To see that this is the case note that, except for a set of
P^ probability zero, X-rg -> X^ as n -> oo on the set
(TB < oo), where B^ is defined as in the proof of Proposition
9.1. Since T^ ^ TB, if XT^ -> X^, then either X< is
continuous at t = TB or TB^ = TB for n sufficiently large.
Since TB-^ ^ TB^ and TB-^ -> TB as n -^ co (except on
a P^ null set), it follows that (9.1) holds, as desired.

From Proposition 9.2 we obtain immediately

THEOREM 9.1. — Let Be^ and let fe C,. Then Gef
and HB/* are continuous for almost all x e @.

For t ^ 0 set
TB==inf[5 ^ (|X,eB].

PROPOSITION 9.3. —Let Be %4, t ^ 0, an^ i/ne G with
y^ -> 0 a5 M -> oo. TAeM

PJlim Ta^ == TB\ = 1 a.e. .re®.
\ n>oo /

Proof. — Let /> be any probability density function on ®
and set ^ = fP1. Then (JL is absolutely continuous, so by
Proposition 9.1

l=P^ l imTB^==TB\
\ ft>00 /

= ̂  /-(a;) ^P,/lim TB^ = TB\.
\ n'>Qo /

Since f is an arbitrary probability density on ®, the con-
clusion of Proposition 9.1 is valid.

COROLLARY 9.1. — Suppose the process is transient. Let
B e %4, t > 0, and y^ e @ wi^ ?/„ -> 0 as yi -^ oo. T/^n
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a.e. x e ® P^(TB = co iff Tp+y, = ao for n sufficiently
large) === 1.

Proo/*. — This result follows from the fact that P^(X< -> oo
as t -> oo) = 1 and there is a compact set Bi such that
B + ^ c B i for all n > 1.

Recall that if TB < oo, then

WB=sup[( |X,eB].

COROLLARY 9.2. — Suppose the process is transient. Let
B e ^4 and let y^ e ® w^/i ^ -> 0 as n -> oo. T/ien

PJTa = oo or lim WB-^, - WB^ = 1, a.e. a; e @.
\ n>oo /

Proo/*. — Let 0 ^ s < oo. Then

(WB ^ s) = (TB < oo) n (TB = oo for ( > s and ^rational).

Applying this to B + y^ and using Corollary 9.1 we see that
a.e. x e ®, P.,(TB =00 or WB ^ s if WB+^ ^ s for n
sufficiently large) = 1. The result now follows from this
fact.

PROPOSITION 9.4. — Let B e= %4. TAen

P^TB < oo,Xw,-^Xw,, and Xw,eB)=0 a.e. a^e®.

Proo/*. — This result is quite obvious. For from almost all
points in B the process moves with probability one, imme-
diately into B. Also if x has an absolutely continuous initial
distribution, then for any e > 0 and positive integer /
the location of the process after the /^ jump of magnitude
at least s has an absolutely continuous distribution.

PROPOSITION 9.5. — Suppose the process is transient. Let
B e = % 4 , let fe C, and let y^e® with y^ -> 0 as n -> oo.
Then a.e. x e ®

P,(TB = oo or lim f(X^J) = f{x^_)) = 1.
n>oo •'**

Proof. — We can suppose that TB < oo, TB+^ < oo for
n sufficiently large, Wa+y, -> WB as n -> oo, "and if X^
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has a jump at t=W^ then Xw^ B. If Xw^ B, then
WB+^ ^ WB for n sufficiently large. Since X^ has left-
hand limits, if follows that

/^w^) -^ f{x^-) as n -> oo

as desired.
From the above results we obtain immediately

THEOREM 9.2. — Suppose the process is transient. Let B e ^4,
let /*<= C, and let 0 < ( ^ oo. Then

E,(/'(Xw,-); WB ^ < and TB < oo)

is continuous at almost all x e ®.
Suppose now that ® = R^ e Z^2. A subset A of ® will

be called a sector if there are real numbers Ui, . . ., i^, a,
and c with u\ + . • . + z^ > 0, a > 0, and — 1 < c < 1
such that

A = {x e ®|^+i = • • • = x,^ = 0, 0 < x[ + • • • + x\ < a2

and x^ + ... + x^d, > c[x\ + ... + x^\.

(Here a; = (x^ . . . , ^+dJ.) By definition sectors are open
in ®.

Let B be a Borel subset of ®. It A is a sector, then

D = {xebB\x+ A c B }

is a closed subset of ®. Clearly D + AcB. We will show
next that | D] ==0. Let L be a line segment in ® having
one end point at the origin and all other points of L lying
in A. Then for xe@ the line segment x + L contains
at most two points of D, as is geometrically evident from the
fact that (D + A) n D is empty. Consequently

| D n ( ^ + A)| =0 for o;e®.
Thus

0 = ̂  I D n (x + A)| dx = f^ dx ^ Wl^y - x) dy
=|D||A|.

Since | A| ^0 , it follows that j D| = 0 as desired.
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THEOREM 9.3. — Let ©^R^eZ^ . Let B be a Borel
set in @ such that for some countable number of sectors A(

U {x e bB\x + A, <= B} = OB.

r/ien |bB| = 0 and P,(TB = Ta) = 1 a.e. ^ e ®.

Remark 1. — It is easily seen that sets having sufficiently
smooth boundaries are of the type covered by the theorem.
For example, if @ = R^ then polyhedrons and balls are of
the required type. It is also clear that the theorem could be
extended by allowing the boundary to behave wildly on a
subset of the boundary having zero X-capacity.

Remark 2. — The proof of the theorem does not use the fact
that ® is generated by the union of the supports S< of X<,
t ^ 0. This will be relevant to the proof of the following
theorem.

Proof of Theorem 9.3. — The fact that |bB| == 0 is obvious
from the discussion preceding the theorem. Suppose that the
other conclusion of the theorem is false. Then we can find
a sector A, an e > 0, and an M < oo such that if

D == {xe^B\x+ A e B }
and

S = {^6= G|P,(TB + s ^ TB, TB ^ M, XTB<= D) > s},

then [S| > 0. Since

J;|Sn(^+A)|^=|S[|A| >0,

we can find an XQ e @ such that ]S n {xo + A)| > 0. Conse-
quently we can find a line segment L £ ® such that one end
point is at XQ, all other points of L are in XQ + A, and L
contains infinitely many points of S.

Observe that

S = {.r|Po(TB-, + s ^ TB-,, TB-, ^ M, XT._e D - x) ^ e}.

Let Q. be the probability space for the process starting
out at the origin. Set

". = WB-. + e ^ TB-,, TB-, < M, Xr^eD - x}.
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Consider rr, y e ® such that y — x e A and <o e D^ n f2y.
Then

X T ^ + ^ D - ^ + ^ D + A C B .

Thus TB-^ ^ TB-^ <: M and hence

Ta-y ^ TB-^ — e ^ M — s.

Consider next a;i, ..., x^ all in ® such that rc,+i — lr/e A
for 1 < / < n and cos n^ilp.. Then

0 ^ TB-,, < M - {n - 1)£

and hence n < 1 + s^M.
It follows from the definition of L that for any positive

integer v we can find points 2/1, . . ., y^ e L n S such that
Vj ~ 2/ i e^ ^or 1 ^ i < / < v. Set Qy == t2y.. Then
P(Qy) > s for 1 ̂  / ^ v since y^eS. By the above para-
graph

S W<o) ^ 1 + s^M, co e Q.
y=i

We thus have the inequality

sv ^ S P(0,) = E(S IQ,H) ^ 1 + ^M,
y==l \7=l /

which implies that v ^ e~1 + £-2M. This contradicts the
fact that v can be made arbitrarily large. Therefore the
conclusion of the theorem must be true.

It is not clear how to find useful sufficient conditions for a
set B in a general locally compact Abelian group ® to be in
84. If ® is compactly generated, then ® ̂  R^ e Z^ e H,
where H is compact. It is clear from Theorem 9.3 that if B^
is a relatively compact subset of ® and ® is compactly
generated, then there is a compact subset B of ® such
that BI c B and B e ^4.

Let ® be any locally compact Abelian group. Let Bi
be a relatively compact subset of ®. Then there is an open
compactly generated subgroup @o of @ such that B^ £ ®o-
Consider the process Y(, ( ^ 0, on ®o obtained from X^,
( ^ 0, by ignoring those times when X($@o- This process
satisfies all the assumptions for an infinitely divisible process
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on ®o except that ®o is not necessarily generated by the
union of the supports of Y(, ( ^ 0. In Remark 2 following
the statement of Theorem 9.3, however, it was pointed out
that this is not necessary for Theorem 9.3 to be valid. Thus,
there is a compact subset B of @o containing Bi and in
%4 relative to the process Y(, t ^ 0. It is clear that B is
in ^4 relative to the process X(, ( ^ 0, as well. Thus we
have the following result (which will be needed later on).

THEOREM 9.4. — Let BI be a relatively compact subset of
®. Then there is a compact subset B of ® such that Bi c B
and B e ^84.

10. The Renewal Theorem and Type II Transient Processes.

We say the transient process if type I if

lim Gf{x) = 0, /*€=€,.
a;->oo

Otherwise the process is said to be type II. Suppose the ran-
dom walk obtained by looking at the process at integer times
is type I transient. It is then easily shown that the continuous
time process is type I transient. Suppose the random walk
is type II transient. Then the group @a generated by the
support Si of Xi is isomorphic to either R e H or Z © H,
where H is compact (by results in [7]). In particular ©2
is compactly generated. Thus by Proposition 5.19 @ is
compactly generated. It now follows easily from the structure
theorem that ® is isomorphic to R © H or Z © H for
some compact group H. If ® = R e H or Z © H, the
induced process on R or Z has finite non-zero mean. This
also follows easily from the corresponding discrete time
results proved in [7].

Suppose now that ® == R © H or @ = = Z © H , where
H is compact. Let Haar measure dx on @ be such that
dx == dr dy, where dy is normalized Haar measure on H
and dr is Lebesgue measure on R or counting measure on
Z. Define ^ : ® -> R or ® -> Z by ^(r + y) == r if y e H.
We set

®+={^e=®|^) > 0}
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and
©-= {x e ®|+(a;) < 0}.

By « ^ -> + oo » or « re -> — oo » we mean x -> oo and
x e= ®+ or ^ e ®- respectively. The induced process on R
or Z has finite mean if and only if for suitably defined m

(10.1) P^(0) = m(, 0 ^ t < oo.

THEOREM 10.1. — Let the process be type II transient. Then
® ̂  R © H or ® ̂  Z © H, w/iere H is compact. Suppose
® == R © H or Z © H, H being compact and ^ and Haar
measure being chosen as indicated above. Then (10.1) holds
for some finite non-zero m. Let ± m > 0, then for fe $*

lim Gf{x) = \m\J{f) and lim Gf(x) = 0.
a'->yoo a?^.±oo

Proof. — By what has been said we can assume that
® = = R © H or Z © H , where H is compact and ^
and Haar measure are chosen as indicated above. We can
also assume that (10.1) holds with, say, 0 < m < oo.

Suppose first that ®/®i is compact. Then, by Proposition
5.3, S( generates ® for some ( > 0. Without loss of
generality we can assume that Si generates @. Set

Then
G' = S P".

n==o

G = r P'G' dt.Jo
Choose f e <D*. Then

Gf{x) = G/^O) = ̂  P'Gy.^O) dt.

Now Q'f^{y) == Q'f{x + y) is bounded in x and i/ and
for each y by Theorems 4.1 and 4.2 of [7]

lim G'f-^y) = 0 and lim Gf-Jy) = mJ(f}.
a;->4-oo a;^—oo

Thus
lim G/^) = lim f1 P^O, dy^f.^y} dt

x->—oo a;-»—oo v u

= ^J(/~) ̂  P'(0, ®) ^
= mJ(/-)



INFINITELY DIVISIBLE PROCESSES AND THEIR POTENTIAL 231

and similarly
lim Gf{x) = 0

as desired.
Suppose next that ®/®i is not compact. Then ® == R (D H,

@^ == H, and the process is singular. The induced process
on R moves deterministically with velocity m. Let fe Cg.
Then clearly

lim Gf(x) == 0
a;->4-oo

so we need only prove that

lim Gf{x) =mJ(f).
a;->—oo

By translating f if necessary, we can assume that f is
supported by ®4'. Then for t ^ 0

G/(~ mt + y) = P^- mt + y), y e H.

Let Q^ denote the transition operator for the induced
process on H. We can let Q^ act on functions on ® by
considering H as embedded in ® in the obvious way. Then

p<G/*(~- mt + y) = (W(y), t /eH.

By the Ito-Kawata Theorem

lim Q^GAy) == f GA^) ̂
Ooo ^ H

uniformly in t/. An elementary computation shows that

f^Gf{z) dz = mJ(f).

Putting these facts together, we see that

lim Gf(x} == m3{f)
X->-—oo

as desired.
For a type II transient process there is a non-trivial theory

of the asymptotic behaviour of G^f {x) and Haf(^) as x —> oo
for any Borel set B. We now proceed to develop this theory.
Throughout the remainder of this section the process X<
will be assumed to be a type II transient process having
m > 0.
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PROPOSITION 10.1. — Let B be any co-transient set. Then
C(B) < m" and lim (OB? fy) = (C(B)/w) J(/*) /br an?/ function
/'e0*. ^+00

Proo/'. — By Theorem 8.1 for any fe (<&*)+,

(^ G^) = (OB, fy) ^ J^).

Hence by Fatou's lemma and Theorem 10.1,

C(B) 3(n ^ J(f)m

so C(B) < m. Since Gfy{x) ^ M for some finite constant
M it now follows by dominated convergence and Theorem 10.1
that lim (OB, fy) = (C(B)/m)J(/-).

y-»-+-oo

PROPOSITION 10.2. — Let B be a co-transient and recurrent
set. Then C(B) == m.

Proof. — Note that B n @ + c B , B n @4- is co-transient
and thus by Proposition 8.5 C(B) ^ C(B n ®+). To establish
the proposition then it suffices to prove if for a recurrent subset
of ©+. Let B be such a set and let K^ be relatively compact
sets such that K i c K g c . . . , u ^K^ = B. Then 0^ \ OB
and so if B is recurrent we see that for any fe C^,
(^ f) f J(/'). Thus by Theorem 8.1

^ (10.2) (^Gnw)
and since

?K,(@) =C(K,) ^ C(B) ^ m

we can find a subsequence jl^, a finite measure y on ®?
and a constant a such that for any bounded continuous
function ^ having a limit 4'(+ °°) a^ + 00?

. (10.3) lim ((XK,, +) = (Y, +) + a^(+ a>).
n/->oo

Applied to ^ = df it follows from (10.2) and (10.3) that for
any /eC^

(Y, Gf) + ̂  = J(f).
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Thus

(10.4) yG {dx) + -OL dx = dx.
m

Letting the measures in (10.4) act on f and P^ and using
the fact that Cjf — Gpy = f1 Vs f ds we see that y = 0
and a == m. The standard weak compactness argument
now shows that

lim ((IK,, ^) = m^(+ oo).
nx»

Thus the measures jl^ converge to the mass m at +00,
so C(KJ == (IKJ®) -^ w. By Proposition 8.3 C(KJ = C(KJ,
so by Propositions 10.1 and 8.7

m = lim C(K,) == lim C(KJ ^ C(B) < m.
n n

Thus C(B) == m, as desired.

COROLLARY 10.1. — If B is recurrent and co-transient then
for any fe $*,

lim (OB, fy) = J(/-).i/->+ao
Proof. — This follows at once from Proposition 10.1 and

10.2.

THEOREM 10.2. — Let B be any Borel set. Then for any
9 e ^>*,

(10.5) lim G^,{x) = w P,(TB = oo).
y->-+-oo 771

Let 9 e Cc. If B is a co-transient set and f is any continuous
bounded function

(10.6) lim ̂  ̂ {xW(x) dx == J^ (^, /•).
y^—oo ̂ ^ 77^

//' B is a co-recurrent set then for any bounded Borel function f
having a limit f(— oo) at — oo,

(10.7) lim f ^{xW(x) dx = f{- oo)J((p)
y->—oo "

and. lim ((py, Oa) == J(?).
y^-oo
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Proof. — The first passage relation shows that

(10.8) GB9, = G^ - HaG9,.

Since Gcpy(^) == G^(x — y), and sup G^(x) = M < oo (10.5)

follows from (10.8) and Theorem 10.1. Now let 9 e= C, and
let /'eCc. Then as (?y, GB/') =-(/*, GB^) we see from (10.5)
that

^ (9,, GB/1) - ̂  J; P,(TB = oo)^) dx.

Applied to the dual process — X( we see that

(10.9) ^Hm (9,, GB/1) =m^ PA = oo)^) dx.

Thus using the first passage relation again we see that

(10.10) lim ^HB, Gf) = W- (OB, f).
y->—w TH

The total mass (y^Ha, 1) = (qpy, OB) of the measures 9yHa
is ^ J(^) and thus there is a subsequence y^ —>• — oo, a
finite measure y supported on B, and constants a^ ^ 0,
04 ^ 0 such that for any bounded continuous function ^
having limits at + °o and — oo,

lim (<P^HB, ^) = (y, ^) + a^(- oo) + aa^(+ oo).
n^oo

Applied to ^ == Gf we see that

(10.H) W (^, ^) == (^ Gf} + a, J .̂

The total mass of the measures (pyHa is (9^, Oe) and thus
.if B is recurrent they have the common mass J(9). It B
is transient, it follows from Proposition 10.1 applied to the
reverse process that

(10.12) lim (9,, <DB) = C(B) J(9).y->—oo m

Suppose now that B is co-transient. Then by Theorem 8.1
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and (10.11) we see that

(10.13) w ̂ G {dx}=^G (dx)+^-dx.
JTI m

Letting this act on f and P^/* for /*e= Cg and using the facts
that Gf — GPy = f1 PY, and that P^ -> f, s -^ 0 uni-
formly, we can conclude from (10.13) that o^ = 0 and that
•Y ^ (J(<p)/7n)(JiB. It we had another weakly converging sub-
sequence of the 9yHe the same argument would again show
that it converged to (J(9)/m)piB. Thus the measures y^Hp
converge weakly to (J((p)/m)|jLB- The total mass of this measure
is (C(B)/m)J(<p). To show that the convergence is complete
we must now show that this is the same as the limiting total
mass of the 9yHB. If B is also recurrent then Proposition
10.2 shows that C(B) = m so in this case (J(cp)/m)(JiB has
total mass J(<p) which is just the common total mass of the
y^Ha. On the other hand if B is transient then Corollary
8.3 shows that C(B) = C(B) so that the total mass of
(J(<p)/m)(iB is the same as the limiting total mass of the
<P^HB. Hence in all cases when B is co-transient the cp^Ha
converge completely as y -> — oo to the measure (J(<p)/m)^.

Suppose now that B is co-recurrent. Then (10.11) shows
that

J w d x = ' r G { d x ) +a3^.
m m

It follows from this that y === 0 and o^ = J(<p). Now assume
that B is also recurrent. Then ((pyHa, 1) === (^y, Oa) = J(?)
so in this case ocg = 0 and the measures ^HB converge
to the mass J(y) at — oo. On the other hand if B is tran-
sient, then (<P,HB, 1) = (<py, OB) == (?B, G9,)^(J(?)/m)C(B),
as y -> — oo. By Proposition 10.2, as B is also recurrent,
C(B) == m so (9yHa, 1) -> J(<p). Thus here too 02 == 0, so
<P^HB converges to the mass J(<p) at — oo. This establishes
10.7 and thereby completes the proof of Theorem 10.2.

PROPOSITION 10.3. — Let B be any Borel set. Then for any
/•eO,

(10.14) lim Gefy(x)=0.
y->—oo
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Let c p e O . If B is a transient set

(10.15) ' Hm (9,, HB/') = 0.
y->-}-w

If B is a recurrent set then for any bounded continuous f
having a limit f{-{- oo) at +00

(10.16) Imî  (9,, HB/1) = J(9)/'(+ oo).

Proof. — Equation (10.14) follows at once from the renewal
theorem and the fact that \G^fy\ < G|^|. Equation (10.15)
follows from the fact

K^, HB/*)) ^ |̂ L(l<p,|, OB) = ||/'L(iiB, G[9,|),
Proposition 10.2, and the renewal theorem.

Now assume B is recurrent and let 9 e 0. Then
(9,, Hal) == (9^, Oa) = J(9). Let ^eC,. Then

(9,Ha, G+) == (9,, G^) - (9,, GB+).

By (10.14) and duality we see that the right hand side converges
to zero as y ->• + oo. Thus

(10.17) lim (9,Ha, G^) = 0.
y->4-oo

There is a subsequence y^ -> + oo and a finite measure y
on ® and constants 04, ̂  such that for any bounded contin-
uous f having limits at + oo and — oo

lim (9^Ha, f) = (y, f) + oc^- oo) + a^(+ oo).

Applied to G^ it follows from (10.17) and the above that

(Y, G+) + a, W- = 0.m

From this, it follows that y = 0 and ai = 0. Thus as
(py,^) == J(9), it must be that a^ = J(9). Thus the measures
9yHe converge to the mass J(9) at +00. This completes
the proof.

The previous results may be stated more succinctly by
using the two point compactification @* of @. Take B*
to be B if B is relatively compact and take B * = = B u { + o o }
if B n ®- is relatively compact but B n @+ is not. Similarly
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B * = B u { — 00} if B n ©+ is relatively compact but
B n ®~ is not. If neither B n ®+ nor B n ®~ are relatively
compact then take B* == B u { — oo, + oo}. Now define
(AB* = (AB if B is co-transient and define (AB* to be the mass
m at — oo if B is co-recurrent. The measure (IB* is defined
similarly. The capacity C(B*) of B* is taken to be the total
mass of (IB*. The function G(x, A) is extended to @* in
the obvious way. Then ^.a* is the unique measure supported
on B* such that for any fe Li(@)

(^ f) = (^ G/*).

Also for any 9 e C^ and any /*e=C(®*)

lim^HB/1)^^^/').
y^—oo 772

In all cases C(B*) = C(B*) and C(B*) = m in all cases
except perhaps when B is both transient and co-transient.

Examples show that the smoothed limits in Theorem 10.2
are the best versions that can be given for general Borel sets.
We now examine conditions under which the smoothing can
be dropped.

THEOREM 10.3. — Let Be%4. Then for any fe Cc

(10.18) lim Ga/^) = ̂ -J^PA - ̂ )f(x) dx .
x~^—oo Tn/

and,

(10.19) lim HB/^) = (|^B, f) A-
x->-w 771

Proof. — Let K be compact and K e B. Then there is a
symmetric open neighborhood N of 0 such that K — N c B.
(See [11].) Thus for any y e N , K — z / c B so TK_^ ^ TB.
Hence for y e N and f^C^

(10.20) G^f(x + y) = E^f^f(X,} dt

= E.^-^X. + y) dt^ E^V^X,) dt.

Similarly if U is open, U compact, and B c U, then for
some symmetric open neighborhood N of O B — N c U so
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for y e N and fe C^

(10.21) Gu/^+y) <S E^f^f^X,} dt=G»f,,{x).

Now for /'eC^, G/"(a;) is uniformly continuous. Let e > 0
be given. Then there is an open symmetric neighborhood
S c N such that \\Gfy — Gf\\ < s, y e S . Now by the first
passage relation, for any set A,

(10.22) || GA/--, - GA/-II < P.(TA < co)|| Gf., - G/-H
+ IIG/^-G/ll < 2e.

Let ip e C^ be such that the support of y is contained in S.
Then from (10.20) and (10.22) and 10.9 we see that

(10.23) -̂ / P,(TK == o))/-(y) dy ^ lim G&f{y).
JTl l/ y->—w

Similarly from (10.21) and (10.22) and 10.9 it follows that

(10.24) -^-^P/Tu = a> )f{y) dy ^ lim G,f{x).
Ht X->——00

Choosing compacts K^ \ B and open sets Un \ B and using
the fact that P^TB = Te) == 1 a.e. we see that (10.18) holds.
Using the first passage relation and (10.19) it follows that

lim H^Gf{x) =^- f^ P.(TB < oo )/^) dx.

There is a measure ya supported on B and a sequence
x^ -> — oo such that HB(^, dy) —^ YB weakly. Thus

(YB, Gf) == -^ ̂  P,(TB < o>)/^)^.

Hence by Theorem 8.1 YB = (^B/^ and the usual weak com-
pactness argument now shows that (10.19) holds. This com-
pletes the proof.

By appealing to results in discrete time we can obtain
significant extensions of Theorems 10.2 and 10.3.

THEOREM 10.4. — Let B be any co-transient set, let 9 e C,;,
and let f be a bounded Borel function. Then equation (10.6)
holds.
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THEOREM 10.5. — Suppose the process is non-singular. Let
B < = % and fa 0. Then (10.18) and (10.19) hold.

Remark. — It is also not hard to show that Theorems 10.3
and 10.5 can be extended to include sets B which are unboun-
ded to the right (i.e. B n {x + ®+) is non-empty for all x).
We omit the details concerning this extension.

Proof of Theorem 10.4. — In order to obtain this extension
of Theorem 10.2 we need only show that if B e 9^ and /*€= O4-,
then

^f^^y^^fwdx
exists.

Suppose first that ®/®i is compact. Then B( generates
® for some ( > 0. Without loss of generality we can assume
that ( == 1. For any e > 0 there is a compact set K such
that for fe^+

\\tlW(x) - HB/̂ )II ^ s||/1|, rre®.

Here H^ denotes the analogy to HK for the process viewed
at integer times. It is an easily shown result in discrete time
that

lim f^ 9^)HlKHB/l(^) dx = C^W
y->—oo

exists for /'eO4", Cy being a constant depending on f and
B. Consequently

^^f^^WW -WP)! ^ ^11/11 J(?).

Since e can be made arbitrarily small

lim /©^(^KB/^) dx
y->—oo v "

exists as desired.
Suppose next that ®/@i is not compact. Then Theorem

5.5 is applicable. We can assume that @ = R © C , @i = C,
and the conclusion of Theorem 5.5 holds. It follows that for
f^^+

lim f 9_^(.r)P^HB/'(^) dx
(•^00

exists uniformly for yeC . The function <p can be chosen
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to have support far enough to the left so that

P^HB = HB

for x in the support of 9-^+y. Then

lim f^ ^^t+yW^fW dx

exists uniformly for y e C, which implies that

lim f^^y{x)^f[x) dx
y->—oo '

exists where here ye®. This completes the proof of the
theorem.

Proof of Theorem 10.5. — In the non-singular case ®i == ®.
The discrete time form of this result is easily shown. The
reduction from continuous time to discrete time follows by
the same technique used in proving Theorem 10.4.

11. Global Time Dependent Behaviour (Transient Case).

Throughout this section X( will denote a transient i.d.
process. Let B be a Borel set and let

EB(^, A) = ̂  P,(TB < t, XT, €E A) dx.

Observe that for any Borel set A,

(11.1) P,(TB < ( ,X^eA) < P,(T\ < ().

Now if A is relatively compact it follows from (3.18) that

^P,(TA ^ t ) d x < oo.

From (11.1) we then see that EB^, A) < oo whenever A
is relatively compact.

THEOREM 11.1. — Let B be a co-transient set. Then for any
relatively compact set A and any A, 0 ^ h < oo,

(11.2) Inn [Ea(< + A, A) - E^t, A)] = ̂ a(A),

(11.3) t>00 lim EB((, A)r1 = piB(A),
(•>00
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and for any Borel set A, and 0 ^ h < oo,

(11.4) f^ P,(TB = O))P.(TB < A; X^ e A) J.r == /^a(A).

-For a co-recurrent set B

lim [EB(( + h, A) - Ea((, A)] == 0
{->00

/or any relatively compact set A.

Proof. — Let A be relatively compact. Then

Es{t + A, A) - EB((, A) = ̂  P,(( < TB < ( + A, XT. <== A) rfa;

^^^P,(TB > f, X.e^)P,(TB < A, Xr.eA)

=^P,(Ta > ()P,(TB < h, XT. e A) dy.

By dominated convergence we then see that

(11.5) lim [Ee(( + h, A) - Ea((, A)]
<->i>3

=^,P,(TB = O))P,(TB < /», XT.eA) dy.

From (11.5) it follows easily that

^P,(Ta = TO)P,(TB < h, XT. 6 A) dy

is a linear function of h so we can write

(11.6) ^P,(Ta = O))P,(TB ^ A, X^eA) = ^a(A).

If B is co-recurrent, then Py(TB == oo) == 0 a.e. so Ya(A) = 0.
Suppose now that B is co-transient. Then YB(A) is a Radon
measure and we shall now prove that YB(A) = (AB(A). To
this end suppose first that B is relatively compact. It follows
easily from (11.5) and (11.6) that

,. Ea((, A) / . .lim ————' = YB(A),
t->30 t

and thus by an easy Abelian argument

(11.7) lim X F e-^E^ (dt, A) = YB(A).
X t o t/o
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But X F e~^Ee{dt, A) = (4(A), and thus by Proposition
8.3 for any Borel set A such that (JLB(|<>A|) = 0, (^(A) ==. YB(A)
and thus YB(A) = ̂ (A) for all Borel sets A. Thus (11.2)
holds for B a relatively compact set. Now let B be any
co-transient set and let B^ be relatively compact sets such
that B ^ f B . Then P^(TB = oo) -> Py(Tc = oo), and for
any /•e % E,y(X^); Ta, ^ A] ->E^(XT,); Ta ^ A]. If
A is compact and contains the support of /*, then

E,[/(XTJ; Ta^ < /»]P,(Ta,. = o>) < ll/IU^T, < h)

and thus by dominated convergence,

ĵ m /I((XB,, /•) == l̂ m J^ E,[/-(XT.J ; To,, < A]P,(TB^ = oo) dy

= ̂  E,[AX,.); TB < A]P,(Ta = o>) ̂ .

Now by Proposition 8.7 (^5 ^) -> (^B? f) tor /*€ Cc and thus
(y^ ^) == (ptB, f) for all such /* and thus YB == I^B. Hence
(11.2) and (11.4) are valid for B any co-transient set. Finally
(11.3) follows easily from (11.2).

Remark. — If B is a co-transient, non-relatively compact
set then = E^(t + A, A) — E^t, A)] -> oo, t -> oo if
p.g(A) == oo. However if [IB(A) < oo and A is not relatively
compact it may be false that E^{t + A? A) — E^t, A) —> (IB(A)A.
In particular for a non-relatively compact set B,

EB(( + A, B) - EB^ B)
can be oo for all ( > 0 but yet C(B) < oo.

We now turn our attention to the last hitting time of B.

DEFINITION. — Let B be a transient set. The last hitting
time WB of B is W^=sup{t^0: X^eB} if TB < oo.
If TB = oo then WB is undefined.

PROPOSITION 11.1 — Let re Li(®) and let B be a transient
set. Then for any t ^ 0, P^(WB = t) = 0.

Proof. — It suffices to take re L^®). If

P,(WB == 0, TB < oo) ^ 0
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then x must be an irregular point of B that is in B. By
Proposition 3.1 the collection of such points has zero Haar
measure. Now suppose ( > 0. Then P,.(WB > () is right
continuous. To see that it is also left continuous observe
that

(11.8) P,(WB > t - h ' , TB < oo)
=f^-h{dx)P^< a))

- ̂  P,(Va < OQ)P^) dx

=f@ WP^rW dx = (pa, GP^r).

Since GP^r ^ Gr and ((IB, Gr) = (r, Oa) < oo we see by
dominated convergence that the right hand side of (11.8)
converges to

((JIB, GP^) == ($B, P'r) = f^ P,(VB < oo)P^(^) dx = P,(WB > t).

Next we will find the distribution of the last hitting place
in B.

PROPOSITION 11.2. — Let B be a transient set and let
reLi(@). Then for any Borel set A.

(11.9) P,(Xw,-e A; TB < oo) = f ?B (^)Gr(z).

Proof. — For TB < oo and WB ^ t, t > 0, define
Y( = Xw^-t- Let Y( == A elsewhere. For ( = 0 define
Yo == Xwg- it TB < oo and take Yo == A elsewhere. Take
jf(A) == 0. It suffices to prove (11.9) for re C^. We can write
for /•eC^

E^/TO.-^;TB< oo j

= E^f^ /•(Xw^)^ ̂ ; TB < oo |

= E, '̂ f(X,)e-^-^ ds', TB < oo j

=f^f^ P.(X, e dy)E,[e-^ TB < a>] ds

= ̂  r(^) ^J;G(^ dy)E,[e-^ Ta < a)]/*(y) ̂

=J;Gr(t/)E^WB;TB< c^]^)^.
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In other words

(11.10) E^fWe-^dt\

= fs^Wy)^-^ rr»< °o] dy.
Now for ( > 0

^°P,(WB^ t)e-^ dt == G^{y)
and thus

E^e-̂ .; TB < oo) = <&B - XG^B.

Using Theorem 3.2 and the resolvent equation we can write
for any g e 0+

(11-11) ^ g^E^-^a; TB < TO] ^=(OB, g)-(XG^B, g)
= ((IBG, g) - X(?BGG\ g) = (PB, G^).

Applying this to g == Qr.f and using (11.10) we find that

E /̂TO '̂ dt; T B < O O J =^paG^ (rfy)Gr(y)/-(y)

-X^^)^^'^)6^^).
Thus for a.e. ( ^ 0

(11.12) E.[/TO;TB <oo] =f^(dz)f^dy)Qr{y)f\y).

Now the right hand side of (11.12) is continuous for ( > 0
and right continuous at ( = 0. Indeed, for any ( ^ 0

J;P^, dy)Qr(y)f{y) dy ^ |!/'||,Gr(z)

and (^B, Qr) = (r, ^a) < oo, so the statement follows by
dominated convergence. Also the left hand side is right
continuous at t = 0. To see this note that if WB > 0 then
WB > t for ( sufficiently small and thus as /'eC<.,
[AXw,-<); We > <; TB < ̂ ] -> y(Xw,-o); WB > o, TB < oo].
Hence by bounded convergence,

^m W^ TB < QD] = Hm E^Xw^); WB > t, TB < oo]

=Ej[/*(XwJ; WB > 0, TB < oo].

It now follows from (11.12) and the fact that both sides are
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right continuous at 0 that

(11.13) P,(Xw,-e^, WB > 0, TB < oo) = Qr{y)^ {dy).

By Proposition 11.1 P,(WB > 0) = 1, so (11.9) follows from
(11.13).

The following interesting and useful identity plays an
important role in finding the asymptotic behaviour of the last
hitting time.

THEOREM 11.2. — Let B be a transient set. Then for any
t ^ 0 and any Borel set A.

(11.14) ^P.(Wa ^ t, Xw^-eA; TB < oo) dx == ^a(A).

Proof. — Let K^ be relatively compact and K^ ^ @. Now
using Proposition 11.2 we see that

/ P^WB > t, Xw,-<=A; TB < oo) dx

=f^dxf@ pt^ dyW^- e A; TB < OD)
= f^\y, K,)P,(Xw,- e A; TB < OD) dy

=f^{dz)f^Q{z,dy)Pt{y,K^.

Thus again using Proposition 11.2

(11.15) f^ [P.(Xw»- e A, TB ^ t) dx

=f^ [P,(Xw,-eA,Ta< OO)-P,(WB>(, Xw,-eA,Ta< oo)]^

= ̂  pa (^)[G(z, KJ - GP^z, KJ] =f^ {dz) ^ P-(z, KJ ds.

Equation (11.14) now follows from (11.15) by letting n -> oo.

12. Asymptotic Behaviour of P^f.

Throughout this section X< will be a transient process
that satisfies Condition 1. Recall that whenever this condition
is satisfied 2 = @. Let heC^ be such that J(h) = 1 and
set r(t) = f (A, P^) ds. Then for any feO*, Wf - J{f)r{t)
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and Wf-^ J(f)r(t). The function r(t) will serve as a reference
time function to measure how fast P^ef goes to zero. Our
main result is the following.

THEOREM 12.1. ~ Let B e % and let f be a bounded mea-
surable function. Then for 9 e Cc

(an ^(s^a^)^,
If moreover B <= %* anrf / ism C(@), or, in the non-singular
case, is any bounded measurable function, then

(12.2) l^^M^^f)

where the convergence is uniform on compacts.
The proof of (12.1) and (12.2) proceed in the same way so

we will only prove (12.2). The same arguments will prove
(12.1) provided x is replaced by 9. The strategy of the proof
is as follows. First we show that (12.1) holds for fe C(@).
Next we show that the analogue of (12.2) holds for the random
walk X^, n == 0, 1, 2, . . . By suitable approximations we
then show that the desired limits exist in the stated generality.
Finally the identification of the limit is carried out via the
special case of the smoothed result (12.1) for fe C(@).

To get started on the proof we first show that (12.1) holds
for /•eC(@).

LEMMA 12.1. — Let Be S> and 9 <E C, and /'eC(@). then

^(s^fi^^

Proof. — Since B is compact it follows from (3.19) that
there is a compact set K, |&K| == 0, such that

OB(^) < 2G(a-, K).

Thus for any compact set C, |i»C| =0,

^ \PWW\ ^ 2R\0, K - C)
^ec r{t) ^ r(()
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so by Theorem 5.3

(12.3) En sup P'HB1^ ^ lim 2R'^ K - c)
(»ao a?ec r[t) t^ao r(()

= 2 j K - C| < oo.

Thus there is a finite measure ya and a sequence ^ -> oo
such that the measures (9, P^Ha)/^), converge weakly to
Y. In particular, as G^ e C(@) if 4' e Cc we see that

l.m t^-^ = (., G+).
" '^n/

But by Proposition 3.3

(y, P'HBG^) == (P'v, HBGA) = (HBGP'y, ^)
= (HBR'V, ^)

and thus by Theorems 5.3 and 8.1^(,^^^(ft.ft^
t->ao r^^ <^oo r[t)

= J(?)(^-B, G^).

Thus J(<p)([jLB? G^) = (y, G^) and as the potential of a finite
measure determines the measure we see that J(9)(iB == Y.
The standard weak compactness argument now completes
the proof of the lemma.

We will now show that the analogue of (12.2) holds for the
random walk {X^, n ^ 0}. To this end let HB and G7

denote the quantities HB and G for the random walk and
let ^B denote the equilibrium measure of B for the random
walk.

LEMMA 12.2. — Let B e S> in the non-singular case and let
B €E % have [bB| == 0 in general. Assume f is bounded and
continuous a.e. in general or just bounded and measurable in
the non-singular case. Then uniformly in x on compacts.

!̂»"̂ (.,0.
n r[n)
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Proof. - Let VB == inf{n > 0 : X^ e B} {= 0 if no such n)
and let P^, A/) = P^Xy^dy, VB < OO)IB^). Then

P^HB/* = Ha - S1 P^IB - P")/*.
7=0

Since P^'HB/'—^ 0 as n -> oo, we see that

(12.4) Ha/^G^Ia-P13)/'.

Also

(l^Ia-P^^lB.OB-P13)/1)

= (IB, /•) - (IB, P"/*) = (A IB) - (/•, P^B)

=/^P.(VB= ^)f{x)dx={e^f).

From (12.4) we see that

(12.5) P^f = P^IB - P^f = ( 1 P^ (la - P8)/*.
\y=n+i /

If |^B| == 0 then by Lemma 2.1 of [8] (IB — P^f is conti-
nuous a.e. when /'<=€(©)+. By Theorem 5.3, uniformly in x

on compacts, ( ^ P )̂ (la - P8)/*^) — r(n)(l, (la - P8)/*).
\7=n-+-l /

This establishes the lemma.

LEMMA 12.3. — Let Be^* and let /'eC^®) in general
or be just bounded and measurable in the non-singular case.
Then

lî P^H.feL)^
^oo r(t) l v / /

exists, is finite, and is independent of x. Moreover the conver-
gence is uniform on compacts.

Proof. — By Proposition 9.2, if B e= 3^, HB/'(^) is continuous
a.e. if ^eCf®). Let K be compact K D B and |bK| = 0.
Then by Lemma 12.2, uniformly, in x on compacts

(12.6) P^HaHaArr) - r{t)(e^ Ha/1).

Let
T == in f{ ( ^ TK: X^eB].
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Then
HBHB/-=E,[/"(X,);T < 00]

and
(12.7) lE,y(X,); T < oo] - E,[/-(XT,), TB < oo]|

< 2||/-||P,(T > TB)

< 2||/-|1P,(TK > TB).
Now choose Bi e ^64 such that K 3 Bi => B and such that
P.,(X( e Bi) > 1 for all x e B and 0 < t < 1. Then

P.(TK > Ta) < 2P,(X,eB,).

Since HKHB == Ha we see from (12.7) and the above that

(12.8) |P"[HK - HK]HB/-(.T)| < 4||/-||P»HKlB.(^).

Since BI e %4, I&Bil =: 0, the function IB, is continuous a.e. Thus
by Lemma 12.2 the right hand side of (12.8) is asymptotic to
^11/"II ̂ ^i^Bi). Let e > 0 be given. Then we can choose K such that
ev.{Bi) ^ e. Indeed

(̂Bi) = f P,(VK = oo) dx

and as K f ®, P.,(VK == oo) \ 0. If K is so choosen then
(12.8) shows that uniformly in x on compacts

(12.9) 1^ E"̂ .̂  _ P"^-< 41/1..

It now follows from (12.9) and (12.6) and the fact that
H^HB = HB that uniformly in x on compacts,

(12.10) lim p[tw = lim (CK, Haf) = y^)tw r[t) K ^ @

exists and is independent of x. Now

(12.11) |P^- P^Ha^l ^ 2||/>|| ̂ P^, dt/)P,(TB ^ 1).

By (3.18), P,(TB ^ 1) ^ 2P,(XieC) for some compact set
C such that |?)C[ =0. Thus we see that the right hand side
of (12.11) is dominated by

211/11 P.(X^eC). As (P.(X^eC))/r(<)->0
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as t —> co uniformly in x on compacts, we see that uniformly
in x on compacts

(12.12) lim ptHB((a;) = y(/-).
<^oo r\t)

This establishes the lemma.

Proof of Theorem 12.1. — It follows at once from Lemma
12.3 that for any 9 e Cg,

(12.13) lim ̂  P.HB^ = J(y)y(/-).
<M r(^)

From (12.13) and Lemma 12.1 we see at once that for any
/*€= C(@), y(/ ')==(^B? /*). In the non-singular case f can be
any bounded measurable function and -we must show that
Y(/*) = ((IB, f) for all bounded measurable functions f. From
Lemma 12.3 it follows by a theorem of Nikodym (see [3],
p. 160) that there is a finite measure y such that (y, f) = Y(/*).
Since every finite measure on @ is regular and

(Y, f) == Y(/~) = ((^B, /•) tor all /e C(@)

we see that y ==: P'B. This completes the proof.

COROLLARY 12.1 — Let B e SL TTieyi /or any /'eO and
9 6E C,

(12.14) lim (9? ptGBn = J(9) ̂  P.(TB = GX))^) ̂ .ooo r^t^

Moreover, if B e S * and /*e0*, ^n uniformly in x on
compacts,

(12.15) I™ pt^^ = ̂  P,(TB = cx))/^) ̂ .

Proo/*. — Equations (12.14) and (12.15) follow at once
from (12.1) and (12.2) and Theorem 5.3 via the relation

yc^f = ycf - p^Gf.

13. Asymptotic Behaviour of the Last Hitting Time.

Throughout this section we will assume that X< is a tran-
sient process and that B is a relatively compact set. We will
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also assume that X< satisfies Condition 1. Our purpose is to
investigate the behaviour of E^[/*(Xw^-); Wp > t, TB < oo]
for large t. Throughout this section r{t) will be the reference
time function introduced in § 12.

PROPOSITION 13.1. — Let Be ai, /*e0, and <p e Cc. TT^n

(13.1) E^Xw,-); Wa>t , TB<oo]-J((p)(p[B, f)r(t), ^oo.

Proof. — Using Proposition 11.2 we can write

E,[AXW,-);WB > ^,TB < oo]
=P,(^)E,[/YXw,-);TB< oo]

=f^ {dz)f{z)QPW

=^PB (^/•(z)^^).

Equation (13.1) now follows from Theorem 5.3.
We will now show that the unsmoothed version of this

result holds for nice sets in general or arbitrary sets in the
non-singular case. To this end we will need the following.

LEMMA 13.1. — Let jfeO*. Then uniformly in x on com-
pacts and uniformly in T on compact time internals,

(13.2) lim Urn — f R\x, dy)^f{y) = 0.Kf@ ooo r[t) ^s.

Proof. — By Theorem 5.3 we know that uniformly in (rr, r)
on compacts,

i-^-w,t->x r[t)
and as

R'^^jiR^^PY^)
we see that uniformly in (x, r) on compacts

J(/')=limr^)^Rt(a;'(^y)PY(l/)•
But also uniformly in (x, r) on compacts,

(13•4) '̂.""X K^M F'̂ ) -^X I"^ <l1 - W-

Equation (13.2) now follows from (13.3) and (13.4).
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THEOREM 13.1. — Let BegS* and let fe <&*. Then uni-
formly in x on compacts^

(13.5) Hm ^[AXw,-); W^ > t, Ta < col ̂  ̂  ̂

Proo/'. — It suffices to prove the theorem for fe (y*)+.
Observe that for T > 0

(13.6) E,[/-(Xw._), T < WB < T + 1]

=f^P\X, ^)E,[/-(XW.-);WB < 1, TB < 00]

and thus

(13.7) f^ E,[/-(Xw._), T < WB < T + 1] rfT

= ^ R'ix, dy)E,[f{X^); WB < 1, Ta < oo].

Now by Theorem 9.2 E,[/-(Xw._); WB < 1, TB < oo] is
continuous a.e. y when B e ̂  and /'e C,, and thus by
Theorem 5.3 and Theorem 11.2

^ ^nm X R^A) ̂ [AXw.-); WB ^ i, Ta < o>]
= ̂  E,[/-(Xw._); WB < 1, TB < oo] rft/ = (ap, /•).

Now observe that
E,[/-(Xw._); We < 1, TB < oo] < ||/'||«P,(TB < 1)

and by (3.19) for some compact set C, j f t C j =0,
P,(TB < 1) < 2P,(Xi e C).

Thus by Lemma 13.1

1"". um ̂  L KteM W^}; W, < 1, T, < „] <»

^'^x'y1"^-0-
We have thus shown that the right hand side of (13.7) is
asymptotic to r(t)(]ie, /*), the convergence being uniform
in x on compacts. Now

J00 E,[/*(Xw,-); T < WB ^ T + 1] ^T

=f^ E,[/*(X^-); We > ^ TB < oo] ds
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and so as (r(t + l))/r(<) -̂  1, we see that uniformly in x
on compacts,

ii^ E,[AXW,-);WB> t; T B < ex)]
(^oo r(()

= Jim B-^Xw.-); W. > ' + i; T. < «1 dM_D , (,, ̂
(^oo r(( -|- 1) r(^)

and similarly
(i... f) . Km E.rf(X^W. > ,1

Thus (13.5) holds.
There is a strengthening of Theorem 13.1 that is possible

when for some ( > 0 the group @( is @.

THEOREM 13.2. — Let Be%* and let /'e$*. Assume
that for some t > 0 ^Ae group @^ 15 ®. T/ien /or any /i > 0,
uniformly in x on compacts^

E.[AXw,-);« WB ^ ^ + A] - p(^B, n^
where p{t) = ̂  P^(^)/i(^) dx, h e C^, J(A) = 1.

Proof. — The proof follows from the ratio theorem by an
argument similar to that used to prove Theorem 13.1.The
details will be omitted.

Remark. — By Proposition 5.3 the assumptions of Theorem
13.2 are always satisfied if the process is non-singular.

14. Asymptotic Behaviour of the First Hitting Time.

Throughout this section we will assume that X^ is a
transient process. If Condition 1 is not satisfied and /*e$*,
R-y = 0(e~^) for some constant y > 0, so in this case
f R//* dt < oo. Suppose Condition 1 is satisfied. Then by

Theorem 5.3 either f Rtfdt= oo for allies (0*)+ with J(/1) > 0 or
j R/y dt < oo for all such functions /*. Once again r(t)

will be the reference time function introduced in S 12.
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DEFINITION 14.1. — A transient process is called weakly
/*°°

transient if j r{t) dt = oo. It is called strongly transient if
r° r{t) dt < oo.

We now turn our attention to the asymptotic behaviour of
E^X-rJ; t < TB < oo ]. We will first investigate

FE^X^)^ < TB < oo]^.
^0

THEOREM 14.1. — If X( is strongly transient, then for any
/*e 0 and any set B e 35,

(14.1) f^ E,[/-(XTJ ; t < TB < oo ] dt = GaHB/^).

On the other hand if X^ is weakly transient then for B e S*
and fe 0*,

(14.2) fjE^f{X^)',t < TB < oD]dt

-(^nP.(TB= oD)f^r{t)dt

the convergence being uniform in x on compacts.

Proof. — It suffices to prove the theorem for f ^ 0. Assume
X( is strongly transient. By (3.19) we can find a compact set
K such that OB(^) ^ 2G(rc, K) and thus

PHa/^ ||/1 P^B ^ R^WU

and thus if X^ is strongly transient we see that

f'yH^fi dt < oo.
Now

(14.3) E,[y(XTj; t < T a < oo]
-^P,(Ta > (, X^dyW{y)

and as the right hand side is dominated by P^Hal/*) we see
that

f^ dt ^, P,(TB > t, X< e dy}H^f{y) = G^f{x) < oo.

This establishes (14.1).
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Now assume X< is weakly transient, /*e $* and B e %*.
From (14.3) we see that

(14.4) E,[/-(XTJ;^ < TB < oo]

= ptHB^ - £f. P^B e ̂  X^ e ̂ P-HaA?/)
and thus

(14.5) J^E,[/'(XT.); « TB < oo] dt

= f^^f^-f^f^^ < (,X,.e^)P-'HBAl/)^.

Now a weakly transient process must satisfy Condition 1
and thus from Theorem 12.1

J^P'HB/^)^- (^, f) fj r{t) dt.

Also from that same theorem we see that given e > 0 there
is a ty such that for ( S» 4 and all a; e B

(1 - £)(|ZB, />(<) ^ P'HB/^) < (1 + e)((AB, />(().

Thus

(14-6) fsf^^9 ^ t ' XT.e^)P-HB/-(l/) ^

< (1 + e)((XB, f)f^'°P^ ^ ()r(T - () <f(

< (1 + £)((XB, /•)^P,(TB < t)r(T - () ^.

Since P,c(TB < <) f P^TB < oo) a simple summability argu-
ment shows that

FP,(TB < t ) r ( r - t ) d t
(14.7) hm170———————————— = P,(TB < oo).

^ r(t) dt
Also

f^f^^ ^ t ' XT.e^)P-'HBA</) ^

^ "^1 f-Sif^^ ^ ^ ̂ T^dy}P^W(y)

^ 11^1 f^^ ^ t } d t ^ I|/-||(,P,(TB < T) < U/-||(o.
12
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Thus

(14.8) li^^A^^^^-^-^^^Qrr^dt
It follows from (14.6), (14.7) and (14.8) that

(14.9) ^/Br^B^^^-W^)
/T r{t) dt

< (1 + e)((.B, /")P.(TB < oo).

Similar arguments show that

(14.10) ^/.r^^^^-^-'HB^)
T>00 /T r(() (̂

> (1 - e)((XB, /•)P.(TB < oo).

The desired result (15.2) now follows from (14.5), (14.9),
(14.10) and Theorem 12.1.

We will now obtain the second term in the asymptotic
expansion of Ea((, A) for a set B e %. For this purpose it
is more convenient to deal with functions rather than sets.
Define EB/" by

E^f=f^{t,dy)f{y).

THEOREM 14.2. — If X( is strongly transient then for any
relatively compact set B and any /'€=$+,

(14.11) EB/" - t{^ /*)t J^PA < OO)HB/^) dx < oo.

On the other hand, if X^ is weakly transient, then for fe (O*)4"
and B e S *

(14.12) Hf - t{^ f) - C(B)(^, /•) ̂  r(r) dr.

Proof. — Suppose X( is strongly transient. By Theorem 11.1
we can write

^ f)=f@ ̂ B = ^)E.[/*(XT.); TB < t] dx.

(The integral over ® rather than B' is permissible since
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P^(TB == oo) = 0 for ^eB). Hence

(14.13) EB/-^B, /•)== ̂  P,(Ta < OCQE^XTJ ; TB ̂ ] drr.

From (14.13) it is clear that EB/* — t(pLB, />) is increasing with
( increasing. Also

|E,[/"(XT.);TB < (]i < II/-||P.(TB < ().
Using Proposition 3.6 and Theorem 8.1 we see that there is
a compact set K such that for all t > 0

(14.14) ^ P,(TB < OO)P,(TB < () dx

=f^a (dy) ^ G(y, ^)P,(TB < ()

< 2^^(dy)f^lRS(y,K)ds.

Since the process is strongly transient,

Jg !̂ B {dy) ^ R^y, K) ds < TO.

Consequently,

lim rPA < OO)E,[AXT.); Ts < t) dx
t->so t/»a)

= ^ P..(TB < ^WW dx < 0)
as desired.

Assume now that X^ is weakly transient and let f and
B be as stated in the hypothesis. Using (11.4) and our duality
relations we can write

EB-Y-EB/'-^B,/')
= ̂  E,[/-(XT.) ; t < TB < t + 1] dx - ((IB, /•)

= ̂  /@ p^ > f, X, e dy)E,[f(X^), Ta < 1] ̂  - ((XB, /•)

= ^ P,(TB > ()E,[/-(X,.); Ta < i] - (^, n
= J:, P,(( < TB < a>)E,[/-(X,.); Ta < 1] dy.

In other words

(14.15) EB+^-EB/--^,/")
- ̂  P,(( < Ta < OO)E,[/-(XTJ; TB < 1] dy
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and thus

fj [(EB+1/- - EB/") - ([XB, /)] dt

= fj dt f^ P,{t < TB < OO)E,[/-(XT.) ; TB <S 1] dy.

Observe that

f [E^f- E»f- {^,f)] dt - [E^- T((.Bj)]
< EBiyi+jEB+^-EBfl
< EBI/"! + 1|/"|1 ̂  P.(tB > T)P,(TB < 1) dx
-^EB|f|+ ||/'||C(B) < oo as T->OO,

/'QO^00

/o

__4_
^°° /IT «/^ ^ll/o

and thus as f r{t) dt = oo we see that

(14.17) lim 1—— I F [E^1/1 - E^ - ((XB, /•)] ̂
^00 J r^dt^0

-[^f-^m -o.
Thus to establish (14.12) it suffices then to show that

F [EW — EB/" — ((AB, f}] dt
(14.18) lim^ L B / B/———— ' / J = C(B)((XB, n.

X '•̂  ^
Let K be compact. Then by Theorem 14.1

lim^^^ < TB < ^y^)''18 ^ ^V
f\{t) dt

= C(B)^P,(TB = c»)E,[/-(X^); TB < 1] dy.

By (11.4) as K ^ ® the right hand side converges to
C(B)((JI,B, f). Thus to establish the result we need to show that

(14.19)
r d t f P , ( t < TB < O>)E,[/-(XT.); TB < 1] dy

urn lim'-°——•^————————————————————————— =0.
K +® '"" j r ( t ) dt

Now
E,[/-(XT.);TB < 1] < ||/I|P,(TB < 1)
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so it suffices to show

lim Hm^^ " TB " GO)py(TB ^ 1) dy _ Q
^® '^ f\{t} dt

Now using Theorem 8.1

,̂ P,(t < TB < CO)P,(TB < 1) dy

= ^ P'OB^P^TB < l)lK.(y) dy

= f® OB(a;) ̂ . ̂ (^ ^)P.(TB < 1) ^
-JB^^^.R^^P^TB^ 1).

By (3.18) we can find a compact set A, |&A| = 0, such that
for all ye®, P^(Ta < 1) <5 2Pl(l/, A). Hence

f^P,(t < TB < OO)P,(TB < 1) dy

^ 2 Jg (XB (rfz) ̂ , R'(z, dy)Pi(i/, A).

We then know by Lemma 13.1 that uniformly on compacts,

r T-X^'^P^^ 1) nlim lim '————————————— = 0.x.^© t»oo r(()

Since J r(t) dt == co it follows that uniformly on compacts,

——fJdt^R^dy)?^ ^1)
lim lim -°——-————————————— = 0.
K^ t^ ^ ̂  ̂

This completes the proof.
Examples show that, in general, Theorem 14.2 is the

best one can do on the asymptotic behaviour of

P^(t < TB < oo, XT,€=A).

However, under more restrictive conditions, stronger results
are possible.

THEOREM 14.3. — Let Be%* and yeO*. If

sup r(()/r(2() < oo,
t>0
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then, uniformly in x on compacts,

(14.20) E,[/-(XT.), ( < Ta < oo] ~ P,(TB = OO)^B,/>(^.

Also for any h > 0 and fe^>* for B e %*,

(14.21) Ea+Y - Ea/- - A((XB, /•) ~ C(B)((XB,/-)r(f).

Proof. — It suffices to consider f ^ 0. From (14.4) we
know that

E,[/-(XT.); t < TB < 00 J

= P'HB/" - ̂  ̂  P,(TB e d,, X, e ̂ )P'-HBAy).

By Theorem 12.1
P'HBA^ - ((.B, /•)'•(<)

and also by Theorem 12.1

ffP^T^ds^X^^dy)?^^)
hm hm 'ZBtzo————————.-——————————

T>oo (->ao ^(^)

= hm P,(TB < T)((ZB, /•) = P.(TB < W)((IB, /•).
T>oo

Thus to establish (14.20) we need to show that

(14.22) hm hm 1 f P,(TB e ds, X, e dy^-V^y) = 0.
T>x> ooo r(c) t7T

To this end, decompose ^ as ^ == f^ + ̂ -t + ^^•

Now

f^f^ P^^ds.X^dy}?1^^)

^ mf^f^W^ds, X^^P'-^B.

Since P'OB is decreasing as t increases, P'^Oa ^ P^OB,
T < s < t/2. Thus

/* /^(/S

^^/ P,(TB€^, X^^P'-HBA!/)
< 11/-H ̂  P,(r < Ta < t/2, XT, e dy)?"2^).

It follows from Theorem 12.1 and the fact that r{t} is decrea-
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sing and strictly positive for all t ^ 0 that there is a constant
a < oo such that P'OB < ar((), ( ^ 0. Thus

nm nm r^) ̂  ̂  ̂ B e ̂  x.e ̂ )P^HB^(y)

^ Hmsup ZW2) a||/'|lC(B)P,(T < TB < oo) = 0.
txc oo r(ij

Now, again using the monotonicity of P'OB, we find that

^ fF PS^B 6 ds' x-e W-'Wy}
< ^ 11/11 P,((/2 < TB « - T, XT.erfy)P^B(y)

< ||/'||ar(T)P,((/2 < TB < oo).
But

P^/2 < TB < oo) < P'^OB^) < ar(t/2).
Hence

^vm ̂  Xf ̂ (^ e ds'x-e ̂ )pt-fHBAy)
< lim ||/•I] a2 sup r^ r(T) = 0.

•"•00 (>0 ?"(()

Finally,

^^P,(TB6<fc, X^^P'-HBA!/) < ll/'IIP^t - T < TB «).

Once again using the fact that there is an A e %, |&A| = 0,
such that P.,(TB < T) < 2P(X^eA) we see that

P.,(( —— T < TB < ()

< 2 ̂  P,(TB > ( - T, X,_, e Jy)P,(X, e A)

< 2 ̂  P,(X(_, e ̂ l/)P,(X, e A) - 2P,(X, e A).
But

lim^-^^O
o«o r(()

so
Hm ̂ ) ̂  f» P^TS e ̂ ' x*e ̂ )P'-'HBAy) = o.

This establishes (14.20).
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To establish (14.21) note that by the same computation
that yielded (14.15) we can show that

E^Y-E^-A^B, f)
=f^Py{t < TB < CO)E,]/-(XT.); TB ^ h] dy

Using (14.20) one easily shows that

l^hm//^ < TB " -W^^ < ^1 ̂  C(B)W)A

so to establish (14.21) it must be shown that

l imiim-! , /P,(( < TB < co)Ey[/(XT.); TB < h] dy = 0.K.^© ooo y\t) ~ I L

But this follows from Lemma 13.1, (3.18), and the estimate

f^ P,{t < TB < o^E^X^); TB < h]

^ \\f\\ f^ P^B(I/)P,(TB ^ h) dy

=m ̂  ^B (dz) f^ R\z, ^)P,(TB ^ h)

^ W f^ {dz)R^ dy)P\y, A)

for a suitable set A e %, |?)A| ===0. This establishes the
theorem.

15. Behavior Along the Path.

Throughout this section K( will be a transient i.d. process.
For Brownian motion on R^, d ^ 3, it is well known that

for any f^Cc and any geCc such that J(g) + 0,

(15.1) lim G^ - J^
^ Gg.(O) J(g)

Examples show however that even for quite nice i.d. process
the ratio's G/a;(y)/G^(0) in general have no limit as x -> oo.
Note however that whenever these ratios have a limit then
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for any x e= @,

(15.2) p Him ̂ =^1=1.L^oo Gg^(O) J(g)J
Now it is plausable that (15.2) may hold in wide generality
even if the limits in (15.1) fail to exist. Indeed, from our results
in § 10 we know that for any type II process with m > 0,
lim Gf,{y) = J(/1), and as P,[X, -> + oo] = 1 for all

2-->4-oo J

x e ® it follows easily that (15.2) holds for any type II process.
We will now show that this is true for any i.d. process.

THEOREM 15.1. — Let /'e0 and let g e O have J(g) ^ 0.
Then for a.e. x e ®,

(15.3) Pjlim^•=^1=1.Looo Ggx,(0) J(g)J

Moreover, if f and geC,, then (15.3) /ioZA? for all xe@.
To prove the theorem we will need several lemmas.

LEMMA 15.1. — There is a function re C(@) n Li(@), r > 0,
J(r) == 1 and Gr > 0 and continuous.

Proof. — Such an r is easily constructed using Urysohn's
lemma and the second countability of @. We omit the details.

LEMMA 15.2. — Let r be as in Lemma 15.1 and assume the
process X( is started with density r. Let B be a relatively
compact set having positive capacity and define Y<, t ^ 0 as
follows: Yo = Xw»- if TB < oo and Yo == A elsewhere.
For t > 0 take Y( = Xw^ if We > t and TB < oo and
take Y( = A elsewhere. Then Y( is a sub'Markov process on
[TB < oo] having transition operator Q^, dy) given by

Q^, dy} = P^y)G^)
Gr(x)

and initial measure pa (dz)Cjr{z).

Proof. — A function defined on @ will be extended to
® u {A} be defining /*(A) = 0.

Let f^ 0 ^ k ^ n be in C^ and let

0 ^ AI < h^ < * • • < h^ < oo.
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Then

f,°° E.{^o(Y,)A(Y.,,J . . . U^)}e-^ dt

^'E^CXw.-^Xw.-.-J . . .
/»(Xw,-(-hJ; WB > t+h^, TB < ao}e-^ dt

=E.^-.-^(X^_,(X^^_.)...
A»(X^>-^.-^)^; TB < 00}

= X ^y) ̂  X • • • X X00 (fop^' ^»(•r-•)
. P'1"-"-̂ ,, dx^}f,_,(x^) . . . P^, <H.)to)
• E^(e-^.; TB < oo)

= X r^) ̂  ̂  • • • X G(l/' ^»)A(a;-)
• P''"-'1'-̂ ,, ̂ n-l)A-i(^-i) . . . P'-CC, (foo)
./•(^)E,,[^W.; TB < oo].

Now X ^V^y' dx^ ^ has density Gr(^), so applying
our duality relations we see that

(15.4) ^ E.{OT) ... /•,(Y^>-^ dt}
= X • • • X ̂ oE,^-^,; TB < o))^(.ro)P'-(a;o, ^)A(^) ...

. . . . . . . , P'"--'--̂ ,-!, ^)A(^)Gr(^).
By (11.11) we see that

EJe-^.; TB < oo) dx, == W(dx,)
and thus the right hand side of (15.4) can be written as

(15-5) X • • • S» P"G\^o)^o)P'"(^o, ^i)A(^i) • • •
-, , ^-^{x^ dx^{x,)Qr{x^.
Inus tor a.e. (

(15.6) E,.y,(Y,) ... /•,(Y^.)]==J; ^P' (^o)to)^o)
where

+(^0) = ̂  . . . ̂  P\o;o, ̂ ) . . .
P^1"-̂ ,-,, dx^{x,) . . . A(^)Gr(^).

Since Qr{x) is continuous so is ^(x). Hence the right hand
side of (15.6) is right continuous for ( ^ 0. Arguing as the
proof of Proposition 11.2 we can show that the left hand side
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of (15.6) is right continuous at 0 and thus from (15.6) we see
that

(15.7) E^o(Yo)A(YJ . . . /,(YJ] = / ?B (^0)^0)^0)

= f@ PB {dxo)fo(xo) f^ . . . f^ P^o, ̂ i) . . .
P^-^x^ ^)A(^) . . . /,(^)Gr(^).

Using the fact that Gr > 0 we can rewrite (15.7) as

(15.8) E,yo(Yo) .. . /,(YJ]
= X •" X (IB (^o)Gr(^)Q/ll(^0, ̂ l) . . . Q -̂̂ n-l, ^n)

. /o(^o) . . . A(^n)-

This establishes the lemma.

LEMMA 15.3. — Let r and Y( be as in Lemma 15.2. For
fe<S) define K^f{x) by

K^)=|&).
Gr{x)

Then

(15.9) P,[lim K,/'(X,) = 3{f)] = 1.
(->ao

The proof of this lemma uses the clever Martingale argument
of Hunt [6].

Proof. — It suffices to consider f ^ 0. Let s < t. Then

E{K,/TO|Y«, u < s} == E{K,/-(Y<))YJ
- c o'-fY dx)K nx} - r P'-^> dx^r^ te)-^(^ (Y,^)K./(^-^ ^^ ^^

_ r '̂-(Y., dx}Qf(x} G/-(Y,)_ .
--•/@ Gr(Y.) '^(Y,)--^1^

It follows from this that K,./*(Y() is a supermartingale. Let
0 ^ a < b < oo. The number of downcrossings of (a, b) by
Krf(^t) on [0, Wa] is the same as the number of upcros-
sings of (a, b) by Kp(Y(). Let U(a, b) denote this number
of upcrossings. Then by the upcrossing inequality for super-
martingales we see that

{b - a)EU(a, b) ^ E[IV(Yo)].
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Letting D(a, b) be the number of downcrossings of (a, b)
by K,./'(X() we see that

{b - a)ED(a, b) < E,[K,/-(Y,)] == E,[K,/-(Xw.-); T» < oo].

But using Proposition 11.2

(15.10) E,[K,/-(Xw,,-); TB < oo] =: ̂  pa (Ar)Gr(a;)K^) ̂

=f,^(dx)Qf(x)
= (A ^B).

Thus
{b - a)E,D(a, fc) < (/•, <DB).

As B ^ ®, WB f oo and TB ^ 0 so that the number of down-
crossings of (a, b) by K,./'(X() for (e(0, oo) is bounded
in expectation by (b — a)-lJ(f). It follows that K,/'(X()
has a limit a.s. as ( -> oo. Denote this limit by S. Hence
P(lim K,/'(X<) == ^) = 1. Then for integer n

(•>-oo

P,(lim K,/-(X,) = ^) = 1.
n>oo

But then ^ is measurable on the o-field of sets invariant
under a finite permutation of coordinates X^ — X^_i,
n = 1, 2, . . . so by the Hewitt-Savage 0 — 1 law for some
constant a(/*) (that may depend also on r) P^(S = a(/*)) == 1
and thus

(15.11) P,(lim K,f(X,) = a^)) = 1.
(»00

From (15.10) we see that

(15.12) lim E,[K^(Xw,-); TB < oo] = lim (/•, OB) = J(/').
B A ® ' B^@

Since WB f oo as B f ® we see from (15.11) and (15.12)
that

(15.13) a(y) == E,[lim K^(X,)] = lim E^K^X,).
t->-00 (•>OC

It follows from (15.12) and (15.13) that a(f) = J(f) and thus

P, [lim K,f(X.) = J(/-)] = 1
(->•<»

as desired.
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We may now prove the theorem.

Proof of Theorem 15.1. — For any x and y e ®

G^) = ̂ f{x - y) = G^(- y)
and thus

(15.14) G^(X,) = G^(y) = G^(y).

Hence applying Lemma 15.3 to the reverse process for the
function f_y we see that

P^}imGW=J(f)~\=l.
Looo Grx,(0) —J

By taking ratio's it follows from this that if J(g) ^ 0 then

(15.15) priim^^^t^l.L<^ Ggx,(0) J(g)J
Finally, as r > 0 we see from (15.15) that (15.3) holds for
a.e. x.

We will now show that for f and g e Cc we can strengthen
the a.e. x to all x. From (15.3) we know that

P Him G^- x^ A + ̂  1 ^ 1 10 llm r-7——v—D~I—\ :== loi = I? a•e- ^L^oo G(— X(, B + x) |B| J 9

for any two relatively compact sets such that |B| > 0. Assume
now that A and B are also such that |bA| = |^B| = 0. By
Propositions 2.1 and 2.2 of [11] we can then find compact
sets A^ and B^, open sets A^ and B^ and symmetric
neighborhoods S^ of 0 such that

A ^ + S ^ c A c A ^ + S ^
B ^ + S , c B c B , + S ,

and |A^ — AJ < —? |B^ — BJ < —• Hence there are
n n

points x^ and y^ e S^ such that

P, Him G(- X., A. + ̂ ) __ |AJ -I
A O L l i m G(-X,B„+^- - |BI^J = = i

and po r^ G(~xt ) An + ya} = ̂ 1 -1L». G(- X,, B, + yn) |B,| J - 1
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But as

G(- X,, A,. + ^) ^ G(- X,, A) G(- X,, A^ + yj
G(- X,, B^ + ^) " G(- X<, B) " G(-X,,B,+yJ

we see that

Pj^ < ^G(-X,,A) ^ ̂  G(- X,, A) |A,h
0 L |B,| ' ̂  G(- X<, B) < "J? G(- X,, B) ^ IBjJ = L

Letting n -> oo we see that

p Him^-^^ '^1 1po L- G(- X7B) - |B|J = L

Since |&(A + ^)| = |6A[ it follows that for any a;e@

(15•16) ^fel^l]31-
But, keeping B fixed (15.16) asserts that the measures
G(— X^, •) /G(—- X(, B) converge weakly a.s. P^ to | -|/|B|.
It follows that for any fe Cc

<15-17' ^[-GT^^]-.

and thus by taking ratios we see that (15.3) holds for all x
whenever fe C, and geQ,. This completes the proof.

COROLLARY 15.1. — Let f and <p e 0 and let g <& C
J(g) ^ 0. Then for all x e ®,

(15.18) P, flim (G^) = •I^W'I = 1.
Lo" Ggx/O) J(g) J

Proof. — Note that

X ^(^My) ̂  = X ^^rfz) X ̂ (z + y)<p(y) ̂
= G+x,(0)

where ^(a;) = f^ f(x + y)y(y). Using the fact that ^ e C,,
we see that (15.18) follows from Theorem 15.1.
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COROLLARY 15.2. — Let B be a relatively compact set. For
any fe 0 and geO, J(g) ^ 0

(15.19) P, film GB^ = ^-fi P,(TB = oo)1 = 1 a.e. a; e ®.
Loo ^gXtW ^ ( g ) J

Moreover if f and geCg ^m (15.19) holds for all xe@.
Jn addition if fe Cc, g e Cc OTirf 9 e $ (Aen for x e @,

<16-20' p•[llm(l̂ =^I>'(T•=°°)T('/>&'l= 4-
Proof. — It suffices to prove these results for f ̂  0. Given

such an /* we can find an re C^, J(r) ^ 0 such that

sup f-y(x) ^ r{x).
y€B

But then for any y e B,

0 < G^(y) = Gf-A- X.)
== ̂  G(- X,, dz}f.,(z) < Gr(- X.) = Grx/O).

Thus if Grx/0) > 0 we see that

(15.21) 0 . §̂  . 1

and also

t15-22) J^-^--^-^
The first two assertions of the corollary now follow from (15.22)
and Theorem 15.1. Similarly, the last assertion of the corollary
follows from (15.21), (15.22), Theorem 15.1 and Corollary
15.1.

COROLLARY 15.3. — Let B be a relatively compact set. Let
f, 9 e 0 and let g e= 0, J(g) ^ 0. Then for a.e. x e ®

t15-23' p- ['""^( '̂-^^ P^—My) ̂ ]=i.
Moreover (15.23) holds for all ^ e @ i/* f and geCg.
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Proof. — Using our duality relations we see that

(f.^, Gay) = (y, GB/--X.) = (y, GB/X,).
The assertions of the theorem now follow from Corollary
15.2.

An unsmoothed version of (15.23) will be given in Theorem
15.3.

For Brownian motion on R^, d ^ 3 it is well-known that
for any B e % and any f^Cc

limE,[AXT.)|TB< »]-(^)•
X-^- QO

Examples show that in general an i.d. process does not have
such limits existing. Our next result will be to show that such
limits always exist if we go to infinity along the path of the
reverse process. We first state a smoothed version of this
result. The unsmoothed version (valid for sets in ^4) will
be taken up after this.

THEOREM 15.2. — Let B be any relatively compact set
and let f, g e= Cc, J(g) + 0 and let <p e C(®). Then for all x e @,

(16.24) P. [H. t̂ ) = ̂  (,„ ,)] = 1

and i/* C(B) > 0 then for all x e @,

(15.25) P, [lim E^[9(X^|TB < a)] = (^——^l = 1.
L^oo L(B) J

Proof. — It suffices to prove the theorem for functions
/, 9 and g that are non-negative. Henceforth in the proof
we will assume this is the case. Now

(/•-x,, HaGy) = (f.^, G<p) - (/Lx., GBT)

and so by Corollaries 15.1 and 15.3 we see that for all xe ®,

P. Finn ̂  HBG^ =. ̂  ( ,̂ .)1 ^ 1L— Gg(X() 3(g)' 'J
and so by Theorem 8.1, for all x e ®,

(15.26) P, flim ̂ A'1"^ = ̂  (^B, Gy)1 == 1.L(^ Gg_x,(0) J(g) J
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Since fe C<T and B is compact we can find r e C^ such that
J(r) > 0 and such that

snpf.y{x) ^ r(x)
y€B

and thus for all y e B,

0 < Qf.^{y) = G/L^X,) < Gr(X,).

Now by Theorem 8.1 and the above

(15.27) (/•_„, On) = (PB, Gf-xJ < C(B)Gr(X<)

and thus if Gr(X() > 0

0 . ̂  . C(B).

Thus by dominated convergence and Theorem 15.1, for all
X e ® ,

(15-28)
 p•[l"n(^l=^c(B>]=l•

Consequently there is a subsequence ^(co) —^ co and a finite
measure y^? ^y) supported on B such that for any ^ e C(®),

/ ^ K Q O \ -D rr ^-x^9 HB^) "1
(15.29) P, hm -^>l = (y, 9) = 1-

L^°o brr(A(J J

In particular, G<p e C(@) whenever 9 e C^ and thus from
(15.29) and (15.26) we see that for all x^ @,

(15.30) P, [(y, G<p) = ̂  (^ ̂ ^ i'L J^^ J

Since ® is 2'nd countable C^(®) is separable and so
we can find a sequence {<?„}, y ^ e C ^ such that any cp e C^
can be uniformly approximated by a subsequence of the <?„
all of whose supports are contained in some fixed compact
set (depending on 9 of course). From (15.30) it follows that

P. [(Y, GV«) = ̂ f- (!^B, GyJ, n == 1, 2, . . . ] = = 1

13
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and thus by the usual 3 epsilon argument for any 9 e C^~

P, [(y, Gy) = ̂  ((^, Gy)] = 1.

Consequently, by Theorem 6.1 (for X == 0) we see that

(15.31) p.[,^.j=i.

If there was another subsequence of the measures

/•_x,HB/Gr(X<)
that converged weakly a.s. P^ the same argument would
show the limit measure to be [J(/')/J(r)]^B. Thus we have
shown that for any ^ e C(®)

P,[lin,S£-^).J_fl(,.,,)-ĵ l.
\_t^ Gr(X() ^[n J

Equation (15.24) follows at once from this by taking
ratios in using Theorem 15.1. Finally if C(B) > 0 then
(15.25) follows from (15.22) by applying it to the functions 9
and 1 and taking ratios. This completes the proof.

In general the smoothed results in Theorem 15.2 and in
Corollary 15.3 are the best that are possible for arbitrary
sets in %. We will now show that the smoothing can be
dropped for sets in ^84.

THEOREM 15.3. — Let Be ^4 and let 9 e C(@). Then for
geCc, J(g) + 0 and all x e @ ,

(15.33) P, flim HB?(" xt^ = ̂  ^1 == 1
L— Gg(X,) J(g) J

and
(15.34) P, [lu? E_^(X^)|TB < oo] = (——^j == 1.

Also, for any <p e C<; and g e Cc suc/i (Aa( J(g) 5^ 0,

(15.35) P, Him ̂ ^ x<)

L- Gg(X.)

=j jg)^PA= °°)y(?/) ̂ ] == 1
/or aZZ a; e ®.
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Proof. — It suffices to consider <p and g non-negative.
Let A be compact and let A c B . By Proposition 2.1 of
[11] we can then find a symmetric open neighborhood S
of 0 such that A — S c B. Thus for any y e S, T^y ^ Ta
and so for fe. C^

(15.36) E, f^ f{X, + y) dt ^ E, f^ ^(X,) dt.

Suppose f is such that Gf{x) > 0 for all x e= B. Then given
s > 0 there is an open neighborhood N of 0, N c S and
|ON| =0 such that for y e N and x e= B,

(15.37) (1 - z)Gf(x) ^ Gf.,{x) ^ (1 + c)G/^).

For such an f then we see from (15.36) and (15.37) that for
all ^e@,

^ H^Gf(x + y) dy ^ (1 + .)| N[ HaG/*^).

From Theorem 15.2 we then obtain

prt^^l+^i^H^GA^X,)-.^^
L J(g) »>« Gg(X() J

and as s is arbitrary we see that for any fe C<^ such that
Gf > 0 on B

(15.38) Pj0--^ < lim HBG^- ̂ = 1.L J(g) ^ Gg(X() J

Similarly, if U is a relatively compact open set, U a B and
Gf > 0 on B then by an essentially the same argument
we obtain

(15.39) P, film HBGA^ xt) ^ ̂ ^^l - 1.L^oc Gg(X<) J(g) J

Let A^, n ^ 1 be compact subsets of B, A ^ A g c . . . ,
^_JA^=B and let U^, TZ > 1 be relatively compact open

n ^ ^^^

sets, Ui a Ug = • • • , | | U , = f~^U, = B. It then follows
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from (15.38) and (15.39) that

(15 40) P 1'̂  Gn < HmHaG^-X,) HaGA-X,)(15.40) F^ j^ ^ ^^ <hm ^^

^0^_G/}1^
J(g) J

Now by Theorem 8.1 (^, Gf} = (/>, On) and (^5, G/") = (/•, <DB).
Since B e ̂ 4, P.,(TB = Tn) == 1 a.e. x and thus OB == OB
a.e. But then $3 = On = OB a.e. and so by the uniqueness
of the equilibrium measure [AB = (AB == E^B. Thus from (15.40)
we see that for any fe C^ such that G/" > 0 on B

(—^[-"e^-^i-1-
Actually, (15.41) holds for all feC^- because if Gf > 0 on
B and 9 e C^ then G ( / ' + 9 ) > 0 on B. Hence (15.41)
holds for f and /* + 9 and therefore for 9.

We will now show that (15.33) holds by a weak compactness
argument using (15.41) to identify the limit function. To this
end let U be a relatively compact open set such that U D B.
By Proposition 2.1 of [11] we can find a symmetric open
neighborhood N of 0 such that B + N c U. Then for
any y e N, ^>^{x) ^ Ou(^ + y ) ' Let A e C ^ ~ , J(A) == 1 have
support contained in N. Then

OB(- X,) < ̂  ̂ [y - X<)%) dy = (h.^, Ou)

and so by Theorem 15.2 for any x e ®,

^15 W P riirn ̂ "(-r-^ < ^^i - i(15.4.) P, [_hm -g -̂ ^ j^-J - 1.

It follows from (15.42) that there is a sequence ^n(<o) -> oo
and a finite measure y^? ^y) supported on B such that
for any 9 <= C(@),

(15.43) p. [1̂ ".̂ ) =(„,)]=!

for all x e @ . Equation (15.33) now follows from (15.41)
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and (15.43) by essentially the same argument used to prove
the smoothed version in Theorem 15.2. We will omit these
details. Equation (15.34) is a direct consequence of (15.33)
and the fact that C(B) > 0 for any B e ^4. Let r e Cc,
J(r) = 1. Then

(Gg-x,, r) = (g.^ Gr) = (g, Gr^)

and thus by Corollary 15.1 and Theorem 15.1 for all ^e®,

P. flim G^- x') = Urn G^ ^-x^ = J^'] = 1.
L— Gg-x/O) — (g, GrJGg-x,(0) J(g)J

Equation (15.35) now follows from this relation and (15.33)
via the first passage relation. This completes the proof.
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