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A COMPLETE ANSWER TO ALBANESE BASE
CHANGE FOR INCOMPLETE VARIETIES

by Jeffrey D. ACHTER,
Sebastian CASALAINA-MARTIN & Charles VIAL (*)

Abstract. — Albanese varieties provide a standard tool in algebraic geome-
try for converting questions about general varieties into questions about Abelian
varieties. A result of Serre provides the existence of an Albanese variety for any ge-
ometrically connected and geometrically reduced scheme of finite type over a field,
and a result of Grothendieck–Conrad establishes that Albanese varieties are stable
under base change of field provided the scheme is, in addition, proper. A result
of Raynaud shows that base change can fail for Albanese varieties without this
properness hypothesis. In this paper we show that Albanese varieties of geometri-
cally connected and geometrically reduced schemes of finite type over a field are
stable under separable field extensions. We also show that the failure of base change
in general is explained by the L/K-image for purely inseparable extensions L/K.

Résumé. — Les variétés d’Albanese constituent un outil standard en géométrie
algébrique pour convertir des questions sur les variétés en général en questions sur
les variétés abéliennes. Un résultat de Serre garantit l’existence d’une variété d’Al-
banese pour tout schéma géométriquement connexe et géométriquement réduit de
type fini sur un corps, et un résultat de Grothendieck–Conrad établit la stabilité des
variétés d’Albanese sous extension du corps de base, à condition que le schéma soit,
de plus, propre. Un résultat de Raynaud montre que cette stabilité sous extension
du corps de base peut échouer pour les variétés d’Albanese sans cette hypothèse de
propreté. Dans cet article, nous montrons que les variétés d’Albanese des schémas
géométriquement connexes et géométriquement réduits de type fini sur un corps
sont stables sous les extensions de corps séparables. Nous montrons également que
la mise en défaut du changement de base en général est expliquée par la L/K-image
pour les extensions purement inséparables L/K.
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1. Introduction

Consider a K-pointed scheme (V, v) of finite type over a field K. A
pointed Albanese variety for this object, if it exists, consists of an abelian
variety AlbV/K over K and a pointed K-morphism

av : V // AlbV/K

taking v to 0AlbV/K
, which is initial for pointed K-morphisms from V to

abelian varieties. More generally, if V is a scheme of finite type over a
field K, an Albanese torsor for V , if it exists, is a morphism a : V →
Alb1

V/K to a torsor under an abelian variety AlbV/K , the Albanese variety
of V , which is initial for morphisms to torsors under abelian varieties.
For complex projective manifolds, Albanese varieties were a classical, and
central, tool in algebraic geometry; they provide a method of converting
geometric questions about a variety into related questions about abelian
varieties, and extend the techniques used for studying smooth projective
curves via the Jacobian and the Abel map to varieties of higher dimension.
In 1960, Serre showed such an Albanese variety exists for any geometrically
connected and geometrically reduced scheme of finite type over any field [32]
(see Theorem 2.2 and Remark 3.3), thereby allowing for the extension of
these classical techniques to this setting. Other treatments were considered
at about the same time [29, 7].

After existence, perhaps the most important structural question is base
change. In the special case where V is in addition assumed to be proper
and geometrically normal over K, Grothendieck [16] identified AlbV/K with
((Pic0

V/K)red)∨, the dual abelian variety of the reduction of Pic0
V/K . In this

setting, since the formation of the Picard scheme is compatible with base
change, it follows that if L/K is any field extension, then the canonical
map βV,L/K : AlbVL/L → (AlbV/K)L is an isomorphism. However, without
the hypothesis that V be proper, it is known that base change can fail:

Example 1.1 (Raynaud: Albaneses are not stable under base change).
Let L/K be a finite purely inseparable field extension, and let A/L be
an abelian variety. Let G = RL/KA be the Weil restriction, which is a
smooth connected commutative algebraic K-group with dim G = [L : K] ·
dim A [11, Exp. XVII, App. II, Prop. 5.1]. There is a short exact sequence
of L-groups [11, Exp. XVII, App. II, Prop. 5.1]

1 // U // GL
u // A // 0,
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where U is a smooth connected and unipotent linear algebraic L-group,
exhibiting A as the Albanese of GL [6, Ex. 4.2.7]. As we will see in The-
orem 5.6, AlbG/K = imL/K A, the L/K-image of A (see Section 5). If
A is defined over K, then (AlbG/K)L = (imL/K A)L = A = AlbGL/L.
However, if A is not defined over K, then G is not an extension of an
abelian variety over K by a smooth algebraic K-group [11, Exp. XVII,
App. II, Cor. (ii) to Prop. 5.1](1) ; Brion uses this to show that in this case
(AlbG/K)L ̸= A = AlbGL/L [6, Ex. 4.2.7], providing an example where base
change fails.

Despite this failure of base change, there are a few striking features of
this example. First, the field extension is purely inseparable, and second,
it happens that AlbG/K

∼= imL/K AlbGL/L. The main result of this paper
shows that these observations about the Raynaud example represent the
general situation. In other words, it is the inseparability of L/K, and not the
improperness of G, that drives the failure of base change in the Raynaud
example. Indeed, for a purely inseparable extension, the Albanese is the
L/K-image of the Albanese of the base change:

Theorem. — Let V be a geometrically connected and geometrically
reduced scheme of finite type over a field K, and let L/K be an extension
of fields.

(A) (Theorem 5.1) If L/K is separable, then AlbVL/L
∼= (AlbV/K)L.

(B) (Theorem 5.6) If L/K is a purely inseparable extension, then
AlbV/K

∼= imL/K AlbVL/L.

Recall that any field extension L/K factors as L/L′/K with L′/K separa-
ble and L/L′ purely inseparable (see, e.g., Section 4.1), so that the theorem
above completely describes base change for arbitrary field extensions. We
note that our proof of Theorem (A) relies on Theorem (B), due to our use
of de Jong’s regular alterations, and the fact that these regular alterations
are only smooth over a purely inseparable extension of the base field. The-
orem (A) generalizes the abelian (as opposed to semi-abelian) case of [34,
Cor. A.5], which requires V to be an open subset of a smooth proper ge-
ometrically integral scheme over K; it also generalizes [27, Prop. A.3(i)]
to the case of non-perfect base fields, and non-algebraic field extensions.
Theorem (B) completely explains the behavior studied in [6, Ex. 4.2.7].

(1) Note that the statement of [11, Exp. XVII, App. II, Cor. (ii) to Prop. 5.1] has the
implicit hypothesis that A not be defined over K: the proof uses this hypothesis to
conclude that the linear algebraic subgroup of G in the proof is strictly larger than U
when base changed to L; moreover, the hypothesis that A not be defined over K is
required in the statement of the corollary, as this example shows.

TOME 0 (0), FASCICULE 0
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Theorem (B) implies the weaker statement that, for a purely insepara-
ble extension L/K, AlbVL/L and (AlbV/K)L differ by a purely inseparable
isogeny. This, as well as Theorem (A), has also been secured by Schröer [31,
Thm. 6.1] for separated schemes, under a hypothesis on the ring of global
functions.

We note that the geometrically connected hypothesis for V in the theo-
rem is necessary, as it is necessary for the existence of an Albanese (Corol-
lary 2.5). In contrast, the geometric reducedness hypothesis in the theorem
is more subtle (Example 2.7, Example 2.9, Example 3.4), although one can
at least say that the reducedness of Γ(V, OV ) is necessary in Theorem (A),
and the geometric reducedness of Γ(V, OV ) is necessary in Theorem (B), as
the reducedness (but not geometric reducedness) of Γ(V, OV ) is necessary
for the existence of an Albanese (Corollary 2.8, Example 2.11). See also
Proposition 2.12(i) where we summarize some necessary conditions for the
existence of an Albanese.

In light of the modern treatment of Albaneses following Grothendieck,
our definition of the Albanese, and our subsequent focus on base change of
field may seem slightly archaic. Indeed, Grothendieck would require that
the Albanese of (V, v) satisfy the stronger condition that for any morphism
of schemes S → K, and any pointed S-morphism f : VS → A to an abelian
scheme A/S sending vS to 0A, there exists a unique S-homomorphism
g : (AlbV/K)S → A such that g◦aS = f . Such an Albanese would automat-
ically satisfy arbitrary base change. Grothendieck and Conrad show that
for a pointed proper geometrically connected and geometrically reduced
scheme V of finite type over K, the Albanese as defined here satisfies this
stronger condition. Because of Theorem (B), the best possible result along
these lines without the properness hypothesis is:

Theorem.
(C) (Theorem 6.3) Let (V, v) be a K-pointed (geometrically) connected

and geometrically reduced scheme of finite type over a field K. Then
for any (inverse limit of) smooth morphism of schemes S → Spec K,
and any pointed S-morphism f : VS → A to an abelian scheme
A/S sending vS to 0A, there exists a unique S-homomorphism g :
(AlbV/K)S → A such that g ◦ aS = f .

We refer to Theorem 6.3 for the Albanese torsor version of Theorem (C)
valid for (not necessarily K-pointed) geometrically connected and geomet-
rically reduced scheme of finite type over a field K.

We originally worked out these arguments as part of our development of
a functorial approach to regular homomorphisms [1]. Indeed, Theorem (A)
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originally appeared as an appendix to op. cit.. However, since it seemed
that these results on Albanese varieties might be useful to a wider audi-
ence, we decided to make them available in a separate document. Since
that preprint originally appeared, Laurent and Schröer have studied the
existence of a relative Albanese for proper families [23]. Moreover, in the
context of schemes over a field Schröer, using different techniques, has ex-
tended some of our results under the further hypothesis that the scheme
be separated [31]. Combining our Proposition 2.12(i) with [31, Thm. p. 2]
provides necessary and sufficient conditions for the existence of an Albanese
for a separated scheme of finite type over a field (Proposition 2.12(ii)). A
formulation of Schröer’s base change result [31, Thm. p. 4] can be found in
Proposition 5.7.

Acknowledgements

We are indebted to Brian Conrad for helpful conversations and to David
Grant for explaining the proof of Proposition 2.14(b). We also thank Stefan
Schröer for a detailed reading and useful comments.

2. Albanese varieties

2.1. Serre’s existence theorem

Let V be a scheme of finite type over a field K. Recall that an Albanese
datum for V consists of a triple

(2.1) (AlbV/K , Alb1
V/K , aV/K : V −→ Alb1

V/K)

with AlbV/K an abelian variety over K, Alb1
V/K a torsor under AlbV/K

over K, and a : V → Alb1
V/K a morphism of K-schemes which is initial,

meaning that given any triple (A, P, f : V → P ) with A an abelian variety
over K, P a torsor under A over K, and f : V → P a morphism of
K-schemes, there is a unique K-morphism g : Alb1

V/K → P making the
following diagram commute:

V
aV/K

//

f
""

Alb1
V/K

∃! g

��

P

TOME 0 (0), FASCICULE 0
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We will respectively call the three objects in this datum the Albanese
variety, the Albanese torsor, and the Albanese morphism of V/K (although
of course the torsor is itself a variety, too).

Remark 2.1. — Recall that if A is an abelian variety over K and P is
a torsor under A over K, then there is a natural isomorphism A∨ ∼=−→
Pic0

P/K (e.g., [30, §2.1]). Moreover, if A and A′ are abelian varieties over
K, and P and P ′ are torsors under A and A′, respectively, then for any
K-morphism g : P → P ′, there is a unique K-homomorphism ϕ : A → A′

making g equivariant, and moreover, g(P ) is a torsor under ϕ(A); more
precisely, ϕ is the composition A

∼=−→ (Pic0
P/K)∨ (g∗)∨

−→ (Pic0
P ′/K)∨ ∼=−→ A′.

In particular, in the definition of the Albanese data above, there is a unique
K-homomorphism AlbV/K → A making g : Alb1

V/K → P equivariant.

When V/K is equipped with a K-point v : Spec K → V over K, then
one can define a pointed Albanese variety and morphism, by requiring all
the maps in the previous paragraph to be pointed. This reduces to the
following situation: a pointed Albanese datum for (V, v) is a pair

(2.2) (AlbV/K , aV/K,v : (V, v) −→ (AlbV/K , 0))

where AlbV/K is an abelian variety, and aV/K,v : V → AlbV/K is a mor-
phism of K-schemes taking v to the zero section 0 = 0AlbV/K

, which is
initial, meaning that given any K-morphism f : V → A to an abelian
variety A/K, taking v to the zero section 0A, there is a unique K-homom-
orphism g : AlbV/K → A making the following diagram of pointed K-
morphisms commute:

(V, v)
aV/K,v

//

f
''

(AlbV/K , 0AlbV/K
)

∃! g

��

(A, 0A)

As we noted in the introduction, the existence of Albanese data in the
case of complex projective manifolds is classical, while in the more general
setting goes back essentially to Serre [32]. We direct the reader to [34,
Thm. A.1 and p. 836] for an exposition valid over an arbitrary field; the
assertion there is made for V/K a geometrically integral scheme(2) of finite
type over a field K, although the argument holds under the slightly weaker

(2) Note that Wittenberg uses the term variety for a scheme of finite type over a field [34,
p. 807].

ANNALES DE L’INSTITUT FOURIER
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hypothesis that V is a geometrically connected and geometrically reduced
scheme of finite type over K:

Theorem 2.2 (Serre). — Let V be a geometrically connected and ge-
ometrically reduced scheme of finite type over a field K. Then V admits
Albanese data, and if V admits a K-point, then V admits pointed Albanese
data.

2.2. Necessity of geometric connectedness and geometric
reducedness

We now briefly discuss the hypotheses in Theorem 2.2 that V be geomet-
rically connected and geometrically reduced. In short, the geometric con-
nectedness of V is necessary for V to admit Albanese data (Corollary 2.5),
while the geometric reducedness of V is not (Example 2.7). The situation
is summarized in Proposition 2.12(i).

The basic starting point is the following existence result, which states
that given an abelian variety and a zero-dimensional scheme, there is a
second abelian variety containing the zero dimensional scheme as a closed
subscheme, and which admits no non-trivial homomorphisms from the first
abelian variety:

Proposition 2.3. — Given an abelian variety A/K and a finite dimen-
sional K-algebra R with each residue field a simple extension of K that is
either separable or purely inseparable, there exists an abelian variety A′/K

such that there is a closed embedding of K-schemes Spec R ↪→ A′ and such
that Hom(AK , A′

K
) = 0.

The proof of Proposition 2.3 is somewhat lengthy, and so to maintain the
flow of the ideas in this subsection, we postpone the proof until Section 2.3.
As an immediate consequence of Proposition 2.3, we have the following:

Theorem 2.4. — Let V be a scheme of finite type over a field K, and
suppose there exists a nontrivial finite dimensional K-algebra R with R ⊆
Γ(V, OV ). Then given an abelian variety A/K, a torsor P/K under A,
and a K-morphism f : V → P , there exists a torsor P ′/K under an
abelian variety A′/K and a K-morphism f ′ : V → P ′ that does not factor
through f . In particular, V does not admit an Albanese datum.

Proof. — The first claim is that R contains a nontrivial finite dimen-
sional K-subalgebra R′ ⊆ R with residue fields that are separable exten-
sions of K or simple purely inseparable extensions of K. Indeed, R being

TOME 0 (0), FASCICULE 0
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Artinian is a direct sum R =
⊕c

i=1 Ri of finite local K-algebras (Ri,mi).
For each i, we may and do choose a sub-algebra R′

i such that, if the residue
field κi := Ri/mi is a nontrivial extension of K, then κ′

i := R′
i/(mi ∩ Ri) is

a nontrivial extension which is either separable or simple and purely insep-
arable. Indeed, if κi is purely inseparable, let Ki ⊆ κi be a sub-K-extension
of degree char(Ki), and otherwise let Ki be the separable closure of K in κi.
In either case, let Ri = ϖ−1

i (Ki), where ϖi : Ri → κi is the projection. If
κi = K then we simply set R′

i = Ri. Finally we let R′ =
⊕c

i=1 R′
i.

By virtue of Proposition 2.3, let A′/K be an abelian variety such that
Hom(A, A′) = 0, and such that there is a closed immersion Spec R′ ↪→ A′.
Since V → Spec Γ(V, OV ) is scheme-theoretically surjective (for any ring S

we have Hom(V, Spec S) = Hom(Spec Γ(V, OV ), Spec S)) and since the in-
clusion R′ ⊆ Γ(V, OV ) induces a scheme-theoretic surjection (for affine
schemes the scheme-theoretic image is determined by the factorization of
a ring homomorphism into a surjection followed by an inclusion), we have
that V → Spec R′ is scheme-theoretically surjective.

Now let f ′ be the composition f ′ : V →→ Spec R′ ↪→ A′. We obtain a
diagram

(2.3) V

f ′

""

f

��

// // Spec R′
� _

��

P
g
// A′,

so that if we had a factorization f ′ = g ◦ f , as indicated by the dashed
arrow, then the morphism g would be an equivariant morphism over a
K-homomorphism ϕ : A → A′ of abelian varieties. The hypothesis that
Hom(A, A′) = 0, would force ϕ to be the trivial map, so that g would be
constant, with image a K-point of A′. The commutativity of the diagram
would then imply Spec R′ ∼= Spec K, which we have assumed is not the
case. □

Corollary 2.5 (Geometric connectedness is necessary). — Suppose
that V is a scheme of finite type over a field K, and V fails to be geomet-
rically connected. Then V does not admit an Albanese datum.

Proof. — By Theorem 2.4, it suffices to show that Γ(V, OV ) contains
a nontrivial finite K-algebra. Write V =

∐c
i=1 Vi as a disjoint union of

connected K-schemes. Then there are idempotents ei ∈ Γ(V, OV ) such
that Γ(Vi, OVi) = Γ(Vi, OV ) = eiΓ(V, OV ). Therefore, if V is disconnected,
then c > 1 and R :=

⊕c
i=1 Kei

∼= K⊕c ⊆ Γ(V, OV ) is a nontrivial finite
K-algebra.

ANNALES DE L’INSTITUT FOURIER
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Otherwise, assume V is connected, but geometrically disconnected. Let
L/K be a finite Galois extension such that VL is disconnected (e.g., [15,
Prop. 5.53]). As before, write VL =

∐c
i=1 Wi as a disjoint union of c > 1

connected L-schemes, and let e1, . . . , ec ∈ Γ(VL, OVL
) be the correspond-

ing idempotents. Then Gal(L/K) permutes the ei, and acts transitively
because V itself is connected. As before, we have

⊕c
i=1 Lei

∼= L⊕c ⊆
Γ(VL, OVL

). In fact, letting H ⊆ Gal(L/K) be the stabilizer of e1, then
c = |Gal(L/K)|/|H|, and we can enumerate the components of VL by the
cosets g1H, . . . , gcH for some elements g1, . . . , gc ∈ Gal(L/K). In this no-
tation, we can take e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc., and then
the action of Gal(L/K) on L⊕c is given by

g · (ℓg1H , ℓg2H , . . . , ℓgnH) = (g · ℓg−1g1H , g · ℓg−1g2H , . . . , g · ℓg−1gnH);

in other words, Gal(L/K) permutes the components according to its action
on the cosets of H, and then acts on the entries according to the action of
the Galois group on L.

Now, because Gal(L/K) does not fix e1, it follows that H is a proper
subgroup of Gal(L/K), and its fixed field LH satisfies [LH : K] =
|Gal(L/K)|/|H| > 1. From the description of the action of Gal(L/K) on
L⊕c, it follows that there is a copy of LH in

⊕c
L ⊆ Γ(VL, OVL

) given by

ℓ 7−→ (g1 · ℓ, g2 · ℓ, . . . , gn · ℓ),

which is, by construction, invariant under the action of Gal(L/K). Thus
Γ(V, OV ), being the Gal(L/K)-invariants of Γ(VL, OVL

), contains a ring
isomorphic to the finite nontrivial K-algebra LH . □

Remark 2.6 (Geometric connectedness of Γ(V, OV ) is necessary). — We
note that for a scheme V of finite type over a field K, since V is discon-
nected if and only if Spec Γ(V, OV ) is disconnected, we have that V fails
to be geometrically connected if and only if Spec Γ(V, OV ) fails to be geo-
metrically connected.

We now turn our attention to the geometric reducedness hypothesis in
Theorem 2.2, which is more subtle. We first observe that since there are
non-reduced schemes V of finite type over a field K such that Γ(V, OV ) does
not admit any non-trivial finite K-subalgebra R (see e.g., Example 2.7),
the proof of Corollary 2.5 cannot be used to rule out the existence of an
Albanese in the case where V is non-reduced. In fact, there are non-reduced
schemes that admit Albaneses:

Example 2.7 (Non-reduced scheme with an Albanese). — Let K be a
field, H ⊆ P2

K be a line, and take V = 2H ⊆ P2
K . Then AlbV/K = Spec K,

TOME 0 (0), FASCICULE 0



10 Jeffrey D. ACHTER, Sebastian CASALAINA-MARTIN & Charles VIAL

Alb1
V/K = Spec K, and a : V → Alb1

V/K is the structure map (of V as
a K-scheme). Indeed, observe first that taking the long exact sequence
in cohomology associated to 0 → OP2

K
(−2H) → OP2 → OV → 0, one

has that Γ(V, OV ) = K. Therefore, as under the standard identification
Hom(V, Spec R) = Hom(R, Γ(V, OV )) for a ring R, every morphism V →
Spec R factors through the natural morphism V → Spec Γ(V, OV ), then for
any scheme-theoretically surjective morphism V → Spec R, we have R =
K. Now, since Vred = P1

K , then given any K-morphism V → P to a torsor
P under an abelian variety A/K, the composition P1

K = Vred ↪→ V → P

has set-theoretic image a K-point of P . Thus the scheme-theoretic image
of V in P is an affine scheme Z = Spec R where R is a finite K-algebra.
Thus Z = Spec K and we are done.

Nevertheless, Theorem 2.4 does give examples of non-reduced schemes
that do not admit Albaneses:

Corollary 2.8 (Reducedness of Γ(V, OV ) is necessary). — Suppose
that V is a scheme of finite type over a field K, and Spec Γ(V, OV ) fails to
be reduced. Then V does not admit an Albanese datum.

Proof. — If Spec Γ(V, OV ) is non-reduced, then there exists a nilpotent
element r ∈ Γ(VL, OVL

) such that rn ̸= 0 and rn+1 = 0 for some nat-
ural number n. Then consider the subring K[x]/(xn+1) ∼= R := K[r] ⊆
Γ(V, OV ). We conclude using Theorem 2.4. □

Example 2.9 (Non-reduced scheme with no Albanese). — Let K be a
field, let L/K be a nontrivial finite purely inseparable field extension, let Y

be any scheme of finite type over L, and let V = Y ×K L. Then Γ(V, OV )
contains L ⊗K L and thus has nontrivial nilpotents; by Corollary 2.8, V/L

does not admit an Albanese datum. Similarly, if Y is any scheme of finite
type over K and V = YK[ϵ]/(ϵ2), then V/K does not admit an Albanese
datum. As a consequence, in contrast with Example 2.7 where we saw that
the nonreduced scheme V = 2H ⊆ P2

K admits an Albanese datum over K,
we have that the nonreduced scheme P1

K[ϵ]/(ϵ2) does not admit an Albanese
datum over K, even as the reductions of both schemes are isomorphic to
P1

K , assuming H is chosen with a K-point.

Example 2.10 (Reduced but geometrically non-reduced scheme with no
Albanese). — Let K be a field, let L/K be a nontrivial finite purely in-
separable field exension, and let Y/L be a smooth irreducible variety. As a
K-scheme, Y is reduced but not geometrically reduced; and the presence
of the nontrivial finite K-algebra L in Γ(Y, OY ) prevents Y from admitting
an Albanese datum.

ANNALES DE L’INSTITUT FOURIER
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Allowing Y to be affine in Example 2.10 raises the possibility that the
geometric reducedness of Spec Γ(V, OV ) is necessary. However, we have:

Example 2.11 (Geometric reducedness of Γ(V, OV ) is not necessary). —
We use a well-known example due to Maclane [25, p. 384], which seems to be
used frequently as an example of a geometrically nonreduced variety with
interesting properties. Let K =Fp(t1, t2), let S = K[x1, x2]/(t1xp

1+t2xp
2−1),

and define V := Spec S. Then V is integral and geometrically connected,
but not geometrically reduced. Indeed, setting L = Fp(t1/p

1 , t
1/p
2 ), we have

VL = Spec L[x1, x2]/((t1/p
1 x1 + t

1/p
2 x2 − 1)p). One can check that K is

algebraically closed in S, so that S, being reduced, admits no non-trivial
finite dimensional K-subalgebras R ⊆ S. Differently put, one cannot use
Theorem 2.4 to try to show that V does not admit an Albanese datum. In
fact, we claim that the structure morphism V → Spec K is an Albanese
datum. In other words, there are no nontrivial morphisms V → P to a
torsor under an abelian variety over K. This follows from the fact that
the reduction of VL is a rational curve. More precisely, given a morphism
V → P to a torsor under an abelian variety over K, if the image were
zero dimensional, then since S admits no non-trivial finite dimensional K-
subalgebras R ⊆ S, the image of V in P would have to be isomorphic to
Spec K. If the image of V were 1-dimensional, then after base change to an
algebraic closure K, and considering the reduction of VK , one would have
a non-trivial map from a rational curve to an abelian variety, which is not
possible. Since dim V = 1, we are done.

We summarize the situation in the following corollary, including the re-
lation to Schröer [31, Thm. p. 2], which has the additional separated hy-
pothesis:

Proposition 2.12. — Let V be a scheme of finite type over a field K.

(i) If V admits an Albanese datum, then
(a) V is geometrically connected,
(b) Spec Γ(V, OV ) is geometrically connected,
(c) Spec Γ(V, OV ) is reduced, and
(d) K is algebraically closed in Γ(V, OV ).

(ii) (Schröer) If, moreover, V is separated, then the converse holds.
More precisely, for a separated scheme V of finite type over a
field K, one has that V admits an Albanese datum if and only
if Spec Γ(V, OV ) is connected and reduced, and K is algebraically
closed in Γ(V, OV ).
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Remark 2.13. — Note that if (i-d) holds in Proposition 2.12(i), then V

(resp. Spec Γ(V, OV )) connected implies V (resp. Spec Γ(V, OV )) is geomet-
rically connected.

Proof. — Assuming V admits an Albanese datum, (i-a) and (i-b) are
Corollary 2.5 and Remark 2.6. (i-c) is Corollary 2.8. The assertion (i-d)
follows immediately from Theorem 2.4, since if K is not algebraically closed
in Γ(V, OV ), then Γ(V, OV ) contains a finite nontrivial extension field of K.

Conversely, assume that V is a separated scheme V of finite type over
a field K, Spec Γ(V, OV ) is connected and reduced, and K is algebraically
closed in Γ(V, OV ). The conclusion that V admits an Albanese datum is
then is due to Schröer [31, Thm. p. 2], after one observes that for a separated
scheme V of finite type over a field K, with Spec Γ(V, OV ) connected and re-
duced, then V is naturally endowed with a scheme structure over the essen-
tial field of constants K ′ [31, p. 19], which is by construction finite over K;
i.e., there is a factorization V → Spec Γ(V, OV ) → Spec K ′ → Spec K.
Therefore, if K is algebraically closed in Γ(V, OV ), then the essential field
of constants for V is K. The assertion is then exactly the statement of [31,
Thm. p. 2]. □

2.3. Embedding zero-dimensional schemes in abelian varieties

While Proposition 2.3 is well suited to proving Theorem 2.4, the following
stronger existence result seems easier to verify:

Proposition 2.14. — Let L/K be a finite simple extension.
(a) If L/K is separable, then there exists a collection of abelian varieties

{Ai/K} of unbounded dimension such that, for each i,
• Ai is absolutely simple;
• Ai has a closed point with residue field L; and
• #Ai(K) ⩾ 2.

(b) If L/K is purely inseparable, then there exist a collection of abelian
varieties {Ai/K} of unbounded dimension and a collection of abel-
ian varieties {Bi/K} such that, for each i,

• Ai is absolutely simple;
• (Bi)K

∼= (Ai ×K Ai)K if p := char(K) > 2, and (Bi)K
∼=

(Ai ×K Ai ×K Ai)K if char(K) = 2;
• Bi has a closed point with residue field L; and
• #Bi(K) ⩾ 2.
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Before proving Proposition 2.14, we explain how it implies Proposi-
tion 2.3:

Proof of Proposition 2.3 (using Proposition 2.14). — First assume that
R is local, and set Z = Spec R for simplicity of notation. By assumption
Z ⊆ Spec K[x1, . . . , xn] for any sufficiently large n, and in particular we
may assume n > 3 dim A. Take A′ to be an abelian variety from Proposi-
tion 2.14 with dim A′ ⩾ n, and replacing n with dim A′, we can and will
assume that n = dim A′. Since (A′)K is a product of at most 3 simple
abelian varieties each of which, from our assumptions on n, must have di-
mension greater than dim A, we have that Hom(AK , A′

K
) = 0. Therefore,

we only need to show that Z ⊆ A′.
For this, using the definition of smoothness, we have a commutative

fibered product diagram Zariski locally on A′:

Z ′ � � //

ét
��

(A′, a′)

ét
��

(Z, z) �
�

// (An
K , a)

where we have marked each scheme with its respective L-point, having
residue field L. The L-points, and the commutativity of the diagram give
an L-point we will call z′ on Z ′. Let Z ′′ be the component of Z ′ contain-
ing z′, and consider the pointed scheme (Z ′′, z′). Note that the residue field
of z′ must also be equal to L. Since all the morphisms above induce isomor-
phisms on the complete local rings (they are étale and induce isomorphisms
on residue fields [17, Prop. 17.6.3]), and since (Z ′′, z′) and (Z, z) are affine
pointed schemes associated to finite K-algebras (which are therefore prod-
ucts of complete local K-algebras), we have that Z ′′ and Z are isomorphic.
This completes the proof in the case where R is local.

In general, R, being Artinian, is a product of finitely many local rings.
Now use the nontrivial K-points and a product construction. (In more
detail, if R ∼=

∏r
j=1 Rj is a product of local Artin algebras, using the previ-

ous paragraph, let Aj/K be an absolutely simple abelian variety equipped
with an embedding αj : Spec Rj → Aj whose image is not supported at
the identity element. Let A′ =

∏
Aj , and let ιj : Aj → A′ be the natural

embedding. Define a morphism α : Spec R → A by α|Spec(Rj) = ιj ◦ αj ;
then α is a closed embedding.) □

Proof of Proposition 2.14 when K is infinite and L/K is a finite sepa-
rable extension. — We suppose char(K) ̸= 2, and indicate the necessary
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14 Jeffrey D. ACHTER, Sebastian CASALAINA-MARTIN & Charles VIAL

changes for even characteristic at the end. Using the separability hypothe-
sis, choose a polynomial f(s) ∈ K[s] such that L ∼= K[s]/f(s); note that f

is squarefree.
For each i, let hi(x) ∈ K[x] be a polynomial of degree i which factors

completely over K, and such that xhi(x) is squarefree. Let t be a parameter
on A1

K , and let Ci → A1
K be the family of curves whose fiber over t has affine

model y2 = f(x)xhi(x)(x − t). Fix ℓ > 3 invertible in K. The geometric
modℓ monodromy of this family is Sp2g(Z/ℓ) [18].

Let K0 ⊆ K be a subfield, finitely generated over the prime field, such
that Ci → A1

K descends to a model over K0. Since K0 is finitely generated
over Q (if char(K) = 0) or Fp(s) (if char(K) = p > 0), K0 is Hilbertian. By
Hilbert’s irreducibility theorem, there exists some t0 ∈ A1(K0) ⊂ A1(K)
such that, for Ci := Ci,t0 , the image of Gal(K0) acting on H1(Ci,K0

,Z/ℓ)
contains Sp2g(Z/ℓ). In particular, let Ai = Jac(Ci,t0)/K; a standard ar-
gument then shows End(Ai,K) ∼= Z. (Briefly, for group-theoretic reasons,
since ℓ > 3 and since the image of Gal(K0) in Aut(H1(Ci,K0

,Zℓ)) is an ℓ-
adically closed group which contains a subgroup surjecting onto Sp2g(Z/ℓ),
it contains all of Sp2g(Zℓ). Replacing K0 with a finite extension K ′

0 replaces
the image of Gal(K0) with a subgroup of finite index, but it is still Zariski
dense in Sp2g,Qℓ

. Then EndK′
0
(Ai)⊗Qℓ, being contained in the commutant

of Sp2g,Qℓ
in Aut(H1(Ci,K0

,Qℓ)), is just Qℓ, and thus EndK′
0
(Ai) ∼= Z.) We

use the base point (0, 0) to embed Ci in Ai.
Let Zi ⊆ Ci be the vanishing locus of the function y. Then Zi is the

spectrum of

Ri := K[x, y]
(y2 − xhi(x)(x − t0), y)

∼=
K[x]
f(x) ⊕ K⊕i+2 ∼= L ⊕ K⊕i+2,

and we have Zi ↪→ Ci ↪→ Ai. In particular, Ai contains a subscheme iso-
morphic to Spec L, and #Ai(K) ⩾ i + 2 ⩾ 2.

In fact, the same argument works if we replace y2 = xhi(x)(x − t) with
yr = xhi(x)(x − t) for any prime r [21, §2]. Briefly, every K-rational fiber
contains Spec L ⊕ Spec K as a closed subscheme; the monodromy group of
the family contains a special unitary group; Hilbert irreducibility and an ℓ-
adic calculation show that the absolute endomorphism ring of the Jacobian
of any fiber outside a thin set is Z[ζr]; and such a Jacobian is an absolutely
simple abelian variety. □

We now move to the case of a finite simple purely inseparable extension
L/K, which we can take to be of the form L = K[x]/(xpr − a) for some
choice of a ∈ K. A natural approach (for char K ̸= 2) would then be
to consider the family of hyperelliptic curves −y + y2 + xy + (xpr − a)
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(xp − a1)(xp − a2) · · · (xp − as)(xp − t), or the family −ty + y2 + xy +
(xpr − a)(xp − a1)(xp − a2) · · · (xp − as), both of which give smooth affine
curves containing Spec L as a closed subscheme. We note that completing
the square of the second family gives the family y2 − 1

4 (x − t)2 + (xpr − a)
(xp − a1)(xp − a2) · · · (xp − as). The complication in this approach is to
determine if the general member of the family has large mod ℓ monodromy;
i.e., whether the general curve in the family is absolutely simple. To avoid
this issue, we use an argument we learned from David Grant:

Proof of Proposition 2.14 when K is infinite and L/K is a finite simple
purely inseparable extension. — As in the previous proof, we reduce to
the case where K is finitely generated over the prime field, and again, we
explain the case where p := char(K) ̸= 2 first. To begin, we fix for each i

the curve Ci over K from the previous proof, which is a smooth projective
hyperelliptic curve of appropriately large genus admitting a number of K-
points, and which has absolutely simple Jacobian Jac(Ci), which we denote
by Ai/K. Since L/K is assumed to be simple and purely inseparable, we
can take L to be of the form L = K[x]/(xpr −a) for some choice of a ∈ K. In
particular, we have Spec L ⊆ P1

K , and by changing Ci (moving the branch
points) we may and will assume that Spec L has support disjoint from the
branch locus of the structure map Ci → P1

K . The pre-image of Spec L in
Ci is a closed subscheme Spec N ⊆ Ci, either consisting of two distinct
L-points, or consisting of a single point, in which case N/L is a degree 2
extension of fields, separable since char(K) ̸= 2. In the former case we can
simply take Bi = Ai ×K Ai.

In the latter case, taking the separable closure of K in N , we obtain
another subfield M/K of N , necessarily of degree 2 over K, giving us a
diagram of fields

N
sep

insep

L

insep

pr M
sep2

K

Using that [L : K] and [M : K] are coprime, we have that N = LM , and
L and M are linearly disjoint over K (N = L ⊗K M).

Now since Ci is a smooth projective curve with a K-point, and there-
fore embeds in its Jacobian, we have that Ai admits Spec N as a closed
subscheme (and has a number of K-points). Then Bi := ResM/K((Ai)M )
has the property that (Bi)K

∼= (Ai ×K Ai)K (e.g., [14, Lem. 5]), and we
claim that Bi admits Spec L as a closed subscheme (as well as a K-point
for each K-point of Ai). This latter assertion follows from the fact that
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16 Jeffrey D. ACHTER, Sebastian CASALAINA-MARTIN & Charles VIAL

ResM/K Spec N contains Spec L as a closed subscheme, and the fact that
closed immersions are preserved by the Weil restriction [4, §7.6, Prop. 2,
p. 192].

To see that ResM/K Spec N contains Spec L as a closed subscheme one
can argue as follows. We have N = M [x1, . . . , xn]/(f1, . . . , fm). As for any
affine scheme and any finite extension of fields, we can write ResM/K Spec N

as Spec K[yi,j ]/(gl,r), where yi,j (1 ⩽ i ⩽ n, 1 ⩽ j ⩽ s) are new variables,
and gl,r (1 ⩽ l ⩽ m, 1 ⩽ r ⩽ s) are polynomials in yi,j given by taking
a basis e1, . . . , es of M over K and setting xi = yi,1e1 + · · · + yi,ses and
ft = gt,1e1 + · · ·+gt,ses. In our case, s = 2. Now since L and M are linearly
disjoint and [N : L] = 2, we have that e1, e2 form a basis of N over L. So, if
we write αi for the class of xi in N , then we can write αi = ai,1e1 + ai,2e2
for some elements ai,j ∈ L. Therefore, by definition, taking yi,j = ai,j , we
obtain an L-point of the Weil restriction. Since not all of the ai,j can be in K

(otherwise L = M), we have in fact an L-point of the Weil restriction with
residue field L. This completes the proof in the case where char(K) ̸= 2.

In the case where char(K) = 2, we replace the family of curves y2 =
xhi(x)(x − t) with the family y3 = xhi(x)(x − t); the rest of the proof goes
through identically. □

We now take up the task of dealing with finite fields.
Proof of Proposition 2.14 when K is finite. — Let K = Fq and L = Fqr .

There exist absolutely simple abelian varieties over K of every dimension,
and most of them (in particular, at least one in every dimension) have
at least two K-rational points [19]. It thus suffices to assume that r > 1
and show that if A/K is a simple abelian variety then, with finitely many
exceptions, A has a closed point with residue field L. (In the case (q, qr) =
(2, 4), we will prove a slightly weaker statement which is still adequate for
our purpose.)

Let X/K be any geometrically irreducible variety. If X does not con-
tain a closed subscheme isomorphic to Spec L, then every L-rational point
P ∈ X(L) is actually defined over some subfield K ′, where K ⊆ K ′ ⊊ L.
It suffices to consider points defined over maximal proper subfields of L.
Crudely estimating, we have the criterion that if

#X(Fqr ) >
∑
ℓ|r

#X(Fqr/ℓ)

(where ℓ ranges over prime divisors of r), then X has a closed subscheme
isomorphic to Spec L.

Let A/K be an abelian variety of dimension g. Weil’s theorem on the
eigenvalues of Frobenius of an abelian variety easily yields, for any extension
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Fqd of Fq, that

(qd + 1 − 2
√

qd)g ⩽ #A(Fqd) ⩽ (qd + 1 + 2
√

qd)g.

(In fact, each occurrence of 2
√

qd can be replaced by ⌊2
√

qd⌋ [3, §1].) In
particular, let ℓ0 be the smallest prime divisor of r. We have the coarse
estimate

#
⋃

K′⊊L A(K ′)
#A(L) ⩽

∑
ℓ|r #A(Fqr/ℓ)
#A(Fqr )

⩽
(# {ℓ : ℓ|r}) (qr/ℓ0 + 1 + 2qr/2ℓ0)g

(qr + 1 − 2
√

qr)g

⩽ log(r)
(

qr/ℓ0 + 1 + 2qr/2ℓ0

qr + 1 − 2
√

qr

)g

.

For sufficiently large g, this quantity is less than one, unless

(qr/ℓ0 , qr) ∈ {(2, 4), (3, 9), (4, 16), (2, 8)}.

Consider one of these remaining cases. Then Fqr/ℓ0 is the unique max-
imal proper subfield of Fqr . If the abelian variety A/Fq fails to have a
closed subscheme isomorphic to SpecFqr , then A(Fqr/ℓ0 ) = A(Fqr ). Ex-
cept for the case (qrℓ0 , qr) = (2, 4), this cannot happen if A is simple of
dimension at least three. Indeed, the case (qrℓ0 , qr) = (2, 8) literally follows
from [22, Lem. 3.1], while the other two cases follow from its proof and [22,
Lem. 2.1(b)].

We now address the remaining case K = F2 and L = F4 by adapting
Kedlaya’s argument to our needs. Assume that A/K is an absolutely sim-
ple ordinary abelian variety of dimension g with #A(K) ⩾ 2. (Again, this
is possible by [19].) Let A′ be its nontrivial quadratic twist; it, too, is ab-
solutely simple. We will show that if A(K) = A(L), then A′(K) ⊊ A′(L).
Let B = RL/K(AL); then B is isogenous to A ×K A′. Since B(K) = A(L),
if A(K) = A(L), then #A′(K) = 1. For g in the complement of a thin set
of natural numbers – in particular, for infinitely many g – this uniquely
determines the isogeny class of A′ [22, Lem. 2.1(c)]. If A′ also has the
property that A′(K) = A′(L), then the quadratic twist A′′ of A′ also sat-
isfies A′′(K) = 1. Since A′′ ∼= A, we find in particular that A and A′ are
isogenous; but this is impossible for a simple ordinary abelian variety (e.g.,
[2, Ex. 1.7]). Consequently, at least one of A and A′ admits a subscheme
isomorphic to Spec L. □

As is clear from the proofs above, given a simple extension of fields L/K

one can quickly write down an abelian variety with Spec L as a closed sub-
scheme. The difficulty is finding such an abelian variety that is absolutely
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simple (or, whose base change to the algebraic closure is a product of sim-
ple abelian varieties of sufficiently large dimension). In order to shorten
the proofs above, one might hope that given any abelian variety A/K, and
any simple extension of fields L/K, there exists a closed subscheme of A

isomorphic to Spec L. The following example shows that this is not the
case :

Example 2.15. — Let E be the elliptic curve over F2 with affine model
y2 +y = x3 +x2. One can check that #E(F2) = #E(F4) = 5. In particular,
there is no point of E with residue field F4.

3. Base change for Albanese varieties

Let V be a geometrically connected and geometrically reduced scheme
of finite type over a field K, and let (AlbV/K , Alb1

V/K , aV/K) be Albanese
data for V (2.1). Recall that this includes the Albanese morphism

V
aV/K

// Alb1
V/K

to the Albanese torsor. If L/K is any field extension, then after base change
we obtain a diagram

(3.1) VL

aVL/L
// Alb1

VL/L

β1
V,L/K

��

VL

(aV/K )L
// (Alb1

V/K)L

where β1
V,L/K is induced by the universal property of the Albanese. Via the

dual of the pull-back morphism on line bundles (see Remark 2.1), this is
equivariant with respect to a base change morphism of abelian varieties

(3.2) βV,L/K : AlbVL/L
// (AlbV/K)L .

A diagram similar to (3.1) holds in the pointed case, as well.
We say that the Albanese data of V is stable under (separable) base

change of field if the Albanese data exists and βV,L/K and β1
V,L/K are

isomorphisms for all (separable) field extensions L/K. Note that in par-
ticular, this means that ((AlbV/K)L, (Alb1

V/K)L, (aV/K)L) gives Albanese
data for VL.

There is an analogous notion for pointed Albanese data (2.2) to be sta-
ble under (separable) base change of field. A before, when this holds, the
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suitable base change of pointed Albanese data is again pointed Albanese
data.

Initially, we remark that in the unpointed case, βV,L/K is an isomorphism
if and only if β1

V,L/K is an isomorphism:

Lemma 3.1. — Let V/K be a geometrically connected and geometri-
cally reduced scheme of finite type over a field K, and let L/K be an
extension of fields. Then βV,L/K is an isomorphism if and only if β1

V,L/K is
an isomorphism.

Proof. — On one hand, let T be a torsor under an abelian variety A

over K; then A ∼= (Pic0
T/K)∨ (Remark 2.1). Consequently, if Alb1

VL/L and
(Alb1

V/K)L are isomorphic via β1
V,L/K , then so are AlbVL/L and (AlbV/K)L

via βV,L/K .
On the other hand, suppose βV,L/K is an isomorphism. Then β1

V,L/K

is a nontrivial map of torsors over an isomorphism of abelian varieties.
Since βV,L/K and β1

V,L/K agree up to translation after base change to the
algebraic closure of L, β1

V,L/K is an isomorphism. □

The Raynaud example (Example 1.1) shows that, in general, Albanese
varieties are not stable under base change of field. There are two possible
issues to focus on in this example. First, the variety G/K is not proper,
and second, the extension L/K is not separable. Regarding the former, it
has been understood that if one assumes V is proper, then the Albanese
variety is stable under base change:

Theorem 3.2 (Grothendieck–Conrad). — Let V be a proper geomet-
rically connected and geometrically reduced scheme over a field K. Then
Albanese data for V (2.1) is stable under base change of field, and if V

admits a K-point v, then pointed Albanese data for (V, v) (2.2) is stable
under base change of field. □

Remark 3.3 (References for Theorem 3.2). — Recall that Grothendieck
provides an Albanese torsor (resp. pointed Albanese variety) for any proper
geometrically connected and geometrically normal scheme V (resp. pointed
proper geometrically connected and geometrically normal scheme (V, v))
over a field K in the following way. As V/K is proper and geometrically
normal, one has that Pic0

V/K is proper [16, Thm. VI.2.1(ii)]; then by [16,
Prop. VI.2.1], one has that (Pic0

V/K)red is a group scheme (i.e., without the
usual hypothesis that K be perfect and the group scheme be smooth). It
then follows from [16, Thm. VI.3.3(iii)] that ((Pic0

V/K)red)∨ is an Albanese
variety, and using that V/K is geometrically connected, that there exists

TOME 0 (0), FASCICULE 0



20 Jeffrey D. ACHTER, Sebastian CASALAINA-MARTIN & Charles VIAL

an Albanese torsor. Conrad has generalized Grothendieck’s argument to
show that any proper geometrically connected and geometrically reduced
scheme V over a field K admits an Albanese torsor, and a pointed Albanese
variety if V admits a K-point. For lack of a better reference, we direct the
reader to [10, Thm.]. His argument is to show that the Albanese variety
is the dual abelian variety to the maximal abelian subvariety of the (pos-
sibly non-reduced and non-proper) Picard scheme PicV/K . Grothendieck’s
theorem can then be summarized in this context by saying that his addi-
tional hypothesis that V be geometrically normal implies that the maximal
abelian subvariety of PicV/K is Pic0

V/K . That Grothendieck’s and Con-
rad’s Albanese varieties are stable under arbitrary field extension is [16,
Thm. VI.3.3(iii)] and [10, Prop.], respectively. In fact, the Albanese variety
enjoys an even stronger universal property; see Section 6 below.

While the hypothesis in the theorem that V be geometrically connected
is necessary (Corollary 2.5), we point out here that it is possible for geomet-
rically non-reduced schemes to admit Albanese data that is stable under
base change of field:

Example 3.4 (Albanese base change for a non-reduced scheme). — Let
V be the non-reduced scheme defined in Example 2.7. Then the Albanese
torsor (and the pointed Albanese variety) of V is stable under base change
of field.

The second potential difficulty in Example 1.1, namely, the inseparabil-
ity of the field extension L/K, shows that in the absence of properness,
something like the separability hypothesis in Theorem (A) is necessary.

4. Extensions of fields

We briefly detour from our development of the Albanese to gather some
results on separable and primary extensions of fields.

4.1. Separable extensions

The following elementary results on separable extensions will ultimately
be used to extend the standard Lemma 5.4 below to arbitrary separable
extensions (as opposed to separable algebraic extensions).

For clarity with the terminology, we recall that a (not necessarily alge-
braic) field extension L/K is separable if for every extension of fields M/K,
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one has that M ⊗K L is reduced. Setting p to be the characteristic expo-
nent, this is equivalent to the condition that Lp and K be linearly disjoint
over Kp; i.e., that the natural map Lp ⊗Kp K → LpK be injective [5, Rem.,
p. V.119]. We say that a field K is separably closed if it admits no separa-
ble algebraic field extensions. We say an extension of fields L/K is purely
inseparable if for every x ∈ L, there is an integer n such that xpn ∈ K, or
equivalently [5, Prop. 13, p. V.42], if it is an algebraic extension and there
are no nontrivial separable subextensions.

Note that if char(K) = 0 then any field extension of K is separable [5,
Thm. 1, p. V.117]. In general, any field extension L/K factors as L/L′/K

with L′/K separable and L/L′ purely inseparable; indeed, taking any tran-
scendence basis T for L/K [5, Thm. 1, p. V.105], one has K(T )/K is sep-
arable [5, Prop. 6, p. V.116], and then the algebraic extension L/K(T )
factors as a separable extension L′/K(T ) followed by a purely inseparable
extension L/L′. Here we are using that the composite of two separable
extensions is separable [5, Prop. 9, p. V.117].

Lemma 4.1. — Let Ω/k be an extension of separably closed fields. Then
Ω/k is separable if and only if ΩAut(Ω/k) = k.

Proof. — Without any assumptions on K, if Ω/K is any field extension,
then Ω is separable over ΩAut(Ω/K); see e.g. [5, §15.3, Prop. 7]. In particular,
if ΩAut(Ω/K) = K, then Ω/K is separable.

Conversely, assume that Ω/k is a separable extension of separably closed
fields. Since k is separably closed and since any sub-extension Ω/K/k satis-
fies K/k separable [5, Prop. 8, p. V.116], in order to show that ΩAut(Ω/k) =
k, it is enough to show that ΩAut(Ω/k)/k is algebraic. Let α ∈ Ω be a tran-
scendental element over k. Since α extends to a transcendence basis of Ω/k,
the map α 7→ α+1 extends to an automorphism of Ω which fixes k. Conse-
quently, no element of Ω transcendental over k is fixed by all of Aut(Ω/k),
and ΩAut(Ω/k)/k is algebraic, as desired. □

Recall that if L′/L/K is a tower of field extensions, then on the one
hand, if L′/L is separable and L/K is separable, then L′/K is separable [5,
Prop. 9, p. V.117]. On the other hand, if L′/K separable, then L/K is
separable [5, Prop. 8, p. V.116], but L′/L may not be separable (e.g.,
Fp(T )/Fp(T p)/Fp). Nevertheless, we have:

Lemma 4.2. — Suppose that L/K is a separable extension of fields.
Then Lsep/Ksep is separable.

Proof. — In characteristic 0 there is nothing to show. So let p = char K >

0. We start with a small observation [5, Exe. 4 p. V.165]: If F/E/K is a
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tower of field extensions, with F/K separable, then if EpK = E, then F/E

is separable. To prove this, it suffices to show that the natural map F p ⊗Ep

E → F pE is injective. By the assumption E = EpK, we therefore must
show F p ⊗Ep EpK → F p(EpK) is injective. Since Ep/K is separable [5,
Prop. 8, p. V.116], we have that Ep ⊗Kp K ↪→ EpK is injective. Since field
extensions are (faithfully) flat, tensoring by F p ⊗Ep (−) we obtain

(4.1) F p ⊗Ep (Ep ⊗Kp K) ↪−→ F p ⊗Ep EpK −→ F p(EpK).

The composition is identified with the map F p⊗Kp K → F pK ⊆ F p(EpK),
which is injective since F/K is assumed to be separable. However, since
EpK is the field of fractions of Ep ⊗Kp K under the inclusion Ep ⊗Kp

K ↪→ EpK, we see that the right hand map F p ⊗Ep EpK → F p(EpK)
in (4.1) is injective, as claimed, since it is obtained from the composition
F p ⊗Ep (Ep ⊗Kp K) → F p(EpK) in (4.1) by localization.

To prove the lemma, we apply the observation in the previous para-
graph with F = Lsep and E = Ksep. Thus we just need to show that
(Ksep)pK = Ksep. Thus we have reduced to the following: if E/K is a
separable algebraic extension, then EpK = E. Indeed, we have a tower of
extensions E/EpK/K. The extension E/EpK is purely inseparable (the p-
th power of every element of E belongs to EpK) while the extension E/K

is separable. This implies E = EpK. □

4.2. L/K-images

Let L/K be a primary extension of fields, i.e., the algebraic closure of K

in L is purely inseparable over K, or equivalently, K equals its separable
closure in L. Suppose A/L is an abelian variety. The L/K-image of A is a
pair (imL/K(A), λ) consisting of an abelian variety imL/K(A) over K and
a homomorphism λ : A → (imL/K A)L of abelian varieties over L that
is initial for pairs (B, f) consisting of an abelian variety B over K and a
homomorphism f : A → BL:

(4.2) A

f
$$

λ // (imL/K A)L

∃!
��

BL

The idea of such an image (and the complementary notion of the trace,
which is final for pairs (B, f) consisting of an abelian variety B over K and
a homomorphism f : BL → A) goes back to Chow, but we appeal to [8]
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as a modern and comprehensive reference. The existence of imL/K(A) is
proven in [8, Thm. 4.1].

For later reference, given a separable extension M/K, and an alge-
braically disjoint extension L/K ([5, Def. 5, p. V.108]), we have that LM/L

is separable [5, Prop. 5, p. V.131]. Similarly, given a purely inseparable
extension L/K and an arbitrary extension M/K, we have that LM/M

is purely inseparable. In other words, if M/K is separable, and L/K is
purely inseparable (and therefore algebraic, so that L is algebraically dis-
joint from M), then we have a tower:

(4.3)

LM

sep

insep

M

sepL

insep K

where “insep” means “purely inseparable”.
One fact we will use later is that formation of the image is insensitive to

separable field extensions. Indeed, a special case of [8, Thm. 5.4] states:

Lemma 4.3. — If L/K is purely inseparable, if M/K is separable, and
A/L is an abelian variety, then

imLM/M (ALM ) ∼= (imL/K(A))M . □

In fact, we will want a small strengthening of this lemma (Proposi-
tion 4.8). To obtain this strengthening, we will first need a few more
small results. First, we will need a slight variation on Mumford’s Rigid-
ity Lemma [28, Prop. 6.1(1)]. If V is a scheme, we use |V | to denote the
underlying topological space.

Lemma 4.4 (Rigidity Lemma). — Given a diagram

X
f

//

p

��

Y
q

��

S
ϵ

QQ

where S is a Noetherian scheme and:
(a) p∗OX

∼= OS ;
(b) ϵ is a section of p, and |S| consists of a single point, s; and
(c) the set-theoretic image f(|Xs|) is a single point of |Y |;
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Then there exists a section η : S → Y of q such that f = η ◦ p:

X
f

//

p

��

Y
q

��

S
ϵ

QQ

η

MM

Proof. — This is almost verbatim [28, Prop. 6.1(1)]. Indeed, Mumford’s
hypotheses in [28, Prop. 6.1(1)] are the same, except that our assump-
tion (a) is replaced in [28, Prop. 6.1(1)] by the assumption that p be flat
and that H0(Xs, OXs) ∼= κ(s). However, these two hypotheses are only
used in the proof of [28, Prop. 6.1(1)] at the top of [28, p. 116], where the
reader is invited to verify that these conditions imply that p∗OX

∼= OS ;
but this is our hypothesis (a). □

Chow’s rigidity theorem for abelian varieties (e.g., [8, Thm. 3.19]) im-
plies that a morphism of abelian varieties which is defined after a purely
inseparable extension is already defined over the base field. Here, we use
Mumford’s rigidity lemma to prove an analogous statement when the source
of the morphism is an arbitrary geometrically integral variety.

Proposition 4.5. — Let L/K be a purely inseparable extension of
fields. Let (U, u)/K be a pointed geometrically integral separated scheme of
finite type, let A/K be an abelian variety, and suppose that g : (UL, uL) →
(AL, 0AL

) is a pointed L-morphism. Then g descends to K.

Proof. — Since U and A are of finite type over K, so is g. Therefore,
there is a subextension L0 ⊆ L, finite over K, over which g is defined.
Replacing L by L0 if necessary, we may and do assume L/K is finite and
purely inseparable. Then Spec(L⊗K L) is a Noetherian scheme with a single
point. This point has residue field L; let s : Spec L ↪→ Spec(L ⊗K L) be its
inclusion.

Let pi : Spec(L ⊗K L) → Spec L be the two projections. As usual, since
UL is the base change of a K-scheme, there is a canonical isomorphism
p∗

1(UL) ∼= p∗
2(UL), and we simply call this object UL⊗KL. We similarly

define the pullback of u, A and 0A to L⊗K L. We want to use fpqc descent
to show that g : UL → AL descends to K; for this we need to show an
equality of morphisms

(4.4) p∗
1g

?= p∗
2g : UL⊗KL

// AL⊗K L.
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This equality will follow from the Rigidity Lemma (Lemma 4.4), as we will
see. At the moment, however, we have a diagram

(4.5) UL⊗KL

p∗
1g−p∗

2g
//

&&

AL⊗KL

xx

Spec L ⊗K LuL⊗K L

WW

If U/K were proper, one could easily check that the hypotheses of the
Rigidity Lemma held for the diagram (4.5) (see the proof below), and then
it would follow quickly from the Rigidity Lemma that equality holds in (4.4)
(again, see the proof below). But, since we are not assuming that U/K is
proper, we must do a little work first to get around this issue.

To begin, let ϖ : X → Spec K be a (Nagata) compactification of U [9].
Since X is proper over K and contains the geometrically integral scheme U

as an open dense set, X is geometrically integral (e.g., [15, Prop. 5.51(iii)])
and so (e.g., [33, Lem. 0FD2]) ϖ∗OX

∼= OSpec K . We now base change
to Spec L. Using [24, Lem. 2.2] or [9, Rem. 2.5], there is a UL-admissible
blowup

X̃
ϖ′

//

ϖ̃ ""

XL

ϖL
{{

Spec L

such that g : UL → AL extends to a morphism

g̃ : X̃ −→ AL.

Moreover, using the same argument as before, i.e., that X̃ is proper over L

and contains the geometrically integral scheme UL as an dense open subset,
we have that X̃ is geometrically integral so that ϖ̃∗O

X̃
∼= OSpec L.

We now base change to L ⊗K L and obtain a diagram

X̃L⊗KL

ϖ′
L⊗K L

//

ϖ̃L⊗K L &&

XL⊗K L

ϖL⊗K L
xx

Spec L ⊗K L

Via cohomology and base change for flat base change, and using that
ϖ̃∗O

X̃
∼= OSpec L, we have that (ϖ̃L⊗KL)∗O

X̃L⊗K L

∼= OSpec L⊗K L.
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Our goal now is to show that

(4.6) p∗
1g̃

?= p∗
2g̃ : X̃L⊗KL

// AL⊗K L ,

as this will establish (4.4), and we will be done. For this, we will want to
apply the Rigidity Lemma (Lemma 4.4) to the diagram

(4.7) X̃L⊗KL

p∗
1 g̃−p∗

2 g̃
//

ϖ̃L⊗K L

&&

AL⊗K L

xx

Spec L ⊗K LuL⊗K L

WW

However, to apply the Rigidity Lemma we still need to check that
(p∗

1g̃ − p∗
2g̃)(|(X̃L⊗K L)s|) is set-theoretically a single point of |(AL⊗KL)s|.

To see this, we start with the observation that the fiber (UL⊗KL)s =
s∗UL⊗KL is canonically isomorphic to UL, and p∗

i g|(UL⊗K L)s
= g. Simi-

larly, |(AL⊗K L)s| = |AL|. Our next claim is that |(UL⊗KL)s| is dense in
|(X̃L⊗KL)s|, but this just follows since UL is dense in X̃ by construction.
Now, moving forward, we know that (p∗

1g−p∗
2g)(|(UL⊗KL)s|) = |0(AL⊗K L)s

|,
where here we are denoting by |0(AL⊗K L)s

| the support of the image of
0(AL⊗K L)s

: (Spec L ⊗K L)s → (AL⊗KL)s. This is only an equality on
|(UL⊗K L)s|. However, we know that s∗(p∗

1g̃ − p∗
2g̃), as a continuous map

|(X̃L⊗KL)s| → |(AL⊗KL)s|, must take the closure of |(UL⊗KL)s| to the
closure of the point |0(AL⊗K L)s

|. But, since |0(AL⊗K L)s
| is a closed point

of |(AL⊗K L)s| and |(X̃L⊗KL)s| is the closure of |(UL⊗K L)s|, we see that
s∗(p∗

1g̃ − p∗
2g̃)(|(X̃L⊗K L)s|) = 0(AL⊗K L)s

∈ |(AL⊗K L)s| is a single point.
Consequently, we can apply the Rigidity Lemma to diagram (4.7), and

we find that p∗
1g̃ and p∗

2g̃ differ by a section η of AL⊗K L over Spec L ⊗K L.
It remains to show that this section η coincides with 0AL⊗K L

. For this
it suffices to show that p∗

1g̃ and p∗
2g̃ are equal along a section of X̃L⊗KL

over Spec L ⊗K L, and of course, it therefore suffices to check equality
along a section of UL⊗KL ⊆ X̃L⊗K L over Spec L ⊗K L; we will use the
section uL⊗K L. Since g takes uL to 0AL

, we have that p∗
1g and p∗

2g both
take the section p∗

1uL = p∗
2uL = uL⊗KL of UL⊗K L to 0AL⊗K L

, and thus
η = 0AL⊗K L

. Note that here we have used that u is defined over K, to
identify p∗

1uL = p∗
2uL = uL⊗K L. □

To implement this descent result in the setting we want to use it, we
need one more result, which states that rational maps that extend to a
morphism after base change of field, extend to a morphism over the ground
field, as well.
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Lemma 4.6. — Let V be a reduced scheme of finite type over a field K,
let T/K be a separated scheme of finite type, let U ⊆ V be a dense open
subset, and let L/K be an arbitrary extension of fields. Given a morphism
f : U → T over K, such that fL : UL → TL extends to a morphism
VL → TL, we have that f : U → T extends to a morphism V → T over K.

Proof. — To fix some notation, write Γg : X → X ×K Y for the graph of
a K-morphism g : X → Y , which is a closed embedding if Y is separated,
and denote by g(X) the scheme-theoretic image of X under g. Now, consid-
ering the graph Γf : U → U ×K T and the inclusion ι : U ↪→ V , we wish to
show that the first projection (ι × 1T )(Γf (U)) → V is an isomorphism, so
that the composition V

∼=−→ (ι × 1T )(Γf (U)) → T gives an extension of f :
U → T . We are given that fL extends to f̃L : VL → TL. Recalling that the
scheme-theoretic image is stable under flat base change (e.g., [12, Prop. V-8,
p. 217]), we have (ι × 1)((Γf (U))L) = (ι × 1)(ΓfL

(UL)) = Γf̃L
(VL), where

the last equality holds since VL is reduced. Finally, since Γf̃L
(VL) → VL is

an isomorphism, we can deduce that (ι × 1T )(Γf (U)) → V is an isomor-
phism, since isomorphisms satisfy fpqc descent (e.g., [15, p. 583]). □

Lemma 4.7. — Suppose L/K is a purely inseparable extension of fields,
A/L is an abelian variety, (V, v)/K is a K-pointed (geometrically) con-
nected and geometrically reduced scheme of finite type over K, and f :
(VL, vL) → (A, 0) is a pointed K-morphism. Then the composition λ ◦ f of
pointed L-morphisms

(4.8) (VL, vL)
f
// (A, 0) λ // ((imL/K A)L, 0)

is initial for compositions of pointed L-morphisms (VL, vL) → (A, 0) →
(BL, 0), where B/K is an abelian variety over K.

If, moreover, V admits an open cover {(Ui, ui)} by separated (geomet-
rically) connected and geometrically reduced schemes Ui of finite type
over K, with each irreducible component of the Ui being geometrically
integral and admitting a smooth K-point ui, then the composition λ ◦ f ,
descends to a unique pointed K-morphism

f : (V, v) −→ (imL/K A, 0).

Proof. — The universal property of (4.8) follows from the definition of
the L/K-image. All that is left is to show the descent. It suffices to show
descent on restriction to each of the Ui. Let U be any of the Ui.

In fact, it suffices to show descent on the normalization Uν of U . Indeed,
since U is geometrically reduced, it is generically smooth (smoothness may
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be verified fpqc locally on the base, and the base change to the algebraic
closure is generically smooth), and therefore, there is a dense open subset
U ′ ⊆ U that is normal, so that the normalization ν : Uν → U is an
isomorphism over U ′. If we show that the morphism from (Uν)L descends,
then the morphism from U ′

L descends. Then we use Lemma 4.6.
So we can and will assume that U is normal. We can then focus on one

irreducible component at a time, and we can assume that U is integral,
and therefore geometrically integral from our assumptions. Since each irre-
ducible component of U was assumed to have a smooth K-point, this gives
a K-point on each of the irreducible components of the normalizations.
Now use Proposition 4.5. □

Proposition 4.8. — In the situation of Lemma 4.7, if in addition M/K

is a separable field extension, then the pointed LM -morphisms fLM and
λLM obtained by base change of (4.8) along LM/L factor as

(4.9)

(VLM , vLM )

fLM

��

(ALM , 0)

λLM

**
// ((imLM/M ALM )LM , 0) // ((imL/K A)LM , 0).

If, moreover, V admits an open cover {(Ui, ui)} by separated (geomet-
rically) connected and geometrically reduced schemes Ui of finite type
over K, with each irreducible component of the Ui being geometrically
integral and admitting a smooth K-point ui, then, excluding morphisms
with source or target ALM , the morphisms in (4.9) descend uniquely to M

to give pointed M -morphisms

(4.10) (VM , vM ) //

f
M

))

(imLM/M ALM , 0)
∼= // ((imL/K A)M , 0)

where the morphism on the right in (4.10) is the isomorphism in Lemma 4.3.

Proof. — The factorization (4.9) follows from the universal property in
the first part of Lemma 4.7 applied to the composition (VLM , vLM ) fLM−−−→
(ALM , 0) → ((imLM/M ALM )LM , 0), and the observation that
(imL/K A)LM = ((imL/K A)L)LM = ((imL/K A)M )LM is obtained by pull
back of an abelian variety over M .

The descent in (4.10) comes from applying Lemma 4.7 to (4.9). The
fact that the composition in (4.10) is identified with f

M
comes from the

fact that the pull back of the composition in (4.10) to LM is by definition
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λLM ◦ fLM , and, also by definition, we have f
LM

= (f
L

)M = (λ ◦ f)LM =
λLM ◦ fLM , so that the uniqueness of the descent shows that f

M
is the

composition in (4.10).
That the second morphism in (4.10) is the isomorphism in Lemma 4.3

follows from the fact that this is the same descended morphism constructed
by Conrad [8, Thm. 5.4]. □

5. Proof of Theorem (A)

We state a more precise version of Theorem (A) here:

Theorem 5.1 (Separable base change). — Let V be a geometrically
connected and geometrically reduced scheme of finite type over a field K.
Then the Albanese data (AlbV/K , Alb1

V/K , aV/K) for V (2.1) is stable
under separable base change of field (Section 3), and if V admits a K-point
v ∈ V (K), then pointed Albanese data (AlbV/K , aV/K,v) for (V, v) (2.2) is
stable under separable base change of field (Section 3).

For finite separable extensions, an easy argument shows:

Lemma 5.2. — Let V/K be a geometrically connected and geometri-
cally reduced scheme of finite type over a field K. If L/K is finite and
separable, then the base change morphisms β1

V,L/K (3.1) and βV,L/K (3.2)
are isomorphisms.

Proof. — By virtue of Lemma 3.1, it suffices to show that β1
V,L/K is an

isomorphism, and therefore, by the universal property, it suffices to show
that if A/L is any abelian variety, T is a torsor under A, and α : VL → T

is a morphism, then α factors through aL : VL → (Alb1
V/K)L.

Since L/K is finite and separable, the Weil restriction RL/K(A) is an
abelian variety (e.g., [26, §1]) and RL/K(T ) is a torsor under RL/K(A).
Since HomK(V, RL/K(T )) = HomL(VL, T ) (i.e., the adjoint property of
the Weil restriction, e.g., [4, p. 191, Lem. 1]), there is associated to α a
K-morphism V → RL/K(T ). By the universal property of AlbV/K , this
factors over K as

V //

&&

Alb1
V/K

��

RL/K(T )
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Again by the adjoint property of RL/K , this induces a diagram over L

VL
//

α
''

(Alb1
V/K)L

��

T

and so (Alb1
V/K)L is the universal torsor receiving a map from VL. □

For clarity, recall that a normal Noetherian scheme is irreducible if and
only if it is connected. In particular, if a scheme over K is smooth, then
it is geometrically reduced and geometrically connected if and only if it is
geometrically integral.

Lemma 5.3. — Let V/K be a smooth geometrically integral scheme over
a field K. If ι : U ↪→ V is an open immersion, then the universal morphism
indicated with the dashed arrow in the diagram below:

U� _

ι

��

// Alb1
U/K

∼=
��

V // Alb1
V/K

is an isomorphism, equivariant with respect to a canonical isomorphism

AlbU/K
∼= AlbV/K .

In particular, pre-composing with the inclusion U ↪→ V converts Albanese
data (resp. pointed Albanese data) for V into Albanese (resp. pointed Al-
banese data) for U .

Proof. — It suffices to show that, if f : U → T is a morphism to a torsor
under an abelian variety, then f extends to a morphism f̃ : V → T . If
T is an abelian variety, this is a special case of [4, §8.4, Cor. 6, p. 234].
The general case then follows from this since if fL : UL → TL extends to a
morphism VL → TL for some field extension L/K, then f : U → T extends
to a morphism f̃ : V → T (Lemma 4.6), and so one reduces to the previous
case by base change to a field L/K over which TL admits an L-point. □

The next two lemmas establish that for a variety V that admits a smooth
alteration, formation of the Albanese torsor commutes with separable base
change:

Lemma 5.4. — Let V/K be a geometrically connected and geometri-
cally reduced scheme of finite type over a field K. Suppose that there is a
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diagram

U �
� ι //

π

��

X

V

of K-schemes with π dominant, ι a dense open immersion, and X a smooth
proper scheme over K each connected component of which is geometrically
integral. Let L/K be any field extension such that LAut(L/K) = K. Then
βV,L/K and β1

V,L/K are isomorphisms.

Proof. — Let us write
⊔

i ιi :
⊔

i Ui →
⊔

i Xi for ι : U ↪→ X, with
the Xi being the connected components of X. Note that, by Lemma 5.3
and Theorem 3.2, β1

Ui,L/K and βUi,L/K are isomorphisms for all i. By the
universal property, each Albanese morphism ai : Ui → Alb1

Ui/K induces a
diagram

Ui
ai //

πi

��

Alb1
Ui/K

δ1
i
��

V
a // Alb1

V/K

and each δ1
i is equivariant with respect to the induced morphism δi :

AlbUi/K → AlbV/K of abelian varieties. Let δ :
∏

i AlbUi/K → AlbV/K

be the homomorphism induced by the δi. We claim that δ is surjective and
that, for any field extension L/K such that LAut(L/K) = K, we have that

ker
(

δL :
∏

i

Alb(Ui)L/L −→ AlbVL/L

)
is invariant under Aut(L/K), so that ker δL descends to ker δ.

The surjectivity of δ can be seen as follows. Choose a finite field extension
M/L such that each (Ui)M acquires an M -point. Since the image of VM

in its Albanese variety AlbVM /M generates AlbVM /M and since the disjoint
union

⊔
i(Ui)M dominates VM , we see that AlbVM /M is generated by certain

translates of the images of the induced homomorphisms Alb(Ui)M /M →
AlbVM /M and it ensues that δM , and hence δ, is surjective (as surjective
morphisms satisfy fpqc descent; e.g., [15, p. 584]).

For the Aut(L/K)-invariance of ker δL, we argue as follows. Let σ ∈
Aut(L/K), and for an L-scheme Y , denote by Y σ the pull-back of Y along
σ : Spec L → Spec L. We want to show there is a canonical L-isomorphism
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(ker δL)σ = ker δL. For this, consider the diagram

VL
aL // AlbVL/L

��

∏
i Alb(Ui)L/L

δLoooo ker δL
oo

(VL)σ
(aL)σ

// (AlbVL/L)σ
∏

i

(
Alb(Ui)L/L

)σ(δL)σ

oooo (ker δL)σoo

where the dashed arrow is induced by the universal property of the Al-
banese. One concludes from a diagram chase that there is a scheme-theoretic
inclusion

ker δL ⊆ (ker δL)σ.

Applying the same argument to σ−1, we see that ker δL ⊆ (ker δL)σ−1 , and
then applying σ to both sides, we have (ker δL)σ ⊆ ((ker δL)σ−1)σ = ker δL,
so that (ker δL)σ = ker δ, as claimed.

Now, since we have established that (ker δ)L = ker δL, we have, for any
field extension L/K such that LAut(L/K) = K, a commutative diagram:

AlbVL/L

βV,L/K

��

(∏
i Alb(Ui)L/L

)
/ ker δL

∼=oo ∏
i

βUi,L/K
∼=
��

(AlbVK/K)L

(∏
i AlbUi/K

)
L

/(ker δ)L

∼=oo

showing that βV,L/K is an isomorphism. By Lemma 3.1, β1
V,L/K is then also

an isomorphism. □

Lemma 5.5. — Suppose U , V , and X are as in Lemma 5.4. If L/K is
any separable extension, then βV,L/K is an isomorphism.

Proof. — Let Ksep and Lsep be separable closures of, respectively, K

and L, and consider the diagram of separable (thanks to Lemma 4.2) field
extensions

Lsep

L

Ksep

K

As we have (Ksep)Aut(Ksep/K) = K, (Lsep)Aut(Lsep/L) = L, and by Lem-
ma 4.1 we also have the identification (Lsep)Aut(Lsep/Ksep) = Ksep, we can
apply Lemma 5.4 to all three extensions with solid segments in the diagram
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above. Together with the universal property of the Albanese morphism, we
therefore obtain the diagram:

AlbVLsep /Lsep ∼=

βVL,Lsep/L
//

∼=βV,Lsep/Ksep

��

(AlbVL/L)Lsep

(βV,L/K )Lsep

��

(AlbVKsep /Ksep)Lsep

∼=(βV,Ksep/K )Lsep

��

((AlbV/K)Ksep)Lsep ((AlbV/K)L)Lsep

It follows that βV,L/K becomes an isomorphism after base-change to Lsep,
and hence that it is an isomorphism. □

In the case of a purely inseparable extension L/K, it turns out that the
L/K-image explains the Raynaud Example 1.1:

Theorem 5.6 (Theorem (B)). — Let V/K be a geometrically connected
and geometrically reduced scheme of finite type over a field K. Suppose
L/K is a purely inseparable extension. Then there is a commutative dia-
gram

(5.1) AlbVL/L

βV,L/K
//

λ
((

(AlbV/K)L

∼=
��

(imL/K AlbVL/L)L,

induced by an isomorphism AlbV/K
∼= imL/K AlbVL/L, where λ is the uni-

versal morphism in the definition of the L/K-image (4.2).
If V admits a K-point v, then the composition of pointed L-morphisms

(5.2) (VL, vL)
aVL/L

// (AlbVL/L, 0) λ // ((imL/K AlbVL/L)L, 0)

is initial for pointed L-morphisms (VL, vL) → (AL, 0), where A/K is an
abelian variety over K, and (5.2) descends to K to give a pointed K-
morphism

(5.3) (V, v)
aVL/L

// (imL/K AlbVL/L, 0)

providing Albanese data for (V, v); i.e., (imL/K AlbVL/L, aVL/L) is pointed
Albanese data for (V, v).
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Proof. — We wish to establish (5.1), first. To this end, let V =
⋃n

i=1 Ui

be an affine open cover. Since V is geometrically reduced, each Ui admits
a point over some finite separable extension M/K, which can be chosen to
be independent of i. By Lemmas 4.3 and 5.2, it suffices to verify the lemma
after base change to M . Thus, we may and do assume in particular that
V admits a K-point, and consequently that the Albanese torsor and the
Albanese abelian variety coincide. Moreover, each of the Ui is separated,
being affine, and geometrically reduced, being contained in V . Moreover,
we can take the Ui to be connected, and then, since we are allowed to
take finite separable base changes, we may take the Ui to be geometrically
connected, as well. In other words, we may assume that V admits an open
cover {(Ui, ui)} by separated (geometrically) connected and geometrically
reduced schemes Ui of finite type over K, with each irreducible component
of the Ui being geometrically integral and admitting a smooth K-point ui.
Moreover, we have reduced to proving, under these hypotheses, the second
assertion of the lemma, namely that (5.2) descends to (5.3), and that this
gives pointed Albanese data.

Let a be the composite map (5.2)

a : VL

aVL/L
// AlbVL/L

λ // (imL/K AlbVL/L)L.

From Lemma 4.7, it is initial for pointed maps from VL to the base
change to L of abelian varieties defined over K (establishing one of the
claims of Theorem 5.6), and descends to a pointed K- morphism a :
V → imL/K AlbVL/L over K. We claim that this implies that a : V →
imL/K AlbVL/L is a pointed Albanese. Indeed, given a pointed morphism
V → A to an abelian variety A, we obtain a unique morphism making the
following diagram commute:

VL
a //

''

(imL/K AlbVL/L)L

��

AL

Then, from Chow rigidity [8, Thm. 3.19], one has a unique morphism mak-
ing the following diagram commute:

V
a
//

&&

imL/K AlbVL/L

��

A
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showing that a : V → imL/K AlbVL/L is the pointed Albanese. □

Finally, we can prove our main result.
Proof of Theorem 5.1. — By Lemma 5.2, after possibly base-changing

along a finite separable field extension, we may and do assume that the
irreducible components of V are geometrically integral. We will identify
a finite purely inseparable extension L/K such that V admits a smooth
alteration relative to L, and chase Albanese varieties along the diagram of
fields (4.3).

Let Vi be the irreducible components of V and for each i choose an open
affine (and so separated) subset V ′

i ⊆ Vi. Using Nagata compactification [9],
embed V ′

i ↪→ Yi into a proper geometrically integral variety. Using [20,
Thm. 4.1], there is a diagram

Ui

��

� � // Xi

��

V ′
i
� � // Yi

in which the vertical arrows are alterations; moreover, there is a finite,
purely inseparable extension Li/K such that the structural morphism Xi →
Spec K factors through Spec Li, and Xi → Spec Li is smooth [20, Rem. 4.2].
The composition Ui ↪→ Xi → Spec Li together with the map Ui → V de-
termine a unique morphism Ui → VLi over Li, giving the following diagram
over Li:

Ui

��

� � // Xi

VLi

Letting L/K be the (purely inseparable) composite of the Li (in some
algebraically closed field containing the Li), base changing to L, and then
taking unions, i.e., U :=

⊔
i Ui ×Li

L and X :=
⊔

i Xi ×Li
L, and we obtain

a diagram over L:

(5.4) U

��

� � // X

VL

satisfying the hypotheses of Lemma 5.4 over L. Indeed, the only thing to
check is that VL is geometrically reduced over L, and that U → VL is
dominant. The former holds, as for any extension L′/L we have (VL) ×L
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L′ = (V ×K L) ×L L′ = (VK) ×K L′. For the latter, we started with⊔
i Ui → V dominant. It follows that the composition U →

⊔
i Ui → V is

dominant. Moreover, this morphism factors through VL → V . From say [15,
Prop. 4.35, p. 111] one has that VL → V is injective by virtue of the fact
that L/K is purely inseparable, and one can conclude that U → VL is
dominant.

Now, let M/K be a separable extension of fields, and consider the tower
of field extensions in (4.3). We then compute canonical isomorphisms:

VM

aVM /M
// AlbVM /M

VM

aVLM /LM

// imLM/M (AlbVLM /LM ) (Theorem 5.6)

VM

(aVL/L)LM

// imLM/M ((AlbVL/L)LM ) (Lemma 5.5, (5.4))

VM

(
aVL/L

)
M // (imL/K AlbVL/L)M (Proposition 4.8)

VM

(aV/K)
M // (AlbV/K)M (Theorem 5.6)

completing the proof. □

We note that under the separated hypothesis, combining Proposition 2.12
with [31, Thm. p. 4] one has the following base change result:

Proposition 5.7 (Schröer). — If V is a separated scheme of finite type
over a field K that admits an Albanese datum (see Proposition 2.12(ii)),
then the Albanese datum is stable under separable base change of field.
For purely inseparable field extensions, if Γ(V, OV ) is in addition geometri-
cally(3) reduced then the base change morphism is a universal homeomor-
phism.

Proof. — Proposition 2.12(ii) implies that V satisfies the hypotheses of
Schröer [31, Thm. p. 4]. □

6. The universal property of Albanese varieties

In fact, Theorem 3.2 as stated above is weaker than what Grothendieck
[16, Thm. VI.3.3(iii)] and Conrad [10, Thm.] actually prove:
(3) The hypothesis that Γ(V, OV ) be geometrically reduced is implicit in [31, Thm. p. 4]
for field extensions that are not separable;̇ the necessity of this assumption is made clear
by Example 2.11.
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Theorem 6.1 (Grothendieck–Conrad). — Let V/K be a proper geo-
metrically connected and geometrically reduced scheme over a field K.
Then for any morphism of schemes S → Spec K, and any S-morphism
f : VS → P to a torsor under an abelian scheme A/S, there exists a unique
S-morphism g : (Alb1

V/K)S → P such that g ◦ aS = f . If V admits a K-
point v, then for any morphism S → Spec K, and any pointed S-morphism
f : VS → A to an abelian scheme A/S taking vS to 0A, there exists a
unique S-homomorphism g : (AlbV/K)S → A such that g ◦ (av)S = f . □

Remark 6.2. — Recall (similarly to Remark 2.1) that if A and A′ are
abelian schemes over a scheme S, and P and P ′ are torsors under A and A′,
respectively, then for any S-morphism g : P → P ′, there is a unique S-
homomorphism ϕ : A → A′ making g equivariant, and moreover, g(P ) is a
torsor under ϕ(A). In particular, in the theorem above, there is a unique
S-homomorphism (AlbV/K)S → A making g : (Alb1

V/K)S → P equivariant.

If one is willing to restrict to base change by smooth morphisms, one can
derive a similar statement without a properness hypothesis.

Theorem 6.3 (Arbitrary separable base change). — Let V be a geo-
metrically connected and geometrically reduced scheme of finite type over
a field K. Then for any (inverse limit of) smooth morphism of schemes
S → Spec K, and any S-morphism f : VS → P to a torsor under an abelian
scheme A/S, there exists a unique S-homomorphism (AlbV/K)S → A and
a unique equivariant S-morphism g : (Alb1

V/K)S → P such that g ◦ aS = f .
If V admits a K-point v, then for any (inverse limit of) smooth morphism

S → Spec K, and any pointed S-morphism f : VS → A to an abelian
scheme A/S taking vS to 0A, there exists a unique S-homomorphism g :
(AlbV/K)S → A such that g ◦ (av)S = f .

Proof. — We give the proof for the Albanese torsor; the case of the
pointed Albanese variety is similar. It suffices to consider the case where S

is irreducible. By assumption on the morphism S → Spec K, the extension
κ(S)/K is separable. Consider then the restriction fηS

of f : XS → P to
the generic point ηS of S. By Theorem 5.1, fηS

factors through (alb1
V/K)ηS

.
This gives a canonical ηS-morphism of torsors (alb1

V/K)ηS
→ PηS

over
(albV/K)ηS

. Let U ⊆ S be an open dense subscheme to which these mor-
phisms extend as g1 : (Alb1

V/K)U → PU over g : (AlbV/K)U → AU .
By Raynaud’s extension theorem [13, I.2.7], g extends to a morphism
of abelian schemes over S. Let S′ → S be an fpqc morphism such that
(Alb1

V/K)S′ → S′ and TS′ → S′ admit sections. Then (Alb1
V/K)S′ and PS′

are trivial torsors under abelian schemes over S′, and so g1
U×SS′ extends to
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a morphism (g1)′ : (Alb1
V/K)S′ → PS′ . By fpqc descent (Lemma 6.4 below),

(g1)′ descends to a morphism g1 : (Alb1
V/K)S → T , as desired. □

Lemma 6.4. — Let S be a scheme and let X and Y be schemes over
S, with Y/S separated. Let U ⊆ S be an open dense subscheme, and let
S′ → S be faithfully flat and quasicompact. Suppose f : XU → YU is a
morphism of schemes over U . If fS′ : XU ×S S′ → YU ×S S′ extends to a
morphism f̃ ′ : XS′ → YS′ , and XU ×S S′ is dense in XS′ , then f̃ ′ descends
to a morphism f̃ : X → Y over S, and f̃ |U = f .

Proof. — Let S′′ = S′ ×S S′, equipped with the two projections pi :
S′′ → S′. Let Γ

f̃ ′ ⊆ XS′ ×S′ YS′ be the graph of f̃ ′ (since the graph
morphism Γ

f̃ ′ : XS′ → XS′ ×S′ YS′ is a closed embedding, as Y/S is
assumed to be separated, we are identifying the graph morphism with its
scheme-theoretic image). By Grothendieck’s theory of fpqc descent (e.g.,
[4, §6.1] or [8, Thm. 3.1]), it suffices to demonstrate an equality of closed
subschemes p∗

1(Γ
f̃ ′) = p∗

2(Γ
f̃ ′). However, p∗

i (Γ
f̃ ′) contains p∗

i (ΓfS′ ) as a
dense set (here we are using that XU ×S S′ is assumed to be dense in XS′

and that the scheme-theoretic image is stable under flat base change, e.g.,
[12, Prop. V-8, p. 217]); and p∗

1(ΓfS′ ) = p∗
2(ΓfS′ ), because fS′ descends

to f . □
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