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L2-EXTENSION INDICES, SHARPER ESTIMATES AND
CURVATURE POSITIVITY

by Takahiro INAYAMA (*)

Abstract. — In this paper, we introduce a new concept of L2-extension indices.
This index is a function that gives the minimum constant with respect to the
L2-estimate of an Ohsawa–Takegoshi-type extension at each point. By using this
notion, we propose a new way to study the positivity of curvature. We prove that
there is an equivalence between how sharp the L2-extension is and how positive the
curvature is. New examples of sharper L2-extensions are also systematically given.
As applications, we use the L2-extension index to study Prékopa-type theorems
and to study the positivity of a certain direct image sheaf. We also provide new
characterizations of pluriharmonicity and curvature flatness.

Résumé. — Dans cet article, nous introduisons un nouveau concept d’indices
d’extension L2. Cet indice est une fonction qui donne la constante minimale par
rapport à l’estimation L2 d’une extension de type Ohsawa–Takegoshi en chaque
point. En utilisant cette notion, nous proposons une nouvelle façon d’étudier la
positivité de la courbure. Nous prouvons qu’il existe une équivalence entre le degré
de netteté de l’extension L2 et le degré de positivité de la courbure. De nouveaux
exemples d’extensions L2 plus nettes sont également systématiquement donnés.
Comme applications, nous utilisons l’indice d’extension en L2 pour étudier des
théorèmes de type Prékopa et pour étudier la positivité d’un certain faisceau
d’image directe. Nous fournissons également de nouvelles caractérisations de la
pluriharmonicité et de la planéité de la courbure.

1. Introduction

The Ohsawa–Takegoshi L2-extension theorem [20] is a fundamental theo-
rem concerning the L2-extension of a holomorphic function. This theorem
has been applied to a variety of fields, not only in complex analysis, but
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2 Takahiro INAYAMA

also in algebraic geometry. For example, by using this theorem, Siu esta-
blished the invariance of plurigenera [21]. The statement of the L2-extension
theorem is as follows. Let Ω ⊂ Cn be a bounded pseudoconvex domain with
Ω ⊂ Cn−1 × {|zn| < r} for r > 0, φ be a plurisubharmonic (psh, for short)
function on Ω and H := Ω ∩ {zn = 0}( ̸= ∅). Then for every holomorphic
function f on H with finite L2-norm, there is a holomorphic function F on
Ω such that F |H = f and

(1.1)
∫

Ω
|F |2e−φ ⩽ Cr2

∫
H

|f |2e−φ

for some universal positive constant C > 0, which is independent of the
choice of φ and f . Thanks to the celebrated results by Błocki [4] and Guan–
Zhou [10], we can take C = π, which is known as the optimal constant.

Conversely, it is known that if an upper-semicontinuous function φ satis-
fies the above optimal L2-extension theorem, φ is necessarily psh. This
phenomenon is called the minimal extension property or the optimal L2-
extension property (see Theorem 2.2). Roughly speaking, we can say that
the optimality of the L2-extension is equivalent to the plurisubharmonicity
of the weight φ. This idea has led to numerous useful applications. Indeed,
there are Guan–Zhou’s approach [10] to Berndtsson’s log-plurisubharmoni-
city of the relative Bergman kernel [2], new studies on positivity for vector
bundles [6, 7, 8, 11, 13, 16] and a simple proof of Prékopa’s theorem [14].
For these reasons, this property can be considered as important.

If we allow the constant C in (1.1) to depend on the weight, we can
sharpen this estimate. This study was initiated by Hosono [12], and gene-
ralized by Kikuchi [17] and Xu–Zhou [23]. In this paper, we call these types
of estimates sharper estimates. The sharper estimate asserts that the strict
inequality holds in the estimate (1.1) under some geometric settings. Hence,
it is natural and important to ask the question, “What do we know about
the positivity of φ from the assumption that φ satisfies the condition of
sharper estimates?” To think about the problem a little more precisely, we
introduce a notion of L2-extension indices.

Definition 1.1. — Let Ω ⊂ C be a bounded domain, φ be a smooth
function on Ω and δ(a) := sup{r > 0 | ∆(a; r) = {z ∈ C | |z−a| < r} ⊂ Ω}.
We also let Ωδ be Ωδ = {(a, r) ∈ Ω × R | 0 < r < δ(a)}. Then we define
the L2-extension index Lφ of φ on Ωδ by

Lφ(a, r) = 1
πr2K∆(a;r),φ(a) ,

ANNALES DE L’INSTITUT FOURIER



L2-EXTENSION INDICES 3

where K∆(a;r),φ is the weighted Bergman kernel on ∆(a; r) with respect to
the weight φ.

Let A2(Ω, φ) denote A2(Ω, φ) = {f ∈ O(Ω) |
∫

Ω |f |2e−φ < +∞}, where
O(Ω) is the space of holomorphic functions on a domain Ω. Since

1
πr2K∆(a;r),φ(a) = inf

{∫
∆(a;r) |f |2e−φ

πr2e−φ(a)

∣∣∣∣∣ f ∈ A2(∆(a; r), φ), f(a) = 1
}

,

the L2-extension index Lφ gives the best constant (depending on the
weight φ) with respect to the L2-estimate of the Ohsawa–Takegoshi
extension at each point. Using this notion, we see that the question to
be considered can be summarized as follows.

Question 1.2. — Keep the notation. If Lφ(a, r) < 1 for each point
(a, r) ∈ Ωδ, what can we know about φ? For example, can we say that φ

is strictly psh?

In this paper, we use the L2-extension index to give a quantitative esti-
mate of the curvature of φ and give an answer to Question 1.2. One of the
main theorems in this paper is the following.

Theorem 1.3. — Let Ω ⊂ C be a bounded domain, φ be a smooth
function on Ω and ω =

√
−1dz ∧ dz. Suppose that for any point a ∈ Ω,

there exist γa ∈ (0, δ(a)) and a semi-positive lower semi-continuous function
ga : [0, γa] → R⩾ 0 such that Lφ(a, r) ⩽ e−ga(r)r2 for r ∈ (0, γa). Then

√
−1∂∂φ(a) ⩾ 2ga(0)ω.

If we take ga ≡ 0, this theorem corresponds to the minimal extension
property. As a very special case, it holds that

√
−1∂∂φ ⩾ 2cω if Lφ(a, r) ⩽

e−cr2
< 1 on Ωδ for (a, r) ∈ Ωδ and a positive constant c > 0, which is

one answer to Question 1.2. We can also prove that this estimate is best
possible in suitable sense (see Corollary 3.2 and 3.3). As an application,
we can discuss a quantification of Prékopa’s theorem in Section 3 (see
Theorem 3.4).

We can also establish a higher rank analogue of Theorem 1.3 as follows.

Theorem 1.4. — Let Ω be a bounded domain in C, E → Ω be a
holomorphic vector bundle of rank r and h be a smooth Hermitian me-
tric on E. Assume that for any point a ∈ Ω, there exist γa ∈ (0, δ(a)) and a
semi-positive lower semi-continuous function ga : [0, γa] → R⩾ 0 such that
Lh(a, r, ξ) ⩽ e−ga(r)r2 for any ξ ∈ Ea \{0} and any r ∈ (0, γa). Then

√
−1Θh(a) ⩾ 2ga(0)ω ⊗ IdE ,

TOME 0 (0), FASCICULE 0



4 Takahiro INAYAMA

where
√

−1Θh is the Chern curvature of (E, h).

For the definition of Lh(a, r, ξ), see Definition 2.8. As an application, we
study the relationship between the positivity of direct image sheaves and
the sharper estimate. Let π : X → B be a proper holomorphic submersion,
where X is a Kähler manifold of dimension n+1 and B is a bounded domain
in C. We also let L → X be a line bundle over X with a smooth Hermitian
metric h. Assume that dim H0(Xτ , KXτ

⊗ Lτ ) has the same dimension for
τ ∈ B, where Xτ = π−1(τ) and Lτ = L|Xτ . Set Eτ := H0(Xτ , KXτ ⊗ Lτ ).
Then

E :=
⋃

τ ∈ B

{τ} × Eτ

admits a structure of a holomorphic vector bundle and can be identified
with the direct image bundle π⋆(KX /B ⊗ L), where KX /B is the relative
canonical bundle. Under this isomorphism, π⋆(KX /B ⊗ L) has a canonical
Hermitian metric H induced by h as follows. For τ ∈ B and u ∈ Eτ =
H0(Xτ , KXτ

⊗ Lτ ) ∼= Hn,0(Xτ , Lτ ),

|u|2Hτ
:=
∫

Xτ

cnhτ u ∧ u,

where cn =
√

−1n2

. Here we denote by hτ the restriction of h to Lτ . In
this setting, we have the following theorem.

Theorem 1.5. — Keep the notation above. Assume that H0(Xτ , KXτ
⊗

Lτ ) has the same dimension for each τ ∈ B. Let g : B → R⩾ 0 be a semi-
positive function on B. Then the following properties are equivalent :

(1) the Chern curvature
√

−1ΘH of the direct image bundle π⋆(KX /B ⊗
L) = E is positively curved such as

√
−1ΘH ⩾ gω ⊗ Idπ⋆(KX /B⊗L).

(2) for any point a ∈ B, any ξ ∈ Ea = H0(Xa, KXa
⊗ La) and any

ε > 0, there exists rε ∈ (0, δ(a)) such that for any r ∈ (0, rε), there
exists a holomorphic section s ∈ H0(π−1(∆(a; r)), KX ⊗ L) such
that s|Xa

= ξ ∧ dτ and∫
π−1(∆(a;r))

cn+1hs ∧ s ⩽ e
− max

{
(g(a)−ε)

2 ,0
}

r2
πr2

∫
Xa

cnhaξ ∧ ξ.

The correspondence is considered to provide a new direction for the study
of positivity of direct images.

Finally, we see that the L2-extension index leads to a new and intere-
sting characterization of (pluri)harmonic functions. On a one-dimensional
domain, as is well known, a subharmonic function is characterized by the
mean value inequality, and when the equality of the inequality holds, the

ANNALES DE L’INSTITUT FOURIER
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function becomes a harmonic function. As discussed above, the (pluri)sub-
harmonicity of the weight can be characterized by the inequality part of
the optimal Ohsawa–Takegoshi L2-extension theorem. Therefore, based on
the analogy with the above, the following natural question arises:

Question 1.6. — Are harmonic functions characterized by the equality
part of the optimal Ohsawa–Takegoshi L2-extension theorem?

We can give an affirmative answer to the above question under an ap-
propriate formulation. Indeed, we get the following result.

Theorem 1.7. — Let φ be a smooth function on a domain Ω ⊂ C.
Then the following are equivalent :

(1)
√

−1∂∂φ = 0.
(2) Lφ = 1, that is, for any a ∈ Ω and r ∈ (0, δ(a)), there exists a

unique holomorphic function f on ∆(a; r) satisfying f(a) = 1 and∫
∆(a;r)

|f |2e−φ ⩽ πr2e−φ(a).

Pseudoconvexity is related to the richness of certain holomorphic func-
tions (such as Stein manifolds). This theorem states that such a thing also
holds with respect to subharmonicity. In fact, if there are many holomor-
phic functions that satisfy the optimal Ohsawa–Takegoshi condition, the
metric becomes subharmonic, and if there is only one such holomorphic
function, the metric becomes harmonic. On an n-dimensional domain, we
can also get such a characterization of pluriharmonicity (see Appendix A).
As a higher rank analogue of Theorem 1.7, we get a new characterization
of curvature flatness as follows.

Theorem 1.8. — Let Ω, E and h be the same thing as in Theorem 1.4.
Then the following are equivalent :

(1)
√

−1Θh = 0.
(2) Lh = 1, that is, for any a ∈ Ω, r ∈ (0, δ(a)) and ξ ∈ Ea \{0}, there

exists a unique holomorphic section s of E on ∆(a; r) satisfying
s(a) = ξ and ∫

∆(a;r)
|s|2h ⩽ πr2|ξ|2h(a).

Organization of the paper

The organization of the manuscript is as follows. In Section 2, we recall
positivity notions for vector bundles and basic facts about the optimal

TOME 0 (0), FASCICULE 0



6 Takahiro INAYAMA

L2-extension property. In this section, we also introduce notions of L2-
extension indices for line bundles and vector bundles. In Section 3, we give
a proof of Theorem 1.3 and discuss Prékopa-type theorems. In Section 4, we
prove Theorem 1.4 and 1.5. In Section 5, we establish new characterizations
of harmonicity and curvature flatness, and prove Theorem 1.7 and 1.8.
At last, in Appendix A, we discuss a generalization of the L2-extension
index and related problems.

Acknowledgments

The author would like to thank Genki Hosono for helpful comments. He
also expresses gratitude to the reviewer for providing valuable advice to
improve the paper.

2. Preliminaries

2.1. Positivity notions for vector bundles

In this subsection, let us recall basic positivity notions for vector bundles.
Let X denote a complex manifold of dim n, E → X be a holomorphic vector
bundle of rank r and h be a smooth Hermitian metric on E. We denote by
Θh the Chern curvature of (E, h). Taking local coordinates (z1, . . . , zn) of
X and an orthonormal frame (e1, . . . , er) of E at some fixed point x0 ∈ X,
we write √

−1Θh =
∑

1 ⩽ j, k ⩽ n
1 ⩽ λ, µ ⩽ r

cjkλµdzj ∧ dzk ⊗ e⋆
λ ⊗ eµ.

By using this expression, we can define the associated Hermitian form Θ̃h

on TX ⊗ E at x0 by

Θ̃h(τ, τ) =
∑

1 ⩽ j, k ⩽ n
1 ⩽ λ, µ ⩽ r

cjkλµτjλτkµ,

for τ =
∑

j,λ τjλ
∂

∂zj
⊗ eλ ∈ TX ⊗ E, where TX is the holomorphic tan-

gent bundle of X. Then (E, h) is said to be Nakano positive (respectively,
Nakano semi-positive) if Θ̃h(τ, τ) > 0 (respectively, Θ̃h(τ, τ) ⩾ 0) for all
non-zero elements τ ∈ TX ⊗ E, and (E, h) is said to be Griffiths positive
(respectively, Griffiths semi-positive) if Θ̃h(v ⊗ s, v ⊗ s) > 0 (respectively,

ANNALES DE L’INSTITUT FOURIER



L2-EXTENSION INDICES 7

Θ̃h(v ⊗ s, v ⊗ s) ⩾ 0) for all non-zero elements v ∈ TX and s ∈ E. Corre-
sponding negativity is defined similarly. For two Hermitian forms A, B on
TX ⊗ E, we write A ⩾Nak. B (respectively, A ⩾Grif. B) if A(τ, τ) ⩾ B(τ, τ)
(respectively, A(v ⊗ s, v ⊗ s) ⩾ B(v ⊗ s, v ⊗ s)) for all τ ∈ TX ⊗ E (respec-
tively, v ∈ TX and s ∈ E). For two Hermitian metrics hA, hB on E, we write√

−1ΘhA
⩾Nak.

√
−1ΘhB

(respectively,
√

−1ΘhA
⩾Grif.

√
−1ΘhB

) when
the corresponding Hermitian forms Θ̃hA

and Θ̃hB
satisfy Θ̃hA

⩾Nak. Θ̃hB

(respectively, Θ̃hA
⩾Grif. Θ̃hB

).
By definition, we clearly see that Nakano positivity is a stronger positiv-

ity notion that Griffiths positivity. Note that, if dim X = 1 or rank E = 1,
these notions coincide. When dim X = 1, we just use the terminology
“(semi-)positively curved” and write

√
−1Θh ⩾ 0,

√
−1ΘhA

⩾
√

−1ΘhB

and so on. Throughout of this paper, we mainly focus on Griffiths (semi-
)positivity and assume that Ω is a 1-dimensional domain in C.

2.2. Optimal L2-extension property

We explain the property called the minimal extension property [11] or
the optimal L2-extension property [6, 7] for a 1-dimensional domain. In
this article, we simply use the term “the optimal L2-extension property”
since we follow the formulation of Deng–Ning–Wang–Zhou.

Definition 2.1 (minimal extension property [11], optimal L2-extension
property [6, 7]). — Let φ be an upper semi-continuous function on a do-
main Ω ⊂ C. We say that φ satisfies the optimal L2-extension property if
the following condition is satisfied: for each a ∈ Ω with φ(a) ̸= −∞ and any
r > 0 with ∆(a; r) ⊂ Ω, there exists a holomorphic function f on ∆(a; r)
satisfying f(a) = 1 and∫

∆(a;r)
|f |2e−φ ⩽ πr2e−φ(a).

In other words, if we can get the optimal L2-extension from any point
a ∈ Ω to ∆(a; r) with respect to the L2

φ-norm, we say that φ satisfies
the optimal L2-extension property. As mentioned in Introduction, we know
that if φ is psh, φ satisfies the optimal L2-extension property thanks to the
work of Błocki [4] and Guan–Zhou [10]. Conversely, it is known that the
following holds.

Theorem 2.2 ([6, Theorem 1.6], cf. [7, 10, 11]). — Let φ be an upper
semi-continuous function on a domain Ω ⊂ C. If φ satisfies the optimal
L2-extension property, φ is subharmonic.

TOME 0 (0), FASCICULE 0
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One main topic in this article is to generalize this result to the quanti-
tative estimate of curvature positivity.

2.3. L2-extension index for line bundles

In this subsection, we list the basic properties about the L2-extension
index. Throughout this subsection, we let Ω ⊂ C be a bounded domain
and φ be a smooth function on Ω. First, we show the following elementary
but important property.

Lemma 2.3. — For any (a, r) ∈ Ωδ, there exists a holomorphic function
f on ∆(a; r) satisfying f(a) = 1 and

Lφ(a, r) =

∫
∆(a;r) |f |2e−φ

πr2e−φ(a) .

This lemma immediately follows due to the standard property of the
weighted Bergman kernel. By using the notion of the L2-extension index
and Lemma 2.3, we can summarize Theorem 2.2 as follows. We use the
same notation as in Theorem 2.2.

Theorem 2.4. — If Lφ ⩽ 1, φ is subharmonic.

For another example, we can state [6, Theorem 1.7] as follows.

Theorem 2.5. — If log Lmφ/m → 0 pointwise as m → +∞, φ is sub-
harmonic.

This type of theorem was proved in a more general setting [8]. For the
reader’s convenience and to familiarize her or himself with the concept of
the L2-extension index, we give a quick proof of the theorem. The proof is
almost the same as in [6].

Proof. — Fix (a, r) ∈ Ωδ and m ∈ N. Thanks to Lemma 2.3, we can
obtain a holomorphic function fm on ∆(a; r) satisfying fm(a) = 1 and

Lmφ(a, r) =

∫
∆(a;r) |fm|2e−mφ

πr2e−mφ(a) ,

that is,
Lmφ(a, r)e−mφ(a) =

∫
∆(a;r)

|fm|2e−mφ 1
πr2 .

Taking the logarithm of the above inequality and using Jensen’s inequality,
we get

−mφ(a) + log Lmφ(a, r) ⩾ log
(∫

∆(a;r)
|fm|2e−mφ 1

πr2

)

ANNALES DE L’INSTITUT FOURIER
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⩾
∫

∆(a;r)

(
log |fm|2 − mφ

) 1
πr2

⩾
1

πr2

∫
∆(a;r)

−mφ

since log |fm|2 is psh and fm(a) = 1. Hence, it follows that
1

πr2

∫
∆(a;r)

φ ⩾ φ(a) − log Lmφ(a, r)
m

.

Taking m → +∞, we get
1

πr2

∫
∆(a;r)

φ ⩾ φ(a),

which completes the proof. □

We can also show the following property. This result describes the be-
havior of Lφ(a, · ) near the origin.

Proposition 2.6. — limr→+0 Lφ(a, r) = 1 for any a ∈ Ω.

Proof. — Fix a ∈ Ω. Let ε > 0 be an arbitrary positive number. For
each r ∈ (0, δ(a)), due to Lemma 2.3, there is a holomorphic function fr

on ∆(a; r) satisfying fr(a) = 1 and

Lφ(a, r) =

∫
∆(a;r) |fr|2e−φ

πr2e−φ(a) .

Since φ is continuous, there exists r1 ∈ (0, δ(a)) such that for any z ∈
∆(a; r1), |φ(z) − φ(a)| < ε. Using the mean-value inequality for |fr|2, we
have that∫

∆(a;r)
|fr|2e−φ ⩾ e−φ(a)−ε

∫
∆(a;r)

|fr|2 ⩾ πr2e−φ(a)−ε.

Hence, it follows that

Lφ(a, r) =

∫
∆(a;r) |fr|2e−φ

πr2e−φ(a) ⩾ e−ε > 1 − ε

for any r ∈ (0, r1).
On the other hand, we fix R ∈ (0, δ(a)). Thanks to the mean-value

theorem, for any r ∈ (0, R), there exists ζr ∈ ∆(a; r) such that∫
∆(a;r)

|fR|∆(a;r)|2e−φ = πr2|fR(ζr)|2e−φ(ζr).

Then we get ∫
∆(a;r) |fR|∆(a;r)|2e−φ

πr2e−φ(a) = |fR(ζr)|2e−φ(ζr)

e−φ(a) .

TOME 0 (0), FASCICULE 0
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Since ζr → a as r → +0, it holds that

lim
r→+0

∫
∆(a;r) |fR|∆(a;r)|2e−φ

πr2e−φ(a) = 1.

Then there is r2 ∈ (0, R) such that for any r ∈ (0, r2)

1 − ε <

∫
∆(a;r) |fR|∆(a;r)|2e−φ

πr2e−φ(a) < 1 + ε.

By the definition of Lφ, we see that

Lφ(a, r) ⩽

∫
∆(a;r) |fR|∆(a;r)|2e−φ

πr2e−φ(a) < 1 + ε

for r ∈ (0, r2). Thus, letting r0 := min{r1, r2}, we have that

1 − ε < Lφ(a, r) < 1 + ε

for any r ∈ (0, r0). □

At the last of this subsection, we show a specific calculation of the L2-
extension index.

Example 2.7. — Let ∆ := ∆(0; 1) and φ(z) = λ|z|2 for λ > 0. We can
easily see that

Lλ|z|2(0, r) =

∫
∆(0;r) e−λ|z|2

πr2e−φ(0)

for r ∈ (0, 1). Then it follows that

Lλ|z|2(0, r) = 1
λr2

(
1 − e−λr2

)
due to the simple computation.

2.4. L2-extension index for vector bundles

In this subsection, let us introduce the higher rank analogues of the
results in Section 2.3. First, we define L2-extension indices for smooth
Hermitian vector bundles. Throughout this subsection, we also let Ω be
a bounded domain in C.

Definition 2.8. — Let π : E → Ω be a holomorphic vector bundle over
Ω and h be a smooth Hermitian metric on E. We define the L2-extension
index Lh of h on Ωδ ×Ω E \{0}, by

Lh(a, r, ξ) = inf
{∫

∆(a;r) |s|2h
πr2|ξ|2h(a)

∣∣∣∣∣ s ∈ A2(∆(a; r), h), s(a) = ξ

}
,

ANNALES DE L’INSTITUT FOURIER
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where E \{0} is the complement of the zero section of E, Ωδ ×Ω E \{0} =
{(a, r, ξ) ∈ Ωδ ×E \{0} | a = π(ξ)} and A2(∆(a; r), h) is the space of square
integrable holomorphic sections of E with respect to h on ∆(a; r).

If rankE = 1, the above definition is equal to Definition 1.1. The same
properties as in Subsection 2.3 also hold.

Lemma 2.9. — For any (a, r, ξ) ∈ Ωδ ×Ω E \{0}, there is a holomorphic
section s ∈ A2(∆(a; r), h) such that s(a) = ξ and

Lh(a, r, ξ) =

∫
∆(a;r) |s|2h
πr2|ξ|2h(a)

.

Proof. — Let (a, r, ξ) ∈ Ωδ ×Ω E \ {0} and A = Lh(a, r, ξ). For each
n ∈ N, there exists sn ∈ A2(∆(a; r), h) such that sn(a) = ξ and

A ⩽

∫
∆(a;r) |sn|2h
πr2|ξ|2h(a)

⩽ A + 1
n

.

We choose a frame (e1, . . . , er) of E and write u = u1e1 + · · · + urer

for a holomorphic section u of E. Since ∆(a; r) is relatively compact in Ω,
there exist constants c, C > 0 such that c|u|2 ⩽ |u|2h ⩽ C|u|2 on ∆(a; r) for
u ∈ A2(∆(a; r), h). Here |u|2 denotes |u|2 = |u1|2 + · · · + |un|2. Therefore,∫

∆(a;r)
|si

n|2 ⩽
1
c

πr2|ξ|2h(a) (A + 1)

for all n ∈ N and 1 ⩽ i ⩽ r. By Montel’s theorem, we obtain a subsequence
{si

nk
}k of {si

n} such that {si
nk

}k converges compactly to some holomorphic
function si for each i. Extracting a subsequence and renumbering the sub-
scripts, we may assume that for each i, {si

n}n satisfies the above conditions.
We define s := s1e1 + · · ·+srer ∈ H0(∆(a; r), E). Note that s(a) = ξ. Then
Fatou’s lemma implies that ∫

∆(a;r) |s|2h
πr2|ξ|2h(a)

⩽ A,

which completes the proof. □

Proposition 2.10. — For any ξ ∈ E \Ω, limr→+0 Lh(a, r, ξ) = 1, where
a = π(ξ).

Proof. — Let ε > 0. We choose an orthonormal frame (e1, . . . , er) of E

at a ∈ Ω. Let us consider the following value
|s|2h
|s|2
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for s = s1e1 + · · · + srer ∈ H0(∆(a; r), E), where |s|2 = |s1|2 + · · · + |sr|2.
Note that its minimum value is the smallest eigenvalue of h, which varies
continuously. Since |s(a)|2h/|s(a)|2 = 1, there exists r1 ∈ (0, δ(a)), which is
independent of s, such that for any z ∈ ∆(a; r1)

|s|2h
|s|2

> 1 − ε.

We take sr ∈ H0(∆(a; r), E) satisfying sr(a) = ξ and

Lh(a, r, ξ) =

∫
∆(a;r) |sr|2h
πr2|ξ|2h(a)

for each r ∈ (0, r1). Then

Lh(a, r, ξ) =

∫
∆(a;r) |sr|2h
πr2|ξ|2h(a)

>
(1 − ε)

∫
∆(a;r) |sr|2

πr2|ξ|2h(a)

=
(1 − ε)

∫
∆(a;r)(|s

1
r|2 + · · · + |sr

r|2)
πr2(|ξ1|2 + · · · + |ξr|2) ⩾ (1 − ε).

On the other hand, for some fixed R ∈ (0, δ(a)), we take sR, which is the
same as above. By using the mean-value theorem, for any r ∈ (0, R) there
exists ζr ∈ ∆(a; r) such that∫

∆(a;r) |sR|∆(a;r)|2h
πr2|ξ|2h(a)

=
|sR(ζr)|2h(ζr)

|ξ|2h(a)
.

Since ζr → a as r → +0, we see that

lim
r→+0

∫
∆(a;r) |sR|∆(a;r)|2h

πr2|ξ|2h(a)
= 1.

By combining the two facts above and repeating the argument in the
proof of Proposition 2.6, we arrive at the conclusion that

lim
r→+0

Lh(a, r, ξ) = 1. □

3. L2-extension indices for line bundles and curvature
positivity

Our main goal in this section is to give a proof of Theorem 1.3. We also
discuss Prékopa-type theorems. We show further applications as well.

First, in order to prove Theorem 1.3, we prepare the following elementary
lemma.
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Lemma 3.1. — Let f(x) =
√

ex−1
x for x > 0. For any positive number

δ > 0, there exists ηδ > 0 such that

√
ex − 1

x
⩽ e( 1

4 + δ
2 )x

on (0, ηδ).

Proof. — It is enough to show that

ex − 1
x

⩽ e( 1
2 +δ)x.

The Taylor expansions of ex−1
x and e( 1

2 +δ)x are given by

ex − 1
x

= 1 + x

2 + · · · + xn

(n + 1)! + · · · ,

e( 1
2 +δ)x = 1 +

(
1
2 + δ

)
x + · · · +

( 1
2 + δ

)n
xn

n! + · · · .

Hence, there exists ηδ > 0 such that

√
ex − 1

x
⩽ e( 1

4 + δ
2 )x

on (0, ηδ) since e( 1
2 +δ)x − ex−1

x = δx + o(x). □

Then we prove Theorem 1.3.

Proof of Theorem 1.3. — Fix an arbitrary point a ∈ Ω. We also take γa

and a lower semi-continuous function ga : [0, γa] → R⩾ 0 as in Theorem 1.3.
If ga(0) > 0, we take an arbitrary number ε such that ε ∈ (0, ga(0)). Since ga

is lower semi-continuous, there exists rε ∈ (0, γa) such that ga(0)−ε < ga(r)
for r ∈ (0, rε). By Lemma 2.3, for r ∈ (0, rε) there exists a holomorphic
function fr on ∆(a; r) satisfying fr(a) = 1 and

∫
∆(a;r)

|fr|2e−φ = Lφ(a, r)πr2e−φ(a).
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14 Takahiro INAYAMA

We now define a function φa,ε by φa,ε(z) := φ(z)
2 − (ga(0) − ε)|z − a|2.

Note that φa,ε(a) = φ(a)
2 . Then for r ∈ (0, rε) we have that∫

∆(a;r)
|fr|e−φa,ε =

∫
∆(a;r)

|fr|e− φ
2 e(ga(0)−ε)|z−a|2

⩽

(∫
∆(a;r)

|fr|2e−φ

)1/2(∫
∆(a;r)

e2(ga(0)−ε)|z−a|2

)1/2

=
√

Lφ(a, r)
√

πre− φ(a)
2

√
π

2(ga(0) − ε)
(
e2(ga(0)−ε)r2 − 1

)
⩽ πr2e− φ(a)

2 e− ga(r)
2 r2

√
e2(ga(0)−ε)r2 − 1
2(ga(0) − ε)r2 .

from the assumption that Lφ(a, r) ⩽ e−ga(r)r2 . We fix an arbitrary small
number δ > 0. Thanks to Lemma 3.1, there exists ηδ > 0 such that√

ex − 1
x

⩽ e( 1
4 + δ

2 )x

on (0, ηδ). Set rδ :=
√

ηδ

2ga(0) , which is independent of ε. If r ∈ (0, rδ), we
have that √

e2(ga(0)−ε)r2 − 1
2(ga(0) − ε)r2 ⩽ e( 1

2 +δ)(ga(0)−ε)r2
.

Letting rε,δ := min{rε, rδ} > 0, for r ∈ (0, rε,δ) we obtain that∫
∆(a;r)

|fr|e−φa,ε =
∫

∆(a;r)
|fr|e− φ

2 e(ga(0)−ε)|z−a|2
(3.1)

⩽ πr2e− φ(a)
2 e− ga(r)

2 r2

√
e2(ga(0)−ε)r2 − 1
2(ga(0) − ε)r2(3.2)

⩽ πr2e− φ(a)
2 e− ga(r)

2 r2
e

(
ga(0)

2 − ε
2

)
r2

e(ga(0)−ε)δr2
(3.3)

⩽ πr2e− φ(a)
2 ega(0)δr2

(3.4)

= πr2e−φa,ε(a)ega(0)δr2
(3.5)

from ga(0) − ε − ga(r) < 0. Taking the logarithm of the above inequality
and using Jensen’s inequality, we have

1
πr2

∫
∆(a;r)

φa,ε ⩾ φa,ε(a) − ga(0)δr2.
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We write the Taylor expansion of φa,ε at a ∈ Ω by

φa,ε(a + ζ) = φa,ε(a) + ∂φa,ε

∂z
(a)ζ + ∂φa,ε

∂z
(a)ζ + 1

2
∂2φa,ε

∂z2 (a)ζ2

+ 1
2

∂2φa,ε

∂z2 (a)ζ2 + ∂2φa,ε

∂z∂z
(a)|ζ|2 + o

(
|ζ|2
)

.

Letting ζ = Re
√

−1θ, we get
2

πr4

∫
∆(0;r)

(φa,ε(a + ζ) − φa,ε(a)) = ∂2φa,ε

∂z∂z
(a) + o(1).

It also holds that
2

πr4

∫
∆(0;r)

(φa,ε(a + ζ) − φa,ε(a)) ⩾ −2ga(0)δ.

Taking r → +0, we have that ∂2φa,ε/∂z∂z(a) ⩾ −2ga(0)δ. Since δ > 0
is arbitrary, taking the limit δ → +0, we get ∂2φa,ε/∂z∂z(a) ⩾ 0, which
implies that √

−1∂∂φ(a) ⩾ 2(ga(0) − ε)ω.

Since ε ∈ (0, ga(0)) is arbitrary, it follows that
√

−1∂∂φ(a) ⩾ 2ga(0)ω.

If ga(0) = 0,
√

−1∂∂φ(a) ⩾ 2ga(0)ω = 0 follows simply by Theorem 2.2
since ga ⩾ 0.

In both cases, √
−1∂∂φ(a) ⩾ 2ga(0)ω

is proved. □

We remark that the estimate in Theorem 1.3 is optimal in the following
sense.

Corollary 3.2. — Let φ be a smooth function and g be a non-negative
function on a bounded domain Ω ⊂ C. Fix a ∈ Ω. Then the following
properties are equivalent :

(1) For any ε > 0, there exists rε > 0 such that

Lφ(a, r) ⩽ e
− max

{
(g(a)−ε)

2 ,0
}

r2

for r ∈ (0, rε).
(2)

√
−1∂∂φ(a) ⩾ g(a)ω.

Due to this corollary, we cannot expect that in Theorem 1.3 there is a
positive constant δ > 0 satisfying

√
−1∂∂φ(a) ⩾ (2 + δ)ga(0)ω. If g is a

positive function, we can rephrase this corollary as follows.
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Corollary 3.3. — Keep the setting. If g is positive, the following are
equivalent :

(1) For any ε ∈ (0, g(a)), there exists rε > 0 such that

Lφ(a, r) ⩽ e− (g(a)−ε)
2 r2

for r ∈ (0, rε).
(2)

√
−1∂∂φ(a) ⩾ g(a)ω.

Proof of Corollary 3.2.
(1)=⇒(2). — We only need to show the proof in the case that g(a) > 0.

If g(a) > 0, by taking ε ∈ (0, g(a)), we know that there exists rε such that

Lφ(a, r) ⩽ e− (g(a)−ε)
2 r2

for r ∈ (0, rε). Then applying Theorem 1.3 and ε → +0, we get
√

−1∂∂φ(a) ⩾ (g(a) − ε)ω → g(a)ω.

(2)=⇒(1). — If ε ⩾ g(a), we need to show Lφ(a, r) ⩽ 1. The non-
negativity of g implies the plurisubharmonicity of φ. Using the optimal
L2-extension theorem [4, 10], we can say that Lφ(a, r) ⩽ 1 for r ∈ (0, δ(a)).
Then it is enough to show the proof in the situation that g(a) > 0 and
ε ∈ (0, g(a)). Set c := ∂φ

∂z (a) and

f := ec(z−a).

Note that f is a holomorphic function with f(a) = 1. We also define Ψ by

Ψ = −|f |2e−φ = −e−(φ−c(z−a)−c(z−a)).

Then we can compute
∂2Ψ
∂z∂z

= −e−(φ−c(z−a)−c(z−a))
(

∂φ

∂z
− c

)(
∂φ

∂z
− c

)
+ e−(φ−c(z−a)−c(z−a)) ∂2φ

∂z∂z
.

We get
∂2Ψ
∂z∂z

(a) = e−φ(a) ∂2φ

∂z∂z
(a) ⩾ e−φ(a)g(a) > 0.

We denote by Ψ̃

Ψ̃ := Ψ − e−φ(a)(g(a) − ε)|z − a|2.

It holds that
∂2Ψ̃
∂z∂z

(a) = ∂2Ψ
∂z∂z

(a) − e−φ(a)(g(a) − ε) ⩾ εe−φ(a) > 0.
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Hence, there exists rε such that Ψ̃ is psh on ∆(a; rε). Then we have that

1
πr2

∫
∆(a;r)

Ψ̃ ⩾ Ψ̃(a) = −e−φ(a),

that is,

e−φ(a) − e−φ(a)(g(a) − ε) 1
πr2

∫
∆(a;r)

|z − a|2 ⩾
1

πr2

∫
∆(a;r)

|f |2e−φ

for r ∈ (0, rε). In summary, we see that

e−φ(a)
(

1 − (g(a) − ε)
2 r2

)
⩾

1
πr2

∫
∆(a;r)

|f |2e−φ,

which implies that

e− (g(a)−ε)
2 r2

⩾

∫
∆(a;r) |f |2e−φ

πr2e−φ(a) ⩾ Lφ(a, r). □

The proof of Corollary 3.3 is the same. Note that we do not need to
use the Ohsawa–Takegoshi L2-extension theorem in order to prove Corol-
lary 3.3, which is one interesting point.

Next, we discuss Prékopa-type theorems. As an immediate consequence
of Corollary 3.2, we obtain the following result.

Theorem 3.4. — Let φ : Uτ × Ωz → R be a function, which is smooth
on U × Ω. Here Uτ ⊂ Cτ and Ωz ⊂ Cn

z are bounded domains. We define
the function Φ on U by

e−Φ(τ) :=
∫

z ∈ Ω
e−φ(τ,z).

Let g be a non-negative function on U and ω =
√

−1dτ ∧ dτ . Then the
following properties are equivalent :

(1)
√

−1∂∂Φ ⩾ gω.
(2) For any point a ∈ U and any ε > 0, there exists rε ∈ (0, δ(a)) such

that
LΦ(a, r) ⩽ e

− max
{

(g(a)−ε)
2 ,0

}
r2

for r ∈ (0, rε).

This theorem can be seen as a quantification of Prékopa-type theorems.
Let us explain the reason for that below.

First, we introduce the following fundamental result obtained by Berndts-
son.
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Theorem 3.5 ([1]). — Let φ be a smooth psh function on U × Ω, where
Uτ ⊂ C is a domain and Ωz ⊂ Cn is a bounded pseudoconvex domain.
Assume that Ω is a Reinhardt domain and φ is independent of arg(zj) for
j = 1, . . . , n. Then Φ defined by

e−Φ(τ) =
∫

z ∈ Ω
e−φ(τ,z)

is psh as well.

Prékopa’s theorem is originally a result in convex geometry. The state-
ment is that if φ : Rt × Rn

x → R is a convex function, then the function
Φ: R → R defined by e−Φ(t) :=

∫
x ∈ Rn e−φ(t,x) is also convex. We call the

above type theorem Prékopa-type theorem in this article. We remark that
the smoothness of φ and the boundedness of Ω are not necessary due to
an approximate argument, but we go on this setting for simplicity without
loss of generality.

Actually, we can see that Berndtsson’s theorem above can be reduced to
the equivalence of the plurisubharmonicity of the weight and the optimal-
ity of the Ohsawa–Takegoshi L2-extension theorem. Here we explain the
reason. Fix a ∈ U and r ∈ (0, δ(a)). If φ is psh, thanks to the usual opti-
mal L2-extension theorem [4, 10], we get a holomorphic function f(τ, z) on
∆(a; r) × Ω such that f(a, z) ≡ 1 and∫

∆(a;r)×Ω
|f(τ, z)|2e−φ(τ,z) ⩽ πr2

∫
Ω

e−φ(a,z).

We take f which has the minimum L2-norm. This minimum extension is
uniquely determined due to the following reason. Let A2(∆(a; r)×Ω, φ) =:
A and H := {f ∈ A | f |{a}×Ω ≡ 0}. We write A = H ⊕ H⊥. Then
for above f , πH⊥(f) is the unique extension with minimum L2-norm. We
simply write f for πH⊥(f). Following the argument in [1], we can say that
the minimum extension f has the same invariance property as of φ, that is,
f is independent of arg(zj) for j = 1, . . . , n. Since f is holomorphic in zj ,
f is also independent of zj , which implies that f is just a function of τ . We
also denote it by f . Then∫

∆(a;r)
|f(τ)|2e−Φ(τ) ⩽ πr2e−Φ(a),

that is, Φ satisfies the optimal L2-extension property LΦ(a, r) ⩽ 1. Hence,
Φ is psh. In this sense, Theorem 3.4 indicates a direction of quantification
for Prékopa’s theorem. Indeed, if sharper estimates can be obtained for
each fiber, the strict positivity of Φ can also be determined accordingly.
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Conversely, if Φ has strict positivity, local sharper estimates can be obtained
for each fiber.

As another concrete example, sharper estimates can be systematically
constructed as follows.

Theorem 3.6. — Let φ : Uτ × Ωz → R be a psh function, which is
smooth on U × Ω. Here Uτ ⊂ Cτ and Ωz ⊂ Cn

z are bounded domains. We
also assume that φ satisfies

∂2φ

∂τ∂τ
(τ, z) −

∣∣∣∣∂φ

∂τ
(τ, z)

∣∣∣∣2 ⩾ g(τ),

where g is a non-negative function on U . Let Φ : U → R be the function
defined by

e−Φ(τ) :=
∫

z ∈ Ω
e−φ(τ,z)

and G : U → R be the function defined by

G(τ) = g(τ) +

∣∣∣∫z ∈ Ω
∂φ
∂τ (τ, z)e−φ(τ,z)

∣∣∣2(∫
z ∈ Ω e−φ(τ,z)

)2 .

Then for any point a ∈ U and any ε > 0, there exists rε ∈ (0, δ(a)) such
that for r ∈ (0, rε)

LΦ(a, r) ⩽ e
− max

{
(G(a)−ε)

2 ,0
}

r2
,

that is, there exists a holomorphic function fr on ∆(a; r) satisfying fr(a) =
1 and∫

∆(a;r)×Ω
|fr(τ)|2e−φ(τ,z) ⩽ e

− max
{

(G(a)−ε)
2 ,0

}
r2

πr2
∫

Ω
e−φ(a,z).

Proof of Theorem 3.6. — Since

Φ(τ) = − log
∫

Ω
e−φ(τ,z),

we can see that

∂2Φ
∂τ∂τ

=

∫
Ω

(
∂φ

∂τ∂τ −
∣∣∣∂φ

∂τ

∣∣∣2) e−φ∫
Ω e−φ

+

∣∣∣∫Ω
∂φ
∂τ e−φ

∣∣∣2(∫
Ω e−φ

)2

⩾ g +

∣∣∣∫Ω
∂φ
∂τ e−φ

∣∣∣2(∫
Ω e−φ

)2 = G
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by simple computation. Note that G ⩾ g and G is a non-negative function
as well. As a corollary of Theorem 3.4, we can say that for any a ∈ U and
any ε > 0, there exists rε ∈ (0, δ(a)) such that

LΦ(a, r) ⩽ e
− max

{
(G(a)−ε)

2 ,0
}

r2

for r ∈ (0, rε). □

Remark 3.7. — If we only assume that
∂2φ

∂τ∂τ
⩾ g

in Theorem 3.6, the plurisubharmonicity of Φ does not follow. This type
of example was found by Kiselman [18]. Let φ(τ, z) := |τ − z|2 − |τ |2 be a
function on C × C. Since φ(τ, z) = |z|2 − 2 Re(τz), φ is psh and satisfies

∂2φ

∂τ∂τ
⩾ 0.

Then Φ defined by
e−Φ(τ) =

∫
z ∈ C

e−φ(τ,z)

is equal to Φ(τ) = −|τ |2 − C for some constant C, which is not clearly psh
and does not satisfy LΦ ⩽ 1. If we want to obtain the plurisubharmonicity
of Φ or the sharper estimate, we need to assume that, for instance,

√
−1∂∂φ

is “sufficiently” positive such as in Theorem 3.6 or φ is invariant under some
group actions such as in Theorem 3.5 (for further studies, cf. [9]).

4. L2-extension indices for vector bundles and curvature
positivity

In this section, we establish a higher rank analogue of the results in
Section 3. First, we give a proof of Theorem 1.4. The proof is almost the
same as the proof of Theorem 1.3. One part of the following proof is inspired
by the argument in [8, Theorem 6.4].

Proof of Theorem 1.4. — Take a ∈ Ω, γa and ga as in Theorem 1.4. If
g(a) > 0, we take an arbitrary ε ∈ (0, ga(0)). We also take rε ∈ (0, γa) such
that ga(0) − ε < ga(r) for r ∈ (0, rε).

We define h̃ := he2(ga(0)−ε)|z−a|2 . Then its dual metric is

h̃⋆ = h⋆e−2(ga(0)−ε)|z−a|2
.

We are going to prove that for any local holomorphic section u of E⋆ on
an open neighborhood of a, |u|2

h̃⋆ is psh. We may assume that u(a) ̸= 0.
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By taking rε small enough if necessary, we can assume that u is defined on
∆(a; rε) and u ̸= 0 there.

By definition, there exists ξ ∈ Ea such that |ξ|h̃(a) = |ξ|h(a) = 1 and
|u(a)|h̃⋆(a) = |⟨u(a), ξ⟩|. From Lemma 2.9, for each r ∈ (0, rε), there exists
sr ∈ A2(∆(a; r), φ) satisfying sr(a) = ξ and

Lh(a, r, ξ) =

∫
∆(a;r) |sr|2h
πr2|ξ|2h(a)

=

∫
∆(a;r) |sr|2h

πr2 .

Since log |⟨u, sr⟩| is psh, thanks to the optimal L2-extension theorem [4, 10],
there exists a holomorphic function fr on ∆(a; r) satisfying fr(a) = 1 and∫

∆(a;r)
|fr|2e− log |⟨u,sr⟩| ⩽ πr2e− log |⟨u(a),ξ⟩| = πr2e− log |u(a)|h̃⋆(a) .

We have |u|h̃⋆ ⩾ |⟨u, sr⟩|/|sr|h̃, which implies that

e− 1
2 log |u|h̃⋆ ⩽ |sr|1/2

h̃
e− 1

2 log |⟨u,sr⟩|.

Then it holds that∫
∆(a;r)

|fr|e− 1
2 log |u|h̃⋆

⩽
∫

∆(a;r)
|fr| |sr|1/2

h̃
e− 1

2 log |⟨u,sr⟩|

⩽

(∫
∆(a;r)

|sr|h̃

)1/2(∫
∆(a;r)

|fr|2e− log |⟨u,sr⟩|

)1/2

⩽

(∫
∆(a;r)

|sr|he(ga(0)−ε)|z−a|2

)1/2
√

πre− 1
2 log |u(a)|h̃⋆(a)

⩽

(∫
∆(a;r)

|sr|2h

)1/4(∫
∆(a;r)

e2(ga(0)−ε)|z−a|2

)1/4
√

πre− 1
2 log |u(a)|h̃⋆(a)

⩽ 4
√

π
√

r
√

|ξ|h(a)e
− 1

4 ga(r)r2 4
√

π

(
e2(ga(0)−ε)r2 − 1

2(ga(0) − ε)

)1/4
√

πre− 1
2 log |u(a)|h̃⋆(a)

= πr2e− 1
4 ga(r)r2

(
e2(ga(0)−ε)r2 − 1
2(ga(0) − ε)r2

)1/4

e− 1
2 log |u(a)|h̃⋆(a) .

Here we use the assumption that Lh(a, r, ξ) ⩽ e−ga(r)r2 . By repeating the
same argument as in the proof of Theorem 1.3, for δ > 0, there exists rδ > 0
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such that (
e2(ga(0)−ε)r2 − 1
2(ga(0) − ε)r2

)1/4

⩽ e( 1
4 + δ

2 )(ga(0)−ε)r2

for r ∈ (0, rδ). Letting rε,δ := min{rε, rδ}, we have that∫
∆(a;r)

|fr|e− 1
2 log |u|h̃⋆

⩽ πr2e− 1
4 ga(r)r2

(
e2(ga(0)−ε)r2 − 1
2(ga(0) − ε)r2

)1/4

e− 1
2 log |u(a)|h̃⋆(a)

⩽ πr2e− 1
4 ga(r)r2

e( 1
4 + δ

2 )(ga(0)−ε)r2
e− 1

2 log |u(a)|h̃⋆(a)

⩽ πr2e
r2
4 (ga(0)−ε−ga(r))e

δ
2 ga(0)r2

e− 1
2 log |u(a)|h̃⋆(a)

⩽ πr2e− 1
2 log |u(a)|h̃⋆(a)e

δ
2 ga(0)r2

.

Note that 1
2 log |u|h̃⋆ satisfies the same inequality as (3.1)–(3.5). Hence,

by repeating the same argument as in the proof of Theorem 1.3, we can
conclude that log |u|h̃⋆ is psh, that is, h̃ is Griffiths semi-positive. Then it
holds that √

−1Θh(a) ⩾ 2(ga(0) − ε)ω ⊗ IdE .

Taking ε → +0, we finish the proof Theorem 1.4. □

As an application, we can establish the higher rank analogue of Corol-
lary 3.3. We also remark that the following corollary can be used to prove
Theorem 1.5.

Corollary 4.1. — Let Ω, E and h be the same things as in Theo-
rem 1.4. We also let g be a semi-positive function on Ω. Fix a ∈ Ω. Then
the following are equivalent :

(1) For any ε > 0 and any ξ ∈ Ea \{0}, there exists rε ∈ (0, δ(a)) such
that

Lh(a, r, ξ) ⩽ e
− max

{
(g(a)−ε)

2 ,0
}

r2

for r ∈ (0, rε).
(2)

√
−1Θh(a) ⩾ g(a)ω ⊗ IdE .

Proof of Corollary 4.1. — The implication (1)=⇒(2) is just a conse-
quence of Theorem 1.4 since we have that

√
−1Θh(a) ⩾ max{g(a)−ε, 0}ω⊗

IdE ⩾ (g(a) − ε)ω ⊗ IdE → g(a)ω ⊗ IdE as ε → 0. We only show (2)=⇒(1).
If ε ⩾ g(a), we have to prove Lh(a, r, ξ) ⩽ 1. This follows from the optimal
L2-extension theorem for (Nakano) semi-positive vector bundle. Hence, we
only need to consider the case that ε < g(a). Thanks to [5, Chapter V,
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Proposition (12.10)], we can take a holomorphic frame (e1, . . . , er) of E

such that

h(eλ(z), eµ(z)) = δλµ − cλµ|z − a|2 + O
(
|z − a|3

)
,

where (
√

−1Θh)a =
∑

1 ⩽ λ,µ ⩽ r cλµdz ∧ dz ⊗ e⋆
λ ⊗ eµ. We write hλµ for

h(eλ, eµ) and ξ = ξ1e1(a) + · · · + ξrer(a). We define a section s ∈ H0(Ω, E)
with constant coefficients by s(z) := ξ1e1(z) + · · · + ξrer(z). Then

|s|2h(z) =
∑

1 ⩽ λ, µ ⩽ r

hλµξλξµ

=
∑

1 ⩽ λ ⩽ r

|ξλ|2 − |z − a|2
∑

1 ⩽ λ, µ ⩽ r

cλµξλξµ + O
(
|z − a|3

)
.

Define Ψ by Ψ = −|s|2h. Then we have
√

−1∂∂Ψ(a) = ⟨
√

−1Θhξ, ξ⟩h(a) ⩾ g(a)|ξ|2h(a)ω

from the assumption of (2). Set Ψ̃ := Ψ − (g(a) − ε)|ξ|2h(a)|z − a|2. We then
get √

−1∂∂Ψ̃(a) ⩾ ε|ξ|2h(a)ω.

Hence, there exists rε > 0 such that Ψ̃ is psh on ∆(a; rε). It implies that
1

πr2

∫
∆(a;r)

Ψ̃ ⩾ Ψ̃(a) = −|s|2h(a) = −|ξ|2h(a)

for r ∈ (0, rε). Repeating the same argument as in the proof of Corol-
lary 3.2, we can get

e− (g(a)−ε)
2 r2

⩾

∫
∆(a;r) |s|2h
πr2|ξ|2h(a)

⩾ Lh(a, r, ξ). □

Considering the case that Ω = B, E = π⋆(KX /B ⊗ L) and h = H, we
can prove Theorem 1.5.

Proof of Theorem 1.5.
(1)=⇒(2). — Fix a ∈ B, ξ ∈ Ea = H0(Xa, KXa

⊗ La) and ε > 0. We
may assume that ξ ̸= 0. Corollary 4.1 asserts that there exists rε ∈ (0, δ(a))
such that for any r ∈ (0, rε)

LH(a, r, ξ) ⩽ e
− max

{
(g(a)−ε)

2 ,0
}

r2
.

Thanks to Lemma 2.9, we get a holomorphic section u ∈ A2(∆(a; r), H)
satisfying u(a) = ξ and∫

∆(a;r)
|u|2H ⩽ e

− max
{

(g(a)−ε)
2 ,0

}
r2

πr2|ξ|2H(a).
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Define

s := u ∧ dτ ∈ H0(∆(a; r), KB ⊗ E) = H0 (π−1(∆(a; r), KX ⊗ L
)

.

Then s satisfies s|Xa
= ξ ∧ dτ and∫

π−1(∆(a;r))
cn+1hs ∧ s ⩽ e

− max
{

(g(a)−ε)
2 ,0

}
r2

πr2
∫

Xa

cnhaξ ∧ ξ.

(2)=⇒(1). — Take a, ξ, ε, rε, r, s satisfying the condition of (2) in The-
orem 1.5. Then s ∈ H0(π−1(∆(a; r), KX ⊗ L) defines the unique section
u ∈ H0(∆(a; r), π⋆(KX /B ⊗ L)) such that s = u ∧ dτ . Then u satisfies∫

∆(a;r) |u|2H
πr2|ξ|2H(a)

⩽ e
− max

{
(g(a)−ε)

2 ,0
}

r2

as well, which implies that LH(a, r, ξ) ⩽ e− max{ (g(a)−ε)
2 ,0}r2 for r ∈ (0, rε).

By Corollary 4.1, we see that
√

−1ΘH(a) ⩾ g(a)ω ⊗ Idπ⋆(KX /B⊗L) . □

If L is a positive line bundle, π⋆(KX /B ⊗ L) is positive as well (cf. [3]).
Hence, in this setting, we get a sharper estimate from each fiber locally.
Conversely, if we get a sharper estimate from each fiber, we can say that
(π⋆(KX /B ⊗ L), H) is strictly positive.

5. New characterization of harmonicity

As mentioned in Introduction, it is an interesting attempt to give a new
characterization of a certain kind of curvature flatness in terms of the op-
timal Ohsawa–Takegoshi L2-extension theorem. In this section, we firstly
give a new characterization of harmonicity and a proof of Theorem 1.7.

Proof of Theorem 1.7.
(1)=⇒(2). — We fix any a ∈ Ω and r ∈ (0, δ(a)). Using Lemma 2.3, we

take a holomorphic function f on ∆(a; r) satisfying f(a) = 1 and∫
∆(a;r) |f |2e−φ

πr2e−φ(a) = Lφ(a, r).

Since φ is harmonic, and subharmonic as well, due to the optimal L2-
extension theorem, we have that Lφ(a, r) ⩽ 1, that is,∫

∆(a;r) |f |2e−φ

πr2e−φ(a) ⩽ 1.
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On the other hand, since φ is harmonic, there exists a holomorphic function
h on ∆(a; r) such that 2 Re(h) = φ. Hence, for any holomorphic function
g on ∆(a; r), |g|2e−φ = |ge−h|2 is subharmonic. Then we get∫

∆(a;r)
|f |2e−φ ⩾ πr2e−φ(a).

Consequently, it holds that∫
∆(a;r)

|f |2e−φ = πr2e−φ(a).

Since the extension f with minimum L2-norm is uniquely determined (cf.
the argument in Section 3), the proof is completed.

(2)=⇒(1). — Theorem 2.2 implies that
√

−1∂∂φ ⩾ 0. If
√

−1∂∂φ(a) >

0 for some point a ∈ Ω, we take c > 0 such that
√

−1∂∂φ(a) ⩾ cω. Then
there exists r′ > 0 such that for any r ∈ (0, r′)

Lφ(a, r) ⩽ e− c
4 r2

from Corollary 3.3. This contradicts Lφ ≡ 1. □

This theorem implies that if one cannot get any sharper estimates with
respect to φ, φ must be harmonic, and vice versa. As a higher rank analogue
of this theorem, we prove Theorem 1.8.

Proof of Theorem 1.8.
(1)=⇒(2). — Take (a, r, , ξ) ∈ Ωδ ×Ω E \{0}. By using Lemma 2.9, there

exists a holomorphic section s ∈ A2(∆(a; r), h) such that s(a) = ξ and

Lh(a, r, ξ) =

∫
∆(a;r) |s|2h
πr2|ξ|2h(a)

.

Thanks to the optimal L2-extension theorem for (Nakano) semi-positive
vector bundle, we see that Lh(a, r, ξ) ⩽ 1, that is,∫

∆(a;r) |s|2h
πr2|ξ|2h(a)

⩽ 1.

On the other hand, we fix any holomorphic section u ∈ A2(∆(a; r), h) with
u(a) = ξ. The curvature formula implies that

√
−1∂∂|u|2h = −

〈√
−1Θhu, u

〉
h

+
√

−1 ⟨D′
hu, D′

hu⟩h

=
√

−1 ⟨D′
hu, D′

hu⟩h ⩾ 0.
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Therefore, |u|2h is a subharmonic function. Then it holds that∫
∆(a;r) |s|2h
πr2|ξ|2h(a)

⩾ 1.

Hence, we get ∫
∆(a;r) |s|2h
πr2|ξ|2h(a)

= 1.

The uniqueness of s also follows (cf. the argument in Section 3).

(2)=⇒(1). — Thanks to the optimal L2-extension property for a holo-
morphic vector bundle (cf. [7]), we can say that

√
−1Θh ⩾ 0. If

√
−1Θh ̸≡ 0,

there exist a ∈ Ω and ξ ∈ Ea with ξ ̸= 0 such that ⟨
√

−1Θhξ, ξ⟩h(a) > 0.
We fix a positive number c > 0 satisfying ⟨

√
−1Θhξ, ξ⟩h(a) ⩾ c|ξ|2h(a)ω.

Similar to the proof of Corollary 4.1, we take a holomorphic frame (e1, . . . ,

er) of E and define a section s with constant coefficients by s = ξ1e1 + · · ·+
ξrer, where ξ = ξ1e1(a) + · · · + ξrer(a). Taking ε = c/2 and repeating the
argument there, we can prove that the L2-extension index in ξ-direction
satisfies

Lh(a, r, ξ) ⩽ e− c
4 r2

for any r ∈ (0, rc), where rc is some positive constant. This contradicts
Lh ≡ 1. □

Appendix A. Further studies and related problems

Shortly after this paper appeared on the arXiv, a new paper by Wang Xu
was announced [22], which generalized Theorem 1.4 to higher dimensional
cases. It seems interesting to generalize the definition of L2-extension in-
dices to higher dimensions and reformulate his results by using this notion.
In the appendix, we give a definition of L2-extension indices for smooth
Hermitian metrics on holomorphic vector bundles over an n-dimensional
domain. We prepare notation. Let Ω be a bounded domain in Cn, π : E → Ω
be a holomorphic vector bundle over Ω and h be a smooth Hermitian metric
on E. We also set ∆r = {z ∈ C | |z| < r}, Bm

s = {z ∈ Cm | |z| < s}
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and PA,r,s = A(∆r ×Bn−1
s ) for r, s > 0 and A ∈ U(n). Here U(n) is the set

of all n-dimensional unitary groups and PA,r,s is nothing but holomorphic
cylinder. Set Ωδ̃ = {(a, r, s, A) ∈ Ω × R>0 × R>0 × U(n) | a + PA,r,s ⊂ Ω}
and Ωδ̃ ×Ω E \{0} = {(a, r, s, A, ξ) ∈ Ωδ̃ × E \{0} | a = π(ξ)}. We define
an L2-extension index Lh : Ωδ̃ ×Ω E \{0} → R by

(A.1) Lh(a, r, s, A, ξ)

= inf
{ ∫

a+PA,r,s
|s|2h

|PA,r,s||ξ|2h(a)

∣∣∣∣∣ s ∈ A2(a + PA,r,s, h), s(a) = ξ

}
,

where |PA,r,s| is the volume of PA,r,s. Here we follow the convention in
Section 2. Note that this definition is a generalization of Definition 2.8.

We explain why we take holomorphic cylinders. To get the Griffiths posi-
tivity of the metric (or more simply the plurisubharmonicity of the weight),
we need to consider not polydiscs but holomorphic cylinders in (A.1). See [6,
Lemma 3.1 and Remark 3.2] and [7, Theorem 1.3] for detail.

The same results discussed in the previous sections can be established in
parallel. Indeed, for example, we can establish a characterization of pluri-
harmonic functions, which is a higher rank analogue of Theorem 1.7.

Theorem A.1. — Let φ be a smooth function on a domain Ω ⊂ Cn.
Then the following are equivalent :

(1)
√

−1∂∂φ = 0.
(2) Lφ = 1, that is, for any (a, r, s, A) ∈ Ωδ̃, there exists a unique

holomorphic function f on a + PA,r,s satisfying f(a) = 1 and∫
a+PA,r,s

|f |2e−φ ⩽ |PA,r,s|e−φ(a).

If we are only dealing with plurisubharmonicity or Griffiths positivity, it
is sufficient to consider only the one-dimensional case.

We can also extend the definition of the L2-extension index to general
upper semi-continuous functions. For an upper semi-continuous function φ

on a bounded domain Ω ⊂ Cn, we define the L2-extension index Lφ of φ

on Ωδ̃ as follows: for (a, r, s, A) ∈ Ωδ̃, if φ(a) > −∞,

Lφ(a, r, s, A)

:= 1
|Pr,s,A|KPr,s,A,φ(a)

= inf
{∫

a+Pr,s,A
|f |2e−φ

|Pr,s,A|e−φ(a)

∣∣∣∣∣ f ∈ A2(a + Pr,s,A, φ) & f(a) = 1
}

,
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and if φ(a) = −∞, Lφ(a, r, s, A) = 0. By using this concept, we can con-
sider various generalizations of the theorems established in this paper. For
example, as a generalization of Theorems 1.7 and A.1, we can consider the
following conjecture.

Conjecture A.2. — Let φ be an upper semi-continuous function on
Ω ⊂ Cn. Then the following are equivalent :

(1) φ is pluriharmonic.
(2) Lφ = 1, that is, φ > −∞ and for any (a, r, s, A) ∈ Ωδ̃, there exists

a unique holomorphic function f on a + PA,r,s satisfying f(a) = 1
and ∫

a+PA,r,s,

|f |2e−φ ⩽ |PA,r,s|e−φ(a).

The formulation (2) in Conjecture A.2 does not assume the regularity
of the function. It would be interesting that regularity, such as plurihar-
monicity, could be obtained from such a condition.

Remark A.3. — After uploading this paper, there have been some de-
velopments regarding conjecture A.2. In the case of continuous functions,
we proved the conjecture to be correct in [15]. Subsequently, Liu and Xu
proved it for general R-valued measurable functions in [19].
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