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HECKE’S THEOREM ON THE DIFFERENT FOR
3-MANIFOLDS

by Will SAWIN & Mark SHUSTERMAN (*)

ABSTRACT. — Hecke has shown that the different of an extension of number
fields is a square in the ideal class group. We prove an analog for branched covers
of closed 3-manifolds saying that the branch divisor is a square in the first homology
group.

RESUME. — Hecke a montré que la différente d’une extension de corps de nom-
bres est un carré dans le groupe des classes d’idéaux. Nous prouvons un analogue
pour les revétements ramifiés de 3-variétés fermées en disant que le diviseur de
ramification est un carré dans le premier groupe d’homologie.

1. Introduction

Let E/F be an extension of number fields, let O be the ring of integers
of E, and let Cl(Og) be the class group of Og. One associates to the
extension E/F the different Dy, an ideal in O, see [5, Chapter 3]. Hecke
has shown that as an element of Cl(Og), the different Dg,p is a square,
namely there exists an ideal class J € Cl(Og) such that J? = Dg,p in
Cl(Og). Hecke’s proof uses a reciprocity formula for Gauss sums, see [1, 2]
for a proof and a discussion of related results.

An analog of Hecke’s theorem for finite separable extensions of fields of
fractions of Dedekind domains fails in general, see [3]. However, there exists
an analog in case E/F is a finite separable extension of function fields of
curves over finite fields of odd characteristic, see [1]. Another geometric
analog of Hecke’s theorem, based on similarities between the inverse of
the different and the canonical bundle on a curve, is the theory of theta
characteristics.
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In this work we consider an analog of Hecke’s theorem for 3-manifolds, as
suggested by arithmetic topology. We refer to [4] for the analogy between
rings of integers and primes on the one hand, and 3-manifolds and knots
on the other hand. The analog of Spec(Op) is a closed (not necessarily
oriented) 3-manifold M. The map Spec(Og) — Spec(OF) is replaced by a
cover : M — M branched over a link L C M, so M is a closed 3-manifold
and m~1(M \ L) is a covering space of M \ L. The inverse image of L under
7 is a link L in M.

For a prime ideal p of O we denote by e, its ramification index, namely
the largest positive integer e for which p¢ contains p N Op. We view
Spec(Ofg) — Spec(Op) as branched over the primes of Op that ramify,
so L is our analog for Re/r = {p € Spec(Og) : e, > 1}. The analogy is
perhaps closest in case Spec(Og) — Spec(Op) is tamely ramified, namely
ep is coprime to |Og/p| for every p € Spec(Og). In this case the different
of E/F is given by

Dg/r = H pert

PERE/F

The prime ideals in R, are analogous to the components of the link L.
For each component K of this link, let the ramification index ez be the
number of times the image under 7 of a small loop around K wraps around
7(K). An analog of Cl(Og) is Hy (M, Z), and a homology class is a square
if and only if its image in

H,(M,Z) ®; Z/22 = H,(M,Z/2Z)

vanishes. Our analogy of Dg,, or rather of its class in C1(Og)/ Cl(Og)?,
is the branch divisor

D, = > (ex —1)[K] € Hy(M,Z/2Z)

K a component of T

of 7. Since we are working with Z/27Z-coefficients, it is not necessary to fix
an orientation of K, nor is the sign of ez significant.

THEOREM 1.1. — Let M and M be closed 3-manifolds, and let 7: M —

M be a cover branched over a liAn/k in M. Then the branch divisor D,
represents the trivial class in Hi(M,Z/2Z).

ANNALES DE L’INSTITUT FOURIER
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2. A central extension of the hyperoctahedral group

Let n be a positive integer, and let S,, be the symmetric group. Recall
the hyperoctahedral group

(2.1) By = (Z/22)" % S,
where S, acts on (Z/2Z)™ by permuting the coordinates.

Let H,, be the group consisting of pairs (a,b) € (Z/2Z2)" x Z/2Z with
group law

(a1,b1)(az,b2) = | a1 + az, by + by + Z ay,; az,;
1<i<j<n
A straightforward computation shows that this law is associative, and that
the inverse of (a,b) is

a,b+ Z a; a;
1<i<j<n
Projection onto the first factor exhibits H,, as a central extension of (Z/2Z)™
by Z/2Z.
For 1 < i < n we denote by e; the i*" unit vector in (Z/27)", set
z; = (e;,0) € H,, and € = (0,1) € H,. We denote the unit element
(0,0) € H,, by 1. We can check that

(2.2) ?=€e=1, 1<i<n,
that
(2.3) xixy = ex;x;, 1<4,j<n, i# 7,
and that
(2.4) ex; = xie, 1<i<n.
Furthermore, the relations in (2.2), (2.3), and (2.4) among the generators
Z1,...,Ty, € define the group H,, since using these relations every word in
T1,...,Tn,€ can be brought to the form xil,...,xike‘s with 1 <41 <ig <

<o < <nandde€{0,1}.
We therefore have an action of S,, on H,, by automorphisms via

o(x;) = T5(), 0(e) =¢, €8, 1<i<n.

Let G, = H, x S, be the semidirect product defined using this action.
Since € € H,, is central and S,,-invariant, it lies in the center of G,,, so

Go/le) = G /{1,¢} = (Z/22)" x S, = By,

TOME 0 (0), FASCICULE 0
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where the last equality is by definition of B, in Eq. (2.1). We see that
G, is a central extension of B,, by Z/2Z. We denote by f, the class in
H?(B,,,7/27) corresponding to this extension.

Let 0,7 € B,, be two elements that commute, let &, 7 be lifts to G,,, and
define

(o, 7) = [0,7] =070 ‘T € (e) X Z/27.
Since G, is a central extension of B,,, the above is indeed independent of
the choice of lifts. As every element in Z/2Z is its own inverse, we see that

(2.5) P(o,7) = [577—] = [Fv E]_l = [777 E] = ¢(1,0).
We denote by
Cp,(0)={r€ B, :07 =710}

n

the centralizer of ¢ in B,,.

PROPOSITION 2.1. — For every o € B,, the map that sends T € Cp, (o)
to ¢(o, ) is a homomorphism.

Proof. — For every 11,72 € Cp, (o) we have

¢(07 7—17—2) = &77175571772—17:1—1, ¢(Ua Tl)¢(ga 7—2) = 57:35717?1_1 [&a 772]

so after cancelling o7, it remains to check that

~~ ] ~— -1 ~_
ToO 17'2 1 =0 1

7o, 7.
After multiplying by o from the left, we just need to check that [, T3]

commutes with 77. This is indeed the case because [7, 73] lies in the central
subgroup {1,€} of G,,. O

COROLLARY 2.2. — For every T € B,, the map that sends o € Cpg, (T)
to ¢(o,7) is a homomorphism.

Proof. — For 01,09 € Cp, (1) we get from Eq. (2.5) and Proposition 2.1
that

¢(0102,7) = ¢(7,0102) = ¢(7,01)9(T,02) = ¢(01,T)P(02,T)
as required. O
PROPOSITION 2.3. — For a k-cycle 0 = (i1 ...1) € S, < By, and
T=ey+ -+e, €(Z/2Z)" < B,

we have ¢(0,7) = =1, Forevery a € S,, < By, with a(i1) =iy, ..., a(iy) =
i, we have ¢(a, 7) = 1.

ANNALES DE L’INSTITUT FOURIER
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Proof. — We take o = (i1,...,%x), T = Tiy, . .., T;, and get that
(o, 7) =070 +-71
=0 (Tiy, s i) (T Ty )
= To(iy)s - > To(iy) ° (Tiyy ey )
= Ty ooy i iy (Tiyy ooy )
=y (T, 2 ) )
_ k1

Taking & = o we see that

é(a,7)=ara -7t
-1
=a(Tiyy s Tiy) - (@iyy oo Ti)
1
_xa(ll)ﬂ 7xa(ik) (lev 7xzk)
=1
as claimed. O
COROLLARY 2.4. — Let 0 € S,, < B,, whose disjoint cycles are
J
Cl = (7:1,1, e ’i17d1)7 e ,Cj == (ij,la e 7ij7dj)’ Z d,« =n,
r=1

and let 7 € Cp, (o). Then there exists a (unique) choice of 7' € Cg, (o)
and Ai,...,\; € Z/2Z such that

(2.6) rT=1v, v= Z Ar (eir’l + -+ €ir‘d,r)
and »
B0, ) = edrs 0,

Proof. — The ability to express 7 as in Eq. (2.6) is immediate from the
definition of the group law in B,,. From Proposition 2.1, Corollary 2.2, and
Proposition 2.3 we therefore get that

J
¢(Ua T) = ¢<Ua ' Z )‘T(eir,l +eee €i, g, ))

r=1

J
= ¢(Uv T/) : H ¢(07 €1 +eee eir,dr)/\r

r=1

TOME 0 (0), FASCICULE 0
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Jj g

= [077'/] : H H ¢(Csaeir,1 to +eir,dr)>w

r=1s=1

1. ﬁ €>\r(d7‘71)

r=1

J
= € T:lAr(dril)

as required.

O

We keep the notation of Corollary 2.4 and denote by Oi,...,0, the
orbits of the action by conjugation of the subgroup of S,, generated by 7’
on {Ci,...,C;}. For 1 <y < z welet I, C {1,...,n} be the set of all
indices that appear in one of the cycles in Oy, and define the permutation

T; € S, by

(i) = (i) i€l
i (X
We have a disjoint union

Un=1{,...n
y=1

hence 7 = 7{ -- - 7/ and the permutations 77, ..., 7. commute. We put
1 z 1 y Iz

e / f— . .« e .
Ty = Tyly, Uy = E A (elh1 + + ezr,dr)

1NN

Cr€O0y
and get that
(2.7) T =TiV1, ..., ToU,
where the factors vy, ..., 7,v, commute.

3. Proof of Theorem 1.1

It suffices to show, for each a € Hl(M, Z/27), that the pairing of the

branch divisor D, with « vanishes, namely

> (g~ D([KLa)=0
K a component of L

or equivalently
K a component of L f , component of 7~ (K)

ANNALES DE L’INSTITUT FOURIER
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Associated to « is a degree two covering space N — M. Let n be the degree
of m: M — M which is locally constant away from L, thus constant. Away
from L, we get that N is a degree 2 covering space of a degree n covering
space, hence has monodromy group contained in the wreath product

So0Sn = (Z)27)1 Sy, = (Z)2Z)" % Sy, = By,.

We thus have a map H?(B,,,Z/2Z) — H*(M \ L,Z/2Z), and we denote by
v € H*(M\ L,Z/27Z) the image of 3,,. Here 3, is the class in H?(B,,, Z/2Z)
corresponding to the central extension

{1}y — z/2Z — G, — B, — {1}

of B, by Z/27Z.

Consider a tubular neighborhood @Q of L and let S = 0Q be its boundary,
a union of tori. Each such torus T corresponds to a unique component K
of L - the boundary of a tubular neighborhood of K is T'. Since S bounds
a 3-manifold in M \ L, i.e. the complement of the tubular neighborhood @,
our cohomology class 7 integrates to 0 on S. It follows that

Z v =0.

T a component of S T

It is therefore sufficient to prove that

(3.1) /Tvz . > (eg—1)<[[~(],a>.

K a component of 7~ !(K)

Since T is a torus, a covering of T' with monodromy B,,, i.e. a homo-
morphism from 71 (T) to B, is given by a pair of elements m, ¢ € B, that
commute, where m represents a meridian and ¢ represents a longitude.
From the standard cell decomposition of the torus, we can see that

/Tw — 6(m, 0).

Since the Z/27Z-covering N — M is unbranched over every component K
of 7~1(K), the monodromy of the meridian m does not swap the two com-
ponents of the covering, and therefore m is (up to conjugation) contained
in S, < B,,.

We shall use here the notation of Corollary 2.4 and the paragraph follo-
wing it for 0 = m and 7 = ¢, in particular we write { = ¢'v as in (2.6).
The components of 7~1(K) are naturally in bijection with the orbits of the
action by conjugation of the subgroup of S,, generated by ¢ on the set of

TOME 0 (0), FASCICULE 0
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disjoint cycles {C1, ..., C;} of m. We denote by O the orbit corresponding
to a component K of 771(K). As in (2.7), we can write

EZHKR, f[(:flkvk, Vg = Z )\r(eirﬁl+"'+6ir1d,,,)~
K

1<r<y
Creog

We denote the number of cycles in O by t(K), note that each such cycle
is of length ez, and set
de =#{1<r<j:C, € O, A\ =1}

It follows from Corollary 2.4 that ¢(m,l;) = (ef — 1)dg mod 2, so
from Corollary 2.2 we get that

K a component of 71 (K)

Z (elg—l)d[( mod 2.

K a component of 7~ (K)

It is therefore enough to show that dz = ([K], ) mod 2.

Let C be a longitude curve in a tubular neighborhood of K. Then [C] =
[K] as homology classes in H. 1(]T4/ ,ZJ27), so it suffices to show that dz =
([C], @) mod 2. The projection of [C] to T is

a[m] + t(K)[(]
for some a € Z. Thus, the action of C' on the covering space N — M is
given by m®¢*(5) . We have
magt&) — ma(ﬁlv)t(f{) — et (v +0 () + -+ f’t(k)fl(v))

The pairing ([C], «) is nonzero if and only if the monodromy along C' of
the covering N — M is nontrivial, which happens if and only if the action
of m®¢*(X) sends one branch of this covering to the other, and that occurs
if and only if the &*® entry of v+ (v) +- - - +£"*F)~1(y) is nonzero for some
(equivalently, every) index 1 < k < n that belongs to one of the cycles in
O . It is therefore sufficient to show that

dg = (v +0(v)+ -+ K’t(k)*l(v))k mod 2.

We have

(U+g'(v) 4. +€/t(i{)_1(v))k = v +£’(v)k + ...+g’t(f{)—1(v)k

= Vg + Vgr=1(k) + -+ Vpr—t(R)+1 (k)

ANNALES DE L’INSTITUT FOURIER
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By the orbit-stabilizer theorem, each of the ¢(K) cycles in O contains
exactly one of the t(K) elements k,¢'~(k),...,¢'"*S)+1(E). Thus, from
(2.6) we get that

Vk + ’Ue/—l(k) + e + Ug/—t(}?)+1(k) = Z )\7« = df{ mOd 2,

1<r<g
Creo0

as desired.

4. An alternative argument in the oriented case

We sketch here an alternative proof of Theorem 1.1 in case the mani-
folds M and M are orientable. Fix triangulations of M and of M. The
skeleta of the barycentric subdivision represent the dual of the terms in
the total Stiefel-Whitney class of M and of M. Since M and M are closed
orientable 3-manifolds, they are parallelizable, so the aforementioned total
Stiefel-Whitney classes are zero. Viewed as classes in Hy (M, Z/27), the
pullback under 7 of the 1-skeleton of our triangulation of M, and the 1-
skeleton of our triangulation of M differ by D,. It follows that D, represents
the trivial class in Hy (M, Z/27) as required.
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