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METRIC UPPER BOUNDS FOR STEKLOV AND
LAPLACE EIGENVALUES

by Bruno COLBOIS & Alexandre GIROUARD (*)

Abstract. — We prove two upper bounds for the Steklov eigenvalues of a com-
pact Riemannian manifold with boundary. The first involves the volume of the
manifold and of its boundary, as well as packing and volume growth constants of
the boundary and its distortion. Its proof is based on metric-measure space tech-
niques. The second bound is in terms of the extrinsic diameter of the boundary
and its injectivity radius. It is obtained from a concentration inequality, akin to
Gromov–Milman concentration for closed manifolds. By applying these bounds to
cylinders over closed manifolds, we obtain bounds for eigenvalues of the Laplace
operator, in the spirit of Berger–Croke. For a family of manifolds that has uni-
formly bounded volume and boundary of fixed intrinsic geometry, we deduce that
a large first nonzero Steklov eigenvalue implies that each boundary component is
contained in a ball of small extrinsic radius.

Résumé. — Nous obtenons deux bornes supérieures pour les valeurs propres de
Steklov d’une variété riemannienne compacte à bord. La première fait intervenir le
volume de la variété et de son bord, des constantes d’empilement et de croissance du
bord ainsi que sa distorsion. La preuve utilise une technique provenant de la théorie
des espaces métriques mesurés. La deuxième borne dépend du diamètre extrinsèque
du bord et de son rayon d’injectivité et découle d’une inégalité de concentration
à la Gromov–Milman. En appliquant ces bornes à des cylindres, on obtient des
bornes pour les valeurs propres du laplacien sur des variétés fermées, semblables à
celles de Berger–Croke. Pour des variétés dont le volume est uniformément borné et
dont le bord est de géométrie intrinsèque prescrite, nous déduisons qu’une grande
valeur propre de Steklov implique que chaque composante du bord est contenue
dans une boule extrinsèque de petit rayon.
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1. Introduction

Let M be a smooth connected compact Riemannian manifold of dimen-
sion n + 1 ⩾ 2, with boundary Σ = ∂M . The Dirichlet-to-Neumann opera-
tor D : C∞(Σ) → C∞(Σ) is defined by Df = ∂ν f̂ , where ν is the outward
normal along the boundary Σ and where the function f̂ ∈ C∞(M) is the
unique harmonic extension of f to the interior of M . The eigenvalues of D
are known as Steklov eigenvalues of M . They form an unbounded sequence
0 = σ0 ⩽ σ1 ⩽ σ2 ⩽ · · · → ∞, where as usual each eigenvalue is repeated
according to its multiplicity. The interplay of these eigenvalues with the
geometry of M has been an active area of investigation in recent years.
See [11, 21] for surveys and [2, 10, 13, 16, 19, 20, 26] for recent relevant
results.

In this paper we study upper bounds for Steklov eigenvalues in terms
of geometric quantities that are metric in nature: packing and growth
constants, distortion between the intrinsic and extrinsic distances on the
boundary, as well as diameters and injectivity radius of the boundary com-
ponents. A recurring feature is that the bounds are linked to some com-
parison between intrinsic and extrinsic geometry of the boundary. They do
not involve the curvature. See [14, 23, 27] for early use of similar techniques
and [6, 7, 10] for some more recent results in the same spirit. See [12, 25, 28]
for some bounds depending on curvature assumptions. Upper bounds for
the eigenvalues λk of the Laplacian on a closed Riemannian manifold will
also be obtained. They are in the spirit of [1, 17, 26], and of [14, 23].

Notation

We use two distances on the boundary Σ. The first one is the geodesic
distance dΣ. The second distance is induced on Σ from the geodesic dis-
tance dM in M . In general, the letters M and Σ will be used to specify
which distance is involved. For instance, for x ∈ M we define the ball

BM (x, r) :=
{

y ∈ M : dM (x, y) < r
}

,

and for x ∈ Σ,
BΣ(x, r) :=

{
y ∈ Σ : dΣ(x, y) < r

}
.

Similarly, we write |O|M for the Riemannian measure of a Borel set O ⊂ M ,
while |O|Σ is the Riemannian measure of O ∩ Σ.
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1.1. Upper bound in terms of metric invariants

For x, y ∈ Σ, we have dM (x, y) ⩽ dΣ(x, y), where the convention is that
for x and y in different connected components of Σ, we set dΣ(x, y) =
+∞. Let Σ1, . . . , Σb be the connected components of the boundary Σ. The
distortion of Σj in M is the number Λj ∈ [1, ∞) defined by

(1.1) Λj := inf
{

c ⩾ 1 : dΣ(x, y) ⩽ c dM (x, y), ∀ x, y ∈ Σj

}
.

The distortion of Σ in M is

Λ := max{Λ1, . . . , Λb}.

The distortion is a measure of how much the geodesic distance dΣ differs
from the induced distance dM

∣∣
Σ. To state our first main result we also

need two more geometric invariants. It follows from the compactness of Σ
that there exists a packing constant NM ∈ N for (Σ, dM ) and a packing
constant NΣ for (Σ, dΣ), which satisfy the following properties:

• for each r > 0 and each x ∈ Σ, the extrinsic ball BM (x, r) ∩ Σ
can be covered by NM extrinsic balls of radius r/2 centered at
points x1, . . . , xNM

∈ Σ:

BM (x, r) ∩ Σ ⊂
NM⋃
i=1

BM (xi, r/2);

• for each r > 0 and each x ∈ Σ, the intrinsic ball BΣ(x, r) can
be covered by NΣ intrinsic balls of radius r/2 centered at points
x1, . . . , xNΣ ∈ Σ:

BΣ(x, r) ⊂
NΣ⋃
i=1

BΣ(xi, r/2).

There also exists a growth constant Γ > 1 for the metric-measure space(
Σ, dΣ, | · |Σ

)
, which satisfies the following property: for each x ∈ Σ and

each r > 0,
∣∣BΣ(x, r)

∣∣
Σ ⩽ Γrn.

The first main result of this paper is a generalization of [10, Theorem 1.1],
where M was a submanifold in some euclidean space.

Theorem 1.1. — Let M be a smooth connected compact Riemannian
manifold of dimension n+1 with boundary Σ. The following holds for each
k ⩾ 1:

(1.2) σk ⩽ 214b2N3
M ΓΛ2 |M |

|Σ| n+2
n

k2/n.

TOME 0 (0), FASCICULE 0



4 Bruno COLBOIS & Alexandre GIROUARD

The exponent 2/n on k is optimal: it cannot be replaced by any smaller
number.

The proof of Theorem 1.1 will be presented in Section 3, where it will
be deduced from a slightly more general statement (Theorem 3.1). The
optimality of the exponent is discussed in Remark 1.5.

The volume |M |, the distortion Λ and the packing constant NM depend
on the geometry of M in its interior, while the constants b, Γ, |Σ| only
depend on the intrinsic geometry of the boundary Σ. In fact, the extrinsic
packing constant NM can be expressed in terms of the number of connected
components of Σ, the distortion and of the intrinsic packing constant NΣ
of (Σ, dΣ):

NM = bN
log2(2Λ)
Σ .

This will be proved in Lemma 3.3. This leads to the following.

Corollary 1.2. — Under the hypothesis of Theorem 1.1, the following
holds for each k ⩾ 1:

(1.3) σk ⩽ 214b5N
3 log2(2Λ)
Σ ΓΛ2 |M |

|Σ| n+2
n

k2/n.

In (1.3), apart from σk, only the distortion Λ and the volume of M

depend on the geometry of M . All other geometric quantities are intrinsic
to the boundary Σ. The importance of each geometric constant appearing
in (1.3) will be discussed in Section 3.1.

While (1.3) is somewhat cumbersome, its strength is that its geometric
dependance is completely explicit, with clear distinction between extrinsic
and intrinsic features. The reader is invited to compare with [10, Theo-
rem 1.1]. Note also that none of the geometric invariants appearing in (1.2)
is superfluous. This will be discussed in Section 3.1.

Remark 1.3. — One can rewrite (1.2) in the following scale-invariant
fashion:

(1.4) σk|Σ|1/n ⩽
214

I(M) n+1
n

b2N3
M ΓΛ2k2/n,

where I(M) = |Σ|/|M |
n

n+1 is the isoperimetric ratio of M . One should
compare this with [6, Theorem 1.3], which states that

(1.5) σk|Σ|1/n ⩽
γ(n)

I(M) n−1
n

k2/(n+1),

for domains M in a complete space that is conformally equivalent to a com-
plete manifold with non-negative Ricci curvature. Our new inequality (1.4)

ANNALES DE L’INSTITUT FOURIER
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applies to a much larger class of manifolds, since no curvature assumption
is required.

There is a close link between the Steklov eigenvalues of a manifold M

and the Laplace eigenvalues of its boundary ∂M . See [12]. In the situation
where M is a cylinder this link is explicit and can be used to obtain new
bounds on Laplace eigenvalues from known results on Steklov eigenvalues.
Given a compact connected Riemannian manifold Σ, the eigenvalues of the
Laplace operator ∆ : C∞(Σ) −→ C∞(Σ) are written 0 = λ0 < λ1 ⩽ λ2 ⩽
· · · → ∞.

Corollary 1.4. — Let Σ be a compact connected Riemannian mani-
fold of dimension n. Then,

(1.6) λk|Σ|2/n ⩽ 216ΓN3
Σk2/n,

where NΣ is a packing constant of (Σ, dΣ).

This result is similar in spirit to those presented in [23] and [14]. This is
not surprising since the proof of Theorem 1.1 is based on a simplification
of the main technical tool from [14], presented here as Lemma 3.2. One
should compare this with [23, Remark 5.10].

Remark 1.5. — It follows from Weyl’s law for λk that the power 2/n on
k is optimal in (1.6), and therefore also in (1.2).

1.2. A Berger–Croke type inequality for Steklov and Laplace
eigenvalues

Let M be a compact manifold with boundary Σ. Let Σ1, . . . , Σb be the
connected components of Σ. The extrinsic diameter of a connected compo-
nent Σj is defined by

diamM (Σj) := sup
{

dM (x, y) : x, y ∈ Σj

}
.

The main result of this section is the following. Recall that the injectivity
radius of a closed Riemannian manifold S is the largest number r > 0 such
that the exponential map expp : B(0, r) ⊂ TpS → S is a diffeomorphism
for all points p ∈ S.

Theorem 1.6. — Let Σj be a connected component of the boundary Σ.
Then,

(1.7) σk ⩽ K(n) |M |
diamM (Σj)n+2 ×

(
1 +

(
diamM (Σj)

inj(Σj)

)n)
kn+1,

TOME 0 (0), FASCICULE 0



6 Bruno COLBOIS & Alexandre GIROUARD

where K(n) is a dimensional constant and inj(Σj) is the injectivity radius
of Σj .

This theorem will be obtained as a corollary from the slightly more gen-
eral Theorem 2.4. The proof is based on a simple concentration bound which
is adapted from the work of Gromov and Milman [24]. See Lemma 2.1 be-
low.

Remark 1.7. — The diameter of M itself does not appear in (1.7). This
is not surprising, since one can modify M away from the boundary so as
to obtain arbitrarily large diameter

sup
{

dM (x, y) : x, y ∈ M
}

,

without significant change to σk, the extrinsic diameter diamM (Σ) and the
volume |M |. This can be performed for instance by replacing two small
balls in M with a long thin tube joining them. See [18, Theorem 1.2].

Remark 1.8. — The presence of the injectivity radius in the denominator
of (1.7) is essential. Indeed, let (M, g) be a compact Riemannian manifold
of dimension n ⩾ 3 and let C ⊂ M be a smooth embedded closed curve.
For ε > 0 small enough,

Ωε :=
{

x ∈ M : dM (x, C) > ε
}

is a connected domain with smooth boundary. In [2], Jade Brisson proved
that σ1(Ωε) ε→0−−−→ ∞. Because |Ωε| and diamM (∂Ωε) are uniformly bounded
as ε → 0, the injectivity radius could not be removed from (1.7).

For a family of manifolds that has uniformly bounded volume and bound-
ary of fixed intrinsic geometry, we deduce that a large Steklov eigenvalue σk

(for a fixed index k) implies that each boundary component is contained
in a ball of small extrinsic radius.

Corollary 1.9. — For j ∈ {1, . . . , b}, consider the intrinsic constant

C(Σj) := K(n)
1

n+2

(
1 +

(
diamΣ(Σj)

inj(Σj)

)n) 1
n+2

.

Let

γj = C(Σj)
(

|M |
σk

) 1
n+2

k
n+1
n+2 .

Then there exists xj ∈ Σj such that Σj ⊂ BM (xj , γj).

This behaviour should be compared with [15, Theorem 3], which es-
sentially implies the following: if the first nonzero eigenvalue λ1 of the

ANNALES DE L’INSTITUT FOURIER
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Laplacian on a closed Riemannian manifold M is large with respect to
its packing constant, then the Riemannian measure of M is concentrated
near one point. In contrast, if the first nonzero Steklov eigenvalue σ1 is
large, then Corollary 1.9 only claims that each connected component of
the boundary is contained in a small ball, but there is nothing preventing
these small balls from being far apart. This behaviour is meaningful and
there are indeed examples where σ1 is large while the boundary components
remain far from each other. The easiest example is obtained by removing
small balls from a closed manifold. This follows from [3, Theorem 1.5].

Berger [1] proved that on any closed Riemannian manifold Σ which ad-
mits an isometric involution without fixed points, the first nonzero eigen-
value of the Laplacian satisfies

(1.8) λ1 ⩽ K(n) |Σ|
inj(Σ)n+2 .

This result was generalized by Croke, who proved in [17] that any closed
Riemannian manifold satisfies the following for each k ∈ N:

(1.9) λk ⩽ K(n) |Σ|2

conv(Σ)2n+2 k2n.

Here conv(Σ) is the convexity radius of Σ: the largest number r > 0 such
that all geodesic balls B(p, r) ⊂ Σ are geodesically convex. One should also
see the recent paper [26] by Kokarev. Theorem 2.4 leads to the following
improvement of the Berger and Croke inequalities.

Corollary 1.10. — Let Σ be a closed Riemannian manifold. Then for
each k ∈ N,

(1.10) λk diam(Σ)2 ⩽ K(n) |Σ|
inj(Σ)n

kn+1.

Inequality (1.10) improves on Berger and Croke in several ways. For
instance, the exponent on k is better. Perhaps more interestingly, because
conv(Σ) ⩽ inj(Σ) ⩽ diam(Σ), inequality (1.10) allows a finer control for
manifolds that have small injectivity radius and large diameter, as the
following example shows.

Example 1.11. — The first nonzero Laplace eigenvalue of ΣL = S1
L×Sn−1

behaves as λ1 ∼ 1/L2 as L → +∞. Moreover, the volume of ΣL is |ΣL| =
L|Sn−1|, its injectivity and convexity radii are both equal to π. If L > 0 is
large enough, the diameter of Σ is of order L. Whence, the upper bound
of Berger and Croke reads

λ1 ⩽ K(n)L|Sn−1|/πn+2 and λ1 ⩽ K(n)L2|Sn−1|2/π2n+2.

TOME 0 (0), FASCICULE 0



8 Bruno COLBOIS & Alexandre GIROUARD

Both upper bounds diverge as L → +∞. On the other hand, our bound (1.10)
gives the much more accurate

λ1 ⩽ K(n) |Sn−1|
Lπn

L→∞−−−−→ 0.

Plan of the paper

In Section 2 we present a concentration inequality akin to that of Gro-
mov–Milman [24, Theorem 4.1], which we use to prove Theorem 1.6. To
prove Theorem 1.1 some tools from metric geometry will then be used in
Section 3. In particular, Lemma 3.3 links the packing constant of (Σ, dM )
and of (Σ, dΣ).

Acknowledgments

The authors would like to thank Iosif Polterovich and Jean Lagacé for
useful comments on a preliminary version of this paper. The authors would
like to thank the two referees for their numerous comments and suggestions,
which helped improve the presentation.

2. Upper bound and measure concentration for σk

The proof of Theorem 2.4 depends on the min-max characterization of
Steklov eigenvalues:

(2.1) σj = min
E∈Hj

max
0 ̸=u∈E

RM (u),

where Hj is the set of all (j+1)-dimensional subspaces in the Sobolev space
H1(M), and where

RM (u) =
∫

M
|∇u|2dVM∫
Σ u2 dVΣ

is the Rayleigh–Steklov quotient of u. We start with a simple bound which
is adapted from the work of Gromov and Milman [24].

Lemma 2.1. — Let Ai ⊂ Σ be disjoint measurable subsets, for i =
1, . . . , k + 1, with positive measures µi := |Ai|Σ > 0. Suppose these subsets
are quantitatively separated:

ρ := 1
2 min

i̸=j
dM (Ai, Aj) > 0.

ANNALES DE L’INSTITUT FOURIER
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Then
σk ⩽

|M |
ρ2 min µi

.

Proof. — We use standard trial functions fi that are supported in the
pairwise-disjoint neighborhoods Aρ

i =
{

x ∈ M : dM (x, Ai) ⩽ ρ
}

and have
value 1 on Ai. These are defined by

fi(x) =
{

1 − 1
ρ dM (x, Ai) in Aρ

i ,

0 elsewhere.

Observe that ∥∇fi∥2 = |Aρ
i

|M

ρ2 and ∥fi∥2
Σ ⩾ µi since fi ≡ 1 on Aρ

i , so that

R(fi) ⩽
|Aρ

i |M
ρ2µi

⩽
|M |

ρ2 mini µi
. □

Remark 2.2. — If one uses Ai for i = 1, 2, . . . , 2k and supposes that
|Aρ

1|M ⩽ |Aρ
2|M ⩽ · · · ⩽ |Aρ

2k+2|M , then |Aρ
k+1|M ⩽ |M |/k and one gets

σk ⩽
|M |

kρ2 min µi
.

This trick is often useful in improving the exponent on k for bounds that
are obtained using trial functions with disjoint supports. This will be used
in the proof of Theorem 2.4 below.

Lemma 2.1 implies a concentration phenomenon when σ1 is large in
comparison to the other constants involved.

Proposition 2.3. — Let M be a compact manifold with boundary Σ.
Let A ⊂ Σ be a subset of positive measure µ = |A|Σ > 0. Let ρ > 0. If
σ1 ⩾ |M |

ρ2µ , then

|A2ρ|Σ ⩾ |Σ| − |M |
σ1ρ2 .

This is particularly interesting for families of manifolds Mε such that
σ1 → +∞, while |Σε| and |Mε| are independent of ε. In that case, the ex-
trinsic neighborhood A2ρ contains all of the boundary in the limit, however
small the number ρ is. This shows that the full boundary concentrates in
the measure sense in the limit.

Proof of Proposition 2.3. — If A2ρ = Σ, the statement is trivially true.
Otherwise, define B = Σ \ A2ρ, so that dM (A, B) = 2ρ as suggested by the
notation. It follows from Lemma 2.1 that

σ1 ⩽
|M |

ρ2 min
{

µ, |Σ| − |A2ρ|Σ
} .

TOME 0 (0), FASCICULE 0



10 Bruno COLBOIS & Alexandre GIROUARD

Because σ1 is large, that is σ1 > |M |
ρ2µ , one has

min
{

µ, |Σ| − |A2ρ|Σ
}

= |Σ| − |A2ρ|Σ
so that

σ1 ⩽
|M |

ρ2
(
|Σ| − |A2ρ|Σ

) .

The proof is completed by reorganizing this inequality. □

In order to prove Theorem 1.6, we will apply Lemma 2.1 to well-chosen
balls in the boundary component Σj and obtain the following slightly more
general result.

Theorem 2.4. — Let Σj be a connected component of the boundary Σ.
Then,

(2.2) σk ⩽ K(n) |M |
diamM (Σj)2 × 1

min
{

diamM (Σj)n, inj(Σj)n
}kn+1,

where K(n) is a dimensional constant and inj(Σj) is the injectivity radius
of Σj .

Theorem 1.6 follows since
1

min
{

diamM (Σj)n, inj(Σj)n
} = 1

diamM (Σj)n
max

{
1,

diamM (Σj)n

inj(Σj)n

}
⩽

1
diamM (Σj)n

(
1 + diamM (Σj)n

inj(Σj)n

)
.

Proof of Theorem 2.4. — Let δ = diamM (Σj). Consider x1, x2, . . . , x2k ∈
Σj such that

dM (xp, xq) ⩾ δ

2k
, ∀ p ̸= q.

To see that this is possible, consider points x1, x2k such that

dM (x1, x2k) = diamM (Σj)

and use the concentric balls BM

(
x1, pδ

2k

)
with p = 1, 2, . . . , 2k. Because Σj

is connected, it intersects each sphere ∂BM

(
x1, iδ

2k

)
. Any sequence of points

xp ∈ ∂BM

(
x1, pδ

2k

)
will work.

Now, use Lemma 2.1 and its proof with Ai = BM

(
xi,

δ
8k

)
∩ Σi, and

observe that the triangle inequality gives ρ ⩾ δ/4k, where ρ is defined in
Lemma 2.1. Hence, the Rayleigh quotients of the standard functions are
controlled by

R(fi) ⩽
|Aρ

i |M(
δ

4k

)2∣∣BM

(
xi,

δ
8k

)∣∣
Σ

⩽
16|M |

δ2
∣∣BM

(
xi,

δ
8k

)∣∣
Σ

k2.

ANNALES DE L’INSTITUT FOURIER
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Because the 2k sets Aρ
i are disjoint, we can reorder them to ensure that

|Aρ
i |M ⩽ |M |/k for i = 1, 2, . . . , k + 1. This leads to the improved bound

R(fi) ⩽
16|M |

δ2
∣∣BM

(
xi,

δ
8k

)∣∣
Σ

k, for i = 1, 2, . . . , k + 1.

The main task is now to control the intrinsic volume
∣∣BM (xi, δ/8k)

∣∣
Σ from

below. We split this in two cases.
Case 1. — If δ/8k ⩾ inj(Σj)/4 then, using that extrinsic balls are big-

ger than intrinsic balls of the same radius, Croke’s inequality [17, Proposi-
tion 14] gives∣∣BM (xi, δ/8k)

∣∣
Σ ⩾

∣∣BΣ(xi, δ/8k)
∣∣
Σ ⩾

∣∣BΣ(xi, inj(Σj)/4)
∣∣
Σ ⩾ c(n) inj(Σj)n

and
R(fi) ⩽ c(n) |M |

δ2 inj(Σj)n
k.

Case 2. — If δ/8k < inj(Σj) then Croke’s inequality gives∣∣BM (xi, δ/8k)
∣∣
Σ ⩾

∣∣BΣ(xi, δ/8k)
∣∣
Σ ⩾ c(n)δn/kn

and
R(fi) ⩽ c(n) |M |

δn+2 kn+1.

Combining we get

R(fi) ⩽ c(n) |M |
diamM (Σj)2 × 1

min
{

diamM (Σj)n, inj(Σj)n
}kn+1.

The result now follows from the min-max characterization of σk. □

Let us now prove the two corollaries that were stated in the introduction.
Proof of Corollary 1.9. — Because diamM (Σj) ⩽ diamΣ(Σj), it follows

from Theorem 1.6 that

σk ⩽ K(n) |M |
diamM (Σj)n+2 ×

(
1 +

(
diamΣ(Σj)

inj(Σj)

)n)
kn+1

= C(Σj)n+2 |M |
diamM (Σj)n+2 kn+1,

where C(Σj) depends only on the intrinsic geometry of Σj . This implies

diamM (Σj) ⩽ C(Σj)
(

|M |
σk

) 1
n+2

k
n+1
n+2 . □

Proof of Corollary 1.10. — The Steklov eigenvalues of the cylinder M =
[0, L] × Σ have been computed in [6, Lemma 6.1]: for L > 0 small enough,
σk =

√
λk tanh(

√
λkL). Notice that

diamM

(
Σ × {0}

)
= diam(Σ),

TOME 0 (0), FASCICULE 0



12 Bruno COLBOIS & Alexandre GIROUARD

and inj(Σ) ⩽ diam(Σ). It follows from (2.2) that√
λk tanh(

√
λkL) ⩽ K(n) |M |

diam(Σ)2 × 1
min

{
diam(Σ)n, inj(Σ)n

}kn+1

= K(n) |Σ|L
diam(Σ)2 inj(Σ)n

kn+1.

Dividing by L on each side and taking the limit as L → 0 completes the
proof, since for each c > 0 the following holds:

lim
x→0

c tanh(cx)
x

= c2. □

3. Upper bounds in terms of distortion, packing and
growth

The goal of this section is to prove Theorem 1.1. We will prove the
following slightly more general result.

Theorem 3.1. — Let M be a smooth connected compact Riemannian
manifold of dimension n + 1 with boundary Σ. Let Σ0 be a connected
component of the boundary. Let Γ, NM be growth and extrinsic packing
constants for Σ0. Let Λ be the distortion of Σ0 in M . Then, the following
holds for each k ⩾ 1:

(3.1) σk ⩽ 214N3
M ΓΛ2 |M |

|Σ0| n+2
n

k2/n.

Theorem 1.1 follows by taking Σ0 to be the connected component of the
boundary with the largest volume and observing that in this case |Σ0| ⩾
|Σ|/b.

The strategy is similar to the one used to prove [10, Theorem 1.1]. It is
based on the following result, which is a simplification of [7, Lemma 2.1].

Lemma 3.2. — Let (X, d, µ) be a complete, locally compact metric mea-
sure space, where µ is a non-atomic finite measure. Assume that for all
r > 0, there exists an integer N such that each ball of radius r can be
covered by N balls of radius r/2. Let K > 0. If there exists a radius r > 0
such that, for each x ∈ X

µ
(
B(x, r)

)
⩽

µ(X)
4N2K

,

then, there exist µ-measurable subsets A1, . . . , AK of X such that, ∀ i ⩽ K,
µ(Ai) ⩾ µ(X)

2NK and, for i ̸= j, d(Ai, Aj) ⩾ 3r.
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See [10, Lemma 4.1] and the following paragraph for a discussion of
Lemma 3.2.

Proof of Theorem 3.1. — We apply Lemma 3.2 to the metric measure
space (X, d, µ) where X = M , and d = dM is the extrinsic distance. The
measure µ is associated to the boundary component Σ0: for a Borel sub-
set O of M , we take

µ(O) = |Σ0 ∩ O|Σ.

In particular, µ(M) is the usual volume |Σ0|Σ of this component. In order
to estimate σk, we first construct (2k + 2) trial functions, so we will take
K = 2k+2. The constant N in Lemma 3.2 is N = NM for Σ0. Let Λ be the
distortion of Σ0 in M , so that dΣ(x, y) ⩽ Λ dM (x, y), for each x, y ∈ Σ0.
For each x ∈ Σ0, this implies{

y ∈ Σ0 : dM (y, x) ⩽ r
}

⊂
{

y ∈ Σ0 : dΣ(y, x) ⩽ Λr
}

.

In other words, BM (x, r) ∩ Σ0 ⊂ BΣ(x, Λr). Recall that Γ is the growth
constant of Σ0. That is, for each x ∈ Σ0 and each r > 0,

µ
(
BΣ(x, r)

)
⩽ Γrn.

This implies that for all r > 0,

µ
(
BM (x, r)

)
⩽ ΓΛnrn.

Any r <
( |Σ0|

4N2
M

ΛnΓK

) 1
n is such that

µ
(
BM (x, r)

)
⩽

|Σ0|
4N2

M K
.

It follows from Lemma 3.2 that there are 2(k + 1) measurable subsets
Ai ⊂ Σ0, i = 1, . . . , 2(k + 1), that are 3r-separated for dM and satisfy

µ(Ai) ⩾
|Σ0|

4NM (2k + 2) ⩾
|Σ0|

16NM k
.

Taking

r =
(

|Σ0|
C2K

) 1
n

,

with C2 = 8ΓΛnN2
M is enough to ensure that

r <

(
|Σ0|

4N2
M ΓΛnK

) 1
n

.

As in the proof of Lemma 2.1, we use standard trial functions fi that
are supported in the pairwise-disjoint neighborhoods Ar

i =
{

x ∈ M :

TOME 0 (0), FASCICULE 0
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dM (x, Ai) ⩽ r
}

and have value 1 on Ai. The Rayleigh–Steklov quotient
of fi satisfies

R(fi) =
∫

M
|∇fi|2∫
Σ f2

i

⩽
1
r2

|Ar
i |M

|Ai|Σ
.

As we dispose from 2(k + 1) subsets Ai, with Ar
i and Ar

j disjoint if i ̸= j,
k + 1 of them, say A1, . . . , Ak+1 satisfy

|Ar
i | ⩽ |M |

k + 1 ⩽
|M |
k

.

So, for the function fi associated to Ai, i = 1, . . . , k + 1, we have:

R(fi) ⩽
|M |
k

(
C2K

|Σ0|

) 2
n 16NM k

|Σ0|
.

Using that K = 2(k + 1) ⩽ 4k and

C2 = 8ΓΛnN2
M ,

we obtain

R(fi) ⩽ 16NM (8ΓΛnN2
M ) 2

n
|M |

|Σ0| n+2
n

K2/n

= 42+3/n+2/nN
n+4

n

M Γ2/nΛ2 |M |
|Σ0| n+2

n

k2/n.

Because 42+2/n+3/n ⩽ 47 = 214, this completes the proof. □

Proof of Corollary 1.4. — As in the proof of Corollary 1.10, we consider
the Steklov eigenvalues of the cylinder M = [0, L] × Σ. For L > 0 small
enough, σk =

√
λk tanh(

√
λkL), and it follows from (1.2) that√

λk tanh(
√

λkL) ⩽ 216N3ΓΛ2 L|Σ|
|Σ| n+2

n

k2/n.

Dividing by L on each side and taking the limit as L → 0 completes the
proof. □

3.1. Importance of the geometric invariants

In this last section, we discuss the effectiveness of Theorem 1.1 and Corol-
lary 1.2: our goal is to explain why the various geometric constants play a
meaningful role. To do this, we will exhibit various families of manifolds Mε

that satisfy σ1(Mε) ε→0−−−→ +∞, while all but one of the geometric constants
appearing in (3.1) or (1.3) are independent of the parameter ε.

We start by stating and proving the Lemma which was used to obtain
Corollary 1.2 from Theorem 1.1.
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Lemma 3.3. — Let Λ ⩾ 1 be the distortion of the boundary Σ in M .
Let NΣ be a packing constant for (Σ, dΣ). Then NM = bN

log2(2Λ)
Σ is a

packing constant for (Σ, dM ).

Proof. — Let Σ1, . . . , Σb be the connected components of Σ. Let p ∈ Σ
and r > 0. Select one point yj ∈ BM (p, r) ∩ Σj whenever this intersection
is nonempty. Then

BM (p, r) ∩ Σ ⊂
⋃
j

BM (yj , 2r) ∩ Σj ⊂
⋃
j

BΣ(yj , 2Λr).

For each j, there exist NΣ balls BΣ(xi, Λr) with centers xi ∈ Σj , that
cover BΣ(yj , 2Λr). Each of these is covered by NΣ balls of radius Λr

2 , and
repeating this process m + 1 ∈ N times leads to a cover of BΣ(yj , 2Λr)
by Nm+1

Σ balls of radius Λr
2m . Now, for m > 1 + log2(Λ) the radius of the

covering balls is smaller than r/2. It follows that BM (p, r) ∩ Σ is covered
by at most N := bNm+1

Σ balls of radius r/2:

BM (p, r) ∩ Σ ⊂
N⋃

i=1
BΣ(xi, r/2) ⊂

N⋃
i=1

BM (xi, r/2). □

3.1.1. Importance of the distortion Λ

In [4] the second author and D. Cianci constructed a family of Riemann-
ian metrics gε on a manifold M of dimension at least 4, such σ1

ε→0−−−→ +∞,
while |M | is uniformly bounded and the restriction of gε to the bound-
ary Σ does not depend on ε. If follows from (1.3) that the distortion Λ
must also become arbitrarily large as ε → 0. For manifolds of dimension 3,
a similar example will follow from ongoing work by the second author and
Polymerakis [22].

3.1.2. Importance of the volume of M

Given a compact manifold M of dimension at least three, with bound-
ary Σ, in [8] we constructed a family of Riemannian metrics gε such that
σ1

ε→0−−−→ +∞, while the distortion Λ is uniformly bounded above and the re-
striction of gε to the boundary Σ does not depend on ε. If follows from (1.3)
that the volume |M | must also be large.

TOME 0 (0), FASCICULE 0
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3.1.3. Importance of the number of boundary components

In [9], we constructed a sequence of compact surfaces Mℓ with boundary
such that σ1

ℓ→∞−−−→ +∞, and for each ℓ:

|∂Mℓ| = |Mℓ| = Λ = 1.

Because the boundary is one-dimensional, the packing constant NΣ and
the growth constant Γ are also independent of ℓ. It follows from (1.3) that
the number of connected components b of the boundary must satisfy b →
∞. A similar construction works in arbitrary dimension. Indeed, the focus
of [9] was on surfaces, and the examples were constructed by gluing a
finite number of building blocks together following the pattern dictated by
a graph. By using building blocks of arbitrary dimension ⩾ 2, we would
obtain a similar construction and the proofs are exactly the same as in
dimension 2.

3.1.4. Importance of the volume of the boundary

Let M be a closed Riemannian manifold, and consider the perforated
domain Mε := M \ B(p, ε). Then b = 1 while NΣ, Λ, Γ and |M | are
uniformly bounded. It is proved in [2] that σ1

ε→0−−−→ +∞.

3.1.5. Importance of the packing and growth constants

If Theorem 1.1 was true with Γ and NM removed, then Corollary 1.4
would hold without these constants appearing. That is, a universal upper
bound on λ1(Σ)|Σ|2/n would be provided for each compact manifold Σ.
However it was proved by the first author and J. Dodziuk [5] that any
closed manifold Σ of dimension larger than 2 admits a Riemannian metric g

with arbitrarily large Laplace spectral gap λ1.
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