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A GEOMETRIC PROOF OF THE
BLASCHKE–LEBESGUE THEOREM FOR THE

CHEEGER CONSTANT

by Beniamin BOGOSEL (*)

Abstract. — The first main result presented in the paper shows that the peri-
meters of inner parallel sets of planar shapes having a given constant width are
minimal for the Reuleaux triangles. This implies that the areas of inner parallel
sets and, consequently, the inverse of the Cheeger constant are also minimal for
the Reuleaux triangles. Proofs use elementary geometry arguments and are based
on direct comparisons between general constant width shapes and the Reuleaux
triangle.

Résumé. — Le premier résultat présenté dans cet article montre que le périmètre
des ensembles parallèles intérieurs d’une forme de largeur constante est minimal
pour le triangle de Reuleaux. Comme conséquence immédiate, le triangle de Reu-
leaux minimise l’aire d’un ensemble parallèle intérieur et maximise la constante
de Cheeger. Les preuves utilisent des arguments de géométrie élémentaire et sont
basées sur une comparaison directe entre des formes de largeur constante arbitraires
et le triangle de Reuleaux.

1. Introduction

Considering a convex domain Ω in the plane, i.e. a convex and closed
set, a supporting line is a line which intersects Ω but does not separate any
two points in Ω. For a smooth region of ∂Ω, supporting lines coincide with
tangent lines. Given an orientation θ ∈ [0, 2π] in the plane, the distance
between the two supporting lines orthogonal to θ is called the width w(Ω, θ)
of Ω in direction θ. Shapes which have the same width for any direction
θ ∈ [0, 2π] are called constant-width shapes. The most basic examples of
constant width shapes are the disk and the Reuleaux triangle, the inter-
section of three disks having radius one with centers at the vertices of an

Keywords: constant width, inner parallel sets, Cheeger constant.
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2 Beniamin BOGOSEL

equilateral triangle of side length 1. It turns out that the Reuleaux triangle
is extremal for various geometric quantities and in this paper additional
such results are proved. The following result attributed to Lebesgue [20]
and Blaschke [2] has attracted a lot of attention.

Blaschke–Lebesgue Theorem

The Reuleaux triangle minimizes the area among shapes having a given
constant width.

This result has many different proofs besides the original ones. Various
geometric arguments are given in the book of Yaglom and Boltyanskii [16]
which has a full chapter on constant width shapes. Chakerian gives a sur-
prising proof in [7] using circumscribed hexagons. Ghandehari uses control
theory in [12] and Harrell uses variational techniques in [13].

It is known that the Reuleaux triangle also minimizes the inradius and
maximizes the circumradius [16, Chapter 7]. More recently, other optimiza-
tion problems were studied in the class of shapes of constant width. The
minimization of the eigenvalues of the Dirichlet–Laplace operator under
diameter constraint yields optimal shapes which have constant width [4].
The maximization of these eigenvalues is also well posed in the class of
constant width shapes and numerical simulations show that it is likely that
the Reuleaux triangle is again the optimal shape [3].

Colesanti proves in [9] that the Brunn–Minkowski inequality holds for
various functionals, like the first eigenvalue of the Dirichlet p-Laplace ope-
rator λ1,p. In particular, since the Cheeger constant

h(Ω) = inf{|∂X| / |X| such that X ⊂ Ω},

is obtained as the limit of the eigenvalues λ1,p(Ω), Brunn–Minkowski in-
equality also extends to this case. Basic convexity arguments show that
shapes of constant width maximizing λ1,p or the Cheeger constant must be
indecomposable, i.e. they cannot be written as the Minkowski sum of two
non-homothetic constant width shapes. The description of such indecom-
posable bodies goes beyond the scope of this article, but we may cite the
example of Reuleaux polygons. Similar techniques involving the minimiza-
tion of concave functionals are illustrated in [6]. Unfortunately, in most
cases underlined above, indecomposability is not enough to conclude that
the Reuleaux triangle is optimal.

The first eigenvalue of the L∞ Laplacian of Ω is 1/r(Ω), the inverse of
the inradius, and is maximized by the Reuleaux triangle R. In view of the
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numerical results shown in [3] concerning the L2-Laplacian, it is therefore
natural to conjecture that the other extremal case, the Cheeger constant,
corresponding to the 1-Laplacian is also maximized by R. This was proved
recently by Henrot and Lucardesi in [14] using techniques from shape opti-
mization, namely optimality conditions related to the shape derivative,
which are verified by the minimizer.

In this paper a different approach which is completely geometric in nature
gives a proof of the same result. The Cheeger constant of planar convex
sets has a characterization based on the area of the inner parallel sets given
by Lachand-Robert and Kawohl in [18]. More precisely, if

(1.1) Ω−t = {x ∈ Ω : d(x, ∂Ω) ⩾ t}

is the inner parallel set at distance t from the boundary of the convex
domain Ω then h(Ω) = 1/t, where t verifies |Ω−t| = πt2. Contrary to outer
parallel sets of a convex set where Steiner’s formula provides a polynomial
expression for the area in terms of the distance to the boundary (see for
example [22, Chapter 4]), no such formula exists for inner parallel sets.
Details for the polygonal case are given in [18] and in this work, similar
computations are made for Reuleaux polygons.

In this article new proofs are given for the following results:

(i) Given t ∈ (0, 1−
√

3/3], the Reuleaux triangle minimizes the perime-
ter of Ω−t among shapes with constant width equal to one.
The result is proved in Theorem 3.1. This result is new up to the
author’s knowledge.

(ii) Given t ∈ [0, 1 −
√

3/3], the Reuleaux triangle minimizes the area
of Ω−t among shapes with constant width equal to one. The result
is proved in Theorem 3.1. Moreover, this provides another proof of
the Blaschke–Lebesgue theorem, as a direct consequence of Theo-
rem 3.1 and the minimality of the inradius. The article [1] extends
the Blaschke–Lebesgue theorem to disk-polygons (intersection of
equal disks in the plane) and its results, although not explicitly
stated, imply Theorem 3.2.

(iii) The Reuleaux triangle maximizes the Cheeger constant among sha-
pes with constant width equal to one. The result is proved in Theo-
rem 4.1 and is a direct corollary of the characterization given in [18]
and Theorem 3.2. The result was initially proved in [14] using
optimality conditions related to the shape derivative. The proof
following from the results of this paper is new and elementary.
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4 Beniamin BOGOSEL

The paper is organized as follows. Section 2 recalls basic aspects
regarding constant width shapes, disk-polygons and gives a geometric lem-
ma regarding the convexity of a function used in the sequel. Section 3
presents proofs of the Blaschke–Lebesgue theorem for perimeters and areas
of inner parallel sets. Section 4 deals with the proof of the maximality of
the Reuleaux triangle for the Cheeger constant.

2. Preliminaries

2.1. Planar constant width shapes

A two dimensional convex set K has constant width if the distance
between any two parallel supporting lines is constant regardless of the
orientation of these lines. Recall that a supporting line intersects the boun-
dary of K and leaves the shape K in one of the half-planes generated by
this line. The circle is the most obvious example of a shape having constant
width. However, many more such shapes exist. In the rest of the article the
width of the shapes considered is always equal to 1.

The most famous examples of constant width shapes are the Reuleaux
triangle and more generally, Reuleaux polygons. These shapes are not just
mathematical curiosities, but have various applications [11, Chapter 18].
Reuleaux triangles are used in rotary engine design and square hole drilling
machines, while the twenty pence British coin is a Reuleaux heptagon.

The Reuleaux triangle is defined as the intersection of the disks of ra-
dius 1 centered at the vertices of an equilateral triangle of edge length 1.
Reuleaux polygons can be constructed using a similar procedure as shown
in [21, Section 8.1], for example. It is classical that any constant width
shape can be approximated arbitrarily well with a Reuleaux polygon [21,
Theorem 8.1.1], [16, Chapter 7].

The book Convex Figures by Yaglom and Boltyanskii [16] has a whole
chapter dedicated to such shapes. Results are presented in the form of
exercises with proofs using elementary geometry aspects. Let us recall a
few of these results, relevant to this work.

Proposition 2.1. — A planar shape with constant width 1 has the
following properties:

(i) Any shape of constant width can be approximated arbitrarily well
by Reuleaux polygons having the same width, with respect to the
Hausdorff distance ([21, Theorem 8.1.1]).

ANNALES DE L’INSTITUT FOURIER
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(ii) The interior angle at a corner point in a constant width shape can-
not be less than 2π/3. Moreover, if a constant width curve has an
interior angle equal to 2π/3 then this curve is a Reuleaux triangle
[16, Exercise 7-9]. The presence of a vertex A corresponding to a
corner point of angle β in the boundary of K implies the existence
of a circular arc of radius opposite to A in ∂K of angle π − β. Con-
versely, any circular arc of radius 1 in the boundary corresponds
to a corner point. In particular, any circular arc of radius 1 in the
boundary of K has length or angle measure at most π/3.

(iii) The inscribed and circumscribed disks to a constant width shape
are concentric and the sum of their rays is equal to the constant
width [16, Exercise 7-13].

(iv) The Reuleaux triangle is the curve of constant width with the grea-
test circumradius, therefore having the smallest inradius [16, Exer-
cise 7-14].

(v) The perimeter of curves having constant width 1 is equal to π. In
particular, since any Reuleaux polygon has boundary consisting of
a series of arcs of circles of radii equal to 1, the sum of the subtended
angles of these arcs is equal to π.

(vi) The area of a constant width shape is minimized by the Reuleaux
triangle (Blaschke–Lebesgue theorem) and is maximized by the
disk. Instructive proofs of the last two points are given in the quoted
book, based on circumscribed equiangular polygons [16, Exercise 7-
12].

The Blaschke–Lebesgue theorem asserts that the Reuleaux polygon min-
imizes the area among shapes of fixed constant width. The result is attri-
buted to Blaschke [2] and Lebesgue [20]. Many other proofs strategies have
been used to prove the result, among which we mention [12] using an opti-
mal control formulation and [13] using variational techniques. An overview
of the existing bibliography is given in [21, Theorem 12.1.5]. The results of
this paper give yet another different proof of this result.

In general, Reuleaux polygons are assumed to have an odd number
of arcs. A careful analysis shows that if an even number of arcs are present,
then some consecutive arcs correspond to the same center and can be
merged. A Reuleaux polygon is regular if the centers of the arcs forming
its boundary are the vertices of a regular polygon. In [10] Firey shows that
among Reuleaux polygons with fixed number of arcs, the regular one has
the largest area. The proof, based on estimates related to areas of parallel
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6 Beniamin BOGOSEL

inner sets and convexity arguments, partially inspired some of the methods
used in this paper.

Given a Reuleaux polygon with n = 2k + 1 vertices, its boundary is
made of arcs of circle subtending angles θi, i = 0, . . . , n − 1 which verify∑n−1

i=0 θi = π. Following Proposition 2.1(ii) we also have θi ∈ [0, π/3].

2.2. Disk Polygons

Reuleaux polygons have the particularity that they are convex sets whose
boundaries are made of finitely many arcs of circles of having the same
radius. More precisely, Reuleaux polygons are intersection of disks having
the same radius. For simplicity, in the following, we assume that disks have
radius one unless stated otherwise.

For dealing with inner parallel sets of Reuleaux polygons it is useful to
define an even more general class of convex sets, namely the disk polygons,
as the intersection of a finite number of disks of radius one. This concept
is natural and was introduced previously, for example in [19]. Moreover,
in [1] it was proved that the Reuleaux triangle (which is obviously a disk
polygon) minimizes the area among all disk polygons whose centers are
at distance at most 1 apart. For the purpose of this article, we only need
to investigate disk-polygons which already contain a Reuleaux polygon of
width 1. Basic properties of disk polygons are recalled below.

Consider Ω =
⋂N−1

i=0 Di a disk polygon, where Di are disks of radius one.
Suppose also that every disk contributes to Ω, i.e. the family Di is minimal,
in particular, no disk is duplicated. Denote by Γi, i = 0, . . . , N − 1 the arcs
defining the boundary of D, having lengths θi, respectively. Again, the arcs
Γi, Γj are assumed to belong to different disks if i ̸= j. The arcs Γi have
the extremities at vertices vi, vi+1, where indices are taken modulo n. At
each vertex vi, the arcs Γi, Γi−1 meet with the turning angle βi (the angle
made at vi by the tangent vectors at Γi−1, Γi in the trigonometric sense).
A couple of properties of interest for the sequel of the paper are presented
below.

Proposition 2.2.
(i) The sum of the lengths θi of the arcs Γi and of the turning angles

βi is equal to 2π:
N−1∑
i=0

(θi + βi) = 2π.

ANNALES DE L’INSTITUT FOURIER
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(ii) If Ω is a disk polygon which contains a shape Ω′ of constant width
equal to 1 then:

• The minimal width of Ω is at least 1.
• The perimeter of Ω is at least π:

∑N−1
i=0 θi ⩾ π.

• For every turning angle we have βi ∈ [0, π/3], i = 0, . . . , N .
• The inradius r(Ω) verifies r(Ω) ⩾ r(R) = 3−

√
3

2 , where R is
the Reuleaux triangle of width 1.

Proof.
(i). — It is enough to follow a turning supporting line around Ω. Each

arc Γi turns the line with an angle equal to θi. Each vertex contributes
with the turning angle βi.

(ii). — Any pair of parallel supporting lines to Ω generate a strip con-
taining the constant width shape Ω′. Therefore, the width of any such strip
is at least equal to 1.

The perimeter of convex sets is monotone with respect to inclusion (see
for example [5, Lemma 2.2.2]). Therefore |∂Ω| ⩾ |∂Ω′| = π.

Consider two disks Di, Di−1 containing arcs Γi, Γi−1 meeting at a ver-
tex vi having turning angle βi. Then Ω ⊂ Di ∩Di−1 and the minimal width
of the disk intersection Di ∩ Di−1 is at least equal to one, i.e. their cen-
ters are at distance at least 1 apart. Therefore, the turning angle βi at the
intersection of their boundaries is at most π/3.

The inradius is monotone with respect to inclusion so the last point
follows immediately, since the Reuleaux triangle minimizes the inradius
among shapes with given constant width. □

2.3. A geometrical lemma

Consider a fixed t ∈ (0, (3 −
√

3)/3) and a triangle ∆ABC such that
AB = 1, BC = 1 − t. Denoting with ∠BAC = γ denote α(γ) = ∠CBA

and with h(γ) the distance from C to AB, the height of ∆ABC from the
vertex C. The previous notation emphasizes that given γ, supposing the
lengths of AB, BC fixed and α(γ) acute, the angles α(γ) and the height
h(γ) can be expressed in terms of γ.

Equivalently, consider A at the origin, B with coordinates (1, 0) and
D(1− t) the circle with center B and radius 1− t. The line ℓ(γ) through A,
making an angle γ with AB intersects D(1 − t) at two points, the closest
one to A being C(γ). The largest value γ for which C(γ) is well defined
corresponds to the case where AC(γ) is tangent to D(1 − t), in which case,

TOME 0 (0), FASCICULE 0



8 Beniamin BOGOSEL

γ = arcsin(1 − t). In the application, t is bounded above by the inradius of
the Reuleaux triangle, r(R) = 3−

√
3

3 , which implies 1−t ⩾
√

3/3. Moreover,
in the application we only consider γ ∈ [0, π/6], corresponding to half of
a turning angle (see Propositions 2.1, 2.2). Considering the triangle Y AB

with ∠Y AB = ∠Y BA = π/6, choosing Y in the first quadrant, we observe
that Y A = Y B =

√
3/3. Therefore, D(1 − t) always intersects Y A since√

3/3 ⩽ 1− t ⩽ 1, implying that C(γ) is well defined, assuming γ ∈ [0, π/6]
and t ⩽ (3 −

√
3)/3.

Therefore, we may define

α(γ), h(γ) : [0, π/6] → R

with the properties stated above. See Figure 2.1 for an illustration. The
next geometrical lemma, which is fundamental for the results of the paper,
shows that the dependence of α(γ), h(γ) in γ is convex.

Proposition 2.3. — The applications γ 7→ α(γ) and γ 7→ h(γ) are
strictly increasing and strictly convex. Moreover, we also have α(γ) ⩽ γ for
γ ∈ [0, π/6].

Proof. — Since α(γ) = arcsin h(t)
1−t and arcsin is convex and strictly in-

creasing, it is enough to prove that γ 7→ h(γ) is convex. First, let us observe
that since C(γ) belongs to a fixed circle, the dependence γ 7→ C(γ) is con-
tinuous. As a direct consequence γ 7→ h(γ) is continuous.

Consider 0 ⩽ γ1 < γ2 ⩽ π/6. Then h(γ1), h(γ2) are the parallel sides
of a trapezoid formed by C(γ1), C(γ2) and their projections on AB. Since
γ1 < γ2 it follows at once that AC(γ1) < AC(γ2), since by construction
C(γ2) has both its coordinates greater in absolute value than those of C(γ1).
The line AC( γ1+γ2

2 ) is the bisector of the angle ∠C(γ1)AC(γ2), therefore it
intersects C(γ1)C(γ2) in a point X which is closer to C(γ1) than to C(γ2).
The point C( γ1+γ2

2 ) is the intersection of AX with the circle D(1 − t).
Denoting M the midpoint of C(γ1)C(γ2) and X ′, M ′ the projections of X

and M , respectively, on AB we have

h

(
γ1 + γ2

2

)
⩽ XX ′ < MM ′ = h(γ1) + h(γ2)

2 .

The geometric aspects of the proof are illustrated in Figure 2.1. Since h

is also continuous and increasing it follows that h is convex. The previ-
ous inequality is strict, as soon as γ1 ̸= γ2, therefore h is strictly convex.
In conclusion α = arcsin ◦h are strictly convex and strictly increasing on
[0, π/6].

ANNALES DE L’INSTITUT FOURIER
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A B

C(γ1)

C(γ2)

C(γ1+γ22 )

M

M ′

X

X ′

D(1− t)

α(γ2)γ2

h(γ1) h(γ2)h(γ1+γ22 )

h(γ1)+h(γ2)
2

Figure 2.1. Configuration corresponding to Proposition 2.3: geometric
proof of the convexity of the application γ 7→ h(γ).

The inequality α(γ) ⩽ γ follows directly from γ ∈ [0, π/6] and 1 − t ⩾√
3/3. This implies that C(γ) is closer to A than B in the triangle AY B,

defined previously. □

Remark 2.4. — The configuration of triangle ABC(γ) in Proposition 2.3
allows the explicit computation of α(γ) in terms of γ and t. Indeed, straight-
forward computations give AC(γ) = cos γ −

√
(1 − t)2 − sin2 γ, h(γ) =

AC(γ) sin γ and α(γ) = arcsin
(

h(γ)
1−t

)
.

3. Areas and perimeters of inner parallel sets

The Reuleaux triangle R of width 1 minimizes the area at fixed constant
width 1. It is natural to conjecture that the same happens for areas of
inner parallel sets. Denote by Ω−t the inner parallel set at distance t from
the boundary of Ω, as recalled in (1.1). Supposing that Ω has constant
width equal to 1 here are some well known facts for the extremal cases
t ∈ {0, r(R)} where r(K) denotes the inradius of K.

• t = 0: in view of Blaschke–Lebesgue theorem the area of Ω0 is equal
to the area of Ω and is minimal for the Reuleaux triangle.

• t = r(R): it is known that the Reuleaux triangle minimizes the inra-
dius (see [16]) among shapes with fixed constant width. Therefore
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10 Beniamin BOGOSEL

the inradius of Ω is at least equal to r(R), showing that Ω−r(R) is
well defined and non-degenerate. Choosing t = r(R) equal to the
inradius of the Reuleaux triangle of width 1, obviously |Ω−r(R)| ⩾
|R−r(R)| = 0.

In the following, we show that the result holds for all inner parallel sets.
First, it is shown that the perimeter of inner parallel sets is minimized by
the Reuleaux triangle.

Theorem 3.1. — Suppose Ω has constant width equal to 1. Given t ⩾ 0,
the perimeter of the inner set |∂Ω−t| is minimal when Ω is the Reuleaux
triangle R of width 1. If for some fixed t > 0 the equality |∂Ω−t| = |∂R−t|
holds, then Ω = R.

Proof. — Any constant width shape can be approximated arbitrarily well
by a Reuleaux polygon (see Proposition 2.1). Therefore, we prove the result
for the case of Reuleaux polygons and the general result will follow by a
density argument. All constant width shapes are supposed to have width 1
in the following.

Step 1: Structure of the inner parallel sets for a Reuleaux polygon. —
Any Reuleaux polygon has an odd number of sides n = 2k + 1 ⩾ 3. In
the following the indices are taken modulo n. Following the description
in [10], we represent a Reuleaux polygon Ω as an intersection of n disks
D0, . . . , Dn−1 of radius 1 centered at points C0, . . . , Cn−1. Moreover, the
inner parallel set Ω−t = {x ∈ Ω : d(x, ∂Ω) ⩾ t}, defined for t ⩾ smaller
than the inradius of Ω, is exactly the intersection of the disks D0(1 − t),
. . . , Dn−1(1 − t) of radius 1 − t centered at the same points C0, . . . , Cn−1.
We would like to be able to compute or estimate the perimeter of the inner
parallel set Ω−t in terms of the geometry of Ω. At a first sight, we notice
that ∂Ω−t is a union of arcs of circles Γi(1 − t) of radii (1 − t) centered
at Ci. However, the number of arcs and the way their length is computed
may change with t as underlined below.

For t small enough, the vertices of ∂Ω−t lie on the bisector lines corres-
ponding to the vertices of the Reuleaux polygon Ω, since these vertices lie
at equal distance from adjacent arcs in the boundary. Therefore, if any two
adjacent bisector lines meet before reaching the incenter (the center of the
inscribed disk), the corresponding arc vanishes in ∂Ω−.

Let us consider the following iterative process, using the notion of disk-
polygons introduced in Section 2.2. At every step k of the iterative process,
we will keep track of a set of indices Ik ⊂ {0, . . . , n − 1} corresponding to

ANNALES DE L’INSTITUT FOURIER
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Figure 3.1. Examples of inner parallel sets. Left: the regular Reuleaux
pentagon has all its inner parallel sets regular. Right: illustration of the
algorithm in Step I. Each time two bisectors meet, an edge disappears
in the inner parallel set.

the disks appearing in the definition of the Reuleaux polygon which will
define some disk-polygon.

• Initialization: Initialize Ω0 = Ω, t = 0, k = 0, I0 = {0, 1, . . . , n − 1}.
• Iteration k: Increase t until two adjacent bisectors of Ωk meet. If

the incenter is reached then stop. Otherwise, one arc Γi(1 − t) of
Ωk

−t (which coincides with Ω−t) is reduced to a point. Remove the
corresponding disk Di from the definition of Ωk and define Ik+1 =
Ik \ {i}, Ωk+1 =

⋃
i ∈ Ik+1

Di.
Of course, Ωk

−t is also a inner parallel set of Ωk+1, since the
vanishing arc Γi(1 − t) has no correspondent in the boundary of
Ωk+1.

If more than one arc vanishes at a given t then remove all corre-
sponding disks from the definition of Ωk.

The previously defined iterative process ends when the incenter is reached
and it has a finite number of steps, since there are finitely many disks
involved in the definition of the initial Reuleaux polygon Ω. For example,
in the case of a regular Reuleaux polygon, the initialization is enough to
reach the incenter, by symmetry. In general situations, multiple iterations
may be needed. See Figure 3.1 for an illustration.

The previous construction is needed because we will be able to com-
pute explicitly the perimeter of the inner parallel set associated to a disk-

TOME 0 (0), FASCICULE 0



12 Beniamin BOGOSEL

polygon Ωk only in the initial phase, before any two consecutive bisectors
of Ωk meet. We call these inner parallel sets regular, as in the computations
related to polygons in [18].

At the end of the iterative process, we have an increasing family of disk-
polygons (w.r.t. inclusion), all containing the initial Reuleaux polygon Ω,
such that all inner parallel level sets Ω−t are among regular inner parallel
sets of some disk-polygon Ωk. More precisely, there exist real numbers
0 < t1 < · · · < tM such that:

• Ω−t is regular for Ω0 = Ω for t ∈ [0, t1]
• Ω−t is regular for Ω1 for t ∈ [t1, t2]
• Ω−t is regular for Ω2 for t ∈ [t2, t3], etc.

The method presented implies that for any t ∈ [0, r(Ω)] there exists a disk-
polygon Ω′ ⊃ Ω such that Ω−t = Ω′

−t and Ω′
−t is a regular inner parallel

set in Ω′.

Step 2: Computing the perimeter of a regular inner parallel set of a disk-
polygon. — Consider a disk-polygon Ω =

⋂N−1
i=0 Di, where Di are disks of

radius 1, whose boundary is made of arcs having measures θi and turning
angles βi, i = 0, . . . , N − 1. Following the description in Section 2.2 and
Proposition 2.2 we have

∑N−1
i=0 (θi + βi) = 2π.

Consider t∗ > 0 such that for t ∈ [0, t∗] no two consecutive angle bisectors
of Ω meet. Therefore, for t ∈ [0, t∗] the inner parallel set Ω−t of the disk-
polygon Ω is regular.

Suppose that Ω is one of the disk-polygons Ωk derived in Step I. Then Ωk

contains the constant width shape Ω, the initial Reuleaux polygon. Thus,
following Proposition 2.2 the perimeter of Ωk is larger than π and we have∑N−1

i=0 θi ⩾ π, implying that
∑N−1

i=0 βi ⩽ π. Moreover, since Ωk has minimal
width at least equal to 1, we have βi ∈ [0, π/3] for all i = 0, . . . , N − 1.

Given an arc Γi on the boundary of Ω we compute its contribution to the
boundary of Ω−t. Consider Si the circular sector having angle θi and center
Ci associated to Γi determined by Γi and the normals and its endpoints
vi, vi+1. The angle bisectors of Ω at vi and vi+1 are contained in Si and make
angles βi/2, βi+1/2, respectively, with the rays of the sector. See Figure 3.2.

Given t ∈ [0, t∗], denote by wi, wi+1 the intersection of the bisectors at
vertices vi, vi+1 with the circle of center Ci and radius 1 − t. Denote by
zi, zi+1 the intersections of the same circle with the boundary rays of the
sector Si. See Figure 3.2 for an illustration. Note that triangles shaded tri-
angles in Figure 3.2 have the same configuration as in Figure 2.1 and Propo-

ANNALES DE L’INSTITUT FOURIER



BLASCHKE–LEBESGUE THEOREM FOR THE CHEEGER CONSTANT 13

sition 2.3. More precisely ∆viCiwi ≡ ∆ABC(βi/2) and ∆vi+1Ciwi+1 ≡
∆ABC(βi+1/2). Then the contribution of Γi to the perimeter of Ω−t is
equal to

|>wiwi+1| = |>zizi+1|−|>wizi|−|>wi+1zi+1| = (1−t)
(
θi−αt(βi/2)−αt(βi+1/2)

)
,

where the function αt is the one defined in Proposition 2.3 and explicited
in Remark 2.4.

vivi+1
Γi

θi

Ci

wi+1 wi
zizi+1

βi

βi+1

Figure 3.2. Computation of the perimeter of a regular inner parallel set
for a disk-polygon. The shaded triangles have the same configuration
as ∆ABC(γ) in Proposition 2.3 and Figure 2.1.

Thus, we obtain that for all t ∈ [0, t∗] we have

(3.1) |∂Ω−t| = (1 − t)
(

N−1∑
i=0

θi − 2
N−1∑
i=0

αt(βi/2)
)

.

Note that the function αt defined in Proposition 2.3 is convex on [0, π/6],
increasing and depends implicitly on t. Moreover, we work with t ⩽ r(R) =
3−

√
3

3 (the inradius of the Reuleaux triangle of width 1).
In the case of regular Reuleaux polygons, in particular for the Reuleaux

triangle, all inner parallel sets are regular, since the angle bisectors meet at
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the incenter, because of the symmetry. Therefore, if Ω is a regular Reuleaux
polygon, for all t ⩽ r(Ω) we have

(3.2) |∂Ω−t| = (1 − t)
(

π − 2nαt

( π

2n

))
,

where we used the fact that θi = βi = π/n.
Step 3: Optimality of the Reuleaux triangle via convexity arguments.

For t ∈ [0, t∗] we define the convex and strictly increasing function (see
Proposition 2.3)

(3.3) f : [0, π/3] → R, f(β) = 2αt(β/2).

For fixed t and a fixed disk-polygon defined as in the previous step, there
exists ε ∈ [0, π] such that

∑N−1
i=0 θi = π + ε and

∑N−1
i=0 βi = π − ε. Thus,

(3.1) becomes

(3.4) |∂Ω−t| = (1 − t)(π + ε) − (1 − t)
n−1∑
i=0

f(βi).

Consider the maximization problem

(3.5) M(ε) = max[f(β0) + f(β1) + · · · + f(βN−1)] such that
βi ∈ [0, π/3], i = 0, . . . , N − 1, β0 + · · · + βN−1 = π − ε.

Since f is convex and C1 on [0, π/3], if a < b ∈ (0, π/3), the function
g(t) = f(a − t) + f(b + t) is strictly increasing in a neighborhood of 0.
Indeed, we have

g′(t) = f ′(b + t) − f ′(a − t) > 0,

since f ′ is strictly increasing. Therefore if t > 0 is small enough, replacing
(a, b) with (a − t, b + t) preserves the constraints and increases the value
of the objective function. Furthermore, we can choose t such that either
a − t = 0 or b + t = π/3. Therefore, a maximizer for (3.5), which exists
by classical compactness arguments, has at most one βi ∈ (0, π/3) and all
other bj for j ̸= i belong to {0, π/3}. Moreover, the maximal value M(ε) is
clearly strictly decreasing in ε since f defined in (3.3) is strictly increasing.
Thus M(ε) ⩽ M(0) = 3f(π/3).

Therefore, (3.4) and the previous considerations related to problem (3.5)
imply

(3.6) |∂Ω−t| ⩾ (1−t)(π+ε)−(1−t)M(ε) ⩾ (1−t)(π−3f(π/3)) = |∂R−t|.

Thus, for the given t the Reuleaux triangle has a smaller perimeter than
|∂Ωt|.
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To conclude, given t ⩽ r(R) any inner parallel set of a Reuleaux polygon
is a regular inner parallel set of a disk-polygon containing it, described
in Step 1. Computing its perimeter as shown in Step 2 and using the esti-
mate in Step 3 shows that |∂Ω−t| ⩾ |∂R−t|. Using the density of Reuleaux
polygons in the class of constant width shapes (see Proposition 2.1) gives
the same estimate for a general shape having constant width 1.

If for some t > 0 we have |∂Ω−t| = |∂R−t|, then equality holds in (3.6).
Therefore ε = 0 and (βi)n−1

i=0 must solve (3.5), which shows that the turning
angles βi correspond to a Reuleaux triangle. □

Now we are ready to prove a similar result for the areas of the inner
parallel sets.

Theorem 3.2. — Suppose Ω has constant width equal to 1. Given t ∈
[0, r(R)], the area of the inner set |Ω−t| is minimal when Ω is the Reuleaux
triangle R of width 1. If for some fixed t ⩾ 0 the equality |Ω−t| = |R−t|
holds, then Ω = R.

Proof. — We suppose that Ω is a Reuleaux polygon whose edges are
arcs of circles of radius 1 centered in Ci and having arc measures θi, i =
1, . . . , k. Of course, we have the well known property

∑k
i=1 θi = π (see

Proposition 2.1).
Denote by AΩ(t) = |Ω−t| the area and PΩ(t) = |∂Ω−t| the perimeter of

the inner parallel set at distance t. One can see that changing t induces
a normal movement of the boundary with uniform speed. Recall that the
shape derivative of the area is given by |ω|′(V ) =

∫
∂ω

V · n, where n is
the outer normal. This is classical and can be found, for example, in [23,
Section 2.5], [15, Chapter 5]. In the case of inner parallel sets of Reuleaux
polygons, direct computations can be made like in [10]. Therefore, classical
shape derivative formulas imply that A′

Ω(t) = −PΩ(t).
Let r = r(R) be the inradius of the Reuleaux triangle of width 1, which is

minimal among shapes of constant width. Thus, for t ⩾ r the inner parallel
set Ω−t is non-trivial. Moreover, from Theorem 3.1 we have PΩ(t) ⩾ PR(t),
which gives

A′
Ω(t) = −PΩ(t) ⩽ −PR(t) = A′

R(t).

Therefore t 7→ AΩ(t) − AR(t) is decreasing. Comparing values in t ⩽ r we
obtain

(3.7) AΩ(t) − AR(t) ⩾ AΩ(r) − AR(r) = AΩ(r) ⩾ 0.

Using the density of Reuleaux polygons in the class of constant width
shapes (see Proposition 2.1) finishes the proof.
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If for some t ⩾ 0 we have AΩ(t) = AR(t) then (3.7) implies that
AΩ(r) = 0, i.e. the inradius of Ω smaller or equal to the inradius of the
Reuleaux triangle. This implies Ω = R. □

Corollary 3.3 (Blaschke–Lebesgue theorem). — Applying Theo-
rem 3.2 for t = 0 shows that the Reuleaux triangle minimizes the area
among shapes of constant width.

Proof. — The result is obvious from Theorem 3.2. Nevertheless, we must
underline that the Blaschke–Lebesgue theorem was not used in any of the
preceding results. We only used the minimality of the inradius for the
Reuleaux triangle, which is proved directly, via classical geometry argu-
ments in [16, Exercise 7-14], for example. □

Remark 3.4. — Corollary 3.3 shows that, in a certain sense, the mini-
mality of the inradius for the Reuleaux triangle among shapes of constant
width is a stronger result which implies the Blaschke–Lebesgue theorem,
when combined with the previous independent results shown in the paper.

Remark 3.5. — Theorem 3.2 can also be deduced from the results of [1]
where it is shown that if Ω is a disk-polygon made with disks of unit radius
whose centers are at distance at most d ∈ [1,

√
3] apart, then |Ω| ⩾ ∆(d),

where ∆(d) is the disk polygon obtained putting the centers at the vertices
of an equilateral triangle of side d.

Rescaling we find that the vertices of a disk polygon with disks having
rays r ∈ [

√
3

3 , 1] whose centers are at distance at most 1 apart, the same
result holds, comparing the inner parallel areas of a Reuleaux polygon and
the Reuleaux triangle.

4. Blaschke–Lebesgue Theorem for Cheeger sets

For a bounded and convex domain Ω, the associated Cheeger constant
is defined by

(4.1) h(Ω) = min
E ⊂ Ω

|∂E|
|E|

,

where |∂E| denotes the perimeter of the set E, which may be assumed
convex when Ω is convex. This notion was introduced by Cheeger in [8]
in order to give a geometric lower bound for the first eigenvalue of the
Dirichlet Laplacian. The Cheeger constant, although defined using geo-
metric quantities in (4.1), can be interpreted as the first eigenvalue of the
1-Laplacian [17].
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For convex planar domains Lachand-Robert and Kawohl show in [18]
that h(Ω) can be characterized using areas of parallel inner sets. Indeed,
we have

(4.2) h(Ω) = 1/t, where |Ω−t| = πt2.

Recently, in [4] the minimization of the eigenvalues of the Dirichlet–
Laplace operator was studied for domains having a diameter constraint.
The optimal shapes are shapes of constant width. The maximization of the
eigenvalues of the Dirichlet–Laplace operator also makes sense in the class
of shapes of constant width (see [3, Section 4.2]). Numerical simulations
shown in [3, Section 4.2] indicate that the Reuleaux triangle is likely to be
the constant width shape which maximizes these eigenvalues. For now, no
proof of this fact is known, as recalled in [14, Section 5]. This fact is further
motivated by the fact that the first eigenvalue of the ∞-Laplacian, which
is the inverse of the inradius, is also maximized by the Reuleaux triangle.

It is natural, therefore, to conjecture that the Cheeger constant is maxi-
mized by the Reuleaux triangle, in the class of shapes of constant width.
This result was proved recently in [14] using techniques from shape opti-
mization, notably the optimality condition verified by a minimizer.

The proof given below is quite straightforward, following the characteri-
zation (4.2) and the result of Theorem 3.2. The existence of constant width
shapes maximizing the Cheeger constant is straightforward due to classi-
cal compactness arguments among convex sets and the continuity of the
Cheeger constant. The proof given below is, however, based only on a direct
comparison with the Reuleaux triangle.

Theorem 4.1 (Blaschke–Lebesgue Theorem for the Cheeger constant).
The Reuleaux triangle R maximizes h(Ω) when Ω has fixed constant width.
Moreover, R is the unique maximizer.

Proof. — Let h(Ω) = 1/t be the Cheeger constant of the constant width
shape Ω. Then |Ω−t| = πt2, in view of (4.2). If R denotes the Reuleaux tri-
angle of the same width, then Theorem 3.2 shows that |R−t| ⩽ |Ω−t| = πt2.

Consider now the Cheeger constant h(R) = 1
t∗ of the Reuleaux triangle

R. Then (4.2) gives |R−t∗ | = π(t∗)2.
Recall that the areas of parallel sets t 7→ |R−t| are strictly decreasing for

t ∈ [0, r(R)] while t 7→ πt2 is strictly increasing. The value of t for which
the two functions are equal is precisely t∗. However, since |R−t| ⩽ πt2,
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we find that t must lie in the region where |R−t| is below πt2, i.e.
t ⩾ t∗. See the illustration in Figure 4.1. This shows that

h(R) = 1
t∗ ⩾

1
t

= h(Ω).

Figure 4.1. Left: graphical representation for areas of inner parallel
sets of the unit Reuleaux triangle R versus the graph of t 7→ πt2.
The x-coordinate t∗ of the point of intersection is the inverse of the
Cheeger constant h(R). The graph gives a geometrical proof of the
implication πt2 ⩾ |R−t| =⇒ t ⩾ t∗. Right: graphical representation of
a few parallel inner sets of R.

If h(R) = h(Ω) then, following the inequalities shown above, we find that
|R−t| = |Ω−t|, which according to Theorem 3.2 implies that Ω = R. □
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