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ON THE ACTION OF RELATIVELY IRREDUCIBLE
AUTOMORPHISMS ON THEIR TRAIN TRACKS

by Stefano FRANCAVIGLIA,
Armando MARTINO & Dionysios SYRIGOS (*)

ABSTRACT. — Let G be a group and let G be a free factor system of G, namely
a free splitting of G as G = Gj * --- * G}, * F. In this paper, we study the set
of train track points for G-irreducible automorphisms ¢ with exponential growth.
Such set is known to coincide with the minimally displaced set Min(¢) of ¢, in
the relative deformation space corresponding to the splitting. The theory of such
relative spaces, even if it is more general by its own nature, is crucial to under-
standing reducible automorphisms of free groups, as any automorphism is relatively
irreducible with respect to some free factor system G.

Our main result is that Min(¢) is co-compact, under the action of the cyclic
subgroup generated by ¢.

Along the way we obtain other results that could be of independent interest. For
instance, we prove that any point of Min(¢) is in uniform distance from Min(¢~1).
We also prove that the action of G on the product of the attracting and the repelling
trees for ¢, is discrete. Finally, we get some fine insight about the local topology
of relative outer space.

Some applications of co-compactness are discussed. In particular we generalise
a classical result of Bestvina, Feighn and Handel for the centralisers of irreducible
automorphisms of free groups, in the more general context of relatively irreducible
automorphisms of a free product. From this, we deduce that centralisers of ele-
ments of Out(F3) are finitely generated, which was previously unknown. Finally,
we mention that an immediate corollary of co-compactness is that the set Min(¢)
is always quasi-isometric to a line.
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RESUME. — Soit G un groupe et G un systéme de facteurs libres de G, c’est a
dire une décomposition de G en produits libres comme G = G - - -x* Gy * Fi.. Dans
cet article, nous étudions I’ensemble de points train track pour les automorphismes
¢ qui sont G-irréductibles et & croissance exponentielle. On sait qu’un tel ensemble
coincide avec I’ensemble Min(¢) des points qui sont minimalement déplacé par ¢
dans l'espace de déformation relatif correspondant a la décomposition G. La théo-
rie de tels espaces relatifs, méme si elle est plus générale par nature, est essentielle
pour comprendre les automorphismes réductibles des groupes libres, car tout auto-
morphisme est relativement irréductible par rapport a quelque systéme de facteurs
libres G.

Notre résultat principal est que I’action sur Min(¢) du groupe cyclique engendré
par ¢ est co-compacte.

En passant, nous obtenons d’autres résultats qui pourraient présenter un intérét
indépendant. Par exemple, nous prouvons que tout point de Min(¢) est & distance
uniforme de Min(¢~1). Nous prouvons également que I’action de G sur le produit
des arbres attractif et répulsif de ¢ est discréte. Enfin, nous obtenons un apercu
précis de la topologie locale de I'outre-espace relatif.

Quelques applications de la co-compacité sont discutées. En particulier, nous
généralisons un résultat classique de Bestvina, Feighn et Haendel pour les centra-
lisateurs des automorphismes irréductibles du groupe libre, dans le contexte plus
général des automorphismes relativement irréductibles de produits libres. On en
déduit que les centralisateurs des éléments de Out(F3) sont finiment engendrés, ce
qui était auparavant inconnu. Finalement, nous mentionnons qu’un corollaire im-
médiat de la co-compacité est que I’ensemble Min(¢) est toujours quasi-isométrique
a une droite.

1. Introduction

Overview. Automorphisms of free groups play a central role in geomet-
ric group theory. Culler—Vogtmann outer space is one of the main methods
that are currently used for the study of automorphisms of free groups. Irre-
ducible automorphisms have been studied the most, as there are available
many different tools for them (for instance, train tracks representatives [4]).

More recently, Guirardel and Levitt introduced in [20] the notion of a rel-
ative outer space of a group corresponding to a free factor system. These
relative spaces have been used for the study of automorphisms of gen-
eral free products but also for reducible automorphisms of free groups,
as any automorphism is relatively irreducible in the appropriate relative
outer space. Note that many of the classical tools that are available for
irreducible automorphisms are also available in relative outer spaces; for
instance, existence of train track representatives in the general context is
proved in [11].

In this paper, together with our companion paper [14], we study rela-
tively irreducible automorphisms. In particular, we focus on their minimally
displaced set (with respect to the Lipschitz metric) which (by [11]) can be
seen as the set of train track points (and train track properties will be
crucially used in our arguments).
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ON THE ACTION OF ¢ ON Min(¢) 3

Main results of the paper. (See Section 2 for a more complete expla-
nation of our terminology.)

Let G be a group, with a free factor system G. Let Aut(G) be the group
of automorphisms of G which preserve G (up to conjugacy) and Out(G) =
Aut(G)/Inn(G). Denote by [¢] € Out(G) the outer class of ¢ € Aut(G).

We then let O(G) be the relative outer space corresponding to G; that is,
the space of minimal edge-free actions of G on metric trees with stabilisers
giving rise to G, up to equivariant isometry. We denote by O1(G) the co-
volume one subspace of O(G). Both Aut(G) and Out(G) act on O(G) and
01(G) by twisting the action. Inner automorphisms act trivially, hence the
action of ¢ € Aut(G) on O(G) depends only on [¢].

We denote by Min(¢) the set of points in O(G) which are minimally
displaced by ¢, with respect to the Lipschitz metric, and set Min; (¢) =
Mln(¢) N 01(g>

By [11], in the case where [¢] is irreducible, this is exactly the set of
points which support train track maps representing [¢] (this is explained
in more detail in Section 2 and Theorem 2.47).

The main result of this paper is that if [¢] is G-irreducible with expo-
nential growth, then Min; (¢) is co-compact, under the action of the cyclic
group generated by ¢.

We first prove, in Section 7.2, our main result under the extra hypoth-
esis that [¢] is primitive (see Theorem 7.11), i.e. it has a train track rep-
resentative with primitive transition matrix. Then, in Section 7.3 we drop
primitivity condition, proving the following result.

THEOREM (Theorem 7.20). — Let [¢] € Out(G) be G-irreducible and
with A(¢) > 1 (that is, a relatively irreducible automorphism with ex-
ponential growth). Then the action of {¢) on Min;(¢) = Min(¢) N O is
co-compact.

We notice that co-compactness was already known for genuine irreducible
automorphisms of a free group (see [22], for the original proof of Handel
and Mosher, and [15], for a recent elementary proof which was given by the
authors). The main difference between the classical case and our general
case is that the Culler-Vogtmann outer space of a free group has a locally
finite simplicial structure, while our general relative deformation spaces are
not even locally compact.

Remark. — In our companion paper [14], we prove that the minimally
displaced set of an irreducible automorphism of exponential growth is lo-
cally finite. It may seem quite intuitive to the reader that as Min(¢) is
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locally finite, its co-compactness is equivalent to the existence of a funda-
mental domain contained in the union of finitely many simplices.

In fact, our strategy, and the thrust of this paper, is to show that the
action is co-bounded and then deduce co-compactness from the local finite-
ness result. This seems intuitive, but presents some challenges since our
main tool is the Lipschitz metric which is an asymmetric metric and whose
properties can sometimes fail to be well-behaved; for instance, a general
relative outer space is usually a locally infinite space and so is not locally
compact.

For the experts, one important question is — given we already have that
Min(¢) is locally finite — why is this current paper so long? There are a
couple of reasons. The first, and most important, is that the proofs of this
fact for Culler—Vogtmann space divide into two main arguments according
to whether the irreducible automorphism is nongeometric or geometric.
The second case corresponds precisely to the existence of a closed periodic
Nielsen path, and then it is a well-known result of [4] that the corresponding
automorphism is induced from a surface homeomorphism. The arguments
then proceed by appeals to surface theory in the latter case and to other
arguments in the nongeometric case (which are not valid for the geometric
case). A direct ancestor of our result for Culler—Vogtmann space can be
found in [22], where they prove that the axis bundle is co-compact (amongst
other results). As they note:

We shall do this only in the case where ¢ is nongeometric,
meaning that it does not arise from a homeomorphism of a
compact surface with boundary. The geometric case, while
conceptually much simpler and more well understood, has
some peculiarities whose inclusion in our theory would over-
burden an already well-laden paper.

However, in the free product case the appeal to surface theory is more
delicate and less obviously valid. That is, realising a homotopy equivalence
of a graph as a homeomorphism of a surface is a core part of the theory
for free group automorphisms going back to [4], but it is not just that
this analogue is absent in the free product or relative case, there is good
reason to think that it isn’t entirely valid. For instance, any irreducible
automorphism of exponential growth of a free group has a train track rep-
resentative whose transition matrix is primitive. (In [2] it is proved that
any irreducible automorphism has a locally connected Whitehead graph
— see also Section 5. In [8] this is called “weakly clean” and in that paper,
Proposition B.2, it is shown that this implies clean, which means having a

ANNALES DE L’INSTITUT FOURIER
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primitive transition matrix. See also [28, Remark 2.10] for a discussion of
this.)

But this is no longer true for free products, since one can write examples
of train track representative of irreducible automorphisms which are not
fully irreducible (that is, some power is reducible) and whose transition
matrices are not primitive (this cannot happen in the absolute case).

It is possible that one can resolve these issues and introduce surfaces
into the free product situation — using something like the improved rela-
tive train tracks of [3], especially when the underlying group is free, and
the given automorphism is relatively irreducible with respect to a free fac-
tor system — which one can think of as the main case of interest for the
free product theory. Taking that route would simplify our Section 6 a little,
which is a generalisation of similar results in [2] and [7], but we have chosen
not to do that since it seems to us that fully taking into account the sub-
tleties of relative surfaces would add length and complexity in a different
way. We would reiterate here that this process has not formally been done,
and we feel that the subtleties and differences between free groups and free
products require some caution in simply hand-waving through techniques
which may not be entirely valid.

Instead, we actually deal with the geometric and nongeometric cases
(where here the distinction being made is whether or not there is a closed
periodic Nielsen path) at the same time. This is somewhat new, concep-
tually, and seems appropriate for the general free product case. (Also,
Theorem 6.17 seems interesting and important to us, and proving it for
any irreducible automorphism without adding technical conditions seems
worthwhile. One of our goals was to prove [7, Lemma 2.13] but without the
“no twinned subgroups” hypothesis, and in this we were successful.)

The second reason for the length of this current paper is that we do not
pass to powers of the automorphism to make hypotheses and arguments
simpler. For instance, we do not assume that our automorphisms are fully
irreducible. (Proofs in the fully irreducible case are always easier, but the
statements always seem to hold more generally.) This may seem a very
minor difference, and in some situations, for instance in [7] where the goal
is to prove relative hyperbolicity, passing to a power is a tame procedure.
However, for more algebraic applications, like looking at centralisers, pass-
ing to powers is not benign. (Knowing something about the centraliser of
a power does not yield strong information about the original one.) To take
another example: in [5] there is a solution of the conjugacy problem for
Dehn twists and in [26], this is extended to roots of Dehn twists. However,
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one notes that the latter paper is longer than the former because the addi-
tional complexities of looking at roots are considerable. It is probably true
that our arguments can be shortened by passing to suitable powers, but
this would certainly invalidate our application and would definitely be a
weaker result with less scope for further applications.

Ultimately, the argument proceeds as one would expect, but there are
many places where the intuition one would get from the free group situa-
tion would be slightly incorrect. Thus some of our text is expository since
experts familiar with the free group setting would tend to assume that
many things which are true for free groups are also true for free products,
and this is not always the case.

In the process of the proof of our main result, we obtain some new results
that could be of independent interest. For instance, we show that Min(¢)
is quasi-isometric to a line.

COROLLARY (Corollary 7.21). — Let [¢] € Out(G) be G-irreducible and
with A(¢) > 1. Then Min,(¢), equipped with the symmetric Lipschitz
metric, is quasi-isometric to a line.

Remark. — Note that this is also true with respect to the path Euclidean
metric, since the Svarc-Milnor Lemma also applies for that metric.

Moreover, we show that Min(¢) is undistorted in the relative outer space
(Theorem 4.25).

We also show that for any G-irreducible [¢] with exponential growth, any
point of Min(¢) is at uniform distance from Min(¢~1).

THEOREM (Theorem 3.5). — Let [¢] € Out(G) be G-irreducible, with
A(@) > 1. Then there is a D-neighbourhood (with respect to the sym-
metrised stretching factor, see Section 2.5) of Miny (¢)) containing Miny(¢~1).

More precisely, for any L there is a constant D (depending only on [¢]
and L) such that for any volume-1 point, X with Ay(X) < L, there is a
volume-1 point, Y € Min(¢~!) such that A(X,Y)A(Y, X) < D. In particu-
lar, for any X eMin(¢) there is Y €Min(¢~1) such that A(X,Y)A(Y, X)<D.

Another interesting result is the following. For a G-irreducible automor-
phism ¢ with exponential growth, we can define the attracting and repelling
trees (starting from a train track point X'). We prove a discreteness result
for the product of the limit trees.

THEOREM (Theorem 6.17). — Let [¢] € Out(G) be G-irreducible and
with A(¢) > 1 (that is, a relatively irreducible automorphism with expo-
nential growth). Let X € Min(¢) and Y € Min(¢~!), and denote by X 4
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and Y_ ., the corresponding attracting tree and repelling tree for ¢, respec-
tively (Definition 2.63). Then there exists an ¢ > 0 such that for all g € G,
either

e lx, (9)="ty _(9)=0or
e max{lx._(9),0v_.(9)} =€

Applications. As a first application of co-compactness, we get Theo-
rem 8.1, which describes the structure of centralisers of relatively irreducible
automorphisms, in the spirit of the classical result of Bestvina, Feighn and
Handel for irreducible automorphisms of free groups (see [2]).

Also, our results for general deformation spaces have applications to clas-
sical cases. An example is the following fact for centralisers of elements in
Out(F3), which was previously unknown.

THEOREM (Theorem 8.2). — Centralisers of elements in Out(F3) are
finitely generated.

Strategy of the proof of Theorem 7.20. Associated to any G-irredu-
cible automorphism class of exponential growth [¢] we can define the at-
tracting (or stable) tree, X .o, which is the forward limit of some point,
Xioo = limy, %, where X € Min(¢). Note that since X is minimally

displaced, we get that the Lipschitz distance from X to % is also 1.
In fact, the Lipschitz distance from X to X is again, 1, and this same
calculation holds for any minimally displaced point and its forward limit.
Thus any point in Min(¢) is uniformly close to its forward limit.

North-south dynamics then tells us that all points have the same forward
limit, up to positive scaling constants, except for the repelling (or unstable)
tree.

If the action of (¢) on Min;(¢) is not co-compact, we can then find a
sequence of points X,, € Min(¢) whose limit T = lim,,_, X, is very far
(at infinite distance) from both the attracting and repelling trees for ¢.
This leads to the following contradiction:

e T is at finite distance from its forward limit lim,, oo %, since T’
is a limit of minimally displaced points, each of which is uniformly
close to its forward limit;

e T is at infinite distance from its forward limit lim,,_, o %7 since
the latter is cX ;o for some ¢ > 0, by north-south dynamics.

Implementing this argument requires a careful verification that one’s
geometric intuition concerning limits and distance are correct. We do this,
by proving results that we believe are of independent interest along the
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way. In more detail, we start with a G-irreducible automorphism class [¢]
with exponential growth rate A(¢) > 1.

(1)

(2)
(3)

We fix a “basepoint”, X € Min;(¢) and define the attracting tree,
Xioo = lim, %, which exists due to train track properties,
Lemma 2.62.

We argue by contradiction, and suppose that Min; (¢)/{¢) is not
compact.

We thus produce a sequence — justified in Theorem 4.26 — X, €
Min; (¢), such that the distance from X to the ¢-orbit of X,, tends
to infinity. The distance we use here is the Lipschitz distance (where
we can use either the symmetric or non-symmetric ones, since they
are equivalent on the thick part, and any point of Min; (¢) must be
thick).

By replacing each X,, with a suitable element of its ¢-orbit, we can
assume that 1 < A(X,, Xio) < A(¢) and A(X, X,,) is unbounded.
(In fact, Theorem 4.26 has a long list of equivalent statements of
co-compactness that includes this one.)

As PO(G) is compact, we may find constants u,, and a subsequence
of X,, such that lim,, % — T (this is convergence as length func-

tions, and occurs in O(G); in case G is not countable we can use

ultralimits instead of classical limits).

Since T is the limit of points displaced by A\(¢), T itself is displaced

by at most A(¢) under ¢, Lemma 7.5.

We then argue, in Proposition 7.8, that A(T, X;) = 00, which
in particular implies that 7" is not in the same homothety class as

Xico-

Symmetrically, we argue T is not in the same homothety class as

the repelling tree. However, since many aspects of the theory are
not symmetrical, this requires two important ingredients:

(i) Theorem 3.5 shows that there is a uniform distance between
Min; (¢) and Ming(¢~!). That is, one is contained in a Lip-
schitz neighbourhood of the other, and so T is also a limit
of points which are minimally displaced by ¢!, even though
Min; (¢) and Min;(¢~!) are different. (More precisely, T is bi-
Lipschitz equivalent to a limit of such points.)

(ii) Theorem 6.17 shows that if we have a bound on the Lipschitz
distance to the attracting tree, we also get a bound on the
Lipschitz distance to the (in fact, any) repelling tree. Thus T
is also a limit (or bi-Lipschitz equivalent to a limit) of points,

ANNALES DE L’INSTITUT FOURIER
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minimally displaced by ¢!, whose distance to the repelling
tree is bounded.

(iii) This is enough symmetry to conclude — Corollary 7.10 — that
T is not in the same homothety class as the repelling tree.

(9) We then apply north-south dynamics to T (we need to know that
T is not in the same homothety class as the repelling tree for
this to work), which combined with the previous results says that
lim,, % is both at finite distance from 7', and in the same homo-
thety class as X, which is a contradiction. Hence this contradic-
tion implies that Minj(¢)/(¢) is compact.

(10) As north-south dynamics are not available for general irreducible
automorphisms, in Section 7.3 we give an additional argument that
is needed in order to deduce the co-compactness of a general irre-
ducible automorphism, deducing it from the case of primitive irre-
ducible automorphisms, where north-south dynamics are known to
hold.

Some of the results stated here are dependent on others in unexpected
ways. For instance, the equivalent formulations of co-compactness, Theo-
rem 4.26, relies on the fact that Min(¢) is uniformly close to Min(¢~1),
Theorem 3.5.

The organisation of the paper is as follows.

e Section 2 sets up terminology and recalls known results. While this
is largely known to experts, we do have some minor proofs which
appear to be new (Lemmas 2.58 and 2.59).

e Section 3 is a fairly short section showing that the minimally dis-
placed for ¢ is uniformly close to that for ¢!, using results from [12]
and [13].

e Section 4 is devoted to proving the equivalent conditions for co-
compactness, and also contains a discussion of the topologies on
our deformation spaces.

e Section 5 is a short discussion on the north-south dynamics for
primitive irreducible automorphisms. The material here is largely
a verification, in this context, of results that are known in classical
and/or less general cases.

e Section 6 is the most technical section. The goal of this section is
the final “discreteness” Theorem 6.17. The proofs of this section are
not used anywhere else, just the final result.
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e Section 7 pulls everything together to prove co-compactness, first
for the primitive irreducible case and then for the general irreducible
case.

e Section 8 is devoted to applications, showing in particular that cen-
tralisers in Out(F3) are finitely generated.

Acknowledgments

We are grateful to the referee for their careful and thorough feedback
along with many very useful comments.

2. Terminology and preliminaries
2.1. Relative outer space O(G)

Let G be a group which decomposes as a finite free product
G:Gl*"'*Gk*FT

where F. is the free group on r > 0 generators. We impose no restriction
on the G;’s (in particular we do not assume that the G;’s are freely inde-
composable nor non-cyclic, nor finitely generated, nor countable...). Any
such free product decomposition is commonly referred to as a free factor
system of G. More precisely:

Notation 2.1. — A free factor system of G is a pair
g = ({Gl,. .. ,Gk},’l‘)
such that G = Gy % -+ - x G x F,.. We define the rank of G as rank(G) =
k 4+ r. With [G] we denote the set of conjugacy classes of the G;’s, that
is [G] = {[G1]),...,[Gk]}. If G = ({G},...,GL}, m) is another free factor
system, we say that G is bigger than G’ if for any 4 there is j such that G
is a subgroup of some conjugate of G;.

DEFINITION 2.2. — Let G be a group.

e A G-tree is a tree T together with an action of G. If the tree is
simplicial (resp. metric), then the action is supposed to be simplicial
(resp. isometric).

o A G-tree T is called minimal, if it has no proper G-invariant sub-
tree.

ANNALES DE L’INSTITUT FOURIER
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e The action of G on a G-tree is called marking (and a marked tree
is a tree equipped with a G-action).

e IfT is a minimal simplicial metric G-tree, we denote by vol(T') the
co-volume of T', namely the sum of lengths of edges of the quotient
graph G\T (a priori this number could be infinite).

In this paper the G-action on a G-tree will always be a left-action.

DEFINITION 2.3. — Let G = ({Gl, e Gk},r) be a free factor system
of a group G. A simplicial G-tree is called (simplicial) G-tree, if:

e T has trivial edge stabilisers (that is to say, no 1 # g € G pointwise
fixes an edge), and no inversions (that is to say, no g € G maps an
edge to its inverse).

e The non-trivial vertex stabilisers of T are exactly the conjugacy
classes that are contained in [G]. More precisely, for every i there is
a unique vertex v; with stabiliser G;. The vertices with non-trivial
stabiliser will be called non-free vertices; the other vertices will be
called free vertices. We use the notation G,, = Stabg(v;), and we
often refer to factor groups G;’s as vertex groups (since there are
finitely many G;’s and since F,. has finite rank, the volume of G-trees
is a finite number).

DEFINITION 2.4. — Let G = ({Gl7 . Gk},r) be a free factor system
of a group G. The relative outer space of G — denoted by O(G) — is the
set of equivalence classes of minimal, simplicial, metric G-trees, with no
redundant vertices (i.e. any free vertex has valence at least 3), where the
equivalence relation is given by G-equivariant isometries. We denote by
01(G), the co-volume-1 subset of O(G).

There is a natural action of RT on O(G) given by a: T + aT where aT
denotes the same marked tree as T, but with the metric scaled by a > 0.
We denote by PO(G) the projectivised relative outer space (that is, the
quotient of O(G) by the RT-action).

2.2. Simplicial structure of O(G)

Let G = ({Gl,...,Gk},r) be a free factor system of a group G, and
consider X € O(G). The (open) simplex A(X) is the set of points of O(G)
which are obtained from X by just changing the lengths of (orbits of) edges
in such a way that any edge has positive length. Thus A(X) is parame-
terised by the positive cone of R", where n is the number of orbits of edges
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in X. Note that the positive cone of R™ can be naturally identified with an
open n-simplex.

If we work in O;1(G), then A(X) determines a standard open (n — 1)-
simplex A(X); = A(X)NO1(G). We will often omit the subscript “1” and
write just A or A(X) when it is clear from the context in which space we
are working.

Remark 2.5. — The R action plus the parameterisations of A(X) and
A(X);1 by convex subsets of R™, allow us to define Euclidean segments

between pair of points X,Y in the same simplex by the usual formula
tX 4+ (1-1t)Y.

Remark 2.6. — So far we have not mentioned topology, but all of the
topologies we will consider induce the standard Euclidean topology on each
simplex of O1(G).

Simplicial faces of simplices of O(G) do not always live inside O(G), so
the space is not a simplicial complex. Any face of a simplex A = A(X) in
O(G) is induced by collapsing a G-invariant sub-forest of X. Such a collapse
produces a simplicial G-tree Y with trivial edge stabilisers, and there are
two cases: either Y is a G-tree or not (i.e. vertex stabilisers are not in [G]).
In the first case we say that A(Y) is a finitary face, in the second that it is
a face at infinity. We notice that faces at infinity correspond to free factor
systems strictly bigger than G.

Remark 2.7. — Given T € O(G), the quotient graph G\T comes en-
dowed with a structure of graph of groups, and the choice of a marking
of T corresponds to the choice of an isomorphism from G to 71 (G\T)
(where the fundamental group is taken in the sense of graph of groups).
The equivalence relation given by equivariant isometries of G-trees trans-
lates to a notion of equivalence of marked graphs, which is the usual one for
the reader used to Teichmiiller theory or classical Culler—Vogtmann outer
space CV,,.

In this paper we will use only the tree-viewpoint, but in some case graphs
are easier to visualise. For instance, one can easily see with graphs that if
there is at least one G; which is infinite, then the simplicial structure of
O(G) is not locally finite.

Example 2.8. — Consider the simple case G = G1 * Z where G is an
infinite group. The simplex corresponding to a graph of groups formed
by a circle with a unique non-free vertex is a finitary face of infinitely
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Figure 2.1. Graphs corresponding to open simplices.

many simplices corresponding to a graph formed by a circle with a segment
attached, ending with the unique non-free vertex (See Figure 2.1).

This is because for any g € Gy, if Z = (a), then we can define an
isomorphism ¢,: G — G which is the identity on G; and maps a to ga.
It is readily checked that all markings induced by all ¢,’s on the left-side
graph are equivalent, while they are not equivalent on right-side graphs.

2.3. Action of the automorphism groups

Let G = ({Gl, R Gk},r) be a free factor system of a group G.

DEFINITION 2.9. — The group of automorphisms of G that preserve the
set [G] (that is to say, [f(G;)| € [G] for all i) is denoted by Aut(G;G), or
simply Aut(G). We set Out(G) = Out(G; G) = Aut(G;G)/ Inn(G).

There is a natural right action of Aut(G) on O(G), given by twisting the
marking. More specifically, given T' € O(G) and ¢ € Aut(G), we define the
point T'¢ as the same metric tree as T, but the G-action on T'¢ is given by

z— ¢(g)- x,

where - denotes the G-actions on T'. In terms of marked graphs this corre-
sponds to precomposing the marking with ¢.

If « € Inn(G@) and T € O(G), then it is easy to see that there is a
G-equivariant isometry between T'«a and T, i.e. they are equal as objects
of O(G). It follows that Inn(G) acts trivially on O(G). Thus there is an
induced action of Out(G) on O(G). Since the action of ¢ on O(G) depends
only on [¢], we write simply T¢ to denote both actions. Moreover, the
action preserves the co-volume of trees, so we get induced actions on the
co-volume-1 set O1(G).

Remark 2.10. — Since F, has finite rank, we have finitely many topo-
logical types of graphs G\T', as T varies in O(G). As a consequence, there
are finitely many orbits of simplices under the action of Out(G).
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2.4. Translation lengths, thickness, and boundary points

Let G = ({Gl, A Gk},r) be a free factor system of a group G.

For any metric G-tree T' (not necessarily in O(G)) and for any g € G, we
define the translation length of g in 7', which actually depends only on the
conjugacy class [g], by

tr(g) = lr(lg]) = inf{dr(z,gz): z € T}.

It is well-known (see [6]) that the infimum is achieved by some z € T.
We have a dichotomy of elements in G. If ¢p(g) > 0, then g is called
hyperbolic (in T') or T-hyperbolic. In this case, the set of points achieving
the minimum above is a line in T, on which g acts by translations by ¢7(g),
and it is called the axis of g in T. Otherwise, g is called elliptic (in T') or
T-elliptic.

If T € O(G) then elliptic elements are exactly those belonging to some
vertex group, and therefore hyperbolicity of elements does not depend on
the tree T € O(G) but only on [G]. We denote the set of hyperbolic elements
of G by Hyp(G), and we refer to them as G-hyperbolic elements. Other
elements are called G-elliptic.

Let C be the set of conjugacy classes of elements in G. We can define a
map

L: O(G) — RC,
L(T) = (éT(c))cec.

It is proved by Culler and Morgan in [6] that in our context that map is
injective. Moreover, it induces an injective map L: PO(G) — PRC.

DEFINITION 2.11. — The length function topology on O(G) and O1(G)
is that induced by the immersion L: O(G) — RC.

Remark 2.12. — With respect to the length function topology, T,, — T
if and only if for any g € G we have {1, (9) = ¢r(g).

It is easy to check that the length function topology is Hausdorff, and
agrees on each simplex with the Euclidean one. We alert the reader that
the choice of the topology on PO(G) involves some subtlety, that will be
discussed in Section 4.1. So far, the length function topology is the unique
topology we have defined.

DEFINITION 2.13. — We will denote by O(G) the closure of O(G) as a
sub-space of RC, and by PO(G) the closure of PO(G) as a sub-space of PRC.
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It is known that PO(G) is a compact space (see [6] for the classical case
and [24] for the relative one). Moreover, there is a more detailed description

of PO(G) in terms of very small trees as follows.

DEFINITION 2.14. — Let T be a metric G-tree such that every factor G;
fixes a unique point of T'. Then T is called small if arc stabilisers in T' are
either trivial, or cyclic and not contained in any conjugate of some G;. T
is called very small if it is small, non-trivial arc stabilisers in T are closed
under taking roots, and tripod stabilisers in T are trivial.

THEOREM 2.15 (Horbez, [24]). — Let G be a free factor system of a
countable group G, and let O(G) be the corresponding relative outer space.

Then PO(G) is the space of projective length functions of minimal, very
small trees (with respect to the free factor system G ).

Remark 2.16. — In our Arc Stabiliser Lemma 2.58, we prove (for com-

pleteness) that non-trivial arc stabilisers in O(G) are G-hyperbolic, without
assuming the group is countable.

In analogy with Teichmiller space, we can define thick and thin parts of
outer spaces.

DEFINITION 2.17. — For any € > 0 we define the thick part O(G,¢) as
the set of all T € O(G) such that all elements in Hyp(G) have translation
length more than evol(T). Namely, T € O(G,¢) if for all g € Hyp(G) we
have 1(g)/ vol(T') > e. We denote also by O1(G,€) = O1(G) N O(G,¢€), the
thick part of O1(G). We say that € is the level of thickness (or simply the
thickness) of O(G, e€).

Remark 2.18. — It is immediate to see that for any simplex A, the clo-
sure of ANO; (G, €) is compact. Hence, since we have finitely many Out(G)-
orbits of simplices, for any € > 0, the quotient space O1(G,¢€)/ Out(G) is
compact.

2.5. Stretching factors and Lipschitz metrics

Let G = ({Gl, .., Grt, 7“) be a free factor system of a group G. For any
T € O(G) and S € O(G), we define the (right) stretching factor as:

A(T,S)= sup ﬁs(g).
g€Hyp(G) 7(9)
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It is immediate from the definition that A is right-multiplicative and left-
anti-multiplicative:

1
M(T,S)=A(T,\S) = A()\T, S).
The stretching factor is not symmetric, and in general fails to be quasi-
symmetric. However, if it is restricted on any thick part O(G,¢€) of O(G),
it is quasi-symmetric.

THEOREM 2.19 ([33]). — For any € > 0, there exists a constant C =
C(e) such that for all X, Y € O1(G,¢€), we have

AX,Y) < A(Y, X)C.

The stretching factor can be viewed as a multiplicative, non-symmetric,
pseudo-metric. It comes with its left avatar and symmetrised version. All of
them are generically referred to as “Lipschitz metrics” on O(G), and have
been extensively studied, for instance in [9, 10, 11]. We list some of its basic
properties.

THEOREM 2.20 ([11]). — Let G = ({G1,...,Gi},r) be a free factor
system of a group G, and let O(G) be its outer space. Then:

(1) A is an asymmetric multiplicative pseudo-metric on O(G), which
restricts to an asymmetric multiplicative metric on O1(G):
o forallT € OG), A(T.T) =1;
o forT,S5,Q € O(G), AMT,S) < AT,Q)A(Q, S);
o forT,S € O1(G), we have A(T,S) > 1, and A(T,S) =1 if and
only if T =8S.
(2) For every T € O(G) and S € O(G), there is a G-hyperbolic ele-
ment go so that A(T,S) = ﬁigggg,
(3) Out(G) acts by A-isometries on O(G).
(4) The symmetrised stretching factor D(S,T) = A(S,T)A(T, S) satis-
fies the following: for all T, S € O(G),
e D(T,S) > 1, and D(T,S) =1 if and only if there is A > 0 such
that T = \S;
e D(T,S8)=D(S,T);
o for any Q € O(G), D(T,S) < D(T,Q)D(Q, S).
In particular the function log D is a pseudo-metric on O(G) that
restricts to a genuine metric on O1(G).

Any of these metrics induces a topology on O(G), O1(G), and on P(O(G))
as a quotient of O(G), whose relation with length function topology will

ANNALES DE L’INSTITUT FOURIER



ON THE ACTION OF ¢ ON Min(¢) 17

be discussed in Section 4.1. It is however readily checked that all such
topologies induce the Euclidean one on each simplex of O;(G).

2.6. Optimal maps and gate structures

Let G = ({Gl, A Gk},r) be a free factor system of a group G.

DEFINITION 2.21. — Let X € O(G),Y € O(G). A Lipschitz continuous
and G-equivariant map f: X — Y is called an O-map. Lip(f) denotes the
best Lipschitz constant for f.

The name “Lipschitz metric” when referring to stretching factor is moti-
vated by the fact that A(X,Y") can be viewed as the best Lipschitz constant
of equivariant maps from X to Y.

THEOREM 2.22 ([11, 12]). — For any X,Y € O(G) we have
AXY) = inf Lip(f)

where f runs over the set of O-maps from X to Y. Moreover there is at
least an O-map f: X — Y realising the stretching factor, that is, such that
A(X,Y) = Lip(f).

DEFINITION 2.23. — Let X € O(G),Y € O(G). An O-map f: X - Y
is called straight if it is linear on edges, i.e. for any edge e of X, there is
non-negative number A.(f) so that the edge e is uniformly stretched by
Ae(f). Given a straight map, the tension graph of f is the set of maximally
stretched edges:

Xmax(f) = {edges e : Ac(f) = Lip(f)}.

DEFINITION 2.24. — Let X € O(G), and let v be a vertex of X. A turn
of X at v is the G,-orbit of an unoriented pair of edges based at v.

DEFINITION 2.25. — A gate structure on a simplicial metric tree X is
an equivalence relation on germs of edges at vertices of X. If X € O(G), the
gate structure is required to be G-invariant. Equivalence classes are called
gates. Given a gate structure ~, a turn on X is legal if its germs are not
in the same gate. A path in X is legal if it crosses only legal turns. (Note
that legality does depend on the chosen gate structure.)

Straight maps naturally induce gate structures.
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DEFINITION 2.26. — Given a straight map f: X — Y, the gate struc-
ture ~y is defined by declaring equivalent two germs of X that have the
same non-collapsed image under f. A turn (or a path) is called f-legal if it
is legal with respect ~ .

In case X =Y there is also a different natural gate structure, that takes
in account iterates, and that will be discussed in Section 2.7.

DEFINITION 2.27. — Let X € O(G),Y € O(G). A straight map is called
optimal if A(X,Y) = Lip(f) and the tension graph is at least two-gated
at every vertex (with respect to ~y). Moreover, an optimal map is called
minimal if its tension graph consists of the union of axes of maximally
stretched elements it contains.

Remark 2.28. — For all X € O(G) and Y € O(G), there is always an
optimal map f: X — Y (and it is usually not unique). Moreover, there
is always a minimal optimal map f: X — Y. In [11, 12] these facts are
proved for Y € O(G), but the proofs clearly work without any change for
trees in O(G), as all technicalities take place on X.

2.7. Train tracks

Let G = ({Gl, R Gk},r) be a free factor system of a group G.

We have already seen that straight maps f: X — Y induce a natural
gate structure ~y on X. In case X =Y, we consider also a second natural
gate structure, namely:

e ~;: two germs of X are ~g-equivalent, if they have the same non-
collapsed image under f;

o (~yi): two germs of X are (~y:) if there is some i, so that they
have the same non-collapsed image under f*.

Train tracks maps were introduced in [4]. The terminology we use here
may sound different, but it is in fact equivalent. (See [11, 12]).

DEFINITION 2.29. — Given a gate structure ~ on a metric simplicial
tree X, a train track map f: X — X with respect to ~ is a straight map
such that:

(1) f sends edges to ~-legal paths;
(2) if f(v) is a vertex, then f maps ~-inequivalent germs at v to
~-inequivalent germs at v.
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It turns out (see [11, Section 8]) that if f is train track for some gate
structure ~, then in fact the relation ~ is stronger than (i.e. it contains)
(~yi). In fact, if f is ~-train track, then f is (~:)-train track. (Also, since
~ is always weaker than (~:), if f is ~y-train track then ~;= (~yi).) In
what follows, we generically refer to a train track map as a map f which
is train track with respect to (~i).

DEFINITION 2.30. — Let ¢ € Aut(G) and X € O(G). A topological
representative of ¢ at X is just an O-map f: X — X¢. In other words,
a map f: X — X such that f(gx) = ¢(g)x. A topological representa-
tive of [¢] € Out(G) is a topological representative of some ¢ € [¢]. A
(simplicial) V) train track representative of @] is a (simplicial) topological
representative f which is train track with respect to (~:). Points admit-
ting (simplicial) train track representatives of [¢] are called (simplicial)
train track points of ¢.

Remark 2.31. — Train track representatives are always optimal maps
(see [11, 12]), and their Lipschitz constant, if bigger than one, is the expo-
nential growth rate of the represented automorphism.

In the case where [¢)] is irreducible, the tension graph of any train track
representative (which always exists by Theorem 2.47) is the whole graph.

Remark 2.32. — Tt is well-known (see for instance [11]) that if X is a
train track point of ¢, then there is a simplicial train track point Y of ¢
such that either Y € A(X) or, at worse, A(Y) is a simplicial face of A(X).
In particular, given a train track point X of ¢, there is a simplicial train
track point Y of ¢ which is in (uniformly) bounded distance from X.

2.8. Bounded cancellation, critical constant, Nielsen paths

For any tree T and a,b € T, we will denote by [a, b] the unique directed
reduced (i.e. without backtracks) path in T from a to b. For a path p in T,
we denote by [p] the reduced path with the same endpoints as p. In other
words, [p] is “p pulled tight”. For any reduced path 8 = [a,b] in T, we
denote by Ir(8) its length.

DEFINITION 2.33 (Bounded Cancellation Constant). — Given two trees
T,S and a continuous map f: T — S, the bounded cancellation constant of
f, denoted by BCC(f), is defined as the supremum of all real numbers B

M1e. mapping vertices to vertices and edges to edgepaths.
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with the property that there exist a,b,c € T with ¢ € [a,b], such that
dS(f(C)> [f(a)uf(b)}) = B.

In other words, BCC(f) is the best number such that for any a,b € T
and ¢ € [a,b], the point f(c) belongs to the BCC(f)-neighbourhood of

[/ (a), f®)] = [f([aB])].

LEMMA 2.34 (Bounded Cancellation Lemma [23, Proposition 4.12] and
[17, Proposition 9.6]). — Let G = ({Gl, N E N r) be a free factor system
of a group G. Let T € O(G), and S € O(G). Let f: T — S be an O-map.
Then BCC(f) < Lip(f) vol(T). Moreover, if S € O(G) we get the sharper
inequality BCC(f) < Lip(f) vol(T") — vol(S5).

COROLLARY 2.35. — Let G = ({Gl, oo Gl T) be a free factor system
of a group G. Let T € O(G), and S € O(G). Let f: T — S be a straight
map, and suppose that there is y > 0 such that A\.(f) > p for any edge e. If
g € G is such that its axis in T can be written as a g-periodic concatenation
of at most ¢ f-legal pieces (as, for instance, edges), then for any B >

BCC(f) we have
ls(g) = plr(g) — cB.
In particular we can take B = A(T, S) vol(T).

Proof. — This is an immediate application of Bounded Cancellation
Lemma 2.34. g

DEFINITION 2.36 (Critical constant). — Given two metric trees T, S

and an expanding Lipschitz map f: T — S (i.e. with Lip(f) > 1), the
2BCC(f)
Lip(f)—-1-

critical constant of f is defined as cc(f) =

LEMMA 2.37. — For any metric tree T' and any expanding train track
map f: T — T, we have cc(f™) < ce(f).

Proof. — It is immediate to check by induction that BCC(f"*1) <

BCC(f)(X1, Lip(f)*), whence Lii%fzjl_)l < LEi;IEj(%Ji)l' The claim follows

because, since f is a train track map, we have Lip(f"*!) = Lip(f)"*. O

LEMMA 2.38. — Let f: T — T be a train track map defined on a metric
tree T, with Lip(f) = A > 1. Let v be a path in T, containing a legal
subpath p, with lr(p) > cc(f). Then for all n > 0:

(i) [f™(v)] contains a legal subpath of length at least I (p);
(i) [f™(v)] contains a legal subpath of length at least A™ (I7(p) —cc(f)).

In particular if p is longer than cc(f) + 1, then Ip(f™ (7)) > A™.
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Proof. — Since p is legal, the length of the surviving part of f(p) in
[ I (’y)], after cancellations, is at least

Al (p) —2BCC(f) = N7 (p) —cc(f)(A—1) > Alr(p) —lr(p)(A—1) = Ir(p).

Thus we can iterate, and we get

n—1
Il ([f*()]) > Air(p) = > A2BCC(f)
=0
— Nlp(p) — 2300A -1
= N"lr(p) — cc(f )A" + CC(f)
> A" (I7(p) — ce(f)). O

DEFINITION 2.39. — Let G = ({G1,...,Gi},7) be a free factor system
of a group G. Let X € O(G) and f: X — X be a G-equivariant simplicial
map. A (non-trivial) simplicial path p in X is called:

(1) Nielsen path (Np) if [f(p)} = gp for some g € G;

(2) periodic Nielsen path (pNp) if [f”(p)} = gp for some n > 0;

(3) pre-periodic Nielsen path (ppNp) if [f"'*‘m(p)] = gf™(p) for some
g € G and integers n,m > 0; we say that the periodic behaviour
of a ppNp starts before ng iterates if in the above formula we have
n < nop;

(4) trivial if [p] is a point, and pre-trivial if [f"(p)] is trivial for some
positive integer n.

2.9. Candidates

Let G = ({Gl, .. .,Gk},r) be a free factor system of a group G. As we
have seen (Theorem 2.20) the stretching factor between two trees is realised
by some hyperbolic group element. In fact, more is true.

THEOREM 2.40 ([11, Theorem 9.10] and [12, Lemma 7.1]). — For every
T € O(G), there is a set of hyperbolic elements Cand(T), called candidates,
such that for every S € O(G) the stretching factor A(T, S) is realised on a
candidate, that is

s(g)

max .
g€Cand(T) ET(Q)

Moreover, the possible projections of candidates to the graph T' = G\T
are finitely many. Specifically, the projection of the translation axis of any
candidate has one of the following forms (possibly containing both free and
non-free vertices):

AT, S) =
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a simple loop (an embedded ());

e a figure eight, i.e. two simple loops that intersect on a point (an
embedded < );

e a non-degenerate bar-bell, i.e. a path formed by two separated sim-
ple loops, joined by and embedded arc (an embedded O—());

e a simply degenerate bar-bell, i.e. a path formed by a simple loop
with attached an embedded arc ending to a non-free vertex (an
embedded (O)—e);

e a doubly degenerate bar-bell, i.e. an embedded arc whose endpoints

are non-free vertices (an embedded e—e);

We will need also the following lemma.

LEMMA 2.41 ([23, Theorem 4.7], see also [14, Lemma 2.18]). — For
every T € O(G), we can extract a finite set from H C Cand(T'), so that for

every S € O(G),

AT, S) = rgneaé( ﬁig;

Moreover H does depend only on the simplex that T belongs to, and not
to the particular metric of T'.

COROLLARY 2.42. — The stretching factor function

A: O(G) x O(G) — RT
is continuous on the second variable and lower semi-continuous on the first
one, with respect to length function topology.

Proof. — We start from lower semi-continuity on the first variable, which
does not require Lemma 2.41. Let T € O(G), X,, € O(G), with X,, —» X €
0(G).

liminf A(X,,,T) = liminf max fr(9)
n—o0 n—oo geHyp(G) Lx,, (9)
r(g)

> max liminf
geHyp(g) n—oe fx, (9)
)

B . Ar(g
= max lim
g€Hyp(g) n—oo Lx, (9)
{1(g)
max
geHyp(6) {x(g)
=AX,T).

Now we prove the continuity on the second variable. Let T' € O(G), T,, €
O(G), with T,, — T, € O(G). We will show that A(T,T;,) = A(T, Tw). Let
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denote by H the finite set of candidates of T that we get from Lemma 2.41.
Then the following equalities hold (as H is finite):

lim A(T,T,) = lim maXM
n— 00 n—oo geH ET(Q)

= max lim lr. (g
geH n—oo Lr(g)

_ r,.(9)
= max

geH ET(g)
= AT, Tx).

~—

O

It is easy to construct examples where continuity on first variable fails.
Example 2.43. — Consider graphs as in Example 2.8 (Figure 2.1), with
edge-lengths as follows. On the left side of Figure 2.1, the unique edge has
length 1. On the right side, all edges have length 1/3. Then, any infinite
sequence X,, of right-side graphs converges to the left-side graph X; this
is to say that for any ¢g € G, lim,,~ fx,(g9) = ¢x(g). In fact for any g,
lx, (g9) = £x(g) for all but finitely many n. However, for every n we have
A(X,, X) =3# 1= A(X,X). Also, this example shows that the volume

function in general is not continuous with respect to the length function
topology, as vol(X,,) = 2/3 while vol(lim,, X,,) = vol(X) = 1.

2.10. Displacement function and Min-Set

Let G = ({Gl, cee Gk},'r) be a free factor system of a group G. For any
¢ € Aut(C, G) we define the displacement function with respect to O(G) as

Ao O(G) — R
As(X) = A(X, X0).
We define also the minimal ¢-displacement of a simplex A of O(G) as
Ao(A) = inf{Ag(X): X € A}
and the minimal displacement of ¢ as
A¢) =inf{As(X): X € O(G)}.
The set of minimally displaced points in O(G) or Min-Set, is defined as
Min(9) = {X € 0(G) : Ms(X) = &)}
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Finally, the set of minimally displaced points with co-volume one is
Miny (6) = {X € 01(G) : As(X) = A(9) }.

We remark that the displacement actually depends only on [¢] € Out(G).
We also remark that in case [¢] is reducible (see Section 2.11) the Min-Set
has to be defined in the simplicial bordification of O(G), but we omit this
point of view here because in this paper we are interested in irreducible
automorphisms. We just say here that in the irreducible case, the Min-Set
is always connected, and coincides with the set of points admitting train
track representatives. We refer the interested reader to [11, 12, 13] for a
detailed discussion on such properties.

2.11. Irreducible automorphisms

Let G = ({Gl, cee Gk},r) be a free factor system of a group G.

DEFINITION 2.44. — An element [¢] € Out(G) is called G-reducible
(or simply reducible), if some i € [¢] admits a topological representa-
tive f: T — Ty, T € O(G), having a proper G-invariant, f-invariant
sub-forest S which contains the axis of some G-hyperbolic element. [¢]
is G-irreducible (or simply irreducible) if it is not reducible.

Remark 2.45. — We can define irreducibility in terms of free factor sys-
tems. An automorphism class [¢] is G-irreducible if G is a maximal ¢-
invariant free factor system (for more details, see [11]). Another viewpoint
of the same fact is that [¢] is reducible if and only if there is some point X
in some face at infinity of some simplex so that Ag(X) < oco.

Remark 2.46. — Let G be a finitely generated group, and let [¢] €
Out(G). First we note that if G is the Grushko decomposition of G, then
[¢] € Out(G). Next, we observe that there always exists a free product de-
composition G’ of G such that [¢] is irreducible as an element of Out(G’).
Note that in general G’ is not unique. In fact, there are examples where
there are infinitely many different spaces for which [¢] is irreducible. An
example is the identity outer automorphism.

We summarise below some well-known properties of irreducible automor-
phisms.

THEOREM 2.47 ([11, 12]). — Let [¢] € Out(G) be irreducible. Then:

(1) it admits a train track representative f: T — T¢ (see [11, Lem-
ma 8.17, Theorem 8.18]);
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(2) the set of train track points of ¢ coincides with the set Min(¢) of
minimally displaced points (see [11, Theorem 8.19]);

(3) there is an € > 0 (that depends only rank(G) and on \(¢)) for which
Min; (¢) is contained in the e-thick part O1(G,¢€) (see [11, proof of
Theorem 8.4] and [12, Propositions 5.5 and 5.6]).

The third item of Theorem 2.47 combined with Theorem 2.19, implies
the following.

COROLLARY 2.48. — Let [¢] € Out(G) be irreducible. Then there exists
some constant C = C(¢), for which for all X,Y € Min;(¢) we have

AX,Y) <A, X)C.
The next theorem is key for our present paper.

THEOREM 2.49 ([14]). — Let [¢] € Out(G) be irreducible and with
M@) > 1. Then the simplicial structure of Min(¢) (as a subset of O(G))
is locally finite. In particular, the set Min;(¢) = Oy N Min(¢) is a locally
finite simplicial complex.

2.12. Primitive automorphisms

Let G = ({G1,...,Gx},7) be a free factor system of a group G.

For any T € O(G) and any simplicial O-map f: T'— T, we can define the
transition matrix My of f as follows. We label orbits of edges eq,..., e,
and define the (i, j) coefficient of M as the number of times that f(e;)
crosses the orbit of e; (in either direction).

A matrix is called non-negative if all its entries are non-negative. A non-
negative matrix is called irreducible if for any (¢,j) it has a power for
which the (4, j) entry is positive, and it is called primitive if it has a power
so that all entries are positive.(?) Clearly primitive implies irreducible. It
is immediate to check that [¢] € Out(G) is G-irreducible if and only if any
simplicial map representing [¢] has irreducible transition matrix.

DEFINITION 2.50 (Primitive automorphism). — An automorphism
which can be represented somewhere in O(G) by a simplicial train track
map having primitive transition matrix is called G-primitive (or simply
primitive).

(2) We notice that in [3] the authors use the terminology aperiodic for primitive.
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We recall that a train track representative does not need to be simplicial
and in that case, the transition matrix is not even defined. However, as we
have seen before, there are always simplicial train track representatives for
irreducible automorphisms.

LEMMA 2.51. — Suppose [¢p] € Out(G) is G-primitive. Then for any
T € OG), if f: T — T is any simplicial train track representative of [¢],
then the transition matrix of f is primitive.

Proof. — This is well-known in the free case and the proof is exactly the
same in the general case (see [3, Lemma 3.1.14] for the proof). O

Remark 2.52. — Note that a G-primitive [¢] has always exponential
growth, i.e. A(¢) > 1. Note also that for primitive automorphisms the
condition on the transition matrix is only required for train track repre-
sentatives. In particular, a priori it may happen that [¢] is primitive and
reducible. We use G-primitive irreducible (or simply primitive irreducible)
to refer to those [¢] that are both G-primitive and G-irreducible.

We note that in the absolute case (when G is trivial) that irreducibility
and expanding implies primitivity. However this is not true for general free
factor systems G.

2.13. Arc stabiliser lemma

Let G = ({Gl, cee Gk},r) be a free factor system of a group G. In this
section we first describe points in O(G) in terms of a chosen base point,
and then prove a lemma about fixed points of elliptic elements of boundary
points, that will be used in last step of the proof of Theorem 7.20.

The standing assumption in this subsection is that any T € @ is the
limit point of a sequence of points in O(G). This is only certain when G is
countable. The issue is that PO(G) is compact but, a priori, may not be
sequentially compact and is a subspace of a Cartesian product, which is
exactly the type of topological space which can be compact without being
sequentially compact.

However, the results and proofs in this section remain true for any G,
regardless of countability, by replacing sequences with nets (in particular,
Lemmas 2.58 and 2.59 are true in general). In order to help the reader, we

give the version of this argument for sequences and explain in Remark 2.61

how to extend it to the general case (see also [24] for the countable case).
Moreover, we only use Lemmas 2.58 and 2.59 in the case where the tree T'

is in fact the limit point of a sequence (Lemma 2.62 and Theorem 7.11).
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Let X € O(G) be a fixed reference point. Let T € O and let Y,, € O(G)
be a sequence that converges projectively to 7', i.e. there is a sequence of
positive numbers p,, > 0 so that:

Y,
lim 2 =T
n—oo ’[,Ln

(with respect to the length function topology). Let f,,: X — Y,, be optimal
maps. We define

dYn (fn(x)a fn(y)) )

dp: X x X — R, where d,(z,y) =
[in

As Yo converges to T, by Corollary 2.42 we get that the sequence

fin
converges to A(X,T). In particular, this implies that %

A(X,Yn)
Hn

is a bounded
sequence and hence, since Lip(f,) = A(X,Y,), we have

A(X, Y")dx(:c,y) < Sup{ AX,Y,)

n n n

0 <dp(z,y) <

}dx(xay)

At this point we would like to take a limit of the d,,, but boundedness is not
enough to guarantee a pointwise converging subsequence. The easiest way
to do this is to take an ultralimit (or w-limit) (see [16], for the definitions
and the properties of ultralimits and ultrafilters). We briefly recap here.

DEFINITION 2.53. — A non-principal ultrafilter on N is a function from
the power set of N, w: P(N) — {0,1}, such that:
e w() =0, wN)=1;
e w(AUB) = w(A)4w(B) (i.e. w is additive on disjoint subsets of N);
e w is zero on any finite subset of N.

Remark 2.54. — For the reader unfamiliar with this point of view, the
second point above is crucial, and we emphasise that w can only take values
0 and 1, so the additivity on disjoint subsets is a strong restriction. Infor-
mally, we think of the subsets A with w(4) = 1 as “big” and the others
small. It is then straightforward to see that there do not exist two disjoint
subsets that are both big, and that the intersection of any two big subsets
is again big.

Limits are then defined as follows.

DEFINITION 2.55. — Let w be a non-principal ultrafilter on N. For any
sequence (a,)nen of real numbers, we say that | € R is the w-limit of ay,
— and we write lim,, a,, = [ — if for every € > 0, the set N, = {n eN :
la, — 1| < e} satisfies w(N;) = 1.
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We then get the following facts whose proofs are left to the reader.

PROPOSITION 2.56. — Let w be a non-principal ultrafilter on N. Let a.,
and b,, be sequences of real numbers.
If lim,, a,, = [ then lim,, a,, = (.
If lim,, a,, exists, it is unique (it may depend on w).
If a,, is bounded, then lim, a,, exists.
The usual algebra of limits is valid for ultralimits: lim,,(a, £ b,) =
(limy, ay,) % (limy, by,), lim,, ay, - by, = (limy, ay,) - (limy, by,).
If a, > b, then lim, a, > limb,.
e Ultralimits commute with finite max and min: lim,, (max{an, bn}) =

maX{limw an,limg, b, } .

To proceed, we apply this in our situation. We let w be a non-principal
ultrafilter on N and define:

dt(z,y) = limd,(z,y).

It is clear that this is an equivariant pseudo-metric on X, and we can
study the associated quotient space XT. Here, elements of X+ are “balls
of radius 0”. That is, elements of X are equivalence classes [z] = {y €
X : d"(z,y) = 0}. (It may be worth to note here that X is not a priori
uniquely determined, as it depends on the chosen ultrafilter).

LEMMA 2.57. — Let w be a non-principal ultrafilter on N. For all x,y€ X
let d*(z,y) = lim,, d,,(z,y) and let X+ := (ﬁ, d™) be the correspond-
ing quotient space. Then:

(i) the quotient map X — X is Lipschitz continuous and equivariant;
(i) (X*,d") is an R-tree with an isometric G-action, g[z] = [gz];
(iii) X and T admit the same length function; £x+ = {r; in particular,
X is non-trivial and its minimal invariant subtree is equivariantly
isometric to T'.

Proof. — For any z,y € X, we have

AX)Y,
dn(sc,y)< ( ) n)dX(mvy)
Hn

It follows that d* ([z],[y]) < Kdx(,y), where K = A(X,T) (by Corol-
lary 2.42). Thus the quotient map X — X+ is K-Lipschitz, and equivari-

ance is straightforward.
One can then see that X+ = ((13(7:0) is a path connected 0-hyperbolic

metric space, hence an R-tree equipped with an isometric G-action.
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It remains to show that ¢x+ = ¢p. For any tree Z, it is known that

lz(g) = max{(),dz(p, g*p) — dz(p, gp)} for any p € Z (see [6], for more
details). Let € X, g € G. Then

lx+(g) = max{0,d" (z, g*z) — d* (2, g2)}
= maX{O, li(gn(dn(:c, g*x) — dy(z, gac))}

dYn, (fn(z)vfn(QQI))_dYn (fn(m)vf'n (gz)) }

= max { 0, lim
W Bn

— max{o’ hm dY-,L (fn(1)792fn(w))—dyn (fn($)7gfn(1)) }

tn

— hm lYn (g)
w Hn

= lim ly, (9)
n Hn

=Lr(g). O

LEMMA 2.58 (Arc Stabiliser Lemma). — Let T € O(G). If 1 # g € G
is G-elliptic, then g fixes a unique a point of T'. In particular no G-elliptic,
non-trivial element, point-wise fixes a non-trivial arc in T.

Proof. — As above, X is our reference point. We let Y,, € O(G) and
in > 0 be such that l}:—" — T, and build Xt as a w-limit of metrics d,,
on X. Since the minimal invariant subtree of X T is equivariantly isometric
to T, it is sufficient to prove the theorem for arc stabilisers in X .

Since edge stabilisers are trivial in O(G), ¢ fixes a unique point p in X,
and a unique point p,, in each Y,,. Thus
(2.1) VweX, dx(w,gw)=2dx(w,p)

(2.2) VweY,, dy, (w,gw)=_2dy, (w,py).

We claim that [p] is the unique point of X fixed by g. Let’s suppose
that [u] € X is fixed by g. Thus d* (u, gu) = 0.

By equivariance of the maps f,, we get that f,,(p) = pn. Then, by (2.2)

2dn (u, p) = 2dy, (fn(u),Pn)/tin
= dYn (fn(u)v gfn(u))/un
= dyp(u, gu)
— wdt(u, gu) = 0.
As a consequence, d¥(u,p) = 0 and so [u] = [p] in XT. O

LEMMA 2.59. — Let T € O(G). Let H < G be T-elliptic. Suppose that
H contains a G-elliptic subgroup A # 1. Then Fixy(H) = Fixr(A) = {v},
where v is a point of T .
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Proof. — Let 1 # a € A. The group element «a fixes a unique point of T,
by Lemma 2.58. Given any h € H, the subgroup (a,h) fixes a point v of
T (by a well-known result of Serre, see [31]). Therefore, Fixr((a,h)) =
Fixz ((a)) = {v}, for all h € H, and hence Fixy(H) = {v}. O

Remark 2.60. — Note that here we are calling a subgroup elliptic if the
restriction of the length function is zero on the subgroup. This is weaker
than the definition — often used — that the subgroup fixes a point in the
tree, although they coincide for finitely generated subgroups.

Remark 2.61. — In order to prove Lemma 2.58 when G is not countable,
we argue via nets. The reason this is necessary is that we cannot guarantee
that every point in @ is the limit point of a sequence. We only really
use it when T is the limit point of a sequence. However, it is true in general
with substantially the same proof via nets.

Concretely, one takes the directed set Fing of all finite subsets of G
ordered by inclusion. A net is then a function from Fing to our space and
takes the place of sequences. One striking aspect of working with W is
that we can use this set Fing as the universal indexing set. This is due to
the fact that O(G) is a subset of a Cartesian product whose indexing set
is G, and so basic open subsets are described by finite subsets of G along
with open subsets of R in the corresponding coordinates.

For this reason, a net for us will always be a function from Fing to our
space; either W, or the composition of such a function with one of the
projection maps, resulting in a function from Fing to R.

A tail of Fing, is a subset Tailp = {E € Fing : F C E} for some
F € Fing. A net to R, x: Fing — R then has limit [ if every open set
around [ contains the image of a tail. Concretely this means that for every
e > 0, there exists an F € Fing so that [z(E) — | < ¢ for every F C E €
Fing. In this case we write z(-) — [. It is important to note here that
the intersection of finitely many tails is again a tail; this is used repeatedly
throughout.

Similarly, a net Y': Fing — O(G) has a limit 7T if by (.y(g) — Lr(g) for all
g € G. This is equivalent to saying that every open set in O(G) containing T'
contains the image of a tail.

One can now see that every T € O(G) is the limit of a net of points
— indexed by Fing — in O(G). For instance, one can do the following: for

every F' € Fing, consider the basic open sets

Bp(T)={S€0(G) : |ts(g) —tr(g)| < 1/n},
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where n = |F|4 1. For each F, choose any Yr € Bp(T)NO(G). Notice that
if F C E, then Bg(T) C Bp(T). Since any open set containing 7' contains
some Bp(T), we immediately see that Yp — T.

We then introduce a ultrafilter w on Fing which, as above, is a function
w: P(Fing) — {0,1}. However, the condition we require this time is that
w is 1 on every tail — being zero on finite sets is not quite enough. Instead
we require that w(Tailp) = 1 for every Tailg.

Concretely, the tails of Fing are intersection-closed and so form a filter-
base. The set of supersets of tails then forms a filter, and we choose any
maximal filter w containing that filter; this will be an ultrafilter with the
properties we require. This can be achieved via Zorn’s Lemma.

One then defines w limits as above, putting lim,, 2:(-) = [ if we have for
every ¢ > 0, w({F € Fing : |zp — 1] < e}) = 1. As before, z(-) — [
implies that lim,, (- ) = [ and every bounded sequence of reals has a unique
w limit (depending on w). The rest proceeds in the same way.

2.14. Limit trees for irreducible automorphisms

Let G = ({G1,...,Gy},7) be a free factor system of a group G. The
theory of attracting and repelling trees of a fully irreducible automorphism
is well studied in the free case. We will see in north-south dynamics Theo-
rem 5.2, that such trees exist and they are the unique fixed points, in O(G),
of a primitive irreducible automorphism.

In this section we recall the construction of the attracting tree for any
irreducible automorphism with exponential growth (not necessarily primi-
tive), starting from minimally displaced points. In fact, the only property
of irreducibility that is used here is the existence of train track representa-
tives (Theorem 2.47). We prove also some useful properties which can be
proved using just the train track properties. Note that the repelling tree
of ¢ will be just the attracting tree of ¢—!, so we will focus here only on
the attracting tree.

LEMMA 2.62 (Attracting tree). — Let [¢] € Out(G) be such that there
exists X € Out(G) supporting a train track map f: X — X represent-
ing [¢], with Lip(f) = A > 1 (for example if [¢] is G-irreducible with
exponential growth, and X € Min(¢)). Then the following limit exists:

. Xo"
X_‘_oo:h’rlln 7 .
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That is to say, for any g € G the following limit exists:

b, (g) = tim X0,

Proof. — As in the construction of X in Section 2.13, we take: d*(z,y)=
lim,, W, and X o = %. Train track properties ensure con-

vergence on the nose, without use of an ultralimit. O

DEFINITION 2.63. — Let [¢] € Out(G) be G-irreducible with exponen-
tial growth, and let X € Min(¢). We define the attracting tree or stable
tree of ¢ (with respect to X ), as:

X"
X i = lim ——.
oo = e M)
Similarly, we define the repelling tree or unstable tree of ¢, with respect to
Y € Min(¢71), as Yoo = limy 400 YO /A7),

For any X € Min(¢), the following facts are straightforward:

e VY € O(G), A(Y, Xioo) = AY ¢, X1 00) (as ¢ acts by isometries);

o X0 =A¢)X oo (easy application of train track properties);

o A(X, X o) =1 (by continuity of A on the second variable, Corol-
lary 2.42).

PROPOSITION 2.64 (Stable map). — Let [¢] € Out(G) be G-irreducible,
of exponential growth rate A = A\(¢) > 1. Let X, Y € Min(¢) and let X o
be the attracting tree with respect to X. Let ¢: Y — Y be a train track
representative of [¢]. Then there is a minimal optimal map fy fromY to
X400, called the stable map, with the following properties:

e any fy-legal periodic line v in the tension graph of fy is yp-legal,
and @(v) is again fy-legal;

e the tension graph of fy isY;

e if e is an edge of Y then for any positive integer n, any subpath of

©"(e) is fy-legal.

Proof. — There is a minimal optimal map fy : ¥ — X, (Remark 2.28).
In particular, Lip(fy) = A(Y, X1 ). Moreover, since the tension graph of
optimal maps is everywhere at least two-gated, there is some g € Hyp(G)
whose axis is fy-legal and contained in the tension graph of fy.

Let ¢ € G be one of such G-hyperbolic element. Then fx . _(g9) =
A(Y, X4o0)ly (9). On the other hand, since Y € Min(¢), we have £y (¢(g))<
My (g), with equality precisely when g is ¢-legal. Combining these facts,
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we have:
Liygy(g) < My (g),
Uix,0)(9) = Mx, . (9),
lx,..(9)
N =AY, X1 ),
ZY(Q) ( + )
lxin)(9)
> SAY ¢, Xind
Livg)(9) ( +oo?)
Hence,
Ix,..(9)
a9
My (g)
< lxiee)(9)
Liygy(9)
SAY ¢, Xod)
= A(Y, Xioo),

whence we have equality throughout, and in particular £y (¢(g)) = Ay (g).
Hence fy-legal axes in the tension graph of fy are also p-legal. Now, since
the axis v of g is ¢-legal, and ¢ is train track, ¢™(y) remains ¢-legal, and
we have

_ €X+oo(g) _ AnéXJrOO(Q) _ €X+oo (¢n(g))
MY Xeo) = 00 = Nl (e) by (07(9))

whence the inequality is an equality and the axis of ¢™(g) — which is ¢™ ()
because of p-legality — is fy-legal and in the tension graph of fy . To prove
that the tension graph of fy is the whole of Y, observe that (J,, " (7) is
clearly ¢-invariant, so it must be the whole Y.

g A(Y7 X+Oo)a

The last claim now follows from the previous ones, as every edge can
be extended to an fy-legal periodic line, which is p-legal and all of whose
iterates under ¢ are both fy-and ¢-legal. O

In the next proposition we prove that the homothety class of the at-
tracting tree doesn’t depend on the train track point that we choose as
base point.

PROPOSITION 2.65. — Let [¢] € Out(G) be G-irreducible with exponen-
tial growth, and let X,Y € Min(¢). Let X, be the attracting tree for X,
and Y, be that for Y. Then

X+OO == A(Y, X+OO)Y+OO'
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Proof. — Let fy: Y — X, be the stable map given by Proposition 2.64
(in particular fy stretches any edge by Lip(fy) = A(Y, X1)). Let g € G,
and represent it as a path in G\Y with n, edges. ny can be zero, for in-
stance if ¢ is elliptic. Then by Proposition 2.64, ¢™(g) is represented as a
concatenation of at most ng fy-legal pieces. Hence, by Corollary 2.35,

A(Y, Xyo0)ly (¢"(9)) — ng B < x, (0"(9)) < AY, Xi00)ly (¢"(9)),

where B is the bounded cancellation constant of fy, and the second in-
equality just follows from the definition of A(Y, X ;). It follows that

Lo (9) = lim X (9"(9))

n—o00 A

=AY, Xjo0) li_)m ly(q)ﬁ\inn(g))

=AY, Xio0)ly, . (9)- B

Note that the uniqueness of limit trees is a direct corollary of Theorem 5.2
under the extra assumption of primitivity of the matrix, but the previous
proposition provides us with an exact description of the un-projectivised
limits in the general irreducible case.

2.15. Relative boundaries and laminations

Let G = ({Gl, cel Gk},r) be a free factor system of a group G. For any
metric tree T', we agree that:

a half-line in T is an isometric embedding [0, 00) — T

T is the metric completion of T

® 0,7 is the Gromov boundary of T, i.e. the set of half-lines in T" up
to the equivalence relation ~, where two half-lines L ~ L’ if and

only if L, L’ differ only on a compact set;

e Vo(T) is the collection of vertices of T' with infinite valence (if T’ €
O(G), this coincides with non-free vertices with infinite stabiliser);

e IT = 0T UV (T);

e T=TU oT;

° *T =0T x T ~ {(P,P): P € dT};

e a direction based at a point P of f, is a connected component
T~ {P};

e the observer’s topology of T is the topology generated by the set
of directions.
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It is easy to see that Tisa compact set, equipped with the observer’s
topology. Moreover, 9T is a closed subset of T and therefore compact. The
following lemma shows that the boundary does only depend on G and not
on the chosen tree T' € O(G).

LEMMA 2.66 ([18, Lemma 2.2]). — Let T,S € O(G). Then any G-
equivariant map f: T — S has a unique continuous extension f: T — S.

Moreover, the restriction map h := ﬂOT is a natural homeomorphism 0T —
dS (it does not depend on f) with h(8scT) = 0 S and h(Vio (T)) = Voo (S).

Therefore, the notions of (G, G), 0x(G,G), 0*(G,G), Voo (G, G) can be
naturally defined as 9T, 0T, 0°T, Voo (T) for a T € O(G). Note that
0 (G, G) can be identified with the set of simple infinite words in the free
product length given by (G, G).

In particular, for any G-hyperbolic group element g € G, we can define
the infinite words g+t = lim, 1 ¢" and g~ = lim, 1 ¢~ ". In this
case, (9=, ¢>) € 9*(G, Q).

There is a natural Zs-action on 9%(G,G) given by flipping coordinates

(P,Q) = (Q, P).

DEFINITION 2.67. — An algebraic lamination is a closed G-invariant,
flip-invariant, subset of 0*(G,G). Elements of 8*(G,G) are called algebraic
leaves. Given T € O(G), a (bi)(infinite) line L in T represents an alge-
braic leaf (P, Q) € 0*(G, G) if its endpoints correspond to (P, Q) under the
natural homeomorphism given by Lemma 2.66.

2.16. Attracting and repelling laminations

Let G = ({G1,...,Gy},7) be a free factor system of a group G. Attract-
ing and repelling laminations for irreducible automorphisms with exponen-
tial growth can be defined as in the classical case (see [2] for the free case).
Classical proofs work also in the present case, as they are based only on
the properties of train track maps.

More precisely, let [¢] € Out(G) be G-irreducible with A(¢) > 1. Let
f: T — T be a train track representative of [¢], and let e be an edge
of T. Cousider iterates f™(e) and group elements g,, € G such that g, f™(e)
intersects a fixed fundamental domain for the G-action on T'. Then the limit
of g, f™(e) is a line in T, hence it represents an algebraic leaf L € 0%(G, G).
The attracting (or stable) lamination Adf is defined as the closure of the
G-orbit of L. Any line in the G-orbit of L is called a generic line of Aj)'.
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This construction depends a priori on T, f, e, g,. In fact, when [¢] is G-
primitive, it does not depend on the choices made (see [2, Section 1] for
the proof in the free case). We define the repelling lamination of ¢ as the
attracting lamination of ¢!, and is denoted by A; = A(‘;,l.

DEFINITION 2.68. — We say that (the conjugacy class of) a subgroup
A < G carries A;{ if there is T € O(G) containing a minimal A-tree, which
contains a line that realises a generic leaf of Adf.

3. The distance of points of Min(¢) from Min(¢~!) is
uniform

Let’s fix a free factor system G = ({Gl, .. .,Gk},r) of a group G. In
this section, we prove a result which could be of independent interest.
More specifically, we show that if [¢] is irreducible and A(¢) > 1, then the
distance of a point of Min(¢) from the set Min(¢~!) is uniformly bounded,
by a constant depending only on A(¢) (and on the dimension of the space).

3.1. Transition vectors and spectrum discreteness

Let A be a simplex of O(G). Let’s denote by eq,...,e, the directed
(orbits of) edges in A, and denote by E; the inverse of ¢;, i =1,...,n.

Let ¢ € Hyp(G). If X € A, then (the conjugacy class of) g can be
written as a (cyclically) reduced loop p(g) in the corresponding graph of
groups I' = G ~ X. Note that the loop corresponding to g does depend
only on A and not on the metric of X. To any g € Hyp(G), we assign a
transition vector (a1, as,...,ay), where a; is the number of occurrences of
e;’s and E;’s on the loop p(g).

DEFINITION 3.1. — Let A be a simplex of O(G) and g € Hyp(G). The
shape of g in A is the transition vector of g with respect to A.

Remarks 3.2.

(1) Different (conjugacy classes) of group elements may have the same
shape, and if so, these group elements have the same length with
respect to any X € A. So £x(7) is defined for any shape ~.

(2) There are finitely many shapes of candidates in A (Theorem 2.40).
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(3) For all € > 0 and M > 0, the set of shapes of hyperbolic elements
whose length is bounded by M for some X € O1(G,€) N A is finite.
This follows by the fact that each of the coefficients of the transition
vector of such a g is bounded above by MA(X, Xj), where X is the
centre of AN O1(G) (the point where all the edges have the same
length). As X belongs to the e-thick part and has co-volume one,
the distance A(X, X() is uniformly bounded above (for instance,
from 2) and the remark follows.

LEMMA 3.3 (Compare with [12, Theorem 7.2]). — The simplex-displa-
cement spectrum of any G-irreducible [¢] € Out(G) is discrete. That is to
spec(¢) = {Ay(A) : A a simplex of O(G)}

is a closed discrete subset of R.

Proof. — Let A = A(¢). We will prove the claim by showing that for
any C > A, spec(¢) N [A, C] is finite (note that A = inf(spec(¢)) just by
definition).

Let A be a simplex of O(G). For any pair of shapes (vy,7) we consider
£x(n)/Cx (), which is a function on A not depending on the marking, and
for any family of pairs of shapes B we define

Fp(X)= sup EX(n).
(v,n)eB lx (7)
Again, Fg(X) is a function on A that does not depend on marking, just
on B.

Since [¢] is irreducible, for any C' > X there is € = ¢(C') > 0 such that,
for any X € O(G), if A\y(X) < C then X is e-thick (see for instance [12,
Proposition 5.5]).

Let S2(C) be the set of shapes having length bounded by 2C vol(X) for
some X in the e(C)-thick part of A. The set S3(C) is finite (Remark 3.2).

By candidates Theorem 2.40, there is a finite set S7 of candidate shapes
so that for any X € A, Ay(X) = A(X, X¢) is realised by (x (¢(g))/Cx(g)
for some g having shape in S7; moreover all such shapes have length at
most 2vol(X). On the other hand, for any such g, the shape of ¢(g) has
length bounded by Ay (X)¢x (g), which is bounded by 2A4(X) vol(X). That
is to say, if Ay(X) < C, then for any g with shape in Sy, the shape of ¢(g)
is in S3(C). (We remark that the sets S; and S2(C') do not depend on the

(3) The displacement of simplices is defined in Section 2.10.
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marking. That is to say, two simplices with the same unmarked underlying
graph exhibit the same sets S1 and S2(C').)

It follows that there exists a family of pairs B C S; x S3(C) such that
Ap(X) = Fp(X) for any X € A. Note that B may depend on the marking
of A. However, since S; x So(C) is finite, there are only finitely many
choices for B. It follows that the possible displacement functions on A run
over a finite set, hence so do their minima. O

3.2. Distance between Min-Sets of an automorphism and its
inverse

LEMMA 3.4 ([13, Theorem 5.3, and Lemmas 8.4, 8.5, 8.6]). — Given
[¢] € Out(G) and any X,Y € O(G) with A\y(X) > Ay(Y), there is a
simplicial path from X to Y — that is to say, a sequence of adjacent
simplices Ag, A1,...,A,, with X € Ag and Y € A,, — such that there
exists iy such that the sequence \y(A;) is strictly monotone decreasing
form 0 to iy, and constant from iy to m.

THEOREM 3.5. — Let [¢] € Out(G) be G-irreducible, with A(¢) > 1.
Then there is a D-neighbourhood (with respect to the symmetrised stretch-
ing factor, see Section 2.5) of Mini(¢) containing Miny (¢~ 1).

More precisely, for any L there is a constant D (depending only on [¢]
and L) such that for any volume-1 point, X with A\,(X) < L, there is a vol-
ume-1 point, Y € Min(¢~1) such that A(X,Y)A(Y,X) < D. In particular,
for any X € Min(¢) thereis Y € Min(¢~1) such that A(X,Y)A(Y, X) < D.

Proof. — Let X € 01(G) so that A(X, X¢) < L. By Theorem 2.19, the
right- and left- Lipschitz distances are comparable on the thick part. Since
[¢] is irreducible, X is e-thick (with ¢ depending on L but not on X, see
for instance [12, Proposition 5.5]) and hence there is a constant Cy, not
depending on X, such that A(X, X¢~!) = A(X¢, X) < C;. Now we apply
Lemma 3.4 with ) = ¢~! and any Y € Min(¢~!) (which, in particular, im-
plies Ag-1(X) > Ay-1(Y)). Let (A;) be the sequence of simplices provided
by Lemma 3.4. Up to replace Y with an element of Min(¢~1) N A;,, we
may assume that the sequence \,-1(4A;) is strictly monotone decreasing. By
Lemma 3.3 there are only finitely many values in spec(¢~1) N [A(¢™1), C1],
whose cardinality depends only on [¢]. This implies that there is a uniform
bound on the length of the sequence of A;’s joining X to Y. And this im-
plies that A(X,Y") is uniformly bounded depending only on [¢]. Since both
X and Y are e-thick, for some e depending only on [¢] and L, then (by
Theorem 2.19) also A(Y, X) is uniformly bounded. O
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4. Equivalent conditions for co-compactness of Min(¢)

As customary, let G = ({Gh...,Gk},r) be a free factor system of a
group G. In this section, we discuss equivalent conditions of co-compactness
of the Min-Set of G-irreducible automorphisms classes [¢] with exponential
growth.

There are several topologies for our deformation spaces, but our co-
compactness result is in the strongest sense; we actually prove that any
irreducible [¢] acts on Min; (¢) (whence on Min(¢)) with finitely many or-
bits of simplices, and in this sense the topology doesn’t matter, since we
have a fundamental domain which is compact with respect to any of the
topologies.

However, our strategy is to show that the action is co-bounded with
respect to the Lipschitz metric, and deduce co-compactness from there and
the fact that Miny(¢) is locally finite (Theorem 2.49). In this section we
show how to make that reduction. We start with some observations about
some of the topologies commonly used for our spaces.

4.1. Topology on deformation spaces

We have (among others) the equivariant Gromov topology (see for in-
stance [30]); the length space topology (defined in Section 2.4); and the
Lipschitz metric defines three topologies (see Theorem 2.20), where the
basis is given by either symmetric balls, in-balls or out-balls:

(i) the symmetric or bi-Lipschitz ball of centre T and radius R:
Bym(T,R) = {S € O(G) : A(T,S)A(S,T) < R};
(ii) the Lipschitz out-ball of centre T' and radius R:
Bow(T,S) = {S € O(G) : A(T,S) < R};
(iii) the Lipschitz in-ball of centre T and radius R:
Bin(T,R)={S€0O(G) : A(S,T) < R}.
Remark 4.1. — By Theorem 2.20 all three Lipschitz metrics are actu-

ally (multiplicative, asymmetric) metrics only when restricted to O1(G).
However, the three topologies are well-defined also in O(G).

Remark 4.2. — Since the Lipschitz metric is multiplicative, one should
really say that the radii of these balls is log R. This doesn’t cause any
problems in O1(G), as the Lipschitz metric is 1 exactly when the points
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are equal, and is never less than that. It does cause problems in the non-
symmetric case in O(G), since non-symmetric Lipschitz metrics change with
scale, so one can get any positive real number as a value for A(7,S). The
symmetric Lipschitz metric is a well-defined multiplicative pseudo metric
on the whole O(G).

Let us start by proving that all topologies agree in the co-volume-one
slice 01(G).

LEMMA 4.3. — Let T € O1(G). For any § > 0 there exists an € > 0 such
that for any S € O1(G), if A(T,S) < 1+¢, then A(S,T) <1+54.

Proof. — Consider an optimal map, f: T'— S. Then, by Lemma 2.34,
BCC(f) < vol(T) Lip(f) — vol(S) = Lip(f) — 1= A(T,S) —1 < e

Hence the BCC of f is bounded above by €. Let a be the length of the
smallest edge in T. Now, for any edge of T, if £ is its length in T', and u is
how it is stretched by f, by looking at volumes, we get

1=vol(S) < (1+¢)(1—40)+ ut,
giving

e(1—a)

pl- >1-——4
a

Thus, f stretches all edges at least by 1 — ¢(1 — a)/a. By Corollary 2.35,
for any g,

tsi) > (1= T )ere) - 0= 1r( (4250,

a

e(1—1¢)
14

where KTCEg) is an estimate of the number of edges crossed by ¢ in T, and

the € is just the above bound on BCC(f). Therefore, for any g € Hyp(G),
r(g) _ a
ls5(g) ~ a—2¢+ae’
As the upper bound tends to 1 as € tends to 0, we have proved the
result. O

Remark 4.4. — Lemma 4.3 remains true if we replace 7,5 € 01(9)
with T, S € O(G), modified as follows: V T'V ¢§ 3 € : A(T,S)vol(T) <
vol(S) + e = A(S,T)vol(S) < vol(T') + §. So the lemma is basically true
for trees with almost the same co-volume.

We also have the reverse.

LEMMA 4.5. — Let T € O1(G). For any § > 0 there exists an € > 0 such
that for any S € O1(G), if A(S,T) < 1+e¢, then A(T,S) <1+54.
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Proof. — Any given T is tautologically in the thick part for some appro-
priate level of thickness. Next, for any g,

lr(g)

K )
implying that if A(S,T) < K, then S will also be thick (where the thickness
is divided by K). We can then invoke quasi-symmetry Theorem 2.19 to

ASST) S K = Us(g) >

immediately get the result. g

Remark 4.6. — As in Remark 4.4, also Lemma 4.5 remains true if we
replace T, S € 01(G) with T, S € O(G), by suitably modifying constants.

LEMMA 4.7. — The following topologies on O1(G) are the same:

(i) the equivariant Gromov topology;
(ii) the length function topology;

ii) the symmetric Lipschitz topology;
the out-ball Lipschitz topology;
the in-ball Lipschitz topology.

)
(iii)
(iv)

)

(v

Proof. — By [30], the equivariant Gromov topology and the length func-
tion topology are the same. (Paulin has a standing assumption that the
group is finitely generated, but this is not used for this result.) Lemmas 4.3
and 4.5 imply that all three Lipschitz topologies are the same.

Next, if we take a sub-basic open set in the length function topology, this
involves picking a hyperbolic group element g, and taking all T' € O(G)
such that ¢7(g) belongs to some open interval. Since for any ¢ the function
{7 (g) is continuous with respect to Lipschitz metrics on O1(G), such a set
is open in the Lipschitz topology.

Conversely, by Corollary 2.42, Lipschitz out-balls are open with respect
to the length function topology, and so Lipschitz-open sets are open in that
topology. O

Remark 4.8. — One can also consider other topologies. An obvious one
is the path metric obtained after giving each (open) simplex in O1(G) the
Euclidean metric. This also turns out to be the same as the previous ones.

One also has the coherent topology, which is the finest topology (on
01(G) and also O(G)) which makes the inclusion maps of the simplices
continuous. Care needs to be taken here, since our spaces are only a union
of open simplices, but we can take any open simplex and add all the faces
that we are allowed, then insist that these inclusions are all continuous
(topologising each simplex in the standard way). This is a very different
topology to the one above, and we mention it only for interest.
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Remark 4.9. — We will always endow O1(G) with the topology given by
Lemma 4.7.

Now, we move to O(G) and PO(G).

LEMMA 4.10 (01(9) ~ PO(G)). — Let O(G) be endowed with the bi-
Lipschitz topology, and consider on PO(G) the quotient topology. Then
PO(G) is homeomorphic to O1(G).

Proof. — Let m: O(G) — PO(G) be the natural projection, which is
continuous by definition of quotient topology. Since O1(G) is a sub-space
of O(G), then restriction 7: O1(G) — PO(G) is continuous. Also, it is
clearly bijective. It remains to prove that it is open. This is equivalent
to say that for any open set U C 01(G), the cone RTU is open in O(G)
for the Lipschitz topology. Clearly if suffices to prove it when U is an open
symmetric ball, say centered at Y and radius e. But from A(Z, Y)A(Y, Z) =
A(VOTZ(Z), Y)A(Y, VOIL(Z)) we get that the symmetric ball of O(G), centered
at Y and of radius ¢, is just RTU. O

Remark 4.11. — The bi-Lipschitz topology on O(G) is not Hausdorff,
because the symmetric metric is only a pseudo-metric. One can naturally
use on O(G) = O1(G) xRT the product topology, which is Hausdorff, agrees
with the Euclidean one on simplices, and for which PO(G) is tautologically
homeomorphic to O1(G). The following lemma shows in particular that
both the bi-Lipschitz and the product one are different from the length
function topology.

LEMMA 4.12 (01(G) # PO(G)). — Let O(G) be endowed with the
length function topology, and consider on PO(G) the quotient topology.
Then PO(QG) is not homeomorphic to O1(G) in general. In other words,
the restriction to O1(G) of the natural projection w: O(G) — PO(G) is
continuous, bijective, but in general is not open (for the projective length
function topology).

Proof. — Let X, X, be as in Example 2.43. The points Y,, = %Xn belong
to O1(G) and projectively converge, with respect to the length function
topology, to X. However A(Y,,X) = 2 for all n, in particular A(Y,, X)
does not converge to 1. In other words, there are sets U in O1(G) that are
open for the length function topology, such that RTU is not open in O(G)
(again for the length function topology). An example of such set is when
U is the in-ball centered at X and of radius 11/10. RTU does not contain
any of the X,,, while any open neighbourhood of X in the length function
topology contains infinitely many of them. O
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Remark 4.13. — The words “in general” in Lemma 4.12 really means “if
at least one of the free factor groups is infinite”, as the used example is
based only on this fact.

Remark 4.14. — Lemma 4.12 can be rephrased by saying that the quo-
tient length function topology on PO(G) is coarser than the subspace length
function topology on O1(G).

Remark 4.15. — Example 2.43 shows that O1(G) is not closed in O(G)
with respect to the length function topology, as the co-volume of the limit
of points in O1(G) can be different from 1.

More precisely, Example 2.43 gives a sequence of points, X,,, such that
X, — X in O(G) and vol(X,) = 2/3, whereas vol(X) = 1. By simply
rescaling, we can set Y, = 3/2X,, and Y = 3/2X so that vol(Y,) = 1
and vol(Y) = 3/2. We again get that ¥;, — Y in O(G) and now Y, is
a sequence in O1(G) which converges in O(G) but whose limit does not
belong to O1(G). Hence O1(G) is not a closed subspace of O(G).

We comment that O;(G) will fail to be closed in O(G) if and only if
some vertex group is infinite, as can be seen by appropriately tweaking the
example above.

Remark 4.16. — As a consequence of Lemma 4.12; we get that in general
with respect to the length function topology, the closure O;(G) of O1(G),
is not the same as the closure PO(G) of PO(G). More explicitly, O1(G)
is exactly the simplicial closure of O1(G), which can be identified with
the free splitting simplex (relative to the fixed free factor system) and it
is exactly the space of edge-free actions on simplicial trees with elliptic
subgroups, containing G. On the other hand, in [6, 24] it is proven that
PO(G) is a compact space which contains non-simplicial trees and trees
with non-trivial edge stabiliser.

Another caveat is about local compactness, as clarified by the following
facts.

PROPOSITION 4.17. — In general O1(G) and O(G) are not locally com-
pact.

Proof. — We will present slightly different arguments in each case but
with the same underlying goal; to produce inside of any neighbourhood of
a specially chosen point, a sequence which converges to a point outside the
space. This will show that the space is not locally compact, since our spaces
are Hausdorff with respect to the length function topology.
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We base our arguments on a modification of Example 2.43. Referring to
Figure 2.1, we let X denote the graph in Example 2.43 which is topologically
a circle of length 1. This is going to be the point which does not admit a
compact neighbourhood for both O;(G) and O(G).

Let us deal with O;(G) first. Build points X,, ., as in Example 2.43, by
assigning length e to the horizontal edge ending at the non-free vertex, and
1 — € to the loop.

Then, for each n, all the X, . belong to the same simplex in O1(G).
Hence, for each n, lim.,o X, = X. However, just as in Example 2.43,
limy, 00 Xne = (14 €)X. (In fact, this convergence is quite strong; for any
group element the lengths with respect to the X, . are eventually constant).

Let V be any neighbourhood of X in O1(G). Since lim. 0 X, e = X
there is an € > 0 such that, for all but finitely many n, V contains the
sequence X, . But now lim,_,o X, = (14+€)X & 01(9), hence V cannot
be compact as it admits a sequence with a limit point outside of O;(G)
(and hence no limit point in O1(G) as our spaces are Hausdorff). Hence
01(G) is not locally compact.

Now we deal with O(G), using the same point X. This time, define points
Y, e as in Example 2.43 by assigning the length € to the horizontal edge
and 1 — 2¢ to the loop — here 0 < € < 1/2. (These are similar to the X, .
above, but the volume is no longer 1 so we are not looking at sequences in
01(9)). Each Y, . is obtained from X by an isometric fold of length e. This
means that, for any group element g, the length of g in X will be equal to
the length of g in Y,, . for all but finitely many n and for all €.

Hence, since a basic open set in the length function topology only im-
poses restrictions on finitely many group elements, we have that if V is a
neighbourhood of X in O(G), then V contains Yy . for some fixed value
of N and for all 0 < € < 1. However, if we let ¢ — 1/2 we get an element
(the loop of X)) which is hyperbolic in O(G) whose length tends to 0. Thus
we have obtained a sequence in V' which converges to a point in O(G) which
is not in O(G). Therefore, as above, O(G) is not locally compact. O

Finally, note that we have no hypothesis on our vertex groups, in par-
ticular G may be not countable. However, when G is countable we get the
following result.

Remark 4.18. — When G is countable, bounded sets in O(G) are sequen-
tially pre-compact. Namely, if (X,,) C @ is a sequence such that for any
g € G there is K(g) for which £x, (g9) < K(g), then X,, has a converging
subsequence. This follows from the fact that the product of countably many

closed, bounded real intervals, is sequentially compact.
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4.2. Equivalent formulations of co-compactness for Min;(¢)

Let [¢] € Out(G) be irreducible and with exponential growth, that is,
A(¢) > 1. We know that in this case the simplicial structure of Min; (¢) is
locally finite (Theorem 2.49). Our aim here is to show that co-compactness
of this space is actually equivalent to co-boundedness. We first recall some
terminology.

DEFINITION 4.19. — A simplicial path between T, S € O(G) (or O1(G))
is given by:
(1) a finite sequence of points T = Xy, X1,...,X,, = 5, called vertices,

such that for every i = 1,...,n there is a simplex A; such that the
simplices Ax,_, and Ax, are both faces (not necessarily proper)
of Ai,’

(2) Euclidean segments X;_1X; C A; called edges (the simplicial path
is then the concatenation of these edges).

The simplicial length of such a path is just the number n.

Remark 4.20. — The notion of calibrated path (with respect to ¢) is
introduced in [13]. In the case of irreducible automorphisms, this simply
amounts to asking that any non-extremal vertex X; realises Ay(A) on its
simplex, that is to say, Ap(X;) = Ag(A(X;)). In particular, if [¢] is G-
irreducible, then any simplicial path may be assumed to be calibrated by
just replacing any X; with a suitable point in the closure of A(X;) (see [13]
for more details).

It is proved in [13] that any two points in Min(¢) (or Min(¢)) can
be joined by a simplicial path lying entirely within Min(¢) (or Min; (&),
respectively). This is done by a peak-reduction argument. We use here the
following quantitative version of that.

PROPOSITION 4.21 ([13, Remark 8.7]). — Any calibrated simplicial path
Y connecting two points in O(G) can be peak-reduced to a new calibrated
simplicial path, by removing a local maximum (peak) of the function A\,
via a peak-reduction surgery that increases the simplicial length of . by at
most a uniform amount K depending only on rank(G).

Remark 4.22. — In [13], the authors are interested in the function Ay,
which is scale invariant, and results are stated and proved for O(G), but it
is readily checked that the whole peak-reduction can be carried on O1(G).

Recall that if [¢] is G-irreducible, then its simplex-displacement spectrum
spec(¢) is discrete (Theorem 3.3). Thus for any = > A(¢) the set spec(¢) N
[A(¢), x] is finite.
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COROLLARY 4.23. — Let [¢]€Out(G) be G-irreducible and with A(¢)>1.
Let X,Y € O(G) and let X = Xy,...,X;, = Y be a simplicial path.
Let D = max; Ay (A(X;)) and Dy = max(Ay(X), A(Y)). Let N be the
cardinality of spec(¢) N [A(¢), D].

Then there exists a simplicial path X = X|,..., X}, =Y such that
Mo(X!) < Dy for any i, and such that L' < L(K + 1)V, where K is the
constant of Proposition 4.21.

Proof. — By Remark 4.20 we may assume that our starting simplicial
path is calibrated. List possible simplex displacements less than D, A(¢) =
Al < A2 < -+ < Ay < D. To any calibrated simplicial path we assign a
triple (A;, m, L), where \; is the maximum displacement of vertices along
the path, m is the number of vertices in the simplicial path which realise the
maximum displacement, and L is the simplicial length. Note that m < L.

The peak reduction process (Proposition 4.21) allows us to reduce the
value of m by 1, at a cost of increasing the value of L by K. Hence, after
at most L peak reductions, we have transformed our simplicial path to one
where the maximum peak has displacement at most A\;_1. The effect on
the triple is to replace it with (A;,m’, L"), where j <iand L'’ < L+ KL =
L(K + 1). Inductively, we see that we eventually arrive at a path with
the requested bound on displacement, and of simplicial length at most
L(K + 1)V, d

Given X € O(G), let X¢ denote the “centre” of the open simplex con-
taining X in O(G). That is, X¢ has the same action as X, but the edges
are rescaled to all have length 1. (Hence X¢ does not have co-volume 1,
but its co-volume is uniformly bounded, since there is an upper bound on
the number of orbits of edges.)

The following proposition shows that symmetric Lipschitz balls can be
connected via simplicial paths of uniform length, if we allow ourselves to
enlarge the ball slightly.

PROPOSITION 4.24. — For all € > 0 there exist constants M, k, a such
that for any T € O1(G, €) and all R > 0, any two points S1, So € Bgym (T, R)N
01(G) are connected by a simplicial path entirely contained in Bgyw(T',KR*)N
01(G), and crossing at most MR simplices. Moreover, all points of such

—ga -thick.

path are

Proof. — It is sufficient to prove the claim when So =T and S; = S is
any other co-volume-one point in Bgym (T, R). Also, we observe that since
T is e-thick, any point in any Bgym (T, p) is €/p-thick. In particular the last
claim follows from the first one.
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By triangular inequality, A(S,T¢) < A(S,T)A(T,T¢) and since vol(S) =
vol(T) = 1, we have A(S,T) < A(S,T)A(T,S) < R. Moreover A(T,T°) is
uniformly bounded by a constant depending only on € (and the maximal
number of edge-orbits of trees in O(G)).

So A(S,T¢) is bounded by a uniform multiple of R. Let f: S — T° be an
optimal map. Subdivide the edges of S by “pulling back” the edge structure
on T¢; that is, subdivide S so that every new edge maps to an edge of T
under f. The number of new edges created by this subdivision is at most
A(S,T°) times the number of edges in S. More concretely, for each edge e
in S, A(S,T°) is an upper bound for the number of edges crossed by f(e)
because each edge in T has length 1.

Now — as in [11, Definition 7.6] (see also [9, Theorem 5.6]) — construct a
folding path directed by f, from S to T it is a simplicial path in O(G). The
simplicial length of this path is bounded above by the number of subdivided
edges of S. That is, it will be bounded above by a uniform multiple of R.

Moreover such path, say S = Xg, X1,...,X, = T¢, has the following
properties (see [9, 11]):(*)

AX;,Xj)=1forany 0 <i<j<n, A(S, X1) = A(S,T9),
vol(X;) < vol(X;) for any 0 < i < n, vol(X1) < A(S,T°).

We now “correct” this path by tracing a simplicial path which goes
through the same simplices, but whose vertices are uniformly thick and

with co-volume 1. More precisely for any ¢ > 1, we replace each X; with
X¢/vol(X§). Now, since T¢ = X,,, we have:

ANXDT) < AXS, Xo)AX, TONTE, T) = A(X7, X)ANTe, T);
A(X?, X;) is bounded by vol(X;) < vol(X1) < A(S,T°) < A(S,T)A(T,T°).
It follows

A(Xi, T) = vol(X9)A(XS,T)

vol(X¥)
< vol(X)A(S, T)A(T, T°)A(T°,T)
< Rvol(XO)A(T, TOAN(TC,T).
The factor A(T, T¢)A(T€,T) is a priori bounded by a constant depending

on € (see for example [14, Lemma 6.7]), and the claim follows from quasi-
symmetry (Theorem 2.19) — because both T' and all X¢ are thick — and

(4) We remind that the first step of such construction is to build X; by changing lengths
to edges of S so that A(X1,7¢) = 1, and all edges are maximally stretched. Then we
proceed, as the name suggests, by isometrically folding edges identified by f.
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from the fact that the centres X have uniformly bounded co-volume. Note
that we can take a = 1 + C where C' is the constant of Theorem 2.19. O

We next show that Min, (¢) is not overly distorted, in the following sense.

THEOREM 4.25. — Let [¢p] € Out(G) be G-irreducible with A(¢) > 1.
For any T € O(G) there are constants C,C’, depending only \s(T) (and
on [¢] and rank(G)), such that for all R > 0:

(1) any two points in Minj(¢) N Beym (T, R) are connected by a sim-
plicial path entirely contained in Min;(¢) (but not necessarily in
By (T, R)), and whose simplicial length is bounded above by CR;

(2) the ball Bgyi (T, R) intersects at most C'R simplices of Miny (¢).

Proof. — The first claim implies in particular that if Ag is a simplex
intersecting Min; (¢) N Beym (T, R), then any other simplex with the same
property stays at bounded simplicial distance from Ag. Since the simplicial
structure of Minj(¢) is locally finite by Theorem 2.49, the second claim
follows.

Let us now prove the first claim. Since the symmetric Lipschitz pseudo-
metric is scale invariant, we may assume vol(7') = 1. Moreover, since [¢] is
irreducible, then T is e-thick for some € > 0 depending on A4(T") (but not
on T, see for instance [12, Proposition 5.5]).

By Proposition 4.24, any two points S1, S2 € Beym (T, R) N O1(G) can be
joined by a simplicial path of simplicial length at most M R, and lying inside
Byym (T, R') (with R' = kR® and constants M, k, a as in Proposition 4.24).

For any S € Bgym (T, R') and any hyperbolic group element g we have

fs(2lg)) (6(9)) <R and lr(9) <R
lr(6(9)) h

ls(g) =7
which implies
s(g) <(®) () A (S) < (R Ag(T).

Hence the displacements of points in Bgym (T, R') are uniformly bounded
by (R)2Ao(T).

Let N be the cardinality of spec(¢) N [A(¢), (R)?Ay(T)]. By Corol-
lary 4.23, if S1, S2 € Min(¢), they can therefore be connected by a simplicial
path in Min(¢) whose length is bounded by M R(K + 1) (where K is the
constant of Corollary 4.23) and by scaling volumes we can get such path
in Min; (9). O

Recall (see Section 2.14) that the stable or attracting tree of an X €

X¢n,

Min(¢) exists and is given by X o = lim, YO RN
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THEOREM 4.26. — Consider O1(G) endowed with one of the equivalent
topologies given by Lemma 4.7. Let [¢] € Out(G) be G-irreducible and with
Ap) > 1, let X € Min; (¢) and X o, be the stable tree. Then the following
are equivalent:

(1) (¢) acts on Min;(¢) with finitely many orbits of simplices;

(2) Miny(¢)/(#) is compact;

(3) there exists a compact set in O1(G) whose (¢)-orbit covers Miny (¢);

(4) there exists a closed symmetric Lipschitz ball B whose (¢)-orbit

covers Miny (¢);

(5) there exists a closed Lipschitz out-ball B whose (¢)-orbit covers
Min; (¢);

(6) 3 C such that VY € Mini(¢), 1 < AY,X4) < ANo) =
AX,Y) < C;

(7) VDo > 1 3 Cy such that VY € Miny (o), D%) <AY, X o) < Dy
= A(X, Y) < Co,'

(8) VVi < Vu 3 such that VY € Min(¢), if V1 < vol(Y) < V, and
AY,Xi00) =1, then A(X,Y) < C".

Proof. — Since A, is continuous, then for every simplex A of O(G), the
set Minj (¢)NA is compact. Moreover, as a consequence of Theorem 4.25, we
see that (even if O1(G) is not locally compact) Min; (¢) is a locally compact
space, whose compact subsets meet finitely many of its simplices and are
contained in a closed symmetric Lipschitz ball. This gives immediately the
equivalence between (1), (3) and (4).

Moreover, since ¢ acts by homeomorphisms on Min; (¢), from local com-
pactness we get also that (2) is equivalent to (3).

Uniform thickness of Min; (¢) (Theorem 2.47) and quasi-symmetry (The-
orem 2.19) give the equivalence of (4) and (5).

It is clear that (7) and (8) are equivalent. It is also easy to see that (7)
implies (6), by taking Dy = A\(¢).

We see now that (6) implies (5). Notice that X1 ¢ = A\(¢) X 1. Hence
for any integer n (positive or negative),

A(Y, X-‘roo)
(Me)"

In particular, for every Y € Min;(¢), there exists a n such that 1 <
AY o™, X1oo) < A(6), and (5) follows from (6).

To summarise, we have that (1), (2), (3), (4) and (5) are equivalent,
that (7) and (8) are equivalent, that (7) implies (6) and (6) implies (4).

A(Y¢n7 X+OO) =
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Thus, in order to complete the proof, it suffices to show that (4) im-
plies (7). Let B be a closed symmetric Lipschitz ball of radius R whose
translates cover Minj (¢). Without loss of generality, we can assume that
its centre is X. Since A(X, X, ) = 1, from multiplicative triangle inequal-
ity, for all Y we get the following inequalities:

ﬁ < A(Y, X yoo) < A(Y, X).
If also Y has co-volume 1, then we have both A(X,Y), A(Y,X) > 1 (The-
orem 2.20). So for any Y € BN O1(G) we get 1 < A(X,Y),A(Y, X) < R,
whence 1

~Z<AY, X, ) <R
7 SAY Xio)

Now suppose that we are given Dy and Y € Min; (¢) such that
— < A(Y,X100) < Dy.
0
Since we know that the translates of B cover Min; (¢), we get that Y¢™ € B
for some integer n. Hence, for this n,

I ALY, X i)
= SAYQ", X)) = ————m "

~

Therefore,

1 n

and we get a bound on |n| depending only on Dy. But now

A(X,Y) < AX,Y"A(Y$",Y) < RA(Y¢",Y)
where A(X,Y¢") < R follows since Y¢" € B. The following claim will
conclude the proof. O

Cramnt. — A(Y¢",Y) < max{(A(¢))™, D(A(¢=1))™"}, where D is the
constant from Theorem 3.5.
Proof of the claim. — If n is negative, since Y € Min; (¢) we have
AY6"Y) = A(Y,Y6™™) = (M(9)) "
Whereas, if n is positive, then by Theorem 3.5 Y is uniformly close a
point Z € Ming-1 and hence
AY¢™,Y) =AY, Y¢™")
SAY,Z)MZ, Z¢™" )M Z¢™", Y ¢™")
— A(Y, Z)A(Z, Z6™)A(Z,Y)

n

D(Ao™h)".

N
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5. North-south dynamics for primitive irreducible
automorphisms

Let G = ({Gl, e ,G’k},r) be a free factor system of a group G, where
in addition we require that rank(G) > 3.

5.1. Statement of north-south dynamics

The so-called north-south dynamics for iwip automorphisms in the clas-
sical Culler—Vogtmann outer space CV,, is a well-known fact established
in [27], and generalised in [21] in greater generality (in [21] the hypothesis
rank(G) > 3 is required). Here we need a north-south dynamics result for
our case, which is slightly more general.

The proof of Theorem 5.1 below is essentially exactly the same as the
proof of [21, Theorem C], where the author assumes that G is free and
that the automorphism is iwip (or fully irreducible). However, her proof
applies for general groups, where some missing point can be filled using
results of [18]. Finally, we note that the iwip property is not really used
anywhere in the proof. More specifically, what is needed is an irreducible
automorphism which can be represented by some simplicial train track
map with primitive transition matrix (whence every simplicial train track
representative of [¢] has this property). Irreducibility is needed because it
implies connectedness of local Whitehead graphs — which is in fact used —
but irreducibility of powers is not used.

For these reasons, we decided to not include all details of the proof here,
but for the rest of the section, we just mention the main steps of the proof
of [21, Theorem C], and we explain why the proofs of relevant statements
still hold on our context, by giving appropriate references when needed.

THEOREM b5.1. — Any G-primitive irreducible [¢] € Out(G) acts on
O(G) with projectivised uniform north-south dynamics: there are two fixed
projective classes of trees [Tq;" ] and [T(; ], such that for every compact set K

of PO(G) that does not contain [T] (resp. [TJ]) and for every open neigh-
bourhood U (resp. V') of [TJ] (resp. [T,;']), there exists an N > 1 such that
for all n > N we have (K)¢p™ C U (resp. (K)¢p~" C V).

To begin with, we define Tf: they are the attracting and repelling tree
(Definition 2.62) of a given train track point with primitive transition ma-
trix, which exists by hypothesis. The proof of Theorem 5.1 starts with
pointwise convergence, that we state separately in Theorem 5.2 and whose
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proof is contained in the proof of [21, Theorem C], even if it is not written
as a separate statement there (compare also with Proposition 2.65).

THEOREM 5.2. — Let [¢] € Out(G) be G-primitive irreducible. For any
X €e0(9), X ¢[Ty] (resp. X ¢ [TJ]), we have that for n — oo:

Xo™
— T+, for some ¢ > 0
A(o)" ¢
" -
(resp. o1 — dT, for some d > 0).

Before going into the proof of Theorem 5.2 we show how it allows to
extend the results of Section 2.14 to general trees.

DEFINITION 5.3. — Let [¢] € Out(G) be G-primitive irreducible. Let

X € O(G), which does not belong to the projective class [Tdﬂ (resp. [T]).
We define the tree:

n —n
Xioo = liTan % (resp. X oo = liin %

It is very important to note here that these limits do exist and they
are R-trees because of the previous Theorem 5.2. Note that this extends
(when [¢] is G-primitive) the definition given in Section 2.14 for points
X € Min(¢).

The assumption that our irreducible automorphism is primitive is crucial
in order to apply Theorem 5.2. For a general irreducible automorphism
(without the extra assumption of the primitive property), we cannot ensure
that the limits do exist for general points of O(G), but only for points of
Min(¢), and we also may lose uniqueness.

).

Remark 5.4. — Given a point X € O(G) which does not belong to [T(;']
(resp. to [T;]), by Theorem 5.2 we have X 4o = CT(;_ (resp. X_oo = dT})
for some ¢ > 0 (resp. d > 0). If X € Min(¢) (resp. X € Min(¢~!)), then
by continuity of stretching factor (Corollary 2.42) we have

Xé®
A(¢)"
(resp. 1 =dA(X,T})).

1= A(X, > — A(X, T ) = eA(X, T)

(Compare also Proposition 2.65, where the existence of T(; is not used.)

We are now ready to analyse the main steps of the proof of [21, Theo-
rem C], and adapt them to prove Theorems 5.1 and 5.2.
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5.2. The attracting tree does not depend on the chosen train
track

A key step for proving that the attracting tree does not depend on the
chosen train track is the following proposition.

PROPOSITION 5.5. — Let T € O(G). Suppose there exists a tree Ty €
O(G), an equivariant map h: Ty — T, and a bi-infinite geodesic vy of Ty,
representing a generic leaf v of AT, such that h(vy) has diameter greater
2BCC(h). Then:

(1) h(vo) has infinite diameter in T';
(2) there exists a neighbourhood V' of T such that (V)¢? converges to
Tg , uniformly as p — oo.

Proof. — The proof goes as in the classical case (see [2, Lemma 3.4]
and [27, Proposition 6.1]) and it is the same as that of [21, Proposition 3.3].
The iwip property is used there, just in order to ensure the existence of
a train track representative of the automorphism with primitive transition
matrix. The rest of the argument uses this primitive matrix in applying
Perron-Frobenius theory. We conclude that our assumption that the auto-
morphism is G-primitive is enough. Note that the assumption in [21] that
the group G is free is never used for the proof. O

5.3. Infinite-index subgroups do not carry the attracting
lamination

Another key step in the proof [21, Theorem C] is the following.

LEMMA 5.6. — Let T € O(G) and let f: T — T be a train track rep-
resentative of a G-primitive irreducible [¢] € Out(G). Let C' be a subgroup
of G such that for every [G;] € [G], either C N G; is trivial or equal to G;
up to conjugation. Suppose moreover that [G] induces on C' a free decom-
position of finite rank. If C' carries A;f, then C has finite index in G.

Proof. — Again, no particular patch is needed, and the proof is exactly
the same as that of [21, Lemma 3.9(c)]. It relies on the fact that there
is one (and so every) leaf of the lamination which crosses (the orbit of)
every edge. Here we use the fact that the relative Whitehead graphs are
connected at each vertex, and this can be ensured under our assumptions
because [¢] is G-irreducible. The fact that the group G is free is not used
for this proof at all. O
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5.4. ()-map and dual laminations of trees

In this section we give the definition and some results about the state-
ments on dual laminations of trees, which are well-known for free groups
and they have been recently generalised for the context of free products
in [18].

PROPOSITION 5.7 ([18, Lemma 4.18]). — Let T" € O(G) be a minimal
G-tree with dense orbits and trivial arc stabilisers. Given ¢ > 0, there
exists a tree Ty € O(G) with co-volume vol(Ty) < €, and an equivari-
ant map h: Ty — T whose restriction to each edge is isometric, and with

BCC(h) < e.

The so-called Q-map, which was defined in [27] for free groups, can also
be generalised for general free products. Any X € 0. (G,G) can be repre-
sented as the “point at infinity” of a half-line in a G-tree T' € O(G). Almost
the same happens for trees T € O(G), the difference is that in this case,
the path representing X in T could have finite length. If this happens, X
is called T-bounded.

PROPOSITION 5.8 ([18, Q-map, Proposition 6.2], [27, Proposition 3.1]).
Let T € O(G) be a minimal G-tree with dense orbits and trivial arc sta-
bilisers. Suppose X € 0o(G, G) is T-bounded. Then there is a unique point
Qr(X) € T such that for any Ty € O(G), any half-line p representing X
in Ty, and equivariant map h: Ty — T, the point Q7 (X) belongs to the clo-
sure of h(p) in T. Also, every h(p) is contained in a 2 BCC(h)-ball centered
at Q7 (X), except for an initial part.

DEFINITION 5.9. — Let T € O(G). We define the following.

(1) The algebraic lamination dual to the tree T is defined as L(T)
Neso Le(T) where Le(T) is the closure of set of pairs (g=°°, g
where {1 (g) < € and g does not belong to some free factor of [G].

(2) Let’s further assume that T' has dense orbits. We define Lgo(T) =
{(X,X"): Qr(X) =Qr(X")} C 0*(G,9).

These definitions are equivalent, in the case of trees with dense orbits,
by [18, Proposition 6.10]. Moreover, in [21, Remark 3.1] is shown that the
leaves of Lq(Ty ) are either leaves of Ag or concatenation of two rays,

)

based at a non-free vertex, obtained as iterated images of an edge via a
train track map. The latter are called diagonal leaves (and do not arise in
the classical case).
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PROPOSITION 5.10 ([21, Proposition 3.22]). — If Y € O(G) is a minimal
G-tree with dense orbits and trivial arc stabilisers, then at least one of the
following is true:

(1) there exists a generic leaf (X, X') ong or of A such that Qy (X) #
Qy (X');

(2) there exists a diagonal leaf (i.e. the concatenation of two half-lines)
(X, X") ofLQ(T(;) or LQ(TCZF) such that Qy (X) # Qv (X').

Proof. — The proof is again the same as that of [21, Proposition 3.22],
using the generalised version of the Q-map given in [18] (Propositions 5.8
and 5.7). All the intermediate steps still hold in our context. Connectedness
of Whitehead graphs is used here, which is safe because we are assuming
[¢] is G-irreducible. O

We also need to ensure that limit trees have dense orbit, but this is
already part of the literature.

LEMMA 5.11 ([21, Lemma 4.5]). — Let [¢] € Out(G) be G-primitive
irreducible. Then the trees Tg and T » have dense orbits.

5.5. At least one of the laminations is long in any tree of the
boundary

The key lemma here is the following.

LEMMA 5.12 ([21, Lemma 3.26]). — Let T € O(G). Then there exists a
tree Tp € O(G), an equivariant map h: Ty — T, and a bi-infinite geodesic
representing a generic leaf of A; or of A;, such that h(vp) has diameter
greater than 2BCC(h).

Proof. — As in the proof of [21, Lemma 3.26] (see also [27]), we distin-
guish three cases. We just give a sketch of the proof for each case and we
refer to the original proof for the details.

e Suppose that T has dense orbits. First, we note that arc stabilisers
of T are trivial (this is true by [24, Proposition 5.17]). In this case,
the conclusion is a consequence of Propositions 5.10 and 5.7 exactly
as in the proof of [21, Lemma 3.26].

e Suppose that T does not have dense orbits and that it is not sim-
plicial. This sub-case can be reduced to the first case (of a tree with
dense orbits), by collapsing the simplicial part, exactly as in [21].
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e Suppose that T is simplicial. In this case, we have to show that a
generic leaf of the attracting lamination cannot be contained in the
boundary 0B of some vertex stabiliser B in T'. In other words, we
want to prove that the lamination is not contained in any vertex
stabiliser of a (non-trivial) tree in the boundary of O(G). By [24,
Corollary 5.5], point stabilisers of trees in the boundary have finite
rank and, more specifically, their rank is bounded above by rank(G).
It follows that they have infinite index and so they cannot carry the
lamination, by 5.6. g

5.6. Proof of Theorem 5.1

Everything flows as in the proof of [21, Theorem C]. The point-wise
convergence of Theorem 5.2 follows directly from Proposition 5.5 and Lem-
ma 5.12. The locally uniform convergence then follows, because of the com-
pactness of PO(G).

6. Discreteness of the product of limit trees of an
irreducible automorphism

6.1. Dynamics of train track maps

Let G = ({Gl, cee Gk},r) be a free factor system of a group G.

In this section we prove the discreteness of the G-action on the product of
the two limit trees of irreducible automorphisms with exponential growth.
We do not assume primitivity here, so powers of the automorphism may
be reducible. Similar results in the free case have been proved in [2] and in
the free product case in [7].

In particular, both those papers have a precise analogue of Proposi-
tion 6.4; the argument in [7], which also deals with free products, relies
on a technical hypothesis of no twinned subgroups. Effectively, this allows
that paper to argue that the “angles” (the vertex group elements one en-
counters) remain bounded, and hence one observes similar behaviour to
that seen in [2]. However, we obtain finiteness conditions in a slightly dif-
ferent way by observing that there are finitely many orbits of paths which
occur as the train track image of an edge. However, while this idea is
straightforward, it is somewhat more difficult to implement.
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We also observe that a version of Theorem 6.17, in the free group case,
is proved in [2], but in a slightly different way. There, the main argument
deals with the case where there is no “closed INP”, whose analogue is that
no G-hyperbolic element becomes elliptic in the limit tree. (A version of
Theorem 6.17 is also proved in [7], again with the same technical assump-
tion of no twinned subgroups.) The other case — where there is a closed
INP — is dealt with in [2] via surface theory.

Here we need to face the fact that our deformation spaces have a locally
infinite simplicial structure. For this reason we need different arguments.
However, our approach allows us to deal with both the above cases at the
same time. We recall that we are using the square-bracket notation for
reduced paths (see the start of Section 2.8).

DEFINITION 6.1. — Let f: X — X be a train track map representing
some [¢] € Out(G). Let L be a periodic line in X. The number of turns
of L is the number of turns appearing in a fundamental domain. We say
that L splits as a concatenation of paths, if we can write a fundamental
domain of L as p1 - - - pp such that for any i we have

[fi(pl o 'pnﬂ = [fl(pl)] T [fZ(Pn)]
as a cyclically reduced path.

DEFINITION 6.2. — Let f: X — X be a train track map representing
some [¢] € Out(G). An f-piece, or simply a piece is an edge path p which
appears as subpath of f(e), with e edge, or f(ejes) with e; edges meeting
at a legal free turn (i.e. a turn at a free vertex).

DEFINITION 6.3. — For a not necessarily simplicial path p in a simpli-
cial tree, its simplicial closure is the smallest simplicial path containing p.
In other words, the simplicial closure of p is obtained by prolonging the
extremities of p till the next vertex.

We recall that we defined the critical constant cc(f) of a map f in Defi-
nition 2.36, and Nielsen paths in Definition 2.39.

PropoOSITION 6.4. — Let f: X — X be a simplicial train track map
representing some [¢] € Out(G), with Lip(f) = A > 1. Let C' = cc(f) + 1.
Then there exist explicit positive constants N, M € N (with M = 5N?+N),
such that for any finite edge path, or periodic line L in X, one of the
following holds true:

(1) [fM(L)] has less illegal turns than L;
(2) [fM(L)] has a legal subpath of length more than C';
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(3) L splits (not necessarily at vertex-points) as a concatenation of
paths p1 - -- p, so that each p; is a pre-periodic Nielsen path with
at most one illegal turn.

Moreover, the periodic behaviour of ppNp’s starts before N iterates, and
with period less than N.

The same conclusion holds true for finite paths whose endpoints are not
necessarily vertices, with (3) above replaced by:

(3") there exists L', contained in the simplicial closure of L, such that:
(i) L’ splits (not necessarily at vertex-points) as a concatenation
of paths py -+ ps so that each p; is pre-periodic Nielsen path
with at most one illegal turn;
(ii) endpoints of L are at distance less than C/A\M to those of L';
(iii) if the initial point x of L is in L', then fM (x) is in the same edge
as the image of the initial point of L' (with a corresponding
statement for terminal points).

Proof. — Since powers of train track maps are also train track, by re-
placing f with some power, we may freely assume that Ix (f(e)) > C for
any edge. (Note that if f represents an irreducible [¢], then f™ represents
[¢"™] which might not be irreducible. However, it will still be the case that
f™ is a train track map). We now set constants (whose role will become
clear along the proof):

e My is one plus the number of orbit of pieces (which is finite);

o m = (M2 + My)?;

Q@ is the number of orbit of turns at non-free vertices that ap-
pears in iterates f™(p) where p runs over the set of pieces, and

n=1,...,m (Qn is a finite number);
o No=m(Qm +2)* + 1;
e N = mNy;

e M =5N24+ N.

We give the proof in case L is a finite edge path, by analysing what
happen to maximal legal subpaths of L; the case where L is a periodic
line follows by applying our reasoning to a fundamental domain (and make
cyclic reductions). Also, note that the case where L is legal easily reduces
to (3") with no ppNp appearing (hence L is just in the neighbourhood of a
point), so we may assume L contains at least one illegal turn.

In case L is not simplicial, we refer to non-simplicial maximal legal sub-
paths of L (that possibly arise only at its extremities), as tails.

ANNALES DE L’INSTITUT FOURIER



ON THE ACTION OF ¢ ON Min(¢) 59

First, we observe that if (1) holds for some iterate f™ with n < M, then
by train track properties, it holds also for f™. The same is true for (2) by
Lemma 2.38.

Now, we suppose that we have a path L for which (1) fails (in particular
it fails for any n < M). Then the number of illegal turns in f™(L) remains
constant. This implies that, in calculating [ f (L)], we apply f to each max-
imal legal subpath of L, then cancel, and we are assured that some portion
of the image of that path survives, and that the new turns formed after
cancellations are illegal ones.

For any a maximal legal subpath of L, which is not a tail, we denote
by a, the corresponding maximal subpath in [f"(Lﬂ7 i.e. the portion of
f™(a) that survives after cancellations (for 1 < n < M). If « is a tail, then
we define «,, to be the simplicial closure of the surviving portion. So «, is
a simplicial path in any case. Note that since f is simplicial and expanding,
then

f_l(an) g Qp—1

also in case of tails.

Now we assume that also (2) fails, and prove that in that case (3) is true.
Since f-images of edges are longer than C, the f-preimages of legal paths
we see in [f"(L)] (for 1 < n < M) cross at most two edges. In particular
any maximal legal subpath of [ f"(L)] consists of at most two pieces. Note
that a legal path may a priori be divided in pieces in different ways. Here
we consider the subdivision of a,, given by f~!(a,). Note that from the
definition of piece it follows that if «, consists of two pieces, then they
meet at a non-free vertex.

For each 1 < n < M, and any «, maximal legal subpath of [f"(L)],
we define surv(a, ) = f~M*"(ays) (the portion of o, that survives all M
iterates).

Any such «,, therefore splits in three (not-necessarily simplicial) subpaths

ay, = left(ay,) surv(ay,) right(ay, ).

Remark 6.5. — We observe the following.

(1) Since f-images of edges have length more than C, then any surv(a,,)
contains at most one vertex.

(2) If surv(a,,) contains a vertex v, then surv(an;) = f7(surv(ay))
contains the vertex f7(v).

(3) If af are consecutive maximal legal subpaths, hence forming an
illegal turn, then cancellations between f(«.,) and f(8,) occur in
the subpath f (right(cv,)left(5,)).
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(4) surv(ay,) is never involved in cancellations.

(5) right(av,) and left(a,) are eventually cancelled by f, unless oy, is
a tail.

(6) If o is a non-tail extremal maximal legal subpath of L, say on
the left side (the start of L), then left(a,,) is empty, because no
cancellations occur on its left side (same for the end of L).

(7) If o is a tail, say on the left side, then left(cw,) is just the portion
of the edge containing the beginning of [f”(L)], but which is not

in [f™(L)].
Next we focus our attention on iterates till N. Pick two consecutive such
maximal legal subpaths «, 5 and look at a,, 3, (for 1 <n < N).

CLAIM 6.6. — There exist 1 < s <t < N and points as € as, a; € oy,
bs € Bs, by € B¢, such that

o [175(as) = ag, f175(bs) = by (hence [ay,b] = [f*7%([as, bs])]);

o there is h € G so that [a;,b)] = hlas,bs] (so [as,bs] is a pNp of
period t — s < N, containing a single illegal turn: that formed at
the concatenation point of csfs);

e a; is the unique fixed point of the restriction to ay of hf$~t; b; is
the unique fixed point of the restriction to 3; of hf*~t.

e a; is not internal to right(a;) and by is not internal to left(5s).

Proof. — The proof is based on pigeon hole principle. As mentioned, any
a;, consists of either one or two pieces. In case «,, consists of two pieces, we
denote by v,, the non-free vertex separating the pieces of «,,, and similarly
we define w,, as the vertex separating the pieces of 3,, if any.

By definition of constants, we have My—1 orbits of pieces. So the possible
configurations of orbit of pieces that we read in a maximal legal subpath
are less than Mg + M. Consequently, the configuration of orbit pieces that
we read in paths o, = a,,8,, runs over a set of cardinality strictly less than
m = (M@Z + My)?. Let T be the set of orbit of turns at non-free vertices
that appears in iterates of pieces up to power m (the cardinality of this
family is @,, by definition).

Now, we subdivide the family ¥ = {o,,, 1 < n < N} in Ny subfamilies ¥,
each made of m consecutive elements. By pigeon hole principle any such ¥,
contains a pair of paths o;,0; (with ¢ < j) with the same configuration of
orbit of pieces. To any such pair we associate a tag (Conf, Turn,, Turng)
as follows: Conf is just the configuration of orbit of pieces. We define now
Turn,, the other being defined in the same way.

e Turn, = 1 if a; consists of a single piece.
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e Turn, = Per if a; is made of two pieces and f77%(v;) = v; (Per is
just a label).

e Finally, if none of the above occur, we set Turn, to be the orbit
of 74, the turn we read in «; at v;. Note that if o; consists of two
pieces and v; # f77%(v;), then 7, belongs to 7.

In the last case, the possibilities for the orbit of 7, are at most Q,,
(same for 75). It follows that the cardinality of the set of possible tags
(Conf,Turn,, Turng) is m(Qy, + 2)2. Since Ng = m(Q.m + 2)? + 1 we must
have at least one repetition. That is to say, we find two pairs (o;,,0;,),
(04y,04,) (with 1 < iy < jo < i1 < j1 < N) with same tags. Now we have
three cases.

Case 1 (Both Turn, and Turng are different from Per). — In this case
we set s = jg and t = j;. Let’s focus on a-paths. If Turn, = 1 then a;
and oy both consist of single pieces, and in the same orbit. If Turn, = 7,
then o and «; both consist of two pieces in the same respective orbit, and
whose middle turns are also in the same orbit. So, also in this case we have
that ay and a4 are in the same orbit. The same reasoning shows that [
and B; are in the same orbit.

Thus, there exist h,h’ € G such that oy = hag and 3; = h/Ss. Both
turns we read at (the concatenation points of) a,8s and auf; are illegal.
Since legality of turns is invariant under the action of GG, we have that the
turn we read in (ha)(hpB) is illegal. On the other hand the illegal turn at
atft is (has)(h'Bs). This forces h = 1/, and in particular the whole path
a3, is in the same orbit of ayf;.

Now, we set a; to be the unique fixed point of the restriction to a; of
the contraction hf*~t and set as = f* %(a;). Similarly we define b; and bs.
Thus a; = f'"%(as) = has, and the same holds for b-points.

Case 2 (Turn, = Turng = Per). — In this case we set s = ig,t = Jo
(note that this choice is different from that of Case 1). The paths [vs, ws]
and [vg, wy] both consist of two pieces in the same respective orbit, meeting
at illegal turns. As in Case 1, we deduce that in fact the whole [vs, ws] is
in the same orbit of [v, w;]. In this case we set as = vs, az = vy, by = ws,
by = wy. Note that if [vy, w] = hlvs, ws] then vy is the unique fixed point of
the restriction to ay of hf'™* (and similarly for wy).

Case 3 (One of Turn’s, say Turn,, is Per and the other, Turng, is
different). — In this case we set s = ip, t = jo (as in Case 2). As above,
we see that there is h € G so that the concatenation of the right-side
piece of a; with the left-side piece of B; is the h-translate of the concatena-
tion of corresponding pieces in ag, Bs. If Turng = 1, then as above we see

TOME 0 (0), FASCICULE 0



62 Stefano FRANCAVIGLIA, Armando MARTINO & Dionysios SYRIGOS

that 8; = hf3s, and we define b; as the unique fixed point of hf*~* in S,
bs = f574(by), as = vs, and ay = vy.

So we are left with the case Turng = 75. Let 7, = (e, €’) be the turn
that we read in 5 at ws, and let 7 be the turn we read at w;. Since
the configurations of pieces are the same at iterates s,t, we know that
there is b’ € G so that 7, = (he, h'e’) (note that h=1h’ is in the stabiliser
of w). Now we define H: 85 — f; to be h on the left-side piece, and h’ on
the right-side one; and set b; to be the unique fixed point of contraction
Hfs7t: By — B, and b = f57(by).

In order to have [at,b:] = hlas,bs|, we have to prove that if ws is in
[as, bs], that is to say if ws is on the left side of by, then h = A'. In this case,
since f'7%(ws) # w; and since f is expanding, then f'~%(w;) is on the left
side of w;, possibly on the cancelled region. Now we iterate f for (¢t — s)
more times (note that since t = jo we have enough room to iterate (t — s)
times).

If 7% (ws) is in B; (that is to say, it is not in a cancelled region), then
Si5(wy) s in Byys—s, and from [vg, we] to [Vyy(1—s), Wit (1—s)) We see the
same cancellations we had from [vs, w;] to [vg, wy]. It follows that f1=*(7;)
is in the same orbit of f1=*(7) and this forces h = I'.

Similarly, if f1=%(w,) is cancelled, then f!=*(w;) must also be cancelled
— overlapping a turn in the image of a; being in the same orbit as
fi=%(rs) — otherwise the turn we read at concatenation point of
Qi p (t—s)Bi4(t—s) Would become legal, contradicting the fact that the num-
ber of illegal turns stay constant (and cancellations on the right side of 3
and on the left side of a never touch the illegal turn between o and 3, see
Remark 6.5(4)). Again, f'=%(r;) and f'~*(7) are in the same orbit and
thus h = h'.

In all three cases, we proved the first three properties. We check now
the last one. We prove that a, is not in the interior of right(«,), the same
reasoning proving that b, is not in the interior of left(S3;).

We already proved that [as,bs| is a pNp. A priori as could belong to
right(a). If by € left(Bs) Usurv(Bs) then it is clear (Remark 6.5(3)) that
the cancellations we see in subsequent iterations are the same we see from
[as,bs] to [at,b:] and in particular a, is never cancelled, so a posteriori
as would belong to surv(as). But now note that the very same holds true
also if by € right(8s). Indeed, in this case f™(bs) may, a priori, eventually
disappear from (5,; but still, cancellations with a-paths arise in a subpath
which is in the image of ft"[as,bs] because by is on the right side of
surv(f;) which is never involved in cancellations. The claim is proved. O
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If af are as in the claim, then by pulling back as,bs to (the simplicial
closures of) «, 8 we find a ppNp in (the simplicial closure of) L. We set
a = f~*(as) and a, = f"(a,) for any 1 < n < M. Similarly we define b-
points. The path [a,, b,] evolves till n = s < N, then starts with a (orbit)
periodic behaviour with period p = t—s < N. The idea is that this provides
the requested splitting of L.

Let v be the maximal legal subpath of L on the left side of « (if any).
Claim 6.6 can then be applied to the subpath va. We wish to show that
the point in « obtained from that process is the same as the one obtained
by applying Claim 6.6 to af.

Let ¢, a’ in v, a respectively, be the points provided by Claim 6.6, so that
[c,a’] is ppNp. As above we denote ¢, = f"(c¢) and a,, = f™(a’).

CrLAaM 6.7. — We have a = a'. That is, applying Claim 6.6 locally
results in well-defined points globally.

Proof. — Let s’ be the iterate where periodicity of [c,, al,] starts, and let
p’ be the period. Without loss of generality we may assume s’ < s. Since
[csr,aly] is a pNp, then also [cs, a}] is a pNp with the same period p’. Let
P = pp/, note that P < N2. Both [c,a’] and [as, bs] are P-periodic. At
time s the segment [as, b,] is contained in [f*(L)] but a priori its extremities
may get cancelled from [f™(L)] in subsequent iterations. The same holds
for [cyr, al].

Suppose that images of a, a’ are not cancelled till the next three iterations
of fF (note that s + 3P < N + 3N? < M). Since f-images of edges have
length more than C' and L contains no legal subpath of that length, then
for n = s,s + P,s + 2P the segment [a,,a]] — which is the preimage
of [asy3p,al, 5p] — contains at most one vertex. Therefore there are two
iterates in the first three steps so that [a,,a)] contains the same number
of vertices which is either zero or one. Now, since f is expanding and a,
and a}, are orbit-periodic, this forces a, = a,, so a = a’ (because [a, d'] is
a legal path). (To be precise here we don’t use only the periodicity of a, a’
but the periodicity of the pNp’s [cs,a’] and [as, bs] because we need the
orbit periodicity of the oriented edges containing a,, and a!,.)

We end the proof by proving that a is not cancelled in iterations till
s+ 3P (the same reasoning will work for a’). Suppose the contrary. Let 7,
be the illegal turn of [c,, al,] (75, is in the orbit of 7, but 7, # f™(7)). Since a
is cancelled, then a € left(a) (because we know it is not in right(a)) and in
particular [as3p, bst3p] contains 7sy3p on the left side of surv(asysp). By
periodicity [astap, bstap]| contains the segment I:fP(TS+3P),TS+4P:|7 still in
the left side of surv(as44p). In particular it contains a whole edge, hence
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[@s45p, bsysp) contains a legal segment of length more than C' on the left
side of surv(asqsp). By periodicity, [as,bs] contains a legal subpath of
length more than C' which contradicts the fact that (2) fails (note that
s+5P < N+5N%=M). O

Now, if L is simplicial, then we have provided a splitting of L in ppNp’s,
as required. In the general case, we have a splitting of the simplicial closure
of L so that interior paths are ppNp’s.

Now let’s focus on tails. Let a be a tail, say the starting one, and let a
be the point in the simplicial closure of a given by Claim 6.6. So a is the
starting point of our L’. Let x be the starting point of L (note that x is
never cancelled till M iterates because (1) fails). Point a may lie either on
the left or on the right side of z. If a is on the left side of z, i.e. x € L', then
the images f™(z) and f™(a) are in the same edge (and edges have length
less then C because (2) fails), and in particular at distance less than C
apart. If z is not in L', then the segment [fM(:c), ™ (a)] is shorter than C
because [z, a] is legal and never affected by cancellations, and (2) fails. In
both cases dr(z,a) < C/AM.

The proof of Proposition 6.4 is now complete. g

The following is now immediate, since we may iterate Proposition 6.4,
bearing in mind Lemma 2.38.

COROLLARY 6.8. — In the hypotheses of Proposition 6.4, for any C7 > 0
there exists an My € N such that, for any finite edge path or periodic line L
in X, one of the following holds true:

(1) [fM(L)] has less illegal turns than L;

(2) [fM*(L)] has a legal subpath of length more than C1;

(3) L splits (not necessarily at vertex-points) as a concatenation of
paths py - -+ p, so that each p; is a pre-periodic Nielsen path with
at most one illegal turn.

The same conclusion holds true for finite paths whose endpoints are not
necessarily vertices, with (3) above replaced by:

(3) (i) L splits as a concatenation of paths dgp1 - - - p,01 so that each p;
is pre-periodic Nielsen path with at most one illegal turn;
(ii) do,01 each cross at most one illegal turn;
(iii) do,d1 each have length at most 2 cc(f).

DEFINITION 6.9. — Let f: X — X be a train track map. A path § in X
is called pre-legal if for some n € N, [f”(ﬁ)] is legal.

LEMMA 6.10 (The 2/3-lemma). — Let f: X — X be a simplicial train
track map representing some [¢] € Out(G), with Lip(f) = A > 1. Let L
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be either a finite path or a periodic line in X. Let M = 5N? + N be the
constants of Proposition 6.4. Suppose that no legal subpath of length more
than C' = cc(f) + 1 appears in iterates [f"(L)] for 1 < n < M, but that
[f”(L)] becomes eventually completely legal for some n > M (that is, L
is pre-legal). Then:

#{illegal turns of [fM(L)]} < %(#{illegal turns of L} + 1).
In particular, if #{illegal turns of L} > 3, then®
#{illegal turns of [fM(L)]} < g#{illegal turns of L}.

Proof. — We order L and fM (L) accordingly. Let o - - - 0, be the subdi-
vision of [ ™ (L)} in maximal legal subpaths. Let S; be the starting point
of o;, which coincides with the ending point of o;_1. Let V; = min f = (S;)
and Wy = max f~M(S;). (We may have V; = W if for example f~*(S;) =
V1 and the turn at Vj is legal, which can happen because our maps are
train track for (~:), not necessarily for ~.) Define v; = [V, W1]. The set
F7M(Sy) N {z > W1} is nonempty just because f*(v;) can be retracted
to Sy in [fM(L)] (also, note that () is a tree which is rooted at Sy,
but a priori it could contain the segment o2, so one could possibly see
some preimage of Sz in 7). Let Va, Wy be respectively the min and max of
F~M(So)N{z > Wi}, and define v, = [Va, Wa]. Recursively define V;, W;, v;
in the same way, and define subpaths & = {x < Vi }, & = [W;, Viyq] for
i < h,and &, = {x = W}, } (so & is a preimage of ¢; in a broad sense).

Since any ~; gets cancelled in [ ™ (L)], then it contains at least one il-
legal turn (v; may be a single point at an illegal turn of L, in this case we
abuse notation and still say that 7; is a path containing one illegal turn).
Suppose that v; contains only one illegal turn. For any x; € &_1, y; € &,
Proposition 6.4 applies to the path [x;,y;], and taking those points suffi-
ciently close to 7;, we may assure that we are in the situation (3'iii), for both
x;,y; (so the images of endpoints of the ppNp provided by Proposition 6.4
are in o;_1, 0; respectively). Proposition 6.4 in particular implies that we
find z; € §_1,t; € & so that [Zi,ti] C &_17:&; is ppNp, with periodicity
starting before N iterates,(® and with period less than N, where N is as
in Proposition 6.4. Note that by periodicity, and since f is expanding, then
either ¢; coincides or it is on the left of z;11. (Indeed, since f is expanding,
the f™-images of [z;, t;] are longer and longer paths, in which some central

(5) Because if & > 3, then %(az +1) < gx.
(6) See Definition 2.39.
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portion cancels because of periodicity. Any point x in the interior of [z;, ¢;]
eventually cancels in iterates because otherwise the distance of f™(x) from
f™(z;) would exceed the distance between f™(z;) and f™(t;). By periodicity,
zi+1 does not cancel, and so it must stay on the right of ¢;.)

We say that ~; is:

e periodic if 7; contains only one illegal turn, and such turn will be
called periodic;
e non-periodic if ; contains at least two illegal turns.

Since [ f"(L)] becomes eventually legal, all illegal turns must disappear,
and they can disappear in two ways: either they become legal after some
iteration-cancellation of the turn itself, or they are cancelled by overlapping
the image of some other illegal turn (since f is train track, no new illegal
turns are created).

Since illegal turns in the periodic «;’s remain illegal forever (because they
are part of a pNp), then they must cancel by overlapping or just because
they are at extremities of L and the ppNp provided by Proposition 6.4
strictly contains that extremity of L. There are at most two illegal turns
of the last kind, at the extremities of L.

CLAIM 6.11. — The illegal turns of iterates of two different periodic v;’s
never overlap.

Proof. — Suppose the contrary. Let 7; and 7; be two periodic paths
whose illegal turns eventually overlap. Let 7 be the illegal turn of v; and w
that of ;. Let 7, = f"(7) and w,, = f™(w). Let s < N be such that both ~;
and 7; become periodic from step s on, and let p;, p; their periods, whose
product p = p;p; is less than N2 (by Proposition 6.4). Let ng be the first
iterate when 7,,, = wp,. Let N < ¢ < N + p such that ¢ = ng (mod p)
(note that N +p < N+ N? < M). By periodicity 7, is in the same orbit as
Tne and wq in the same orbit as wy,,. Thus there is g € G such that w, = g7.
Note that g # id because ; and «y; remains disjoint till iterate A/. But now
[r079(1g) = Tng = Wiy = [ Uwy) = f07Ugry) = gTn, forces g =id, a
contradiction. g

Therefore, except possibly for the two extremal ~y;’s, we can associate to
any periodic 7; the illegal turn 7eanc(y;) of some other ~; which eventually
cancels the unique illegal turn of ;. By the claim above, the turn 7eanc(y;)
is one of the illegal turns of [f*(L)] that come from a non-periodic 7.
Again by the claim, different periodic 7;’s have associated different non-
periodic turns, that is Tcanc(Vi) # Teanc(7yj) for @ # j. That is, Tcanc is
injective.
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Let A, B be respectively the number of periodic and non-periodic illegal
turns we see in [ ™ (L)} . Since Teane i injective and defined possibly except
for at most two ~;’s, we have A — 2 < B. It follows that

(A-2)+B _2

(A-2)+2B ~ 3

hence

A+ B< (A72+2B)+2:%(A72+2B+3):§(A+2B+1).

wl N

The number of illegal turns in [fM(L)] is A+ B by definition. Any non-
periodic illegal turn in [f*(L)] contributes to at least two ™) illegal turns
in L, so the number of illegal turns of L is at least A+ 2B and the lemma
is proved. O

Remark 6.12. — The statement is sharp, as you can build a path with
two illegal turns that survives till M but then disappears, just by a con-
catenation of two pNp’s to which we cut a suitable portion near the ends.

DEFINITION 6.13. — For a simplicial G-tree X denote by ax the length
of the shortest edge of X.

LEMMA 6.14. — Let [¢] € Out(G). Let Y € O(G) such that there exists
a simplicial train track map fy:Y — Y representing [¢ '] (for example if
[¢] is G-irreducible and Y € Min(¢~!) admits a simplicial train track). For
any constant C1 > 0, and any X € O(G), set

D:g—i—l D' = DA(X,Y)A(Y, X).
ay
Then, with these constants, the following holds true for any g € Hyp(G): if
% < 1/D’, then the axis of g in' Y contains an fy-legal subpath of

length at least C1.
Proof. — First, observe that if %nq(g)) < 1/D’, then

@
by (679" (9)) ty(g)

ty(on(9))  tr(e™(9))

- (ro) (28) Gy
Ix(9) 1 1

" ix(0n(9)) A(Y, X) A(X,Y)
> D.

(") Because any illegal turn of [f*(L)] which is not in a periodic v; comes from a non-
periodic 7y;, each of which contains at least two illegal turns.
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Let L be the axis of ¢"(g) in Y. Let ny be the number of fy-illegal turns
in a fundamental domain of L. Then if [f;;"(L)] would not contain any
legal subpath of length at least C1, since fy is train track, we would get

ZY (g) < C’lng.
But also (since fy is simplicial),

ly ((b”(g)) > ngay.

Hence, 7-05:%07 < &
LEMMA 6.15. — Let [¢] € Out(G) with A\(¢) = A > 1. Let X, Y € O(G)
such that there exist simplicial train track maps fx: X — X, fy:Y —
Y representing [¢], (¢! respectively. Let h: X — Y be a straight G-
equivariant map.
Then, for any Cy > 0, there exist b € N and 0 < Ly € R such that, for
any path 8 in X, if B is pre-legal (for fx) and lx(5) > Lo, then either

< D, contradicting the above inequality. O

(i) [f%(B)] contains an fx-legal subpath of length at least Cs, or
(ii) [A(B)] contains an fy-legal subpath of length at least Cy.()

Proof. — We start by setting some constants.
The constant K. There exists a uniform constant K (depending only
on X) such that for any path 8 = [u,v] in X there exists g € G such that:
(i) w is in the axis of g;

(i) v € [u, gul;
(iii) the distance from v to gu is bounded above by K.

That is, if we look at the quotient graph of groups, we can complete the
image of any S to a cyclically reduced loop by adding a path of length at
most K.

The constant C;. Let C = cc(fx) + 1 and
C1 = max{C, 2C; + 2Lip(h)K }.

The constant M. Our constant M is the same one that appears in
Proposition 6.4, Corollary 6.8, and Lemma 6.10.
We then set, bearing in mind Lemma 6.14, the following constants.

(8) We note that this result is an analogue of [2, Lemma 2.10]. However, that lemma
requires the automorphism to be nongeometric, as it is otherwise false. We do not make
the nongeometric assumption, and it is this that requires us to restrict to pre-legal paths.
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The constants D, D’, D".

D:%+17 D' = DA(X,Y)A(Y, X), D" =2D".
The constants b, by, by € N. They are so that
(g)blc1 33 AP > Oy, b= b M + b,
The constants L1, Ly > 0. They are defined by:
% + )\z‘:{ = i,, Lo = max{L;,4C3D"}.

We note that for any L > L; (in particular if L > Lg) we have,

Ly

1 MK 1
L SD

We now argue as follows. If [ % (ﬂ)] contains a fx-legal subpath of
length at least C5, we are done. Otherwise, consider paths 3, [f)]\f (5)] e
[ )]\(/Ibl (ﬂ)] If any of these paths contain an fx-legal subpath of length
at least C' = cc(fx) + 1, then by Lemma 2.38, | %blﬂ”(ﬁ)] = [/%3)]
contains an fx-legal subpath of length at least A’> > C5 and we are done.

Hence we may assume that maximal legal subpaths in each of these
paths have length less than C. In particular Ix ([f%(8)]) is bounded by
the number of its illegal turns times min{C, C2}. Let ng be the number of
illegal turns of S.

By Lemma 6.10, either the number of illegal turns in [ f% ()] is at most

(%)blng, or the number of illegal turns in some [ f(bl (5)], and hence also
in [f;’((ﬂ)], is at most 3.

In either cases, our choice of constants guarantees that
(] _ 1
Ix(B) D"

b
Indeed, in the latter case we easily get W <4C3 /Ly < ﬁ. In the

former case we have Ix(8) > axng, whence

x ([fXB)]) _ 8\ " "
R (5) Clax < C/C,D" < 1/D".

Next we complete S to a path 7, as in the definition of our constant K.
That is, B is cyclically reduced, it is the fundamental domain of a hyper-
bolic element g € G, and v has length at most K. Note that

Ux (¢°(9) < Ix ([f%(B7)]) <Ix([f%(B8)]) + V'K,
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and therefore (since £x(g) = Ix(57)),

(x(@"(9) (SPGB 1 AK 1

Ix(g) — Ix(By) T D" Ix(By) T D
Hence, by Lemma 6.14, the axis of g in Y contains an fy-legal subpath of
length at least C;. This means that [h(ﬁ*y)] contains an fy-legal subpath of
length at least C7/2 (the number C;/2 arises from the fact that the legal
subpath is really a subpath of the axis, and not necessarily of [h(ﬁv)])
We then get that [h(ﬁ)] contains an fy-legal subpath of length at least
C1/2—Lip(h)K > C, because the length of [h(7)] is at most Lip(h)K. O

LEMMA 6.16. — Let f: X — X be a simplicial train track map rep-
resenting some [¢] € Out(G). If p is any periodic line in X which is a
concatenation of pNp’s, then any group element acting periodically on p is
elliptic in X 4.

Proof. — This follows directly from the construction of X . O

THEOREM 6.17. — Let [¢] € Out(G) be G-irreducible and with A(¢) > 1
(that is, a relatively irreducible automorphism with exponential growth).
Let X € Min(¢) and Y € Min(¢~ 1), and denote by X, and Y_., the
corresponding attracting tree and repelling tree for ¢, respectively (Defini-
tion 2.63). Then there exists an € > 0 such that for all g € G, either

o Ix, (9)=4ty (9)=0,0r
e max{lx,_(9),0v_.(9)} =€

Proof. — Without loss of generality (Proposition 2.65 and Remark 2.32),
we may assume that each of X,Y supports a simplicial train track map —
let’s call these fx and fy — representing [¢] and [¢~!] respectively, so that
we may apply Corollary 6.8. Let C be larger than the critical constants for
fx, fy plus one, and then apply Corollary 6.8 to get constants My, My
of which we take the larger, and call this M;. By Lemma 2.38, for any
path p in X, containing a legal segment of length C1, [f%(p)] contains a
legal segment of length at least (A(qﬁ))n Similarly for Y.

We first show that X, and Y_., have the same elliptic (and hence
hyperbolic) elements. To this end, suppose that g is X.-elliptic. This
implies that £x (qb"(g)) is bounded for all n > 1, by some constant A
(depending on g). (No legal segment in the axis for ¢™(g) can be longer
than the critical constant, and the number of illegal turns is bounded.)
Hence ly (¢"(g)) < AA(X,Y) is also bounded for all n > 1. In particular,
if we realise ¢"(g) as a periodic line in Y, then the number of illegal turns
in its period is uniformly bounded for all n > 1 (just because the length
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of paths is bounded below by ay times the number of turns). Let A; be
greater than this number of illegal turns.

Suppose n is large and apply A; times f{yl to the axis L of ¢™(g)
in Y. By Corollary 6.8, we have either reduced the number of illegal turns
by Aj, which is impossible, or we have a legal segment of length C; in
[f;ﬁhMl(L)], or L is a product of ppNp’s in Y and hence Y_, elliptic
(Lemma 6.16). We argue that only the last can occur, since otherwise the
length of [ {i‘lMlj(L)] in Y would be at least (A(¢!))’. But we know that
ly(9) < AA(X,Y), and we can take j so that ()\(cé_l))J > AA(X,Y) and
n = A; M, j, getting to a contradiction. (Note that if L is the axis for ¢"(g)
in Y, then [f{(L)] is the axis for g in V)

Therefore Ix, _(g) = 0 implies that ly__(g) = 0, and vice versa, by
Syminetry.

Next we set our notation and constants:

(i) h: X — Y is a straight G-equivariant map;
(i) Cy = max{cc(fx)+1, cc(fy)+1+2BCC(h)};

(iii) Lo, b are the constants from Lemma 6.15 with the previous value

of CQ;

(iv) J is any integer greater than 7Lg/ax;

(v) M is the constant from Proposition 6.4;
(vi) e =min{1, 1/A(¢)’, 1/X(¢)"M}.
We are going to show that for any X -hyperbolic g

InaX{EXJroo (9), éyfoo(g)} > €.

Consider an X -hyperbolic g, which we represent as a periodic line L
in X. First note that the statement here is really one about long group
elements. More precisely, if £x(g) is bounded above by 7Lg, then we may
apply Proposition 6.4 J times. Since J is greater than the number of edges
— whence that of illegal turns — in a period of L we cannot reduce the
number of illegal turns J times. We also cannot write L (or [f{(L)]) as
a product of ppNp’s, as that would imply that g was X -elliptic. Hence,
[/ (L)] must contain an fx-legal segment of length at least cc(fx) + 1.
Then, by Lemma 2.38, [ ;MH (L)] must contain an fx-legal segment of
length at least A(¢)7, and so £x, _(g) = 1/A(¢)"™ > e

Next, since g is X yo-hyperbolic, there exists some n > JM such that
[ f)”((L)] contains a legal subpath longer than the critical constant for fx.
Hence, by increasing n, we can assume that [f%(L)] contains arbitrarily
long legal segments. In particular we shall assume that [ ¥ (L)] contains a
legal subpath of length at least 2 cc(fx) + 1.
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Let 8 be a subpath of L such that [f}} (ﬂ)] is a legal subpath of [f)’} (L)]
(Constructively, take two points p, ¢ in [ f}é(L)] that bounds a legal sub-
path, and consider any two preimages in L. These are the endpoints of 5.
Thus, the endpoints of S lie in f)}”([f;(L)]))

If it were the case that Ix(8) > Lo, we could apply Lemma 6.15 to
conclude that either [ fg((ﬁ)} contains an fy-legal subpath of length at
least Cy, or [h(ﬂ)] contains an fy-legal subpath of length at least Cs. In
the former case, [f%(L)] contains [f% ()] as a subpath, and hence an fx-
legal subpath of length at least Cy > cc(fx) + 1. Hence, by Lemma 2.38
the length of [ ?‘j(L)] is at least A(¢)? and thus, £x, _(g) = 1/A(¢)" > e
Similarly, in the latter case, [h(L)] contains an fy-legal subpath of length
at least Cy —2BCC(h) (cancellation is possible on applying h). Since Co —
2BCC(h) = cc(fy)+1, we conclude as before that £y___(g) > 1 > €. Hence,
we may assume that all such S have length less than L.

Finally, we conclude as follows. Choose four points, pg, p1, p2, p3 € [ % (L)} ,
such that [po, ps] splits as [po, p1][p1, p2][p2, p3], where [p1,po] is a maximal
legal subpath of [f%(L)] of length at least 2cc(fx) + 1, and [po, p1] and
[p2, p3] each consists of three maximal legal subpaths of [ f}}(L)] Then, for
any 0 < i < n we backward-recursively choose preimages f;{”(ps) of these
points in each [f%(L)]. Thus, for all i the path [fi "(po), f "(p3)] is a
subpath [f% (L)] which splits as

A7 o). £ O L5 (). £ (o)) £ 02). 157 ).

Moreover, for all j we have fg( (f)}”(ps)) = g{”(ps). Let

Yo = [fx" (o), fx" (p1)],
B=1fx"(p), fx"(p2)],
7= [fx"(p2), fx" (p3)]

and set v = 7o 871. Since we are assuming that preimages of legal subpaths
of f%(L) have length at most Ly (as otherwise we are done), we have
Ix(8) < Lo, Ix(70),Ix (1) < 3Lg, and Ix(y) < 7Lo.

As before, we apply J times f¥ to v, where J (defined above) is a bound
on the number of illegal turns in v. We analyse the behaviour of this path
using Proposition 6.4. We know that if we get a long legal segment for fx,
this would bound the length £x, _(g) from below (by 1/A(¢)’* > €). Also,
we cannot reduce the number of illegal turns J times. Therefore, we are
left with the case where for some j < J we have that [ M (’y)] splits as

[F7MA] = Sop1 -+ prdi,
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where each subpath has at most one illegal turn and the p;’s are ppNps.
Moreover, | g(M(fy)} has subpaths | g(M(’yo)], [ &M(ﬁ)} and | g(M(fyl)]. We
also know that the first and last of these cross at least two illegal turns,
because [po, p1] and [pa, ps] cross two illegal turns. In particular, [ g(M(ﬁ)]
is a subpath of p; - - - p,. However, this is a splitting and therefore [f}} (5)]
is a subpath of | )"(_jM(pl -+ px)], which is impossible since [f%(8)] is a
legal path of length at least 2 cc(fx) + 1, and no ppNp can contain a legal
subpath of length greater than cc(fx). O

7. Co-compactness of the Min-Set

We will prove our main theorem, first under the extra hypothesis that
our automorphism is primitive. More specifically, we will prove that the
Min-Set of a primitive irreducible automorphism is co-bounded under the
action of (¢), which implies that it is co-compact (see Section 4). The
general result is proved in the next section, where we drop the primitivity
hypothesis.

Let us fix a group G and a free factor system G = ({Gl,...,Gk},r)
of G. We are going to use north-south dynamics stated in Section 5, where
we had the additional assumption of rank(G) = k + r > 3. We remark
that in case of lower rank, either we are in the classical CV5 case, and the
co-compactness result is known (a proof can be found for example in [15])
or the result is trivial.

7.1. Ultralimits

At this stage, our strategy is as follows: we will argue by contradiction
so that if Min;(¢) is not co-compact, then Theorem 4.26 provides us with
a sequence of minimally displaced points Z; which stay at constant Lips-
chitz distance from the attracting tree X, .o, but which are at unbounded
distance from some basepoint. We can find scaling constants p; so that
Z;/p; is bounded, and we would like to take the limit of a sub-sequence
of Z;/p;. The problem with this is that a priori we do not have sequential
compactness unless G is countable (Remark 4.18).

This is a minor issue, as what we really use is the existence of some
adherence point of the above sequence. The easiest way to deal with this
is to turn to w-limits (or ultralimits). Of course, the main point of interest
is exactly when G is countable, and in this case w-limits are not needed.
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So the reader may wish to simply read all the w-limits as usual limits,
and the arguments stay essentially the same (up to taking subsequences
appropriately, and consider suitable lim inf or lim sup in some inequalities).
We refer to Section 2 definitions and some basic properties for w-limits,
especially Definitions 2.53, 2.55 and Proposition 2.56. In our situation, we

make the following definition of w-limit of elements in O(G).

DEFINITION 7.1. — Let w be a non-principal ultrafilter on N. Let (Y;) C

O(G) be a sequence and let Y, € O(G). We say that Yo, is the w-limit of Y;,
and write Yo, = lim,, Y; if for any g € G we have

ty..(9) = lim by, (g).

Remark 7.2. — Suppose that for any g € G, the w-limit of ¢y, (g) exists.
Then the corresponding w-limit length function is indeed the length func-
tion of an element in Y, € O(G). This is because the conditions defining
length functions of trees are closed under w-limits (by Proposition 2.56

and [29]).

PROPOSITION 7.3. — Let w be a non-principal ultrafilter on N. Consider
a sequence of points Z; € O(G), and let X € O(G). Set p; = A(X, Z;). Then
lim,, % exists, is unique (depends on w) and non-trivial.

Proof. — Notice that for any g € G, £z,(g9) < pilx(g). So each sequence
M is a bounded sequence and therefore has a unique w-limit Ir(g) for
some T'. Furthermore, Lemma 2.41 provides a finite set H C G such that,

for any i,

ANX,Z;) = max Tx(h)

Hence,

(W)
= limmax Ix(h)

s limy, £z, (h)/u;
heH ex(h)

which shows that the limiting tree is non-trivial. Here we have used that
the w-limit commutes with a finite maximum (Proposition 2.56). O
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7.2. Co-compactness of the Min-Set of primitive irreducible
automorphisms

For this, and the next section, we fix once and for all a non-principal
ultrafilter w on N. In the subsequent results we refer to A(T,—), where T'
may be a tree in O(G), rather than just in O(G). We intend the following.

DEFINITION 7.4. — Let T,W € O(G). We set A(T, W) to be the supre-

mum of the ratios, QV;((;)) , over all elements which are hyperbolic in T'. This

is possibly infinite. We also set A(T, W) = +oo if there is a T-elliptic group
element which is hyperbolic in W.

LEMMA 7.5. — Let [¢] € Out(G) be G-irreducible and with A(¢)=A>1.
Let X € Min(¢) and let X1 o, be the corresponding attracting tree. Suppose
we have a sequence (Z;) C Miny(¢) for which there is y; such that lim,, f—
exists and is a non-trivial tree T'. Then, for any positive integer n we have:

o A(T,To") < A
o if AN(T, X ) is finite, then A(T,T¢™) = \™.

Proof. — The first claim is straightforward, since for any T-hyperbolic g
Crn (g on ; (g on
17 (9) _ o 2o @)1 _ o Lz (9)

lr(g) w Lz (9)/m  w lz(9)

For the second claim note that, for any T-hyperbolic g and any positive
integer m,

<A

MT, X1 00) = AT, Xpood™")
 txn (6™(9)
tr (o™ (g))
_ Ux, . (g)A™"
br (o™ (g))
Ux, . (g)A™"
~ tr(g) (AT, Tm))™

= S (A(T,A;w))m‘

We note that at no stage are we dividing by zero here. Indeed, if g is

T-hyperbolic, then it is also G-hyperbolic and:
Ir(¢(9)) l2:(¢(9) .. 1 1 1

=lim > lim

) L lnle) S NZeZ) T S NZZol (g
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where the last inequality follows from quasi-symmetry, Lemma 2.19 and
the fact that Min; (¢) is uniformly thick (Theorem 2.47). In particular, this
says that if we start with a T-hyperbolic group element g, then ¢(g) is also
T-hyperbolic (hence ¢™"(g) is also T-hyperbolic). O

LEMMA 7.6. — Let [¢] € Out(G) be G-irreducible and with A(¢)=A>1.
Let X € Min(¢) and let X, be the corresponding attracting tree. Let
Y € Min(¢) such that it admits a simplicial train track representative for
[¢], and let fy:Y — X, be an optimal map. For any g € Hyp(G), and
any integer n, we have

B

lx, . (¢"(9) = MY, X 100)ly (¢™(9)) — KY(g)Ea

where B = A(Y, X4 ) vol(Y) is the BCC of fy and ay is the length of the
shortest edge in Y.

Proof. — For g € Hyp(G), let ny be the number of edges in a reduced
loop representing g in G\Y. Clearly ¢y (g) > ngay. By Proposition 2.64,
the axis of ¢"(g) in Y can be written as a concatenation of at most 7,
fy-legal paths. By Corollary 2.35,

Uxy o (9"7) 2 MY, Xyoo)ly (¢"y) — ngB
B
> A(Y, X 100)ly (¢™(9)) — EY(Q)E' O
LEMMA 7.7. — Let [¢] € Out(G) be G-irreducible, with A\(¢) > 1. Then

there is a constant € > 0 such that for all W € Miny(¢), admitting a
simplicial train track representative of [¢], we have

aw > €
where ay denotes the length of the shortest edge in W.

Proof. — Note that uniform thickness of minimally displaced points is
not enough in order to have a lower bound on the lengths of the edges,
but for points supporting simplicial train track representatives there is
such a bound, as there are finitely many transition matrices of simplicial
train tracks representing [¢],”) and the lengths for edges are given by
eigenvectors of the Perron—Frobenius eigenvalue of these matrices. 0

(9) Such transition matrices have integer non-negative entries, and spectral radius A(¢).
Hence each entry of the matrix is bounded by Ag. So for any given spectral radius A
there are only finitely many matrices with non-negative integer coefficients and spectral
radius not exceeding .
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PROPOSITION 7.8. — Let [¢] € Out(G) be G-irreducible and with A\(¢) =
A > 1. Let X € Min(¢) and let X, be the corresponding attracting tree.
Let T € O(G) be a non-trivial tree which is the w-limit of a sequence Z; / ji;
with the following properties:

(1) the Z; are uniformly thick and with co-volume 1; that is, 3¢y > 0V
i,7; € 01(60),’

(2) pi — oo;

(3) there is § > 0 such that A(Z;, X 1oo) = 6, for all i;

(4) there is a sequence W; € Min; (¢) and K > 0 such that A(Z;, W;) <
K, for all i (for example if the Z; themselves belong to Miny(¢)).

Then A(T, X1 o0) = 00.

Proof. — Note that by assumption T is non-trivial. Without loss of gen-
erality, we may assume that each W; supports a simplicial train track rep-
resenting [¢] (Remark 2.32).

Note also that the points W; are uniformly thick because they are mini-
mally displaced (Theorem 2.47) and the same is true for Z;, by assumption.
Therefore, all the points W;, Z; belong to some uniform thick part and since
the stretching factor A is multiplicatively quasi-symmetric when restricted
on any thick part Op(e) (Theorem 2.19) it follows that there is some uni-
form constant C' such that

A(Z;, W)€ < AW;, Zi) < M Zs, W5)©.

In particular, it follows that for the constant K; = K¢, we get that for
any %:

A(WZ’ ZZ) < A(Z’h WZ)C < KC = Kl'

We will prove now that there is a non-trivial tree S € O(G) so that W;/p;
w-converges to S. We first observe that for every hyperbolic element g € G
and positive integer ¢, we have that:

0< lw, (g) = tw,(9) < ngi(g)'

My M Hi

It follows that the sequence W;/u; is bounded, and so S = lim, W;/u;
exists. Moreover, T, S have finite distances to each other (in particular, S
is non-trivial since T' is non-trivial, and they admit the same hyperbolic
elements) because of the inequalities:

ls(9) _ o twilg)/pi
(r(g) =1 (z,(9)/ i sk
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and similarly

l Ly, ;

WONNC A

ls(g) @ Lw,(9)/pi
Therefore, it is enough to prove that A(S, X1) is infinite. We argue by
contradiction, assuming that

A(S, X—i—oo) < Q.

Then, by Lemma 7.5, A(S, S¢™) = A\™ for any positive integer m. For all
such m, we then choose a S-hyperbolic element g,, such that

L5 (6™ (gm)) /05 (gm) = A" /2.

Now we apply Lemma 7.6 to W; and get constants B; = A(W;, X1)
(because vol(W;) = 1), and ¢; = aw,. By Lemma 7.7, there is a uniform
€ > 0 so that ¢; > € for all 7. On the other hand, by the properties of Z;
and the triangle inequality, we get that all the distances A(W;, X ) are
uniformly bounded from below by %. Thus

£ (67 0n) > A0V X (£, (67 0)) = i, (o))

1) 1
> — (™ — . - .
“ K <€WZ (¢ (gm)) EW,, (gm) 6)
Therefore,

frus (0700 0 (il )
ely, mgm

bw, (¢™(gm)) ~ K
o H ) )

For any 0 < 09 < 1, choose m such that 1 — dim > 1 — dg. For this

choice of m, let ¢; = %. Then the calculation above shows that

lim, c; > %(1 — dp) > 0. On the other hand, A(S, X.o) > limy, ¢;p;.
Hence,

A(S, X1o0) > lim w -

K
contradicting the assumption A(S, X ) < +o0. O

Remember that if T, S € Min;(¢) we have (Proposition 2.65 and basic
properties of stable trees):

T+oo = A(Sa T+OO)S+007
A(S+007T+00) = A(Sv T+oo),
Tocd™ = A(¢) " Tee.-
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PROPOSITION 7.9. — Let [¢] € Out(G) be G-irreducible and with A\(¢) =
A> 1. Let X € Miny(¢), Y € Min; (¢~ 1), and let Xy, Y_o be the corre-
sponding attracting and repelling trees.

Then, for every constant v > 0, there is a constant 6 = §(v, A\, X,Y) >0
so that for every Z € Min;(¢) we have

MZ, Xi)<v = MZY_o)=6.

Proof. — Let € > 0 be the constant given by Theorem 6.17. For any
positive number v, fix a (for instance the smallest) positive integer ng for
which

—ng €
A < o
Let now Z € Min;(¢) be such that A(Z, Xio) < v, and let Z,
be the corresponding attracting tree. Let g be a candidate that realises
AMZ, X ~). In particular g and any of its power are not X ..-elliptic.
Moreover, the length of g with respect to both Z and Z,, is bounded

above by 2 (as the volume of Z is 1). If we set now h = ¢~ "(g), we get
Uxyoo (M) =Llrz,x )70 (R)
=AMZ, Xyoo)lz,. (67°(9))
<vlz, (67 (9))

=vl(z, .6-m0)(9)
=vlx-noz, (9)
=vA "z, (9)
< 22U\ "o

€

2

< €.

<

Therefore, by Theorem 6.17, it follows that ¢y __(h) > e.

By multiplicative quasi-symmetry of A restricted on the thick parts of
01(9) (Theorem 2.19), there exists a constant C' such that A(T,S) <
A(S,T)¢, for any T, S € Min;(¢) U Min; (¢~ 1) (note that C depends only
on [¢] because elements in Min-Sets are uniformly thick because [¢] is ir-
reducible). In particular,

NZ,Z¢™0) = A(Z¢™, Z) < AN(Z, Z¢™)C = Xm0,
Therefore, as the length of A with respect to Z is at most 2, we get that
bz(h) =Lz(¢7™(g)) < Lz(9)A(Z, Zp~ ™) < 22,
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which implies

€y7 (h) €
ANZ Y_ )2 = = = (57
(2, ) Lz(h) 2)\Cmo
where the quantity J does not depend on Z. O

COROLLARY 7.10. — Let [¢] € Out(G) be G-irreducible and with A(¢) =
A > 1. Let X € Mini(¢), Y € Miny(¢~!), and let X ~,Y_o be the
corresponding attracting and repelling trees.
Let T € O(G) which is the w-limit of a sequence Z;/u; with the following
properties:
(1) Z; € Miny(¢);
(2) pi — oo;
(3) there is v > 1 such that 1 < A(Z;, X4o0) < V.
Then

AT, Xio0) =00 =AT,Y_w).

Proof. — The equality for X, o, follows by just applying Proposition 7.8
directly on the sequence Z; = W;, with § = 1.

For Y_ ., we first apply Theorem 3.5, which provides us with a sequence
of minimally displaced points W; € Minj(¢~!), with the property that for
some uniform constant M,

HlaX{A(VVZ7 Z,L), A(Z“WZ)} < M.

Next, we want to apply Proposition 7.8, for ¢ 1. Conditions (1) and (2)
are satisfied by our assumptions. By the choice of W;’s, condition (4) is
satisfied, too.

For property (3), we apply Proposition 7.9 for every 4, to the point Z;.
By hypothesis A(Z;, X1o) < v, and Proposition 7.9 provides the § > 0
such that A(Z;,Y_) > 0, as required. d

THEOREM 7.11. — Let [¢] € Out(G) be G-primitive irreducible (that
is, a relatively irreducible automorphism with a train track with primi-
tive transition matrix — and hence exponential growth). Then Min; (¢) =
Min(¢) N Oy is co-compact, under the action of (¢).

Proof. — Let X € Mini(¢), Y € Minj(¢~ 1), and X ,Y o be the
corresponding attracting/repelling trees. By Theorem 5.2, [X ] = [T(;r]
is the unique attracting class of trees for ¢, and [Y_o] = [T};'] is the unique
repelling class.

We now argue by contradiction and suppose that Minj(¢)/{¢) is not
compact. By Theorem 4.26(5), there is a sequence of points Zy, Za, ...,
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Z;, ... of Min;(¢) for which A(X, Z;¢™) > i, for every m € Z. Note that
for all m € Z and W € O(G) we have

AW ™, X ne) = AW, Xyou™™)
AW, A(9) ™ X 4o0)
M) AW, X o).

Therefore, we can replace points Z; with some points of their (¢)-orbits

(which we will still denote by Z;) with the extra property
1< A(Zi, Xioo) < A ().

We set pu; = A(X, Z;). Now lim,, Z;/p; = T for some (non-trivial) tree 7' on
the boundary of O(G), by Proposition 7.3. From Corollary 7.10, we know

(7.1) AT, Y-oo) = 00 = AT, X1o0).

In particular, T' does not belong to [Tq:] On the other hand, by Lemma 7.5,
it follows that for every positive integer j

AT, T¢") < M9),

T¢’
Az 5 <

By applying the north-south dynamics Theorem 5.2, on T" ¢ [T ], we get

or equivalently

that % projectively converges to T, which is in the same projective

Ao .
class as X, so there is ¢ > 0 such that % converges to cX . But in
that case, A(T, X1 ) would be finite, contradicting (7.1). O

Remark 7.12. — The primitivity assumption is used only in applying
north-south dynamics in the last theorem, and not in previous results of
this section. In Proposition 7.9 and Corollary 7.10, if one is allowed to use
north-south dynamics (for instance for primitive automorphisms), then one
can replace any instance of Y_,, with X_ .

7.3. Co-compactness of the Min-Set of general irreducible
automorphisms

In this subsection, we will prove the co-compactness of the Min-Set for
irreducible automorphisms of exponential growth. For this section we fix:
a free factor system G = ({Gl,...,Gk},r) of a group G; an element
[¢] € Out(G) which is G-irreducible, with A(¢) = A > 1; an element
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X € Min; (¢) supporting a simplicial train track map f: X — X represent-
ing [¢]. In particular there is a genuine automorphism v € [¢] represented
by f (Definition 2.30) and, up possibly to replace ¢ with 1, we may assume
that f represents ¢ (that is, f(gz) = ¢(g9)f(x)).

We denote by M the transition matrix of f (see Section 2.12). If M fails
to be primitive, then we can partition the edge orbits into blocks so that,
for some positive integer s, Mys = M 7 is a block diagonal matrix, which
is a strictly positive matrix when restricted to a block. Correspondingly,
we can define sub-forests, X1,...,X;, of X consisting of edges, and their
incident vertices, belonging to a single block. The following two lemmas are
straightforward.

LEMMA 7.13. — Let f, X and X; be defined as above. Then:
(i) f permutes the X,;’s;

(ii) each X; is a G-forest (i.e. a forest which is G-invariant);
(iii) the union of the X; is X.

We can then define cylinders.
DEFINITION 7.14. — A cylinder is a connected component of some X;.

Remark 7.15. — We note that it is possible for two cylinders to intersect
at a vertex, as long as the cylinders belong to different sub-forests X; # X;.

LEMMA 7.16. — If C is a cylinder, then f(C) is also a cylinder. More-
over, for any g € G, also g(C) is a cylinder, belonging to the same X;
as C.

We also have the following.

LEMMA 7.17. — For any cylinder C, and any vertex v € C':

(i) Stabg(C) contains a G-hyperbolic element;
(ii) Stabg(v) < Stabg(C).

Proof. — Without loss of generality, the map f*° has a block diagonal
transition matrix where the positive entry in every block is at least 3.
Choose an edge e in C. Since f* is train track, f*(e) is a legal path. The
condition on f® means that f*(e) crosses the orbit of e at least three times,
and it is contained in the same X; as C. This means that C' contains a
path crossing e, ge and he for some g, h € G; where these three edges are
distinct. Clearly, g,h € Stabg(C). Since the action of G on X is edge-
free, this implies that if both g and h are elliptic, then gh is hyperbolic
(as e, ge, he are all in the legal path f*(e)). Hence Stabg(C) contains a
hyperbolic element. Finally, an element of Stabg (v) must send C' to another
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cylinder containing v but belonging to the same subforest as C'. This means
that it must preserve C. g

We now define a new tree 7 from this information, which remembers the
construction of the dual tree of the partition of X in cylinders. We note
that this is not a G-tree because Lemma 7.17 tells us that vertex stabilisers
are too big and in general edge stabilisers are not trivial. More precisely:

DEFINITION 7.18. — We define a G-tree T as follows. This is a bi-partite
tree:
e type I vertices are the cylinders of X;
e type II vertices are the vertices of X which belong to at least two
distinct cylinders.

The edges of T are the pairs (C,v) where C' is a type I vertex, and v is a
type II vertex contained in C.

It is an easy exercise to see that T is a G-tree.

PROPOSITION 7.19. — We get the following:

(i) the stabiliser of an edge (C,v) of T is equal to Stabg(v);

(ii) f induces a map, F: T — T representing ¢ (that is F(gx) =
¢(g)F (x)), which sends vertices to vertices — preserving type —
and edges to edges;

(iii) the irreducibility of [¢] implies that all the edge stabilisers of T are
non-trivial.

Proof. — The first point follows from the second part of Lemma 7.17.
The second point follows from Lemma 7.16, and the fact that f maps
vertices to vertices.

For the final point, note that if 7 had an edge with trivial stabiliser,
we could collapse all the edges with non-trivial stabiliser, and get a new
G-tree T and a new map F on this tree representing ¢. Since the action
of this tree is edge-free and non-trivial, this would correspond to a proper
free factor system for G, which would be ¢-invariant. However, Lemma 7.17
implies that this free factor system properly contains [G]. Therefore, we
would obtain a ¢-invariant proper free factor system properly containing
[G], a contradiction to the irreducibility of [¢]. O

THEOREM 7.20. — Let [¢] € Out(G) be G-irreducible and with A(¢) > 1
(that is, a relatively irreducible automorphism with exponential growth).
Then the action of (¢) on Min;(¢) = Min(¢) N Oy is co-compact.

Proof. — We shall deduce this theorem from the primitive case. We have
our base-point X € Min(¢) which supports our simplicial train track map f,
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representing ¢, but with (potentially) imprimitive transition matrix. Let
X T°° be the attracting tree corresponding to X. We use here the notation
X1 instead of X, as we did in the rest of the paper, for notational
reasons of this proof.

We argue by contradiction and suppose that the action is not co-compact.
Then, by Theorem 4.26(8), we may find a sequence of points Y; € Min(¢)
such that:

(i) vol(Y;) are uniformly bounded;
(ii) A(Y;, X*2) =1,

(iii) p; = A(X,Y;) is unbounded.

We then define T' = lim,, Y;/p; which exists and is non-trivial by Propo-
sition 7.3. In order to reach the desired contradiction, we will show that
such non-trivial T is trivial.

Note that by Proposition 2.65, the first and second points imply that

Y T
}/Z-+°°: lim 0

m—oo \™

= X1,

Consider a cylinder C' in X, with stabiliser H = Stabg(C'). We note that
H is a free factor of G and [¢°] induces by restriction an automorphism
class [¢%;] of H. Also, G induces a free factor system #H of H. The restriction
of f* induces a train track representative of [¢%] with primitive transition
matrix. Moreover, [¢%;] is H-irreducible: f permutes the forests X;, and
if f° shows an invariant free factor system on H, this can be translated
to others Stabg(C’) by iterating f, and so producing a global free factor
system which is [¢]-invariant, which cannot exist because [¢] is irreducible.
In particular, Theorem 7.11 applies to [¢%].

Next, for each of the G-trees above, we may form the minimal invari-
ant H subtree. We denote this invariant subtree with a subscript H, for
instance Y;77°. The fact that ¥;7> = X implies that Y;75° = X;>
and hence A(Yi,H,XITIw) = 1. We still get that Xp,Y; g are minimally
displaced points for ¢3;, whose volumes are uniformly bounded. By Theo-
rem 7.11, @3 acts co-compactly on its minimally displaced set and this, by
Theorem 4.26(7), means that

AN Xy, Yim)= sup -
Ix (h)#£0

is bounded. But since

li .
br(n) = 2 L0,
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and p; is unbounded, we deduce that ¢r(h) = 0 for all h € H. By Lem-
ma 2.59, this implies that H fixes a unique point of 7', and that this is the
same point fixed by any Stabg(v), for v € C' with nontrivial stabiliser.

In particular, we may define a G-equivariant map from 7 to T by map-
ping each vertex to the unique point of 7" which is fixed by the corre-
sponding (and non-trivial) stabiliser. By Lemmas 2.59 and 7.19, each edge
is actually mapped to a point. This means that the whole G-tree T is
mapped to a point. In this case, as the map from 7 to T is G-equivariant,
there would be a fixed point for the whole group G. But this would imply
that T is trivial in the sense of translation length functions, contradicting
the non-triviality of T O

COROLLARY 7.21. — Let [¢]€eOut(G) be G-irreducible and with \(¢)>1.
Then Min; (¢), equipped with the symmetric Lipschitz metric, is quasi-
isometric to a line.

Proof. — The idea is to simply apply the Svarc-Milnor Lemma. The
action of (¢) is clearly properly discontinuous and Theorem 7.20 gives us
cocompactness. The only obstacle is that the symmetric Lipschitz metric
dgym is not geodesic (or, even, a length metric). Define the intrinsic metric
dy to be the infimum of lengths of paths between any two points. Notice
that since Ming(¢) is thick, quasi-symmetry implies that the asymmetric
Lipschitz metric doyt and dsym are bi-Lipschitz equivalent functions. Since
dout is a geodesic asymmetric metric, we deduce that d; and dsym are also
bi-Lipschitz equivalent, and we are done. O

8. Applications
8.1. Relative centralisers

In this section we give an application of our main result, regarding rel-
ative centralisers of relatively irreducible automorphisms with exponential
growth.

THEOREM 8.1. — Let G be a group, G a non-trivial free factor system
for G, and O1(G) be the corresponding co-volume 1 section of relative outer
space. Let [¢] € Out(G) be G-irreducible with exponential growth, and let
X € Min;(¢). Let C(¢) be the relative centraliser of [¢] in Out(G,G).
Then there is a finite index subgroup Cy(¢) of C(¢) such that Co(¢) is the
(internal) direct product

Co(#) = Cx(¢) x ([¢]),
where Cx (¢) = {[¥)] € Co(¢) : Xtp = X} = Stab(X) N Co(¢).
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Proof. — First, note that C(¢) preserves Min(¢). By Theorem 7.20,
there is a fundamental domain K for the action of {[¢]) on Min;(¢), which
consists of finitely many simplices. Without loss of generality we assume
that X € K. For any [¢)] € C(¢) we have that Xt € K([¢]), since K is a
fundamental domain.

Define Cy(¢) == {[¢] € C(¢) : Xv € X([¢])}. Since K is finite, Co(e)
is a finite index subgroup of C(¢) containing [¢]. By definition, for every
[¢] € Co(¢), there is an n € Z such that Xy = X¢". Hence [¢] = [ag"]
for some [o] € Stab(X) N Cy(¢) = Cx (). Therefore Cy(¢) = Cx (¢){[¢]).

(Morally, one could take Cy(¢) to be the subgroup which acts trivially
on Min;(¢)/{[¢]). This is a finite index subgroup since automorphisms
preserve simplices and metric structures, so therefore each point in the
quotient space has a finite orbit under the action of C(9).)

Moreover, since [¢] acts without periodic points in O(G), <[¢]>DC x(¢) =
{1}. As <[q§]> commutes with C'x (¢) we get that Cy(¢) is the direct product,
Co(¢) = Cx (o) x ([¢])- 0

Note that the previous result generalises a well-known result for free
groups, that centralisers of irreducible automorphisms with irreducible pow-
ers are virtually cyclic (see [2]). It also generalises a result of the third
author who proved a similar result for relative centralisers of relatively ir-
reducible automorphisms, with the extra hypothesis that all the powers of
the automorphism are irreducible (see [32]).

8.2. Centralisers in Out(F3)

In this section we study centralisers of automorphisms in Out(F3). The
main result of this section is the following.

THEOREM 8.2. — Centralisers of elements in Out(F3) are finitely gen-
erated.

Before going into the proof, we need to quote some preliminary facts.
Our proof is based on Remark 2.46: any automorphism [¢] € Out(F3) is
irreducible with respect to some relative outer space O(G), for some free
factor system G of the free group F3. Equivalently, in the language of free
factor systems, G is a maximal [¢]-invariant free factor system. However,
a maximal free factor system for [¢] is not necessarily unique. In fact,
there are automorphisms with infinitely many different maximal invariant
free factor systems. The following theorem shows that under the extra
assumption that [¢] does not act periodically on any free splitting (i.e. point
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of some relative outer space), there are finitely many maximal invariant free
factor systems. This is proved by Guirardel and Horbez in [19].

PRrROPOSITION 8.3 ([19]). — Let [¢p] € Out(F,). Suppose that there is
no free splitting of F,, which is preserved by some power of [¢]. Then there
are finitely many maximal [¢]-invariant free factor systems G1,Ga,...,Gk.
As a consequence, the relative centraliser Cg,(¢) has finite index in C(¢),
fori=1,..., K.

Proof. — The first part is a special case of [19, Corollary 1.14]. For the
second part, we note that C(¢) preserves the finite set of maximal [¢]-

invariant free factor systems {Gi,...,Gxk}. As the relative centraliser with
respect to the free factor system G; is simply Cg, (¢) = Out(F,, G;) N C(¢),
the result follows. g

On the other hand, we need to understand the complementary case of an
automorphism that acts periodically on a free splitting. This case has also
been studied in [19]. If T, S are two F),-trees with trivial edge stabilisers
(i.e. free splittings), then we say that 7" dominates S if point stabilisers
in T are elliptic in S. In other words, if T € O(G1), S € O(Gz), then
T dominates S if and only if G; < Gy. Alternatively, T dominates S if
A(T, S) < oo. From [19] we can also extract the following proposition.

PROPOSITION 8.4. — Let [¢] € Out(F,,). Let’s assume that there is a
power of [¢] fixing a free splitting. Then there is a maximal (with respect
to domination) ([¢])-periodic free splitting T € O(G), for some free factor
system G. All such maximal free splittings belong to the same relative outer
space O(G). Moreover, if [¢] has infinite order, then the centraliser C(¢)
preserves the free factor system G.

Proof. — The first part is [19, Proposition 6.2] for the cyclic subgroup
H = ([¢]). The second part follows by [19, Theorem 8.32]. O

Remark 8.5. — We recall that maximal, invariant, free factor systems are
defined to be maximal with respect to the natural ordering < on free factor
systems of F,. It is important to mention here a maximal free splitting
means that it belongs to the minimal, in terms of the ordering, relative
outer space!

The linear growth case cannot be really studied using the methods that
are presented in this paper, so we need the following result.

THEOREM 8.6 ([1]). — Centralisers of linearly growing automorphisms
in Out(F,,) are finitely generated.
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We need also the following well-known result for Out(Fy).

THEOREM 8.7. — Centralisers of infinite order elements in Out(Fs) are
virtually cyclic.

Proof. — This is clear as Out(Fy) is virtually F; and centralisers of non-
trivial elements in Fy are cyclic. O
Now we are in position to start the proof of the main result of this section.

Proof of Theorem 8.2. — The possible free factor systems of F3 have
one of the following types (for some free basis {a,b, c}):

1) G = 0 (note that in this case O(G) = CV3);

2 (a)};
(a), (b} };
(a), (b),
(

(

(2) G

(3)¢g (b

4) g a), (b), () };
(5) G a,b>}7

(6) G = 1(a,b),(c

a,0), }

Remark 8.8. — The stabilisers of points of a relative outer space of a
free product are described in [20], in terms of the elliptic free factors G;
of G and the automorphisms groups Aut(G;). In cases (1)—(4), stabilisers
of points are virtually Z* for some uniformly bounded k. In particular, any
subgroup of the stabiliser in these cases is finitely presented.

Ut

{
{
{
{
{

Let [¢] € Out(F5). Let’s first assume that our automorphism and all
of its powers do not fix a point of some relative outer space of F3. As
noticed (Remark 2.46), there is some relative outer space O(G) for which
[¢] is irreducible. Note that under our assumption that no power of [¢]
fixes a free splitting, we get that Ao (¢) > 1. Therefore, cases (5) and (6) of
the above list cannot appear under our assumptions, as the corresponding
relative outer spaces are consisted by a single point (assuming volume equal
to 1) and so there are no automorphisms of Out(G) with Ag(¢) > 1 (all
such automorphisms fix a point of O(G)).

In any other case, by Theorem 8.1, Cg(¢) has a finite index subgroup
which is a Z-extension of Cx(¢), where Cx(¢) is the subgroup of Cg(¢),
acting trivially on some X € O(G). By Remark 8.8, Cx (¢) is finitely pre-
sented. Therefore, Cg(¢) is finitely presented, as a Z-extension of a finitely
presented group. By Proposition 8.3, the centraliser C'(¢) of [¢] in Out(F3)
has a finite index subgroup which is finitely presented (the group Cg(¢)),
and therefore C(¢) is finitely presented itself. In particular, C(¢) is finitely
generated.

We now assume that our automorphism has a power that fixes a point of
some relative outer space of F3. There is a maximal such free splitting with
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respect to domination, by Proposition 8.4, and there is a free factor sys-
tem G such that all such maximal free splittings belong to the same relative
outer space, O(G). We deal with the possible cases for G as enumerated
above.

In case (1), [¢*] fixes a point of CV3, then [¢] has finite order, and by [25],
C(¢) is finitely presented.

In cases (2)-(4), [¢¥] fixes a point T of the corresponding relative outer
space. By the description of stabilisers of points in [20], it is easy to see
that [¢*] (and so [¢]) has linear growth as an automorphism of Out(F3)
and so the result follows by Theorem 8.6.

For case (5), note that the corresponding relative outer space is a single
point, hence preserving this kind of free factor system is equivalent to
preserving the corresponding splitting. Hence, by Proposition 8.4, since all
periodic maximal free splittings belong to the same relative outer space,
there is a unique one. Since the [¢] image of a periodic splitting is again
periodic, this means that the splitting is actually fixed by [¢].

We switch now to elements of Aut(F3). Let ® € [¢] which actually fixes H
(not just up to conjugacy). In other words, ®(H) = H. Consider the re-
striction @y of ® on H, which induces an element of Out(H). If &y has
finite order as an outer automorphism, then it is easy to see that ® has
linear growth and so, as before, C(¢) is finitely generated by Theorem 8.6.

So, let’s assume now that ®p has infinite order as an outer automor-
phism. The subgroup of Aut(F3) projecting to the centraliser C(¢) in
Out(F3) is C = {© € Aut(F3) : [0,9] € Inn(Fs)}. We will show that
C is finitely generated, which will imply that C(¢) is finitely generated.

By Proposition 8.4, if © € C, then [O] € Out(F3) fixes the conjugacy
class of H, so we have a well-defined homomorphism 7: C' — Out(H). It
is easy to see that the image of m is in fact contained in the centraliser
of [®g] in Out(H), which, by Theorem 8.7, is virtually cyclic. Therefore
C = 7r*1<[<I>H]> is a finite index subgroup of C. Hence, it is enough to
show that CY is finitely generated.

Let © € C°. We assume without loss, up to composing with an inner
automorphism of F3, that O(H) = H. As © € €, the restriction of ©
on H, which we denote by O, is of the form Oy = ®% ad(h), where
ad(h) € Inn(H), for some k € Z and h € H. Therefore, if we denote by C!
the subgroup of C? of those automorphisms acting as the identity on H, we
get that C° is generated by the generators of C', ®z, and the generators
of Inn(H) (which is clearly finitely generated). In particular, it is enough
to show that C! is finitely generated.
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Recall that we are working with a free basis {a,b,c}, with H = {(a,b).
Since ®(H) = H, we must have ®(¢) = hjc‘hg, where ¢ € {—1,1} and
hi,ho € H, and a similar equation holds for elements of C'*. Up to passing
to a finite index subgroup C? of C!, we can assume that ©(c) = zcy,
x,y € H. As we pass to finite index subgroup, it is clear that it is enough
to prove that C? is finitely generated.

Since © € C? < C*, hence Oy = Idy, we get that ®O(a) = OP(a)
and ®O(b) = ©®(b). The remaining part of the proof is to write down the
equations corresponding to ®O(c) = ©P(c), which is equivalent to the fact
that ® and © commute (under our assumptions that © acts as the identity
of H and ® preserves H, it is clear that ® and © commute up to inner
automorphism if and only if they genuinely commute).

We have:
DO(c) = P(xcy) = P(x)hicha®(y),
OP(c) = O(h1cthe) = hy(xcy)hs.
Let’s first assume that ¢ = 1. In this case, the automorphisms &®,©

commute if and only if

®(x)hy = hix ®(z) = hyxhy*
— 1
D(y)ha = hay ®(y) = hy yhe.

Note that it is well-known that the subgroups Se ) = {z :D(z) =
hzh_l} is finitely generated for every ® and every h € H (for example
see [4] — since S¢ . is just the fixed subgroup of ® composed with an
inner automorphism). In our case, as any © with the requested properties is
uniquely determined by = € S¢ 1.,y € S(D, Wyt the above equations identify
the subgroup C? with the product of Se n, and Sq)yh;l, which means that
it is finitely generated. Therefore, the proof concludes in this case.

In case ¢ = —1, the automorphisms commute if and only if

®(z)hy = hiy~! and ho®(y) = 2~ hy

which is equivalent to

_ —1
P*(y) = ®(ha)hy lyhl (‘b(h?)) [ ye S<I>2,<I>(h2)h1—1
@ = ho®(y~)hy z=hy®(y~1)hy "t

and the thesis follows as above, since Sg. ®(ha)h ! is finitely generated.
> 1
Case (6) is similar to case (5) and so we skip the details. O

ANNALES DE L’INSTITUT FOURIER



(1]

[12]
[13]

[14]

[15]

[16]

[17]
18]
[19]
[20]
21]

22]

ON THE ACTION OF ¢ ON Min(¢) 91

BIBLIOGRAPHY

N. ANDREW & A. MARTINO, “Centralisers of linear growth automorphisms of free
groups”, 2022, https://arxiv.org/abs//2205.12865.

M. BESTVINA, M. FEIGHN & M. HANDEL, “Laminations, trees, and irreducible au-
tomorphisms of free groups”, Geom. Funct. Anal. 7 (1997), no. 2, p. 215-244.

, “The Tits alternative for Out(Fy) I: Dynamics of exponentially-growing
automorphisms”, Ann. Math. 151 (2000), no. 2, p. 517-623.

M. BESTVINA & M. HANDEL, “Train tracks and automorphisms of free groups”,
Ann. Math. 135 (1992), no. 1, p. 1-51.

M. M. CoHEN & M. LusTiG, “The conjugacy problem for Dehn twist automor-
phisms of free groups”, Comment. Math. Helv. 74 (1999), no. 2, p. 179-200.

M. CULLER & J. W. MORGAN, “Group actions on R-trees”, Proc. Lond. Math. Soc.
55 (1987), p. 571-604.

F. DauMANI & R. Li, “Relative hyperbolicity for automorphisms of free products
and free groups”, J. Topol. Anal. 14 (2022), no. 1, p. 55-92.

S. DowpALL, I. KapovicH & C. J. LEININGER, “Dynamics on free-by-cyclic groups”,
Geom. Topol. 19 (2015), no. 5, p. 2801-2899.

S. FRANCAVIGLIA & A. MARTINO, “Metric properties of outer space”, Publ. Mat.,
Barc. 55 (2011), no. 2, p. 433-473.

, “The isometry group of outer space”, Adv. Math. 231 (2012), no. 3-4,
p. 1940-1973.

, “Stretching factors, metrics and train tracks for free products”, IIl. J. Math.
59 (2015), no. 4, p. 859-899.

—, “Displacements of automorphisms of free groups I: Displacement functions,
minpoints and train tracks”, Trans. Am. Math. Soc. 374 (2021), p. 3215-3264.

, “Displacements of automorphisms of free groups II: Connectedness of level
sets”, Trans. Am. Math. Soc. 375 (2022), p. 2511-2551.

S. FRANCAVIGLIA, A. MARTINO & D. SYRIGOS, “The minimally displaced set of an
irreducible automorphism is locally finite”, Glas. Mat., III. Ser. 55 (2020), no. 2,
p. 301-336.

———, “The minimally displaced set of an irreducible automorphism of Fy is
co-compact”, Arch. Math. 116 (2021), no. 4, p. 369-383.

M. GrROMOV, “Asymptotic invariants of infinite groups”, in Geometric group theory,
Vol. 2 (Sussex, 1991) (G. A. Niblo & M. A. Roller, eds.), London Mathematical
Society Lecture Note Series, vol. 182, Cambridge University Press, 1993, p. 1-295.
V. GUIRARDEL, “Approximations of stable actions on R-trees”, Comment. Math.
Helv. 73 (1998), p. 89-121.

V. GUIRARDEL & C. HORBEZ, “Algebraic laminations for free products and arational
trees”, Algebr. Geom. Topol. 19 (2019), no. 5, p. 2283-2400.

, “Measure equivalence rigidity of Out(F)”, 2021, https://arxiv.org/abs/
/2103.03696.

V. GUIRARDEL & G. LEVITT, “The outer space of a free product”, Proc. Lond.
Math. Soc. (3) 94 (2007), no. 3, p. 695-714.

R. GupTa, “Loxodromic Elements in the relative free factor complex”, Geom. Ded-
icata 196 (2018), p. 91-121.

M. HANDEL & L. MOSHER, Axes in outer space, vol. 213, Memoirs of the
American Mathematical Society, vol. 1004, American Mathematical Society, 2011,
vi+104 pages.

C. HORBEZ, “Hyperbolic graphs for free products, and the Gromov boundary of the
graph of cyclic splittings”, J. Topol. 9 (2016), p. 401-450.

TOME 0 (0), FASCICULE 0


https://arxiv.org/abs//2205.12865
https://arxiv.org/abs//2103.03696
https://arxiv.org/abs//2103.03696

92

[24]

27]
(28]

[29]

Stefano FRANCAVIGLIA, Armando MARTINO & Dionysios SYRIGOS

, “The boundary of the outer space of a free product”, Isr. J. Math. 221
(2017), p. 179-234.

S. KALAJDZIEVSKI, “Automorphism group of a free group: centralizers and stabiliz-
ers”, J. Algebra 150 (1992), no. 2, p. 453-502.

S. KrsTi¢, M. LusTiG & K. VOGTMANN, “An equivariant Whitehead algorithm
and conjugacy for roots of Dehn twist automorphisms”, Proc. Edinb. Math. Soc.,
II. Ser. 44 (2001), no. 1, p. 117-141.

G. LEviTT & M. LUSTIG, “Irreducible automorphisms of F,, have north-south dy-
namics on compactified outer space”, J. Inst. Math. Jussieu 2 (2003), no. 1, p. 59-72.
J. P. MUTANGUHA, “Irreducible nonsurjective endomorphisms of Fj are hyper-
bolic”, Bull. Lond. Math. Soc. 52 (2020), no. 5, p. 960-976.

W. PARRY, “Axioms for translation length functions”, in Arboreal group the-
ory (Berkeley, CA, 1988), Mathematical Sciences Research Institute Publications,
vol. 19, Springer, 1991, p. 295-330.

F. PAULIN, “The Gromov topology on R-trees”, Topology Appl. 32 (1989), no. 3,
p- 197-221.

J.-P. SERRE, Trees, Springer, 1980, ix-+142 pages.

D. Syricos, “Irreducible laminations for IWIP automorphisms of free products and
centralisers”, 2014, https://arxiv.org/abs//1410.4667.

, “Asymmetry of outer space of a free product”, Commun. Algebra 46 (2018),
no. 8, p. 3442-3460.

Manuscrit recu le 27 avril 2022,
révisé le 22 novembre 2023,
accepté le 12 avril 2024.

Stefano FRANCAVIGLIA
University of Bologna (Italy)

stefano.francaviglia@unibo.it
Armando MARTINO

University of Southampton (UK)
a.martino@soton.ac.uk
Dionysios SYRIGOS

University of Southampton (UK)
d.syrigos@soton.ac.uk

ANNALES DE L’INSTITUT FOURIER


https://arxiv.org/abs//1410.4667
mailto:stefano.francaviglia@unibo.it
mailto:a.martino@soton.ac.uk
mailto:d.syrigos@soton.ac.uk

	1. Introduction
	Acknowledgments

	2. Terminology and preliminaries
	2.1. Relative outer space O(G)
	2.2. Simplicial structure of O(G)
	2.3. Action of the automorphism groups
	2.4. Translation lengths, thickness, and boundary points
	2.5. Stretching factors and Lipschitz metrics
	2.6. Optimal maps and gate structures
	2.7. Train tracks
	2.8. Bounded cancellation, critical constant, Nielsen paths
	2.9. Candidates
	2.10. Displacement function and Min-Set
	2.11. Irreducible automorphisms
	2.12. Primitive automorphisms
	2.13. Arc stabiliser lemma
	2.14. Limit trees for irreducible automorphisms
	2.15. Relative boundaries and laminations
	2.16. Attracting and repelling laminations

	3. The distance of points of Min(phi) from Min(phi-̂1) is uniform
	3.1. Transition vectors and spectrum discreteness
	3.2. Distance between Min-Sets of an automorphism and its inverse

	4. Equivalent conditions for co-compactness of Min(phi)
	4.1. Topology on deformation spaces
	4.2. Equivalent formulations of co-compactness for Min_1(phi)

	5. North-south dynamics for primitive irreducible automorphisms
	5.1. Statement of north-south dynamics
	5.2. The attracting tree does not depend on the chosen train track
	5.3. Infinite-index subgroups do not carry the attracting lamination
	5.4. Q-map and dual laminations of trees
	5.5. At least one of the laminations is long in any tree of the boundary
	5.6. Proof of Theorem 5.1

	6. Discreteness of the product of limit trees of an irreducible automorphism
	6.1. Dynamics of train track maps

	7. Co-compactness of the Min-Set
	7.1. Ultralimits
	7.2. Co-compactness of the Min-Set of primitive irreducible automorphisms
	7.3. Co-compactness of the Min-Set of general irreducible automorphisms

	8. Applications
	8.1. Relative centralisers
	8.2. Centralisers in Out(F_3)

	References

