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A CONFORMAL GEOMETRIC POINT OF VIEW ON
THE CAFFARELLI–KOHN–NIRENBERG INEQUALITY

by Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER (*)

Abstract. — We consider the Caffarelli–Kohn–Nirenberg inequality (CKN in
short), introduced by these authors in 1984. We explain why the CKN inequality
can be viewed as a Sobolev inequality on a weighted Riemannian manifold. More
precisely, we prove that the CKN inequality can be interpreted in this way on three
different and equivalent models, obtained as weighted versions of the standard
Euclidean space, round sphere and hyperbolic space. This result can be viewed as
an extension of conformal invariance to the weighted setting. Since the spherical
CKN model we introduce has finite measure, the Γ-calculus introduced by Bakry
and Émery provides a way to prove the Sobolev inequalities. This method allows
us to recover the optimality of the region of parameters describing symmetry-
breaking of minimizers of the CKN inequality, introduced by Felli and Schneider
and proved by Dolbeault, Esteban and Loss in 2016. Finally, we develop the notion
of n-conformal invariants, exhibiting a way to extend the notion of scalar curvature
to weighted manifolds such as the CKN models.

Résumé. — Nous considérons l’inégalité de Caffarelli–Kohn–Nirenberg (abré-
viée CKN), introduite en 1984 par ces auteurs. Nous expliquons comment l’inégalité
CKN peut être vue comme une inégalité de Sobolev sur une variété Riemannienne
à poids. Plus précisément, nous montrons que l’inégalité CKN peut être interprétée
de la sorte sur trois espaces modèles distincts et équivalents, obtenus comme des
versions à poids de l’espace euclidien, la sphère ronde et l’espace hyperbolique. Ce
résultat peut être vu comme une extension de l’invariance conforme dans le cadre
des variétés à poids. Puisque le modèle CKN sphérique que nous introduisons est de
mesure finie, le Γ-calcul de Bakry et Émery procure une méthode pour démontrer
les inégalités de Sobolev associées. Cette méthode nous permet de retrouver l’op-
timalité de la zone de paramètres décrivant la brisure de symétrie des minimiseurs
de l’inégalité CKN, introduite par Felli et Schneider et démontrée en 2016 par Dol-
beault, Esteban et Loss. Enfin, nous développons la notion d’invariant n-conforme,
qui donne une façon d’étendre la notion de courbure scalaire aux variétés à poids,
et donc aux modèles CKN.

Keywords: optimal functional inequality, symmetry, curvature-dimension condition, con-
formal invariance.
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1. Introduction and main results

1.1. The CKN Euclidean space

In their seminal paper [5], Caffarelli, Kohn and Nirenberg found the
optimal range of real parameters a, b, p for which the following inequality
holds true:

(1.1)
(∫

Rd

|v|p

|x|bp
dx
)2/p

⩽ Ca,b

∫
Rd

|∇v|2

|x|2a
dx, v ∈ C∞

c

(
Rd \ {0}

)
.

Here, | · | is the Euclidean norm in Rd, d ∈ N∗ and Ca,b denotes the optimal
constant, depending on a, b and d only. Note that the case a = b = 0 (and
p = 2d/(d−2)) corresponds to Sobolev’s inequality, while the case b = a+1
(and p = 2) is Hardy’s inequality, so that (1.1) is sometimes called the
Hardy–Sobolev inequality. Note also that the inequality is achieved in the
former case, while it is not in the latter.

Let us consider the measure

(1.2) dµE(x) = |x|−bpdx.

Then, the left-hand side of (1.1) is simply the Lp-norm of v with respect
to the measure µE (squared). In addition, if we consider the metric(1) on
the manifold M = Rd \ {0} given by

(1.3) gE
ij = |x|bp−2aδij ,

then (1.1) takes the simpler form(∫
|v|pdµE

)2/p

⩽ Ca,b

∫
|∇gEv|2gE

dµE.

By a standard scaling argument(2) , the following relation is necessary for
the inequality to hold true:

(1.4) p = 2d
d− 2 + 2(b− a) = d

ac − a+ b
,

where ac = d−2
2 . Through the property of modified inversion symmetry

(see [7, Theorem 1.4(ii)]), we may always assume that a < ac = d−2
2 since

(1) If (M, g) is d-dimensional Riemannian manifold whose metric g is represented in a
local system of coordinates at a point x ∈ M by the matrix G(x) = (gij(x))1 ⩽ i,j ⩽ d,
we use the letter g to denote the bilinear form on the cotangent space of M represented
by the inverse matrix G(x)−1 = (gij(x))1 ⩽ i,j ⩽ d.
(2) To see this, apply (1.1) to the function x 7→ v(λx) where λ > 0 and let λ → 0+ and
λ → +∞.

ANNALES DE L’INSTITUT FOURIER



A CONFORMAL POINT OF VIEW ON THE CKN INEQUALITY 3

the case a > ac is dual to it and the inequality fails to be true if a = ac

(see [5]). For simplicity, we also focus on the case d ⩾ 4 and refer to [9] for
the remaining cases d ∈ {1, 2, 3}. Then, (1.1) holds true if and only if

0 ⩽ b− a ⩽ 1

For simplicity, we do not consider the limiting case b = a + 1 (Hardy’s
inequality) and we define accordingly the set

(1.5) Θ =
{

(a, b) ∈ R2, 0 ⩽ b− a < 1, a < ac

}
so that the CKN inequality (1.1) is valid whenever (a, b) ∈ Θ (see Sec-
tion A.3).

Observe that for (a, b) ∈ Θ, p ⩽ 2d
d−2 and so p can be rewritten as the

critical Sobolev exponent associated to an intrinsic dimension n ∈ [d,+∞)
through the relations

(1.6) p = 2n
n− 2 , n = d

1 + a− b
.

The fact that n is a meaningful number, entering in the classical Bakry–
Emery curvature-dimension condition, will become transparent in a mo-
ment. To summarize, one can view inequality (1.1) exactly as Sobolev’s
inequality stated on the weighted Riemannian manifold(3) that we intro-
duce now.

Definition (The Euclidean CKN space). — The Euclidean CKN space
is the triple (M, gE, µE), where the manifold is M = Rd \{0}, the metric(4)

is gE
ij = |x|2(1−α)δij and where the measure µE is given by (1.2). The

corresponding Riemannian volume is given by dVgE = |x|d(α−1)dx, the
weight WE, verifying dµE = e−WEdVgE , is given by WE = − α(n−d)

2 log |x|2

and the generator(5) is given by

LE = ∆gE − ∇gEWE · ∇ = |x|2(1−α)(∆ − a∇ log |x|2 · ∇
)

For notational convenience, we introduced above the parameter(6) :

(1.7) α = 1 + a− pb

2 ,

(3) The words “smooth metric measure space” and “manifold with density” are also
employed in the literature to designate the same object.
(4) The given expression of gE is just a rewriting of (1.3).
(5) I.e. the operator such that

−
∫

uLEvdµE =
∫ (

∇gE u ·gE ∇gE v
)

dµE for all u, v ∈ C∞
c

(
Rd \ {0}

)
.

(6) The reader may check that α turns out to be the same parameter as the one intro-
duced in [9] (for different reasons).

TOME 0 (0), FASCICULE 0
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where (a, b) ∈ Θ (defined in (1.5)) and p is the critical exponent given
by (1.4). In other words, returning to the parameters a, b, d (and ac =
(d− 2)/2),

α = (ac − a)(a+ 1 − b)
ac − a+ b

.

Note that for any (a, b) ∈ Θ, we have α ⩾ 0, see Section A.3 and Figure 1.1
for more information about parameters.

Equivalently, and this is the notation adopted in this paper(7) , one can
see the Euclidean CKN space as a Markov triple (M,µE,ΓE), where µE
verifies (1.2) and the carré du champ operator is given by

ΓE(v) = |∇gEv|2gE
= |x|bp−2a|∇v|2 = |x|2(1−α)|∇v|2

Its associated bilinear form is denoted by ΓE(u, v) = |x|2(1−α)∇u · ∇v for
u, v ∈ C∞

c (Rd \ {0}). Inequality (1.1) now reads(∫
|v|pdµE

)2/p

⩽ Ca,b

∫
ΓE(v)dµE, v ∈ C∞

c

(
Rd \ {0}

)
.

1.2. Conformal invariance

As noticed earlier, when a = b = 0 (α = 1), we recover the standard
Sobolev inequality on the standard Euclidean space. In that case, since the
metric of the d-dimensional sphere Sd and the metric of the d-dimensional
hyperbolic space Hd are both conformally equivalent to the Euclidean met-
ric, Sobolev’s inequality takes equivalent forms on these three model spaces.
More precisely, the Euclidean Sobolev inequality applied to the function
φ

2−d
2 v, where φ(x) = 1+|x|2

2 (respectively φ(x) = 1−|x|2

2 ) and v ∈ C∞
c (Rd)

(resp. v ∈ C∞
c (B)) yields

(1.8)
(∫

|v|pdVg
)2/p

⩽ C

[∫
|∇gv|2g dVg +

∫
Sgv

2dVg
]
,

where g is the round metric on the sphere Sd expressed in stereographic
cooordinates (resp. the metric of the hyperbolic space in the Poincaré
ball model), dVg the associated Riemannian volume, Sg = d(d−2)

4 (resp.
Sg = − d(d−2)

4 ) and C = 4
d(d−2) |Sd|− 2

d the best constant in the standard
Euclidean Sobolev inequality. By analogy, we can extend the conformal
invariance property to the setting of weighted manifolds as described next.

(7) See [1] for an introduction to Γ-calculus.

ANNALES DE L’INSTITUT FOURIER



A CONFORMAL POINT OF VIEW ON THE CKN INEQUALITY 5

The spherical CKN and the hyperbolic CKN spaces

Recall that the metric and reference measure of the Euclidean CKN space
read

gE
ij = |x|2(1−α)δij and dµE = |x|−bpdx.

Keeping in mind the expression of the standard stereographic projection,
we define next the spherical and hyperbolic CKN spaces as follows.

Definition (The spherical and the hyperbolic CKN spaces).

• The spherical CKN space is the triple (M, gS, µS), where M =
Rd \ {0},

gS
ij = |x|2(1−α)

(
1 + |x|2α

2

)2

δij and dµS = |x|−bp

(
2

1 + |x|2α

)n

dx.

Associated objects are given by the following formulae:
– Riemannian volume: dVgS = 2d |x|d(α−1)

(1+|x|2α)2 dx,
– weight: WS = (n− d) log(1 + |x|2α) − α(n−d)

2 log |x|2,
– Carré du champ operator:

ΓS(v) = |∇gSv|2gS
= |x|2(1−α) (1 + |x|2α)2

4 |∇v|2,

– generator:

LS(f) = |x|2(1−α) (1 + |x|2α)2

4
×
[
∆f − a∇f · ∇ log |x|2 − (n− 2)∇f · ∇ log

(
1 + |x|2α

)]
.

• The CKN hyperbolic space is the triple (B \ {0}, gH, µH), where B
is the open unit ball in Rd,

gH
ij = |x|2(1−α)

(
1 − |x|2α

2

)2

δij and dµH = |x|−bp

(
2

1 − |x|2α

)n

dx.

Associated objects to this triple are given by the following formulae
– Riemannian volume: dVgH = 2d |x|d(α−1)

(1−|x|2α)d dx,
– weight: WH = (n− d) log(1 − |x|2α) − α(n−d)

2 log |x|2,
– Carré du champ operator:

ΓH(v) = |∇gHv|2gS
= |x|2(1−α)

(
1 − |x|2α

)2

4 |∇v|2,

TOME 0 (0), FASCICULE 0
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– generator:

LH(f) = |x|2(1−α)
(
1 − |x|2α

)2

4
×
[
∆f − a∇f · ∇ log |x|2 − (n− 2)∇f · ∇ log

(
1 − |x|2α

)]
Remark.

• Note that in the case α = 1 (which is achieved in Θ only when
a = b = 0, see Lemma 1.5), the CKN sphere is the standard round
sphere (punctured at both of its poles) viewed in the stereographic
projection chart. Similarily, for α = 1, the CKN hyperbolic space is
the (punctured) hyperbolic space.

• Note that, letting φ(x) = 1+|x|2α

2 , we have ΓS = φ2ΓE and µS =
φ−nµE. We shall say that the CKN Euclidean and spherical spaces
belong to the same n-conformal class (n not necessarily being equal
to the topological dimension). Similarly, with ψ(x) = 1−|x|2α

2 , we
have ΓH = ψ2ΓE and µH = ψ−nµE, so that the hyperbolic CKN
space also belongs to the same n-conformal class.

• When (a, b) ∈ Θ, µS has finite mass (see Remark A.10 in Sec-
tion A.3). In this Section, we prefer not to normalize the measure
µS, a choice which makes the conformal invariance of Sobolev’s in-
equality more transparent.

With these definitions at hand, we prove

Theorem (Conformal invariance of the three model spaces). — Let
C > 0 be an arbitrary constant. The three following Sobolev inequalities
associated to each CKN model are equivalent: for all v ∈ C∞

c (B \ {0}),(∫
|v|pdµE

)2/p

⩽ C

∫
ΓE(v)dµE,(1.9) (∫

|v|pdµS

)2/p

⩽ C

(∫
ΓS(v)dµS + n(n− 2)

4 α2
∫
v2dµS

)
,(1.10) (∫

|v|pdµH

)2/p

⩽ C

(∫
ΓH(v)dµH − n(n− 2)

4 α2
∫
v2dµH

)
.(1.11)

Remark.
• Inequality (1.9) is valid for some constant C = Ca,b if and only if

(a, b) ∈ Θ as proved in [5]. Hence, so are (1.10) and (1.11).
• As we shall see, the value of the optimal constant C is known only

in a restricted range of parameters, see Theorem 1.3 below.

ANNALES DE L’INSTITUT FOURIER
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• By an obvious scaling argument, when they hold, (1.9) and (1.10)
remain true for v ∈ C∞

c (Rd \ {0}). However, since its set of test
functions is smaller, inequality (1.11) need not be optimal even
though (1.9) and (1.10) are. For example, in the absence of weights,
C = 4

d(d−2)|Sd|2/d is the optimal constant in (1.9) and (1.10) and
extremals exist (and are classified), see Theorem 1.3. In contrast,
inequality (1.11) holds with the same constant C = 4

d(d−2)|Sd|2/d

but when n = d = 3 (and again α = 1), the constant − n(n−2)
4 can

be improved to − (n−1)2

4 , see [3]. Using this fact and the proof of
Theorem 1.2, it follows that the standard Sobolev inequality in R3

improves to(∫
R3

|v|6dx
)1/3

⩽
1
3

(
2
π

)4/3(∫
R3

|∇v|2dx−
∫

R3

v2

(1 − |x|2)2 dx
)
,

when restricted to functions v ∈ H1
0 (B). When d ⩾ 4 (and α = 1),

inequality (1.11) is again optimal, but contrary to (1.9) and (1.10),
the inequality is never attained(8) . We have not yet investigated the
optimality of (1.11) in the general case.

1.3. Curvature-dimension conditions on the spherical CKN
space

We just saw that the CKN inequality takes the forms (1.9), (1.10), (1.11)
on the three CKN spaces. But what is the value of the best constant C? To
answer this question, let us first recall the following classical definition and
result: a smooth weighted manifold (M, g, µ) is said to satisfy the CD(ρ, n)
condition if for every f ∈ C∞(M),

Γ2(f) ⩾ ρΓ(f) + 1
n

(Lf)2,

where (ρ, n) ∈ R × (R ∪ {+∞}), dµ = e−W dVg for some W ∈ C∞(M),
Γ(f, h) = ⟨∇gf,∇gh⟩g, Γ(f) = Γ(f, f) = |∇gf |2g, Lf = ∆gf − Γ(W, f)
and Γ2(f) = 1

2L(Γ(f)) − Γ(f, Lf), for smooth functions f, g on M . The
following theorem, generalizing the earlier work [4], holds true:

Theorem 1.1 ([2] and [1, Theorem 6.8.3]). — Let (M, g, µ) be a smooth
weighted manifold satisfying the CD(ρ, n) condition with ρ > 0, n > d =
dim(M) (n > 2). Assume in addition that the associated operator L is

(8) If it were, then (1.9) would also be attained by a compactly supported function.

TOME 0 (0), FASCICULE 0



8 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

essentially self-adjoint in L2(µ). Let p = 2n
n−2 and normalize the measure µ

so that µ(M) = 1. Then,

(1.12)
(∫

|v|pdµ
)2/p

⩽
4

n(n− 2)
n− 1
ρ

∫
Γ(v)dµ+

∫
v2dµ,

v ∈ C∞
c (M).

Let us remark that this theorem can also be stated in the more gen-
eral context of full Markov triples as proposed in [1] and also on metric
measure spaces as proved in [18]. Thanks to Theorem 1.1, it suffices to
determine whether the CKN sphere is a smooth weighted manifold satis-
fying the CD(ρ, n) condition and that the associated operator is essentially
self-adjoint, in order to obtain an explicit value (which turns out to be op-
timal in our case) for the constant C in (1.10). This is what we do next.

Proposition 1.2 (Curvature-dimension condition for the spherical CKN
space). — Let (a, b) ∈ Θ and

(1.13) ρ = α2(n− 1).

Then, the spherical CKN space satisfies the curvature-dimension condition
CD(ρ, n) if and only if

(1.14) α2 ⩽
d− 2
n− 2 .

One implication of this proposition has been proved in [16, Theorem 3.9].
The proof proposed here is different and based on tensors, which is a useful
method to prove the equivalence between the two conditions. Note that
(Rd \ {0}, gS, µS) is a smooth weighted manifold and that its operator is
essentially self-adjoint if and only if n ⩾ 3, see [16, Theorem 3.12], whence
Sobolev’s inequality (1.10) holds under the condition (1.14). In fact, more
can be said. Revisiting the proofs of Theorem 1.1 given in [1, 11], we find
that if the following weaker integrated form of the curvature-dimension
condition

(1.15)
∫ (

ΓS
2 (f) − ρΓS(f) − 1

n
(LSf)2

)
f1−ndµS ⩾ 0

holds for functions f ∈ C∞(Rd \ {0}) such that inf f > 0 and sup f <

+∞, then the sharp Sobolev inequality is valid on the CKN sphere. More
precisely, letting H1

0 (µS) denote the closure of C∞
c (Rd \ {0}) with respect

to the norm
∥f∥2

H1
0 (µS) =

∫ (
ΓS(f) + f2) dµS.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.3 (Sobolev inequality for the spherical CKN space). — Let
(a, b) ∈ Θ. Whenever

(1.16) 0 < α < 1,

the following optimal Sobolev inequality holds

(1.17)
(∫

vpdµ
)2/p

⩽
4

n(n− 2)α2

∫
ΓS(v)dµ+

∫
v2dµ,

for any v ∈ H1
0 (µS), where µ = 1

ZµS and Z is a normalization constant(9)

such that µ is a probability measure. That is, inequality (1.10) is valid with
optimal constant

C = 4
n(n− 2)α2Z

2
n

.

In addition, equality holds in (1.17) if and only if

v(x) = (λ+ γ tanh(αs))− n−2
2 , s = log |x|,

where λ, γ are arbitrary constants such that λ > |γ|. In particular optimal
functions for both inequalities (1.1) and (1.17) are radial.

Remark 1.4.
• Note that φ1(x) = tanh(αs) is a radial eigenfunction of LS asso-

ciated to the eigenvalue λ = α2n. So, except for the round sphere
(corresponding to the case α = 1), the extremals of Sobolev’s in-
equality are obtained as a linear combination of radial extremals of
Poincaré’s inequality (1.20) (raised to the power − n−2

2 ), provided
this combination is bounded below by a positive constant.

• As we shall prove in Lemma 1.5, condition (1.16) is equivalent to
α2 ⩽ d−1

n−1 . In the limiting case α2 = d−1
n−1 , extremals of Sobolev’s

inequality are radial, while extremals of Poincaré’s inequality need
not be, see Proposition 1.6 below.

• The extremals of Sobolev’s inequality on the round sphere (i.e. the
limiting case α = 1) were discovered by T. Aubin, see e.g. [15,
Theorem 5.1]. They are more often written as constant multiples of

v = (β − cos(r))− d−2
2 ,

where β > 1 and r is the geodesic distance to an arbitrary point
ω0 ∈ Sd. With our notations, they take the form

v = (λ+ γφ1,d)− d−2
2 ,

(9) Z = µS(Rd \ {0}) = 2
α

|Sd−1|
∫ +∞

0 (cosh t)−ndt.

TOME 0 (0), FASCICULE 0



10 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

where φ1,d is any eigenfunction of −LS = −∆Sd associated to the
first nonzero eigenvalue λ1 = d and λ, γ are arbitrary constants
such that λ > |γ|∥φ1,d∥∞.

Our notation puts forward the connection between the extremals
of Sobolev’s inequality and the extremals of Poincaré’s inequality
in Proposition 1.6: the former are obtained as a linear combination
of the latter (raised to the power − d−2

2 ), provided this combination
is bounded below by a positive constant.

• Hardy’s inequality (i.e. the case α = 0 in (1.9)) is optimal for the
constant

C = lim
α→0+

4
n(n− 2)α2Z

2
n

=
(

2
d− 2 − 2a

)2
,

but equality is never achieved.
• It follows from Theorem 1.2 and Theorem 1.3 that for α ∈ (0, 1),

extremal functions for Sobolev’s inequality on the Euclidean CKN
space take the form

v(x) =
(

1 + |x|2α

2

)− n−2
2

,

up to normalization and dilation, providing thereby an alternative
proof of the main result in [9].

Condition (1.16) is strictly weaker than condition (1.14). It turns out to
be equivalent to

α2 ⩽
d− 1
n− 1 .

More precisely, consider the following Felli–Schneider region

(1.18) ΘFS = {(a, b) ∈ Θ, b ⩾ bFS(a) if b ⩽ 0},

where
bFS(a) = d(ac − a)

2
√

(ac − a)2 + d− 1
− (ac − a)

Let as well ΘDGZ ⊂ Θ be the domain where Proposition 1.2 is valid (con-
dition (1.14)):

ΘDGZ = {(a, b) ∈ Θ, BDGZ ⩾ 0},
where

(1.19) BDGZ = (d− 2) − (n− 2)α2.

Then, we prove that the region ΘFS corresponds exactly to the domain
where Theorem 1.3 is valid:

ANNALES DE L’INSTITUT FOURIER
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Lemma 1.5 (Comparison of the two regions).

ΘFS =
{

(a, b) ∈ Θ, BDGZ + n− d

n− 1 ⩾ 0
}

=
{

(a, b) ∈ Θ, α2 ⩽
d− 1
n− 1

}
Hence, ΘDGZ ⊊ ΘFS.

The two regions are represented in Figure 1.1 with d = 4.

1.0 0.5 0.5 1.0
a

1.0

0.5

0.5

1.0

1.5

2.0
b

ac = 1

a FS

a DGZ

Figure 1.1. bFS(a) (dashed style in red) and the curve BDGZ = 0
(dotted style in blue) with d = 4.

The condition θ ∈ ΘFS is known in the litterature as the Felli–Schneider
condition. Felli and Schneider [12], building on the work of Catrina and
Wang [7] initially proved that extremal functions for the optimal CKN in-
equality (1.1) cannot be radial whenever (1.16) fails. Conversely, in their
work [9], Dolbeault, Esteban and Loss computed the optimal constant
in (1.1) and proved that extremals for the optimal CKN inequality (1.1)
are radial and explicit whenever (1.16) holds. Combining Theorem 1.3 with
Theorem 1.2 gives an immediate alternative proof of these latter facts.
Our point of view may further clarify why the Felli–Schneider condition is
optimal. Indeed, it is well-known that a tight Sobolev inequality implies
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a Poincaré inequality: precisely, applying (1.17) with v = 1+ϵf and letting
ϵ → 0 leads to

(1.20)
∫
f2dµ−

(∫
fdµ

)2
⩽

1
nα2

∫
ΓS(f)dµ.

We prove the following.

Proposition 1.6 (Poincaré inequality for the spherical CKN space).
Let (a, b) ∈ Θ. The Poincaré inequality (1.20) holds with optimal constant
C = 1

nα2 if and only if the Felli–Schneider condition (1.16) holds. In addi-
tion, equality holds in (1.20) if and only if f is an eigenfunction associated
to the first nonzero eigenvalue of LS,

• if 0 < α < d−1
n−1 ,

f(x) = λ+ γ tanh(αs), where s = log |x|,

for some constants (λ, γ) ∈ R2.
• otherwise, if α = d−1

n−1 ,

f(x) = λ+ γ tanh(αs) + ν
φ1,d−1(ω)
cosh(αs) , where s = log |x| and ω = x

|x|
,

with (λ, γ, ν) ∈ R3 and some eigenfunction φ1,d−1 associated to the
first nonzero eigenvalue λ1 = d− 1 of −∆Sd−1 .

So, the Felli–Schneider condition cannot be improved in the statement of
Theorem 1.3 and it is in fact equivalent to both Sobolev’s and Poincaré’s
inequality with the given optimal constants on the spherical CKN space. In
addition, Poincaré’s inequality with constant C = n−1

ρn is in fact equivalent
to the following integrated CD(ρ, n) condition, where ρ, n > 0:∫ (

ΓS
2 (f) − ρΓS(f) − 1

n
(LSf)2

)
dµ ⩾ 0,

see [1, Proposition 4.8.3, Theorem 4.8.4 and their proofs]. Hence, the Felli–
Schneider condition (1.16) can be interpreted as a curvature-dimension
condition in integral form.

Let us also point out that if Sobolev’s inequality (1.10) holds on
a d-dimensional smooth manifold (M, g) without weight with optimal con-
stant C = 4

d(d−2)|Sd|2/d , then (M, g) must be isometric to the round sphere,
as very recently demonstrated in [17].
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1.4. The n-conformal invariants

In this last introductory paragraph, we expand on the conformal inva-
riance of Sobolev’s inequality in the setting of weighted manifolds and pro-
vide a deeper reason for why the three CKN model spaces satisfy equivalent
conformal forms of the Sobolev inequality.

For the inequality (1.8) without weights, it turns out that Sg = d−2
4(d−1)scg

is a constant multiple of the scalar curvature of g (see Propositions 3.6.20,
3.6.21 and 6.2.2, as well as the second displayed formula on p. 63 in [14]
or [1, Section 6.9.2] for proofs of this classical result). In other words, in-
equality (1.8) is valid on the whole conformal class of the round sphere,
including the Euclidean (where Sg = 0) and hyperbolic (where Sg =
− d−2

4(d−1)scg) spaces.
For weighted manifolds, the notion of scalar curvature can be generalized

as follows. As proposed in [1, Section 6.9] (see also [6, 8] for earlier perspec-
tives(10) ), given a d-dimensional (d ⩾ 2) weighted Riemannian manifold
(M, g, µ) with reference measure

dµ = e−W dVg,

where W : M → R is a given weight and dVg the Riemannian volume, let

Γ(f) = |∇gf |2g
denote the associated carré du champ operator, so that (M,µ,Γ) is a
Markov triple.

Definition 1.7. — Take a real number n ∈ [d,+∞], which is not neces-
sarily an integer. The n-conformal class of the triple (M,µ,Γ) is the set of
all Markov triples (M, c−nµ, c2Γ), where c : M 7→ (0,∞) is any smooth
and positive function. An n-conformal invariant is a map S defined on the
n-conformal class of (M,µ,Γ) with values in the set of functions over M ,
such that for any positive smooth function c = eτ ,

(1.21) S
(
c−nµ, c2Γ

)
= c2

[
S(µ,Γ) + n− 2

2

(
Lτ − n− 2

2 Γ(τ)
)]
,

where
L = ∆g − Γ(W, ·).

It is important to notice that the operator L is uniquely determined by
the carré du champ operator Γ and the measure µ only. This is indeed
the case since the operator ∆g depends on the metric g (which itself is

(10) Which correspond to the special case γ = −2 in Proposition 1.8 below.
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14 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

uniquely determined by Γ) and since W is related to the measure µ and the
metric g through the Riemannian measure dVg. Also observe that setting
u = c− n−2

2 , s = S(µ,Γ), s̃ = S(c−nµ, c2Γ), then (1.21) can be reformulated
as the following Yamabe-type equation:

−Lu+ su = s̃u
n+2
n−2 in M.

Note that the case where n = d, L = ∆g, s = d−2
4(d−1)scg and s̃ constant, is

the standard Yamabe equation.
By a rather direct computation, see [1, Proposition 6.9.2], whenever S =

S(µ,Γ) is an n-conformal invariant, the Sobolev inequality

(1.22)
(∫

|v|pdµ
)2/p

⩽ C

(∫
Γ(v)dµ+

∫
Sv2dµ

)
,

(with given constant C > 0 and p = 2n
n−2 ) is invariant in the n-conformal

class of the triple (M,µ,Γ). In other words, if the Sobolev inequality (1.22)
holds for some constant C, then it also holds with the same constant C for
all triples (M, c−nµ, c2Γ) where c is any smooth and positive function.

Rephrasing what we said earlier, in the absence of weight, Sg = d−2
4(d−1)scg

is an example of a d-conformal invariant (where in this case n = d). The
case of weighted Riemannian manifolds is a little bit more complicated and
contains interesting examples. Let us recall [1, Proposition 6.9.6] (we will
also provide a proof since the one in [1] contains some mistakes as well as
the statement).

Proposition 1.8 (n-conformal invariant in a weighted manifold). —
Let γ ∈ R and n > d. Then,

(1.23) Sγ(µ,Γ) = θn(γ)
[
scg − γ∆gW + βn(γ)Γ(W )

]
is an n-conformal invariant if

βn(γ) = γ(n− 2d+ 2) − 2(d− 1)
2(n− d) and θn(γ) = n− 2

4(d− 1) − 2γ(n− d) .

This being recalled, a natural question arises in the context of the Eu-
clidean CKN space we introduced in Definition 1.1: does there exist a
(unique) real number γ0 ∈ R such that this space satisfies

Sγ0(µE,ΓE) = 0?

This is indeed the case, as we are about to see. By Theorem 1.2, without any
further computation, we deduce that for the same value of the parameter
γ = γ0, Sγ0(µS,ΓS) = n(n−2)

4 α2 > 0 is constant for the CKN sphere and
Sγ0(µH,ΓH) = − n(n−2)

4 α2 for the CKN hyperbolic space.
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Proposition 1.9. — Let n > d and

(1.24) γ0 = − 2(d− 1)
α2(n− d)(n− 2)BDGZ,

where BDGZ has been defined in (1.19).
Then,

Sγ0(µE,ΓE) = 0,

Sγ0(µS,ΓS) = n(n− 2)
4 α2

and

Sγ0(µH,ΓH) = −n(n− 2)
4 α2.

As an immediate collorary of the CKN inequality (1.1) and the above
lemma, we recover the validity of Sobolev’s inequality on our three model
spaces, stated in Theorem 1.2 above.

Remark 1.10. — In a forthcoming report, we will further explain how a
weighted version of Otto’s calculus can be introduced in order to prove a
wider class of optimal CKN inequalities, by working directly on the Eu-
clidean CKN space, rather than the CKN sphere.

The rest of the paper is organized as follow. In Section 2 below, we
prove the conformal invariance of Sobolev’s inequality in the CKN spaces
(Theorem 1.2). Section 3 is dedicated to the characterization of the region of
parameter ΘDGZ (resp. ΘF S) for which the classical curvature-dimension
condition (resp. the integrated form (1.15)) holds, from which Sobolev’s
inequality follows (Proposition 1.2 and Theorem 1.3). In Section 4, we
prove all results pertaining to n-conformal invariance for general weighted
manifolds (Propositions 1.8 and 1.9). At last, an appendix contains lists of
known formulas and constants, proofs of the numerology relating them as
well as rigorous justification of the integrations by parts implicitly used in
the proof of Sobolev’s inequality.

2. Conformal invariance of Sobolev type inequalities for
CKN models

Proof of Theorem 1.2. — As in the unweighted case, the proof reduces to
a simple change of unknown, once the proper notion of conformal invariance
has been introduced. First we prove that the Sobolev inequality in the CKN
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16 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

Euclidean space is equivalent to the Sobolev inequality in the spherical
CKN space.

Recall that for

(2.1) φ(x) = 1 + |x|2α

2 , x ∈ Rd,

and that
ΓS = φ2ΓE and µS = φ−nµE.

Apply (1.1) to the function f = φ
2−n

2 g. On the one hand, we have∫
fpdµE =

∫
f

2n
n−2 dµE =

∫
gpdµS.

On the other hand, letting V = logφ,

ΓE(f) = ΓE

(
φ

2−n
2 g
)

= φ2−nΓE(g) + 2φ
2−n

2 gΓE

(
φ

2−n
2 , g

)
+ ΓE

(
φ

2−n
2

)
g2

= φ2−n

(
ΓE(g) − n− 2

2 ΓE
(
g2, V

)
+ (n− 2)2

4 ΓE(V )g2
)
.

An integration by parts with respect to µE yields∫
ΓE
(
g2, V

)
φ2−ndµE +

∫
ΓE
(
φ2−n, V

)
g2dµE = −

∫
LEV g

2φ2−ndµE,

so that we get∫
ΓE(f)dµE

=
∫

ΓS(g)dµS − n− 2
2

∫
ΓE
(
g2, V

)
φ2−ndµE

+ (n− 2)2

4

∫
ΓE(V )g2φ2dµS

=
∫

ΓS(g)dµS + n− 2
2

∫ (
LE(V ) − n− 2

2 ΓE(V )
)
g2φ2dµS,

The CKN inequality (1.1) becomes(∫
gpdµS

)2/p

⩽ C

(∫
ΓS(g)dµS + (n− 2)

2

∫ (
LE(V ) − n− 2

2 ΓE(V )
)
φ2g2dµS

)
,

and it is enough to compute the quantity

LE(V ) − n− 2
2 ΓE(V ).
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To that end, recall that LE is given by

(2.2) LE = |x|2(1−α)[∆ − a∇ log |x|2 · ∇
]
.

Since V = logφ, we have

LE(V ) − n− 2
2 ΓE(V ) = LE(φ)

φ
− ΓE(φ)

φ2 − n− 2
2

ΓE(φ)
φ2

= LE(φ)
φ

− n

2
ΓE(φ)
φ2 .

Recalling the definition of φ given in (2.1), we find that

ΓE(φ)
φ2 = α2|x|2α

φ2 ,

and

LE(φ)
φ

=
|x|2(1−α)[∆φ− a∇ log |x|2 · ∇φ

]
φ

= α
d+ 2(α− 1) − 2a

φ

= α2n

φ
.

So finally,

LE(V ) − n− 2
2 ΓE(V ) = α2n

2φ2 ,

and the CKN inequality (1.1) takes the form (1.10), as announced.
Next, we prove that Sobolev’s inequality in the CKN Euclidean space

implies the Sobolev inequality on the CKN hyperbolic space. We mimic
the previous proof. Define the function ψ on the punctured open unit ball
B \ {0} ⊂ Rd by

ψ(x) = 1 − |x|2α

2 , x ∈ B \ {0}.

Then, on B \ {0},

ΓH = ψ2ΓE and µH = ψ−nµE.

Apply the CKN inequality (1.1) to the function f = ψ
2−n

2 h, where h ∈
C∞

c (B \ {0}). Again, we get∫
fpdµE =

∫
f

2n
n−2 dµE =

∫
hpdµH.

TOME 0 (0), FASCICULE 0
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and (1.1) becomes, with U = logψ,(∫
hpdµH

)2/p

⩽ C

(∫
ΓH(h)dµH + n− 2

2

∫ (
LE(U) − n− 2

2 ΓE(U)
)
ψ2h2dµH

)
.

We obtain
LE(U) − n− 2

2 ΓE(U) = −α2n

2ψ2 ,

and so (1.11), as claimed. □

3. Sobolev’s inequality for the spherical CKN model

This section is devoted to the proof of the optimal Sobolev inequality for
the spherical CKN space (Theorem 1.3) under the Felli–Schneider condi-
tion (1.16). It is convenient to introduce spherical coordinates Rd \ {0} ∋
x = rθ with r > 0 and θ ∈ Sd−1. The Sobolev inequality on the CKN
sphere (1.17) then takes the form(∫

(0,∞)×Sd−1
|v|p rd−1−pb

(1 + r2α)n
drdVSd−1

)2/p

⩽ C

∫
(0,∞)×Sd−1

[
(∂rv)2 + 1

r2 |∇θv|2
]
r2(α−1)+d−1−pb

(1 + r2α)n−2 drdVSd−1

+ 4Z− 2
n

∫
(0,∞)×Sd−1

v2 rd−1−pb

(1 + r2α)n
drdVSd−1 ,

where |∇θv| is the Riemannian length of the Riemannian gradient ∇θv on
Sd−1 and dVSd−1 is the associated Riemannian volume. Using the change
of variable (0,∞) ∋ r = es, with s ∈ R, the inequality becomes (with a
different constant C),

(3.1)
(∫

R×Sd−1
|v|p cosh(αs)−ndsdVSd−1

)2/p

⩽ C

∫
R×Sd−1

[
(∂sv)2 + |∇θv|2

]
cosh(αs)2−ndsdVSd−1

+ Z− 2
n

∫
R×Sd−1

v2 cosh(αs)−ndsdVSd−1 ,

where we used the fact that d − nα − pb = 0, see (A.19). This new chart
is often called the Emden–Fowler transformation, as suggested in [7, 10].
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In other words, in the cylindrical chart (s, θ) ∈ R × Sd−1, the spherical
CKN space takes a new and nice form. Notice that the space remains the
same, it is only written in a new chart. More precisely, letting

(3.2) φ(s) = cosh(αs), s ∈ R,

the metric becomes (with the upper indices)

(3.3) gS = φ2h = e2τSh,

where τS = logφ and h is the standard product metric(11) on (0,∞)×Sd−1,
represented by the d-dimensional matrix(

1 0
0 Gθ

)
,

where Gθ is the matrix of gθ in the chart (s, θ), and gθ is the round metric
of Sd−1. For convenience, in Lemma 3.2 and its proof, as well as the proof
of Proposition 1.2, we will abuse the notations and identify the tensors with
their coordinates in the chart (s, θ), since it will be the only chart used in
all the calculations. The carré du champ operator takes the form

ΓS(f) = φ2[(∂sf)2 + |∇θf |2
]

= φ2[(∂sf)2 + Γθ(f)
]
,

where Γθ(f) = |∇θf |2 is the carré du champ operator associated to the
Laplace–Beltrami operator ∆θ on Sd−1. The Riemannian volume becomes
dVgS = φ−ddsdVSd−1 and the reference measure (not normalized measure)

dµS = φ−ndsdVSd−1 .

The corresponding weight WS is defined by dµS = e−WSdVgS , so that

WS = (n− d) logφ.

Finally, the associated generator takes the pleasant form

LS(f) = φ2
[
∂ssf + (2 − n)φ

′

φ
∂sf + ∆θf

]
.

Taking advantage of this chart, let us begin by proving that the spheri-
cal CKN space satisfies the CD(ρ, n) condition whenever condition (1.14)
holds:

Proposition 1.2. — From [1, Section C6], the generator LS satisfies
a CD(ρ, n) condition (with n > d) if and only if, as a symmetric tensor
(with lower indices),

Ric(LS) − ρgS ⩾
1

n− d
∇gSWS ⊗ ∇gSWS.

(11) On the cotangent space of (0, ∞) × Sd−1, where Sd−1 is viewed in a given chart.
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Let us remark that, since gS = φ2h (with upper indices), the corresponding
metric tensors (with lower indices) satisfy

gS = h

φ2 .

Compute first the r.h.s. of the above inequality. From the definition of
WS, we have

∇gSWS ⊗ ∇gSWS

n− d
= (n− d)

(
φ′

φ

)2
J,

where J is the d-dimensional matrix with all entries equal to zero but the
first i.e. Jij = δi1δj1 or more visually, letting H (resp. Gθ) be the matrix
representing the standard product metric h (resp. gθ) in the coordinates
(s, θ) (resp. θ),

(3.4) J =
(

1 0
0 0

)
= H −

(
0 0
0 Gθ

)
.

Now, applying formula (3.7) in Lemma 3.2 below, we get

Ric(LS) − ρgS − 1
n− d

∇gSWS ⊗ ∇gSWS

= −(n− d)α2H + (d− 2)
(
1 − α2)(H − J) + (n− d)α2J,

where, again, we conflate tensors and their matrices in the chart (s, θ).
Hence,

Ric(LS) − ρgS − 1
n− d

∇gSWS ⊗ ∇gSWS = BDGZ

(
0 0
0 Gθ

)
with the constant BDGZ is defined given in (1.19), and so, LS satisfies the
curvature-dimension condition CD(ρ, n) if and only if BDGZ ⩾ 0. □

Remark 3.1. — Since the matrix H − J depends only on the variable θ,
when we restrict to functions depending on the variable s only, the corre-
sponding model always satisfies the CD(ρ, n) condition, regardless of the
sign of BDGZ.

In the above proof, we made strong use of the following lemma.

Lemma 3.2 (Computation of Ric(LS)). — We have the following for-
mulae

(3.5) RicgS = (d− 1)α2

φ2

(
1 0
0 0

)
+ 1
φ2

[
(d− 2)

(
1 − α2)φ2 + (d− 1)α2](0 0

0 Gθ

)
,
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and

(3.6) ∇∇gS WS = (n− d)α2
(

1 0
0 0

)
+ (n− d)α2 1 − φ2

φ2

(
0 0
0 Gθ

)
,

where Gθ is the matrix of round metric on the sphere Sd−1. With the
constant BDGZ (given in (1.19)), we obtain

Ric(LS) = RicgS +∇∇gSWS

= α2

φ2

[
d− 1 + φ2(n− d)

](1 0
0 0

)
+ 1
φ2

[
α2(n− 1) + φ2BDGZ

](0 0
0 Gθ

)
.

(3.7)

Proof. — Let us start with RicgS , which is simply the Ricci tensor of the
metric gS. Since gS = e2τSh is conformal to h, we may apply (A.4) in the
appendix to get (with lower indices)

(3.8) RicgS = Rich +(∆hτS)h

+ (d− 2)
(
∇∇hτS + ∇hτS ⊙h ∇hτS − ∇hτS ·h ∇hτS h

)
.

Since Ricgθ
= (d− 2)gθ, we have

Rich = (d− 2)(H − J) = (d− 2)
(

0 0
0 Gθ

)
.

Since φ depends only on the variable s, we have

∆h(τS) =

τ ′′
S = φ′′

φ
−
(
φ′

φ

)2
= α2 −

(
φ′

φ

)2
,

∇hτS ⊙h ∇hτS =
(
φ′

φ

)2
J,

∇hτS = φ′

φ

(
1
0

)
,

and (
∇hτS ·h ∇hτS

)
h =

(
φ′

φ

)2
H.

Collecting the four terms and using (3.8), we get

Ricg = H

[
d− 2 + α2 − (d− 1)

(
φ′

φ

)2
]

+ J(d− 2)
(
α2 − 1

)
.
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Since φ′2 = α2(φ2 − 1), the equation can be written,

Ricg = H
(d− 1)α2

φ2 + (H − J)(d− 2)
(
1 − α2),

which is the desired result.
Let us now compute ∇∇gSWS, the Hessian with respect to the metric gS.

We have (see (A.2)),

∇∇gS WS = ∇∇hWS + 2∇WS ⊙h ∇hτS −
(
∇hWS ·h ∇hτS

)
h.

Since WS depends only on the variable s, we easily get that

∇∇gS WS = J(n−d)
[
α2 −

(
φ′

φ

)2
]

+ 2J(n−d)
(
φ′

φ

)2
−H(n−d)

(
φ′

φ

)2
,

which is the expected result. □

Remark 3.3. — As an immediate consequence of Proposition 1.2, the
fact that LS is essentially self-adjoint when n ⩾ 3 (see [16, Theorem 3.12])
and Theorem 1.1, we see that Sobolev’s inequality (1.17) holds (and so
Poincaré’s inequality (1.20) too), as soon as (1.14) holds. Also note that
f = φ′

φ , seen as a function of the first of the cylindrical coordinates (s, θ),
solves

−LSf = nα2f

and so equality in Poincaré’s inequality (1.20) is achieved by f . In partic-
ular, the constant in Sobolev’s inequality (1.17) is optimal.

In fact, one can do better and prove optimal inequalities in the optimal
range of parameters given by the Felli–Schneider condition, as we describe
next. The first crucial step consists in proving the following weaker inte-
grated forms of the curvature-dimension condition (1.15).

Proposition 3.4. — Let (a, b) ∈ ΘF S . In cylindrical coordinates (s, θ),
for any s ∈ (0,∞) and any smooth positive function f on (0,∞) × Sd−1,
there holds

(3.9)
∫ (

ΓS
2 (f) − ρΓS(f) − 1

n
(LSf)2

)
f1−ndVSd−1 ⩾ 0

and

(3.10)
∫ (

ΓS
2 (f) − ρΓS(f) − 1

n
(LSf)2

)
dVSd−1 ⩾ 0,

where dVSd−1 is the standard volume on the sphere Sd−1.
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We establish Proposition 3.4 through a series of lemmas. First,

Lemma 3.5 (ΓS
2 in the cylindrical chart). — Let (a, b) ∈ Θ. In cylindrical

coordinates, we have for any smooth function f on (0,∞) × Sd−1

(3.11)

ΓS
2 (f)
φ4 = (∂ssf)2 + ∥∇∇θf∥2 + 2Γθ(∂sf)

+ 2φ
′

φ
∂ssf∂sf + 4φ

′

φ
Γθ(∂sf, f) − 2φ

′

φ
∂sf∆θf

+ (∂sf)2

[
d

(
φ′

φ

)2
+ α2

(
d− 1
φ2 + n− d

)]

+ Γθ(f)
(

2
(
φ′

φ

)2
+ α2n− 1

φ2 + BDGZ

)
,

where ∥∇∇θf∥2 is the Hilbert–Schmidt norm with respect to the variable θ,
Γθ(f) = |∇θf |2 the carré du champ operator associated to ∆θ and the
function φ has been defined in (3.2).

Proof. — We can use the definition of the Γ2 operator to prove (3.11).
But, since the Ricci curvature of LS has been computed in Lemma 3.2, we
prefer to use the following Bochner–Lichnerowicz formula,

(3.12) ΓS
2 (f) = Ric(LS)(∇f,∇f) + ∥∇∇gSf∥2,

where ∥∇∇gSf∥2 is the Hilbert–Schmidt norm of the Hessian of f with
respect to the metric gS (see for instance [1, p. 71]). From Lemma 3.2,
equation (3.7), we have first

Ric(LS)(∇f,∇f)
φ4

= (∂sf)2

φ2 α2[d− 1 + φ2(n− d)
]

+ Γθ(f)
φ2

[
α2(n− 1) + φ2BDGZ

]
.

It remains to compute ∥∇∇gSf∥2. From (3.3) we have gS = φ2h = e2τSh

and so we may apply formula (A.3) to get

∥∇∇gSf∥2

φ4 =
∥∥∇∇hf

∥∥2 + 2Γh(τS,Γg(f))

+ 2Γh(f)Γh(τS) + (d− 2)Γh(f, τS)2 − 2∆hfΓh(f, τS).
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Since h is the standard metric product and τ depends only on the variable s,
we have ∥∥∇∇hf

∥∥2 = (∂ssf)2 + ∥∇∇θf∥2 + 2Γθ(∂sf),

Γh(τS,Γg(f)) = 2φ
′

φ
∂ssf∂sf + 2φ

′

φ
Γθ(∂sf, f),

Γh(f) = (∂sf)2 + Γθ(f), Γh(τS) =
(
φ′

φ

)2
,

Γh(f, τS) = φ′

φ
∂sf and ∆hf = ∂ssf + ∆θf.

Collecting all the terms, we get∥∥∇∇gSf
∥∥2

φ4 = (∂ssf)2 + ∥∇∇θf∥2 + 2Γθ(∂sf) + 4φ
′

φ
∂ssf∂sf

+ 4φ
′

φ
Γθ(∂sf, f) + 2

(
φ′

φ

)2[
(∂sf)2 + Γθ(f)

]
+ (d− 2)

(
φ′

φ

)2
(∂sf)2 − 2(∂ssf + ∆θf)φ

′

φ
∂sf,

that is∥∥∇∇gSf
∥∥2

φ4 = (∂ssf)2 + ∥∇∇θf∥2 + 2Γθ(∂sf)

+ 2φ
′

φ
∂ssf∂sf + 4φ

′

φ
Γθ(∂sf, f)

+ 2
(
φ′

φ

)2
Γθ(f) + d

(
φ′

φ

)2
(∂sf)2 − 2∆θf

φ′

φ
∂sf.

Finally, by using (3.12), we get the expected formula (3.11). □

We restate the above lemma in the following more compact formulation.

Lemma 3.6. — In the cylindrical chart, for any smooth function f on
(0,∞) × Sd−1,

(3.13) 1
φ4

(
ΓS

2 (f) − ρΓS(f) − 1
n

(LSf)2
)

= n− 1
n

(
∂ssf + 2φ

′

φ
∂sf − 1

n− 1∆θf

)2
+ ∥∇∇θf∥2

− 1
n− 1(∆θf)2 + 2Γθ

(
∂sf + φ′

φ
f
)

+ Γθ(f)BDGZ.
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Proof. — In the cylindrical chart, the generator takes the following form,
for a smooth function f :

LS(f) = φ2
[
∂ssf + (2 − n)φ

′

φ
∂sf + ∆θf

]
,

and from Lemma 3.5 (formula (3.11)), we obtain

1
φ4

[
ΓS

2 (f) − ρΓS(f) − 1
n

(LSf)2
]

= n− 1
n

(∂ssf)2 + ∥∇∇θf∥2 − 1
n

(∆θf)2

+ 4φ
′

φ

n− 1
n

∂ssf∂sf − 4
n

φ′

φ
∂sf∆θf

− 2
n
∂ssf∆θf + 2Γθ(∂sf) + 4φ

′

φ
Γθ(∂sf, f)

+ (∂sf)2

[(
φ′

φ

)2(
d− (n− 2)2

n

)
+ (n− d)α2φ

2 − 1
φ2

]

+ Γθ(f)
(

2
(
φ′

φ

)2
+ BDGZ

)
.

Since φ′2 = α2(φ2 − 1), we get

1
φ4

[
ΓS

2 (f) − ρΓS(f) − 1
n

(LSf)2
]

= n− 1
n

(∂ssf)2 + ∥∇∇θf∥2 − 1
n

(∆θf)2

+ 4φ
′

φ

n− 1
n

∂ssf∂sf − 4
n

φ′

φ
∂sf∆θf

+ 4n− 1
n

(
φ′

φ

)2
(∂sf)2 − 2

n
∂ssf∆θf

+ Γθ(f)
(

2
(
φ′

φ

)2
+ BDGZ

)
+ 2Γθ(∂sf) + 4φ

′

φ
Γθ(∂sf, f).

Formula (3.13) follows then easily since φ depends only on the variable s.
□

Remark 3.7. — By the Cauchy–Schwarz inequality,

∥∇∇θf∥2 ⩾
1

d− 1(∆θf)2,

TOME 0 (0), FASCICULE 0



26 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

and so

∥∇∇θf∥2 − 1
n− 1(∆θf)2 ⩾

n− d

(d− 1)(n− 1)(∆θf)2 ⩾ 0

since n ⩾ d. We recover from (3.13) that, under the condition BDGZ ⩾ 0,
the generator LS satisfies the CD(ρ, n) curvature-dimension condition.

The next ingredient is the following inequality valid on the sphere Sd−1

(or any smooth weighted manifold satisfying the CD(d−2, d−1) condition).

Lemma 3.8. — For any smooth positive function f on Sd−1,

(3.14)
∫

Γθ
2(f)f1−ndVSd−1

⩾ (d− 1)
∫

Γθ(f)f1−ndVSd−1 +A

∫ Γθ(f)2

f2 f1−ndVSd−1 ,

where

(3.15) A = n− 1
4(d+ 1)2 (n(4d− 5) + 3(4d+ 7)).

In particular,

(3.16)
∫

Γθ
2(f)f1−ndVSd−1 ⩾ (d− 1)

∫
Γθ(f)f1−ndVSd−1 .

Proof. — The operator ∆θ is the Laplace–Beltrami operator on the
(d− 1)-dimensional sphere, therefore, it satisfies the CD(d− 2, d− 1) con-
dition. Moreover, Ricgθ

(the Ricci tensor of ∆θ) satisfies

(3.17) Ricgθ
(∇θf,∇θf) = (d− 2)Γθ(f).

In [13, p. 767], it is proved that under the CD(K,m) condition, for a general
operator L associated to the measure µ, and the operators Γ and Γ2, one
has for any real parameters q, χ,∫

hqΓ2(h)dµ

⩾
Km

m− 1

∫
hqΓ(h)dµ+

∫ [
Ahq−2Γ(h)2 +Bhq−1Γ(h,Γ(h))

]
dµ

where 
A = q(q − 1)

m− 1 − χ2 − 2χ q − 1
m− 1 ,

B = 1
m− 1

(
3q
2 − χ(m+ 2)

)
.
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Apply the previous inequality to our operator ∆θ with parameters q = 1−n,
K = d− 2, m = d− 1 and χ = 3q

2(m+2) so that B = 0. We obtain

∫
Γθ

2(f)f1−ndVSd−1

⩾ (d− 1)
∫

Sd−1
Γθ(f)f1−ndVSd−1 +A

∫
Sd−1

Γθ(f)2

f2 f1−ndVSd−1

where A is given by (3.15) after a straightforward computation. In parti-
cular, A ⩾ 0 and the estimate (3.16) follows. □

We can now turn to the

Proof of Proposition 3.4. — From Lemma 3.6, we have∫ (
ΓS

2 (f) − ρΓS(f) − 1
n

(LSf)2
)
f1−ndVSd−1

⩾ φ4
∫ (∥∥∇∇θf

∥∥2 − 1
n− 1(∆θf)2 + Γθ(f)BDGZ

)
f1−ndVSd−1 .

Now,

∥∇∇θf∥2 − 1
n− 1(∆θf)2

= n− d

n− 1∥∇∇θf∥2 + d− 1
n− 1∥∇∇θf∥2

− 1
n− 1(∆θf)2 ⩾

n− d

n− 1∥∇∇θf∥2,

where we used the Cauchy–Schwarz inequality to infer that

(3.18) ∥∇∇θf∥2 ⩾
1

d− 1(∆θf)2.

So,∫ (
ΓS

2 (f) − ρΓS(f) − 1
n

(LSf)2
)
f1−ndVSd−1

⩾ φ4
∫ (

n− d

n− 1
∥∥∇∇θf

∥∥2 + Γθ(f)BDGZ

)
f1−ndVSd−1 .

Since, from (3.12) and (3.17),∥∥∇∇θf
∥∥2 = Γθ

2(f) − RicSd−1(∇θf,∇θf) = Γθ
2(f) − (d− 2)Γθ(f),
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the inequality becomes

φ−4
∫ (

ΓS
2 (f) − ρΓS(f) − 1

n
(LSf)2

)
f1−ndVSd−1

⩾
n− d

n− 1

∫
Γθ

2(f)f1−ndV d−1
S

+
[
n− d

n− 1(d− 2)BDGZ

] ∫
Γθ(f)f1−ndVSd−1 .

Using the estimate (3.16) in Lemma 3.8, we get

(3.19) φ−4
∫ (

ΓS
2 (f) − ρΓS(f) − 1

n
(LSf)2

)
f1−ndVSd−1

⩾

[
n− d

n− 1 + BDGZ

] ∫
Γθ(f)f1−ndVSd−1 .

That is,

(3.20) n− d

n− 1 + BDGZ ⩾ 0

implies (3.9). The proof of inequality (3.10) is almost identical, except that
instead of (3.14), one uses∫

Γθ
2(f)dVSd−1 ⩾ (d− 1)

∫
Γθ(f)dVSd−1 ,

which itself holds thanks to the Cauchy–Schwarz inequality (3.18), Boch-
ner’s formula (3.12) and the identity

∫
Γθ

2(f)dVSd−1 =
∫

(∆θf)2dVSd−1 . □

Now that the integrated curvature-dimension is established, we can turn
to the proof of Sobolev’s inequality.

Proof of Theorem 1.3. — Fix q ∈ [1, p). By the Caffarelli–Kohn–Niren-
berg inequality (1.1) and Theorem 1.2, Sobolev’s inequality holds on the
CKN spherical space in the form (1.10). By [1, Proposition 6.2.2], (1.10)
and Poincaré’s inequality (A.5) imply the following tight form of Sobolev’s
inequality:

(3.21)
(∫

|v|qdµ
)2/q

⩽ A

∫
ΓS(v)dµ+

∫
v2dµ,

for some A ∈ R∗
+ where µ = 1

ZµS is the normalized measure and v ∈
H1

0 (µS). Given A ∈ R∗
+, consider the minimization problem

I(A) = inf
{
A

∫
ΓS(v)dµ+

∫
v2dµ : v ∈ H1

0 (µS) , ∥v∥Lq(µ) = 1
}
.

Using v = 1 as a test function, we see that I(A) ⩽ 1. Thus, (3.21) holds
if and only if I(A) = 1. Thanks to the Banach–Alaoglu–Bourbaki and
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Lemma A.4, there exists a minimizer v ∈ H1
0 (µS) s.t. ∥v∥Lq(µ) = 1. By

Stampacchia’s theorem [19], |v| is also a minimizer, so we may assume that
v ⩾ 0 a.e. In addition, a constant multiple of v (abusively denoted the same
below) is a weak solution to

(3.22) −ALSv + v = vq−1 in Rd \ {0}.

By standard elliptic regularity (see e.g. [14, proof of Theorem 6.2.1, p. 248])
v ∈ C3(Rd \ {0}) and by the strong maximum principle (see e.g. [14, Theo-
rem 5.7.2]), v > 0 in Rd \ {0}. In addition,

(3.23) C ⩾ v ⩾ c > 0 and ΓS(v) ⩽ C

for some constants C, c > 0. The upper bound on v is obtained by standard
Moser iteration (i.e. by multiplying (3.22) by the test function min(v, k)2α−1,
where k ∈ N∗ and α ⩾ 1 and making use of Sobolev’s inequality (A.10)
inductively). For the lower bound on v, we apply [1, Proposition 6.3.4] and
repeat the considerations of p. 312 in the same reference. The upper bound
on ΓS(v) is more delicate and proved in Lemma A.7.

Define the pressure function Φ = v− q−2
2 . Then, Φ solves

(3.24) ΦLSΦ − ν

2 ΓS(Φ) = −λ
(
Φ2 − 1

)
in Rd \ {0},

where ν = 2q
q−2 and λ = q−2

2A = 2
(ν−2)A . Since v is bounded above and below

by positive constants and since ΓS(v) is bounded, equation (3.24) implies
that for every a ∈ R

(3.25) Φa ∈ D(LS)

Multiply equation (3.24) by LS(Φ1−ν) and integrate. Thanks to the inte-
gration by parts formula (A.6), we find for the right-hand-side∫

λ
(
Φ2 − 1

)
LS
(
Φ1−ν

)
= λ

∫
Φ2LS

(
Φ1−ν

)
= −λ

∫
ΓS
(
Φ2,Φ1−ν

)
= c

∫
ΓS(Φ)Φ1−ν

where c = 2λ(ν − 1) = 4 ν−1
(ν−2)A and where integration is understood with

respect to the reference measure µ = 1
ZµS. For the left-hand side, integra-

tions by parts must be dealt with more carefully. By Lemma A.2 (or since
LS is essentially self-adjoint by [16, Theorem 3.12]), there exists a sequence
of radial functions ζk ∈ C∞

c (Rd \{0}) such that ζk → 1 in D(LS). By equa-
tion (3.24), ΦLSΦ − ν

2 ΓS(Φ) is bounded. By (3.25), LS(Φ1−ν) ∈ L2(µS).
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So, by dominated convergence, as k → +∞,∫ (
LS
(
Φ1−ν

))(
ΦLSΦ − ν

2 ΓS(Φ)
)

=
∫ (

LS
(
Φ1−ν

))(
ΦLSΦ − ν

2 ΓS(Φ)
)
ζk + o(1)

Since ζk is compactly supported, we may integrate by parts and deduce
that

(3.26)
∫ (

LS
(
Φ1−ν

))(
ΦLSΦ − ν

2 ΓS(Φ)
)
ζk

= −
∫

ΓS

((
ΦLSΦ − ν

2 ΓS(Φ)
)
ζk,Φ1−ν

)
+ o(1)

= −
∫

ΓS
(
(ΦLSΦ)ζk,Φ1−ν

)
+ ν

2

∫
ΓS
(
ΓS(Φ)ζk,Φ1−ν

)
+ o(1)

:= I + II + o(1)

Using the product rule to expand derivatives in the first integral, we find

I = −
∫
ζkLSΦΓS

(
Φ,Φ1−ν

)
−
∫
ζkΦΓS

(
LSΦ,Φ1−ν

)
−
∫

(ΦLSΦ)ΓS
(
ζk,Φ1−ν

)
=: I1 + I2 + I3

Using (3.24) and the boundedness of Φ and ΓS(Φ), we find

(3.27) I3 ⩽ C

(∫
ΓS(ζk)

)1/2
= o(1)

Next, we deal with I1. Thanks to the product rule for derivatives, we find

I1 = −
∫

ΓS
(
Φ,Φ1−νLSΦζk

)
+
∫

Φ1−νζkΓS(Φ, LSΦ)

+
∫

Φ1−νLSΦΓS(Φ, ζk)

= −
∫

ΓS(Φ,Φ1−νLSΦζk) +
∫

Φ1−νζkΓS(Φ, LSΦ) + o(1)

Since ζk has compact support, we may integrate by parts to find that

(3.28) I1 = −
∫

Φ1−ν(LSΦ)2ζk +
∫

Φ1−νζkΓS(Φ, LSΦ) + o(1).

For I2 at last, the chain rule simply implies that

(3.29) I2 = (ν − 1)
∫

Φ1−νζkΓS(Φ, LSΦ).
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Now we turn to II and apply the product rule.

2
ν

II =
∫
ζkΓS

(
ΓS(Φ),Φ1−ν

)
+
∫

ΓS(Φ)ΓS
(
ζk,Φ1−ν

)
=
∫
ζkΓS

(
ΓS(Φ),Φ1−ν

)
+ o(1).

Thanks to the product rule again and integration by parts, it follows that

2
ν

II =
∫

ΓS
(
ΓS(Φ), ζkΦ1−ν

)
+
∫

Φ1−νΓS(ΓS(Φ), ζk)

=
∫

ΓS
(
ΓS(Φ), ζkΦ1−ν

)
−
∫

ΓS(Φ)ΓS
(
Φ1−ν , ζk

)
−
∫

ΓS(Φ)Φ1−νLSζk.

And so, since ζk → 1 in D(LS) and Φ,ΓS(Φ) are bounded,

2
ν

II =
∫

ΓS
(
ΓS(Φ), ζkΦ1−ν

)
+ o(1)

= −
∫
LS(ΓS(Φ))ζkΦ1−ν + o(1).

(3.30)

Plugging (3.27), (3.28), (3.29), (3.30) in (3.26), we find∫ (
ΓS

2 (Φ) − 1
ν

(LSΦ)2 − c

ν
ΓS(Φ)

)
Φ1−νζk = o(1).

Since Φ ∈ D(LS), thanks to Lemma A.9, we may pass to the limit as
k → +∞ and deduce that

(3.31)
∫ (

ΓS
2 (Φ) − 1

ν
(LSΦ)2 − c

ν
ΓS(Φ)

)
Φ1−ν = 0.

By the integrated curvature-dimension condition (3.9), we deduce that(
1
n

− 1
ν

)∫
(LSΦ)2Φ1−ν +

(
ρ− c

ν

)∫
ΓS(Φ)Φ1−ν ⩽ 0.

Since q < p, we have n < ν and so, if ρ ⩾ c
ν i.e.

A ⩾
4(ν − 1)
ν(ν − 2)ρ ,

we deduce that LSΦ = 0. Integrating against Φ, Φ is constant. Hence
v = 1, I(A) = 1, and (3.21) holds for A = 4(ν−1)

ν(ν−2)ρ . Let q ↗ 2∗. Then
ν ↘ n and the sharp inequality (1.17) follows.
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It remains to study the case of equality. If v ∈ H1
0 (µS) is an extremal

function for (1.17), then repeating the above considerations, the function
f = v− p−2

2 satisfies∫ (
ΓS

2 (f) − ρΓS(f) − 1
n

(LSf)2
)
f1−ndµS = 0,

In particular, if the parameters are such that inequality (3.20) is strict, it
follows from (3.19) that f must be a function of s only. If n−d

n−1 +BDGZ = 0,
then the estimate (3.14) in Lemma 3.8 provides the following improvement
of (3.19):∫ (

ΓS
2 (f) − ρΓS(f) − 1

n
(LSf)2

)
f1−ndµS

⩾

[
n− d

n− 1 + BDGZ

] ∫
Γθ(f)φ4f1−ndµS

+ n− d

n− 1A
∫ Γθ(f)2

f2 φ4f1−ndµS.

And so again, f is a function of s only, provided n > d. Using this infor-
mation in (3.13), we deduce that if n > d,

∂ssf + 2φ
′

φ
∂sf = 0,

while for n = d there must exist some function R : R → R s.t.

(3.32) ∂ssf + 2φ
′

φ
∂sf − 1

d− 1∆θf = 0 and ∂sf + φ′

φ
f = R(s).

In the former case, this means that f(s) = λ + γ tanh(αs), for some con-
stants λ, γ ∈ R such that λ > |γ|, since f is bounded below by a positive
constant. In the latter case, the second equation in (3.32) implies that f can
be written as f = f1(θ)

φ(s) + f2(s). Plugging this in the first equation implies
that f1+ ∆θf1

d−1 is constant i.e. f1 = A1+B1ψ2(θ), where A1, B1 are constants
and ψ2 is any eigenfunction of −∆θ associated to the eigenvalue d−1. This
implies in turn that f2 takes the form f2 = − A1

φ(s) +A3 +A4 tanh(s). Sum-
marizing, we have just proved that f = λ + γφ1,d for some constants λ, γ
and some eigenfunction φ1,d of −∆Sd associated to the eigenvalue d (and
written in cylindrical coordinates). Again, we must have λ > |γ|∥φ1,d∥∞
since f is bounded below by a positive constant.

Conversely, we need to check that f− n−2
2 where f(s) = λ + γ tanh(αs)

with λ > |γ| if n > d (resp. f = λ + γφ1,d, λ > |γ|∥φ1,d∥∞ if n = d) is
indeed an extremal function for Sobolev’s inequality. Multiplying f by a
constant if necessary, we may assume that

∫
f−ndµ = 1, where µ is the
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normalized measure on the CKN sphere. By direct computation, recalling
that tanh(αs) if n > d (resp. φ1,d if n = d) is an eigenfunction for the
operator −LS associated to the eigenvalue nα2, we find that

fLSf − n

2 ΓS(f) = nα2

2
(
1 − f2)

This implies in turn that v = f− n−2
2 satisfies

∫
vpdµ = 1 and solves

− 4
n(n− 2)α2LSv + v = vp−1

Multiplying by v and integrating by parts, the result follows. □

Proof of Proposition 1.6. — As explained in the introduction, Poincaré’s
inequality (with constant C = n−1

ρn = 1
nα2 ) follows from Sobolev’s inequa-

lity by linearization i.e. by applying (1.17) with v = 1 + ϵf and letting
ϵ → 0. Also, Poincaré’s inequality (with the same constant C) is equivalent
to the following integrated curvature-dimension condition∫ (

ΓS
2 (f) − ρΓS(f) − 1

n
(LSf)2

)
dµS ⩾ 0.

Equality holds in Poincaré’s inequality for some function f if and only
if equality holds in the above inequality. So, extremals are characterized
exactly as in the case of Sobolev’s inequality except in the case α2 = d−1

n−1 ,
in which we can no longer use (3.14) to deduce that f is radial. Still, we
deduce from (3.13) that

∂ssf + 2φ
′

φ
∂sf − 1

n− 1∆θf = 0 and ∂sf + φ′

φ
f = R(s)

The second equation in (3.32) implies that f can be written as f = f1(θ)
φ(s) +

f2(s). Plugging this in the first equation implies that α2f1+ ∆θf1
n−1 is constant

i.e. f1 = A1 + B1φ1,d−1(ω), where A1, B1 are constants and φ1,d−1 is any
eigenfunction of −∆θ associated to the eigenvalue α2(n− 1) = d− 1. This
implies in turn that f2 takes the form f2 = − A1

φ(s) + A3 + A4 tanh(αs).
Summarizing, we have just proved that extremals of Poincaré’s inequality
take the form f = λ + γ tanh(αs) + ν

φ1,d−1(ω)
cosh(αs) for some constants λ, γ, ν

and some eigenfunction φ1,d−1 of −∆Sd−1 , as desired. □

Remark 3.9. — Up to our knowledge, the CKN sphere is the first exam-
ple where the optimal constants for both the Sobolev and the Poincaré in-
equalities are explicit functions of (ρ, n) yet the usual curvature-dimension
condition doesn’t hold, although the integral version (1.15) remains true.
Beware though that the integrated curvature-dimension needed for (and
equivalent to) Poincaré’s inequality, i.e. inequality (1.15) without the weight
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f1−n, is in general much weaker, as evidenced by any space for which
the Poincaré inequality holds but not the Sobolev inequality, such as, for
instance, the Euclidean space equipped with the Gaussian measure.

4. The n-conformal invariant

4.1. The n-conformal invariant on a weighted manifold

We begin this section by proving Proposition 1.8, which constructs a one-
parameter family of n-conformal invariants on any given weighted manifold,
thereby generalizing the notion of scalar curvature to this setting.

Proof of Proposition 1.8. — We want to check that Sγ(µ,Γ) satisfies
condition (1.21). Let c be a positive and smooth function on M , τ = log c
and γ ∈ R. We are looking for the expression of the two numbers θn(γ)
and βn(γ) in the definition of Sγ(µ,Γ) which are such that

Sγ

(
c−nµ, c2Γ

)
= c2

[
Sγ(µ,Γ) + n− 2

2

(
Lτ − n− 2

2 Γ(τ)
)]
.

The measure µ is transformed into µ̆ = c−nµ, and the carré du champ Γ
into Γ̆ = c2Γ.

From (A.5), scg becomes

s̆cg = c2[scg + (d− 1)(2∆gτ − (d− 2)Γ(τ))],

the weight W = − log dµ
dVg

becomes

W̆ = − log dµ̆
dV̆g

= − log c−ndµ
c−ddVg

= − log
(
cd−n dµ

dVg

)
= W + (n− d)τ,

and finally, from (A.1), ∆g becomes

∆̆g = c2[∆g − (d− 2)Γ(τ, ·)].

So,

Sγ(c−nµ, c2Γ)

= c2θn(γ)

scg + (d− 1)(2∆g(τ) − (d− 2)Γ(τ))
− γ[∆g(W + (n− d)τ) − (d− 2)Γ(τ,W + (n− d)τ)]
+ βn(γ)Γ(W + (n− d)τ)


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that is

Sγ(c−nµ, c2Γ) = c2θn(γ)scg + [2(d− 1) − γ(n− d)]∆g(τ)

+
[
βn(γ)(n− d)2 − (d− 1)(d− 2) + γ(d− 2)(n− d)

]
Γ(τ)

− γ∆g(W ) + [γ(d− 2) + 2βn(γ)(n− d)]Γ(τ,W ) + βn(γ)Γ(W )

.
It has to be equal to

c2
[
Sγ(µ,Γ) + n− 2

2

(
∆g(τ) − Γ(W, τ) − n− 2

2 Γ(τ)
)]

= c2

θn(γ)[scg − γ∆g(W ) + βn(γ)Γ(W )]

+ n− 2
2

(
∆g(τ) − Γ(W, τ) − n− 2

2 Γ(τ)
),

that is

(4.1)


θn(γ)[2(d− 1) − γ(n− d)] = n− 2

2

θn(γ)
[
βn(γ)(n− d)2 − (d− 1)(d− 2)
+ γ(d− 2)(n− d)

]
= − (n− 2)2

4

θn(γ)[γ(d− 2) + 2βn(γ)(n− d)] = −n− 2
2

which imples that
θn(γ) = n− 2

4(d− 1) − 2γ(n− d)
βn(γ) = γ(n− 2d+ 2) − 2(d− 1)

2(n− d) .

Let us notice that the second equation in (4.1) is automatically valid for
this choice of parameters θn(γ) and βn(γ) and so we are done. □

Remark 4.1. — As explained in the introduction, when W = 0 the d-
conformal invariant is, up to a multiplicative constant, the scalar curvature.
In a weighted Riemannian manifold, the n-conformal invariant is given
by (1.23) and is a way to extend the definition of the scalar curvature in
the weighted case.

4.2. The n-conformal invariant for the CKN spaces

In this section, we would like to prove that the three CKN spaces enjoy,
for some γ ∈ R, a constant n-conformal invariant. By construction, the
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three CKN models (Euclidean, spherical and hyperbolic) belong to the
same n-conformal class. So, in virtue of Theorem 1.2 and Proposition 1.8,
it suffices to prove that there exits a unique γ ∈ R such that Sγ = 0 for
the Euclidean CKN space in order to prove Proposition 1.9.

Proof of Proposition 1.9. — Let γ ∈ R. Then,

Sγ(µE,ΓE) = θn(γ)
(
scgE − γ∆gEWE + βn(γ)ΓE(WE)

)
.

So, we need to find γ such that scgE − γ∆gEWE + βn(γ)ΓE(WE) = 0.
Computation of the scalar curvature. — From the identity (A.5) with

ΓE = cEΓ and τE = log cE,

scgE = |x|2(1−α)(0 + (d− 1)
(
2∆τE − (d− 2)|∇τE|2

)
,

hence,

scgE = |x|−2α(d− 1)(d− 2)(1 − α2).

Computation of ∆gEWE. — First, from the identity (A.1),

∆gEWE = |x|2(1−α)κ(∆WE − (d− 2)∇τE · ∇WE),

so

∆gEWE = |x|−2α(d− 2)α2(n− d).

Computation of ΓE(WE). — We have

ΓE(WE) = |x|−2ααha2(n− d)2.

So, in the end,

Sγ(µ,Γ) = θn(γ)|x|−2α
(
(d− 1)(d− 2)

(
1 − α2)

+ γα2(n− d)(d− 2) + βn(γ)α2(n− d)2),
and we need to find γ ∈ R such that

(d− 1)(d− 2)(1 − α2) + γα2(n− d)(d− 2) + βn(γ)α2(n− d)2 = 0.

Since
βn(γ) = γ(n− 2d+ 2) − 2(d− 1)

2(n− d)
we have

γ = 2(d− 1)(d− 2 + α2(2 − n))
α2(n− d)(2 − n) .

or by using the constant BDGZ,

γ = 2(d− 1)
α2(n− d)(2 − n)BDGZ. □
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Remark 4.2. — It is interesting to notice that the n-conformal invariant
for the CKN spaces does not depend on the sign of BDGZ or the Felli–
Schneider region.

Appendix A.

A.1. Some Riemannian formulas

We recall here some general formulas on conformal transformations of
a d-dimensional Riemannian manifold (M, g). All formulas can be found
for example in [1, Section 6.9](12) . We transform the metric (with upper
indices) gij into the conformal metric hij = c2gij , where c is any positive
and smooth function. We let τ = log c. Then,

• The carré du champ operator is given by

Γh = c2Γg.

• The Laplace–Beltrami operator is given by

(A.1) ∆h = c2(∆g − (d− 2)Γg(τ, ·)).

• For any smooth function ψ, the Hessian of ψ with respect to the
metric h, denoted ∇∇hψ is given by

(A.2) ∇∇hψ = ∇∇gψ + 2∇gψ ⊙g ∇gτ − Γg(ψ, τ)g,

Here and below, ∇∇gψ is the Hessian of ψ with respect to g and
∇gψ ⊙g ∇gτ is the symmetric tensor product, that is for any func-
tions f, g,

(∇gψ ⊙g ∇gτ)(∇gf,∇gg) = 1
2
[
Γg(f, ψ)Γg(g, τ) + Γg(f, τ)Γg(g, ψ)

]
.

In particular, one can deduce the Hilbert–Schmidt norm of ∇∇hψ

with respect to the new metric h:

(A.3) ∥∇∇hψ∥2 = c4

[
∥∇∇gψ∥2 + 2Γg(τ,Γg(ψ)) + 2Γg(ψ)Γg(τ)

+ (d− 2)Γg(ψ, τ)2 − 2(∆gψ)Γg(ψ, τ)

]
.

• The Ricci curvature reads

(A.4) Rich = Ricg +(∆gτ)g + (d− 2)(∇∇gτ + ∇τ ⊙g ∇τ − Γg(τ)g)

• At last, the scalar curvature is given by

(A.5) sch = c2[scg + (d− 1)(2∆gτ − (d− 2)Γg(τ))
]
.

(12) And also here https://en.wikipedia.org/wiki/List_of_formulas_in_Riemann-
ian_geometry.
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A.2. Integration by parts and elliptic theory on the CKN
spherical space

Let H1
0 (µS) denote the closure of C∞

c (Rd \{0}) with respect to the norm

∥u∥2
H1

0 (µS) =
∫ (

ΓS(u) + u2) dµS

Let u ∈ L2(µS). Then, |x|1−α 1+|x|2α

2 ∇u and LSu are well-defined distri-
butions on Rd \ {0} and we may ask whether they are actual functions in
L2(µS), that is, we may consider LS as an unbounded operator in L2(µS)
with domain

D(LS) =
{
u ∈ H1

0 (µS) : LSu ∈ L2(µS)
}
,

equipped with the norm

∥u∥2 = ∥u∥2
L2(µS) + ∥LSu∥2

L2(µS) =
∫ (

u2 + (LSu)2) dµS.

Since
∫

ΓS(u) dµS = −
∫
uLSu dµS for u ∈ C∞

c (Rd \ {0}), it easily follows
that LS is a closed operator. In addition, the integration by parts formula
holds on its domain:

Lemma A.1. — Let u, v ∈ D(LS). Then,

(A.6)
∫

−LSu v dµS =
∫

ΓS(u, v)dµS

Proof. — Assume first that u, v ∈ C∞
c (Rd \ {0}). Then, (A.6) follows by

standard integration by parts. Next, if u ∈ D(LS) and v ∈ C∞
c (Rd \ {0}),

take un ∈ C∞
c (Rd \ {0}) s.t. un → u in H1

0 (µ). Using successively the
definition of distributional derivatives, the convergence un → u in L2(µS),
standard integration by parts and the convergence un → u in H1

0 (µ), we
find∫

−LSu v dµS =
∫
u (−LSv) dµS

= lim
n→+∞

∫
un (−LSv) dµS = lim

n→+∞

∫
ΓS(un, v)dµS =

∫
ΓS(u, v)dµS

Finally, if u ∈ D(LS) and if v ∈ D(LS), take vn ∈ C∞
c (Rd \{0}) s.t. vn → v

in H1
0 (µ). Then, according to what we just proved,∫

−LSu v dµS = lim
n→+∞

∫
−LSu vn dµS

= lim
n→+∞

∫
ΓS(u, vn)dµS =

∫
ΓS(u, v)dµS □
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The following approximation lemma will be useful to integrate by parts
in more delicate settings than the above lemma.

Lemma A.2. — Assume n > 4. Let u ∈ D(LS) be such that u,ΓS(u)
are bounded. Then, there exists uk ∈ C∞

c (Rd \ {0}) such that uk → u in
DLS .

Remark A.3. — The assumptions n > 4 and u,ΓS(u) bounded can be
removed and replaced by n ⩾ 3, but the proof is more involved (see [16,
Theorem 3.12]).

Proof. — In Section 3, the model given in (3.1) is written with the vari-
ables (s, θ) ∈ R × Sd−1. Choosing now s = 1

α Argch (1/ sin(t)) the model
becomes with the variables (t, θ) ∈ (0, π) × Sd−1,

(A.7) LS(f) = α2(∂ttf + c′(t)∂tf
)

+ 1
sin2(t)

∆θf,

for any smooth function f defined in (0, π) × Sd−1, where the function c is
defined by c(t) = (n− 1) log(sin(t)). The carré du champ operator becomes

(A.8) ΓS(f) = α2(∂tf)2 + 1
sin2(t)

Γθ(f)

and invariant measure

(A.9) dµS(t, θ) = 1
Z
ec(t)dtdVSd−1 = 1

Z
(sin t)n−1dtdVSd−1 ,

where Z is a normalization constant and dVSd−1 is the volume in Sd−1.
Let now ζk ∈ C∞

c (0, π) denote a standard cut-off function such that
0 ⩽ ζk ⩽ 1, ζk = 0 in (0, 1/k) ∪ (π − 1/k, π), ζk = 1 in (2/k, π − 2/k) and
|ζ ′

k| ⩽ 2k, |ζ ′′
k | ⩽ 2k2. Setting uk = uζk, we find∫

(LS(u− uk))2dµS

⩽ 2
∫

(LSu)2(ζk − 1)2dµS + 4
∫

ΓS(u, ζk)2dµS

+ 2
∫
u2(LSζk)2dµS =: I1 + I2 + I3

By dominated convergence, I1 → 0 as k → +∞. For I2, thanks to (A.8)
and (A.9),

I2 ⩽ C∥ΓS(u)∥2
∞k

2−n → 0
Similarily, thanks to (A.7) and (A.9),

I3 ⩽ C∥u∥2
∞k

4−n → 0. □

TOME 0 (0), FASCICULE 0



40 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

Our next tool is the following version of the Rellich–Kondrachov com-
pactness theorem.

Lemma A.4. — Let (M, g, µ) be a smooth connected weighted d-dimen-
sional Riemannian manifold s.t. d ⩾ 3, µ(M) < +∞ and Sobolev’s inequal-
ity holds i.e. there exist constants A,B ⩾ 0, p ∈ [2, 2d

d−2 ] such that for every
v ∈ C∞

c (M),

(A.10)
(∫

|v|pdµ
) 2

p

⩽ A

∫
Γ(v)dµ+B

∫
v2dµ

Let H1
0 (µ) be the closure of A0 = C∞

c (M) for the norm

∥u∥H1
0 (µ)

2 =
∫ (

u2 + Γ(u)
)
dµ

and let q ∈ [1, p). Then, the embedding H1
0 (µ) ↪→ Lq(µ) is compact.

Proof. — CoverM by a countable increasing family of open sets(Ωk)k ∈ N
with compact closure and for each k ∈ N, let ηk ∈ C∞

c (Ωk+1) be such
that ηk = 1 in Ωk. Let (um) be a bounded sequence in H1

0 (µ). Since
dµ = e−W dVg and W, g are smooth, the H1

0 (µ) and the standard H1
0 norm

are equivalent for functions compactly supported in a fixed Ωk. By the clas-
sical Rellich–Kondrachov theorem, we deduce that for fixed k, the sequence
(umηk)m is compact in Lr(Ωk+1,dµ) for r ∈ (q, p). Since (um) is bounded
in the Hilbert space H1

0 (µ), by the Banach–Alaoglu theorem, (um) is also
compact in H1

0 (µ) for the weak topology. By a standard diagonal argument,
a subsequence of (um) (denoted the same) converges weakly in H1

0 (µ) to
some function u ∈ H1

0 (µ) such that (umηk)m converges to uηk in Lr(µ).
Now, using Hölder’s and Sobolev’s inequality we find

∥um − u∥Lq(µ)

⩽ ∥(um − u)ηk∥Lq(µ) + ∥(um − u)(1 − ηk)∥Lq(µ)

⩽ ∥(um − u)ηk∥Lr(µ)µ(M)
1
q − 1

r + ∥um − u∥Lp(µ)µ(M \ Ωk)
1
q − 1

p

⩽ C
(
∥(um − u)ηk∥Lr(µ) + µ(M \ Ωk)

) 1
q − 1

p )

Hence,
lim sup
m→+∞

∥um − u∥Lq(µ) ⩽ Cµ(M \ Ωk)
1
q − 1

p

Letting k → +∞, the claim follows. □

As an immediate consequence of the above lemma (and a proof by con-
tradiction), we have
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Corollary A.5. — Make the same assumptions as in Lemma A.4.
Assume in addition that constants belong to H1

0 (µ). Then, Poincaré’s in-
equality holds i.e. there exists a constant CP > 0 such that∫

v2dµ−
(∫

vdµ
)2

⩽ CP

∫
Γ(v)dµ for v ∈ A0 = C∞

c (M)

Finally, we state and prove elliptic regularity estimates, which are useful
to justify integrations by parts in our proof of Sobolev’s inequality.

Lemma A.6 (General elliptic estimates). — Assume that (a, b) ∈ ΘF S

(defined in (1.18)). Let also h : (0, 1]×Sd−1 7→ R be a smooth and bounded
function satisfying

∫
Sd−1 hdVSd−1 = 0 and solving the equation

(A.11) ∂tth− (n− 1)(n− 3)
4

h

t2
+ ∆θh

α2 sin2(t)
= R,

where R is a smooth and bounded function on (0, 1] × Sd−1. We assume
also that, uniformly on (0, 1] × Sd−1

|h(t, θ)| ⩽ Ct
n−1

2 and |R(t, θ)| ⩽ Ct
n−1

2 ,

for some constant C > 0. Then, there exists a constant C ′ > 0 s.t. uniformly
on (0, 1] × Sd−1,

|h(t, θ)| ⩽ C ′t
n+1

2 , Γθ(h)(t, θ) = |∇θh|2(t, θ) ⩽ C ′tn+1

and |∂th(t, θ)| ⩽ C ′t
n−1

2 .

Proof. — Let (Pk)k ⩾ 0 be the orthonormal basis of eigenvectors of the
operator −∆θ on Sd−1 associated to the increasing sequence of eigenvalues
(λk)k ⩾ 0 (recall that λk ⩾ λ1 = d− 1, for k ⩾ 1 and λ0 = 0).

We decompose h in the basis (Pk)k ⩾ 0,

h(t, θ) =
∞∑

k=1
hk(t)Pk(θ), (t, θ) ∈ (0, π) × Sd−1,

where hk(t) =
∫

Sd−1 Pk(θ)h(t, θ)dVSd−1 . Note that∫
hP0dVSd−1 =

∫
hdVSd−1 = 0,

whence h0 = 0. For each k ⩾ 1, hk satisfies

h′′
k − (n− 1)(n− 3)

4
hk

t2
− λk

α2 sin2(t)
hk = Rk,
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where Rk =
∫

Sd−1 RPkdVSd−1 , which satisfies again |Rk(t, θ)| ⩽ Ckt
n−1

2 .
The equation can be replaced by the following one

h′′
k − a

hk

t2
= R2,k,

where a = (n−1)(n−3)
4 + λk

α2 > 0 and R2,k satisfies the same estimate as Rk.
We are now able to solve the ODE. The method of variation of constants

gives the explicit solution:

hk(t) = Atγ+ +Btγ−

+ tγ+

γ+ − γ−

∫ t

1
R2,k(y)y1−γ+dy − tγ−

γ+ − γ−

∫ t

0
R2,k(y)y1−γ−dy,

where A, B are constants and

γ± = 1 ±
√

1 + 4a
2 = 1

2 ± 1
2

√
(n− 2)2 + 4λk

α2 ,

so that γ+ > 0, γ− < 0. Then, by the estimate satisfied by R2,k we have
near 0, ∣∣∣∣ tγ+

γ+ − γ−

∫ t

1
R2,k(y)y1−γ+dy

∣∣∣∣ ⩽ Ctγ+

∣∣∣∣∫ t

1
y

n+1
2 −γ+dy

∣∣∣∣
⩽ C

(
tγ+ + t

n+3
2

)
and ∣∣∣∣ tγ−

γ+ − γ−

∫ t

0
R2,k(y)y1−γ−dy

∣∣∣∣ ⩽ Ctγ−

∫ t

0
y

n+1
2 −γ−dy ⩽ Ct

n+3
2

Since hk is a bounded function, we deduce that B = 0 and

|hk(t)| ⩽ C
(
tγ+ + t

n+3
2

)
.

We claim that for k ⩾ 1, γ+ ⩾ n+1
2 , whence |hk(t)| ⩽ Ct

n+1
2 . Indeed,

by definition of γ+, one can check that the inequality γ+ ⩾ (n + 1)/2
is equivalent to λk

n−1 ⩾ α2. Since λk ⩾ d − 1 for any k ⩾ 1 and since
by Lemma 1.5, (a, b) ∈ ΘF S if and only if α2 ⩽ d−1

n−1 , we indeed have
γ+ ⩾ (n+ 1)/2.

Next, we prove that the estimate remains valid for the function h. Define

HK =
K∑

k=1
hkPk.
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so that h = limK→∞ HK pointwise. From the previous computations, we
know that, uniformly in (0, 1) × Sd−1,

|HK(t, θ)| ⩽ CKt
n+1

2

We prove now that the inequality is uniform in the parameter K. Assume
this is not the case i.e.

(A.12) sup
K ⩾ 1

∥HK∥( n+1
2 ) = +∞,

where

∥HK∥( n+1
2 ) = sup

t ∈ (0,1], θ ∈ Sd−1

|HK(t, θ)|
t

n+1
2

.

There exist a sequence ((tK , θK))K⩾1 in (0, 1] × Sd−1, such that

(A.13) lim
K→∞

|HK(tK , θK)|

t
n+1

2
K

= ∞.

By compactness, one can assume that (tK) (resp. (θK)) converges to some
limit t∞ ∈ [0, 1] (resp. θ∞ ∈ Sd−1). There are two cases, either t∞ > 0 or
t∞ = 0. The first case is not possible. Indeed, h is bounded by assumption,
whence HK is bounded by a constant independent of K and so (A.13)
contradicts t∞ > 0. The remaining case t∞ = 0 is more tricky. Let

GK(z, θ) = HK(ztK , θ)

t
n+1

2
K ∥HK∥( n+1

2 )

for any z ∈ (0, 1/tK ]. From the equation satisfied by each hk, we have

∂zzGK(z, θ) − (n− 1)(n− 3)
4

GK(z, θ)
z2 + t2K

∆θGK(z, θ)
α2 sin2(ztK)

= t2K

t
n+1

2
K ∥HK∥( n+1

2 )

K∑
k=1

Rk(ztk)Pk(θ).

Let m = d − 1 and assume temporarily that there exists C > 0 such that
for every (t, θ) ∈ (0, 1) × Sd−1,

(A.14) |∆m
θ R(t, θ)| ⩽ Ct

n−1
2 .

Then, working as previously

|Rk(t)| = 1
λm

k

∣∣∣∣∫
Sd−1

(−∆θ)mR(t, ·)Pk dVSd−1

∣∣∣∣ ⩽ Cλ−m
k t

n−1
2

TOME 0 (0), FASCICULE 0



44 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

and we deduce that∣∣∣∣∣∣∣
t2K

t
n+1

2
K ∥HK∥( n+1

2 )

K∑
k=1

Rk(ztk)Pk(θ)

∣∣∣∣∣∣∣ ⩽ C
tK

∥HK∥( n+1
2 )

K→∞−→ 0,

uniformly for z in a compact subset of R∗. By standard elliptic regularity,
it follows that the sequence (GK) converges to G solution on (0,∞)×Sd−1

of the PDE

∂zzG(z, θ) − (n− 1)(n− 3)
4

G(z, θ)
z2 + ∆θG(z, θ)

α2z2 = 0.

Now, using the same argument we have

G =
∞∑

k=0
GkPk.

where again Gk(z) =
∫

Sd−1 G(z, θ)Pk(θ)dVSd−1 . Then for each k ⩾ 0, we
have Gk(t) = Atγ+ + Btγ− where γ± are the same constants as before.
But, the function Gk, defined on (0,∞), is bounded. This implies that
A = B = 0 and then G = 0. But by its definition, we know that

G(1, θ∞) = 1,

which gives a contradiction: the hypothesis (A.12) is not valid. We conclude
that uniformly in (0, 1] × Sd−1, we have

(A.15) |h(t, θ)| ⩽ Ct
n+1

2 .

The above estimate was achieved using the extra assumption (A.14). To re-
move this assumption, we can argue by approximation by taking a standard
mollifying family ρϵ ∈ C∞

c (R) and setting Rϵ(t, θ) = t
n−1

2 ρϵ ⋆ [t 1−n
2 R(·, θ))]

(where R is first extended by 0 for t ⩽ 0). Then, (A.14) holds for Rϵ with
a constant Cϵ which may depend ϵ. By definition of Rϵ, there exists a con-
stant C > 0 independent of ϵ such that |Rϵ(t, θ)| ⩽ Ct

n−1
2 . If hϵ denotes

the (unique) associated solution of (A.11) with zero mean, it follows that
|hϵ(t, θ)| ⩽ Ct

n−1
2 since the maximum principle can be used with the su-

persolution h = at
n−1

2 + bt
n+3

2 and suitable constants a, b. We may pass to
the limit as ϵ → 0 onwards in (A.15) and the assumption (A.14) is thus
removed.

It remains to prove the gradient estimates. Fix t > 0 and for z ∈ (1/4, 2),
θ ∈ Sd−1, let this time G(z, θ) = h(tz, θ) and S(z, θ) = R(tz, θ) so that

∂zzG− (n− 1)(n− 3)
4

G

z2 + t2

α2 sin2(tz)
∆θG = t2S in (1/4, 2) × Sd−1
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Note that the coefficients of the elliptic operator on the left-hand side are
bounded in C2-norm by a constant independent of t so that, by standard
elliptic regularity,

|∂zG| + |∇θG| ⩽ C
(
t2∥S∥L∞((1/4,2)×Sd−1) + ∥G∥L∞((1/4,2)×Sd−1)

)
⩽ Ct

n+1
2 in (1/2, 3/2) × Sd−1,

for some constant C > 0 independent of t. The desired estimates on h

follow by applying the above estimate at z = 1. □

Lemma A.7. — Whenever (a, b) ∈ ΘFS (defined in (1.18)), the solution
v of the equation (3.22) has a bounded carré du champ operator

∥ΓS(v)∥∞ < +∞.

Proof. — We use the chart and notation introduced in (A.7). We have
to prove that v, solution of (3.22) has a bounded carré du champ, that is
∥ΓS(v)∥∞ < +∞. Letting c(t) = (n − 1) log(sin(t)) and h = e

c
2 v, equa-

tion (3.22) becomes

(A.16) ∂tth−
(

2c′′ + c′2

4

)
h+ 1

α2 sin2(t)
∆θh = R,

where
R = 1

α2A

(
h− e

c(2−q)
2 hq−1

)
.

This transformation allows us to deal with a simpler PDE. We know that
v = e− c

2h is bounded and positive. So, for some constant C (the value of
which is allowed to change from line to line),

0 ⩽ h ⩽ Ce
c
2 = C sin(t)

n−1
2 .

Thus |R| ⩽ C sin(t) n−1
2 . And then, from the definition of h, the following

inequality,

(A.17)
(
∂th− c′

2 h
)2

+ Γθ(h)
α2 sin2(t)

⩽ C sin(t)n−1

is equivalent to ∥ΓS(v)∥∞ < +∞.
We know that h is a smooth function on (0, π) × Sd−1. So, to prove

the previous inequality, it is enough to work around t = 0 and t = π. By
symmetry, it suffices to treat the case t = 0.

By definition of c, equation (A.16) can be written as follow

∂tth− (n− 1)(n− 3)
4

h

sin2(t)
+ 1
α2 sin2(t)

∆θh = R− (n− 1)(n− 3)
4 h,
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or, since we are working around t = 0, we have

(A.18) ∂tth− (n− 1)(n− 3)
4

h

t2
+ 1
α2 sin2(t)

∆θh = R2,

with

R2 = R− (n− 1)(n− 3)
4 h+ (n− 1)(n− 3)

4

(
1

sin2(t)
− 1
t2

)
h,

which satisfies again |R2| ⩽ Ct
n−1

2 .
Let us write h = h− h0 + h0 where h0 =

∫
Sd−1 hdVSd−1 . Then, since h0

doesn’t depend on θ,(
∂th− c′

2 h
)2

+ Γθ(h)
α2 sin2(t)

⩽ 2
(
∂t(h− h0) − c′

2 (h− h0)
)2

+ 2
(
∂th0 − c′

2 h0

)2
+ Γθ(h− h0)

α2 sin2(t)
.

Then Lemma A.6 insures that |h − h0| ⩽ Ct
n+1

2 , |h′ − h′
0| ⩽ Ct

n−1
2 and

Γθ(h− h0) = Γθ(h) ⩽ Ctn+1. Hence,

2
(
∂t(h− h0) − c′

2 (h− h0)
)2

+ 2Γθ(h− h0)
α2 sin2(t)

⩽ Ctn−1.

Now, using the same method as in the proof of Lemma A.6, one can check
that h0(t) = At

n−1
2 +O(tn+1

2 ) and h′
0 = At

n−3
2 +O(tn−1

2 ). Thus, we have

∂th0 − c′

2 h0 = O
(
t

n−1
2

)
that is (

∂th0 − c′

2 h0

)2
⩽ Ctn−1.

Finally, inequality (A.17) is satisfied, which concludes the proof of Lem-
ma A.7. □

Remark A.8. — It is interesting to see that with this method, one can
check that the function v has a bounded carré du champ if and only of
(a, b) ∈ ΘF S .

We end this section with the following weaker estimate on higher deriva-
tives of v.

Lemma A.9. — Assume that n > 4 and (a, b) ∈ ΘF S . Let f ∈ D(LS),
f ⩾ 0. Then, in the variables (t, θ) ∈ (0, π) × Sd−1 introduced in (A.7),∫ π

0

∣∣∣∣∫
Sd−1

ΓS
2 (f)dVSd−1

∣∣∣∣ sinn−1(t)dt < +∞
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Proof. — Let (ζk)k ∈ N ∈ C∞
c (0, π) denote a standard cut-off function

such that 0 ⩽ ζk ⩽ 1, ζk = 0 in (0, 1/k)∪(π−1/k, π), ζk = 1 in (2/k, π−2/k)
and |ζ ′

k| ⩽ 2k, |ζ ′′
k | ⩽ 2k2 and fk = fζk, so that fk → f in D(LS). For

h ∈ C∞
c (Rd \ {0}) and t ∈ (0, π), set γ2(h)(t) =

∫
Sd−1 Γ2

S(h)dVSd−1 . Since
(a, b) ∈ ΘF S , γ2 is a nonnegative quadratic form (see Proposition 3.4) and
so the Cauchy–Schwarz inequality holds:∣∣∣γ2(fk)1/2 − γ2(fl)1/2

∣∣∣2 ⩽ γ2(fk − fl).

Thus, letting dµt = 1
Z sinn−1(t)dt,∫ π

0

∣∣∣γ2(fk)1/2 − γ2(fl)1/2
∣∣∣2dµt ⩽

∫ π

0
γ2(fk − fl)dµt

=
∫

Γ2
S(fk − fl)dµS =

∫
(LS(fk − fl))2dµS.

Hence, (γ2(fk)1/2) is a Cauchy sequence in L2(dµx) and so (γ2(fk)) con-
verges to some function γ in L1(dµt). In addition, for fixed t, there exists
K = Kt such that for all k ⩾ K and θ ∈ Sd−1, fk(t, θ) = f(t, θ), whence
γ2(fk)(t) → γ2(f)(t) for all t ∈ (0, π). Hence, γ = γ2(f) and the lemma
follows. □

A.3. List of constants and regions of parameters

We recall in this section the definition of the parameters and also some
useful properties. Recall that d ∈ N is the topological dimension of the con-
sidered spaces, and that we assume that d ⩾ 3. Recall from the introduction
the definition of the parameter range

Θ =
{

(a, b) ∈ R2, a ⩽ b < a+ 1, a < ac

}
,

where ac = (d − 2)/2. This is the set of parameters (a, b) where the CKN
inequality (1.1) holds for all test functions v ∈ C∞

c (Rd) which need not
vanish near the origin (recall that the limit case b = a+1 has been removed
for simplicity). We also defined the number α = 1 + a− pb

2 , that is

α = (ac − a)(a+ 1 − b)
ac − a+ b

.

Clearly α ⩾ 0, for any (a, b) ∈ Θ, including the limiting case a = b = 0
for which α = 1. For any (a, b) ∈ Θ, the exponent p is given by

p = d

ac − a+ b
< 2∗ = 2d

d− 2
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and

p = 2n
n− 2 ,

that is

n = d+ d(b− a)
1 + a− b

= d

1 + a− b
.

We always have n ⩾ d, and we call n the intrinsic dimension of the consi-
dered model spaces. From a straightforward computation, we have

(A.19) d− nα− pb = 0

The constant BDGZ = α2(2 − n) + d− 2 which appears throughout the
paper takes the following form with respect to a and b:

BDGZ = −2(ac − a)2(1 + a− b)
ac + b− a

+ 2ac

Let us also recall the definition of the Felli–Schneider region: for a ⩽ 0,

bFS(a) = d(ac − a)
2
√

(ac − a)2 + d− 1
+ a− ac,

and
ΘFS = {(a, b) ∈ Θ, b ⩾ bFS(a) if a ⩽ 0}

Let us prove Lemma 1.5, which simplifies the expression of the Felli–
Schneider region and shows its relation to our region

ΘDGZ ={(a, b)∈Θ, BDGZ⩾0}.

Proof of Lemma 1.5. — Since

BDGZ + n− d

n− 1 = (n− 2)
(

−α2 + d− 1
n− 1

)
,

we have{
(a, b) ∈ Θ, BDGZ + n− d

n− 1 ⩾ 0
}

=
{

(a, b) ∈ Θ, α2 ⩽
d− 1
n− 1

}
.

The fact that

ΘFS =
{

(a, b) ∈ Θ, α2 ⩽
d− 1
n− 1

}
is more delicate and is proved in [10, Section 3].

□
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Remark A.10. — The normalizing constant Z defined in Theorem 1.3 is
finite. Indeed, using (A.19) and the change of variable |x| = et, we find

Z =
∫

dµS =
∫

Rd\{0}

(
2

1 + |x|2α

)n

|x|−bpdx

=
∫

Rd\{0}

(
2

|x|−α + |x|α

)n

|x|−ddx

=
∣∣Sd−1∣∣ ∫

R
cosh(αt)−ndt < ∞.
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