

ANNALES DE L'INSTITUT FOURIER

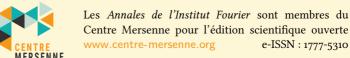
Yuri G. Zarhin

Corrigendum to "Tate classes on self-products of Abelian varieties over finite fields"

Tome 75, nº 6 (2025), p. 2317-2320.

https://doi.org/10.5802/aif.3724

Article mis à disposition par son auteur selon les termes de la licence CREATIVE COMMONS ATTRIBUTION - PAS DE MODIFICATION 3.0 FRANCE



e-ISSN: 1777-5310

CORRIGENDUM TO "TATE CLASSES ON SELF-PRODUCTS OF ABELIAN VARIETIES OVER FINITE FIELDS"

Annales de l'Institut Fourier, vol. 72 (2022), no 6, 2339-2383

by Yuri G. ZARHIN

Abstract. — We fix an inaccuracy in the proof of Proposition 6.6 in the original paper.

RÉSUMÉ. — Nous corrigeons une imprécision dans la démonstration de la proposition 6.6 de l'article original.

Proposition 6.6 of [1] asserts the equivalence of certain two properties, (a) and (b). Its proof in [1, p. 2369–2371] consists of two parts. First, we proved that (b) \Rightarrow (a). Second, we proved that not (a) \Rightarrow not (b), which is actually the same! ⁽¹⁾ The aim of this note is to provide a missing proof of the implication (a) \Rightarrow (b).

We will freely use the notation of [1, §6.3]. In particular, \mathbb{Z}_+ is the set of all nonnegative integers, E is a field of characteristic zero, V_E is a nonzero finite-dimensional E-vector space, V_E^* is its dual, $A_E \colon V_E \to V_E$ is an invertible diagonalizable linear operator, $\operatorname{spec}(A) \subset E$ is the set of its eigenvalues, and $\operatorname{mult}_A \colon \operatorname{spec}(A) \to \mathbb{Z}_+$ is the map that assigns to each eigenvalue of A_E its multiplicity. Let us fix an eigenbasis B of V_E (with respect to A_E) and choose an order on B. We write $\pi \colon B \to \operatorname{spec}(A)$ for the (surjective) map that assigns to an eigenvector the corresponding eigenvalue; if $\alpha \in \operatorname{spec}(A)$ then $\pi^{-1}(\alpha)$ consists of $\operatorname{mult}_A(\alpha)$ elements [1, p. 2367].

If $j \leq \dim_E(V_E)$ is a positive integer then we assign to each j-element subset C of B a certain element $y_C \in \bigwedge_E^j(V_E^*)$ that is an eigenvector of $\bigwedge^j(A_E^*)$ with eigenvalue $\prod_{x \in C} \pi(x)$; all such y_C 's consitute an eigenbasis

Keywords: Abelian varieties, Tate classes, Finite fields. 2020 Mathematics Subject Classification: 11G10, 11G25, 14G15.

⁽¹⁾ I am grateful to Sergey Rybakov for pointing it out.

of $\bigwedge_{E}^{j}(V_{E}^{*})$ [1, p. 2367]. We will need functions

$$e_C : \operatorname{spec}(A) \longrightarrow \mathbb{Z}_+, \ \alpha \longmapsto \#\{x \in C \mid \pi(x) = \alpha\}.$$

If $\lambda \in E$ then $\bigwedge_E^j(V_E^*)(\lambda)$ stands for the eigenspace of $\bigwedge^j(A_E^*)$ attached to the eigenvalue λ . In order to describe explicitly a basis of $\bigwedge_E^j(V_E^*)(\lambda)$, let us consider functions $e \colon \operatorname{spec}(A) \to \mathbb{Z}_+$ that enjoy the following properties:

- (i) $e(\alpha) \leq \operatorname{mult}_A(\alpha) \ \forall \ \alpha \in \operatorname{spec}(A);$
- (ii) $\sum_{\alpha \in \operatorname{spec}(A)} e(\alpha) = j;$
- (iii) $\prod_{\alpha \in \operatorname{spec}(A)} \alpha^{e(\alpha)} = \lambda$.

Then the set of y_C 's such that e_C enjoys the properties (i)–(iii), is a basis of $\bigwedge_E^j(V_E^*)(\lambda)$ [1, p. 2367].

Let $\lambda_1, \lambda_2 \in K$ where K is a subfield of E. Assuming that $j \geq 2$, let us consider the E-linear map

$$(6.10) \qquad \bigwedge_{E}^{j-2} (V_E^*)(\lambda_1) \otimes_E \bigwedge_{E}^{2} (V_E^*)(\lambda_2) \longrightarrow \bigwedge_{E}^{j} (V_E^*)(\lambda_1 \lambda_2), \quad \psi \otimes \phi \longmapsto \psi \wedge \phi.$$

By [1, Lem. 6.9], the image of (6.10) is generated by all y_C 's where C is any j-element subset of B that enjoys the following properties.

The set C is a disjoint union of a (j-2)-element subset S and a 2-element subset T such that the corresponding functions

$$e_S \colon \operatorname{spec}(A) \longrightarrow \mathbb{Z}_+, \quad e_T \colon \operatorname{spec}(A) \longrightarrow \mathbb{Z}_+$$

enjoy the following properties.

(6.11)
$$\prod_{\alpha \in \operatorname{spec}(A)} \alpha^{e_S(\alpha)} = \lambda_1, \quad \prod_{\alpha \in \operatorname{spec}(A)} \alpha^{e_T(\alpha)} = \lambda_2.$$

The condition (a) of [1, Prop. 6.6] is equivalent to the non-surjectiveness of (6.10).

The condition (b) of [1, Prop. 6.6] is the existence of a function $e \colon \operatorname{spec}(A) \to \mathbb{Z}_+$ such that:

- (bi) $e(\alpha) \leq \operatorname{mult}_A(\alpha) \ \forall \ \alpha \in \operatorname{spec}(A);$
- (bii) $\sum_{\alpha \in \operatorname{spec}(A)} e(\alpha) = j;$
- (biii) $\prod_{\alpha \in \operatorname{spec}(A)} \alpha^{e(\alpha)} = \lambda_1 \lambda_2;$
- (biv) If $\alpha \in \operatorname{spec}(A)$ and $e(\alpha) \neq 0$ then $e(\alpha) \geqslant 1$ and one of the following conditions holds.
 - (1) $\lambda_2/\alpha \not\in \operatorname{spec}(A)$;
 - (2) $\lambda_2/\alpha \in \operatorname{spec}(A)$ but $e(\lambda_2/\alpha) = 0$;
 - (3) $\alpha = \lambda_2/\alpha$ (i.e., $\alpha^2 = \lambda_2$) and $e(\alpha) = 1$.

Proposition 6.6 may be restated (see Remark 6.8 of [1]) as an equivalence of the *non-surjectiveness* of (6.10) and property (b). Our proof is based on the following assertion.

LEMMA 6.9 OF [1]. — The image of the map (6.10) is generated by all y_C 's where C is any j-element subset of B that enjoys the following properties.

The set C is a disjoint union of a (j-2)-element subset S and a 2-element subset T such that the corresponding functions

$$e_S : \operatorname{spec}(A) \longrightarrow \mathbb{Z}_+, \quad e_T : \operatorname{spec}(A) \longrightarrow \mathbb{Z}_+$$

enjoy the following properties.

(6.11)
$$\prod_{\alpha \in \operatorname{spec}(A)} \alpha^{e_S(\alpha)} = \lambda_1, \quad \prod_{\alpha \in \operatorname{spec}(A)} \alpha^{e_T(\alpha)} = \lambda_2.$$

Proof of Proposition 6.6 of [1]. — The implication (b) \Rightarrow (a) is proven in [1, p. 2370]. Conversely, suppose that (a) holds, i.e., (6.10) is not surjective. Then there is a basis vector $y_C \in \bigwedge_E^j(V_E^*)(\lambda_1\lambda_2)$ that does not belong to the image where C is a certain j-element subset of B such that

$$\prod_{x \in C} \pi(x) = \lambda_1 \lambda_2.$$

I claim that the function $e := e_C$ enjoys the properties (b). Indeed, by definition, e_C enjoys the properties (bi), (bii), (biii). In particular,

$$\prod_{\alpha \in C} \alpha^{e_C(\alpha)} = \prod_{x \in C} \pi(x) = \lambda_1 \lambda_2.$$

Suppose that e_C does not enjoy the property (biv). This means that there exists $\alpha \in \operatorname{spec}(A)$ such that $e_C(\alpha) \neq 0$ (i.e., $\alpha \in \pi(C)$) and

$$\frac{\lambda_2}{\alpha} \in \operatorname{spec}(A), \quad e_C\left(\frac{\lambda_2}{\alpha}\right) \neq 0$$

(i.e., $\lambda_2/\alpha \in \pi(C) \subset \operatorname{spec}(A)$). In addition, if $\lambda_2/\alpha = \alpha$ then $e_C(\alpha) \ge 2$ (i.e., $\pi^{-1}(\alpha)$ contains at least two elements of C).

This implies that there are distinct elements x_1 and x_2 of C such that

$$\pi(x_1) = \alpha, \quad \pi(x_2) = \frac{\lambda_2}{\alpha}.$$

Then C coincides with the disjoint union of the 2-element subset $T = \{x_1, x_2\}$ and the (j-2)-element subset $S = C \setminus T$. By definition of T,

$$\prod_{\alpha \in T} \alpha^{e_T(\alpha)} = \prod_{x \in T} \pi(x) = \pi(x_1) \cdot \pi(x_2) = \alpha \cdot \frac{\lambda_2}{\alpha} = \lambda_2.$$

Hence,

$$\prod_{\alpha \in T} \alpha^{e_T(\alpha)} = \lambda_2.$$

Since C is the disjoint union of S and T, we get

$$\prod_{\alpha \in S} \alpha^{e_S(\alpha)} = \frac{\prod_{\alpha \in C} \alpha^{e_C(\alpha)}}{\prod_{\alpha \in T} \alpha^{e_T(\alpha)}} = \frac{\lambda_1 \lambda_2}{\lambda_2} = \lambda_1.$$

Hence,

$$\prod_{\alpha \in S} \alpha^{e_S(\alpha)} = \lambda_1.$$

It follows from Lemma 6.9 that y_C lies in the image of the map (6.10), which is not true. The obtained contradiction implies that e_C enjoys the property (biv). This ends the proof of Proposition 6.6.

BIBLIOGRAPHY

 Y. G. Zarhin, "Tate classes on self-products of abelian varieties over finite fields", Ann. Inst. Fourier 72 (2022), no. 6, p. 2339-2383.

Manuscrit reçu le 7 janvier 2025, révisé le 20 février 2025, accepté le 20 mars 2025.

Yuri G. ZARHIN Department of Mathematics Pennsylvania State University University Park, PA 16802, USA zarhin@math.psu.edu