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HECKE’S THEOREM ON THE DIFFERENT FOR
3-MANIFOLDS

by Will SAWIN & Mark SHUSTERMAN (*)

Abstract. — Hecke has shown that the different of an extension of number
fields is a square in the ideal class group. We prove an analog for branched covers
of closed 3-manifolds saying that the branch divisor is a square in the first homology
group.

Résumé. — Hecke a montré que la différente d’une extension de corps de nom-
bres est un carré dans le groupe des classes d’idéaux. Nous prouvons un analogue
pour les revêtements ramifiés de 3-variétés fermées en disant que le diviseur de
ramification est un carré dans le premier groupe d’homologie.

1. Introduction

Let E/F be an extension of number fields, let OE be the ring of integers
of E, and let Cl(OE) be the class group of OE . One associates to the
extension E/F the different DE/F , an ideal in OE , see [5, Chapter 3]. Hecke
has shown that as an element of Cl(OE), the different DE/F is a square,
namely there exists an ideal class J ∈ Cl(OE) such that J2 = DE/F in
Cl(OE). Hecke’s proof uses a reciprocity formula for Gauss sums, see [1, 2]
for a proof and a discussion of related results.

An analog of Hecke’s theorem for finite separable extensions of fields of
fractions of Dedekind domains fails in general, see [3]. However, there exists
an analog in case E/F is a finite separable extension of function fields of
curves over finite fields of odd characteristic, see [1]. Another geometric
analog of Hecke’s theorem, based on similarities between the inverse of
the different and the canonical bundle on a curve, is the theory of theta
characteristics.

Keywords: arithmetic topology, ramification divisor, hyperoctahedral group.
2020 Mathematics Subject Classification: 57M27, 57M12, 11R29, 20J06, 55N10.
(*) W. S. served as a Clay Research Fellow while working on this paper.
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In this work we consider an analog of Hecke’s theorem for 3-manifolds, as
suggested by arithmetic topology. We refer to [4] for the analogy between
rings of integers and primes on the one hand, and 3-manifolds and knots
on the other hand. The analog of Spec(OF ) is a closed (not necessarily
oriented) 3-manifold M . The map Spec(OE) → Spec(OF ) is replaced by a
cover π : M̃ → M branched over a link L ⊂ M , so M̃ is a closed 3-manifold
and π−1(M \ L) is a covering space of M \ L. The inverse image of L under
π is a link L̃ in M̃ .

For a prime ideal p of OE we denote by ep its ramification index, namely
the largest positive integer e for which pe contains p ∩ OF . We view
Spec(OE) → Spec(OF ) as branched over the primes of OE that ramify,
so L̃ is our analog for RE/F = {p ∈ Spec(OE) : ep > 1}. The analogy is
perhaps closest in case Spec(OE) → Spec(OF ) is tamely ramified, namely
ep is coprime to |OE/p| for every p ∈ Spec(OE). In this case the different
of E/F is given by

DE/F =
∏

p∈RE/F

pep−1.

The prime ideals in RE/F are analogous to the components of the link L̃.
For each component K̃ of this link, let the ramification index eK̃ be the
number of times the image under π of a small loop around K̃ wraps around
π(K̃). An analog of Cl(OE) is H1(M̃,Z), and a homology class is a square
if and only if its image in

H1
(
M̃,Z

)
⊗Z Z/2Z ∼= H1

(
M̃,Z/2Z

)
vanishes. Our analogy of DE/F , or rather of its class in Cl(OE)/ Cl(OE)2,
is the branch divisor

Dπ =
∑

K̃ a component of L̃

(
eK̃ − 1

)
[K̃] ∈ H1

(
M̃,Z/2Z

)

of π. Since we are working with Z/2Z-coefficients, it is not necessary to fix
an orientation of K̃, nor is the sign of eK̃ significant.

Theorem 1.1. — Let M̃ and M be closed 3-manifolds, and let π : M̃ →
M be a cover branched over a link in M . Then the branch divisor Dπ

represents the trivial class in H1(M̃,Z/2Z).
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2. A central extension of the hyperoctahedral group

Let n be a positive integer, and let Sn be the symmetric group. Recall
the hyperoctahedral group

(2.1) Bn = (Z/2Z)n ⋊ Sn

where Sn acts on (Z/2Z)n by permuting the coordinates.
Let Hn be the group consisting of pairs (a, b) ∈ (Z/2Z)n × Z/2Z with

group law

(a1, b1)(a2, b2) =

a1 + a2, b1 + b2 +
∑

1⩽ i<j⩽n

a1,i a2,j

.

A straightforward computation shows that this law is associative, and that
the inverse of (a, b) is a, b +

∑
1⩽ i<j⩽n

ai aj

.

Projection onto the first factor exhibits Hn as a central extension of (Z/2Z)n

by Z/2Z.
For 1 ⩽ i ⩽ n we denote by ei the ith unit vector in (Z/2Z)n, set

xi = (ei, 0) ∈ Hn, and ϵ = (0, 1) ∈ Hn. We denote the unit element
(0, 0) ∈ Hn by 1. We can check that

(2.2) x2
i = ϵ2 = 1, 1 ⩽ i ⩽ n,

that

(2.3) xixj = ϵxjxi, 1 ⩽ i, j ⩽ n, i ̸= j,

and that

(2.4) ϵxi = xiϵ, 1 ⩽ i ⩽ n.

Furthermore, the relations in (2.2), (2.3), and (2.4) among the generators
x1, . . . , xn, ϵ define the group Hn since using these relations every word in
x1, . . . , xn, ϵ can be brought to the form xi1 , . . . , xik

ϵδ with 1 ⩽ i1 < i2 <

· · · < ik ⩽ n and δ ∈ {0, 1}.
We therefore have an action of Sn on Hn by automorphisms via

σ(xi) = xσ(i), σ(ϵ) = ϵ, σ ∈ Sn, 1 ⩽ i ⩽ n.

Let Gn = Hn ⋊ Sn be the semidirect product defined using this action.
Since ϵ ∈ Hn is central and Sn-invariant, it lies in the center of Gn, so

Gn/⟨ϵ⟩ = Gn/{1, ϵ} ∼= (Z/2Z)n ⋊ Sn = Bn

TOME 0 (0), FASCICULE 0
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where the last equality is by definition of Bn in Eq. (2.1). We see that
Gn is a central extension of Bn by Z/2Z. We denote by βn the class in
H2(Bn,Z/2Z) corresponding to this extension.

Let σ, τ ∈ Bn be two elements that commute, let σ̃, τ̃ be lifts to Gn, and
define

ϕ(σ, τ) = [σ̃, τ̃ ] = σ̃τ̃ σ̃−1τ̃−1 ∈ ⟨ϵ⟩ ∼= Z/2Z.

Since Gn is a central extension of Bn, the above is indeed independent of
the choice of lifts. As every element in Z/2Z is its own inverse, we see that

(2.5) ϕ(σ, τ) = [σ̃, τ̃ ] = [τ̃ , σ̃]−1 = [τ̃ , σ̃] = ϕ(τ, σ).

We denote by
CBn

(σ) = {τ ∈ Bn : στ = τσ}

the centralizer of σ in Bn.

Proposition 2.1. — For every σ ∈ Bn the map that sends τ ∈ CBn
(σ)

to ϕ(σ, τ) is a homomorphism.

Proof. — For every τ1, τ2 ∈ CBn
(σ) we have

ϕ(σ, τ1τ2) = σ̃τ̃1τ̃2σ̃−1τ̃2
−1τ̃1

−1, ϕ(σ, τ1)ϕ(σ, τ2) = σ̃τ̃1σ̃−1τ̃1
−1[σ̃, τ̃2]

so after cancelling σ̃τ̃1, it remains to check that

τ̃2σ̃−1τ̃2
−1τ̃1

−1 = σ̃−1τ̃1
−1[σ̃, τ̃2].

After multiplying by σ̃ from the left, we just need to check that [σ̃, τ̃2]
commutes with τ̃1. This is indeed the case because [σ̃, τ̃2] lies in the central
subgroup {1, ϵ} of Gn. □

Corollary 2.2. — For every τ ∈ Bn the map that sends σ ∈ CBn
(τ)

to ϕ(σ, τ) is a homomorphism.

Proof. — For σ1, σ2 ∈ CBn(τ) we get from Eq. (2.5) and Proposition 2.1
that

ϕ(σ1σ2, τ) = ϕ(τ, σ1σ2) = ϕ(τ, σ1)ϕ(τ, σ2) = ϕ(σ1, τ)ϕ(σ2, τ)

as required. □

Proposition 2.3. — For a k-cycle σ = (i1 . . . ik) ∈ Sn ⩽ Bn, and

τ = ei1 + · · · + eik
∈ (Z/2Z)n ⩽ Bn

we have ϕ(σ, τ) = ϵk−1. For every α ∈ Sn ⩽ Bn with α(i1) = i1, . . . , α(ik) =
ik we have ϕ(α, τ) = 1.

ANNALES DE L’INSTITUT FOURIER
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Proof. — We take σ̃ = (i1, . . . , ik), τ̃ = xi1 , . . . , xik
and get that

ϕ(σ, τ) = σ̃τ̃ σ̃−1 · τ̃−1

= σ(xi1 , . . . , xik
) · (xi1 , . . . , xik

)−1

= xσ(i1), . . . , xσ(ik) · (xi1 , . . . , xik
)−1

= xi2 , . . . , xik
xi1 · (xi1 , . . . , xik

)−1

= ϵk−1xi1 , . . . , xik
· (xi1 , . . . , xik

)−1

= ϵk−1.

Taking α̃ = α we see that

ϕ(α, τ) = α̃τ̃ α̃−1 · τ̃−1

= α(xi1 , . . . , xik
) · (xi1 , . . . , xik

)−1

= xα(i1), . . . , xα(ik) · (xi1 , . . . , xik
)−1

= 1

as claimed. □

Corollary 2.4. — Let σ ∈ Sn ⩽ Bn whose disjoint cycles are

C1 = (i1,1, . . . , i1,d1), . . . , Cj =
(
ij,1, . . . , ij,dj

)
,

j∑
r =1

dr = n,

and let τ ∈ CBn(σ). Then there exists a (unique) choice of τ ′ ∈ CSn(σ)
and λ1, . . . , λj ∈ Z/2Z such that

(2.6) τ = τ ′v, v =
j∑

r =1
λr

(
eir,1 + · · · + eir,dr

)
and

ϕ(σ, τ) = ϵ
∑j

r = 1
λr(dr−1).

Proof. — The ability to express τ as in Eq. (2.6) is immediate from the
definition of the group law in Bn. From Proposition 2.1, Corollary 2.2, and
Proposition 2.3 we therefore get that

ϕ(σ, τ) = ϕ

(
σ, τ ′ ·

j∑
r =1

λr(eir,1 + · · · + eir,dr
)
)

= ϕ(σ, τ ′) ·
j∏

r =1
ϕ
(
σ, eir,1 + · · · + eir,dr

)λr

TOME 0 (0), FASCICULE 0
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= [σ, τ ′] ·
j∏

r =1

j∏
s=1

ϕ
(
Cs, eir,1 + · · · + eir,dr

)λr

= 1 ·
j∏

r =1
ϵλr(dr−1)

= ϵ
∑j

r = 1
λr(dr−1)

as required. □

We keep the notation of Corollary 2.4 and denote by O1, . . . , Oz the
orbits of the action by conjugation of the subgroup of Sn generated by τ ′

on {C1, . . . , Cj}. For 1 ⩽ y ⩽ z we let Iy ⊆ {1, . . . , n} be the set of all
indices that appear in one of the cycles in Oy, and define the permutation
τ ′

y ∈ Sn by

τ ′
y(i) =

{
τ ′(i) i ∈ Iy

i i /∈ Iy.

We have a disjoint union
z⋃

y =1
Iy = {1, . . . , n}

hence τ ′ = τ ′
1 · · · τ ′

z and the permutations τ ′
1, . . . , τ ′

z commute. We put

τy = τ ′
yvy, vy =

∑
1⩽r⩽j
Cr∈Oy

λr

(
eir,1 + · · · + eir,dr

)
and get that

(2.7) τ = τ ′
1v1, . . . , τ ′

zvz

where the factors τ ′
1v1, . . . , τ ′

zvz commute.

3. Proof of Theorem 1.1

It suffices to show, for each α ∈ H1(M̃,Z/2Z), that the pairing of the
branch divisor Dπ with α vanishes, namely∑

K̃ a component of L̃

(eK̃ − 1)
〈

[K̃], α
〉

= 0

or equivalently∑
K a component of L

∑
K̃ a component of π−1(K)

(eK̃ − 1)
〈

[K̃], α
〉

= 0.

ANNALES DE L’INSTITUT FOURIER
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Associated to α is a degree two covering space N → M̃ . Let n be the degree
of π : M̃ → M which is locally constant away from L, thus constant. Away
from L, we get that N is a degree 2 covering space of a degree n covering
space, hence has monodromy group contained in the wreath product

S2 ≀ Sn = (Z/2Z) ≀ Sn = (Z/2Z)n ⋊ Sn = Bn.

We thus have a map H2(Bn,Z/2Z) → H2(M \L,Z/2Z), and we denote by
γ ∈ H2(M \L,Z/2Z) the image of βn. Here βn is the class in H2(Bn,Z/2Z)
corresponding to the central extension

{1} −→ Z/2Z −→ Gn −→ Bn −→ {1}

of Bn by Z/2Z.
Consider a tubular neighborhood Q of L and let S = ∂Q be its boundary,

a union of tori. Each such torus T corresponds to a unique component K

of L - the boundary of a tubular neighborhood of K is T . Since S bounds
a 3-manifold in M \ L, i.e. the complement of the tubular neighborhood Q,
our cohomology class γ integrates to 0 on S. It follows that∑

T a component of S

∫
T

γ = 0.

It is therefore sufficient to prove that

(3.1)
∫

T

γ =
∑

K̃ a component of π−1(K)

(eK̃ − 1)
〈

[K̃], α
〉

.

Since T is a torus, a covering of T with monodromy Bn, i.e. a homo-
morphism from π1(T ) to Bn, is given by a pair of elements m, ℓ ∈ Bn that
commute, where m represents a meridian and ℓ represents a longitude.
From the standard cell decomposition of the torus, we can see that∫

T

γ = ϕ(m, ℓ).

Since the Z/2Z-covering N → M̃ is unbranched over every component K̃

of π−1(K), the monodromy of the meridian m does not swap the two com-
ponents of the covering, and therefore m is (up to conjugation) contained
in Sn ⩽ Bn.

We shall use here the notation of Corollary 2.4 and the paragraph follo-
wing it for σ = m and τ = ℓ, in particular we write ℓ = ℓ′v as in (2.6).
The components of π−1(K) are naturally in bijection with the orbits of the
action by conjugation of the subgroup of Sn generated by ℓ′ on the set of

TOME 0 (0), FASCICULE 0
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disjoint cycles {C1, . . . , Cj} of m. We denote by OK̃ the orbit corresponding
to a component K̃ of π−1(K). As in (2.7), we can write

ℓ =
∏
K̃

ℓK̃ , ℓK̃ = ℓ′
K̃

vK̃ , vK̃ =
∑

1⩽r⩽j
Cr∈O

K̃

λr

(
eir,1 + · · · + eir,dr

)
.

We denote the number of cycles in OK̃ by t(K̃), note that each such cycle
is of length eK̃ , and set

dK̃ = #{1 ⩽ r ⩽ j : Cr ∈ OK̃ , λr = 1}.

It follows from Corollary 2.4 that ϕ(m, ℓK̃) ≡ (eK̃ − 1)dK̃ mod 2, so
from Corollary 2.2 we get that

ϕ(m, ℓ) =
∑

K̃ a component of π−1(K)

ϕ(m, ℓK̃)

≡
∑

K̃ a component of π−1(K)

(eK̃ − 1) dK̃ mod 2.

It is therefore enough to show that dK̃ ≡ ⟨[K̃], α⟩ mod 2.
Let C be a longitude curve in a tubular neighborhood of K̃. Then [C] =

[K̃] as homology classes in H1(M̃,Z/2Z), so it suffices to show that dK̃ ≡
⟨[C], α⟩ mod 2. The projection of [C] to T is

a[m] + t(K̃)[ℓ]

for some a ∈ Z. Thus, the action of C on the covering space N → M is
given by maℓt(K̃). We have

maℓt(K̃) = ma(ℓ′v)t(K̃) = maℓ′t(K̃) ·
(

v + ℓ′(v) + · · · + ℓ′t(K̃)−1(v)
)

.

The pairing ⟨[C], α⟩ is nonzero if and only if the monodromy along C of
the covering N → M̃ is nontrivial, which happens if and only if the action
of maℓt(K̃) sends one branch of this covering to the other, and that occurs
if and only if the kth entry of v+ℓ′(v)+ · · ·+ℓ′t(K̃)−1(v) is nonzero for some
(equivalently, every) index 1 ⩽ k ⩽ n that belongs to one of the cycles in
OK̃ . It is therefore sufficient to show that

dK̃ ≡
(

v + ℓ′(v) + · · · + ℓ′t(K̃)−1(v)
)

k
mod 2.

We have(
v + ℓ′(v) + · · · + ℓ′t(K̃)−1(v)

)
k

= vk + ℓ′(v)k + · · · + ℓ′t(K̃)−1(v)k

= vk + vℓ′−1(k) + · · · + vℓ′−t(K̃)+1(k).

ANNALES DE L’INSTITUT FOURIER
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By the orbit-stabilizer theorem, each of the t(K̃) cycles in OK̃ contains
exactly one of the t(K̃) elements k, ℓ′−1(k), . . . , ℓ′−t(K̃)+1(k). Thus, from
(2.6) we get that

vk + vℓ′−1(k) + · · · + vℓ′−t(K̃)+1(k) =
∑

1⩽r⩽j
Cr∈O

K̃

λr ≡ dK̃ mod 2,

as desired.

4. An alternative argument in the oriented case

We sketch here an alternative proof of Theorem 1.1 in case the mani-
folds M and M̃ are orientable. Fix triangulations of M and of M̃ . The
skeleta of the barycentric subdivision represent the dual of the terms in
the total Stiefel–Whitney class of M and of M̃ . Since M and M̃ are closed
orientable 3-manifolds, they are parallelizable, so the aforementioned total
Stiefel–Whitney classes are zero. Viewed as classes in H1(M̃,Z/2Z), the
pullback under π of the 1-skeleton of our triangulation of M , and the 1-
skeleton of our triangulation of M̃ differ by Dπ. It follows that Dπ represents
the trivial class in H1(M̃,Z/2Z) as required.
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