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A CONFORMAL GEOMETRIC POINT OF VIEW ON
THE CAFFARELLI-KOHN-NIRENBERG INEQUALITY

by Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER (*)

ABSTRACT. — We consider the Caffarelli-Kohn—Nirenberg inequality (CKN in
short), introduced by these authors in 1984. We explain why the CKN inequality
can be viewed as a Sobolev inequality on a weighted Riemannian manifold. More
precisely, we prove that the CKN inequality can be interpreted in this way on three
different and equivalent models, obtained as weighted versions of the standard
Euclidean space, round sphere and hyperbolic space. This result can be viewed as
an extension of conformal invariance to the weighted setting. Since the spherical
CKN model we introduce has finite measure, the I'-calculus introduced by Bakry
and Emery provides a way to prove the Sobolev inequalities. This method allows
us to recover the optimality of the region of parameters describing symmetry-
breaking of minimizers of the CKN inequality, introduced by Felli and Schneider
and proved by Dolbeault, Esteban and Loss in 2016. Finally, we develop the notion
of n-conformal invariants, exhibiting a way to extend the notion of scalar curvature
to weighted manifolds such as the CKN models.

RESUME. Nous considérons l'inégalité de Caffarelli-Kohn—Nirenberg (abré-
viée CKN), introduite en 1984 par ces auteurs. Nous expliquons comment ’inégalité
CKN peut étre vue comme une inégalité de Sobolev sur une variété Riemannienne
a poids. Plus précisément, nous montrons que I’inégalité CKN peut étre interprétée
de la sorte sur trois espaces modéles distincts et équivalents, obtenus comme des
versions a poids de ’espace euclidien, la sphére ronde et ’espace hyperbolique. Ce
résultat peut étre vu comme une extension de I'invariance conforme dans le cadre
des variétés a poids. Puisque le modéle CKN sphérique que nous introduisons est de
mesure finie, le I'-calcul de Bakry et Emery procure une méthode pour démontrer
les inégalités de Sobolev associées. Cette méthode nous permet de retrouver I'op-
timalité de la zone de parameétres décrivant la brisure de symétrie des minimiseurs
de I'inégalité CKN, introduite par Felli et Schneider et démontrée en 2016 par Dol-
beault, Esteban et Loss. Enfin, nous développons la notion d’invariant n-conforme,
qui donne une fagon d’étendre la notion de courbure scalaire aux variétés a poids,
et donc aux modeles CKN.

Keywords: optimal functional inequality, symmetry, curvature-dimension condition, con-
formal invariance.
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2 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER
1. Introduction and main results
1.1. The CKN Euclidean space

In their seminal paper [5], Caffarelli, Kohn and Nirenberg found the
optimal range of real parameters a, b, p for which the following inequality
holds true:

(1.1) (/R ||;||:pdx>2/p Cab/R 'Vr;; ve (R {0}).

d|33

Here, || is the Euclidean norm in R¢, d € N* and C,, ;, denotes the optimal
constant, depending on a,b and d only. Note that the case a = b =0 (and
p = 2d/(d—2)) corresponds to Sobolev’s inequality, while the case b = a+1
(and p = 2) is Hardy’s inequality, so that (1.1) is sometimes called the
Hardy—Sobolev inequality. Note also that the inequality is achieved in the
former case, while it is not in the latter.

Let us consider the measure

(1.2) dpg(z) = |z|~Pdz.

Then, the left-hand side of (1.1) is simply the LP-norm of v with respect
to the measure pg (squared). In addition, if we consider the metric™") on
the manifold M = R?\ {0} given by

(1.3) o’ = |25,

then (1.1) takes the simpler form

2/p
</ v|pd/"‘E> < Ca,b/|vBEv|3E d:uE

By a standard scaling argument(?) | the following relation is necessary for
the inequality to hold true:

2d d
(14) P d—2+20b—a) a.—a+b’

where a. = %. Through the property of modified inversion symmetry
(see [7, Theorem 1.4 (ii)]), we may always assume that a < a. = %52 since

OB (M, g) is d-dimensional Riemannian manifold whose metric g is represented in a
local system of coordinates at a point € M by the matrix G(z) = (gi;(%))1 <4,j < d»
we use the letter g to denote the bilinear form on the cotangent space of M represented
by the inverse matrix G(z)~! = (¢ (x))1<,j < d-

(2) To see this, apply (1.1) to the function = — v(Ax) where A > 0 and let A — 0T and
A — 4o0.

ANNALES DE L’INSTITUT FOURIER



A CONFORMAL POINT OF VIEW ON THE CKN INEQUALITY 3

the case a > a, is dual to it and the inequality fails to be true if a = a,
(see [5]). For simplicity, we also focus on the case d > 4 and refer to [9] for
the remaining cases d € {1,2,3}. Then, (1.1) holds true if and only if

0<b—a<l1

For simplicity, we do not consider the limiting case b = a + 1 (Hardy’s
inequality) and we define accordingly the set

(1.5) ©={(a,b) eR*,0<b—a<1l,a<ac}

so that the CKN inequality (1.1) is valid whenever (a,b) € © (see Sec-
tion A.3).

Observe that for (a,b) € O, p < % and so p can be rewritten as the
critical Sobolev exponent associated to an intrinsic dimension n € [d, +00)

through the relations
2n d

1. = — =
(1.6) P= " 1+a-0

The fact that n is a meaningful number, entering in the classical Bakry—
Emery curvature-dimension condition, will become transparent in a mo-
ment. To summarize, one can view inequality (1.1) exactly as Sobolev’s
inequality stated on the weighted Riemannian manifold® that we intro-
duce now.

DEFINITION (The Euclidean CKN space). — The Euclidean CKN space
is the triple (M, gg, ug), where the manifold is M = R%\ {0}, the metric(*

is g = |z[?0~*)§% and where the measure ug is given by (1.2). The
corresponding Riemannian volume is given by dVy, = |x|d(0‘_1)d:v, the
weight W, verifying dug = e~ "WEdVy,, is given by Wg = —w log |z|?

and the generator'® is given by
Lg = Agy — VEEWE - V = [2[*9 (A — aVlog [z]* - V)

For notational convenience, we introduced above the parameter(®:

(1.7) a:1—|—a—p§b,

(3) The words “smooth metric measure space” and “manifold with density” are also
employed in the literature to designate the same object.

(4 The given expression of gg is just a rewriting of (1.3).
() Le. the operator such that

7/uLEvd,uE = /(VgEu “9m VgEv)d,uE for all w,v € C (Rd \ {O})

(6) The reader may check that a turns out to be the same parameter as the one intro-
duced in [9] (for different reasons).

TOME 0 (0), FASCICULE 0



4 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

where (a,b) € © (defined in (1.5)) and p is the critical exponent given
by (1.4). In other words, returning to the parameters a,b,d (and a. =
(d—2)/2),
(ac —a)(a+1-10)

a.—a+b '
Note that for any (a,b) € O, we have o > 0, see Section A.3 and Figure 1.1
for more information about parameters.

o =

Equivalently, and this is the notation adopted in this paper(”), one can
see the Euclidean CKN space as a Markov triple (M, ug,I'g), where pug
verifies (1.2) and the carré du champ operator is given by

Te(v) = [Vgguly, = [a?~24Vo|? = 2207 | Vo ?

Its associated bilinear form is denoted by I'g(u,v) = |2 ~¥)Vu - Vo for
u,v € CX(R4\ {0}). Inequality (1.1) now reads

</ |v|”duE) o < Ca7b/FE(v)duE, v €ECE (Rd \ {O})

1.2. Conformal invariance

As noticed earlier, when a = b = 0 (o = 1), we recover the standard
Sobolev inequality on the standard Euclidean space. In that case, since the
metric of the d-dimensional sphere S and the metric of the d-dimensional
hyperbolic space H? are both conformally equivalent to the Euclidean met-
ric, Sobolev’s inequality takes equivalent forms on these three model spaces.
More precisely, the Euclidean Sobolev inequality applied to the function
g02;2dv7 where p(z) = % (respectively p(x) = #) and v € C°(RY)
(resp. v € C*(B)) yields

2/p
(1.8) (/|vpdVg> < c{/wgmg dVg+/ng2dVg],

where g is the round metric on the sphere S? expressed in stereographic
cooordinates (resp. the metric of the hyperbolic space in the Poincaré

ball model), dV; the associated Riemannian volume, S; = @ (resp.
Sy = —@) and C = ﬁﬁdr% the best constant in the standard

Euclidean Sobolev inequality. By analogy, we can extend the conformal
invariance property to the setting of weighted manifolds as described next.

(M) See [1] for an introduction to I'-calculus.

ANNALES DE L’INSTITUT FOURIER



A CONFORMAL POINT OF VIEW ON THE CKN INEQUALITY 5

The spherical CKN and the hyperbolic CKN spaces

Recall that the metric and reference measure of the Euclidean CKN space
read

ge” = |27 and  dug = |z|"Pde.

Keeping in mind the expression of the standard stereographic projection,
we define next the spherical and hyperbolic CKN spaces as follows.

DEFINITION (The spherical and the hyperbolic CKN spaces).

e The spherical CKN space is the triple (M, gs, us), where M =
R4\ {0},

y Loy (12PN B 2 \"
ij _ 2(1—a) 5 d d _ bp dz.
gs |z| (2 an ps = |z| 1+ |z X

Associated objects are given by the following formulae:
d(a—1)
— Riemannian volume: dVyg = Qd(lﬁ‘rlww x,

— weight: Ws = (n — d) log(1 + |z[?¥) — @ log |z|?,
— Carré du champ operator:

(1 + |a]>*)?

Ps(v) = [Veatll, = fof20- 22

Vo,
— generator:

o 1+ m2o¢ 2
Ls(f) = faf20-0 LD

x [Af —aVf-Vliog|z|* — (n—2)Vf-Vliog(1 + |z[**)].

e The CKN hyperbolic space is the triple (B\ {0}, gu, prx), where B
is the open unit ball in R?,

1—[z2\? . 2 "
_ 1 2(1-a) = |z|7°
gu = || o (2) Y and dpm = |z|”? W dz.

Associated objects to this triple are given by the following formulae

_ od Jz|**V
=2 )dd:c,

(1—z[?
— weight: Wiz = (n — d) log(1 — |z[2*) — 20D 160 |22,
— Carré du champ operator:

— Riemannian volume: dVg,

(1 - |z>)”
4

Tr(v) = [V vlge = [af?7 Vo],

TOME 0 (0), FASCICULE 0



6 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

— generator:

Lu(f)= |$I2“—a>(1_|4w

x [Af —aVf-Vioglz|* — (n—2)Vf-Vliog(1 — |z[**)]
Remark.

e Note that in the case a = 1 (which is achieved in © only when
a=>b=0, see Lemma 1.5), the CKN sphere is the standard round
sphere (punctured at both of its poles) viewed in the stereographic
projection chart. Similarily, for a« = 1, the CKN hyperbolic space is
the (punctured) hyperbolic space.

e Note that, letting () = %, we have I's = ¢?I'g and ug =
@ "ug. We shall say that the CKN Euclidean and spherical spaces
belong to the same n-conformal class (n not necessarily being equal
to the topological dimension). Similarly, with ¢ (z) = 17';"‘%, we
have 'y = ¥?T'g and pup = ¥ "ug, so that the hyperbolic CKN
space also belongs to the same n-conformal class.

e When (a,b) € ©, ug has finite mass (see Remark A.10 in Sec-
tion A.3). In this Section, we prefer not to normalize the measure
is, a choice which makes the conformal invariance of Sobolev’s in-

equality more transparent.

With these definitions at hand, we prove

THEOREM (Conformal invariance of the three model spaces). — Let
C > 0 be an arbitrary constant. The three following Sobolev inequalities
associated to each CKN model are equivalent: for all v € C2°(B\ {0}),

(1.9) ( / |U|PdME)2/p <C / T (0)dpim,
o) (f v|pdus)2/p <o [ rsans + M= 2a [i2aps),
(1.11) </ |U|pduH) " < C(/ Pu(v)dpn - waz /'UQduH)

Remark.

o Inequality (1.9) is valid for some constant C' = C,; if and only if
(a,b) € © as proved in [5]. Hence, so are (1.10) and (1.11).

e As we shall see, the value of the optimal constant C' is known only
in a restricted range of parameters, see Theorem 1.3 below.

ANNALES DE L’INSTITUT FOURIER



A CONFORMAL POINT OF VIEW ON THE CKN INEQUALITY 7

e By an obvious scaling argument, when they hold, (1.9) and (1.10)
remain true for v € C°(R? \ {0}). However, since its set of test
functions is smaller, inequality (1.11) need not be optimal even
though (1.9) and (1.10) are. For example, in the absence of weights,
C = W is the optimal constant in (1.9) and (1.10) and
extremals exist (and are classified), see Theorem 1.3. In contrast,

inequality (1.11) holds with the same constant C' = W

but when n = d = 3 (and again o = 1), the constant —W
be improved to —("11)2, see [3]. Using this fact and the proof of
Theorem 1.2, it follows that the standard Sobolev inequality in R?
improves to

/8 | 79\4/3 2
64 <= = / 24 —/ ——d
</R ol ) s\r) UV L T ™)

when restricted to functions v € Hj (B). When d > 4 (and a = 1),
inequality (1.11) is again optimal, but contrary to (1.9) and (1.10),
the inequality is never attained® . We have not yet investigated the
optimality of (1.11) in the general case.

can

1.3. Curvature-dimension conditions on the spherical CKN
space

We just saw that the CKN inequality takes the forms (1.9), (1.10), (1.11)
on the three CKN spaces. But what is the value of the best constant C'? To
answer this question, let us first recall the following classical definition and
result: a smooth weighted manifold (M, g, i) is said to satisfy the CD(p, n)
condition if for every f € C*(M),

Da(f) > p0(F) + - (LF)

where (p,n) € R x (R U {400}), du = e~ dV, for some W € C>*(M),
L(f,h) = (VOf,V3h)g, T(f) = T(f. f) = [Vefls, Lf = Agf — (W, f)
and I'y(f) = $L(I(f)) — I'(f, Lf), for smooth functions f,g on M. The
following theorem, generalizing the earlier work [4], holds true:

THEOREM 1.1 ([2] and [1, Theorem 6.8.3]). — Let (M, g, 1) be a smooth
weighted manifold satisfying the CD(p,n) condition with p > 0, n > d =
dim(M) (n > 2). Assume in addition that the associated operator L is

®)1f it were, then (1.9) would also be attained by a compactly supported function.

TOME 0 (0), FASCICULE 0



8 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

essentially self-adjoint in L*(p). Let p = % and normalize the measure i
so that u(M) = 1. Then,

(1.12) </|v|pd,u>2/p < ﬁn; ! /F(v)du-ﬁ-/deu,
v € C®(M).

Let us remark that this theorem can also be stated in the more gen-
eral context of full Markov triples as proposed in [1] and also on metric
measure spaces as proved in [18]. Thanks to Theorem 1.1, it suffices to
determine whether the CKN sphere is a smooth weighted manifold satis-
fying the C'D(p, n) condition and that the associated operator is essentially
self-adjoint, in order to obtain an explicit value (which turns out to be op-
timal in our case) for the constant C in (1.10). This is what we do next.

PROPOSITION 1.2 (Curvature-dimension condition for the spherical CKN
space). — Let (a,b) € © and
(1.13) p=a?(n—1).
Then, the spherical CKN space satisfies the curvature-dimension condition
CD(p,n) if and only if
a? < d-2

1.14 < :
(1.14) —

One implication of this proposition has been proved in [16, Theorem 3.9].
The proof proposed here is different and based on tensors, which is a useful
method to prove the equivalence between the two conditions. Note that
(R?\ {0}, gs, us) is a smooth weighted manifold and that its operator is
essentially self-adjoint if and only if n > 3, see [16, Theorem 3.12], whence
Sobolev’s inequality (1.10) holds under the condition (1.14). In fact, more
can be said. Revisiting the proofs of Theorem 1.1 given in [1, 11], we find
that if the following weaker integrated form of the curvature-dimension
condition

s (5= orst)

holds for functions f € C>(R?\ {0}) such that inf f > 0 and sup f <
400, then the sharp Sobolev inequality is valid on the CKN sphere. More
precisely, letting H{ (us) denote the closure of C2°(R?\ {0}) with respect
to the norm

- ;(Lsf)Q) £ dus > 0

1913 = [ (TS(H)+ £2) s,

ANNALES DE L’INSTITUT FOURIER



A CONFORMAL POINT OF VIEW ON THE CKN INEQUALITY 9

THEOREM 1.3 (Sobolev inequality for the spherical CKN space). — Let
(a,b) € ©. Whenever

(1.16) 0<a<l,
the following optimal Sobolev inequality holds

(1.17) (/v”du)z/p < n(n_42)a2/l“s(v)du+/v2du,

for any v € H}(us), where y = %MS and Z is a normalization constant(®)
such that p is a probability measure. That is, inequality (1.10) is valid with
optimal constant
B 4
n(n—2)a2Z%
In addition, equality holds in (1.17) if and only if

v(x) = (A +7tanh(as))_n772, s =log |z|,

where \, v are arbitrary constants such that A\ > |y|. In particular optimal
functions for both inequalities (1.1) and (1.17) are radial.

Remark 1.4.

e Note that ¢1(z) = tanh(as) is a radial eigenfunction of Lg asso-
ciated to the eigenvalue A = a?n. So, except for the round sphere
(corresponding to the case o = 1), the extremals of Sobolev’s in-
equality are obtained as a linear combination of radial extremals of
Poincaré’s inequality (1.20) (raised to the power —"T*Z), provided
this combination is bounded below by a positive constant.

e As we shall prove in Lemma 1.5, condition (1.16) is equivalent to
a? < %. In the limiting case a? = %, extremals of Sobolev’s
inequality are radial, while extremals of Poincaré’s inequality need
not be, see Proposition 1.6 below.

e The extremals of Sobolev’s inequality on the round sphere (i.e. the
limiting case @ = 1) were discovered by T. Aubin, see e.g. [15,

Theorem 5.1]. They are more often written as constant multiples of

v= (8- cos(r))_¥,

where 8 > 1 and r is the geodesic distance to an arbitrary point
wo € S%. With our notations, they take the form

d—2

v=A+vp14)" 2,

)z = ps(RI\ {0}) = %‘Sd_l‘ fo+oo(€0$ht)_ndt'

TOME 0 (0), FASCICULE 0



10 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

where @1 4 is any eigenfunction of —Lg = —Aga associated to the
first nonzero eigenvalue A\; = d and A, are arbitrary constants
such that A > |7]]|¢1.d/lco-

Our notation puts forward the connection between the extremals
of Sobolev’s inequality and the extremals of Poincaré’s inequality
in Proposition 1.6: the former are obtained as a linear combination
of the latter (raised to the power —d—gg), provided this combination
is bounded below by a positive constant.

e Hardy’s inequality (i.e. the case & = 0 in (1.9)) is optimal for the
constant

2
C = lim 1 - = ( 2 ) ,
a—0t n(n—2)a222 d—2—2a
but equality is never achieved.
o It follows from Theorem 1.2 and Theorem 1.3 that for a € (0, 1),
extremal functions for Sobolev’s inequality on the Euclidean CKN
space take the form

n—2
1 + |x|20z T2
o= (1)

up to normalization and dilation, providing thereby an alternative
proof of the main result in [9].

Condition (1.16) is strictly weaker than condition (1.14). It turns out to
be equivalent to

d—1
o? < 1
More precisely, consider the following Felli-Schneider region
(1.18) Ors = {(a,b) €O, b>=bpg(a) if b<0},
where
prs(a) = 22D (. —a)

B 2y/(ac—a)2+d—1 -
Let as well Opgz C © be the domain where Proposition 1.2 is valid (con-
dition (1.14)):
Opaz = {(a,b) €0, Bpaz > 0},
where

(1.19) Bpaz = (d—2) — (n —2)a.

Then, we prove that the region Opg corresponds exactly to the domain
where Theorem 1.3 is valid:

ANNALES DE L’INSTITUT FOURIER
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LEMMA 1.5 (Comparison of the two regions).

d
Opg = {(%@697 %DGz-i-n 20}

n—1

d—1
= 2 <
{(a,b)e@,a \n—l}

Hence, ©pgz & Ors.

The two regions are represented in Figure 1.1 with d = 4.

2.01

1.5 1

—-1.0 1

Figure 1.1. bps(a) (dashed style in red) and the curve Bpgz = 0
(dotted style in blue) with d = 4.

The condition 8 € Org is known in the litterature as the Felli-Schneider
condition. Felli and Schneider [12], building on the work of Catrina and
Wang [7] initially proved that extremal functions for the optimal CKN in-
equality (1.1) cannot be radial whenever (1.16) fails. Conversely, in their
work [9], Dolbeault, Esteban and Loss computed the optimal constant
in (1.1) and proved that extremals for the optimal CKN inequality (1.1)
are radial and explicit whenever (1.16) holds. Combining Theorem 1.3 with
Theorem 1.2 gives an immediate alternative proof of these latter facts.
Our point of view may further clarify why the Felli-Schneider condition is
optimal. Indeed, it is well-known that a tight Sobolev inequality implies

TOME 0 (0), FASCICULE 0



12 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

a Poincaré inequality: precisely, applying (1.17) with v = 1+¢f and letting
€ — 0 leads to

(1.20) [ran-( [ fdu)2 < [rsthan

We prove the following.

PROPOSITION 1.6 (Poincaré inequality for the spherical CKN space).
Let (a,b) € ©. The Poincaré inequality (1.20) holds with optimal constant
C= ni2 if and only if the Felli-Schneider condition (1.16) holds. In addi-
tion, equality holds in (1.20) if and only if f is an eigenfunction associated

to the first nonzero eigenvalue of Lg,

01f0<04<%,

f(z) = A+ ytanh(as), where s =log|z|,

for some constants (\,vy) € R2.
e otherwise, if « = %,

¢1,d-1(w)

cosh(as) ’ where s = log |z| and w = x

x|’

with (A, 7,v) € R?® and some eigenfunction ¢ 4—1 associated to the
first nonzero eigenvalue Ay = d — 1 of —Aga-1.

f(x) = X+ ytanh(as) + v

So, the Felli-Schneider condition cannot be improved in the statement of
Theorem 1.3 and it is in fact equivalent to both Sobolev’s and Poincaré’s
inequality with the given optimal constants on the spherical CKN space. In

n—1

addition, Poincaré’s inequality with constant C' = o is in fact equivalent

to the following integrated C'D(p,n) condition, where p,n > 0:

J (130 - srs(n) - 2tss? Jan o,

see [1, Proposition 4.8.3, Theorem 4.8.4 and their proofs]. Hence, the Felli-
Schneider condition (1.16) can be interpreted as a curvature-dimension
condition in integral form.

Let us also point out that if Sobolev’s inequality (1.10) holds on
a d-dimensional smooth manifold (M, g) without weight with optimal con-
stant C' = W, then (M, g) must be isometric to the round sphere,
as very recently demonstrated in [17].

ANNALES DE L’INSTITUT FOURIER
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1.4. The n-conformal invariants

In this last introductory paragraph, we expand on the conformal inva-
riance of Sobolev’s inequality in the setting of weighted manifolds and pro-
vide a deeper reason for why the three CKN model spaces satisfy equivalent
conformal forms of the Sobolev inequality.

For the inequality (1.8) without weights, it turns out that Sy = ﬁscg
is a constant multiple of the scalar curvature of g (see Propositions 3.6.20,
3.6.21 and 6.2.2, as well as the second displayed formula on p. 63 in [14]
or [1, Section 6.9.2] for proofs of this classical result). In other words, in-
equality (1.8) is valid on the whole conformal class of the round sphere,
including the Euclidean (where S; = 0) and hyperbolic (where Sy =
—%scg) spaces.

For weighted manifolds, the notion of scalar curvature can be generalized
as follows. As proposed in [1, Section 6.9] (see also [6, 8] for earlier perspec-
tives('?)), given a d-dimensional (d > 2) weighted Riemannian manifold
(M, g, 1) with reference measure

dp = e_WdVg,
where W : M — R is a given weight and dV; the Riemannian volume, let

L(f) =|Vefl;
denote the associated carré du champ operator, so that (M,u,T') is a
Markov triple.

DEFINITION 1.7. — Take a real number n € [d, +0oc], which is not neces-
sarily an integer. The n-conformal class of the triple (M, u,T") is the set of
all Markov triples (M, c ", c*T"), where ¢ : M + (0,00) is any smooth
and positive function. An n-conformal invariant is a map S defined on the
n-conformal class of (M, u,T") with values in the set of functions over M,
such that for any positive smooth function ¢ = e”,

(1.21) S(¢™"p, °T) = ¢ [S(,u, T)+ ”T_z (LT _n 5 21_‘(7'))] ,

where

L=A,—T(W,").

It is important to notice that the operator L is uniquely determined by
the carré du champ operator I' and the measure p only. This is indeed
the case since the operator Ay depends on the metric g (which itself is

(10) Which correspond to the special case v = —2 in Proposition 1.8 below.
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14 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

uniquely determined by I') and since W is related to the measure p and the
metric g through the Riemannian measure dV;. Also observe that setting
u=c T, s = S(u,T), 5= S(c™"u,c*T), then (1.21) can be reformulated
as the following Yamabe-type equation:

_ nt2
—Lu+ su=su»2 in M.

Note that the case where n =d, L = Ay, s = %scg and s constant, is
the standard Yamabe equation.

By a rather direct computation, see [1, Proposition 6.9.2], whenever S =
S(w,T') is an n-conformal invariant, the Sobolev inequality

(1.22) (/vv’du)w < C’(/F(v)dqu/Sde,u),

(with given constant C' > 0 and p = -2%) is invariant in the n-conformal
class of the triple (M, i, T'). In other words, if the Sobolev inequality (1.22)
holds for some constant C, then it also holds with the same constant C' for
all triples (M, c~"u, c®T") where c is any smooth and positive function.
Rephrasing what we said earlier, in the absence of weight, S5 = ﬁscg
is an example of a d-conformal invariant (where in this case n = d). The
case of weighted Riemannian manifolds is a little bit more complicated and
contains interesting examples. Let us recall [1, Proposition 6.9.6] (we will
also provide a proof since the one in [1] contains some mistakes as well as

the statement).

PROPOSITION 1.8 (n-conformal invariant in a weighted manifold). —
Let v € R and n > d. Then,

(1.23) Sy (11, T) = 0n(7) [s¢q = YAGW + Bn(7)T(W)]
is an n-conformal invariant if
_y(n—2d+2)—2(d—1) B n—2

This being recalled, a natural question arises in the context of the Eu-
clidean CKN space we introduced in Definition 1.1: does there exist a
(unique) real number yy € R such that this space satisfies

Sy (e, ') =07

This is indeed the case, as we are about to see. By Theorem 1.2, without any
further computation, we deduce that for the same value of the parameter
v =, Sy (us,I's) = @az > 0 is constant for the CKN sphere and
Sy (pr, TH) = —Wuz for the CKN hyperbolic space.
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PROPOSITION 1.9. — Let n > d and

3 2d— 1)
(1.24) = a2(n—d)(n—2

where Bpaz has been defined in (1.19).

] Bpaz,

Then,
Syo(ue, ') =0,
Syo(us,T's) = w&
and
Sy (pm, TH) = —Woﬂ.

As an immediate collorary of the CKN inequality (1.1) and the above
lemma, we recover the validity of Sobolev’s inequality on our three model
spaces, stated in Theorem 1.2 above.

Remark 1.10. — In a forthcoming report, we will further explain how a
weighted version of Otto’s calculus can be introduced in order to prove a
wider class of optimal CKN inequalities, by working directly on the Eu-
clidean CKN space, rather than the CKN sphere.

The rest of the paper is organized as follow. In Section 2 below, we
prove the conformal invariance of Sobolev’s inequality in the CKN spaces
(Theorem 1.2). Section 3 is dedicated to the characterization of the region of
parameter O pgz (resp. Opg) for which the classical curvature-dimension
condition (resp. the integrated form (1.15)) holds, from which Sobolev’s
inequality follows (Proposition 1.2 and Theorem 1.3). In Section 4, we
prove all results pertaining to n-conformal invariance for general weighted
manifolds (Propositions 1.8 and 1.9). At last, an appendix contains lists of
known formulas and constants, proofs of the numerology relating them as
well as rigorous justification of the integrations by parts implicitly used in
the proof of Sobolev’s inequality.

2. Conformal invariance of Sobolev type inequalities for
CKN models

Proof of Theorem 1.2. — As in the unweighted case, the proof reduces to
a simple change of unknown, once the proper notion of conformal invariance
has been introduced. First we prove that the Sobolev inequality in the CKN

TOME 0 (0), FASCICULE 0



16 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

Euclidean space is equivalent to the Sobolev inequality in the spherical
CKN space.
Recall that for
1 2«
(2.1) olx) = I s eme,

and that
I's=¢’T'g and pus = ¢ "ug.
Apply (1.1) to the function f = goang. On the one hand, we have

/ fPdpm = / £ dpg = / gPdps.
On the other hand, letting V' = log ¢,
Ie(f) =TE (@%g>
= ¢ "Tr(g) +2¢ > ol'e (wg : g) +Tg (@25" >g2
= o (rato) - " e () + U e vg?)
An integration by parts with respect to ug yields

/FE(QQ,V)w%”dNE+/FE(¢2’",V)92duE = f/LEVg%Q*”dME,

so that we get

/FE(f)dME
= /Fs(g)dus — nT_Q/FE(QQ,V)wQ‘"duE
_9\2
+ %/FE(V)Q%fd#S

= /Fs(g)dus + nT—Q/ (LE(V) 1z ; QFE(V))92@2dNSv

The CKN inequality (1.1) becomes

()
< C(/ I's(g9)dus + (n ; 2) / <LE(V) -z ; 2FE(V)) 80292dus>7

and it is enough to compute the quantity

n—2
2

Le(V) - Ie(V).
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A CONFORMAL POINT OF VIEW ON THE CKN INEQUALITY 17

To that end, recall that Lg is given by

(2.2) Lg = |20~ [A — aVlog|z[* - V].
Since V' = log ¢, we have
n—2 _Le(p) Te(p) n-—2Ic(p)
_ Le(p) nTe(y)
@ 2 ¥?

Recalling the definition of ¢ given in (2.1), we find that
I'e(p) _ o?zf*

? e
and
Le(p) |22~ [Ap — aV log 2|2 - V]
¥ ¥
d+2(a—1)—2a
=«
4
_a
4
So finally,
Ln(V) - = 2rg(v) = 22
E 2 E - 2(‘027

and the CKN inequality (1.1) takes the form (1.10), as announced.

Next, we prove that Sobolev’s inequality in the CKN Euclidean space
implies the Sobolev inequality on the CKN hyperbolic space. We mimic
the previous proof. Define the function % on the punctured open unit ball
B\ {0} c R? by

1 — |z|?
@ =" By (o)
Then, on B\ {0},

I'y =¢°Tg and g =19 "ug.

Apply the CKN inequality (1.1) to the function f = w%h, where h €
C(B\ {0}). Again, we get

/ Py = / FE g = / WP dps.
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and (1.1) becomes, with U = log,

(fiam)”

< C(/ T (h)dpug + ”T_Q/ (LE(U) - 2FE(U)>w2h2dMH>.

2
We obtain )
n—2 an
L — T =——
e(U) 5 Tel) 207
and so (1.11), as claimed. O

3. Sobolev’s inequality for the spherical CKN model

This section is devoted to the proof of the optimal Sobolev inequality for
the spherical CKN space (Theorem 1.3) under the Felli-Schneider condi-
tion (1.16). It is convenient to introduce spherical coordinates R\ {0} >
r = rf with 7 > 0 and 6 € S%!. The Sobolev inequality on the CKN
sphere (1.17) then takes the form

pd—1-pb 2/p
P —drdVgu-
/(O,OO)XSd—l ol (14 r2a)n rdVgi-1

.-
(1 + r2a)n72
,rd—l—pb

2
+4Z—z/ 2 Ve,
(0,00) xSd—1 (1 + 7’20‘)“ sd

where |Vgv| is the Riemannian length of the Riemannian gradient Vyv on
S?1 and dVga-1 is the associated Riemannian volume. Using the change
of variable (0,00) 3 r = e, with s € R, the inequality becomes (with a
different constant C),

2(a—1)+d—1—pbd

1
<C [(&A})Q + ﬂmvﬂ drdVga-:

(0,00) xSd—1

2/p
(3.1) < / P cosh(as)”dstSd_1>
RxSd-1

<C [(05v)* + |Vov[?] cosh(as)® "dsdVga-1
RxSd-1

+ 2z / v? cosh(as) "dsdVga-1,
RxSd-1

where we used the fact that d — na — pb = 0, see (A.19). This new chart

is often called the Emden-Fowler transformation, as suggested in [7, 10].
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In other words, in the cylindrical chart (s,0) € R x S?! the spherical
CKN space takes a new and nice form. Notice that the space remains the
same, it is only written in a new chart. More precisely, letting

(3.2) ©(s) = cosh(as), se€R,
the metric becomes (with the upper indices)
(3.3) gs = p’h = *™sh,

where 7g = log ¢ and b is the standard product metric(*') on (0, c0) x 841,
represented by the d-dimensional matrix

1 0
0 Go)’

where Gy is the matrix of gy in the chart (s, ), and gy is the round metric
of 84~ For convenience, in Lemma 3.2 and its proof, as well as the proof
of Proposition 1.2, we will abuse the notations and identify the tensors with
their coordinates in the chart (s, ), since it will be the only chart used in
all the calculations. The carré du champ operator takes the form

Ts(f) = ¢*[(0s)* + Ve fI?] = o*[(8:)° + T°(f)].

where T9(f) = |V f|? is the carré du champ operator associated to the
Laplace-Beltrami operator Ag on S?~!. The Riemannian volume becomes
dVas = ¢~ %dsdVga-1 and the reference measure (not normalized measure)

dus = ¢~ "dsdVga-1.
The corresponding weight Wy is defined by dug = e_WSdVgs7 so that
Ws = (n — d) log ¢.

Finally, the associated generator takes the pleasant form
/
Ls(f) = ¢ |Ousf + (2= ) Z0f + Do |.

Taking advantage of this chart, let us begin by proving that the spheri-
cal CKN space satisfies the CD(p,n) condition whenever condition (1.14)
holds:

Proposition 1.2. — From [1, Section C6], the generator Lg satisfies
a CD(p,n) condition (with n > d) if and only if, as a symmetric tensor
(with lower indices),

1
RiC(Ls) — pPgs 2 7dngWs ® VESWS.
n —

(11) On the cotangent space of (0,00) X S4=1 where S9! is viewed in a given chart.
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20 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

Let us remark that, since gs = ¢?h (with upper indices), the corresponding
metric tensors (with lower indices) satisfy

h
gs = —.
e
Compute first the r.h.s. of the above inequality. From the definition of

Ws, we have

n—d
where J is the d-dimensional matrix with all entries equal to zero but the
first i.e. J;; = ;101 or more visually, letting H (resp. G) be the matrix
representing the standard product metric h (resp. gp) in the coordinates

(s,0) (resp. 0),
" A )

Now, applying formula (3.7) in Lemma 3.2 below, we get

1
Ric(Ls) — pgs — mvgs Ws ® VIsWg
=—(n—d)a’H + (d—2)(1—a?)(H — J) + (n — d)a*J,

where, again, we conflate tensors and their matrices in the chart (s,6).
Hence,

1
Ric(Ls) — pgs — ngSWs ® V¥ Ws = Bpaz (0 0 )

0 Gy
with the constant Bpgyz is defined given in (1.19), and so, Lg satisfies the
curvature-dimension condition CD(p,n) if and only if Bpagz > 0. O

Remark 3.1. — Since the matrix H — J depends only on the variable 6,
when we restrict to functions depending on the variable s only, the corre-
sponding model always satisfies the CD(p,n) condition, regardless of the
sign of Bpaz.

In the above proof, we made strong use of the following lemma.

LEMMA 3.2 (Computation of Ric(Lg)). — We have the following for-
mulae

(35) Ricyg = (d—w;)ar" ((1) 8)

+ % [(d—2)(1—0a?)¢® + (d — 1)a”] <8 C?(;)’
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and

10 1—02/0 0
gs _ _ 2 _ 2
(3.6) VV® W = (n—d)a (0 O) + (n—d)a 2 (0 Gg)’

where Gy is the matrix of round metric on the sphere S%'. With the
constant Bpgyz (given in (1.19)), we obtain

Ric(Lg) = Ricyg +VVISWg

a? 9 1 0
(3.7) :w[d_1+“p<”_d)](o o)
+ % [02(n - 1) + ¢*Bpey] (8 GOQ) .

Proof. — Let us start with Ricgg, which is simply the Ricci tensor of the
metric gs. Since gs = €7} is conformal to h, we may apply (A.4) in the
appendix to get (with lower indices)

(3.8) Ricgs = Ricp, +(Ay7s)h
+ (d — 2) (Vths + VhTs Op Vst — VhTs h Vst h).

Since Ricgy, = (d — 2)gg, we have

Ric = (d — 2)(H — J) = (d—2)(8 ((;)9>

Since ¢ depends only on the variable s, we have

Ay(1s) =

and

Collecting the four terms and using (3.8), we get

Ricg:Hld—ZJron—(d—l)(i;)2 +J(d—2)(a® —1).

TOME 0 (0), FASCICULE 0



22 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

Since "2 = a?(p? — 1), the equation can be written,
(d—1)a?
o2

which is the desired result.

Let us now compute VV9 Wg, the Hessian with respect to the metric gs.
We have (see (A.2)),

VV9s Ws = VV"Ws + 2VWs &y Vi7s — (VIWs - VI7s) h.

Ric, = H +(H - J)(d-2)(1-a?),

Since Wg depends only on the variable s, we easily get that

+2J(n—d)(g>2 — H(n—d) (‘g)Q,

which is the expected result. O

7N\ 2
VS Wy = J(n—d) [oﬂ - (‘2)

Remark 3.3. — As an immediate consequence of Proposition 1.2, the
fact that Lg is essentially self-adjoint when n > 3 (see [16, Theorem 3.12])
and Theorem 1.1, we see that Sobolev’s inequality (1.17) holds (and so
Poincaré’s inequality (1.20) too), as soon as (1.14) holds. Also note that
/= %, seen as a function of the first of the cylindrical coordinates (s, ),
solves

—Lsf =na’f

and so equality in Poincaré’s inequality (1.20) is achieved by f. In partic-
ular, the constant in Sobolev’s inequality (1.17) is optimal.

In fact, one can do better and prove optimal inequalities in the optimal
range of parameters given by the Felli-Schneider condition, as we describe
next. The first crucial step consists in proving the following weaker inte-
grated forms of the curvature-dimension condition (1.15).

PROPOSITION 3.4. — Let (a,b) € Opg. In cylindrical coordinates (s, ),
for any s € (0,00) and any smooth positive function f on (0,00) x S471,
there holds

39 [ (TR - st - Lan?) v 20
and

(3.10) / (r§<f> TS (f)

n

1
(Lsf)Q) dVga-1 >0,

where dVga-1 is the standard volume on the sphere S~ 1.
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We establish Proposition 3.4 through a series of lemmas. First,

LEMMA 3.5 (TS in the cylindrical chart). — Let (a,b) € ©. In cylindrical
coordinates, we have for any smooth function f on (0, 00) x S9!

S
Ffo(zxf) = (0 f)* + IV Vo fI* + 2T (0. f)
+ 2ﬁlassfasf + 43,F9(88f7 f) - 2£’5sz”
@ i 4
3.11 \?
(310 +(8sf)2[d(¢> +a2(d_21+”‘d>
© ¥

/ 2
-1
+r9(f)<2<“;> +a2”¢2 +%DGZ>,

where ||VVy f||? is the Hilbert—Schmidt norm with respect to the variable 0,
T9(f) = |Vaf|? the carré du champ operator associated to Ay and the
function ¢ has been defined in (3.2).

Proof. — We can use the definition of the I's operator to prove (3.11).
But, since the Ricci curvature of Lg has been computed in Lemma 3.2, we
prefer to use the following Bochner—Lichnerowicz formula,

(3.12) IS(f) = Ric(Ls)(Vf, Vf) + VYV f|]?,

where ||[VV?9 f||? is the Hilbert-Schmidt norm of the Hessian of f with
respect to the metric gg (see for instance [1, p. 71]). From Lemma 3.2,
equation (3.7), we have first

Ric(Ls)(VS, V)

0
a? [d—1+ ©*(n — d)] + F(pgf) [aQ(n -1+ 4,02%]3(;2].

It remains to compute [|[VV9 f||2. From (3.3) we have gg = p2h = ?7sh
and so we may apply formula (A.3) to get

gs |2
ISR _ oo | 1 2r9(es To0r)

+ 20 (F)I"(1s) + (d = 2)T(f, 78)* — 280 [T (f, 75).
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Since b is the standard metric product and 7 depends only on the variable s,

we have
[OVO£[* = (@ )? + IV Vo f[1% +20%(0. f),
(15, 19() = 22 001 + 25 1°(0.1.5)
N 2
DO(f) = (@) + T(), s = (2]
I, 7s) = *gasf and  Agf=0uf + Aof.
Collecting all the terms, we get
gs 2 /
M = (0ssf)* + IVVafl* + 20 (0. f) + %assfasf
/ 7\ 2
saZr0.s )+ 2( ) (07 )
7\ 2 /
+ (d - 2) <90> (6s.f)2 - 2(8ssf + AQf)gﬁs.ﬂ
¥ ®
that is
vas 2
H(p4fH = (8ssf)2 + HVV(afHQ + QFG(asf)
+ 2£/855f85f +4£/1“9(85f, f)
® '
I\ 2 N\ 2 /
+2(“") r(f) +d(“”) (0.)* — 2801 20, 1.
® ' '
Finally, by using (3.12), we get the expected formula (3.11). O

We restate the above lemma in the following more compact formulation.
LEMMA 3.6. — In the cylindrical chart, for any smooth function f on
(0,00) x S4-1,
1/ g 1 )
(3.13) o I2(f) = pls(f) = —(Lsf)

n—1

’ 1 2
= (assf + 2£a€f - AQf) + ||vv6f||2
n %) n—1

1
n—1

(Bof)? + 20 (9, f + “;'f) - T() Bz
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Proof. — In the cylindrical chart, the generator takes the following form,

for a smooth function f:
Ls(f) = ¢ |:8ssf +(2 - n)%a@f + Ao f|,

and from Lemma 3.5 (formula (3.11)), we obtain

S [T80) - rs() - S (2s 7]

n—1

= T2 0 + VRS2 — - (B0)?

o ’
a2 ror— 220, 1n,s
Y n n e

- % sszBf + 2F9(asf> + 4:00/1‘9(6Sf7f)

oy [(Z)Q (-2 - d)Wij]

+T%f) <2(Z/>2 + %DGZ>-

Since ¢? = a?(p? — 1), we get

L[ - ors(n - Stary]

n—1

(O + IV~ +(80)?

n—1

n

! 4 !
+aZ g fa f — S 20 fAuf
2 n e

n—1/¢'\* . ., 2
+ 4 n () (asf) - 7assz9f
%) n
7\ 2 /
+T°(f) <2<:‘;> +%DGZ> +2F0(3sf)+4%F0(5’sf, ).

Formula (3.13) follows then easily since ¢ depends only on the variable s.
O

Remark 3.7. — By the Cauchy—Schwarz inequality,

1
IVVef]* > H(Aefﬁ
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and so
n—d
@=D(n—1)

since n > d. We recover from (3.13) that, under the condition Bpgz > 0,
the generator Lg satisfies the CD(p,n) curvature-dimension condition.

IV0sI? = — (Bo)? > (B0f)? >0

The next ingredient is the following inequality valid on the sphere S¢—1
(or any smooth weighted manifold satisfying the CD(d—2,d—1) condition).

LEMMA 3.8. — For any smooth positive function f on S,

(3.14) / LS(f)fr"dVga
ro(f)?

> (d - 1)/r9(f)f1—”dvsd71 +A/ 72 frdVgaa,
where
n—1
In particular,
(3.16) /rg(f)flfndvsdfl > (d - 1)/F9(f)f1*”dvsd71.

Proof. — The operator Ay is the Laplace—Beltrami operator on the
(d — 1)-dimensional sphere, therefore, it satisfies the CD(d — 2,d — 1) con-
dition. Moreover, Ricy, (the Ricci tensor of Ay) satisfies

(3.17) Ricg, (Vof, Vof) = (d —2)L°(f).

In [13, p. 767], it is proved that under the CD(K, m) condition, for a general
operator L associated to the measure u, and the operators I' and I', one
has for any real parameters g, x,

/ BTy (h)dp
Km ) 2 -1
> — hIT(h)dp+ [ [ARIT'(h)? + Bh'T'(h,T'(h))]du
m—
where

-1 -1
4 dla )—x2—2xq ’
m—1 m—1

=mll<32q—x(m+2))-
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Apply the previous inequality to our operator Ay with parameters ¢ = 1—n,

K=d—-2 m=d—1and x = 2(m+2) so that B = 0. We obtain

/ P90 f1 " Vs

0 1-n ]_"G(f)2 1-n
>(d-1) () f "dVge-r + A 5" dVga—
Sd—l Sd.—l f
where A is given by (3.15) after a straightforward computation. In parti-
cular, A > 0 and the estimate (3.16) follows. O
We can now turn to the
Proof of Proposition 3.4. — From Lemma 3.6, we have
1 —n
[ (x50 - srs() - n(Lsf>2)f1 Ve
> / <||vv9f|| — (Do) + F"(f)%DGZ)flndvsd_l.
Now,
IVVafl? - (Aaf)

d—1
+7||Vvef||2

— A
= 1( of)? >
where we used the Cauchy—Schwarz inequality to infer that

(3.18) IVVof|? > (Aef)

So,

[ (£30) = orsth) = Szsr?) i raves

><p4/(n—d
n—1

Since, from (3.12) and (3.17),

f“2 + Fa(f)%DGZ> frdVga-s.

|V £||* = T4(f) — Ricgaes (Vo f, Vo) = T4(f) — (d — 2)T(f),
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the inequality becomes

et [ (T30 - o0s() = S (Lsr?) £ e
SN d

=

n—1

/ TY(f)f vt

+ [ - 2 [T v

Using the estimate (3.16) in Lemma 3.8, we get

319) o [ (V30) = os(h) - 1(Le9)? )7V

n—d
> [n — * %DGZ] /Fe(f)fl_ndvsdfh
That is,

n—d

n—1

(3.20) + Bpaz =0

implies (3.9). The proof of inequality (3.10) is almost identical, except that
instead of (3.14), one uses

/rg(f)dvsd_l > (d— 1)/F9(f)std_1,
which itself holds thanks to the Cauchy-Schwarz inequality (3.18), Boch-
ner’s formula (3.12) and the identity [T4(f)dVga—1 = [(Agf)?*dVga-1. O
Now that the integrated curvature-dimension is established, we can turn
to the proof of Sobolev’s inequality.

Proof of Theorem 1.3. — Fix ¢q € [1,p). By the Caffarelli-Kohn—Niren-
berg inequality (1.1) and Theorem 1.2, Sobolev’s inequality holds on the
CKN spherical space in the form (1.10). By [1, Proposition 6.2.2], (1.10)
and Poincaré’s inequality (A.5) imply the following tight form of Sobolev’s
inequality:

(3.21) </|U|Qdu>2/q < A/Fs(v)d,u+/v2du,

for some A € R} where u = %,us is the normalized measure and v €
Hg(us). Given A € R%, consider the minimization problem

I(A) :inf{A/Fs(v)du+/v2du c v € Hi(ps), |vllpau = 1}.

Using v = 1 as a test function, we see that I(A) < 1. Thus, (3.21) holds
if and only if I(A) = 1. Thanks to the Banach—Alaoglu-Bourbaki and
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Lemma A.4, there exists a minimizer v € H{(us) s.t. ||v||pa(u) = 1. By
Stampacchia’s theorem [19], |v| is also a minimizer, so we may assume that
v 2 0 a.e. In addition, a constant multiple of v (abusively denoted the same
below) is a weak solution to

(3.22) —ALsv +v=v""" in R*\ {0}.

By standard elliptic regularity (see e.g. [14, proof of Theorem 6.2.1, p. 248])
v € C3(R4\ {0}) and by the strong maximum principle (see e.g. [14, Theo-
rem 5.7.2]), v > 0 in R%\ {0}. In addition,

(3.23) C>z2vzec>0 and Tg(v)<C

for some constants C, ¢ > 0. The upper bound on v is obtained by standard
Moser iteration (i.e. by multiplying (3.22) by the test function min(v, k)2*~}
where k € N* and a > 1 and making use of Sobolev’s inequality (A.10)
inductively). For the lower bound on v, we apply [1, Proposition 6.3.4] and
repeat the considerations of p. 312 in the same reference. The upper bound
on I's(v) is more delicate and proved in Lemma A.7.

Define the pressure function ® = v Then, ¢ solves

(3.24) LD — ng(é) =A@ -1) in R4\ {0},

where v = 2L and A = £=2 = —2___ Since v is bounded above and below
q—2 2A (v—2)A

by positive constants and since I's(v) is bounded, equation (3.24) implies
that for every a € R

(3.25) " € D(Ls)

Multiply equation (3.24) by Lg(®'~") and integrate. Thanks to the inte-
gration by parts formula (A.6), we find for the right-hand-side

[ 2@ s = [arns(@) = x [rse2,at)
= c/rs(q>)q>1—"

where ¢ =2\ (v — 1) = 4@ and where integration is understood with
respect to the reference measure y = % us. For the left-hand side, integra-
tions by parts must be dealt with more carefully. By Lemma A.2 (or since
Lg is essentially self-adjoint by [16, Theorem 3.12]), there exists a sequence
of radial functions ¢ € C°(R%\ {0}) such that ¢4 — 1 in D(Lg). By equa-
tion (3.24), ®Ls® — §T's(®) is bounded. By (3.25), Ls(®'7") € L?(us).
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So, by dominated convergence, as k — +o0,
/(LS (@) ((I)LSd) — grs(qn))
= [(s(@)) (9L - ETs(@)) i+ o)

Since (; is compactly supported, we may integrate by parts and deduce
that

(3.26) /(Ls (01))(@Ls® — grs(‘p))Ck
- /Fs<(<I>LS<I> - grs(rb))ck,élf”) +o(1)

- 7/FS((<I>LS<I>)Q€,<I>1*”) +g/Fs(Fs(<I>)§k,<I>1”’) +0o(1)
=TI+ 1+ o0(1)

Using the product rule to expand derivatives in the first integral, we find
I= —/gkLS@FS(@,@H) —/gk@FS(LS@,qﬂ*")
- /(‘I)LS(I))FS (@) =L+ L+1;

Using (3.24) and the boundedness of ® and I's(®), we find

(3.27) I3 < C(/ Fs(Ck)>1/2 =o(1)

Next, we deal with I;. Thanks to the product rule for derivatives, we find
I, = _/rs(q>, ' Lg®(y) +/<1>1—"gkrs(<1>,qu>)
+ [0 vLsers(@.q)

= _/rs(cp,q>1—”Ls<I><;k) + /@1—”gkrs(<1>,qu>) +o(1)
Since (; has compact support, we may integrate by parts to find that
(3.28) I = 7/<I>1*"(LS<I>)2C;€ +/<I>1*"gkrs(<1>,LS<I>) +o(1).

For I, at last, the chain rule simply implies that

(3.29) Iy=(v— 1)/<I>1‘VCkFS(<I>,LS<I>).
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Now we turn to II and apply the product rule.
%II: /gkrs(rs(cb),qﬂ—”) +/rs(q>)rs(gk,<1>1—”)
= /gkrs(rs@),qﬂ—”) +o(1).
Thanks to the product rule again and integration by parts, it follows that
%U: /I‘S(Fs(@),(kél_”) +/c1>1—vrs(rs(<1>),<k)
— [rs(rs(@).qet ) - [rs(@rs@i )
- /Fs(q’)‘I’lfuLsCh
And so, since ¢, — 1 in D(Lg) and ®,T's(®) are bounded,

21 = [ rs(rs(@), G ) + o(1)

/ )P +0(1).

Plugging (3.27), (3.28), (3.29), (3.30) in (3.26), we find

(3.30)

[ (1360) - L2502 - Cra(@) ot = o).

Since ® € D(Lg), thanks to Lemma A.9, we may pass to the limit as
k — 400 and deduce that

(3.31) / (rg(@) - %(LSQ)Q - Ifrs(cp)>q>1—v = 0.

By the integrated curvature-dimension condition (3.9), we deduce that

(711 - 11/> /(qu’)zq’lw + (P - 5) /Fs(‘b)q’lﬂ' <0.

c

Since q < p, we have n < v and so, if p > £ i.e.

4(v — 1)
T vy —2)p’
we deduce that Lg® = 0. Integrating against ®, ® is constant. Hence
v =1, I(A) = 1, and (3.21) holds for A = A=l 1ot q /" 2*. Then

v(v—2)p
v N\, n and the sharp inequality (1.17) follows.
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It remains to study the case of equality. If v € H}(ug) is an extremal
function for (1.17), then repeating the above considerations, the function
f= v "5 satisfies

[ (£30) - osh) = S2s0?) £ as =,

In particular, if the parameters are such that inequality (3.20) is strict, it
follows from (3.19) that f must be a function of s only. If »=¢+Bpgz = 0,

n—

then the estimate (3.14) in Lemma 3.8 provides the following improvement
of (3.19):

/ (Pg(f) —pl's(f) — :L(Lsf)2> 1 dus

> [n —d + %DGZ} /Fe(f)sflfl*ndus

n—1
n—d Fe(f)Q 4,1—n
nflA 72 e f " dus.

And so again, f is a function of s only, provided n > d. Using this infor-
mation in (3.13), we deduce that if n > d,

+

!
Do f +250,f =0,
®

while for n = d there must exist some function R: R — R s.t.
/ 1 /
(3.32)  Ouf+200,f — ——ANgf=0 and 8,f +Z f=R(s).
® d—1 ®

In the former case, this means that f(s) = A + ytanh(as), for some con-
stants A,y € R such that A\ > |y|, since f is bounded below by a positive
constant. In the latter case, the second equation in (3.32) implies that f can

be written as f = f;((f)) + fa(s). Plugging this in the first equation implies
that fl—i—%e_ff is constant i.e. f; = A1+ B112(0), where Ay, By are constants

and s is any eigenfunction of —Ay associated to the eigenvalue d — 1. This
implies in turn that fo takes the form fy = —% + A3 + Agtanh(s). Sum-
marizing, we have just proved that f = A + 1 4 for some constants A,y
and some eigenfunction ¢q ¢4 of —Aga associated to the eigenvalue d (and
written in cylindrical coordinates). Again, we must have A > |v|||¢1.4ll
since f is bounded below by a positive constant.

Conversely, we need to check that f~"= where f(s) = A + v tanh(os)
with A > |y if n > d (resp. f = A+ v01,4, A > V@14l if 7 = d) is
indeed an extremal function for Sobolev’s inequality. Multiplying f by a
constant if necessary, we may assume that [ f~"du = 1, where p is the
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normalized measure on the CKN sphere. By direct computation, recalling
that tanh(as) if n > d (resp. 1,4 if n = d) is an eigenfunction for the
operator —Lg associated to the eigenvalue na?, we find that

2
n no
fLsf — §Fs(f) = 7(1 - f?)
This implies in turn that v = f_nT_2 satisfies [vPdp = 1 and solves

Taln— a2 st = vt

Multiplying by v and integrating by parts, the result follows. 0

Proof of Proposition 1.6. — As explained in the introduction, Poincaré’s

inequality (with constant C' = %=1 = —1) follows from Sobolev’s inequa-
pn no

lity by linearization i.e. by applying (1.17) with v = 1 4+ ¢f and letting
e — 0. Also, Poincaré’s inequality (with the same constant C') is equivalent
to the following integrated curvature-dimension condition

/(Fg(f) —pl's(f) - i(Lsf)2>dus >0

Equality holds in Poincaré’s inequality for some function f if and only
if equality holds in the above inequality. So, extremals are characterized
exactly as in the case of Sobolev’s inequality except in the case a? = %,
in which we can no longer use (3.14) to deduce that f is radial. Still, we

deduce from (3.13) that

! 1 /
Oosf +270,f — ——Ngf =0 and ,f + 2 f = R(s)
® n—1 ©

_ f1(9)
ols) T
is constant

The second equation in (3.32) implies that f can be written as f =

f2(s). Plugging this in the first equation implies that o2 f; + ﬁ"_ff

ie. fi = A1 + Biypig—1(w), where Ay, By are constants and ¢ 4—1 is any
eigenfunction of —Ay associated to the eigenvalue a?(n—1)=d— 1. This
implies in turn that fy takes the form fo = w( 5 As + Ay tanh(as).
Summarizing, we have just proved that extremals of Poincaré’s inequality
take the form f = X\ + ytanh(as) + Vw for some constants A,~y, v

cosh(as)
and some eigenfunction ¢q gq—1 of —Aga-1, as desired. g

Remark 3.9. — Up to our knowledge, the CKN sphere is the first exam-
ple where the optimal constants for both the Sobolev and the Poincaré in-
equalities are explicit functions of (p,n) yet the usual curvature-dimension
condition doesn’t hold, although the integral version (1.15) remains true.
Beware though that the integrated curvature-dimension needed for (and
equivalent to) Poincaré’s inequality, i.e. inequality (1.15) without the weight
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f'=™ is in general much weaker, as evidenced by any space for which
the Poincaré inequality holds but not the Sobolev inequality, such as, for
instance, the Euclidean space equipped with the Gaussian measure.

4. The n-conformal invariant
4.1. The n-conformal invariant on a weighted manifold

We begin this section by proving Proposition 1.8, which constructs a one-
parameter family of n-conformal invariants on any given weighted manifold,
thereby generalizing the notion of scalar curvature to this setting.

Proof of Proposition 1.8. — We want to check that S, (p,I") satisfies
condition (1.21). Let ¢ be a positive and smooth function on M, 7 = logc
and v € R. We are looking for the expression of the two numbers 6,,(7)
and B,() in the definition of S, (¢, I') which are such that

The measure p is transformed into i = ¢ "u, and the carré du champ I’
into I' = ¢°T".
From (A.5), scq becomes

Stg = 02[309 +(d—1)(2A47 — (d —2)T'(7))],

i — _log 41
the weight W = —log av; becomes
v dji c "du d—n dp
W =-1 — =—1 =-1 "— =W —d)T,
og av, og aav, og (c av; + (n )T

and finally, from (A.1), Ay becomes

o

Ay =cAg — (d—2)T(r,)).
So,
S (™", )
scg + (d —1)(2A4(7) — (d — 2)T'(7))
=c20,(7) | —VAg(W + (n—d)7) — (d = 2)L (1, W + (n — d)7)]
+ Bn(NTW + (n — d)7)
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that is
S (e, 1) = 20, (7)
scq 1 [2(d = 1) —y(n — d)]Ag(7)
+ [Ba(M(n = d)* = (d = 1)(d — 2) +~(d = 2)(n — d)]T(7)
—7Ag(W) + [v(d = 2) + 28, (7) (n = )T (T, W) + B (7)T(W)
It has to be equal to

A8, (u,T) + HT_Q (AQ(T) -T(W,7) - i ; 2F(T))]

On(v)[scg = vAg(W) + Bn ()T (W)]

that is
bu()[2(d— 1) = y(n = d)] = 5 2
Ba((n—d)? —(d—1)(d—2)]  (n—2)?
SR R R ) ] B
6,(1)[7(d = 2) + 28, () (n — )] = = 2

which imples that
n—2
O0n () =
™) 4(d—-1)=2v(n—d)
y(n —2d+2) —2(d—-1)

Let us notice that the second equation in (4.1) is automatically valid for
this choice of parameters 6,,(y) and S, (v) and so we are done. O

Remark 4.1. — As explained in the introduction, when W = 0 the d-
conformal invariant is, up to a multiplicative constant, the scalar curvature.
In a weighted Riemannian manifold, the n-conformal invariant is given
by (1.23) and is a way to extend the definition of the scalar curvature in
the weighted case.

4.2. The n-conformal invariant for the CKN spaces

In this section, we would like to prove that the three CKN spaces enjoy,
for some v € R, a constant n-conformal invariant. By construction, the
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three CKN models (Euclidean, spherical and hyperbolic) belong to the
same n-conformal class. So, in virtue of Theorem 1.2 and Proposition 1.8,
it suffices to prove that there exits a unique v € R such that S, = 0 for
the Euclidean CKN space in order to prove Proposition 1.9.

Proof of Proposition 1.9. — Let v € R. Then,

Sy (pe,Te) = 0n(7) (scge — YAge WE + Bn(7)TE(WE)).
So, we need to find 7 such that scg, — 7AW + Bn(7)I'e(Wg) = 0.

Computation of the scalar curvature. — From the identity (A.5) with
I'e = cgl’ and 7 = logcg,

scgs = |20+ (d — 1) (2A78 — (d — 2)|V7TE[?),
hence,
SCap = |2]72%(d — 1)(d — 2)(1 — &?).
Computation of Ay, Wg. — First, from the identity (A.1),
AgeWg = |21~ 9%(AWE — (d — 2)V7r - VIVE),
S0
Ay Wg = |2|72%(d — 2)a?(n — d).
Computation of T'g(Wg). — We have
Te(Wg) = |z|2%a"d*(n — d)*.
So, in the end,
Sy (1, T) = On ()] 2 ((d = 1)(d = 2)(1 - o)
+70*(n — d)(d - 2) + Ba(7)a*(n — d)?),
and we need to find v € R such that
(d—1)(d—2)(1 —a?) +ya?(n—d)(d —2) + Bu(y)*(n — d)® = 0.

Since

vy(n—2d+2) —2(d—1)

Bn(V) - 2(71 — d)

we have
(d—1)(d—2+a?(2—n))

a?2(n—d)(2—mn)
or by using the constant Bpqz,
B 2(d-1)
= a?(n—d)(2 -

v=2

Bpcz- O
n)
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Remark 4.2. — 1t is interesting to notice that the n-conformal invariant
for the CKN spaces does not depend on the sign of Bpgz or the Felli-
Schneider region.

Appendix A.
A.1. Some Riemannian formulas

We recall here some general formulas on conformal transformations of

a d-dimensional Riemannian manifold (M,g). All formulas can be found
for example in [1, Section 6.9]1?). We transform the metric (with upper
indices) g/ into the conformal metric h¥/ = ¢2g%¥ | where c is any positive
and smooth function. We let 7 = log c. Then,

e The carré du champ operator is given by

Y = cTe.

e The Laplace-Beltrami operator is given by
(A1) Ay = cA(Ay — (d—2)T%,")).

e For any smooth function ¢, the Hessian of ¢ with respect to the

metric b, denoted VV"9 is given by

(A.2) VV 9 = YV + 2V @4 VO — T9(3), 7)g,

Here and below, VV9 is the Hessian of ¢ with respect to g and
V9 ©4 V87 is the symmetric tensor product, that is for any func-
tions f, g,

(V4 0 VOr)(VE1, V8g) = 5 [FO(£,4)T(g, ) + T8(f, 7)T(g,14)].

In particular, one can deduce the Hilbert-Schmidt norm of V'V
with respect to the new metric b:

VVE||2 + 219 (7, T2 () + 208 ()18 (7
g (v [TV I ) )
- (d = 2T (1, 7)% — 2(Ag)T°(8, 7)
e The Ricci curvature reads
(A4)  Ricy = Ricg +(Ag7)g + (d — 2)(VVer + V1T O VT —T'%(7)g)
e At last, the scalar curvature is given by

(A.5) scy = [scg + (d — 1)(2847 — (d — 2)I'9(7))].

(12) And also here https://en.wikipedia.org/wiki/List_of_formulas_in_Riemann-
ian_geometry.

TOME 0 (0), FASCICULE 0


https://en.wikipedia.org/wiki/List_of_formulas_in_Riemannian_geometry
https://en.wikipedia.org/wiki/List_of_formulas_in_Riemannian_geometry

38 Louis DUPAIGNE, Ivan GENTIL & Simon ZUGMEYER

A.2. Integration by parts and elliptic theory on the CKN
spherical space

Let H}(us) denote the closure of C2°(R4\ {0}) with respect to the norm
[0 = [ (Usw) + %) dns

Let v € L?(ug). Then, |x|1_aﬁVU and Lgu are well-defined distri-
butions on R?\ {0} and we may ask whether they are actual functions in
L?(ug), that is, we may consider Lg as an unbounded operator in L?(us)
with domain

D(Ls) = {u € Hj(us) : Lsu€ L*(us)},
equipped with the norm

[l = )+ sl = [ (62 + (Es20?) ds,

Since [T's(u) dus = — [uLsu dug for u € C*(R4\ {0}), it easily follows
that Lg is a closed operator. In addition, the integration by parts formula
holds on its domain:

LEMMA A.1. — Let u,v € D(Lg). Then,
(AG) /7Lsu’ud,u,s = /Fs(u, U)d,us

Proof. — Assume first that u,v € C2°(R%\ {0}). Then, (A.6) follows by
standard integration by parts. Next, if u € D(Lg) and v € C°(R?\ {0}),
take u, € C(R?\ {0}) s.t. u, — u in Hg(u). Using successively the
definition of distributional derivatives, the convergence u, — u in L?(us),

standard integration by parts and the convergence u,, — u in H}(u), we
find

/—Lsuvd,us = /u(—st) dus

= lim un (—Lgv)dus = lirf /Fs(un,v)d,us = /I‘s(u,v)d,us
n—-—+0oo

n—-+oo

Finally, if u € D(Lg) and if v € D(Lg), take v,, € C°(R4\ {0}) s.t. v, — v
in H}(u). Then, according to what we just proved,

/—Lsuvd,us :ngr}rloc/—Lsuvndus

= lim Ts(u,vy,)dus z/Fs(u, v)dus O

n—-4oo
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The following approximation lemma will be useful to integrate by parts
in more delicate settings than the above lemma.

LEMMA A.2. — Assume n > 4. Let w € D(Lg) be such that u,T's(u)
are bounded. Then, there exists uy € C°(RY\ {0}) such that uj, — u in
Dy,

s

Remark A.3. — The assumptions n > 4 and u,I's(u) bounded can be
removed and replaced by n > 3, but the proof is more involved (see [16,
Theorem 3.12]).

Proof. — In Section 3, the model given in (3.1) is written with the vari-
ables (s,6) € R x 8971, Choosing now s = 1 Argch (1/sin(¢)) the model
becomes with the variables (¢,60) € (0,7) x S4~1,

(A7) Ls(f) = o (0 +¢/(00:f) + 53

for any smooth function f defined in (0, 7) x S?~!, where the function c is
defined by ¢(t) = (n — 1) log(sin(t)). The carré du champ operator becomes

r(f)

Aefv

(A3) s(f) = 0@ + S

and invariant measure
1 1
(A.9) dus(t,0) = Zec(t)dtdvsdfl = E(sint)"—ldtdvsm,

where Z is a normalization constant and dVga—:1 is the volume in S%1.

Let now ¢, € C°(0,7) denote a standard cut-off function such that
0<¢G:<1,¢:=0in (0,1/k)U(r —1/k,m), ¢t =1 in (2/k, 7 — 2/k) and
ICh| < 2K, [¢)] < 2k2. Setting uy, = ulk, we find

[@stuw)rans
<2 / (Lsu)?(Ge — 1)%dpis + 4 / T (u, Ci)2dg

+ 2/u2(LS§k)2d,us =0+ I+ I3

By dominated convergence, Iy — 0 as k — +oo. For Iy, thanks to (A.8)
and (A.9),

I < C|Ts(u)|3k*~" = 0
Similarily, thanks to (A.7) and (A.9),

I3 < Cllul|> k™ — 0. O
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Our next tool is the following version of the Rellich-Kondrachov com-
pactness theorem.

LEMMA A.4. — Let (M, g, 1) be a smooth connected weighted d-dimen-
sional Riemannian manifold s.t. d > 3, u(M) < +o0 and Sobolev’s inequal-

ity holds i.e. there exist constants A, B > 0, p € [2, dQ—fQ] such that for every
veCE(M),

(A.10) (/v|pdu)i < A/I‘(v)du+B/v2du

Let H} (i) be the closure of Ag = C°(M) for the norm

2
Jullzyn® = [ (62 + T (w)d
and let q € [1,p). Then, the embedding H} () — L%(p) is compact.

Proof. — Cover M by a countable increasing family of open sets(Q)x e N
with compact closure and for each k € N, let n; € C°(Q+1) be such
that 7, = 1 in Q. Let (u,;,) be a bounded sequence in H}(u). Since
dp = e=WdV, and W, g are smooth, the H} () and the standard H norm
are equivalent for functions compactly supported in a fixed 2. By the clas-
sical Rellich-Kondrachov theorem, we deduce that for fixed k, the sequence
(U Mk )m 1s compact in L"(Qg41,dp) for r € (g, p). Since (uy,) is bounded
in the Hilbert space Hg(u), by the Banach-Alaoglu theorem, (u,,) is also
compact in H} (1) for the weak topology. By a standard diagonal argument,
a subsequence of (u,,) (denoted the same) converges weakly in H{ (i) to
some function u € H}(u) such that (um,ni), converges to uny in L7 (u).
Now, using Holder’s and Sobolev’s inequality we find

[t _UHL‘I(;L)
< | (um — w)nrllzagey + [1(wm —w)(1 = n8) | a(w)
1_1 1_1
LM a7 4 | — ul| (M \ Qi) "7
1_1
< C(Il(um = wnellpry + m(M\ Q%)) * ")

< [l — w]

Hence,

. 11
hmiup | — wl|paguy < Cu(M\ Qp)a "7
m—r—+0o0

Letting & — 400, the claim follows. a

As an immediate consequence of the above lemma (and a proof by con-
tradiction), we have
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COROLLARY A.5. — Make the same assumptions as in Lemma A.4.
Assume in addition that constants belong to H}(u). Then, Poincaré’s in-
equality holds i.e. there exists a constant Cp > 0 such that

2
/vzdu - (/ vdu) < Cp/F(U)d,u forv e Ay =C°(M)

Finally, we state and prove elliptic regularity estimates, which are useful
to justify integrations by parts in our proof of Sobolev’s inequality.

LEMMA A.6 (General elliptic estimates). — Assume that (a,b) € Opg
(defined in (1.18)). Let also h : (0,1] x S?~1 = R be a smooth and bounded
function satisfying fsd—l hdVga-1 = 0 and solving the equation

- 1)(n - 3) ﬁ A.gh
4 2 a?sin?(t)

(A.11) o h - — R,

where R is a smooth and bounded function on (0,1] x S4~1. We assume
also that, uniformly on (0,1] x S4~!

Ih(t,0)] < Ct"= and |R(t,0)| <

for some constant C' > 0. Then, there exists a constant C' > 0 s.t. uniformly

n (0,1] x S471,

Ih(t,0)] < "5, TO(h)(t,0) = |Voh|*(t,0) < C't"
and  |9,h(t,0)] < C't"T

Proof. — Let (Pg)r >0 be the orthonormal basis of eigenvectors of the
operator —Ay on S?! associated to the increasing sequence of eigenvalues
(Me)k >0 (recall that Ay > A\ =d—1, for k > 1 and Ao = 0).

We decompose h in the basis (Px)g > o,

0) = th(t)Pk(a)a (tve) € (077T) X Sdila
where hp(t) = [qu-s h(t,0)dVga-1. Note that

/hPodVSd—l = /thSd—l =0,
whence hg = 0. For each k > 1, hj, satisfies

p_ = DO=3he M,
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where Ry = [q4-1 RPydVga—1, which satisfies again [Ry(t,0)| < Cpt .
The equation can be replaced by the following one

D,
12

12
hy —a— = Ra,

where a = W + % > 0 and Ry, satisfies the same estimate as Ry.
We are now able to solve the ODE. The method of variation of constants
gives the explicit solution:

hy (t) = At"+ + Bt~

P+ t - - t 1oy
+ ——— | Rop(y)y "dy— ——— [ Rax(y)y 7~ dy,
Y+ == J1 - Jo

where A, B are constants and

1+yvItda 1 1
N (.
2 272 a

so that v > 0, v_ < 0. Then, by the estimate satisfied by Rs; we have

near 0,
t n+1
/ y27+dy‘
1

< C(tw +tnT+3)

BES

T+

T+ — -

t
/ Rz,k(y)ylv*dy‘ < Ct™+
1

and

- t b n
— / Rg,k@)ylﬂdy‘ <Ctr- / YT dy < O
T+ = 7= Jo 0

Since hy is a bounded function, we deduce that B = 0 and

|7 (8)] < O(tw H";B)'

We claim that for k¥ > 1, v4 > "7"‘1, whence |h;(t)] < ot Indeed,

by definition of 4, one can check that the inequality v+ > (n + 1)/2
is equivalent to n’\fl
by Lemma 1.5, (a,b) € Opg if and only if a? <
vy = (n+1)/2.

Next, we prove that the estimate remains valid for the function h. Define

> a?. Since A\, > d — 1 for any & > 1 and since
d—1

=1, we indeed have

K
Hy = Z hi Py
k=1
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so that h = limg _, ., Hg pointwise. From the previous computations, we
know that, uniformly in (0,1) x S4~1,

n+1
2

|Hg (t,0)] < Ckt

We prove now that the inequality is uniform in the parameter K. Assume
this is not the case i.e.

(A.12) sup HHK”(LH) = 400,
K>1 2
where
Hk(t,0
VBl ogy = sup GO
2 te(0,1],0e8d-1 t 2

There exist a sequence ((tx,0x))x>1 in (0,1] x S71, such that
Hyk(tk,0

lim | K(”Iil, Kl _

tT

K

(A.13)

K—oo

By compactness, one can assume that (tx) (resp. (0x)) converges to some
limit to € [0,1] (resp. oo € S71). There are two cases, either to, > 0 or
to = 0. The first case is not possible. Indeed, h is bounded by assumption,
whence Hg is bounded by a constant independent of K and so (A.13)
contradicts o, > 0. The remaining case to, = 0 is more tricky. Let
Gi(z,0) = M
t’ [ Hrll(ng)

for any z € (0,1/tk]. From the equation satisfied by each hy, we have

0..Gx(z.0) — M=V =3) G(2,0) | 2 BeGrc(2,0)

4 z2 K a2 sin?(ztk)
2 4

== ZRk(Ztk)Pk(e)-
b 1l g2y 1

Let m = d — 1 and assume temporarily that there exists C' > 0 such that
for every (¢,0) € (0,1) x S,

(A.14) [ATR(t,60)] < Ot 7.

Then, working as previously

1

| Ry (t)] = I

(—=Ag)™R(t, )Py, dVga—1| < CA; ™ T
d k
Sd—1
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and we deduce that

) K
tK K—oco

Rk(ztk)Pk((g) < 23 — 0,

c— K
ntl =~

7 HHKH(HTH) k=1 HHK”("TH)

uniformly for z in a compact subset of R*. By standard elliptic regularity,

it follows that the sequence (G ) converges to G solution on (0, 00) x S?~1

of the PDE

(n—1)(n—3)G(z,0) n ApG(z,0)

9,.G(z,0) — 57 o

4 22 o222

Now, using the same argument we have

G= i GkPk
k=0

where again Gy (z) = [ga—1 G(2,0)Py(0)dVga-1. Then for each k > 0, we
have Gi(t) = At"+ + Bt"- where 4 are the same constants as before.
But, the function Gy, defined on (0,00), is bounded. This implies that
A = B =0 and then G = 0. But by its definition, we know that

G(1,0%) =1,

which gives a contradiction: the hypothesis (A.12) is not valid. We conclude
that uniformly in (0,1] x S9~1, we have

(A.15) Ih(t,0)] < Ct™= .

The above estimate was achieved using the extra assumption (A.14). To re-
move this assumption, we can argue by approximation by taking a standard
mollifying family p. € C°(R) and setting R.(t,0) = t"= p. [t = R(-,))]
(where R is first extended by 0 for ¢ < 0). Then, (A.14) holds for R, with
a constant C¢ which may depend e. By definition of R., there exists a con-
stant C' > 0 independent of € such that |R.(t,8)] < Ct"5. If h. denotes

the (unique) associated solution of (A.11) with zero mean, it follows that

|he(t,0)] < Ct"7 since the maximum principle can be used with the su-
persolution h = at™= +bt"* and suitable constants a,b. We may pass to
the limit as e — 0 onwards in (A.15) and the assumption (A.14) is thus
removed.

It remains to prove the gradient estimates. Fix ¢ > 0 and for z € (1/4,2),
6 € S?71, let this time G(z,6) = h(tz,0) and S(z,0) = R(tz,0) so that

(n—l)(n—S)G+ t?

0..G — St 5=
4 22 a?sin®(tz)

AgG =128 in (1/4,2) x 8?71
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Note that the coefficients of the elliptic operator on the left-hand side are
bounded in C?-norm by a constant independent of ¢ so that, by standard
elliptic regularity,
0G| + VoG] < C(t2||SHL°°((1/4,2)><SL‘*1) + HG||L°°((1/4,2)><S‘1*1))
<Ot in (1/2,3/2) x 841,
for some constant C' > 0 independent of t. The desired estimates on h

follow by applying the above estimate at z = 1. O

LEMMA A.7. — Whenever (a,b) € Opg (defined in (1.18)), the solution
v of the equation (3.22) has a bounded carré du champ operator

ITs(v)[loo < +o0.

Proof. — We use the chart and notation introduced in (A.7). We have
to prove that v, solution of (3.22) has a bounded carré du champ, that is
ITs(v)]loo < +oc. Letting ¢(t) = (n — 1)log(sin(t)) and h = e%v, equa-
tion (3.22) becomes

(A.16) Oyh —

/!
(20 +c AthR,

where

)
(-

6(2 )
prt).
a’A
This transformation allows us to deal with a simpler PDE. We know that

v = e~ %h is bounded and positive. So, for some constant C' (the value of
which is allowed to change from line to line),

0< h<Ce? = C’sin(t)%.

Thus |R| < C'sin(t)“> . And then, from the definition of h, the following
inequality,

2 0
c TY(h)
A7 Oh— —h| + ——5— <Csin(t)""
( ) ( ‘ 2 ) a?sin?(t) sin(t)
is equivalent to |T's(v)|leo < +o00.

We know that h is a smooth function on (0,7) x S%~1. So, to prove
the previous inequality, it is enough to work around t = 0 and ¢t = w. By
symmetry, it suffices to treat the case t = 0.

By definition of ¢, equation (A.16) can be written as follow

(n—1)(n-3) h N 1 (n—1)(n—3)

Agh =R —

Ouh
“ 4 sin?(t)  a?sin?(t) 4

h,
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or, since we are working around ¢ = 0, we have

(n—1)(n-3)h 1 B
(AlS) atth — 4 ﬁ a2 sin2 (t) Aeh = R27
with
B (n—1)(n—-23) (n—1)(n—-23) 1 1
RQ—R— 4 h+ 4 (51n2(t)_t2>h7

n—1

which satisfies again |Rg| < Ct 2
Let us write h = h — hg + ho where hg = [g4-, hdVga-1. Then, since hg
doesn’t depend on 6,

’ 2 0
(ath - Zh) L W

a?sin?(t)
/ 2 / 2 0
c I F (h - hO)
< . _C . — —_—
< 2(315(}1 ho) 5 (h h0)> + 2(325}10 2 h0> * a? sin?(t)

Then Lemma A.6 insures that |h — hg| < ct's, |h' — hy| < Ct"z and

I%(h — hg) = T?(h) < Ct"*!. Hence,

/

2
2(at(h — o) = S(h - h0>) L oMb ho)

a?sin?(t)
Now, using the same method as in the proof of Lemma A.6, one can check

that ho(t) = At"T + O(t"= ) and b} = At"=" + O(t"=" ). Thus, we have

<ot

C/ n—1
8th() — aho = O(t 2 )
that is
c 2
(atho - 2h0) <ot h

Finally, inequality (A.17) is satisfied, which concludes the proof of Lem-
ma A.7. d

Remark A.8. — It is interesting to see that with this method, one can
check that the function v has a bounded carré du champ if and only of
(a, b) € Ops.

We end this section with the following weaker estimate on higher deriva-
tives of v.

LEMMA A.9. — Assume that n > 4 and (a,b) € Opg. Let f € D(Ls),
f > 0. Then, in the variables (t,0) € (0,7) x S~ introduced in (A.7),

/0” /sm S (f)dVias
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Proof. — Let ((x)ren € C(0,7) denote a standard cut-off function
such that 0 < ( < 1, =0in (0, 1/k)U(r—1/k, ), { = 1in (2/k, m—2/k)
and || < 2k, |¢)/| < 2k? and fy = f(k, so that fr — f in D(Lsg). For
h € C R\ {0}) and t € (0,7), set Y2(h)(t) = [gu—: T'E(h)dVga-1. Since
(a,b) € Opg, 2 is a nonnegative quadratic form (see Proposition 3.4) and
so the Cauchy—Schwarz inequality holds:

a7 =250 2| <l o).

Thus, letting dy; = - sin®~*(t)dt,

Z
J
= /F%(f/c — fi)dus = /(Ls(fk — f1))’dus.

Hence, (v2(fx)'/?) is a Cauchy sequence in L?(du,) and so (y2(fx)) con-
verges to some function « in L!(du;). In addition, for fixed ¢, there exists
K = K; such that for all K > K and 0 € S9!, f,(t,0) = f(t,0), whence
Yo (fi)() = Y2(f)(t) for all t € (0, 7). Hence, v = y2(f) and the lemma
follows. O

) =220 i < [ e = )an

0

A.3. List of constants and regions of parameters

We recall in this section the definition of the parameters and also some
useful properties. Recall that d € N is the topological dimension of the con-
sidered spaces, and that we assume that d > 3. Recall from the introduction
the definition of the parameter range

©={(a,b) eR*, a<b<a+1,a<a},

where a. = (d — 2)/2. This is the set of parameters (a,b) where the CKN
inequality (1.1) holds for all test functions v € C2°(R%) which need not
vanish near the origin (recall that the limit case b = a+1 has been removed
for simplicity). We also defined the number « =1+ a — %b, that is

~ (ac—a)(a+1-0)
N a.—a+b '
Clearly o > 0, for any (a,b) € O, including the limiting case a = b =0
for which o = 1. For any (a,b) € O, the exponent p is given by

B d <9t = 2d
p_ac—a—i—b T d-2
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and

that is
db—a) d
l4a—b 14+a-10

We always have n > d, and we call n the intrinsic dimension of the consi-

n=d+

dered model spaces. From a straightforward computation, we have
(A.19) d—na—pb=0

The constant Bpgz = a?(2 — n) + d — 2 which appears throughout the
paper takes the following form with respect to a and b:
(ac —a)*>(1+a—b)
a.+b—a

Bpaz = —2 + 2a,

Let us also recall the definition of the Felli-Schneider region: for a < 0,
d(a. — a)
2¢/(ac —a)2+d—1

brs(a) = +a — ac,

and
Ops = {(a,b) € O, b > bpg(a) if a <0}

Let us prove Lemma 1.5, which simplifies the expression of the Felli—
Schneider region and shows its relation to our region

O©paz={(a,b)€0, Bpaz >0}.

Proof of Lemma 1.5. — Since

n—d d—1
. =(n=2)-0a?
Boaz + — =(n )< ! +n1>,

we have

{(mb)e@, ‘BDGz+n_d>O}:{(a,b)€6, a? < d_l}.

n—1

The fact that

-1
@Fsz{(a,b)e@, a? < }

is more delicate and is proved in [10, Section 3].
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Remark A.10. — The normalizing constant Z defined in Theorem 1.3 is
finite. Indeed, using (A.19) and the change of variable |z| = €, we find

(1]

(2]

(5]
[6]

[7]

[12]
[13]
[14]

[15]

2 n
Z:/dus :/ <) 2| =P dx
ra\{o} \ 1 + [z
2 n
:/ (a a) ‘Jj|_dd$
R4\ {0} \ ||~ + ||

= |Sd_1|/ cosh(at)™"dt < oo.
R
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