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COUNTER-EXAMPLES TO A CONJECTURE OF
KARPENKO FOR SPIN GROUPS

by Sanghoon BAEK & Rostislav DEVYATOV (*)

Abstract. — Consider the canonical morphism from the Chow ring of a smooth
variety X to the associated graded ring of the topological filtration on the Grothen-
dieck ring of X. In general, this morphism is not injective. However, Nikita Kar-
penko conjectured that these two rings are isomorphic for a generically twisted flag
variety X of a semisimple group G. The conjecture was first disproved by Nobuaki
Yagita for G = Spin(2n + 1) with n = 8, 9. Later, another counter-example to the
conjecture was given by Karpenko and the first author for n = 10. In this note,
we provide an infinite family of counter-examples to Karpenko’s conjecture for any
2-power integer n greater than 4. This generalizes Yagita’s counter-example and
its modification due to Karpenko for n = 8.

Résumé. — Considérons le morphisme canonique de l’anneau de Chow d’une
variété lisse X à l’anneau gradué associé à la filtration topologique sur l’anneau
de Grothendieck de X. En général, ce morphisme n’est pas injectif. Cependant,
Nikita Karpenko a supposé que ces deux anneaux sont isomorphes pour une variété
de drapeaux génériquement tordue X d’un groupe semi-simple G. La conjecture
a été réfutée pour la première fois par Nobuaki Yagita pour G = Spin(2n + 1)
avec n = 8, 9. Plus tard, un autre contre-exemple à la conjecture a été donné par
Karpenko et le premier auteur pour n = 10. Dans cette note, nous fournissons une
famille infinie de contre-exemples à la conjecture de Karpenko pour tout entier n
égal à une puissance de 2 et supérieur à 4. Ceci généralise le contre-exemple de
Yagita et sa modification due à Karpenko pour n = 8.

1. Introduction

For a smooth variety X over a field k, let CH(X) and K(X) denote the
Chow and Grothendieck rings of X, respectively. Consider the associated
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2 S. BAEK & R. DEVYATOV

graded ring GK(X) of K(X) with respect to the topological filtration, i.e.,

GK(X) =
dim X⊕

i=0
K(X)(i)/K(X)(i+1),

where K(X)(i) denotes the ith term of the topological filtration of K(X).
The canonical morphism

(1.1) φ : CH(X) −→ GK(X)

sending the class of a closed subvariety of X in CHi(X) to the class of
its structure sheaf in K(X)(i)/K(X)(i+1), is surjective but not injective in
general. By Riemann–Roch theorem, for all i ⩾ 1, the kernel of the ith

homogeneous component

φi : CHi(X) −→ GKi(X) := K(X)(i)/K(X)(i+1)

is annihilated by (i− 1)!. Hence, the morphism φ becomes an isomorphism
after tensoring with Q. In particular, if X is a flag variety, that is, the quo-
tient G/P of a split semisimple group G by a parabolic subgroup P , then
φ is an isomorphism as CH(X) is torsion-free. In [6], Nikita Karpenko con-
jectured that the morphism φ is still injective for a generic flag variety X,
namely:

Conjecture 1.1. — The morphism in (1.1) is injective for a generic
flag variety X = E/P of a split semisimple group G, where E denotes
a generic G-torsor given by the generic fiber of a G-torsor GL(N) →
GL(N)/G induced by an embedding of G into a general linear group GL(N)
for some N ⩾ 1 and P denotes a parabolic subgroup of G.

This conjecture has been verified in a number of cases, including sim-
ple groups G of type A and C (see [7, Theorem 1.2]), special orthogonal
groups G, the simply connected groups G of type G2, F4, and E6 (see [6,
Theorem 3.3]).

Now we consider the split spin group G = Spin(N) of a non-degenerate
quadratic form of dimension N over a field k. Let P denote a maximal
parabolic subgroup whose conjugacy class is obtained by the subset of the
Dynkin diagram of G corresponding to removing the last vertex. Then,
a generic G-torsor E gives rise to an N -dimensional generic quadratic
form q whose discriminant and Clifford invariant are trivial. The generic
flag variety X = E/P becomes a maximal orthogonal grassmannian of q.
By [1, Proposition 2.16], Conjecture 1.1 with N = 2n + 1 is equivalent to
the same conjecture with N = 2n + 2. Thus, in this paper, we shall only
consider the maximal orthogonal grassmannian X with N = 2n+ 1.

ANNALES DE L’INSTITUT FOURIER



COUNTER-EXAMPLES TO A CONJECTURE OF KARPENKO 3

Conjecture 1.1 holds for 1 ⩽ n ⩽ 5 (see [8]). On the other hand, the
conjecture was first disproved for n = 8, 9 by Yagita [15]. Later, the counter-
examples due to Yagita were extended to n = 8, 9, 10 over the base field
of arbitrary characteristic in [1, 10]. In the present paper, we generalize
the proof for n = 8 due to Karpenko and construct an infinite family of
counterexamples over a field of any characteristic:

Theorem 1.2. — Let n ⩾ 8 be a power of 2 and let X be the max-
imal orthogonal grassmannian of a generic n-dimensional quadratic form
with trivial discriminant and Clifford invariant. Then, the canonical epi-
morphism φ : CH(X) → GK(X) is not injective.

For each 2-power n ⩾ 8, we construct an explicit element x ∈ CH(X)
(see (4.3) below), which is not divisible by 2 in CH(X), but φ(x) is divisible
by 2 in GK(X). In the following part of introduction, we sketch the proof
that x has these properties and provide some ideas behind the construction
of such an element x. The detailed proof is given in later Sections 3 and 4.

First, by [8, Proposition 2.1] the Chow ring CH(X) is generated by the
Chern classes c(1), . . . , c(n) and an additional element e ∈ CH1(X) (see
Section 2.3). Since the Chern classes satisfy the relations ([9, Theorem 2.1]):

(1.2) c(i)2 = (−1)i+12c(2i) + 2
i−1∑
k=1

(−1)k+1c(i− k)c(i+ k),

we can rewrite any polynomial in c(i) as a square-free polynomial. Hence,
together with relation c(1) = 2e, it suffices to consider an element x of the
form

(1.3) x = es
∏

j ∈ J

c(j) ∈ CHl(X), where s ⩾ 0 and J is a subset of [2, n]

for some l ⩾ 1 or a linear combination of elements of this form. In this
note, we focus on an element of the form (1.3).

In the proof of non-2-divisibility of x, we make use of the degree map deg :
CH(X) → Z and the Steenrod operation S on Ch(X) := CH(X)/2 CH(X)
following [1, 10]. In general, it is quite difficult to check the divisibility of
an element in CH(X). However, the exact value of the index indX (i.e., the
torsion index of Spin(2n + 1)) of X is available. Let r = dimX = n(n+1)

2 .
Then

indX = 2m, where m = n− ⌊log2(1 + r)⌋ or m = n− ⌊log2(1 + r)⌋ + 1

(depending on n, see [14] for details). In particular, if n is a power of 2,
then the second formula for m holds. So, it is often possible to determine

TOME 0 (0), FASCICULE 0



4 S. BAEK & R. DEVYATOV

the non-divisibility of an element in CH0(X) = CHr(X) by 2. Namely,
since the image of the degree map is equal to 2mZ, we get a well-defined
homomorphism 2−m deg : Ch(X) → Z/2Z. Moreover, non-2-divisibility of
an element x of the form (1.3) immediately follows from the non-triviality
of the image S(x) under the map 2−m deg, where x denote the image of
x in Ch(X). Here, the use of Steenrod operations gives us more flexibility
to find such an element x that is non-divisible by 2, while φ(x) is divisible
by 2: using Steenrod operations, one can try to find such an element x in
an arbitrary graded component of CH(X).

The degree map is determined by the restriction map res : CH(X) →
CH(X), where X denotes the base change of X to an algebraic closure of
k. Hence, to show 2−m deg(S(x)) ̸= 0, it suffices to prove that

(1.4) the image of an integral representative x′ of S(x) under the
restriction map is congruent to 2mp modulo 2m+1,

where p denotes the class of a rational point. In fact, the congruence rela-
tion (1.4) is the key step for the proof of non-2-divisibility of x. For each
2-power n ⩾ 8, this is proven in Proposition 3.10 by considering the element
x of the form (1.3), where l = r − 3, s = n( n

4 − 1) + n− 1, and

J =
([

2, n4 + 1
]

∪
[

3n
4 − 1, n− 1

])
\
(
{5} ∪

{
2i
∣∣ 2 ⩽ i ⩽ log2(n) − 2

})

as in (4.1).
From the formula (2.20) ignoring the quadratic part and (2.21), we can

find an integral representative x′, which is a sum of elements of the same
form as in (1.3), but with various numbers s′ ⩾ n( n

4 − 1) + n − 1 instead
of s, and with various multi-subsets J ′ of [2, n] with |J | = |J ′| instead
of J . Then, we check the divisibility of res(x′) ∈ CH(X) by 2. The Chow
ring CH(X) is generated by the special Schubert classes e(1), . . . , e(n) with
the relations (2.18) and the generators c(i) and e of CH(X) map to 2e(i)
and e(1) in CH(X), respectively, under the restriction map. Note that the
relation (2.18), as well as its powers, become simpler if considered modulo
powers of 2, which makes it easier to check the non-divisibility of an element
of CH0(X) by a power of 2 compared to non-divisibility by other numbers.

Since e(1)n ≡ e( n
2 )2 mod 4 (here we use the assumption that n is a

power of 2), a direct calculation using a multinomial expansion of the

ANNALES DE L’INSTITUT FOURIER



COUNTER-EXAMPLES TO A CONJECTURE OF KARPENKO 5

( n
4 − 1)th power of the right-hand side of (2.18) with i = n

2 yields that

(1.5) e(1)n( n
4 −1)

≡ −
(n

4 − 1
)
e(n) · 2 n

4 −2

n
2 −1∑
k=1

e
(n

2 − k
)
e
(n

2 + k
)n

4 −2

mod 2 n
2 −log2(n),

and e(1)n( n
4 −1) ≡ 0 mod 2 n

2 −log2(n)−1 (see Lemma 3.3).
As for each J ′ above we have |J ′| = |J | = n

2 − log2(n) + 3, and m =
n− 2 log2(n) + 2, we see that each summand of res(x′) becomes a multiple
of 2m. Now, to conclude the proof, a careful computation is required to see
from which multi-subsets J ′ (and for which exponents s′) an extra multiple
of 2 arises. This is done in Corollary 3.9 by multiplying (1.5) by the Chern
classes with indexes in [ 3n

4 − 1, n− 1], in Proposition 3.10, in Remark 3.11,
and in Lemma 4.3.

Now, to show that φ(x) is divisible by 2 in GK(X), we use the Rees ring
K̃(X) and its ideal I(X) generated by 2 and t that are surjectively mapped
onto GK(X) and 2GK(X), respectively, by the map ξ (see Section 2.2).
Since x is of the form (1.3), by (2.16) and Lemma 2.2, we have a standard
preimage w of φ(x) in K̃(X) under ξ. By replacing the Chern classes c(i)
in w with the element 2e(i) − te(i+ 1) (see Lemma 2.1), we obtain another
preimage y ∈ K̃(X) of φ(x) under ξ (i.e., ξ(y) = ξ(w) = φ(x)) and show
y ∈ I(X).

In order to prove y ∈ I(X), we view y as contained in K̃(X) via the
embedding K̃(X) ⊂ K̃(X) and adopt an inductive argument as in [1, 10].
For any integers l with m > r − l ⩾ 0 and j ⩾ 1, write

K̃l(X) ∩ I(X)m+j

= 2m+jK̃l(X) + 2m+j−1tK̃l+1(X) + · · · + 2m+j+l−rtr−lK̃r(X).

Then, by the restriction-corestriction formula, indX · I(X) ⊂ I(X) (see
(2.10)). Hence, if j < r − l, we have modulo I(X):

K̃l(X) ∩ I(X)m+j

≡ 2m−1tj+1K̃j+1(X) + 2m−2tj+2K̃j+2(X) + · · · + 2m+j+l−rtr−lK̃r(X).

For j = r − l, we simply get K̃l(X) ∩ I(X)m+r−l ⊂ I(X).

TOME 0 (0), FASCICULE 0



6 S. BAEK & R. DEVYATOV

In the proof of Theorem 1.2, we consider the case l = r−3 and y ∈ K̃l(X)
so that by (2.5) we get three congruence equations:

K̃r−3(X) ∩ I(X)m+1 ≡ Z · (2m−1l)ur−3 + Z · (2m−2p)ur−3 mod I(X),

K̃r−3(X) ∩ I(X)m+2 ≡ Z · (2m−1p)ur−3 mod I(X),

and K̃r−3(X) ∩ I(X)m+3 ⊂ I(X), where p and l denote the classes of a
point and a line in K(X). If the generators (2m−1l)ur−3 and (2m−2p)ur−3

are contained in I(X) + I(X)m+2, then

K̃r−3(X) ∩ I(X)m+1 ⊂ K̃r−3(X) ∩ (I(X)m+2 + I(X))

⊂ K̃r−3(X) ∩ (I(X)m+3 + I(X)) ⊂ I(X).
(1.6)

In addition, if y is contained in I(X)m+1, then by (1.6) we conclude that
y ∈ I(X).

Alternatively, if (2m−1l)ur−3, (2m−2p)ur−3 ∈ I(X), then we could
immediately conclude that

(1.7) K̃r−3(X) ∩ I(X)m+1 ⊂ I(X).

Consequently, the proof of 2-divisibility of φ(x) is based on two main
ingredients. The first one is to check that y is contained in I(X)m+1 (or a
higher power of I(X)), which is proven in Proposition 3.7(a). This part is
similar to the proof, as mentioned above, of the divisibility of each summand
of res(x′) ∈ CH(X) by 2m. Indeed, some parts of the proof for res(x′) even
directly follow from the proof for y because of a surjective morphism (2.11)
from K̃(X) to CH(X).

The second ingredient is to show that some product of the class of a
line or a point by a strict divisor of the torsion index is contained in
I(X) + I(X)m+2 i.e., in our case (2m−1l)ur−3, (2m−2p)ur−3 ∈ I(X) +
I(X)m+2. This is proven in Proposition 3.7(b) by slightly modifying y

into an element z ∈ K̃r−3(X), which is congruent to (2m−2l)ur−3 modulo
I(X)m+1. As an additional consequence of Proposition 3.7(b), we indeed
have (2m−1l)ur−3, (2m−2p)ur−3 ∈ I(X) (see Remark 4.2). Therefore, we
obtain (1.6) and (1.7).

In this note, we focus on values of n that are powers of 2. This choice is
advantageous for some arguments, such as the congruence relation f(1)n ≡
f(n) mod I(X) given by (2.15) and the property that the factorial ( n

4 )!
is significantly more divisible by powers of 2 than ( n

4 − 1)!. However, the
restriction to powers of 2 is not always necessary for all arguments. We ex-
pect that the arguments requiring n to be a power of 2 can be extended to

ANNALES DE L’INSTITUT FOURIER



COUNTER-EXAMPLES TO A CONJECTURE OF KARPENKO 7

other values of n, and we plan to present generalizations in future publica-
tions, using examples from [14] of elements of CH(X) of top degree (i.e., of
dimension 0) that become divisible by indX but not by 2 indX in CH(X).

So, throughout this note, n is a power of 2 and is bigger than 4. We
denote the integer interval {a, a+ 1, . . . , b} by [a, b] for any a ⩽ b. If b < a,
then [a, b] denotes the empty set.

2. Grothendieck and Chow rings of orthogonal
grassmannians

Throughout this paper, let X denote the maximal orthogonal grassman-
nian (i.e., the variety of n-dimensional totally isotropic subspaces) of a
generic (2n + 1)-dimensional quadratic form q of trivial discriminant and
Clifford invariant. The index of X, denoted by indX, is defined as the
greatest common divisor of the degrees of closed points on X. Indeed, the
index of X is equal to the torsion index of Spin(2n+1), which is computed
as follows (see [14]):

(2.1) indX = 2n−2v(n)+2,

where n is a power of 2 and v(n) denotes the exponent of 2 in n.

2.1. Grothendieck ring of orthogonal grassmannians

Let X denote X over an algebraic closure of k. In general, since K(X) is
torsion-free [12, Theorem 4.2], the ring K(X) is identified with a subring
of K(X). As the Clifford invariant of q is trivial, by [5, Lemma 4.1], [12],
we have an isomorphism

(2.2) K(X) = K(X).

The restriction map K(X)(i) → K(X)(i) is injective so that we view it as
an inclusion:

(2.3) K(X)(i) ⊂ K(X)(i)

for any i ⩾ 1. In particular, we have K(X)(1) = K(X)(1). On the other
hand, it follows by a restriction-corestriction argument that

(2.4) indX ·K(X)(i) ⊂ K(X)(i)

for i ⩾ 1.

TOME 0 (0), FASCICULE 0



8 S. BAEK & R. DEVYATOV

Write c(i) ∈ K(X)(i) for the K-theoretic Chern class of the dual of the
(rank n) tautological vector bundle T on X. Note that c(i) = 0 for i > n.
Let Y denote the quadric Y of q over an algebraic closure of k. We write
e(i) ∈ K(X)(i) for the image of the class of a projective (n− i)-dimensional
subspace ln−i on Y under the composition (π1)∗ ◦ (π2)∗ of the projective
bundle π1 : P → X given by the tautological vector bundle on X and the
projection π2 : P → Y . We also set e(i) = 0 for i > n. Then, the following
relations hold.

Lemma 2.1 ([1, Lemma 2.12]). — For any i ⩾ 0, the element

2e(i) − e(i+ 1) − c(i)

is a sum of monomials in c(1), . . . , c(n) of degrees greater than or equal to
i+1, where the degree of c(j) for any j ⩾ 0 is defined to be j. In particular,
2e(i) − e(i+ 1) = c(i) in GKi(X).

Let us denote by p and l the classes of
∏n

i=1 e(i) and
∏n

i=2 e(i) in
K(X)(dim X) and K(X)(dim X−1), respectively. Then, we have

(2.5) K(X)(dim X) = Z · p and K(X)(dim X−1) = Z · p ⊕ Z · l.

2.2. Rees ring associated to the topological filtration

Consider the extended Rees ring K̃(X) of the Grothendieck ring K(X)
with respect to the topological filtration on K(X), i.e.,

(2.6) K̃(X) =
⊕
i ∈ Z

K̃i(X), where K̃i(X) = K(X)(i)t−i

for a variable t. Here we set K(X)(i) = K(X) for i < 0. Note also that
K(X)(i) = 0 for i > dimX. We view K̃(X) as a subring of the Laurent
polynomial ring K(X)[t, t−1]. For notational simplicity, we write u for t−1.
Observe that t ∈ K̃(X), while u ̸∈ K̃(X).

Let I(X) denote the ideal of K̃(X) generated by t and 2. Then, we have
an isomorphism K̃(X)/tK̃(X) ∼→ GK(X). Denote the composition of the
projection K̃(X) → K̃(X)/tK̃(X) and this isomorphism by

(2.7) ξ : K̃(X) −→ GK(X).

Note that then

(2.8) ξ(I(X)) = 2GK(X).

ANNALES DE L’INSTITUT FOURIER



COUNTER-EXAMPLES TO A CONJECTURE OF KARPENKO 9

We define K̃(X) and ξ : K̃(X) → GK(X) in a similar way as in (2.6)
and (2.7), respectively. By (2.3), we will treat K̃(X) as a subring of K̃(X).
Moreover, by (2.4) we have

(2.9) indX · K̃(X) ⊂ K̃(X).

In particular,

(2.10) 2 indX · K̃(X), t indX · K̃(X) ⊂ I(X).

Let φ denote the morphism in (1.1) for X. As X is a flag variety, φ is
becomes an isomorphism. We shall denote by ψ the composition

(2.11) ψ : K̃(X) ξ−→ GK(X) φ−1

−→ CH(X).

We write

f(i) = e(i)ui ∈ K̃i(X) and g(i) = 2f(i) − tf(i+ 1) ∈ K̃i(X) ∩ I(X)

for all i ∈ N. Then, by Lemma 2.1

(2.12) g(i) ∈ K̃i(X) and ξ(g(i)) = ξ(c(i)ui).

Moreover, by Corollary A.6, we have f(n)2 = 0 and by Proposition A.10,
the following relations hold modulo I(X)2:

(2.13) f(i)2

≡


(−1)i−1f(2i) + tf(2i+ 1) +

i−1∑
k=1

f(i+ k)g(i− k) if i is even,

(−1)i−1f(2i) +
i−1∑
k=1

f(i+ k)g(i− k) if i is odd.

Instead of using this formula in full generality, we shall use it either for i ⩾
n
2 , or modulo I(X). If i ⩾ n

2 , then, since f(2i+ 1) = 0, the relations (2.13)
become

(2.14) f(i)2 ≡ (−1)i−1f(2i) +
i−1∑
k=1

f(i+ k)g(i− k) mod I(X)2,

regardless of the parity of i. Modulo I(X), we simply have

(2.15) f(i)2 ≡ f(2i) mod I(X)

for any i ∈ [1, n].

TOME 0 (0), FASCICULE 0



10 S. BAEK & R. DEVYATOV

2.3. Chow ring of orthogonal grassmannians

Let c(i) ∈ CHi(X) denote the Chern class of the dual of the tautological
vector bundle T and let e(i) ∈ CHi(X) denote the image of the class
ln−i ∈ CHn−i(X) of a projective (n− i)-dimensional subspace on Y under
the composition (π1)∗ ◦ (π2)∗. Since the morphism φ in (1.1) commutes
with Chern classes, we have

(2.16) φ
(
c(i)
)

= c(i) +K(X)(i+1).

Moreover, the image of e(i) under the isomorphism φ is given by

(2.17) φ
(
e(i)

)
= e(i) +K(X)(i+1).

As an abelian group, CH(X) is freely generated by the set of all products
of the form

∏
i∈I e(i), where I is an arbitrary subset of [1, n]. The Chow

ring CH(X) is generated by e(1), . . . , e(n) subject to the relations

(2.18) e(i)2 = (−1)i+1e(2i) + 2
i−1∑
k=1

(−1)k+1e(i− k)e(i+ k)

for all i ⩾ 1, where we set e(i) = 0 for i > n. In particular, we shall denote
by p the class of a rational point, i.e., p =

∏n
i=1 e(i) ∈ CH(X)(dim X). By [4,

Proposition 86.13], we have

(2.19) res
(
c(i)
)

= 2e(i)

for all 1 ⩽ i ⩽ n, where res : CH(X) → CH(X) denotes the restriction
map.

By [11, Section 2], there is an exact sequence of abelian groups:

0 −→ CH1(X) res−→ CH1(X) −→ Br(k),

where the second map sends the generator e(1) to the Brauer class of the
even Clifford algebra of q. Since the Clifford invariant of q is trivial, i.e.,
the Brauer class of the even Clifford algebra of q is trivial, the restriction
map is an isomorphism so that

res(e) = e(1)

for some e ∈ CH1(X). As res(c(1)) = 2e(1), we have c(1) = 2e.
Since K(X)(1) = K(X)(1), the element e(1) ∈ K(X)(1) defines a class

e(1) +K(X)(2) in GK1(X). In particular, we have

Lemma 2.2. — φ(e) = e(1) +K(X)(2).

ANNALES DE L’INSTITUT FOURIER



COUNTER-EXAMPLES TO A CONJECTURE OF KARPENKO 11

Proof. — Since φ and φ commute with the field extension, we have the
following commutative diagram:

CH1(X)
φ1
//

res
��

GK1(X)

res
��

CH1(X)
φ1
// GK1(X).

Since all maps except the right vertical map are isomorphisms, the right
vertical map res : GK1(X) → GK1(X) is an isomorphism as well.

As res(e(1)+K(X)(2)) = e(1)+K(X)(2) and φ(res(e)) = e(1)+K(X)(2)

by (2.17), both e(1) + K(X)(2) and φ(e) have the same image under
res : GK1(X) → GK1(X), whence the proof follows. □

Let Ch(X) denote the modulo 2 Chow group, i.e.,

Ch(X) := CH(X)/2 CH(X).

For any x ∈ CH(X), we write x for the image of x in Ch(X). Consider
the total cohomological Steenrod operation S : Ch(X) → Ch(X) as in [4]
(char k ̸= 2) and in [13] (char k = 2). The operation commutes with pull-
back morphisms, so it can be viewed as a contravariant functor from the
category of smooth varieties to the category of abelian groups. Moreover,
the Steenrod operation satisfies Cartan formula ([4, Corollary 61.15] for
characteristic ̸= 2 and [13, Proposition 6.1] for characteristic 2), i.e., it is a
ring homomorphism.

For any j ⩾ 0, we denote by Sj : Ch∗(X) → Ch∗+j(X) the jth com-
ponent of S. In particular, S0 is the identity map. A formula for the val-
ues of Sj on the Chern classes is given in [2, Théorème 7.1] (see also [1,
Lemma 2.5]):

(2.20) Sj
(
c(i)
)

=
(
i− 1
j

)
c(i+ j) +Q(i, j)

for any i ⩾ 0 and j ⩾ 1, where Q(i, j) denotes a linear combination of
c(1)c(i+ j − 1), . . . , c(i)c(j). We also have

(2.21) S(e) = e+ e2.

3. Congruence relations for split orthogonal
grassmannians

In this section, we shall compute some basic congruence relations in both
the extended Rees ring K̃(X) and the Chow ring CH(X).

TOME 0 (0), FASCICULE 0
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Let us recall some basic notions concerning multisets and introduce some
specific notations. A multiset is an unordered collection of elements with
duplicates allowed. The cardinality of a multiset J is the sum of the multi-
plicities of all its elements and is denoted by |J |. The sum of two multisets
J and L, denoted by J +L, is the multiset such that the multiplicity of an
element is equal to the sum of the multiplicities of the element in J and
L. We say that a multiset J is a multi-subset of a set S and write J ⊂ S,
if every element of J is an element of S (note that we allow multiplicities
greater than 1 in J here). For any multi-subset J of [1, n], we write

e(J) =
∏

j ∈ J

e(j) ∈ K(X) and e(J) =
∏

j ∈ J

e(j) ∈ CH(X).

Similarly, we write

f(J) =
∏

j ∈ J

f(j) ∈ K̃ |J|(X) and g(J) =
∏

j ∈ J

g(j) ∈ K̃ |J|(X).

For a nonzero element a ∈ K̃(X), we write v(a) for the highest power
of I(X) containing a. Similarly, for a nonzero element b in Z or CH(X) we
write v(b) for the highest power of 2 dividing b.

We shall write

I0 :=
[n

2 + 1, n− 1
]

=
[

4n
8 + 1, 5n

8

]
∪
[

5n
8 + 1, 6n

8 − 2
]

∪
[

6n
8 − 1, n− 1

]
=: I1 ∪ I2 ∪ I3

and I3 = I3 ∪ {n}. We set I1 = ∅ for n = 8.
In the following, we find some congruence relations modulo certain pow-

ers of I(X) and 2, respectively, for some elements of K̃(X) and CH(X) that
can be written as products of f(i)’s and g(i)’s, and of e(i)’s, respectively.
We start with powers of a single factor f(i) or e(i).

Lemma 3.1. — Let i ∈ I0 and j ∈ N be integers. Then,

(3.1)
f(i)j ≡

∑
a(J)f(J) mod I(X)v(j!)+1 and

e(i)j ≡ 2v(j!)
∑

e(J) mod 2v(j!)+1,

where a(J) ∈ I(X)v(j!) and the sums range over some multi-subsets J ⊂
[1, n] such that |J | = j. In particular,

v
(
f(i)j

)
, v
(
e(i)j

)
⩾ v(j!).

Moreover, if j ⩾ 2, then the multisets J above satisfy J ∩ [i+ 1, n] ̸= ∅.
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Furthermore, if i ∈ I2 and j ⩾ 2, then the same relations (3.1) hold,
where the sum ranges over some multi-subsets J with |J | = j, J ∩ [i+1, n]
̸= ∅, and such that either J ⊂ I1 ∪ I2 or J ∩ I3 ̸= ∅.

Proof. — Instead of proving the lemma as it is stated, claiming simply
that a(J) ∈ I(X)v(j!), let us prove a stronger statement: a(J) is a sum of
terms of the form

(3.2) 2qtv(j!)−q for some q ∈ [0, v(j!)].

If j = 1, then the statement is trivial. For the case of arbitrary j ⩾ 2
we show the first equation in (3.1). Let i ∈ I0. By the binary expansion
of j, it suffices to prove the statement for any integer j that is a power
of 2. We prove by induction on j ⩾ 2. Assume that j = 2. Then, as
e(2i) = e(2i + 1) = 0 for any i ∈ I0, we have f(2i) = f(2i + 1) = 0, thus
the statement follows by (2.14). Assume that the statement holds for j.
Then, modulo I(X)2v(j!)+2 we have

f(i)2j ≡

(∑
J

a(J)f(J)
)2

=
∑

J

a(J)2f(J)2 +
∑

J ̸= J′

2a(J)a(J ′)f(J + J ′).
(3.3)

Let k ∈ J ∩ [i+ 1, n] and Jc = J − {k}. Then, the case j = 2 implies that

f(J)2 = f(k)2f(Jc+Jc) =
∑

L

b(L)f(L)f(Jc+Jc) =
∑

L

b(L)f(L+Jc+Jc),

where L denotes a multi-subset such that |L| = 2 and L∩ [k+1, n] ̸= ∅, and
b(L) = 2 or t. Since 2v(j!) + 1 = v

(
(2j)!

)
, each summand in (3.3) satisfies

the statement. The same proof works in the case i ∈ I2.
Furthermore, since a(J) is a sum of terms of the form (3.2), we have

ψ(a(J)) ≡ 2v(j!) mod 2v(j!)+1 or ψ(a(J)) ≡ 0 mod 2v(j!)+1, where ψ

denotes the morphism in (2.11), so the second equation in (3.1) follows. □

As a corollary of this lemma, we can observe the behavior of powers of
f(i)g(n− i) after the multiplication by f(I3).

Corollary 3.2. — Let j ⩾ 2 be an integer. Then, modulo I(X)v(j!)+j+1

we have

f(i)j · g(n− i)j · f(I3) ≡

{
0 if i ∈ I1,∑
a(J)f(J)f(I3) if i ∈ I2

for some a(J) ∈ I(X)v(j!)+j , where the sum ranges over some multi-subsets
J ⊂ I1 ∪ I2 with |J | = j + 1.
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Proof. — For j ⩾ 2, the binomial expansion of g(n − i)j tells us that
each summand (modulo I(X)j+1) is divisible by f(n− i)2 or f(n− i+ 1)2

and moreover, it can be written in the form bf(n− i)2 or bf(n− i+ 1)2 for
some b ∈ I(X)j . It follows by (2.15) that

f(n− i)2 ≡ f(2n− 2i), f(n− i+ 1)2 ≡ f(2n− 2i+ 2) mod I(X)

for any i ∈ I1 ∪ I2.
Assume that i ∈ I1. Then, 2n− 2i, 2n− 2i+ 2 ∈ I3, thus we get

bf(n− i)2 · f(I3) ≡ bf(n− i+ 1)2 · f(I3) ≡ 0 mod I(X)j+1.

Hence, by Lemma 3.1 each summand of f(i)jg(n− i)jf(I3) is contained in
I(X)v(j!)+j+1.

Now we assume that i ∈ I2. Then 2n − 2i ∈ I1 ∪ I2 and 2n − 2i + 2 ∈
I1∪I2∪{ 6n

8 }. If 2n−2i+2 = 6n
8 , then again, by Lemma 3.1, the summands of

f(i)jg(n−i)jf(I3) divisible by f(n−i+1)2 are contained in I(X)v(j!)+j+1.
Consider a summand of g(n− i)j of the form bf(n− i)2 or bf(n− i+ 1)2

with 2n−2i ∈ I1 ∪I2 or 2n−2i+2 ∈ I1 ∪I2, respectively. Let us still rewrite
it (modulo I(X)j+1) as bf(2n− 2i) or bf(2n− 2i+ 2). By Lemma 3.1, we
get

f(i)j ≡
∑

a(J ′)f(J ′) mod I(X)v(j!)+1

for some a(J ′) ∈ I(X)v(j!), where the sum ranges over some multi-subsets
J ′ with |J ′| = j such that either J ′ ⊂ I1 ∪ I2 or J ′ ∩ I3 ̸= ∅. Set J = J ′ +
{2n−2i} or J ′ +{2n−2i+2} and a(J) = b·a(J ′). Then, as f(J ′)·f(I3) ≡ 0
mod I(X) for any J with J ∩ I3 ̸= ∅, the statement follows. □

Let us use these results to express powers of f(1)n in terms of powers of
f(i) and g(i), and powers of e(1)n in terms of powers of e(i) with different
values of i.

Lemma 3.3. — For any j ⩾ 2, we have f(1)nj ∈ I(X)j+v(j!)−1 and

(3.4) f(1)nj ≡ −j ·

(∑
i ∈ I0

f(i)g(n− i)
)j−1

· f(n) mod I(X)j+v(j!).

Also, we have e(1)nj ≡ 0 mod 2j+v(j!)−1 and

e(1)nj ≡ −j · 2j−1

(∑
i ∈ I0

e(i)e(n− i)
)j−1

· e(n) mod 2j+v(j!).

In particular,

v
(
f(1) n2

4

)
, v
(
e(1) n2

4

)
⩾
n

2 − 2
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and

v
(
f(1) n2

4 −n
)
, v
(
e(1) n2

4 −n
)
⩾
n

2 − 1 − v(n).

Proof. — Let h =
∑

i ∈ I0
f(i)g(n− i). For any k ⩾ 1, consider the multi-

nomial expansion hk =
∑
C(kn

2 +1, . . . , kn−1), where the sum runs over
(kn

2 +1, . . . , kn−1) ∈ (N ∪ {0}) n
2 −1 with

∑
i ∈ I0

ki = k and

(3.5) C
(
kn

2 +1, . . . , kn−1
)

=
(

k

kn
2 +1, . . . , kn−1

) ∏
i ∈ I0

f(i)kig(n− i)ki .

Then, by Lemma 3.1

(3.6) v

((
k

kn
2 +1, . . . , kn−1

))
+
∑

i ∈ I0

v
(
f(i)ki

)
⩾ v(k!),

thus v(hk) ⩾ v(k!) + k.

By (2.15), f(1) n
2 ≡ f( n

2 ) mod I(X) and by (2.14), f( n
2 )2 ≡ h − f(n)

mod I(X)2, thus

f(1)n ≡ h− f(n) mod I(X)2.

Write f(1)n = a+ h− f(n) for some a ∈ I(X)2. As f(n)2 = 0, we have

(3.7) f(1)nj

=
j∑

k=0

(
j

j − k, k

)
aj−khk − f(n)

j−1∑
k=0

(
j

j − k − 1, 1, k

)
aj−k−1hk.

Since j − k ⩾ v((j − k)!) for j − k ⩾ 0, it follows from (3.6) that each
summand of the first sum in (3.7) is contained in I(X)j+v(j!). Similarly, as
j − k − 2 ⩾ v((j − k − 1)!) for k < j − 1, each summand of the second
sum in (3.7) is contained in I(X)j+v(j!) except for the last term, which
completes the proof of the equation (3.4).

After we get (3.4), it follows from (3.6) with k = j − 1 that

f(1)nj ∈ I(X)v(j)+v((j−1)!)+j−1 = I(X)j+v(j!)−1.

The statements for CH(X) are obtained from the statements for K̃(X)
by applying ψ in (2.11). The last statement immediately follows from

(3.8)

v
((n

4

)
!
)

= n

4 − 1,

v
((n

4 − 1
)

!
)

= n

4 − 1 − v
(n

4

)
= n

4 + 1 − v(n). □
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Now let us obtain an expression for the product of certain high powers
of f(1) and f(I3)f( n

2 ) in K̃(X), and a similar result in CH(X). Roughly
speaking, what we are going to do is to express (modulo powers of I(X) and
of 2) the powers of sums in right-hand sides of the formulas in Lemma 3.3
as square-free products of f(i)’s and g(i)’s and of e(i)’s, respectively.

Proposition 3.4. — For any n ⩾ 8, we have f(1) n2
4 −n · f(I3) · f( n

2 ) ∈
I(X) n

2 −v(n)−1 and

f(1) n2
4 −n · f(I3) · f

(n
2

)
≡ −

(n
4 − 1

)
! · f

([n
2 , n

])
· g
([n

4 + 2, n2 − 1
])

mod I(X) n
2 −v(n).

Also, we have e(1) n2
4 −n · e(I3) · e( n

2 ) ≡ 0 mod 2 n
2 −v(n)−1 and

e(1) n2
4 −n ·e(I3) ·e

(n
2

)
≡ −

(n
4 − 1

)
! ·2 n

4 −2e
([n

4 + 2, n
])

mod 2 n
2 −v(n).

Proof. — Let k = n
4 − 2. Consider a summand C(kn

2 +1, . . . , kn−1) of the
multinomial expansion of hk as in (3.5). We first show that

(3.9) C(kn
2 +1, . . . , kn−1) · f(I3) ≡ 0 mod I(X)v(k!)+k+1

for all kn
2 +1, . . . , kn−1 except for

ki =
{

1 if i ∈ I1 ∪ I2,

0 if i ∈ I3.

If kl > 0 for some l ∈ I3, then by Lemma 3.1

f(l)klf(I3) = f(l)kl+1f
(
I3 − {l}

)
≡
∑

J

a(J)f(J)f
(
I3 − {l}

)
mod I(X)v((kl+1)!)+1,

where |J | = kl + 1, J ∩ [l + 1, n] ̸= ∅, and a(J) ∈ I(X)v((kl+1)!). Since
f(J)f(I3 − {l}) ≡ 0 mod I(X) by (2.15), we get

f(l)klf(I3) ≡ 0 mod I(X)v(kl!)+1,

thus again by Lemma 3.1

(3.10) v

((
k

kn
2 +1, . . . , kn−1

))
+ v

(
f(l)klf(I3)

)
+

∑
i ∈ I0\{l}

v
(
f(i)ki

)
⩾ v(k!) + 1.
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Hence,

(3.11) v

((
k

kn
2 +1, . . . , kn−1

))
+ v

(
f(l)klf(I3)g(l)kl

)
+

∑
i ∈ I0\{l}

v
(
f(i)kig(i)ki

)
⩾ v(k!) + k + 1,

and the congruence (3.9) holds. Therefore, we may assume that ki = 0 for
all i ∈ I3 and

∑
i ∈ I1∪I2

ki = k.
Similarly, if kl ⩾ 2 for some l ∈ I1, then by Corollary 3.2 and Lemma 3.1,

we get (3.11), thus the congruence (3.9) follows.
Now, if kl ⩾ 2 for some l ∈ I2, then again by Lemma 3.1 and Corollary 3.2

(3.12)
( ∏

i ∈ I1 ∪ I2

f(i)ki

)
· g(n− l)kl · f(I3)

≡ f(I3)
∏

i ∈ I1 ∪ I2

∑
Ji

a(Ji)f(Ji) mod I(X)s+1,

where s =
∑

i∈I1∪I2
v(ki!) + kl, Ji ⊂ I1 ∪ I2 or Ji ∩ I3 ̸= ∅,

|Ji| =
{
ki if i ∈ (I1 ∪ I2)\{l},
kl + 1 if i = l,

and

a(Ji) ∈

{
I(X)v(ki!) if i ∈ (I1 ∪ I2)\{l},
I(X)v(kl!)+kl if i = l.

Since for each k-tuple (Ji)i ∈ Ii ∪ I2∑
i ∈ I1 ∪ I2

|Ji| = 1 +
∑

i ∈ I1 ∪ I2

ki > |I1 ∪ I2| = k,

by (2.15) we obtain

f(I3)
∏

i ∈ I1 ∪ I2

f(Ji) ∈ I(X).

Thus, the product of the sums on the right-hand side of (3.12) belongs to
I(X)s+1. As ∏

i ∈ (I1 ∪ I2)\{l}

g(n− i)ki ∈ I(X)k−kl ,

the congruence (3.9) follows. Therefore,

hk·f(I3)·f
(n

2

)
≡ k!·f

([n
2 , n

])
·g
([n

4 + 2, n2 − 1
])

mod I(X)v(k!)+k+1.
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Hence, the second equation in the statement follows from Lemma 3.3
and (3.8) with the equality v(( n

4 − 2)!) = v(( n
4 − 1)!). Since∣∣∣[n4 + 2, n2 − 1

]∣∣∣ = n

4 − 2 and g
([n

4 + 2, n2 − 1
])

∈ I(X) n
4 −2,

the first equation in the statement follows from the second equation.
The remaining equations in the statement follow from the first and second

equations by applying ψ in (2.11) together with (2.17). □

As a corollary, we also obtain an expression for the product of f(1) n2
4 −n

and g(I3)f( n
2 ).

Corollary 3.5. — For any n ⩾ 8, we obtain

f(1) n2
4 −n · g(I3) ∈ I(X) 3n

4 −v(n)

and

f(1) n2
4 −n · g(I3) · f

(n
2

)
≡ 2 n

2 −v(n)+2 · f
([n

2 , n
])

· g
([n

4 + 2, n2 − 1
])

mod I(X) 3n
4 −v(n)+1.

Proof. — The first statement follows immediately from the last state-
ment of Lemma 3.3. For the second statement, we show that

(3.13) f(1) n2
4 −ng(I3) ≡ f(1) n2

4 −n · 2 n
4 +1 · f(I3) mod I(X) 3n

4 −v(n)+1.

Then, the second statement immediately follows by Proposition 3.4 and
(3.8).

Write the left-hand side of the equation (3.13) as

f(1) n2
4 −ng(I3) = f(1) n2

4 −n · g(I3\{n− 1}) ·
(
2f(n− 1) − tf(n)

)
.

Since f(n) ≡ f(1)n mod I(X) by (2.15), it follows by Lemma 3.3 that

f(1) n2
4 −nf(n) ≡ 0 mod I(X) n

2 −v(n).

As |I3| = n
4 + 1, we have t · g(I3\{n− 1}) ∈ I(X) n

4 +1, thus

f(1) n2
4 −n ·g(I3) ≡ 2f(1) n2

4 −n ·g(I3\{n−1})f(n−1) mod I(X) 3n
4 −v(n)+1.

Let us expand the term g(I3\{n−1})f(n−1). Then, each summand has
a factor of the form f(J) for some multi-subset J ⊂ I3 with |J | = |I3|.
Since f(j)2 ≡ 0 mod I(X) for any j ∈ I3,

g(I3\{n− 1})f(n− 1) ≡ 2 n
4 · f(I3) mod I(X) n

4 +1,

whence the equation (3.13) follows. □
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We shall need the following lemma in the proofs of Propositions 3.7
and 3.10.

Lemma 3.6. — Let J be a multi-subset of [1, n] satisfying the following
conditions:

(∗) There exists a number k ∈ J with multiplicity at least 2 and every
number j with k < j ⩽ n is contained in J with multiplicity 1.

Then, we have

(3.14) f(J) ≡ 0 mod I(X) and e(J) ≡ 0 mod 2.

Proof. — Let k ∈ J denote a number with multiplicity at least 2 as in (∗).
We prove by decreasing induction on k. If 2k > n, then the first equation
in (3.14) follows directly from (2.15) since f(2k) = 0. Otherwise, by (2.15)
again, we have f(J) ≡ f(J ′) mod I(X), where J ′ = J + {2k} − {k, k}.
Since 2k ∈ J ′ has multiplicity 2 and every j with 2k < j ⩽ n is contained
in J ′, it follows by the induction that f(J ′) ≡ 0 mod I(X), whence the
first equation follows. The second equation in (3.14) follows from the first
one by applying ψ in (2.11) together with (2.17). □

We denote

I4 =
[
6, n4 + 1

]
\
{

2i
∣∣ 3 ⩽ i ⩽ v(n) − 2

}
.

Now we will prove the main result of this section, which plays a key
role in the proof of 2-divisibility of φ(x) (see Proposition 4.1). For n = 8,
an analogue of the following proposition is proved inside the proof of [10,
Proposition 4.4] (see Remark 3.8 below).

Proposition 3.7. — Let n ⩾ 16. Then, the following equations hold
modulo I(X)v(ind X)+1.

(a) f(1) n2
4 −1 · g(I3 ∪ I4 ∪ {2, 3}) ≡ 0,

(b) f(1) n2
4 −2 · g(I3 ∪ I4 ∪ {2, 4}) ≡ 2v(ind X)−2t2 · f([2, n]).

Proof. — By (2.15), f(1)m ≡ f(m) mod I(X) for any 2-power integer
m, thus

f(1)n−2 ≡
v(n)−1∏

k=1
f(2k)

and f(2i)f
([n

2 , n
]) v(n)−2∏

k=1
f(2k) ≡ 0 mod I(X)

(3.15)
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for any 1 ⩽ i ⩽ v(n). Since

(3.16) 3n
4 − v(n) + 1 + |I4| = n− 2v(n) + 1,

by Corollary 3.5 and the first equation in (3.15), the following equation
holds modulo I(X)n−2v(n)+1:

f(1) n2
4 −2g(I3 ∪ I4)

≡ 2 n
2 −v(n)+2 · g

([n
4 + 2, n2 − 1

]
∪ I4

)
f
([n

2 , n
]) v(n)−2∏

k=1
f(2k).

Let A denote the right hand side of the preceding equation without the
factor 2 n

2 −v(n)+2. Thus, to prove (a) and (b), by (2.1) it suffices to show
the following congruences modulo I(X) n

2 −v(n)+1:(
2f(2) − tf(3)

)(
2f(3) − tf(4)

)
A ≡ 0,(

2f(2) − tf(3)
)(

2f(4) − tf(5)
)
A ≡ 2 n

2 −v(n)−2t2f([2, n]),

respectively.
Since |[ n

4 + 2, n
2 − 1]| = n

4 − 2 and |I4| = n
4 − v(n), we have

(3.17) g
([n

4 + 2, n2 − 1
]

∪ I4

)
∈ I(X) n

2 −v(n)−2,

thus by the second equation in (3.15) and f(3)2 ≡ f(6) mod I(X) it is
enough to show that the following hold modulo I(X) n

2 −v(n)−1:

f(6) ·A ≡ 0 and f({3, 5}) ·A ≡ 2 n
2 −v(n)−2f([2, n]),

respectively. By (3.17), the left-hand sides of these congruences can be
expanded as∑

J

a(J)f(J) and 2 n
2 −v(n)−2f([2, n]) +

∑
L ̸=[2,n]

b(L)f(L),

respectively, where a(J), b(L) ∈ I(X) n
2 −v(n)−2, J denotes a multi-subset

of {2, 4} ∪ [6, n], and L denotes a multi-subset of [2, n]. Since each of J and
L satisfies the condition (∗) in Lemma 3.6, the statement follows. □

Remark 3.8. — For n = 8, the congruences (a) and (b) in Proposition 3.7
still hold if I3 = [5, 7] is replaced by I ′

3 = [6, 7], i.e.,

f(1)15 · g([6, 7] ∪ {2, 3}) ≡ 0 mod I(X)5,(3.18)

f(1)14 · g([6, 7] ∪ {2, 4}) ≡ 22t2f([2, 8]) mod I(X)5.(3.19)

Indeed, since f(1)8 ≡ f(8) and f(8)2 ≡ f(7)2 ≡ 0 mod I(X),

f(1)8g([6, 7]) ≡ 22f([6, 8]) mod I(X)3.
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Hence, the congruences (3.18) and (3.19) follow from

f(2)2f(4)f(8) ≡ f(4)2f(8) ≡ f(8)2 ≡ f(3)2f(6) ≡ f(6)2 ≡ 0 mod I(X).

Below we provide analogues of Corollary 3.5 and Proposition 3.7(a) in
CH(X). In the analogue (Proposition 3.10) of Proposition 3.7(a), the el-
ement of CH(X) is not divisible by the same power of 2 as the power of
I(X) in Proposition 3.7(a) itself anymore. This difference will enable us to
prove that the element x in (4.3) is not divisible by 2 in CH(X). For each
i ∈ [1, n], we denote

(3.20) Ŝj(i) =
(
i− 1
j

)
c(i+ j), Ŝ(i) =

i−1∑
j=0

(
i− 1
j

)
c(i+ j).

In other words, Ŝ(i) is an integral representative of the sub-linear combi-
nation of S(c(i)) that consists of multiples of single c(j)’s only, not of their
products. For a subset L ⊂ [1, n], denote Ŝ(L) =

∏
l ∈ L Ŝ(l).

Corollary 3.9. — For any n ⩾ 8, we have e(1) n2
4 −n · res(Ŝ(I3)) ≡ 0

mod 2 3n
4 −v(n) and

e(1) n2
4 −n·res

(
Ŝ(I3)

)
·e
(n

2

)
≡ 2 3n

4 −v(n)·e
([n

4 + 2, n
])

mod 2 3n
4 −v(n)+1.

Proof. — The proof is similar to the proof of Corollary 3.5. Again, the
first statement follows immediately from the last statement of Lemma 3.3.
For the second statement, we show that

(3.21) e(1) n2
4 −n res

(
Ŝ(I3)

)
≡ e(1) n2

4 −n · 2 n
4 +1 · e(I3) mod 2 3n

4 −v(n)+1.

Then, the second statement immediately follows by Proposition 3.4 and
(3.8).

The term Ŝ(I3) is expanded as

Ŝ(I3) = c(I3) +
∑

L

a(L)c(L),

where a(L) ∈ N and the sum ranges over some multi-subsets L ⊂ I3 such
that L contains either n or a multiple element. Then, by (2.19) we get

(3.22) res
(
Ŝ(I3)

)
= 2 n

4 +1e(I3) + 2 n
4 +1

∑
L

a(L)e(L).

If n ∈ L, then since e(n) ≡ e(1)n mod 2 by (2.18), we get by Lemma 3.3

e(1) n2
4 −n · 2 n

4 +1e(L) ≡ e(1) n2
4 · 2 n

4 +1e(L− {n})

≡ 0 mod 2 3n
4 −v(n)+1.

(3.23)
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If L has a multiple element i ∈ I3, then e(i)2 ≡ 0 mod 2 by (2.18), thus
by Lemma 3.3 again, we get

(3.24) e(1) n2
4 −n · 2 n

4 +1e(L)

= e(1) n2
4 −n · 2 n

4 +1e(L− {i, i})e(i)2 ≡ 0 mod 2 3n
4 −v(n)+1.

Hence, the equation in (3.21) immediately follows from (3.22), (3.23), and
(3.24). □

For n = 8, an analogue of the following proposition is proved inside the
proof of [10, Proposition 3.3] (see Remark 3.11 below).

Proposition 3.10. — Let n ⩾ 16. Then, we have

e(1) n2
4 −1 · res

(
Ŝ(I3 ∪ I4 ∪ {2, 3})

)
≡ indX · e([1, n]) mod 2 indX.

Proof. — The proof is similar to the proof of Proposition 3.7. By (2.18),
e(1)m ≡ e(m) mod 2 for any 2-power integer m, thus

(3.25) e(1)n−1 ≡
v(n)−1∏

k=0
e(2k) and e(2i)e(1)e(2)e(4)e([6, n]) ≡ 0 mod 2

for any 0 ⩽ i ⩽ v(n). By Corollary 3.9, (3.16), and the first equation
in (3.25) we get a congruence modulo 2n−2v(n)+1:

(3.26) e(1) n2
4 −1 res

(
Ŝ(I3 ∪ I4)

)
≡ 2 3n

4 −v(n) · res
(
Ŝ(I4)

)
· e
([n

4 + 2, n
]) v(n)−2∏

k=0
e(2k).

The term Ŝ(I4) is expanded as

Ŝ(I4) = c(I4) +
∑

L

a(L)c(L),

where a(L) ∈ N and the sum ranges over some multi-subsets L ⊂ [1, n]
such that the multiset L+ [ n

4 + 2, n] + {2i | 3 ⩽ i ⩽ v(n) − 2} satisfies the
condition (∗) in Lemma 3.6. Since |I4| = n

4 − v(n), by (2.19) we get

(3.27) res(Ŝ(I4)) = 2 n
4 −v(n)e(I4) + 2 n

4 −v(n)
∑

L

a(L)e(L).

By Lemma 3.6, e(L)e([ n
4 + 2, n])

∏v(n)−2
k=3 e(2k) is divisible by 2, thus by

(3.26) and (3.27) we have a congruence modulo 2n−2v(n)+1

e(1) n2
4 −1 res

(
Ŝ(I3 ∪ I4)

)
≡ 2n−2v(n)e(1)e(2)e(4)e([6, n]).
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Now let us multiply both sides of the last congruence by

(3.28) res
(
Ŝ({2, 3})

)
= 22(e(2) + e(3))(e(3) + 2e(4) + e(5)).

Since 2n−2v(n)+3 = 2 indX, by the second equation in (3.25) it is enough
to show that the following holds modulo 2

e(3)2 · e(1)e(2)e(4)e([6, n]) ≡ 0.

Since e(3)2 ≡ e(6) mod 2 by (2.18), and the multiset {6} + [6, n] satisfies
the condition (∗) in Lemma 3.6, the term e({6} + [6, n]) is divisible by 2,
which completes the proof. □

Remark 3.11. — Let n = 8 and I ′
3 = [6, 7]. Then, the statement of Propo-

sition 3.10 becomes

(3.29) e(1)15 · res
(
Ŝ(I ′

3 ∪ {2, 3})
)

≡ 24 · e([1, 8]) mod 25.

Since e(1)8 ≡ e(8), e(8)2 ≡ e(7)2 ≡ 0 mod 2, and

Ŝ(6) = c(6) + 5c(7) + 10c(8), Ŝ(7) = c(7) + 6c(8),

we have
e(1)8 res(Ŝ(I ′

3)) ≡ 22e([6, 8]) mod 23.

Hence, the congruence (3.29) follows from (3.28) and

e(2)2e(4)e(8) ≡ e(4)2e(8) ≡ e(8)2 ≡ e(3)2e(6) ≡ e(6)2 ≡ 0 mod 2.

4. Proof of Theorem 1.2

In this section, we set

(4.1) J =
{

[2, 3] ∪ I3 ∪ I4 if n ⩾ 16,
[2, 3] ∪ I ′

3 ∪ I4 = {2, 3, 6, 7} if n = 8.

Then, a direct computation shows that

(4.2) |J | = n

2 − v(n) + 3.

Consider the following element

(4.3) x = e
n2
4 −1 ·

∏
j ∈ J

c(j) ∈ CH(X).

Since dimX = n2+n
2 and ( n2

4 − 1) +
∑

j ∈ J j = dimX − 3, we have x ∈
CH3(X) and φ(x) ∈ K(X)(dim X−3). We first prove the 2-divisibility of the
image of x under the map in (1.1).
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Proposition 4.1. — Let y = f(1) n2
4 −1 · g(J), where J denotes the set

in (4.1). Then, y ∈ I(X) and φ(x) is divisible by 2 in GK(X).

Proof. — Let z = f(1) n2
4 −2 · g(J ′), where J ′ denotes the set obtained

from J by replacing the element 3 with 4. Then, by (2.12) both y and z

belong to K̃dim X−3(X). We first show that y ∈ I(X). By Proposition 3.7(a)
for n ⩾ 16 and by (3.18) for n = 8, we can write

y = 2m+1 · y0 + 2mt · y1 + 2m−1t2 · y2 + 2m−2t3 · y3,

where m = v(indX) and yi ∈ K̃dim X−3+i(X). By (2.10), it suffices to
prove that

y′ := 2m−1t2 · y2 + 2m−2t3 · y3 ∈ I(X).
We simply write p and l for the classes of

∏n
i=1 e(i) and

∏n
i=2 e(i)

in K(X)(dim X) and K(X)(dim X−1), respectively, as in Section 2.1. Since
2m−1t2 · tp = 2m−2t3 · 2p, by (2.5), y′ can be written as

(4.4) y′ = a
(
2m−1t2

)
· ludim X−1 + b

(
2m−2t3

)
· pudim X

for some a, b ∈ Z. On the other hand, by Proposition 3.7(b) for n ⩾ 16 and
by (3.19) for n = 8, we have

2z ≡
(
2m−1t2 · l

)
udim X−1

and tf(1)z ≡
(
2m−2t3 · p

)
udim X mod I(X)m+2,

(4.5)

thus it follows by (4.4) that

y′ − 2az − btf(1)z ∈ I(X)m+2 ∩ K̃dim X−3(X).

Hence, we can write

y′ − 2az − btf(1)z = 2m+2 · z0 + 2m+1t · z1 + 2mt2 · z2 + 2m−1t3 · z3,

where zi ∈ K̃dim X−3+i(X), thus by (2.10), it suffices to prove that

y′′ := 2m−1t3 · z3 ∈ I(X).

By (2.5), y′′ can be written as

(4.6) y′′ = b′ (2m−1t3
)

· pudim X

for some b′ ∈ Z. Since(
2m−1t3 · p

)
udim X ≡ 2tf(1)z mod I(X)m+3,

we obtain
y′′ − 2b′tf(1)z ∈ I(X)m+3 ∩ K̃dim X−3(X).

As every element in I(X)m+3 ∩ K̃dim X−3(X) belongs to I(X) by (2.10),
we get y′′ ∈ I(X), and therefore y ∈ I(X).
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For the statement about x, note that by the second equation in (2.12),
we have

f(1) n2
4 −1 ·

∏
j ∈ J

c(j)uj ∈ I(X).

Also, by (2.16) and Lemma 2.2, we get

φ(x) = ξ

f(1) n2
4 −1 ·

∏
j ∈ J

c(j)uj

 ,

where ξ denotes the morphism in (2.7). Hence, by (2.8) φ(x) is divisible
by 2. □

Remark 4.2. — In the proof of Proposition 4.1, we have shown that
(2m−1l)udim X−3 and (2m−2p)udim X−3 are contained in I(X) + I(X)m+2.
In fact, we could alternatively show that the following slightly stronger
statement holds:

(4.7)
(
2m−1l

)
udim X−3,

(
2m−2p

)
udim X−3 ∈ I(X).

Since z−(2m−2l)udim X−3 ∈ I(X)m+1 ∩K̃dim X−3(X) (Proposition 3.7(b)),
the same argument as in the beginning of the proof of Proposition 4.1 shows
that

(4.8) z −
(
2m−2l

)
udim X−3 ≡

(
a2m−1l + b2m−2p

)
udim X−3 mod I(X)

for some a, b ∈ Z. Since 2z, e(1)z ∈ I(X), multiplying the congruence
in (4.8) by 2 and e(1), we have(

2m−1l + b2m−1p
)
udim X−3,

(
2m−2p + a2m−1p

)
udim X−3 ∈ I(X).

As (2m−1p)udim X−3 = e(1)(2m−1l + b2m−1p)udim X−3 ∈ I(X), the state-
ment in (4.7) follows.

Recall from (2.20) that Q(i, j) denotes a linear combination of c(k)c
(i+j−k) for 1 ⩽ k ⩽ i. We write Q̂(i, j) for the linear combination obtained
from Q(i, j) by replacing every term c(k)c(i+ j − k) with c(k)c(i+ j − k).
Set

S̃j(i) = Ŝj(i) + Q̂(i, j), S̃(i) =
∑
j ⩾ 0

S̃j(i),

where Ŝj(i) denotes the term in (3.20), i.e., S̃(i) is an integral representative
of S(c(i)). For a subset L ⊂ [1, n], denote S̃(L) =

∏
l ∈ L S̃(l).

Before we prove that x ∈ CH(X) is not divisible by 2, we shall need the
following lemma.
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Lemma 4.3. — For any n ⩾ 8, we have

e(1) n2
4 res

(
S̃(J)

)
≡ 0 mod 2 indX

and

e(1) n2
4 −1 res

(
S̃(J)

)
≡ e(1) n2

4 −1 res
(
Ŝ(J)

)
mod 2 indX.

Proof. — Note that v(indX) = n− 2v(n) + 2. By Lemma 3.3 and (4.2),
we have

v
(

2|J|e(1) n2
4

)
⩾
(n

2 − v(n) + 3
)

+
(n

2 − 2
)
> v(indX)

and

v
(

2|J|+1e(1) n2
4 −1

)
⩾ v

(
2|J|+1e(1) n2

4 −n
)

⩾
(n

2 − v(n) + 4
)

+
(n

2 − 1 − v(n)
)
> v(indX).

Hence, the first statement follows from (2.19). For the second statement,
note additionally that S̃(J)−Ŝ(J) is the sum of several products of the form∏

1 ⩽ k ⩽ |J| Ak, where each Ak can be either Ŝ(i), or Q̂(i, j), and at least
one factor Q̂(i, j) is present. So, by (2.19), res(

∏
1 ⩽ k ⩽ |J| Ak) is divisible

by 2|J|+1, and the second statement follows. □

Finally, let us prove the non-2-divisibility in CH(X).

Proposition 4.4. — For any n ⩾ 8, the element x in (4.3) is not di-
visible by 2.

Proof. — Let w = (e+ e2) n2
4 −1S̃(J). Then, the (dimX)th degree homo-

geneous part of w is an integral representative of S3(x), i.e., the (dimX)th

degree homogeneous part of w ∈ Ch(X) is equal to S3(x). We show that

(4.9) res(w) ≡ indX · p mod 2 indX,

where p denotes the class of a rational point as in Section 2.3. Since

w =
(
e

n2
4 −1 + e

n2
4 α(e)

)
S̃(J),

where α(e) is a polynomial in e with integer coefficients, by Lemma 4.3, we
have modulo 2 indX:

res(w) ≡ e(1) n2
4 −1 res(S̃(J)) ≡ e(1) n2

4 −1 res(Ŝ(J)).

Hence, by Proposition 3.10 we obtain (4.9).
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Let deg : CH(X) → Z denote the degree homomorphism. Then, it in-
duces the morphism

deg
indX : Ch(X) −→ Z/2Z

sending the class of a closed point v of X to the class of deg(v)/ indX. Since
the restriction map commutes with the degree homomorphism, by (4.9) we
have

deg
indX (w) = deg

indX (S3(x)) = 1.

Therefore, x is nonzero in Ch(X), thus x is not divisible by 2 in CH(X). □

Theorem 4.5. — φ is not injective.

Proof. — Follows from Proposition 4.1, Proposition 4.4, and the surjec-
tivity of φ. □

Appendix A. Pieri formula in the Grothendieck ring of X

In this section, we give a proof of the congruence relations in (2.13).
Using the Pieri-type formula in Lemma A.4, we first compute the products
eiem in terms of the Schubert classes (Lemmas A.5 and A.7). Then, we
derive the formulas for the square of f(i) ∈ K̃i(X) in Proposition A.10.

Recall that the group K(X) is free abelian with basis the set of all
products

∏
i ∈ [1,n] e(i) (including the empty product, the unit). Recall also

that a strict partition in [1, n] is a sequence λ = (λ1, . . . , λm) such that
n ⩾ λ1 > · · · > λm ⩾ 1. The size of λ is denoted by |λ| = λ1 + · · · + λm.
Then, the group K(X) has another basis eλ ∈ K(X)(|λ|), where λ ranges
over all strict partitions in [1, n] including the empty partition, given by
the Schubert classes. Note that if λ consists of a single element {i}, then
ei = e(i). We allow notation eλ with λ an arbitrary finite decreasing se-
quence of natural numbers: if λ contains numbers bigger than n, we set
eλ = 0.

We shall first recall some basic notions from [3]. Let λ be a finite de-
creasing sequence of natural numbers. The shifted diagram of λ is an array
of boxes in which the ith row has λi boxes, and is shifted i − 1 units to
the right with respect to the top row. We denote the number of rows of λ
by l(λ). A skew shifted diagram (or shape) ν/λ is obtained by removing a
shifted diagram λ from a larger shifted diagram ν containing λ. The num-
ber of boxes in ν/λ is denoted by |ν/λ|. A skew shifted diagram is called
connected if all boxes share an edge. A skew shifted diagram is called a rim
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if it does not contain a pair of boxes one of which is located strictly to the
right (east) and strictly to the bottom (south) of the other one.

Definition A.1 ([3, Section 4]). — Let θ be a rim. A KOG-tableau of
θ is a labeling of the boxes of θ with positive integers such that

(i) each row (resp. column) of θ is strictly increasing from left (resp.
top) to right (resp. bottom); and

(ii) each box is either smaller than or equal to all the boxes south-west
of it, or it is greater than or equal to all the boxes south-west of it.

If θ is not a rim, then there are no KOG-tableaux with shape θ. The content
of a KOG-tableau is the set of integers contained in its boxes.

Remark A.2. — Let B be a box in a KOG-tableau of shape θ. If there
is a box in θ located directly to the left of B, then B is actually greater
than or equal to all the boxes south-west of it. If there is a box in θ directly
below B, then B is actually less than or equal to all the boxes south-west
of it.

Example A.3.
(1) Let us consider the following rim with two rows

(A.1) · · · a1

b1 · · · br

such that the two rows of the rim are disconnected(1) , where the top
row consists of only one box and the bottom row consists of r boxes.
Then, for any r ⩾ 1, the number of KOG-tableaux of shape (A.1)
with content [1, r + 1] is equal to 2. This can be verified in the
following way. As the number of boxes of (A.1) is equal to r + 1,
a1, b1, . . . , br are distinct numbers of [1, r + 1]. If a1 > br, then by
Definition A.1(i) we have the unique KOG-tableau with labeling
(a1, b1, . . . , br) = (r + 1, 1, . . . , r). Otherwise, by Definition A.1(i)-
(ii), we see that br > br−1 > · · · b1 > a1, thus we also have the
unique KOG-tableau with labeling (a1, b1, . . . , br) = (1, 2, . . . , r+1).

(2) Now consider the following diagram, which is the same as the dia-
gram above, but with one more cell added to the first row.

(A.2) · · · a1 a2

b1 · · · br

(1) Here and further, dots outside boxes denote empty space of any nonnegative length,
in particular, length 0 is possible. In other words, it is possible that in the tableau (A.1),
the cells a1 and br share a vertex (but not an edge).
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Then, for any r ⩾ 2 the number of KOG-tableaux of shape (A.2)
with content [1, r + 1] is equal to 3: by Remark A.2, we obviously
get a2 = r + 1. If a1 ⩾ br, then there is a unique KOG-tableau
with labeling (a1, a2, b1, . . . , br) = (r, r+ 1, 1, . . . , r). Otherwise, we
have a1 ⩽ b1 < · · · < br ⩽ r + 1, thus there are exactly two KOG-
tableaux with labelings (a1, a2, b1, . . . , br) = (1, r + 1, 1, . . . , r) and
(1, r + 1, 2, . . . , r + 1).

We shall make use of the following combinatorial Pieri-type formula due
to Buch and Ravikumar:

Lemma A.4 ([3, Corollary 4.8]). — Let 1 ⩽ i ⩽ n be an integer. For
strict partitions λ and ν in [1, n], we denote by Cν

λ,i the number of KOG-
tableaux of shape ν/λ with content [1, i]. Then,

eieλ =
∑

ν ⊆ [1,n]

(−1)|ν/λ|−i · Cν
λ,i · eν .

To be precise, in view of our convention that eν is defined and equals
zero for any finite decreasing sequence of natural numbers ν containing
numbers bigger than n, we will use this formula with the sum over “strict
partitions ν” replaced with the sum over “decreasing sequences of natural
numbers ν”. All extra summands appearing this way are zeros, even if the
coefficients Cν

λ,i alone are not zeros.
Now we compute the coefficients (modulo terms in K(X)(2i+2)) in the

Pieri formula (Lemma A.4) for λ = (i).

Lemma A.5. — We have e2
1 = e2 and e2

n = 0 in K(X), and the following
relations hold modulo K(X)(2i+2) :

e2
i ≡ e2i + 2

(
i−1∑
k=1

ei+k, i−k

)
− ei+1, i − 3

(
i−1∑
k=2

ei+k, i−k+1

)
− 2e2i, 1

for any 1 < i < n.

Proof. — For now, in addition to 1 < i < n, let us also allow i = 1 and
i = n. Let us use Lemma A.4 for this i and for λ = (i). First, note that
if l(ν) ⩾ 3, then the leftmost box of the third row of ν/λ is strictly below
and strictly to the right of the leftmost box of the second row of ν/λ, thus
ν/λ is not a rim. Hence, we may assume that l(ν) ⩽ 2.

Since we consider the number of KOG-tableaux of shape ν/λ with con-
tent [1, i], it suffices to consider ν with |ν/λ| ⩾ i (i.e., |ν| ⩾ 2i).

If l(ν) = 1, then by Definition A.1(i) Cν
λ,i ̸= 0 if and only if |ν/λ| = i. In

this case, ν/λ is simply ν without the first leftmost i boxes, thus Cν
λ,i = 1,

i.e., e2i occurs in e2
i with coefficient 1.
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Let i = 1. Then, again by Definition A.1(i) Cν
λ,i = 0 for any ν with

l(ν) = 2, thus e2 is the only summand in e2
1.

Let i = n. Since ν is a strict partition of [1, n], the condition l(ν) = 2
implies that |ν| ⩽ 2n− 1. As |ν| ⩾ 2n and e2n = 0 by definition, we obtain
the relation e2

n = 0.
From now on, we assume that 2 ⩽ i ⩽ n− 1, and we compute e2

i modulo
K(X)(2i+2). If |ν/λ| ⩾ i + 2, then |ν| ⩾ 2i + 2, thus eν ∈ K(X)(2i+2).
Therefore, we may assume that |ν/λ| = i or i+ 1.

Let ν = (j, r) be such that j > r and j + r = 2i or j + r = 2i + 1. By
the definition of a rim, there cannot be more than one box in the top row
of ν/λ located directly above cells of the bottom row. Hence, it suffices to
compute Cν

λ,i for the following tableaux of shape ν/λ:

(A.3) a1 · · · ak

b1 · · · br

or · · · a1 · · · ak

b1 · · · br

where k = j − i, so k = i − r or k = i + 1 − r (note that the two rows
of the second tableau are disconnected but they can share a vertex – see
Example A.3).

Assume that k = i − r. As i + 1 ⩽ j ⩽ 2i − 1, 1 ⩽ r ⩽ i − 1, we have
1 ⩽ k ⩽ i − 1. As r < i, two rows of the tableau (A.3) are disconnected.
We show by induction that Cν

λ,k = 2 for any 1 ⩽ k ⩽ i − 1. The case
k = 1 follows from Example A.3(1). Assume k ⩾ 2. Then, by Remark A.2
we have ak = i, thus the statement follows by induction. Hence, for any
1 ⩽ k ⩽ i− 1 the term ei+k, i−k occurs in e2

i with coefficient 2.
Now we assume that k = i + 1 − r. As i + 1 ⩽ j ⩽ 2i, 1 ⩽ r ⩽ i,

we have 1 ⩽ k ⩽ i. We shall consider three subcases: k = 1, k = i, and
2 ⩽ k ⩽ i− 1. If k = 1, then r = i and the first row of (A.3) consists of a
single element a1 just above br. Hence, by Remark A.2, we get Cν

λ,i = 1 with
a unique labeling (a1, b1, b2 . . . , br) = (1, 1, 2, . . . , i), i.e., the term ei+1, i

occurs in e2
i with coefficient −1. If k = i, then r = 1 and two rows of the

tableau (A.3) are disconnected. By Definition A.1(i), we see that am = m

for any 1 ⩽ m ⩽ k. By Remark A.2 applied to a2, we have b1 = 1 or 2,
thus Cν

λ,i = 2, i.e., the term e2i, 1 occurs in e2
i with coefficient −2.

Finally, let 2 ⩽ k ⩽ i − 1. We show by induction that Cν
λ,i = 3. The

case k = 2 immediately follows from Example A.3(2). Assume that k ⩾ 3.
Then, by Remark A.2, ak = i. If we remove the box ak from the diagram,
all numbers from [1, i− 1] must be present in the remaining boxes. But the
content of the remaining boxes cannot be [1, i] since otherwise we would
have ak−1 = ak = i by Remark A.2, which contradicts Definition A.1(i).
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So, we can proceed by induction on k and get Cν
λ,i = 3 for 2 ⩽ k ⩽

i − 1, i.e., for any 2 ⩽ k ⩽ i − 1 the term ei+k, i−k+1 occurs in e2
i with

coefficient −3. □

Recall that we have denoted f(i) = e(i)ui = eiu
i ∈ K̃(X). We also

simply denote fm, i = em, i u
m+i ∈ K̃(X). We deduce some formulas for

K̃(X). The proof immediately follows from Lemma A.5.

Corollary A.6. — We have f(1)2 = f(2) and f(n)2 = 0 in K̃(X),
and the following relations hold modulo I(X)2 :

f(i)2 ≡ f(2i) + 2
(

i−1∑
k=1

fi+k, i−k

)
− t

(
i−1∑
k=1

fi+k, i−k+1

)
for any 1 < i < n.

In the following, we compute the coefficients (modulo terms in
K(X)(i+m+2)) in the Pieri formula (Lemma A.4) for any λ = (m) with
m > i.

Lemma A.7. — Letm > 1. Then, we have e1em = em+1+em, 1−em+1, 1
in K(X), and the following relations hold modulo K(X)(i+m+2) :

eiem ≡ em+i + em, i + 2
(

i−1∑
k=1

em+k, i−k

)

− 2em+1, i − 3
(

i−1∑
k=2

em+k, i−k+1

)
− 2em+i, 1

for any 1 < i < m.

Proof. — The proof is similar to the proof of Lemma A.5 above. For now,
in addition to 1 < i < m, let us also allow i = 1. Let us use Lemma A.4 for
this i and for λ = (m). Then, the arguments of the first two paragraphs of
the proof of Lemma A.5 show that l(ν) ⩽ 2 and |ν/λ| ⩾ i.

If l(ν) = 1, then it follows from Definition A.1(i) that Cν
λ,i = 1 if |ν/λ|= i,

and Cν
λ,i = 0 otherwise. So, ei+m occurs in eiem with coefficient 1, and

there are no terms ek with k ̸= i + m in the decomposition of eiem from
Lemma A.4.

From now on, let l(ν) = 2. Let us consider the case i = 1 first. Then
the content of the KOG-tableau is simply {1}. By Definition A.1(i), each
row of ν/λ can have at most 1 box. There are only two partitions ν that
contain λ and satisfy these conditions: ν = (m, 1) and ν = (m + 1, 1). So,
C

(m,1)
λ,1 = C

(m+1,1)
λ,1 = 1, thus the first equation in the statement of the

lemma immediately follows.
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Let 2 ⩽ i ⩽ m − 1. If |ν/λ| ⩾ i + 2, then |ν| ⩾ i + m + 2, thus eν ∈
K(X)(i+m+2). Therefore, we may assume that |ν/λ| = i or i+ 1.

Let ν = (j, r), where j > r and j+r = m+ i or j+r = m+ i+1. If there
is a box in the top row of ν/λ located directly above boxes of the bottom
row, then r = m ⩾ i+ 1, thus |ν/λ| ⩾ i+ 2. Hence, it suffices to compute
Cν

λ,i for the following tableaux of shape ν/λ:

(A.4)
b1 · · · br

or · · · a1 · · · ak

b1 · · · br

where k = j −m, so k = i− r or k = i+ 1 − r.
Assume that k = i − r. As m ⩽ j ⩽ i + m − 1, 1 ⩽ r ⩽ i, we get

0 ⩽ k ⩽ i− 1. We have two subcases: k = 0 and 1 ⩽ k < i. If k = 0, then
by Definition A.1(i) Cν

λ,i = 1. If 1 ⩽ k < i, then we use induction on k. For
k = 1, we get Cν

λ,i = 2 by Example A.3(1). For k ⩾ 2, we have ak = i by
Remark A.2, thus Cν

λ,i = 2 by induction.
Now assume that k = i+1−r. As the content of ν/λ should be [1, i], it fol-

lows from Definition A.1(i) that r ⩽ i, and the top row in the tableau (A.4)
is non-empty. So, 1 ⩽ r ⩽ i, m+1 ⩽ j ⩽ i+m, and 1 ⩽ k ⩽ i. We consider
three subcases: k = 1, k = i, and 2 ⩽ k ⩽ i− 1.

If k = 1, then r = i. By Definition A.1(i), there is only one option for
the bottom row: (b1, . . . , bi) = (1, . . . , i). By Definition A.1(ii), we have
two options for a1: a1 = 1 or a1 = i. Hence, we get Cν

λ,i = 2, i.e., the term
em+1, i occurs in eiem with coefficient −2.

If k = i, then r = 1. By Definition A.1(i), we get (a1, . . . , ai) = (1, . . . , i).
By Definition A.1(ii) applied to a2, we have two options for b1: b1 = 1 or
b1 = 2. So, Cν

λ,i = 2, and the term em+i, 1 occurs in eiem with coefficient
−2.

Finally, let 2 ⩽ k ⩽ i− 1. Then, by exactly the same argument as in the
last paragraph of the proof of Lemma A.5, we have Cν

λ,i = 3, thus the term
em+k, i−k+1 occurs in eiem with coefficient −3 for any 2 ⩽ k ⩽ i− 1. □

Lemma A.7 directly implies the following equations in K̃(X).

Corollary A.8. — Let m > 1. Then, we have f(m)f(1) = f(m+1)+
fm, 1 − tfm+1, 1 in K̃(X), and the following relations hold modulo I(X)2 :

f(m)f(i) ≡ f(m+ i) + fm, i + 2
(

i−1∑
k=1

fm+k, i−k

)
+ t

(
i−1∑
k=2

fm+k, i−k+1

)
for any 1 < i < m.

Now using Corollary A.8, we get the following intermediate result.
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Lemma A.9. — For any m > 1, we have the following relation modu-
lo I(X)2.

fm, 1 − f(m)f(1) ≡ f(m+ 1) − tf(1)f(m+ 1) + tf(m+ 2).

For any 1 < i < m, the difference fm, i − f(m)f(i) is congruent modulo
I(X)2 to

(−1)if(m+ i)−2
(

i−1∑
k=1

f(m+ k)f(i− k)
)

− t

(
i−1∑
k=2

f(m+ k)f(i− k + 1)
)

if i is even, and is congruent modulo I(X)2 to

(−1)if(m+ i) − 2
(

i−1∑
k=1

f(m+ k)f(i− k)
)

− t

(
i−1∑
k=2

f(m+ k)f(i− k + 1)
)

− tf(m+ i+ 1)

if i is odd.

Proof. — We first observe that 2 ≡ −2, t ≡ −t mod I(X)2. The formula
for fm, 1 − f(m)f(1) is obtained from the formulas for f(m)f(1) and for
f(m+ 1)f(1) (multiplied by t) in Corollary A.8.

Let us prove the formula for fm, i − f(m)f(i) with 1 < i < m. We show
by induction on i for all values of m > i together. If i = 2, then the formula
for fm, 2 − f(m)f(2) is obtained from the formulas for f(m)f(2) and for
f(m+ 1)f(1) (multiplied by 2) in Corollary A.8. Now we assume that the
formulas for fm′, i′ − f(m′)f(i′) hold for any 2 ⩽ i′ < i and any m′ > i′.
Let us multiply the formulas by 2 and t, respectively. Then, we have the
following congruences modulo I(X)2:

2fm′, i′ − 2f(m′)f(i′) ≡ 2f(m′ + i′)
and tfm′, i′ − tf(m′)f(i′) ≡ tf(m′ + i′),

(A.5)

respectively. Note that by the first formula in Lemma A.9, the first formula
in (A.5) still holds for i′ = 1 and any m′ > 1.

Taking the sum of the first formulas (A.5) for m′ = m + k, i′ = i − k,
and 1 ⩽ k ⩽ i− 1, we get

(A.6) 2
(

i−1∑
k=1

fm+k, i−k

)

≡ 2
(

i−1∑
k=1

f(m+ k)f(i− k)
)

+ 2(i− 1)f(m+ i) mod I(X)2.
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Similarly, taking the sum of the second formulas (A.5) for m′ = m + k,
i′ = i− k + 1, and 2 ⩽ k ⩽ i− 1, we get

(A.7) t

(
i−1∑
k=2

fm+k, i−k+1

)

≡ t

(
i−1∑
k=2

f(m+ k)f(i− k)
)

+ t(i− 2)f(m+ i+ 1) mod I(X)2.

Let us plug the formulas (A.6) and (A.7) into the second formula in
Corollary A.8. Then, the difference fm, i − f(m)f(i) is congruent modulo
I(X)2 to

− (2i− 1)f(m+ i) − t(i− 2)f(m+ i+ 1)

− 2
(

i−1∑
k=1

f(m+ k)f(i− k)
)

− t

(
i−1∑
k=2

f(m+ k)f(i− k + 1)
)
.

Since the following congruences hold modulo I(X)2

(A.8) −(2i− 1) ≡ (−1)i and − t(i− 2) ≡

{
0 if i is even,
t if i is odd,

the formula follows. □

Combining Corollary A.6 and Lemma A.9, we obtain the following main
result of this section.

Proposition A.10. — For any 1 < i < n, the following relations hold
modulo I(X)2 :

f(i)2 ≡ (−1)i−1f(2i) + 2
(

i−1∑
k=1

f(i+ k)f(i− k)
)

− t

(
i−1∑
k=1

f(i+ k)f(i− k + 1)
)

+ tf(2i+ 1)

for even i, and

f(i)2 ≡ (−1)i−1f(2i)

+ 2
(

i−1∑
k=1

f(i+ k)f(i− k)
)

− t

(
i−1∑
k=1

f(i+ k)f(i− k + 1)
)

for odd i.
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Proof. — Let us rewrite the formulas from Lemma A.9 as follows:

fm′, i′ ≡ f(m′)f(i′) + f(m′ + i′) − tf(i′)f(m′ + i′) + tf(m′ + i′ + 1)

for m′ > 1, i′ = 1,

fm′, i′ ≡ f(m′)f(i′) + (−1)i′
f(m′ + i′)

− 2

i′−1∑
k=1

f(m′ + k)f(i′ − k)

− t

i′−1∑
k=2

f(m′ + k)f(i′ − k + 1)


for m′ > i′ > 1, i′ even, and

fm′, i′ ≡ f(m′)f(i′) + (−1)i′
f(m′ + i′) − 2

i′−1∑
k=1

f(m′ + k)f(i′ − k)


− t

i′−1∑
k=2

f(m′ + k)f(i′ − k + 1)

− tf(m′ + i′ + 1)

for m′ > i′ > 1, i′ odd, where all congruences are modulo I(X)2.
Multiplying each of these formulas by 2, for any i′ ⩾ 1 and any

m′ > i′ we have

(A.9) 2fm′, i′ ≡ 2f(m′)f(i′) + 2f(m′ + i′) mod I(X)2.

Similarly, multiplying by t, for any m′ > i′ ⩾ 1 we get

(A.10) tfm′, i′ ≡ tf(m′)f(i′) + tf(m′ + i′) mod I(X)2.

For any 1 < i < n, let us take the sum of (A.9) for m′ = i + k and
i′ = i− k over 1 ⩽ k ⩽ i− 1. Then, we get

2
(

i−1∑
k=1

fi+k, i−k

)
≡ 2

(
i−1∑
k=1

f(i+ k)f(i− k)
)

+ 2(i− 1)f(2i) mod I(X)2.

Similarly, we take the sum of (A.10) for m′ = i+ k and i′ = i− k+ 1 over
1 ⩽ k ⩽ i− 1. Then, we have

t

(
i−1∑
k=1

fi+k, i−k+1

)

≡ t

(
i−1∑
k=1

f(i+ k)f(i− k + 1)
)

+ t(i− 1)f(2i+ 1) mod I(X)2.
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Now let us plug these formulas into the statement of Corollary A.6 for
1 < i < n, thus we have the following congruence modulo I(X)2

f(i)2 ≡ 2
(

i−1∑
k=1

f(i+ k)f(i− k)
)

− t

(
i−1∑
k=1

f(i+ k)f(i− k + 1)
)

+ (2i− 1)f(2i) − t(i− 1)f(2i+ 1).

Since

−t(i− 1) ≡

{
t mod I(X)2 if n is even,
0 mod I(X)2 otherwise,

the statement follows from the first congruence equation in (A.8). □

BIBLIOGRAPHY

[1] S. Baek & N. A. Karpenko, “Yagita’s counter-examples and beyond”, Ark. Mat.
61 (2023), no. 1, p. 1-17.

[2] A. Borel, “La cohomologie mod 2 de certains espaces homogènes”, Comment.
Math. Helv. 27 (1953), p. 165-197.

[3] A. S. Buch & V. Ravikumar, “Pieri rules for the K-theory of cominuscule Grass-
mannians”, J. Reine Angew. Math. 668 (2012), p. 109-132.

[4] R. Elman, N. A. Karpenko & A. S. Merkurjev, The Algebraic and Geometric
Theory of Quadratic Forms, Colloquium Publications, vol. 56, American Mathe-
matical Society, 2008.

[5] N. A. Karpenko, “Around 16-dimensional quadratic forms in I3
q ”, Math. Z. 285

(2017), no. 1–2, p. 433-444.
[6] ——— , “Chow ring of generic flag varieties”, Math. Nachr. 290 (2017), no. 16,

p. 2641-2647.
[7] ——— , “Chow ring of generically twisted varieties of complete flags”, Adv. Math.

306 (2017), p. 789-806.
[8] ——— , “On generic flag varieties of Spin(11) and Spin(12)”, Manuscr. Math. 157

(2018), no. 1-2, p. 13-21.
[9] ——— , “On generic quadratic forms”, Pac. J. Math. 297 (2018), no. 2, p. 367-380.

[10] ——— , “A counter-example by Yagita”, Int. J. Math. 31 (2020), no. 3, article
no. 2050025 (10 pages).

[11] A. S. Merkurjev & J.-P. Tignol, “The multipliers of similitudes and the Brauer
group of homogeneous varieties”, J. Reine Angew. Math. 461 (1995), p. 13-47.

[12] I. A. Panin, “On the algebraic K-theory of twisted flag varieties”, K-Theory 8
(1994), no. 6, p. 541-585.

[13] E. Primozic, “Motivic Steenrod operations in characteristic p”, Forum Math. Sigma
8 (2020), article no. e52 (25 pages).

[14] B. Totaro, “The torsion index of the spin groups”, Duke Math. J. 129 (2005),
no. 2, p. 249-290.

[15] N. Yagita, “The gamma filtrations for the spin groups”, Kodai Math. J. 44 (2021),
no. 1, p. 137-165.

ANNALES DE L’INSTITUT FOURIER



COUNTER-EXAMPLES TO A CONJECTURE OF KARPENKO 37

Manuscrit reçu le 18 septembre 2023,
révisé le 26 décembre 2023,
accepté le 5 février 2024.

Sanghoon BAEK
Department of Mathematical Sciences
KAIST
291 Daehak-ro, Yuseong-gu
Daejeon 305-701 (Republic of Korea)
sanghoonbaek@kaist.ac.kr
Rostislav DEVYATOV
Department of Mathematical Sciences
KAIST
291 Daehak-ro, Yuseong-gu
Daejeon 305-701 (Republic of Korea)
Laboratory of Algebraic Geometry
and its Applications,
Department of Mathematics
National Research University
Higher School of Economics
6 Usacheva str.
Moscow 119048 (Russian Federation)
deviatov@mccme.ru

TOME 0 (0), FASCICULE 0

mailto:sanghoonbaek@kaist.ac.kr
mailto:deviatov@mccme.ru

	1. Introduction
	2. Grothendieck and Chow rings of orthogonal grassmannians
	2.1. Grothendieck ring of orthogonal grassmannians
	2.2. Rees ring associated to the topological filtration
	2.3. Chow ring of orthogonal grassmannians

	3. Congruence relations for split orthogonal grassmannians
	4. Proof of Theorem 1.2
	Appendix A. Pieri formula in the Grothendieck ring of X
	References

