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CONTRACTIBILITY OF MODULI SPACES OF
RCD(0,2)-STRUCTURES

by Dimitri NAVARRO (*)

Abstract. — This paper focuses on RCD(0, 2)-spaces, i.e. possibly non-smooth
metric measure spaces with nonnegative Ricci curvature and dimension at most 2.
First, we establish a list of the compact topological spaces admitting an RCD(0, 2)-
structure. We then describe the moduli space of RCD(0, 2)-structures for each space
and show that it is contractible.

Résumé. — Dans cet article, nous étudions les espaces RCD(0, 2), autrement dit
les espaces métriques mesurés (potentiellement singuliers) de courbure de Ricci po-
sitive et de dimension au plus 2. Tout d’abord, nous établissons la liste des espaces
topologiques compacts qui admettent une structure RCD(0, 2). Nous décrivons en-
suite l’espace de modules des structures RCD(0, 2) pour chacun des éléments de la
liste et nous montrons qu’il est contractile.

1. Introduction

A fundamental problem in Riemannian geometry is to study the exis-
tence of metrics satisfying a specific curvature constraint (e.g. nonnegative
Ricci, scalar, or sectional curvature). When the existence problem finds a
positive answer, it is interesting to describe the space of such metrics. The
standard way to interpret this last problem is to study the topology of
the moduli space associated with metrics satisfying the desired constraint.
In the past two decades, moduli spaces of metrics with negative sectional
curvature/positive scalar curvature have been studied (see [36] for an intro-
duction). More recently, results concerning moduli spaces of nonnegatively
Ricci curved metrics have been established as well (see [35]).
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Instead of working with smooth metrics, it is also possible to study mod-
uli spaces of singular metrics. Indeed, various synthetic definitions of cur-
vature bounds have been introduced, such as Alexandrov spaces and RCD-
spaces, generalizing respectively lower bounds on the sectional and Ricci
curvature. Lately, moduli spaces of metrics with nonnegative curvature in
the Alexandrov sense have been studied in [6].

Here, we will focus on RCD(0, 2)-spaces, which can be seen as possibly
singular metric measure spaces having dimension at most 2 and nonnegative
Ricci curvature, in a synthetic sense. This paper follows [30], which sets
the foundations about moduli spaces of RCD(0, N)-structures on compact
topological spaces. We will focus on the following two questions.

Question 1.1. — Up to homeomorphism, which compact topological
spaces admit an RCD(0, 2)-structure?

Question 1.2. — Let X be a compact topological space that admits an
RCD(0, 2)-structure. What can be said about the topology of the moduli
space of RCD(0, 2)-structures on X?

1.1. Basic definitions

Before presenting the main results, let us recall some basic definitions.

Definition 1.3. — Let (X,d,m) be a triple where (X,d) is a metric
space and m is a measure on X. We say that (X,d,m) is a metric measure
space (m.m.s. for short) when (X,d) is a complete separable metric space
and m is a boundedly finite Radon measure on (X,d).

CD-spaces (which generalize lower bounds on the Ricci curvature) were
introduced independently by Lott and Villani in [26], and by Sturm in [33]
and [34]. For simplicity, we only define CD(0, N)-spaces (following [34,
Definition 1.3]). An extensive study of CD-spaces is given in chapters 29
and 30 of [37].

Definition 1.4. — Given N ∈ [1,∞), a CD(0, N)-space is a m.m.s.
(X,d,m) such that m(X) > 0, (X,d) is locally compact and geodesic, and
the Renyi entropy with parameter N associated to m is weakly convex on
the L2-Wasserstein space (P2(X,d,m),W2) of probability measures that
are absolutely continuous w.r.t. m and with finite variance.

Some CD-spaces are not Ricci limit spaces, e.g. non-Riemannian Finsler
spaces are CD-spaces. In order to single out the “Riemannian” CD-struc-
tures, Ambrosio, Gigli, and Savaré strengthened the definition of CD-spaces
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by introducing RCD-spaces in [3] (see also [2, 5, 13], and [19]). To this aim,
a metric measure space is said to be infinitesimally Hilbertian if the Sobolev
space W 1,2 is a Hilbert space (note that for a Finsler manifold, W 1,2 is a
Banach space).

Definition 1.5. — LetN ∈ [1,∞) be a real number. A m.m.s. (X,d,m)
is an RCD(0, N)-space if it is an infinitesimally Hilbertian CD(0, N)-space.

We now introduce the moduli space of RCD(0, N)-structures on a topo-
logical space.

Definition 1.6. — Let N ∈ [1,∞) and let X be a compact topological
space. An RCD(0, N)-structure on X is an RCD(0, N)-space (X,d,m) such
that d metrizes the topology of X and Spt(m) = X. The moduli space of
RCD(0, N)-structures on X is the set M0,N (X) of RCD(0, N)-structures
on X quotiented by measure-preserving isometries. M0,N (X) is endowed
with the mGH topology (see Remark 2.7).

1.2. Main results

The following notation introduces the topological spaces we are going to
focus on.

Notation 1.7. — Let {∗}, I, and S1 denote the singleton, the closed unit
interval, and the unit circle, respectively. We denote S2, RP2, D, M2, T2

and K2 the 2-sphere, the projective plane, the closed 2-disc, the Möbius
band, the 2-torus and the Klein bottle, respectively.

The following result answers Question 1.1.

Theorem 1.8. — If X is a compact topological space, then X admits
an RCD(0, 2)-structure if and only if it is homeomorphic to one of the
following spaces: {∗}, I, S1, T2, K2, M2, S1 × I, S2, RP2, or D.

We will sketch the proof of Theorem 1.8 in the next section, and provide
a more detailed statement (see Table 1.1). The subsequent result provides
a partial answer to Question 1.2.

Theorem 1.9. — If X is a compact topological space that admits an
RCD(0, 2)-structure, then the moduli space M0,2(X) of RCD(0, 2)-struc-
tures on X is contractible.

In the next section, we will explain how to prove Theorem 1.9. In par-
ticular, we will describe the moduli space of RCD(0, 2)-structures on each
of the topological spaces appearing in Notation 1.7 (see Theorem 1.11).

TOME 0 (0), FASCICULE 0
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Remark 1.10. — Theorem 1.9 should be compared with [30, Theorem C ].
Indeed, the result just mentioned shows in particular that the moduli spaces
M0,N+4(SN × T4) have non-trivial higher rational cohomology groups; in
particular, they are not contractible.

1.3. Sketch of the proofs

Let us briefly explain the idea behind the proof of Theorem 1.8. Assume
that X is a compact topological space that admits an RCD(0, 2)-structure
(X,d,m). We denote p : X̃ → X the universal cover of X (whose existence
is granted by [31, Theorem 1.1]) and we denote (X̃, d̃, m̃) the lift of (X,d,m)
to X̃ (we recall this notion in Section 2.1). Thanks to the structure theory
of RCD-spaces (which we recall briefly in Section 2.3), it is possible to asso-
ciate a dimension to (X,d,m), denoted dim(X,d,m). Here, the dimension
is bounded from above by 2. Therefore, dim(X,d,m) belongs to {0, 1, 2}.

We can take care of the case dim(X,d,m) = 0 by relying on the structure
theory of RCD-spaces.

We can then treat the dimension 1 case using the results of [24] (which
classify low-dimensional RCD-spaces).

Finally, to treat the case dim(X,d,m) = 2, we fix a splitting:

(1.1) ϕ : (X̃, d̃, m̃) −→ (X, d,m) × Rk,

associated to the lift of (X,d,m) (we recall this notion in Section 2.2).
The integer k in (1.1) is equal to the splitting degree k(X) (see (2.2)). In
particular, we have dim(X, d,m) = 2 − k(X). We can easily take care of
the case k(X) ∈ {1, 2} using the first part of the proof. The final case
k(X) = 0 implies that (X, d,m) is a simply connected compact topological
surface with boundary (using the results of [27]). It will then be easy to
conclude the proof.

Thanks to what we previously mentioned, we will be able to prove that
if (X,d,m) is an RCD(0, 2)-structure on a compact topological space X,
then we have the following case disjunction:

Table 1.1.

dim(X,d,m) 0 1 1 2 2 2

k(X) 0 0 1 0 1 2

X is homeomorphic to {∗} I S1 S2, RP2 or D I × S1 or M2 T2 or K2

ANNALES DE L’INSTITUT FOURIER
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To prove Theorem 1.9, we are going to study the moduli spaces M0,2(X),
where X is any of the topological spaces appearing in the third row of
Table 1.1.

The singleton {∗}. The moduli space M0,N ({∗}) (N ∈ [1,∞]) is obvi-
ously homeomorphic to R, where the scale parameter R corresponds to the
total measure m({∗}).

The unit interval I. Using results of [13], we show in Proposition 4.5
that M0,2(I) is homeomorphic to R × {C∗/{±1}} (where C∗/{±1} is a
quotient of the space of concave functions on I, it will be introduced in
Notation 4.3). Here, the R factor parametrizes the length of the interval,
while the factor C∗/±1 parametrizes the space of admissible measures.

The circle S1, the 2-torus T2, and the Klein bottle K2. Applying
results from [8], [22], and [15], we provide a description of moduli spaces
of RCD(0, N)-structures on any closed flat manifold (see Proposition 3.2).
Using the result just mentioned, we show that M0,2(S1), M0,2(T2), and
M0,2(K2) are homeomorphic to R2, R4, and R3, respectively (see Proposi-
tions 4.1, 5.1, and 5.2).

The Möbius band M2 and the cylinder S1 ×I. It is possible to treat
both spaces in a similar way. Focusing on the cylinder, we can show that any
RCD(0, 2)-structure (I×S1,d,m) on I×S1 is isomorphic to S(I×S1,d,m)×
(A(I × S1,d,m),H1), where A and S are the Albanese and soul maps
(which reflect how structures on the universal cover split, their definitions
are recalled in Section 2.2). In this case, S(I × S1,d,m) is an RCD(0, 1)-
structure on I and A(I × S1,d,m) is a flat metric on S1. Therefore, using
the continuity of the Albanese and soul maps (a result that we recall in
Section 2.2), and using Propositions 4.1 and 4.5 (which classify RCD(0, N)-
structures on S1 and I, respectively), we can conclude that M0,2(I × S1)
is homeomorphic to R3 (see Proposition 5.4). Applying the same ideas, we
can show that M0,2(M2) is homeomorphic to R3 (see Proposition 5.3)

Now, observe that the remaining cases are S2, RP2, and D; in par-
ticular, they are all compact topological surfaces with boundary (possi-
bly empty). Moreover, given a compact topological surface X, we can
apply results from [15], [22] and [27] to show that M0,2(X) is homeo-
morphic to R>0 × Mcurv⩾0(X), where Mcurv⩾0(X) is the moduli space
of metrics on X that are nonnegatively curved in the Alexandrov sense
(see Lemma 3.4). In particular, to conclude, we only need to describe
Mcurv⩾0(S2), Mcurv⩾0(RP2), and Mcurv⩾0(D).

TOME 0 (0), FASCICULE 0
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The 2-sphere S2. It has been shown by Alexandrov that if d is a non-
negatively curved metric on S2, then (S2,d) is either isometric to the
boundary ∂B of a 3-dimensional convex body B, or to the double DK
of a 2-dimensional convex body K (see [25]). In particular, thanks to
the result just mentioned, there is a surjective map ΨS2 : Ks

2⩽3/O3(R) →
Mcurv⩾0(S2), where Ks

2⩽3 is the set of compact convex subsets of R3 with
dimension 2 or 3 and Steiner point at the origin (see Notation 5.5). In [6],
Belegradek shows that ΨS2 is a homeomorphism. Therefore, the mod-
uli space M0,2(S2) is homeomorphic to R × {Ks

2⩽3/O3(R)} (see Propo-
sition 5.38).

The projective plane RP2. Since S2 is the universal cover of RP2,
there is a homeomorphism between Mcurv⩾0(RP2) and the moduli space
M eq

curv⩾0(S2) of nonnegatively curved metrics on S2 that are equivariant
w.r.t. the antipodal map (we recall this result in Section 2.1). Now, let us
denote K̃2⩽3 the subspace of Ks

2⩽3 whose elements are symmetric w.r.t.
the origin (see Notation 5.5). Observe that given K,B ∈ K̃2⩽3 with re-
spective dimensions 2 and 3, then DK and ∂B can be seen as equivariant
nonnegatively curved metrics on S2. Thanks to the fact just mentioned, we
construct a well defined map Ψeq

S2 : K̃2⩽3/O3(R) → M eq
curv⩾0(S2) (see (5.5)).

We show in Proposition 5.17 that Ψeq
S2 is a 1-1 correspondence; hence prov-

ing a realisation result for nonnegatively curved metrics on RP2. Finally, in
Proposition 5.36, we show that Ψeq

S2 is a homeomorphism. The proof of the
proposition just mentioned is one of the most technical; let us sketch the
proof of the direct part. To prove that Ψeq

S2 is continuous, we fix a sequence
Dn → D∞ in K̃2⩽3, and need to consider the following three cases:

(3 → 3) dim(Dn) = 3 for every n ∈ N ∪ {∞},
(3 → 2) dim(Dn) = 3 for every n ∈ N, and dim(D∞) = 2,
(2 → 2) dim(Dn) = 2 for every n ∈ N ∪ {∞};

the goal being to show that Ψeq
S2([Dn]) → Ψeq

S2([D∞]) in the equivariant
mGH topology (see Proposition 2.6). We prove the convergence thanks
to the approximation Lemmas 5.26, 5.29, and 5.31; these results provide
explicit approximations between spaces with various dimensions and give
upper bounds on their distortions. As a result, we obtain that M0,2(RP2)
is homeomorphic to R × {K̃2⩽3/O3(R)}.

The closed disc D. This last case is similar to the previous one, but
slightly more subtle. First of all, given α ∈ S2, we denote Kα

2⩽3 the subset of
Ks

2⩽3 whose elements are symmetric w.r.t. {α}⊥. We then denote K2⩽3 :=

ANNALES DE L’INSTITUT FOURIER
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⋃
α∈S2 Kα

2⩽3 × {α} ⊂ Ks
2⩽3 × S2 (see Notation 5.20 for more details). Now,

assume that (D,α) ∈ K2⩽3, and note that only the following case can
happen:

(i) dim(D) = 3,
(ii) dim(D) = 2 and α ⊥ Span(D),
(iii) dim(D) = 2 and α ∈ Span(D).

In case (i), we denote ΦD(D,α) := ∂D ∩ H+
α (where H+

α is the upper
half-space associated with α). In case (ii), we write ΦD(D,α) := D. In
case (iii), we define ΦD(D,α) :=

⋃2
i=1(D∩H+

α )i ⊂ DD (see Notation 5.22).
In every case, ΦD(D,α) can be seen as a nonnegatively curved metric on D.
Therefore, we introduce in (5.6) a well defined map ΨD : K2⩽3/O3(R) →
Mcurv⩾0(D). In Proposition 5.25, we show that ΨD is a 1-1 correspondence;
hence proving a realisation result for nonnegatively curved metrics on the
disc. Finally, using the approximation lemmas of Section 5.3.3, we show
in Proposition 5.37 that ΨD is a homeomorphism. Hence, we can conclude
that M0,2(D) is homeomorphic to R × {K2⩽3/O3(R)}.

To conclude, the discussion above leads to the following theorem.

Theorem 1.11. — The following table describes moduli spaces of
RCD(0, 2)-structures on compact topological spaces:

Table 1.2.

X is homeomorphic to: M0,2(X) is homeomorphic to:

{∗} R

I R × {C∗/{±1}} (see Notation 4.3)

S1 R2

T2 R4

S1 × I, M2, or K2 R3

S2 R × {Ks
2⩽3/O3(R)} (see Notation 5.5)

RP2 R × {K̃2⩽3/O3(R)} (see Notation 5.5)

D R × {K2⩽3/O3(R)} (see Notation 5.20)

Thanks to Theorem 1.11, and proceeding via a case by case study (see
Propositions 4.1, 4.5, 5.1, 5.2, 5.3, 5.4, 5.38, 5.39, and 5.40), we obtain
Theorem 1.9.

TOME 0 (0), FASCICULE 0



8 Dimitri NAVARRO

Organisation of the paper

In Section 2.1, we recall the equivariant mGH topology and relate
RCD(0, N)-structures on a compact topological space to equivariant struc-
tures on its universal cover. In Section 2.2, we recall the notion of splitting
and show how to use it to construct the Albanese and soul maps, which will
be fundamental to compute M0,2(S1 × I) and M0,2(M2). In Section 2.3,
we prove Theorem 1.8. The rest of the paper is devoted to the proof of
Theorem 1.9, which will be done throughout a case by case study follow-
ing Theorem 1.8. First of all, we introduce some lemmas in Section 3 to
simplify the computations in the case of flat manifolds and surfaces. In Sec-
tion 4, we treat the 1-dimensional case, i.e. we compute the moduli spaces
of RCD(0, 2)-structures on I and S1. Finally, in Section 5, we treat the rest
of the cases. The most technical cases are those of S2, RP2 and D; these
will be treated in Section 5.3.

Acknowledgements

The author would like to thank Andrea Mondino for his constant support
and for his comments on the paper. He is also grateful to Gérard Besson for
exciting discussions on the subject. The author is indebted to the reviewer
for their thorough reading and pertinent comments.

2. Preliminaries

Throughout this part N ∈ [1,∞) is a fixed real number and X is a com-
pact topological space that admits an RCD(0, N)-structure. Let p : X̃ → X

be the universal cover of X (whose existence is granted by [31, Theo-
rem 1.1]) and denote:

(2.1) π1(X) := Deck(p)

its group of deck transformations, also called the revised fundamental group
of X. Thanks to [30, Corollary 2.2], π1(X) is a finitely generated group with
polynomial growth. We denote:

(2.2) k(X) := polynomial growth order of π1(X) ∈ N ∩ [0, N ].

We call k(X) the splitting degree of X.

ANNALES DE L’INSTITUT FOURIER
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2.1. Equivariance

Later on, it will be convenient to see structures on X as equivariant
structures on its universal cover. This section introduces moduli spaces of
equivariant structures and the equivariant mGH topology.

Definition 2.1 (Equivariant RCD(0, N)-structures). — An RCD(0,N)-
structure (X̃, d̃, m̃) on X̃ is called equivariant if π1(X) acts by isomorphisms
on (X̃, d̃, m̃).

Definition 2.2 (Equivariant isomorphism). — Let X̃ i = (X̃, d̃i, m̃i)
(i ∈ {1, 2}) be an equivariant RCD(0, N)-structure on X̃. We say that
X̃ 1 and X̃ 2 are equivariantly isomorphic when there is an isomorphism ϕ

of π1(X) and an isomorphism f : X̃ 1 → X̃ 2 of m.m.s. such that f(γx) =
ϕ(γ)f(x), for every γ ∈ π1(X), and every x ∈ X̃.

Definition 2.3. — The moduli space of equivariant RCD(0, N)-struc-
tures on X̃ is the set Meq

0,N (X̃) of equivariant RCD(0, N)-structures on X̃

quotiented by equivariant isomorphisms.

Before equipping Meq
0,N (X̃) with a topology, let us first recall the distor-

tion of a map.

Notation 2.4. — Assume that f : (X1,d1) → (X2,d2) is a map (not nec-
essarily continuous) between metric spaces. The distortion of f is defined as:

Dis(f) := sup{|d2(f(x), f(y)) − d1(x, y)|, x, y ∈ X1}.

It provides a measure of how close f is to being an isometry.

We introduce the equivariant mGH pseudo-distance Deq to compare equi-
variant RCD(0, N)-structures on X.

Definition 2.5. — Let X̃ i = (X̃, d̃i, m̃i) (i ∈ {1, 2}) be an equivari-
ant RCD(0, N)-structure on X̃ and let ϵ > 0. An equivariant mGH ϵ-
approximation between X̃ 1 and X̃ 2 is a triple (f, g, ϕ) where f : X̃ → X̃

and g : X̃ → X̃ are Borel maps and ϕ is an isomorphism of π1(X) such
that:

(i) max{Dis(f),Dis(g)} ⩽ ϵ (see Notation 2.4),
(ii) for every x ∈ X̃, d̃1(g ◦ f(x), x) ⩽ ϵ and d̃2(f ◦ g(x), x) ⩽ ϵ,
(iii) for every γ ∈ π1(X) and x ∈ X̃, f(γx) = ϕ(γ)f(x) and g(γx) =

ϕ−1(γ)g(x),
(iv) max{dP(f∗m̃1, m̃2),dP(g∗m̃2, m̃1)} ⩽ ϵ,

TOME 0 (0), FASCICULE 0
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where dP denotes the Prokhorov distance. We define Deq(X̃ 1, X̃ 2) the equi-
variant mGH pseudo-distance between X̃ 1 and X̃ 2 as the minimum between
1/24 and the infimum of all ϵ > 0 such that there exists an equivariant mGH
ϵ-approximation between X̃ 1 and X̃ 2.

The equivariant mGH pseudo-distance satisfies all the axioms of a dis-
tance apart from the triangle inequality. Indeed, given equivariant
RCD(0, N)-structures X̃ i = (X̃, d̃i, m̃i) (i ∈ {1, 2, 3}), we only have the
following inequality:

(2.3) Deq(X̃ 1, X̃ 3) ⩽ 4(Deq(X̃ 1, X̃ 2) + Deq(X̃ 2, X̃ 3)),

a proof of which is given in the appendix of [30]. Even though the equi-
variant mGH pseudo-distance Deq is a priori not a distance, it induces a
metrizable topology as shown by the following proposition (see [30, Propo-
sition 2.8] for a proof in the pointed case).

Proposition 2.6. — The equivariant mGH pseudo-distance Deq in-
duces a metrizable topology on Meq

0,N (X̃), which we call the equivariant
mGH topology.

Remark 2.7. — Later, we will sometimes forget about points (iii) and (iv)
in Definition 2.5, leading to different notions of convergence:

• forgetting points (iii) and (iv) leads to the notion of GH ϵ-approx-
imation and GH distance dGH,

• forgetting points (iii) leads to the notion of mGH ϵ-approximation
and mGH distance dmGH,

• forgetting point (iv) leads to the notion of equivariant GH ϵ-ap-
proximation and equivariant GH distance Deq.

Moduli spaces of metrics, metric measure structures, and equivariant met-
rics will be respectively endowed with the topology induced by dGH (GH
topology), dmGH (mGH topology) and Deq (equivariant GH topology).

To conclude this section, let us relate M0,N (X) to Meq
0,N (X̃). Assume

that (X,d,m) is an RCD(0, N)-structure on X. There exists a unique equi-
variant RCD(0, N)-structure on X̃, called the lift of (X,d,m), which we
denote p∗(X,d,m), such that:

(2.4) p : p∗(X,d,m) −→ (X,d,m)

is a local isomorphism (see [30, Corollary 2.1]). Moreover, it is easily seen
that isomorphic RCD(0, N)-structures on X have equivariantly isomorphic
lifts. Therefore, there is a well defined map:

p∗ : M0,N (X) −→ Meq
0,N (X̃)

ANNALES DE L’INSTITUT FOURIER
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called the lift map, such that for every [X,d,m] ∈ M0,N (X), we have
p∗([X,d,m]) = [p∗(X,d,m)]. The next result is proved in the pointed case
in [30] (see Corollary A).

Theorem 2.8. — If X̃ is compact, then the lift map p∗ : M0,N (X) →
Meq

0,N (X̃) is a homeomorphism.

2.2. Albanese variety and soul

A fundamental notion when studying RCD(0, N)-spaces is the notion of
splitting, which will be introduced in this section. We will also present the
Albanese and soul maps, which will be important when computing moduli
spaces in Section 5.2.

Notation 2.9. — We denote dE the Euclidean distance (it will always be
clear which Euclidean space we discuss in the text).

Let (X,d,m) be an RCD(0, N)-structure on X with lift (X̃, d̃, m̃)
(see (2.4)). Thanks to [31, Theorem 1.3] (after [18, Theorem 1.4]), we can
fix an isomorphism:

(2.5) ϕ : (X̃, d̃, m̃) −→ (X, d,m) × Rk,

where k ∈ N ∩ [0, N ], Rk is endowed with Euclidean distance dE and
Lebesgue measure Lk, and (X, d,m) is a compact RCD(0, N − k)-space
with trivial revised fundamental group (see (2.1)). Such a map is called a
splitting of (X̃, d̃, m̃), k is called the degree of ϕ, and (X, d,m) is called the
soul of ϕ.

Remark 2.10. — Thanks to [30, Corollary 2.2], we have k = k(X)
(see (2.2)). In particular, given any RCD(0, N)-structure on X, any split-
ting of its lift would also have degree k = k(X).

Since X is compact, an application of Lemma 1 in [32] implies that the
isomorphism group of (X, d,m)×Rk splits. Consequently, any isomorphism
T of (X, d,m) × Rk takes the form T = (TS , TR), where TS ∈ Iso(X, d,m)
and TR ∈ Iso(Rk). Hence, given γ ∈ π1(X), we can introduce the following
notations:

(2.6) ϕ∗(γ) := ϕγϕ−1 = ({ϕγϕ−1}S , {ϕγϕ−1}R) =: (ρϕ
S(γ), ρϕ

R(γ)),

where ρϕ
R : π1(X) → Iso(Rk) and ρϕ

S : π1(X) → Iso(X, d,m) are called the
Euclidean and soul homomorphisms associated to ϕ, respectively. Through-
out the paper, we will also use the following notation for the image of the
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Euclidean homomorphism:

(2.7) Γ(ϕ) := Im(ρϕ
R) ⊂ Iso(Rk).

Remark 2.11. — Thanks to [30, Proposition 2.5], Γ(ϕ) is a crystallo-
graphic subgroup of Iso(Rk) (i.e. Γ(ϕ) acts cocompactly and properly dis-
continuously on Rk). This fact will be useful in order to answer Ques-
tion 1.1.

Observe that one can associate a compact metric space (Rk/Γ(ϕ),dΓ(ϕ))
to ϕ, where dΓ(ϕ) is defined by:

(2.8) ∀x, y ∈ Rk,dΓ(ϕ)([x], [y]) := inf{dE(x′, y′), x′ ∈ [x], y′ ∈ [y]}.

Thanks to [30, Lemma 2.1], the isometry class of (Rk/Γ(ϕ),dΓ(ϕ)) and the
isomorphism class of (X, d,m) depend only on the isomorphism class of
(X,d,m). Hence, we can define the Albanese variety of [X,d,m]:

(2.9) A([X,d,m]) := [Rk/Γ(ϕ),dΓ(ϕ)]

and the soul of [X,d,m]:

(2.10) S([X,d,m]) := [X, d,m].

Let us conclude this section by recalling [30, Theorem B], which will be
important in Section 5.2.

Theorem 2.12. — If Xn → X∞ in M0,N (X) in the mGH topology,
then A(Xn) → A(X∞) in the GH topology and S(Xn) → S(X∞) in the
mGH topology.

2.3. Essential dimension and topological obstructions

Given an RCD(0, N)-structure (X,d,m) on X, there exists a unique k ∈
N∩[0, N ] such that the k-dimensional regular set Rk associated to (X,d,m)
has positive m-measure (see [9, Theorem 0.1], after [29]). This integer k is
called the dimension of (X,d,m), which we denote:

(2.11) dim(X,d,m) := k.

Moreover, thanks to [23] (see also the independent proofs in [16] and [20]),
m is absolutely continuous with respect to the k-dimensional Hausdorff
measure Hk of (X,d). Finally, if k = N , then there exists a > 0 such
that m = aHN (thanks to [22, Corollary 1.3]). We summarize this in the
following proposition.

ANNALES DE L’INSTITUT FOURIER



CONTRACTIBILITY OF MODULI SPACES OF RCD(0,2)-STRUCTURES 13

Proposition 2.13. — If N ∈ [1,∞) and (X,d,m) is an RCD(0, N)-
structure on a compact topological spaceX, then m is absolutely continuous
with respect to Hk (where k = dim(X,d,m)). Moreover, if k = N , then
there exists a > 0 such that m = aHN .

We are now able to prove Theorem 1.8.
Proof of Theorem 1.8. — The converse part is straightforward, so we

will focus on the direct part. First of all, we assume that dim(X,d,m) = 0.
Thanks to [4, Theorem 4.1], there is a measurable subset R∗

0 ⊂ R0 ⊂ X

such that m is concentrated on R∗
0 and such that m and H0 are absolutely

continuous with respect to each other on R∗
0. In particular, R∗

0 ̸= ∅. More-
over, picking x ∈ R∗

0, we have H0({x}) = 1, hence m({x}) ̸= 0. Thus,
thanks to [37, Corollary 30.9], m is a Dirac mass. In particular, since m has
full support, X is a singleton.

If dim(X,d,m) = 1, then R1 ̸= ∅. Therefore, thanks to [24, Theo-
rem 1.1], X is homeomorphic to either R, R⩾0, I, or S1. However, since X
is compact, it is either homeomorphic to I (if k(X) = 0) or S1 (if k(X) = 1).

From now on we assume that dim(X,d,m) = 2. Let (X̃, d̃, m̃) be the lift
of (X,d,m) and ϕ : (X̃, d̃, m̃) → (X, d,m) × Rk be a splitting of (X̃, d̃, m̃)
(see (2.5)). Also, let us recall that k = k(X) (see Remark 2.10) and that
dim(X̃, d̃, m̃) = 2 = k + dim(X, d,m) (p being a local isomorphism).

If k(X) = 2, then dim(X, d,m) = 0; thus, X is a singleton {∗}. In
particular, ρϕ

R coincides with ϕ∗ (see (2.6)). Hence, ϕ induces a homeo-
morphism X = X̃/π1(X) ≃ R2/Γ(ϕ) (where Γ(ϕ) is defined in (2.7)).
Moreover, π1(X) acts freely on X̃; hence, Γ(ϕ) acts freely on R2. There-
fore, being a crystallographic subgroup of Iso(R2) (see Remark 2.11), Γ(ϕ)
is a Bieberbach subgroup of Iso(R2), i.e. it is a torsion free crystallographic
group (see [14, Proposition 1.1]). However, there are only two Bieberbach
subgroups of Iso(R2) (up to isomorphism), leading respectively to X home-
omorphic to T2 or K2.

If k(X) = 1, then dim(X, d,m) = 1. Moreover, (X, d,m) is a compact
RCD(0, 1)-space. Therefore, thanks to Proposition 2.13, there exists a con-
stant a > 0 such that m = aH1. Also, X has trivial revised fundamental
group. Hence, thanks to [24, Theorem 1.1], there exists r > 0 such that
(X, d) is isometric to ([0, r],dE). Therefore, we can replace (X, d,m) by
([0, 1], rdE, aH1). Now, observe that Iso([0, 1], rdE, aH1) ≃ Z/2Z, where a
generator is given by s : t → 1 − t. In particular, there are two cases, either
Im(ρϕ

S) = {id} or Im(ρϕ
S) ≃ Z/2Z (where ρϕ

S is defined in (2.6)).
First, let us suppose that Im(ρϕ

S) = {id}. Observe that ϕ∗(γ) = (id, ρϕ
R(γ)),

for every γ ∈ π1(X). Hence, X is homeomorphic to [0, 1] × {R/Γ(ϕ)}.
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Moreover, Γ(ϕ) acts freely on R, i.e. Γ(ϕ) is a Bieberbach subgroup of
Iso(R) (see [14, Proposition 1.1]). However, Z is the only Bieberbach sub-
group of Iso(R) (up to isomorphism), which leads to X homeomorphic to
[0, 1] × S1.

Now, we assume that Im(ρϕ
S) ≃ Z/2Z. In particular, for every γ ∈ π1(X),

we have ρϕ
S(γ)(1/2) = 1/2. Hence, Γ(ϕ) acts freely on R. In particular, Γ(ϕ)

is a Bieberbach subgroup of Iso(R) (see [14, Proposition 1.1]), i.e. it is con-
jugated to Z by an affine transformation. We then note that ρϕ

R is injective.
Indeed, let us assume that ρϕ

R(γ) = 0, and, looking for a contradiction,
assume that ρϕ

S(γ) = s. In that case, we have ϕ∗(γ)(1/2, t) = (1/2, t) for
any fixed t ∈ R, which is not possible as π1(X) acts freely on X̃. There-
fore, ρϕ

R is injective and π1(X) is isomorphic to Z. In conclusion, there is
a unique generator γ of π1(X) such that ϕ∗(γ)(x, t) = (1 − x, t + a) for
some a > 0 and every (x, t) ∈ [0, 1] × R; therefore, X is homeomorphic
to M2.

If k(X) = 0, then π1(X) is finite. Moreover, thanks to Proposition 2.13,
there exists a > 0 such that m = aH2. In particular, (X,d,H2) is an
RCD(0, 2)-space. As a result of [27, Theorem 1.1], X is a topological sur-
face with boundary (possibly empty), which implies π1(X) ≃ π1(X). Now,
thanks to [28, Theorem 5.1 and Theorem 10.1] (which provide a classifica-
tion of surfaces with boundary), X is necessarily homeomorphic to either: a
2-sphere with k holes, an m-fold torus with k holes, or an m-fold projective
plane with k holes (where k is the number of path connected components of
∂X). In any case, X can be represented as a polygon (as described in [28,
Section 10]) and it is straightforward to compute its fundamental group
using Van Kampen’s theorem. As a consequence, we can see that the only
topological surfaces with boundary having a finite fundamental group are
the 2-sphere, the 2-sphere with 1 hole (i.e. the disc), and the projective
plane. This concludes the proof. □

3. Moduli spaces of closed flat manifolds and surfaces

In this section, we present two results (see Proposition 3.2 and
Lemma 3.4) which will be fundamental to describe the moduli spaces that
we are interested in. The two results just mentioned will provide a par-
tial description of the moduli spaces of RCD(0, N)-structures on closed flat
manifolds and topological surfaces, respectively.
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3.1. The case of closed flat manifolds

Using [8], we are going to present a way to compute M0,N (X) in the case
where X is homeomorphic to a closed flat manifold.

Definition 3.1. — Let n ⩾ 1 and let Γ be a crystallographic subgroup
of Iso(Rn). We define:

(i) HΓ := r(Γ) ⊂ On(R) (where r(A, v) := A, for A ∈ GLn(R) and
v ∈ Rn),

(ii) CΓ := {A ∈ GLn(R), AHΓA
−1 ⊂ On(R)},

(iii) NΓ := r(NAff(Rn)(Γ)) (where NAff(Rn)(Γ) is the normaliser of Γ in
Aff(Rn)).

The moduli space of flat metrics on Rn/Γ is the set Mflat(Rn/Γ) of flat
Riemannian metrics on Rn/Γ quotiented by isometries. Mflat(Rn/Γ) is
equipped with the GH topology (see Remark 2.7).

Proposition 3.2. — Let n ⩾ 1, let Γ be a Bieberbach subgroup of
Iso(Rn), and let N ∈ [1,∞). If N < n, then there are no RCD(0, N)-
structures on Rn/Γ. If N ⩾ n, then any RCD(0, N)-structure on Rn/Γ is
also an RCD(0, n)-structure. Moreover, there exist homeomorphisms:

M0,n(Rn/Γ) ≃ R>0 × Mflat(Rn/Γ) ≃ R × [On(R)\CΓ]/NΓ,

where the left action of On(R) on CΓ is given by multiplication on the left
and the right action of NΓ on [On(R)\CΓ] is defined by [A] · B := [AB],
given [A] ∈ On(R)\CΓ and B ∈ NΓ.

Proof. — We denote X := Rn/Γ. Let us show that, for N < n, there
are no RCD(0, N)-structures on X. Indeed, Γ is a Bieberbach subgroup
of Iso(Rn), thus X is a topological manifold and π1(X) ≃ π1(Rn/Γ) ≃ Γ.
Hence, thanks to Bieberbach’s first Theorem (see Theorem 3.1 in [14]), we
have k(X) = n (see (2.2)). If (X,d,m) is an RCD(0, N)-structure on X,
then Remark 2.10 implies that the degree of any splitting is equal to n and
belong to [0, N ]; hence, n ⩽ N .

Now, assume that n ⩽ N . Let (X,d,m) be an RCD(0, N)-structure on X
and let us prove that it is an RCD(0, n)-structure. We denote (Rn, d̃, m̃) :=
p∗(X,d,m) the associated lift (where p : Rn → Rn/Γ = X is the quotient
map) and we fix a splitting ϕ of (Rn, d̃, m̃) with soul (X, d,m). Note that ϕ
has degree n. Let us show that X is a singleton. Seeking for a contradiction,
we assume that there exists x, y ∈ X such that x ̸= y. Let γ : [0, L] → X

be a minimizing geodesic from x to y, which is parametrized by arclength.
Observe that ϕ induces an isometric embedding ϕ−1 : γ(]0, L[)×(Rn,dE) →
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(Rn, d̃). However, γ(]0, L[) × Rn is homeomorphic to Rn+1. Hence, ϕ gives
rise to a continuous injective map f : Rn+1 → Rn; but no such map exists
(see Corollary 2B.7 in [21]). In conclusion, X is a singleton {∗}. Now, since
m has full support, there exists a > 0 such that m = aδ∗. Hence, (X, d,m)×
Rn is isomorphic to (Rn,dE, aHn). Moreover, since X is a singleton, then
ρϕ
R is injective and coincides with ϕ∗ (see (2.6)). Thus, Γ(ϕ) ≃ Γ and ϕ

induces an isomorphism

(Rn/Γ,d,m) ≃ (Rn/Γ(ϕ),dΓ(ϕ), aHn).

Now, observe that dΓ(ϕ) and Hn are respectively the Riemannian distance
and measure associated to Rn/Γ(ϕ), which is flat of dimension n. Hence,
(Rn/Γ(ϕ),dΓ(ϕ), aHn

dΓ(ϕ)
) is an RCD(0, n)-space and (X,d,m) as well (a

fortiori).
Let us now prove that

M0,n(Rn/Γ) ≃ R × [On(R)\CΓ]/NΓ.

We have shown above that if (X,d,m) is an RCD(0, n)-structure on X, then
[X,d] ∈ Mflat(X) and there exists a > 0 such that m = aHn. In particu-
lar, the map Φ: M0,n(X) → Mflat(X) × R>0 defined by Φ([X,d,m]) :=
([X,d],m(X)/Hn(X)) is well defined. The map Ψ: Mflat(X) × R>0 →
M0,n(X) defined by Ψ([X,d], a) := [X,d, aHn] is also well defined and
it is clear that Ψ and Φ are respectively inverse to each other.

Let us show that Φ is continuous. Assume that [X,dk,mk] → [X,d∞,m∞]
in M0,n(X) and, for k ∈ N∪ {∞}, let us denote ak := mk(X)/Hn(X). Ob-
serve that we necessarily have [X,dk] → [X,d∞] in the GH topology. We
then notice that (X,d∞) has Hausdorff dimension n; hence, thanks to [15,
Theorem 1.2], [X,dk,Hn] → [X,d∞,Hn] in the mGH topology. Therefore,
ak → a∞; thus, Φ is continuous.

Conversely, assume that [X,dk] → [X,d∞] in Mflat(X) and let ak →
a∞ in R>0. Observe that, thanks to [15, Theorem 1.2], [X,dk,Hn] →
(X,d∞,Hn) in the mGH topology. Hence, [X,dk, akHn] → [X,d∞, a∞Hn]
in the mGH topology; thus, Ψ is continuous.

Now, we have shown that M0,n(Rn/Γ) is homeomorphic to R>0 ×
Mflat(Rn/Γ). In order to conclude, notice that, thanks to Proposition 4.3
of [8], Mflat(Rn/Γ) is homeomorphic to [On(R)\CΓ]/NΓ. □

Remark 3.3. — Given n ⩾ 1 and Γ a Bieberbach subgroup of Iso(Rn),
On(R)\CΓ is homeomorphic to Rd for some d ∈ N (see [8, Theorem B]). In
particular, M0,N (Rn/Γ) is connected for every N ⩾ n.
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3.2. The case of surfaces

Let X be a compact topological surface (with or without boundary) that
admits an RCD(0, 2)-structure and let (X,d,m) be an RCD(0, 2)-structure
on X. Thanks to the proof of Theorem 1.8 (see Table 1.1), we necessarily
have dim(X,d,m) = 2. Therefore, applying Proposition 2.13, there exists
a > 0 such that m = aH2. In particular, thanks to [27, Theorem 1.1], (X,d)
is an Alexandrov space with nonnegative curvature. Therefore, proceeding
exactly as in the last part of the proof of Proposition 3.2, we obtain the
following result.

Lemma 3.4. — If X is a compact topological surface with boundary
(possibly empty) that admits an RCD(0, 2)-structure and p : X̃ → X de-
notes its universal cover, then the following map:

[X,d,m] ∈ M0,2(X) −→ (m(X)/H2(X), [X,d]) ∈ R>0 × Mcurv⩾0(X)

is a homeomorphism, where Mcurv⩾0(X) is the moduli space of nonnega-
tively curved metrics on X in the Alexandrov sense (endowed with the GH
topology). In addition, the same map induces a homeomorphism:

Meq
0,2(X̃) ≃ R>0 × M eq

curv⩾0(X̃),

where M eq
curv⩾0(X̃) is the moduli space of equivariant metrics on X̃ that

are nonnegatively curved in the Alexandrov sense (endowed with the equi-
variant GH topology, see Remark 2.7).

4. Moduli spaces in the 1-dimensional case

4.1. The circle

Proposition 4.1. — The moduli space M0,2(S1) of RCD(0, 2)-struc-
tures on S1 is homeomorphic to R2; in particular, it is contractible.

Proof. — Given n ⩾ 1 and N ⩾ n, Proposition 3.2 implies that we have
a homeomorphism:

(4.1) M0,N (Rn/Zn) ≃ R × [On(R)\GLn(R)]/GLn(Z).

When n = 1, we have O1(R) = GL1(Z) = {±1}. In addition, GL1(R) = R∗

is commutative; hence, GL1(Z) acts trivially on O1(R)\GL1(R). Therefore,
[O1(R)\GL1(R)]/GL1(Z) is homeomorphic to {±1}\R∗, i.e. is homeomor-
phic to R>0, which is itself homeomorphic to R. In conclusion, for every
N ⩾ 1, M0,N (S1) is homeomorphic to R2, which concludes the proof. □
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Remark 4.2. — It is easily checked that Ψ: [S1,d,m] ∈ M0,N (S1) →
(Diam(S1,d),m(S1)) ∈ R2

>0 is an explicit homeomorphism.

4.2. The unit interval

Notation 4.3 (Space of concave functions). — We denote C∗ the space of
concave functions f : I → R such that f is strictly positive on int(I). We
endow C∗ with the topology of uniform convergence on compact subsets
of int(I). The aforementioned topology is metrizable with the following
distance:

dC∗(f, g) :=
∞∑

k=0
2−k min{1,dk(f, g)},

where f, g ∈ C∗ and dk(f, g) := supt∈[2−k,1−2−k]{|f(t) − g(t)|}.
For every f ∈ C∗, we define −1 · f(t) := f(1 − t), which gives rise to an

action of {±1} on C∗. We denote C∗/{±1} the quotient of C∗ by the action
of {±1}, endowed with the quotient topology.

Remark 4.4. — Observe that {±1} acts by isometries on (C∗,dC∗). There-
fore, the distance dC∗/{±1}([f ], [g]) := min{dC∗(f, g),dC∗(f,−1·g)} metrizes
the topology of C∗/{±1}.

Proposition 4.5. — The moduli space M0,1(I) is homeomorphic to
R2. Moreover, for every N ∈ (1,∞), the moduli space M0,N (I) is homeo-
morphic to R × {C∗/{±1}} (which is contractible).

Proof.
We start with the case N = 1. — Let us first assume that (I, d,m)

is an RCD(0, 1)-structure on I. Thanks to the proof of Theorem 1.8, we
necessarily have dim(X,d,m) = 1. Therefore, thanks to Proposition 2.13,
there exists a > 0 such that m = aH1. Moreover, thanks to [24, Theo-
rem 1.1], (I, d) is isometric to (I, LdE), where L := Diam(I, d). Hence, the
map Ψ: R>0 × R>0 → M0,1(I) defined by Ψ(L, a) := [I, LdE, aH1] is sur-
jective. It is then readily checked that Φ: M0,1(I) → R>0 × R>0 defined
by Φ([I, d,m]) := (Diam(I, d),m(I)/H1(I)) is an inverse. Moreover, thanks
to [15, Theorem 1.2], we can prove that Φ is continuous (just proceeding
the same way as in the last part of the proof of Proposition 3.2). Finally,
the proof of Ψ’s continuity is trivial; thus, M0,1(I) is homeomorphic to R2.

From now on we assume that 1 < N . — If (I, d,m) is an RCD(0, N)-
structure on I, then (I, d,m) is isomorphic to (I, LdE,m

′), where L :=
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Diam(I, d) and m′ is a finite Radon measure on I. Thanks to [13, Theo-
rem A.2], there exists g ∈ C∗ (see Notation 4.3) such that m′ = gN−1L1.
Conversely, thanks to [13, Theorem A.2], for every g ∈ C∗ and L > 0,
(I, LdE, g

N−1L1) is an RCD(0, N)-structure on I. Now, if g1, g2 ∈ C∗ sat-
isfy [I, dE, g

N−1
1 L1] = [I, dE, g

N−1
2 L1], then, there exists ϕ ∈ Iso(I, dE) such

that gN−1
2 L1 = ϕ∗(gN−1

1 L1) = (g1 ◦ ϕ−1)N−1L1; hence, g1 = g2 ◦ ϕ. How-
ever, Iso(I, dE) consists of 2 elements, the identity idI and the symmetry
t → 1 − t. Thus, [g1] = [g2] ∈ C∗/{±1}. Conversely, if g1, g2 ∈ C∗ satisfy
[g1] = [g2] ∈ C∗/{±1}, then (I, dE, g

N−1
1 ) is isomorphic to (I, dE, g

N−1
2 ).

Therefore, the following two maps are well defined and respectively inverse
to each other:

• Φ: M0,N (I) → R>0 × C∗/{±1} defined by Φ([I,d,m]) := (L, [g]),
where L := Diam(I, d) and g ∈ C∗ satisfies

[I, d,m] = [I, LdE, g
N−1L1],

• Ψ: R>0 × C∗/{±1} → M0,N (I) defined by

Ψ(L, [g]) := [I, LdE, g
N−1L1].

First, we show that Φ is continuous. — Assume that [I, dn,mn] →
[I, d∞,m∞] in M0,N (I) and, for every n ∈ N ∪ {∞}, denote (Ln, [gn]) :=
Φ([I, dn,mn]). Observe that (I,dn) converge to (I, d∞) in the GH topology;
in particular, Ln → L∞. Now, let us show that [gn] → [g∞] in C∗/{±1}.
Note that it is sufficient to prove that every subsequence of {gn} admits a
subsequence converging to ν · g∞ for some ν ∈ {±1}. We’ll just show that
{gn} admits a subsequence converging to ν · g∞ for some ν ∈ {±1} (the
proof for a subsequence of {gn} being exactly the same).

Observe first that {gn} is uniformly bounded in L∞(I). Indeed, fn :=
gN−1

n is a CD(0, N)-density on int(I) (see [13, Definition A.1]). Hence, for
every n ∈ N, we have supI fn ⩽ N |fn|L1 (see [13, Lemma A.8]). Moreover,
observe that |fn|L1 = mn(I) ⩽M , where M := supn∈N{mn(I)}. Hence, for
every n ∈ N, we obtain |gn|L∞⩽ (NM)1/N−1 =: M .

Now, observe that for every ϵ > 0, {gn} is equicontinuous on Iϵ :=
[ϵ, 1 − ϵ]. Indeed, given n ∈ N, x ∈ Iϵ, and t ∈ [0, 1], we have the following
inequality:

−M/1 − x ⩽ −gn(x)/1 − x ⩽ g′
n,r(x) ⩽ g′

n,l(x) ⩽ gn(x)/x ⩽M/x,

since gn is concave and positive on int(I) (we denoted g′
n,r and g′

n,l the
right and left derivatives of gn, respectively). Hence, for every x ∈ Iϵ, we
have Lipx(gn) ⩽M/ϵ. Therefore, {gn} is equicontinuous on Iϵ.
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Now, passing to a subsequence if necessary, we can assume that gn is
converging uniformly to some continuous function g : (0, 1) → R on every
compact subset K ⊂ (0, 1) (applying Arzelà–Ascoli Theorem and a diago-
nal argument). Observe that g is nonnegative and concave on (0, 1); hence,
we can assume that g is continuous on I. A fortiori, note that {gN−1

n } con-
verges uniformly to gN−1 on compact subsets of (0, 1). Let us prove that
there exists ν ∈ {±1} such that g = ν · g∞.

First, observe that gN−1
n L1 → gN−1L1 in the weak-∗ topology. Indeed, let

us fix f ∈ C0(I) and let ϵ > 0. Denoting dϵ(gN−1
n , gN−1) := supIϵ

(|gN−1
n −

gN−1|) and splitting the integral into three part, we easily obtain∣∣∣∣∫
I

f(gN−1
n − gN−1)

∣∣∣∣ ⩽ 4ϵMN−1|f |L∞ + |f |L∞dϵ(gN−1
n , gN−1).

In particular, for every ϵ > 0, we have

lim sup
n→∞

∣∣∣∣∫
I

f(gN−1
n − gN−1)

∣∣∣∣ ⩽ 4ϵMN−1|f |L∞ .

Hence, for every continuous function f ∈ C0(I), we obtain

lim
n→∞

∫
I

fgN−1
n =

∫
I

fgN−1.

This implies that {(I, LndE, g
N−1
n L1)} converges in the mGH topology to

(I, L∞dE, g
N−1L1). However, {(I, LndE, g

N−1
n L1)} also converges to

(I, L∞dE, g
N−1
∞ L1) in the mGH topology. Thus, there exists an isome-

try ϕ : (I, L∞dE) → (I, L∞dE) such that ϕ∗(gN−1
∞ L1) = gN−1L1, i.e.

g = g∞ ◦ϕ−1. However, Iso(I, L∞dE) consists of two elements, the identity
idI and the symmetry with center 1/2. Thus, g = ν ·g∞ for some ν ∈ {±1},
which concludes the proof of Φ’s continuity.

Now, we are going to show that Ψ = Φ−1 is continuous. — Assume that
{Ln, [gn]} converges to (L∞, [g∞]) in R>0 × {C∗/{±1}}. This implies that
there exists a sequence {νn} in {±1} such that {νn·gn} converges to g∞ uni-
formly on compact subsets of (0, 1). Let us denote g̃n := νn ·gn and observe
that, for every n ∈ N, (I, Ln, g

N−1
n L1) and (I, Ln, g̃

N−1
n L1) are isomorphic.

We need to show that {(I, Ln, g̃
N−1
n L1)} converges to (I, L∞, g

N−1
∞ L1) in

the mGH topology. Since |Ln − L∞| → 0, it is sufficient to show that
g̃N−1

n L1 converges to gN−1
∞ L1 in the weak-∗ topology. Moreover, proceed-

ing exactly as in the last paragraph, it is enough to prove that {g̃n} is
uniformly bounded in L∞(I). Let n ∈ N and observe that, thanks to the
nonnegativity and concavity of g̃n, we have the following three cases:

• if x < 1/4, we have g̃n(x) ⩽ g̃n(1/2)+2(1−2x)(g̃n(1/4)− g̃n(1/2)),
which implies that g̃n(x) ⩽ 3 max[1/4,3/4]{g̃n},
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• if x > 3/4, we have g̃n(x) ⩽ g̃n(1/2)+2(2x−1)(g̃n(3/4)− g̃n(1/2)),
which implies that g̃n(x) ⩽ 3 max[1/4,3/4]{g̃n},

• if x ∈ [1/4, 3/4], then g̃n(x) ⩽ max[1/4,3/4]{g̃n}.
Hence, for every n ∈ N, we have |g̃n|L∞ ⩽ 3 max[1/4,3/4]{g̃n}. However,
{g̃n} converges uniformly to g∞ on [1/4, 3/4], hence

sup
n∈N

{
max

[1/4,3/4]
{g̃n}

}
< ∞,

which concludes the proof of Ψ’s continuity. Therefore, M0,N (I) is homeo-
morphic to R>0×{C∗/{±1}}, which is itself homeomorphic to R×{C∗/{±1}}.

Now, note that C∗/{±1} is contractible. — Indeed, observe that the
map H : I × {C∗/{±1}} → C∗/{±1} defined by H(t, [f ]) := [t1̃ + (1 − t)f ]
is a retract by deformation of C∗/±1 onto {[1̃]} (where 1̃ is the function
constantly equal to 1). This concludes the proof of Proposition 4.5. □

5. Moduli spaces in the 2-dimensional case

In this section, we will describe the moduli spaces M0,2(X), where X
has dimension 2. We will start with the spaces whose splitting degree k(X)
is equal to 2, namely the 2-torus and the Klein bottle K2. We will then
proceed with the spaces satisfying k(X) = 1, namely the cylinder S1 × I

and the Möbius band M2. Finally, we will study the case where k(X) = 0,
which corresponds to the 2-sphere S2, the projective plane RP2, and the
closed 2-disc D.

5.1. The 2-torus and the Klein bottle

5.1.1. The 2-torus

Proposition 5.1. — The moduli space M0,2(T2) is homeomorphic to
R4; in particular, it is contractible.

Proof. — According to Proposition 3.2, there is a homeomorphism:

(5.1) M0,2(T2) ≃ R × Mflat(T2).

Moreover, as a result of [17, Section 2.1], Mflat(T2) is homeomorphic to R3.
Therefore, M0,2(T2) is homeomorphic to R4. □
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5.1.2. The Klein bottle

Proposition 5.2. — The moduli space M0,2(K2) of RCD(0, 2)-struc-
tures on K2 is homeomorphic to R3; in particular, it is contractible.

Proof. — We denote Γ the Bieberbach subgroup of Iso(R2) generated by
a := (I2, e1) and b := (σ, e2), where (e1, e2) is the canonical basis of R2,
I2 = diag(1, 1) is the identity matrix, and σ := diag(−1, 1). Let us recall
that by definition K2 = R2/Γ. Therefore, thanks to Proposition 3.2, there
is a homeomorphism:

(5.2) M0,2(K2) ≃ R × [O2(R)\CΓ]/NΓ.

It is then readily checked that

NAff(R2)(Γ) = {(diag(ϵ1, ϵ2), v), ϵi ∈ {±1}, 2 ⟨v, e1⟩ ∈ Z}.

Therefore, we have NΓ = {diag(ϵ1, ϵ2), ϵi ∈ {±1}} (see Definition 3.1).
Thanks to Proposition 4.8 of [8], we have CΓ = O2(R) · Z, where Z is the
centralizer of HΓ in GL2(R). In addition, HΓ is the subgroup of O2(R)
generated by σ; hence, it is easy to see that Z = {diag(a1, a2), ai ∈ R∗}.
Now, observe that NΓ acts trivially on O2(R)\CΓ. Indeed, given A ∈ CΓ
and B ∈ NΓ, there exists C ∈ O2(R) and D ∈ Z such that A = CD. In
particular, we have AB = CDB = CBD (since both B and D are diagonal
matrices). Therefore, using the fact that B ∈ NΓ ⊂ O2(R) and C ∈ O2(R),
we obtain [D] = [CD] = [CBD] (where [ · ] denotes the class of a matrix in
O2(R)\CΓ). However, [A] = [CD] and [A] · B = [CDB] = [CBD]. Hence,
[A] = [A] ·B, i.e. NΓ acts trivially on O2(R)\CΓ. Thus, thanks to (5.2), we
have a homeomorphism:

(5.3) M0,2(K2) ≃ R × O2(R)\CΓ.

Now, thanks to Corollary 4.9 of [8], O2(R)\CΓ is homeomorphic to the
quotient space O2(R) ∩ Z\Z. Observe that the map diag(a, b) ∈ Z →
(|a|, |b|) ∈ R>0 × R>0 passes to the quotient, giving rise to a homeomor-
phism [diag(a, b)] ∈ O2(R) ∩ Z\Z → (|a|, |b|) ∈ R>0 × R>0. Hence, us-
ing (5.3), we finally obtain M0,2(K2) ≃ R3. □

5.2. The Möbius band and the cylinder

5.2.1. The Möbius band

Proposition 5.3. — The moduli space M0,2(M2) of RCD(0, 2)-struc-
tures on M2 is homeomorphic to R3; in particular, it is contractible.
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Proof. — Assume that (M2,d,m) is an RCD(0, 2)-structure on M2 and
let (I×R, d̃, m̃) := p∗(M2,d,m) be the associated lift (where p : I×R → M2

is the quotient map). Observe that, following the proof of Theorem 1.8 (case
k(X) = 1), there exists a splitting ϕ : (I × R, d̃, m̃) → ([0, r],dE, aL1) ×
(R,dE,L1), where a, r ∈ R>0. Moreover, following the same proof, there
exist a generator γ of π1(X) and b > 0 such that, for every (x, t) ∈
[0, r] × R, we have ϕ∗(γ)(x, t) = (r − x, t + b). In particular, we have
[M2,d,m] = [M2,dr,b, aH2], where (M2,dr,b) is the metric quotient of
(I × R, rdE × bdE) by the action of Z on I × R defined by c · (x, t) :=
(sc(x), t+ c), for every c ∈ Z (where s : x ∈ [0, 1] → 1 −x ∈ [0, 1]). Further-
more, it is easily seen from the definitions that A([M2,d,m]) = (R,dE)/bZ
and S([M2,d,m]) = [I, rdE, aH1] (where the Albanese variety and the
soul are defined respectively in (2.9) and (2.10)). In particular, we have
a = Mass(S([M2,d,m]))/Diam(S([M2,d,m])), r = Diam(S([M2,d,m])),
and b = 2Diam(A([M2,d,m])). Therefore, the map Φ: a, b, r ∈ (R>0)3 →
[M2,dr,b, aH2] ∈ M0,2(M2) is invertible and its inverse satisfies:

Φ−1([M2,d,m]) = (a, b, r),

where: 
a = Mass(S([M2,d,m]))

Diam(S([M2,d,m]))

b = 2Diam(A([M2,d,m]))
r = Diam(S([M2,d,m])).

Now, observe that Φ and Φ−1 are continuous. Indeed, notice that, according
to Theorem 2.12, Φ−1 is continuous. We then assume that (ak, bk, rk) →
(a∞, b∞, r∞). It is then readily checked that the sequence {(I × R, rkdE ×
bkdE, akH2, 0)} converges to (I×R, r∞dE×b∞dE, a∞H2, 0) in the equivari-
ant pmGH topology (see [30, Definition 2.8]) w.r.t. the action of Z on I×R
we introduced. Hence, thanks to [30, Theorem A], the sequence of asso-
ciated quotients {(M2,drk,bk

, akH2)} converges to (M2,dr∞,b∞ , a∞H2) in
the mGH topology. Thus, Φ is continuous, which concludes the proof. □

5.2.2. The cylinder

Proposition 5.4. — The moduli space M0,2(S1 × I) of RCD(0, 2)-
structures on S1 ×I is homeomorphic to R3; in particular, it is contractible.

Proof. — Proceeding precisely as in Section 5.2.1, it is readily checked
that the map Φ: a, b, r ∈ (R>0)3 → [S1 × I, dr,b, aH2] ∈ M0,2(S1 × I) is a
homeomorphism, where dr,b = bdS1 × rdE and dS1 is the length metric on
the circle with perimeter 1. Therefore, the result follows. □
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5.3. The 2-sphere, the projective plane, and the closed disc

In this section, we will compute the moduli spaces of RCD(0, 2)-struc-
tures on the 2-sphere S2, the projective plane RP2, and the closed disc D.
As we will see later, these moduli spaces are all homeomorphic to specific
spaces of convex compact subsets of R3. We will start by introducing some
notations of convex geometry. We will then prove realisation results for
nonnegatively curved metrics on RP2 and D. We will then introduce con-
vergence lemmas that will be fundamental to prove continuity statements.
Finally, we will compute the aforementioned moduli spaces.

5.3.1. Notations

We start by introducing some notations from [6].

Notation 5.5 (Spaces of convex compact subsets of R3). — We denote K
the set of all compact convex subsets of R3 and Ks the subset of K whose
elements have their Steiner point at the origin (see [7, Section 4] for some
properties of the Steiner point).

Given 0 ⩽ k ⩽ l ⩽ 3 and K′ ⊂ K, we denote:
• K′

k⩽l := {D ∈ K′,dim(D) ∈ [k, l]},
• K̃′ := {D ∈ K′, D = −D}.

Every subspace of K will be endowed with the Hausdorff distance dR3

H . Also,
we will generically denote B, K, L and {∗} elements of K with dimension
3, 2, 1 and 0.

Remark 5.6. — Observe that if D ∈ K̃, then s(D) = s(−D) = −s(D)
(where s(D) is the steiner point of D), i.e. s(D) = 0. In particular, we have
K̃ ⊂ Ks.

The following maps will be important later when comparing the bound-
aries of two different convex bodies in Ks.

Notation 5.7 (Central projection). — Let n ⩾ 1 and assume that D is
an n-dimensional compact convex subset of Rn whose Steiner point is at
the origin. Given x ∈ Rn\{0}, the open half line R>0 · x intersects ∂D in
a single point, which we denote pc

∂D(x). The map pc
∂D : Rn\{0} → ∂D is

called the central projection on ∂D.

A classical result is that the orthogonal projection on a closed convex
subspace of a Hilbert space is well defined.
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Notation 5.8 (Orthogonal projection). — Let n ⩾ 1 and assume that D
is a closed convex subset of Rn. Given x ∈ Rn, there exists a unique point
pD(x) ∈ D such that dE(x, pD(x)) = dE(x,D). The map pD : Rn → D

is called the orthogonal projection on D. Given α ∈ Rn\{0}, we denote
pα := pRα, and p⊥

α := p{α}⊥ .

Let us now clarify what we mean when we speak about the boundary
and the interior of a set.

Notation 5.9 (Boundary and interior). — Let M ⊂ Rn (n ⩾ 1) be a
topological submanifold with boundary. We denote ∂M the boundary of
M and M̊ := M\∂M the interior of M (we will also write int(M)).

Every Lipschitz submanifold of Rn (n ⩾ 1) admits two canonical metrics,
namely the extrinsic and intrinsic metrics.

Notation 5.10 (Intrinsic and extrinsic metrics). — Given n ∈ N and given
a connected Lipschitz submanifold X ⊂ Rn (possibly with boundary), we
denote dX the intrinsic metric of X. More precisely, given x, y ∈ X, we
have dX(x, y) = inf{L(γ)}, where the infimum is computed over the set of
rectifiable curves in X joining x to y.

The extrinsic metric on X is simply the restriction of the Euclidean
distance dE to X ⊂ Rn.

We will usually only write X to speak about the metric space (X,dX),
and we will specify when we endow X with its extrinsic distance dE. For
example, given B ∈ Ks of dimension 3, will usually write ∂B to speak
about the metric space (∂B,d∂B).

Let us introduce the double of a metric space. This notion will be crucial
to realise metrics on the 2-sphere, the projective plane and the disc.

Notation 5.11 (Double of a metric space). — Given a topological mani-
fold X with boundary, we denote:

DX :=
⊔

i=1,2

{i} ×X/ ∼,

where (1, x) ∼ (2, x), whenever x ∈ ∂X. We call DX the double of X and
let q be the quotient map.

Given i ∈ {1,2}, we define X i (resp. X̊ i) as the image of {i} ×X (resp.
{i}×X̊) under q. Since {1}×∂X and {2}×∂X are identified when passing
to the quotient, we also denote ∂X the image of these by q. Given x ∈ X,
we will then write xi := q(i, x) ∈ X i.

TOME 0 (0), FASCICULE 0



26 Dimitri NAVARRO

Given a length metric d on X, there exists a unique length metric Dd
on DX whose restriction to X1 and X2 coincides with d. More precisely,
given x, y ∈ X, we define Dd(x1, y1) := d(x, y) =: Dd(x2, y2) and:

Dd(x1, y2) := inf{d(x, z) + d(z, y), z ∈ ∂X}.

We denote D(X,d) := (DX,Dd).
Very often, there will be no confusion about the metric X is endowed

with; therefore, we usually only write DX instead of D(X,d). For example,
given K ∈ K of dimension 2, we will write DK to speak about the met-
ric space D(K,dE) (note that since K is convex, the intrinsic metric dK

coincides with the restriction of dE to K).

The following maps will be relevant when studying double of metric
spaces.

Notation 5.12. — Assume that K is a 2-dimensional compact convex
subset of R2. We denote sK : DK → DK the isometry defined by s(x1) :=
x2 and s(x2) := x1, for x ∈ K.

Notation 5.13. — Assume that (X,dX) and (Y,dY ) are metric spaces
homeomorphic to topological manifolds with boundary and assume that
ϕ : (X,dX) → (Y, dY ) is an isometry (in particular ϕ(∂X) = ∂Y ). We de-
note ϕD : D(X,dX) → D(Y,dY ) the isometry defined by ϕD(xi) := (ϕ(x))i,
for x ∈ X and i ∈ {1,2}.

5.3.2. Realisation of nonnegatively curved metrics

In [6], Belegradek introduces a homeomorphism between the quotient
space Ks

2⩽3/O3(R) and the moduli space Mcurv⩾0(S2) of nonnegatively
curved metrics on S2. Let us first recall the correspondence.

Notation 5.14. — Given D ∈ Ks, we denote ΦS2(D) := ∂D if dim(D) =
3, ΦS2(D) := DD if dim(D) = 2, and ΦS2(D) := D if dim(D) ∈ {0, 1}. In
each case, ΦS2(D) is endowed with its natural length metric.

Notice that given D ∈ Ks
2⩽3, the isometry class [ΦS2(D)] belongs to

Mcurv⩾0(S2). Moreover, given ϕ ∈ O3(R), we have [ΦS2(D)] = [ΦS2(ϕ(D))].
Therefore, there exists a unique map:

(5.4) ΨS2 : Ks
2⩽3/O3(R) −→ Mcurv⩾0(S2)

such that, for every D ∈ Ks
2⩽3, we have ΨS2([D]) = [ΦS2(D)].

The following result is inspired by the realisation Theorem of Alexandrov
(see [25, Theorem 1, p. 237]) and is proven by Belegradek in [6, Section 2].
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Theorem 5.15. — The map ΨS2 : Ks
2⩽3/O3(R) → Mcurv⩾0(S2) intro-

duced in (5.4) is a homeomorphism.

We are now going to show that the equivariant nonnegatively curved met-
rics on S2 are in correspondence with symmetric convex compact subsets
of R3 with dimension between 2 and 3. In what follows, by equivariant, we
always mean equivariant with respect to the action of {±1} on the relevant
spaces.

Remark 5.16. — Note that there might be various actions of {±1} on
our spaces. Given B ∈ K̃2⩽3 of dimension 3, we let −1 act as −idR3 on ∂B.
Given K ∈ K̃2⩽3 of dimension 2, we let −1 act on DK in the following
way: for x ∈ K, −1 · x1 := (−x)2 and −1 · x2 := (−x)1.

First, note that if D ∈ K̃2⩽3, it is clear that there exists an equivari-
ant nonnegatively curved metric d on S2 such that (S2,d) is equivari-
antly isometric to ΦS2(D); hence, [ΦS2(D)] ∈ M eq

curv⩾0(S2). In addition,
if ϕ ∈ O3(R), then ΦS2(D) and ΦS2(ϕ(D)) are equivariantly isometric.
Therefore, there exists a unique map:

(5.5) Ψeq
S2 : K̃2⩽3/O3(R) −→ M eq

curv⩾0(S2)

such that, for every D ∈ K̃2⩽3, we have Ψeq
S2([D]) = [ΦS2(D)]. We are going

to prove the following realisation theorem for equivariant metrics on the
2-sphere.

Proposition 5.17. — The map Ψeq
S2 : K̃2⩽3/O3(R) → M eq

curv⩾0(S2) in-
troduced in (5.5) is a 1-1 correspondence.

To prove Proposition 5.17, we will need the following Lemma.

Lemma 5.18. — Let K ⊂ R2 and Σ ⊂ R2 be 2-dimensional compact
convex subsets of R2. If ϕ : DK → DΣ is an isometry, then ϕ(∂K) = ∂Σ.

Proof. — Looking for a contradiction, let us assume that

∂K ∩ ϕ−1(Σ̊2) ̸= ∅.

First of all, observe that if x, y ∈ ∂K∩ϕ−1(Σ̊2), then there exists a unique
unit speed shortest path [ϕ(x)ϕ(y)] from ϕ(x) to ϕ(y). In particular, there
exists a unique unit speed shortest path [xy] from x to y. In addition, since
sK is an isometry of DK (see Notation 5.12), then sK([xy]) = [sK(x)sK(y)]
is the unique unit speed shortest path from sK(x) to sK(y). However,
since x, y ∈ ∂K, then we have sK(x) = x and sK(y) = y, which implies
sK([xy]) = [xy]. Therefore, for every z ∈ [xy], we have z ∈ Fix(sK) = ∂K.
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Hence, we necessarily have [xy] ⊂ ∂K. Moreover, observe that [ϕ(x)ϕ(y)] ⊂
Σ̊2 and that ϕ([xy]) = [ϕ(x)ϕ(y)]; therefore, [xy] ⊂ ∂K ∩ ϕ−1(Σ̊2).

After that, observe that if x, y, z ∈ ∂K ∩ϕ−1(Σ̊2), then x, y, z are neces-
sarily aligned. Indeed, if not, then the triangle ∆(x, y, z) is homeomorphic
to S1 and is a subset of ∂K ∩ ϕ−1(Σ̊2) (using the first part of the proof),
which implies ∆(x, y, z) = ∂K. In particular, thanks to the first obser-
vation, every pair of points on ∂K can be joined by a unique unit speed
shortest path, which is a contradiction.

Using the two observations above, there exist x ̸= y ∈ ∂K such that
(xy) = ∂K ∩ ϕ−1(Σ̊2), where (xy) is the interior of [xy] seen as a subspace
of ∂K ⊂ R2. Note that we necessarily have:

(i) [xy] ⊂ ∂K,
(ii) ϕ(x), ϕ(y) ∈ ∂Σ.

In particular, there exists a unique unit speed shortest path from x to y in
DK (using (i)). Therefore, there is a unique unit speed shortest path from
ϕ(x) to ϕ(y), which implies that ϕ([xy]) = [ϕ(x)ϕ(y)] ⊂ ∂Σ (using (ii)).
However, let us recall that by assumption (xy) = ∂K ∩ ϕ−1(Σ̊2). Hence,
ϕ((xy)) ⊂ ∂Σ ∩ Σ̊2 = ∅, which is the contradiction we were seeking.

The same argument leads to ∂K ∩ ϕ−1(Σ̊1) = ∅.
Now, we have shown that ϕ(∂K) ⊂ ∂Σ. However, the same argument

applied to ϕ−1 leads to ϕ−1(∂Σ) ⊂ ∂K; therefore, ∂Σ ⊂ ϕ(∂K), which
concludes the proof. □

Lemma 5.18 implies the following Proposition.

Proposition 5.19. — Let K ⊂ R2 and Σ ⊂ R2 be 2-dimensional
compact convex subsets of R2 with Steiner point at the origin and let
ϕ : DK → DΣ be an isometry. There exists µ ∈ O2(R) such that µ(K) = Σ
and ϕ = µD if ϕ(K2) = Σ2 (resp. sΣ ◦ ϕ = ϕ ◦ sK = µD if ϕ(K2) = Σ1),
where we introduced µD (resp. sΣ and sK) in Notation 5.13 (resp. Nota-
tion 5.12).

Proof. — First of all, observe that thanks to Lemma 5.18, we have
ϕ(∂K) = ∂Σ. In particular, ϕ maps the connected components K̊1 and K̊2

to Σ̊1 ⊔ Σ̊2. Hence, composing ϕ with sΣ if necessary, we can assume that
ϕ(Ki) = Σi (i ∈ {1,2}). In particular, there exists isometries µ : K → Σ
and ν : K → Σ such that µ|∂K = ν|∂K and such that, for every x ∈ K, we
have ϕ(x2) = µ(x)2 and ϕ(x1) = ν(x)1. Thanks to [1, Theorem 2.2], we
can assume that µ and ν are isometries of R2. However Span(∂K) = R2;
therefore, since µ and ν coincide on ∂K, we necessarily have µ = ν. In
addition, K and Σ have their Steiner point at the origin and µ(K) = Σ;
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thus, we necessarily have µ(0) = 0, i.e. µ ∈ O2(R). Hence, we can conclude
that ϕ = µD □

We are now able to prove Proposition 5.17.

Proof of Proposition 5.17. — First of all, assume that D1, D2 ∈ K̃2⩽3
satisfy Ψeq

S2([D1]) = Ψeq
S2([D2]). By definition, ΦS2(D1) is equivariantly iso-

metric to ΦS2(D2). In particular ΨS2([D1]) = ΨS2([D2]). Hence, thanks to
Theorem 5.15, we have [D1] = [D2]. Thus, Ψeq

S2 is injective.
Let us now show that Ψeq

S2 is surjective. Let d be an equivariant nonnega-
tively curved metric on S2 and let us show that there exists D ∈ K̃2⩽3 such
that (S2,d) is equivariantly isometric to ΦS2(D). Thanks to Theorem 5.15,
either there exists B ∈ Ks

2⩽3 of dimension 3 such that (S2,d) is isometric to
∂B, or there exists K ∈ Ks

2⩽3 of dimension 2 such that (S2,d) is isometric
to DK.

Let us first assume that we have an isometry ϕ : (S2,d) → ∂B. We define
f : x ∈ ∂B → ϕ(−ϕ−1(x)) ∈ ∂B. It is sufficient to prove that f coincides
with −idR3 . To do so, note that f is a self-isometry of ∂B. Therefore, thanks
to [12, Theorem 5.2.1], f is also a self-isometry of (∂B,dE). Thus, thanks
to [1, Theorem 2.2], we can extend f into an isometry of (R3,dE) (which
we also denote f). Observe that f is in particular an affine transforma-
tion; thus, f(B) = f({Conv(∂B)}) = Conv{f(∂B)} = Conv{∂B} = B.
Therefore, we have f(0) = f(s(B)) = s(f(B)) = s(B) = 0 (where s(B)
is the Steiner point of B), i.e. f ∈ O3(R). Now, note that by definition
f is involutive on ∂B. Moreover, ∂B spans R3. Hence, f is an orthogonal
involution of R3 and can be diagonalized with eigenvalues ±1. However, by
definition, f has no fixed point on ∂B, so, 1 cannot be an eigenvalue of f .
Hence, f = −idR3 .

Now, let us assume that we have an isometry ϕ : (S2,d) → DK. Observe
that without loss of generality, we may assume that K ⊂ R2 × {0}. As
above, we introduce f : x ∈ DK → ϕ(−ϕ−1(x)) ∈ DK, which is an involu-
tive isometry without any fixed points. Let us prove that f coincides with
the action of −1 on DK. Applying Lemma 5.18, we have either f(K2) ⊂ K2

or f(K2) ⊂ K1. If f(K2) ⊂ K2, then Brouwer’s fixed point Theorem im-
plies that f has a fixed point on K2 (which is not possible by definition of
f). Hence, we necessarily have f(K2) ⊂ K1. Note that, thanks to Propo-
sition 5.19, there exists an isometry µ ∈ O2(R) such that µ(K) = K and
sK ◦ f = µD (see Notations 5.12 and 5.13). In addition, let us recall that
f2 = idDK . Thus, using µD ◦ sK = sK ◦ µD and s2

K = idDK , we obtain
that µ is involutive on K. However, Span(K) = R2; hence, µ2 = idR2 . In
particular, µ is diagonalisable on R2 with eigenvalues ±1. However, if 1 is
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an eigenvalue, then f admits a fixed point on the boundary of K, which
can’t happen. Therefore, µ = −idR2 which implies that K = −K and that
f coincides with the action of −1 on DK. □

Now, we are going to focus on how to realise nonnegatively curved metrics
on D using convex compact subsets of R3. But first, we need to introduce
some notations.

Notation 5.20. — Given α ∈ S2, we denote H−
α := {⟨α, ·⟩ ⩽ 0} and

H+
α := {⟨α, ·⟩ ⩾ 0} respectively the lower half-space and upper half-space

induced by α, and Hα := {α}⊥. We write rα for the reflection w.r.t. Hα.
We then denote Kα := {D ∈ Ks, rα(D) = D} and:

K :=
⋃

α∈S2

Kα × {α} ⊂ Ks × S2,

and K2⩽3 := K ∩ Ks
2⩽3 × S2. The last two spaces introduced are endowed

with the direct topology.

Remark 5.21. — If (K,α) ∈ K satisfies dim(K) = 2, then we have either
α ∈ Span(K) or α ∈ Span(K)⊥. Indeed, let us assume that α /∈ Span(K)
and let us show that, in that case, rα coincides with id on Span(K). If rα

does not coincide with id on Span(K), then there exists x ∈ Span(K)\{0}
such that rα(x) = −x (using rα(K) = K). Moreover, since α /∈ Span(K),
then Span(x, α) has dimension 2. However, rα coincides with −id on
Span(x, α), which contradicts the fact that dim(Ker(rα + id)) = 1. There-
fore, rα necessarily coincides with id on Span(K). Hence, Ker(rα − id) =
Span(K) = {α}⊥, i.e. α ∈ Span(K)⊥.

Proceeding with the same idea, we can show that if (L,α) ∈ K satisfies
dim(L) = 1, then either α ∈ Span(L) or α ⊥ Span(L).

The following subsets associated with the double of a plane region will
be crucial to obtain nonnegatively curved metrics on D.

Notation 5.22. — Assume that (K,α) ∈ K such that dim(K) = 2 and
α ∈ Span(K). We denote DK±

α :=
⋃2

i=1(K ∩ H±
α )i ⊂ DK, DK̊±

α :=⋃2
i=1(K∩H̊±

α )i ⊂ DK, and DKα :=
⋃2

i=1(K∩Hα)i = DK+
α ∩DK−

α ⊂ DK.
Observe that all of the sets above are convex subsets of DK. In particular,
DK+

α is isometric to D endowed with a nonnegatively curved metric.

It is always possible to symmetrise a convex compact subsets of R3 w.r.t.
a specific direction.

Notation 5.23. — Given α ∈ S2 and D ∈ Ks, we denote Dα := (D +
rα(D))/2, where + is the Minkowski sum.
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We now introduce the map that will lead to the correspondence between
Mcurv⩾0(D) and a particular space of convex compact subsets of R3.

Notation 5.24. — Given (D,α) ∈ K (see Notation 5.20), we denote:
(i) ΦD(D,α) := ∂D ∩H+

α if dim(D) = 3,
(ii) ΦD(D,α) := D if α ∈ Span(D)⊥,
(iii) ΦD(D,α) := {DD}+

α if dim(D) = 2 and α ∈ Span(D) (see Nota-
tion 5.22),

(iv) ΦD(D,α) := D ∩H+
α if dim(D) = 1 and α ∈ Span(D).

Note that in any case we have ΦD(D,α) ⊂ ΦS2(D) (see Notation 5.14). In
each case, ΦD(D,α) is endowed with its natural length metric.

First, observe that if (D,α) ∈ K2⩽3 (see Notation 5.20), it is clear that
there exists a nonnegatively curved metric d on D such that (D,d) is isomet-
ric to ΦD(D,α); hence, [ΦD(D,α)] ∈ Mcurv⩾0(D). Note that if ϕ ∈ O3(R),
then ΦD(D,α) and ΦD(ϕ(D), ϕ(α)) are isometric. Therefore, there exists a
unique map:

(5.6) ΨD : K2⩽3/O3(R) −→ Mcurv⩾0(D)

such that, for every (D,α) ∈ K2⩽3, we have ΨD([D,α]) = [ΦD(D,α)]. Our
next goal is to prove the following proposition.

Proposition 5.25. — The map ΨD : K2⩽3/O3(R) → Mcurv⩾0(D) in-
troduced in (5.6) is a 1-1 correspondence.

Proof. — Let us first prove that ΨD is surjective. Assume that d is a
nonnegatively curved metric on D. Thanks to Perelman doubling Theorem
(see [11, Section 13.3]), the double metric space D(D,d) (see Notation 5.11)
is also an Alexandrov space with nonnegative curvature. In addition, DD
is homeomorphic to S2. Therefore, thanks to [6, Theorem 1.1], either there
exists B ∈ Ks

2⩽3 of dimension 3 such that D(D,d) is isometric to ∂B, or
there exists K ∈ Ks

2⩽3 of dimension 2 such that D(D,d) is isometric to
DK. Before considering each case, let us denote ϕ : DD → DD the map
defined by ϕ(x1) := x2 and ϕ(x2) := x1, for every x ∈ D. Observe that ϕ is
an involutive isometry of D(D,d), whose set of fixed points Fix(ϕ) is equal
to ∂D = S1.

Let us consider the case where there exists an isometry f : D(D,d) → ∂B.
Note that the map ψ := f ◦ ϕ ◦ f−1 is an involutive isometry of ∂B whose
set of fixed points Fix(ψ) is homeomorphic to S1. Arguing as for the 3-
dimensional case in the proof of Proposition 5.17, we can assume that ψ
belong to O3(R), satisfies ψ2 = idR3 , and ψ(B) = B. In particular, ψ is
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diagonalisable with eigenvalues ±1. Observe that 1 necessarily has multi-
plicity 2 in order for Fix(ψ) to be homeomorphic to S1; hence, there exists
α ∈ S2 such that ψ = rα. In particular, rα(B) = B, i.e. (B,α) ∈ K2⩽3 (see
Notation 5.20). Now, notice that f(Fix(ϕ)) = Fix(ψ), i.e. f(∂D) = ∂B∩Hα.
Hence, f maps the disjoint union D̊1 ⊔ D̊2 onto {∂B ∩ H̊−

α } ⊔ {∂B ∩ H̊+
α }.

In particular, changing α into −α if necessary, we have f(D̊2) = ∂B ∩ H̊+
α .

Therefore, f is an isometry from (D,d) to ΦD(B,α).
Now, we assume that there exists an isometry f : D(D,d) → DK and,

without loss of generality, that K ⊂ R2 × {0}. As before, ψ := f ◦ ϕ ◦ f−1

is an involutive isometry of DK such that Fix(ψ) is homeomorphic to S1.
Thanks to Lemma 5.18, we either have ψ(K2) ⊂ K2 or ψ(K2) ⊂ K1.

If ψ(K2) ⊂ K2, then by Proposition 5.19 there exists µ ∈ O2(R) such
that µ(K) = K and ψ = µD (see Notation 5.13). Since ψ is involutive
and Span(K) = R2, we have µ2 = idR2 which implies that µ is diago-
nalisable with eigenvalues ±1. We then note that 1 necessarily has multi-
plicity 1, otherwise Fix(ψ) is not homeomorphic to S1. Hence, there exists
α ∈ Span(K) such that µ = rα; in particular, (K,α) ∈ K2⩽3. Observe that
f(Fix(ϕ)) = f(∂D) = Fix(ψ) = DKα (see Notation 5.22). Therefore, f
maps the disjoint union D̊1 ⊔ D̊2 onto DK̊−

α ⊔DK̊+
α . In particular, changing

α into −α if necessary, we may assume that f(D̊2) = DK̊+
α . Therefore, f

is an isometry from (D,d) to DK+
α = ΦD(K,α).

If ψ(K2) ⊂ K1, then we can use Proposition 5.19 and proceed as above
to get µ ∈ O2(R), such that µ(K) = K, µ2 = idR2 , and sK ◦ ψ = µD (see
Notations 5.12 and 5.13). As before, µ is diagonalisable with eigenvalues ±1.
Observe that 1 necessarily has multiplicity 2 for Fix(ψ) to be homeomorphic
to S1; therefore, µ = idR2 . We then note that f maps Fix(ϕ) = ∂D onto
Fix(ψ) = ∂K. Hence, composing f with sK if necessary, we can assume
that f(D̊2) = K̊2. Therefore, fixing any α ∈ Span(K)⊥, f induces an
isometry between (D,d) and K = ΦD(K,α).

Now let us prove that ΨD is injective. Let (Di, αi) ∈ K2⩽3 (i ∈ {1, 2})
and assume that there exists an isometry ϕ : ϕD(D1, α1) → ΦD(D2, α2).
We need to prove that there exists ψ ∈ O3(R) such that D2 = ψ(D1)
and α2 = ψ(α1). First of all, observe that ϕ induces an isometry
ϕD : D{ΦD(D1, α1)} → D{ΦD(D2, α2)}. Moreover, there exists an isome-
try νi : D{ΦD(Di, αi)} → ΦS2(Di) (this is readily checked via a case by
case study). In particular, thanks to Theorem 5.15, we necessarily have
dim(D1) = dim(D2).

If dim(D1) = dim(D2) = 3, then ψ := ν2 ◦ ϕD ◦ ν−1
1 : ∂D1 → ∂D2

is an isometry. Arguing as for the 3-dimensional case in the proof of
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Proposition 5.17, we can assume that ψ ∈ O3(R) satisfies ψ(D1) = D2.
Moreover, we can easily chose νi (i ∈ {1, 2}) so that ψ(∂D1 ∩ Hα1) =
∂D2 ∩ Hα2 , which implies that ψ(Hα1) = Hα2 . Hence, composing ψ with
rα2 if necessary, we can conclude that ψ(α1) = α2.

Let us assume that dim(D1) = dim(D2) = 2. If αi ∈ Span(Di)⊥ (i ∈
{1, 2}), then ϕ : D1 → D2 is an isometry. Thanks to Theorem 2.2 of [1]
and since s(D1) = s(D2) = 0, we can assume that ϕ ∈ O3(R). In par-
ticular, ϕ(Span(D1)⊥) = Span(D2)⊥. Therefore, composing ϕ with rα2 if
necessary, we obtain ϕ(D1) = D2 and ϕ(α1) = α2. If α1 ∈ Span(D1)⊥

and α2 ∈ Span(D2), then D1 is isometric to {DD2}+
α2

. In particular, we
necessarily have ϕ(∂D1) = ∂{DD2}+

α2
= {DD2}α2 . However, {DD2}α2 is

a convex subset of {DD2}α2 and ∂D1 is not a convex subset of D1; thus,
that case cannot happen. The case where αi ∈ Span(Di) (i ∈ {1, 2}) can
be treated in the same way as the case dim(D1) = dim(D2) = 3. □

5.3.3. Approximation Lemmas

In this section, we introduce approximation lemmas. The goal here is
to define GH approximations between spaces with various dimensions.
This will be crucial later when we will prove that Ψeq

S2 (see (5.5)) and ΨD
(see (5.6)) are homeomorphisms.

First of all, let us recall the following result (see the proof of Lemma 10.2.7
of [10]).

Lemma 5.26 (3 to 3). — Let B,B′ ∈ Ks such that dim(B) = dim(B′) =
3 and assume that there exists ϵ ∈ (0, 1) such that (1−ϵ)B ⊂ B′ ⊂ (1+ϵ)B
and (1−ϵ)B′ ⊂ B ⊂ (1+ϵ)B′. If we denote f and g respectively the restric-
tion of pc

∂B to ∂B′ and the restriction of pc
∂B′ to ∂B (see Notation 5.7),

then (f, g) is a GH ν-approximation (see Remark 2.7) between ∂B′ and
∂B, where ν := 6(Diam(B) + Diam(B′))ϵ. Moreover, if B,B′ ∈ K̃ (see No-
tation 5.5), then (f, g, id) is an equivariant GH ν-approximation between
(∂B′, {±1}) and (∂B, {±1}).

Remark 5.27. — The result is a bit different than what appears in the
proof of Lemma 10.2.7 of [10]; we just used the fact that Diam(∂B) ⩽
πDiam(B) (which also appears in the proof mentioned above).

Let us introduce the following notation, which relates 3-dimensional and
2-dimensional convex spaces.

Notation 5.28. — Let B ∈ Ks such that dim(B) = 3, let v ∈ S2, and
denote K := p⊥

v (B) (see Notation 5.8). There exist two functions ϕ1 : K →
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R and ϕ2 : K → R that are respectively convex and concave such that, for
every x ∈ K, we have:

(x+ Rv) ∩B = [x+ ϕ1(x)v, x+ ϕ2(x)v].

Moreover, ∂B can be partitioned as ∂B = ∂B1 ⊔∂B2 ⊔∂BL, where ∂Bi :=
{x + ϕi(x)v, x ∈ K̊} (i ∈ {1,2}) and ∂BL := {y, y ∈ [x + ϕ1(x)v, x +
ϕ2(x)v], x ∈ ∂K}. This allows us to introduce:

fB,v : ∂B −→ DK,

the map defined by fB,v(x+ ϕi(x)v) := xi (for x ∈ K̊ and i ∈ {1,2}) and
fB,v(y) := x (for every x ∈ ∂K and y ∈ [x+ ϕ1(x)v, x+ ϕ2(x)v]). Finally,
we introduce:

gB,v : DK −→ ∂B,

the map defined by gB,v(xi) := x+ ϕi(x)v (for x ∈ K̊ and i ∈ {1,2}) and
gB,v(x) := x+ [(ϕ1(x) + ϕ2(x))/2]v (for x ∈ ∂K).

The next lemma introduces approximations between a 3-dimensional
convex space and a 2-dimensional one.

Lemma 5.29 (3 to 2). — Let B ∈ Ks
2⩽3 such that dim(B) = 3, let

v ∈ S2, and denote K := p⊥
v (B). If we denote f := fB,v, g := gB,v

(see Notation 5.28), and ϵ := supx∈B{dE(x, p⊥
v (x))}, then (f, g) is a GH

10ϵ-approximation between ∂B and DK. Moreover, if B = −B, then
(f, g, id) is an equivariant GH 10ϵ-approximation between (∂B, {±1}) and
(DK, {±1}).

Proof. — First of all, assume that x, y ∈ K̊. Given t ∈ [0, 1], set α(t) :=
tx + (1 − t)y and γ(t) := α(t) + ϕ2(α(t))v. Observe that γ is a curve
with values in ∂B such that γ(0) = g(x2) and γ(1) = g(y2). In particular,
d∂B(g(x2), g(y2)) ⩽ L(γ) ⩽ L(α)+L(β), where β(t) := ϕ2(α(t)). However,
L(α) = dE(x, y) = dDK(x2, y2). In addition, β is a concave function from
[0, 1] to [−ϵ, ϵ] (using the fact that ϕ2 is concave and B ⊂ K + [−ϵ, ϵ]v).
Hence, there exists t0 ∈ [0, 1] such that β is increasing on [0, t0] and non-
increasing on [t0, 1]. Therefore, L(β) =

∫ 1
0 |β′| =

∫ t0
0 β′ −

∫ 1
t0
β′ = 2β(t0) −

β(1) − β(0). In particular, we have L(β) ⩽ 4ϵ which implies that:

(5.7) d∂B(g(x2), g(y2)) − dDK(x2, y2) ⩽ 4ϵ.

Conversely, let us assume that γ is a geodesic between g(x2) and g(y2) on
∂B. We then note that p⊥

v (γ) has shorter length and joins x to y, thus:

(5.8) dDK(x2, y2) = dE(x, y) ⩽ L(p⊥
v (γ)) ⩽ L(γ) = d∂B(g(x2), g(y2)).
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Hence, as a result of (5.7) and (5.8), we obtain:

(5.9) |d∂B(g(x2), g(y2) − dDK(x2, y2)| ⩽ 4ϵ.

The same argument works with x2 and y2 replaced by x1 and y1, respec-
tively.

Now, assume that x ∈ K̊, z ∈ ∂K, and i ∈ {1,2}. Observe that, proceed-
ing as we did for (5.8), we have dDK(xi, z) ⩽ d∂B(g(xi), g(z)). Proceeding
as we did for (5.7), we have the following inequality:

d∂B(g(xi), z + ϕi(z)) ⩽ dDK(xi, z) + 4ϵ.

However, note that d∂B(z + ϕi(z), g(z)) = |ϕ2(z) − ϕ1(z)|/2 ⩽ ϵ (since
B ⊂ K + [−ϵ, ϵ]v). Therefore, we obtain d∂B(g(xi), g(z)) ⩽ dDK(xi, z) +
4ϵ + d∂B(z + ϕi(z), g(z)) ⩽ dDK(xi, z) + 5ϵ. Hence, we have the following
inequality:

(5.10) |d∂B(g(xi), g(z)) − dDK(xi, z)| ⩽ 5ϵ.

The argument in the previous paragraph implies that, for every z, z′ ∈ ∂K,
we obtain the following inequality:

(5.11) |d∂B(g(z), g(z′)) − dDK(z, z′)| ⩽ 6ϵ.

Finally, assume that x, y ∈ K̊ and let z ∈ ∂K such that dDK(x1, y2) =
dE(x, z) + dE(z, y). Applying the argument we used to obtain (5.7) and re-
calling that B is a subset of K+[−ϵ, ϵ]v, we obtain the following inequality:

d∂B(g(x1), g(y2)) ⩽ d∂B(g(x1), z + ϕ1(z)) + d∂B(z + ϕ1(z), z + ϕ2(z))

+ d∂B(z + ϕ2(z), g(y2))
⩽ 4ϵ+ dE(x, z) + 2ϵ+ 4ϵ+ dE(z, y)

= 10ϵ+ dDK(x1, y2).

Let us then fix a geodesic γ : [0, 1] → ∂B from g(x1) to g(y2). Observe that
∂B2 is an open subset of ∂B and its boundary is a subset of ∂BL (see
Notation 5.28). Therefore, there exists 0 < t2 < 1 such that γ|(t2,1] ⊂ ∂B2

and γ(t2) ∈ ∂BL. In particular, we have the following inequality:

dDK(x1, y2) ⩽ dE(x, p⊥
v (γ(t2))) + dE(p⊥

v (γ(t2)), y)

= dE(p⊥
v (γ(0)), p⊥

v (γ(t2))) + dE(p⊥
v (γ(t2)), p⊥

v (γ(1)))

⩽ L(γ|[0,t2]) + L(γ|[t2,1]) = L(γ) = d∂B(g(x1), g(y2)).

Thus, we obtain the following inequality:

(5.12) |d∂B(g(x1), g(y2) − dDK(x1, y2)| ⩽ 10ϵ.
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As a result of (5.9), (5.10),(5.11), and (5.12), we obtain Dis(g) ⩽ 10ϵ (see
Notation 2.4).

It is then easy to see that, for every x ∈ ∂B, we have d∂B(g◦f(x), x) ⩽ 2ϵ
and that f ◦g = idDK . Finally, the argument used to estimate the distortion
of g can be used to show that Dis(f) ⩽ 10ϵ.

Now, notice that if B = −B, then, for every x ∈ K, we have ϕ1(−x) =
−ϕ2(x) and ϕ2(−x) = −ϕ1(x). Therefore, both f and g are equivariant. □

The next lemma compares a 3-dimensional convex space with its projec-
tion on a line.

Lemma 5.30 (3 to 1). — Let B ∈ Ks such that dim(B) = 3, let v ∈
S2, and denote L := pv(B) (see Notation 5.8). If we denote f : ∂B → L

the restriction of pv to ∂B, and ϵ := supx∈B{dE(x, pv(x))}, then we have
Dis(f) ⩽ (8 + π)ϵ (see Notation 2.4).

Proof. — First, denoting B := Bϵ(0) ∩ {v}⊥, observe that B ⊂ L+ B =:
C. Let x, y ∈ ∂B and observe that dL(f(x), f(y)) = dE(pv(x), pv(y)) ⩽
dE(x, y) ⩽ d∂B(x, y). Hence:

(5.13) ∀x, y ∈ ∂B, 0 ⩽ d∂B(x, y) − dL(f(x), f(y)).

Now, it is not hard to check that pB : ∂C → ∂B is surjective (see Nota-
tion 5.8). Let xi ∈ ∂B and let x′

i ∈ ∂C such that xi = pB(x′
i) (i ∈ {1, 2}).

Thanks to the Busemann–Feller Lemma (see the proof of Lemma 10.2.7
in [10]), we have the following inequality:

(5.14) d∂B(x1, x2) − dL(f(x1), f(x2)) ⩽ d∂C(x′
1, x

′
2) − dE(pv(x1), pv(x2)).

It is not trivial to find an upper bound for the term d∂C(x′
1, x

′
2). However,

observe that the set L+ ∂B (endowed with its intrinsic metric) is a metric
product and is a subset of ∂C. Moreover, note that there exists x′′

i ∈ L+∂B
such that d∂C(x′

i, x
′′
i ) = dE(x′

i, x
′′
i ) ⩽ ϵ (i ∈ {1, 2}). In particular, we have

the following inequality:

(5.15) d∂C(x′
1, x

′
2) ⩽ 2ϵ+ d∂C(x′′

1 , x
′′
2) ⩽ 2ϵ+ dL+∂B(x′′

1 , x
′′
2).

Let γ be a geodesic from x′′
1 to x′′

2 in L+ ∂B. Since L + ∂B is a metric
product, there exists a geodesic γL in L and a geodesic γ∂B in ∂B such that
γ = γL + γ∂B. Therefore, we have the following inequality:

dL+∂B(x′′
1 , x

′′
2) = L(γ) ⩽ L(γ∂B) + L(γL)

⩽ Diam(∂B) + dE(pv(x′′
1), pv(x′′

2))
⩽ πϵ+ dE(pv(x′′

1), pv(x′′
2)).
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In particular, according to (5.14) and (5.15), we have the following inequality:

d∂B(x1, x2) − dL(f(x1), f(x2))
⩽ (2 + π)ϵ+ dE(pv(x′′

1), pv(x′′
2)) − dE(pv(x1), pv(x2))

⩽ (2 + π)ϵ+
∑

i=1,2
dE(xi, x

′
i) + dE(x′

i, x
′′
i )

⩽ (4 + π)ϵ+
∑

i=1,2
dE(xi, x

′
i),

where we used the fact that pv is 1-Lipschitz for the second inequality.
Moreover, note that dE(xi, x

′
i) = dE(x′

i, B) (i ∈ {1, 2}). In addition, writ-
ing x′

i = ti + vi for some ti ∈ L and vi ∈ B (i ∈ {1, 2}), it is clear that
{ti + B} ∩ B ̸= ∅. In particular, there exists wi ∈ B (i ∈ {1, 2}) such that
ti + wi ∈ B. Therefore, dE(x′

i, B) ⩽ dE(ti + vi, ti + wi) ⩽ Diam(B) = 2ϵ.
Hence, we also have shown that:

(5.16) ∀x, y ∈ ∂B,d∂B(x, y) − dL(f(x), f(y)) ⩽ (8 + π)ϵ.

Thanks to (5.13) and (5.16), we can conclude that Dis(f) ⩽ (8 + π)ϵ. □

We now introduce a way to compare doubles of plane convex regions.

Lemma 5.31 (2 to 2). — LetK,K ′ ∈ Ks such that dim(K) = dim(K ′) =
2 and assume that there exists ϵ ∈ (0, 1) such that (1−ϵ)K ⊂ K ′ ⊂ (1+ϵ)K
and (1 − ϵ)K ′ ⊂ K ⊂ (1 + ϵ)K ′ (in particular, K and K ′ are coplanar).
We denote f : DK → DK ′ the map defined by f(xi) := [(1 − ϵ)x]i (for
x ∈ K̊ and i ∈ {1,2}) and f(x) := pc

∂K′(x) (for x ∈ ∂K). We define
g : DK ′ → DK in the same way by exchanging the roles of K and K ′.
The pair (f, g) is a GH ν-approximation between DK and DK ′, where
ν := 4(Diam(K)+Diam(K ′))ϵ. Moreover, if K,K ′ ∈ K̃, then (f, g, id) is an
equivariant GH ν-approximation between (DK, {±1}) and (DK ′, {±1}).

Proof. — First, assume that x, y ∈ int(K), and observe that:

|dDK′(f(x2), f(y2)) − dDK(x2, y2)| = ϵdE(x, y).

We then assume that y ∈ ∂K and observe that pc
∂K′(y) = λy for some

λ > 0. However, (1−ϵ)y ∈ K ′; hence, λ ⩾ (1−ϵ). Moreover, (1+ϵ)−1pc
∂K′(y)

belongs to K. In particular, we have qK((1 + ϵ)−1pc
∂K′(y)) ⩽ 1 (where

qK is the Minkowski gauge associated to K). However, since y ∈ ∂K,
then qK(y) = 1. Hence, using qK((1 + ϵ)−1pc

∂K′(y)) = (1 + ϵ)−1λqK(y) =
(1 + ϵ)−1λ ⩽ 1, we have λ ⩽ 1 + ϵ. In particular, we have |1 − λ| ⩽ ϵ.
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Therefore, given x ∈ int(K) we have:

|dDK′(f(x2), f(y)) − dDK(x2, y)| = |dE((1 − ϵ)x, pc
∂K′(y)) − dE(x, y)|

⩽ dE((1 − ϵ)x, x) + dE(λy, y)
⩽ |1 − λ||y| + ϵDiam(K)
⩽ 2ϵDiam(K).

Proceeding the same way, we also have |dDK′(f(x1), f(y)) − dDK(x1, y)| ⩽
2ϵDiam(K). Finally, given x, y ∈ int(K), there exists z ∈ ∂K such that
dDK(x2, y1) = dE(x, z) + dE(y, z). Hence, we have:

dDK′(f(x2), f(y1)) ⩽ dDK′(f(x2), f(z)) + dDK′(f(z), f(y1))
⩽ 4ϵDiam(K) + dE(x, z) + dE(z, y)

= 4ϵDiam(K) + dDK(x2, y1).

Moreover, there exists z′ ∈ ∂K ′ such that

dDK′(f(x2), f(y1)) = dDK′(f(x2), z′) + dDK′(z′, f(y1)).

In addition, denoting z′′ := pc
∂K(z′), we have z′ = f(z′′). Therefore, we

obtain:

dDK′(f(x2), f(y1)) = dDK′(f(x2), f(z′′)) + dDK′(f(z′′), f(y1))

⩾ dDK(x2, z′′) + dDK(z′′, y1) − 4ϵDiam(K)

⩾ dDK(x2, y1) − 4ϵDiam(K).

Hence, we have shown that Dis(f) ⩽ 4ϵDiam(K). We show in the same
way that Dis(g) ⩽ 4Diam(K ′)ϵ.

Now, observe that given x ∈ K and i ∈ {1,2}, we have d(x, g ◦ f(x)) ⩽
(1 − (1 − ϵ)2)|x| ⩽ 2Diam(K)ϵ. The same holds replacing f by g and
exchanging the roles of K and K ′. Hence, (f, g) is a GH ν-approximation
between DK and DK ′.

Finally, it is clear that f and g are equivariant wheneverK,K ′ ∈ K̃2⩽2. □

The following result shows how to compare the double of a plane convex
region with its projection onto a line.

Lemma 5.32 (2 to 1). — Let K ∈ Ks such that dim(K) = 2, let v ∈
Span(K)\{0}, and let L := pv(K). If we denote f : DK → L the map
defined by f(xi) := pv(x) (for x ∈ K and i ∈ {1,2}), then we have Dis(f) ⩽
4ϵ, where ϵ := supx∈K{dE(x, pv(x))}.
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Proof. — Note first that if x, y ∈ K and if i ∈ {1,2}, then:

|dL(f(xi), f(yi)) − dDK(xi, yi)| = |dE(pv(x), pv(y)) − dE(x, y)|
⩽ dE(x, pv(x)) + dE(y, pv(y))
⩽ 2ϵ.

Now, assume that x, y ∈ K and let z ∈ ∂K such that dDK(x2, y1) =
dE(x, z) + dE(y, z). Note that we have the following inequalities:

dL(f(x2), f(y1)) = dE(pv(x), pv(y))
⩽ dE(x, y)

⩽ dE(x, z) + dE(z, y) = dDK(x2, y1).

After that, let β ∈ Span(K) such that {v, β} is an orthonormal basis of
Span(K) (we can assume without loss of generality that v is unitary). Let
s ∈ [−ϵ, ϵ] be chosen such that z′ := (pv(x) + pv(y))/2 + sβ ∈ ∂K. Note
that we have:

dE(x, z′) ⩽ dE(x, pv(x)) + dE(z′, pv(z′)) + dE(pv(x), pv(z′))
⩽ 2ϵ+ dE(pv(x), pv(z′)),

and, proceeding the same way, we have dE(y, z′) ⩽ 2ϵ + dE(pv(z′), pv(y)).
Hence, we have:

dDK(x2, y1) ⩽ dE(x, z′) + dE(y, z′)
⩽ 4ϵ+ dE(pv(x), pv(z′)) + dE(pv(z′), pv(y))

⩽ 4ϵ+ dE(pv(x), pv(y)) = 4ϵ+ dL(f(x2), f(y1)),

where we used the fact that pv(z′) ∈ [pv(x), pv(y)]. Therefore, we can con-
clude that Dis(f) ⩽ 4ϵ. □

The next lemma is trivial but will be needed for completeness.

Lemma 5.33 (1 to 1). — Let L,L′ ∈ Ks such that dim(L) = dim(L′) =
1 and assume that there exists ϵ ∈ (0, 1) such that (1− ϵ)L ⊂ L′ ⊂ (1+ ϵ)L
and (1 − ϵ)L′ ⊂ L ⊂ (1 + ϵ)L′ (in particular, L and L′ are collinear). We
denote f : L → L′ the map defined by f(x) := (1−ϵ)x. We define g : L′ → L

in the same way by exchanging the roles of L and L′. The pair (f, g) is a GH
ν-approximation between L and L′, where ν := 2(Diam(L) + Diam(L′))ϵ.

The following result treats the case where a convex compact subset of
R3 collapses to a point.

Lemma 5.34 (Collapsing case). — If D ∈ Ks, then Diam(ΦS2(D)) ⩽
πDiam(D) (see Notation 5.14).
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Proof. — First of all, note that the result is trivial if dim(D) ∈ {0, 1}.
If dim(D) = 2, it is clear from the definition of the double of a metric
space that Diam(DD) ⩽ 2Diam(D). Finally, if dim(D) = 3, then we have
Diam(∂D) ⩽ πDiam(D) (see [10, Proof of Lemma 10.2.7]). □

Given a sequence Dn → D∞ in Ks with dim(Dn) = 2 (for n ∈ N∪{∞}),
there is not necessarily any ϵn → 0 such that (1 − ϵn)D∞ ⊂ Dn ⊂ (1 +
ϵn)D∞. Indeed, this would hold only if we had Dn ⊂ Span(D∞) when n is
large enough. The following lemma is going to help us fix this issue.

Lemma 5.35. — If Dn → D∞ in Ks such that dim(D∞) ⩽ dim(Dn)
(for every n ∈ N), then there exists ϕn → idR3 in O3(R) such that

ϕ−1
n (Span(D∞)) ⊂ Span(Dn).

In addition, if (Dn, αn) → (D∞, α∞) in K (see Notation 5.20), we can
also ask {ϕn} to satisfy ϕn(αn) = α∞.

Proof. — First of all, we assume that 1 ⩽ k := dim(D∞) (the case
k = 0 being trivial). We then let {wi}3

i=1 be an oriented orthonormal
basis of R3 such that Span(D∞) = Span({wi}k

i=1). Let r > 0 such that
Br(0) ∩ Span(D∞) ⊂ D∞ (such an r > 0 always exists since the Steiner
point of D∞ is at the origin and belong to the relative interior of D∞).
For every n ∈ N and i ∈ N ∩ [1, k], there exists un

i ∈ Dn such that
dE(un

i , rwi) ⩽ ϵn := dR3

H (Dn, D∞) → 0. We can then apply the Gram–
Schmidt orthonormalisation process to the family {un

i }k
i=1 and get {vn

i }k
i=1

such that Span({vn
i }k

i=1) ⊂ Span(Dn) and, for i ∈ N ∩ [1, k], vn
i → wi.

Let us construct {vn
i }k<i such that {vn

i }3
i=1 is an orthonormal basis of R3

and for k < i we have vn
i → wi. If k = 3 we are done already. If k = 2, we

can just define vn
3 := vn

1 ∧ vn
2 . Let us now assume that k = 1. In that case,

whenever n is large enough, p⊥
vn

1
: {v1}⊥ → {vn

1 }⊥ is an isomorphism. We
can then define un

i := p⊥
vn

1
(wi) for i ∈ {2, 3}. Applying the Gram–Schmidt

orthonormalisation process to the family {un
2 , u

n
3 } gives rise to a family

{vn
2 , v

n
3 } satisfying the desired properties.

To conclude the first part of the proof, let ϕn ∈ O3(R) such that ϕn(vn
i ) =

wi (i ∈ {1, 2, 3}) and observe that ϕn satisfies the desired properties by
construction.

Now, let us assume that (Dn, αn) → (D∞, α∞) in K . It is readily
checked, proceeding case by case (and remembering that (Dn, αn) ∈ K

implies either αn ∈ Span(Dn) or αn ⊥ Span(Dn)), that we can construct
{vn

i } and {wi} so that α∞ = wi for some i ∈ {1, 2, 3}, and vn
i = αn for

every n ∈ N. This concludes the proof. □
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5.3.4. Moduli spaces of nonnegatively curved metrics

We have seen in Theorem 5.15 that Mcurv⩾0(S2) is homeomorphic to
Ks

2⩽3/O3(R). We are now going to prove results in the same spirit for
M eq

curv⩾0(S2) and Mcurv⩾0(D).

Proposition 5.36. — The map Ψeq
S2 : K̃2⩽3/O3(R) → M eq

curv⩾0(S2) in-
troduced in (5.6) is a homeomorphism.

Proof. — We have already seen in Proposition 5.17 that Ψeq
S2 is bijective;

therefore, we just need to prove that Ψeq
S2 and {Ψeq

S2}−1 are continuous.
However, observe that convergence in the equivariant GH topology implies
convergence in the GH topology. Thus, thanks to Theorem 5.15, {Ψeq

S2}−1

is continuous.
Let Dn → D∞ in K̃2⩽3 and let us prove that Deq(ΦS2(Dn),ΦS2(D∞)) →

0 (see Remark 2.7 for the defintion of Deq), which proves Ψeq
S2 ’s continu-

ity. Since the dimension of compact convex sets is lower semi-continuous
with respect to the Hausdorff distance, we can assume that for every
n ∈ N, we have dim(D∞) ⩽ dim(Dn) (forgetting the first terms of the
sequence if necessary). Thanks to Lemma 5.35, there exists ϕn → idR3 in
O3(R) such that ϕ−1

n (Span(D∞)) ⊂ Span(Dn). Let us introduce Hn :=
ϕ−1

n (Span(D∞)), pn := pHn
(see Notation 5.8), D′

n := pn(Dn), and ϵn :=
supx∈Dn

{dE(x, pn(x))}. Observe that ϵn → 0. Indeed, given x ∈ Dn,
we have dE(x, pn(x)) ⩽ dE(x, p∞(x)) + dE(pn(x), p∞(x)), where p∞ =
pSpan(D∞). In particular, we have dE(x, pn(x)) ⩽ |pn − p∞|Diam(Dn) +
dH(Dn, D∞). However, since ϕn → idR3 , it is readily checked that |pn −
p∞| → 0; hence, since {Diam(Dn)} is bounded, we have ϵn → 0 (note that
the proof also works if dim(D∞) = 1).

Now, let us prove that Deq(ΦS2(D′
n),ΦS2(D∞)) → 0. First of all, note

that ΦS2(D′
n) is equivariantly isometric to ΦS2(D′′

n), where D′′
n := ϕn(D′

n);
therefore, we only have to show Deq(ΦS2(D′′

n),ΦS2(D∞)) → 0. Note that
dH(D′

n, D
′′
n) ⩽ Diam(Dn)|ϕn − id|, dH(Dn, D

′
n) ⩽ ϵn; hence, applying the

triangle inequality, we have dH(D′′
n, D∞) ⩽ dH(Dn, D∞) + Diam(Dn)|ϕn −

id| + ϵn → 0. Moreover, observe that D′′
n ⊂ Span(D∞) (thanks to the

properties of ϕn). Thus, there exists µn → 0 such that (1 − µn)D∞ ⊂
D′′

n ⊂ (1 + µn)D∞ and (1 − µn)D′′
n ⊂ D∞ ⊂ (1 + µn)D′′

n. In particular,
applying Lemma 5.26 or 5.31 (depending on dim(D∞) being 2 or 3), we
obtain Deq(ΦS2(D′′

n),ΦS2(D∞)) → 0.
Observe now that if dim(D∞) = dim(Dn) then Dn = D′

n by assumption
on ϕn. We will therefore assume that dim(D′

n) = dim(D∞) < dim(Dn)
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to avoid trivialities. Thanks to Lemma 5.29, and using ϵn → 0, we obtain
Deq(ΦS2(Dn),ΦS2(D′

n)) → 0.
We have now shown that the sequences {Deq(ΦS2(Dn),ΦS2(D′

n))} and
{Deq(ΦS2(D′

n),ΦS2(D∞))} both converge to 0, which implies

Deq(ΦS2(Dn),ΦS2(D∞)) −→ 0

thanks to the modified triangle inequality satisfies by Deq (see (2.3)). □

Proposition 5.37. — The map ΨD : K2⩽3/O3(R) → Mcurv⩾0(D) in-
troduced in (5.6) is a homeomorphism.

Proof. — Let us recall that ΨD is a 1-1 correspondence thanks to Proposi-
tion 5.25. We will start by proving the continuity of ΨD. Let us assume that
(Dn, αn) → (D∞, α∞) in K and let us prove that {ΦD(Dn, αn)} converges
to ΦD(D∞, α∞) in the GH topology (note that this is stronger than proving
ΨD’s continuity since here we do not ask dim(Dn) ∈ {2, 3}). Without loss
of generality, we will assume that for every n ∈ N, we have dim(D∞) ⩽
dim(Dn). Note that if dim(D∞) = 0, then, thanks to Lemma 5.34, we have
Diam(ΦD(Dn, αn)) ⩽ Diam(ΦS2(Dn)) ⩽ πDiam(Dn) → 0. In particular,
ΦD(Dn, αn) → 0 = ΦD(D∞, α∞). Now we assume that 1 ⩽ dim(D∞). Let
ϕn → id, pn → p∞, D′

n, D′′
n, and ϵn → 0 be defined exactly as in the proof

of Proposition 5.36, asking that ϕn(αn) = α∞ (which is possible thanks to
Lemma 5.35).

We first prove that dGH(ΦD(D′
n, αn),ΦD(D∞, α∞)) → 0. Observe that

ΦD(D′
n, αn) is isometric to ΦD(D′′

n, α∞). Moreover, proceeding exactly as
in the proof of Proposition 5.36, we can show that there exists µn → 0 such
that (1−µn)D∞ ⊂ D′′

n ⊂ (1+µn)D∞ and (1−µn)D′′
n ⊂ D∞ ⊂ (1+µn)D′′

n.
Let fn : ΦS2(D′′

n) → ΦS2(D∞) and gn : ΦS2(D∞) → ΦS2(D′′
n) be defined as

in Lemma 5.26, 5.31, or 5.33 (depending on dim(D∞) being 3, 2, or 1).
Observe that in every case, we have fn(ΦD(D′′

n, α∞)) ⊂ ΦD(D∞, α∞) and
gn(ΦD(D∞, α∞)) ⊂ ΦD(D′′

n, α∞); in particular,

dGH(ΦD(D∞, α∞)),ΦD(D′′
n, α∞)) ⩽ dGH(ΦS2(D∞),ΦS2(D′′

n)) −→ 0

(using the estimates of the lemmas mentioned before depending on the
dimension of dim(D∞)).

Now, let us prove that dGH(ΦD(Dn, αn),ΦD(D′
n, αn)) → 0. Observe

that if dim(Dn) = dim(D∞), then ϕ−1
n (Span(D∞)) ⊂ Span(Dn) implies

that Dn = D′
n. Hence, we will assume that dim(D∞) = dim(D′

n) <

dim(Dn) to avoid trivialities. Let fn : ΦS2(Dn) → ΦS2(D′
n) be defined as in

Lemma 5.29, 5.30, or 5.32 (depending on (dim(Dn),dim(D∞)) being equal
to (3, 2), (3, 1), or (2, 1)). It is readily checked that in every case we have
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fn(ΦD(Dn, αn)) = ΦD(D′
n, αn); therefore, thanks to the previous lemmas’

estimates, we obtain dGH(ΦD(Dn, αn),ΦD(D′
n, αn)) → 0. This concludes

the proof of ΨD’s continuity.
Now, we are going to prove that Ψ−1

D is continuous. Let us assume that
[D,dn] → [D,d∞] w.r.t. the GH topology in Mcurv⩾0(D). Thanks to Propo-
sition 5.25, for every n ∈ N ∪ {∞} there exists (Dn, αn) ∈ K2⩽3 such
that (D,dn) is isometric to Φ(Dn, αn). We need to show that [Dn, αn] →
[D∞, α∞] in K2⩽3/O3(R). Note that, since K2⩽3/O3(R) is a metric space,
it is sufficient to prove that every subsequence of {[Dn, αn]} admits a subse-
quence converging to [D∞, α∞]. Reindexing the sequence if necessary, let us
just prove that {[Dn, αn]} admits a subsequence converging to [D∞, α∞].

First of all, observe that, since S2 is compact, we can assume that αn →
α ∈ S2 (reindexing the sequence if necessary). Observe that if dim(Dn) = 3,
then

Diam(Dn) ⩽ Diam(∂Dn) ⩽ 2Diam(∂Dn ∩H+
αn

) = 2Diam(D,dn).

Moreover, if dim(Dn) = 2 and αn ⊥ Span(Dn) then

Diam(Dn) = Diam(D,dn),

if αn ∈ Span(Dn) then

Diam(Dn) ⩽ Diam(DDn) ⩽ 2Diam({DDn}+
αn

) = 2Diam(D,dn).

Since {Diam(D,dn)}n is bounded, we can conclude that there exists r ∈
(0,∞) such that, for every n ∈ N, we have Diam(Dn) ⩽ r. Observe that,
for every n ∈ N, we have 0 = s(Dn) ∈ Dn. Hence {Dn} is a sequence of
convex compact subsets of Br(0). Thanks to Blaschke Theorem (see [10,
Theorem 7.3.8]), we can assume (passing to a subsequence if necessary) that
Dn → D w.r.t. dR3

H , where D is a compact convex subset of Br(0). Note that
since αn → α, it is readily checked that Dαn

n → Dα (see Notation 5.23).
However, Dαn

n = Dn → D; therefore (D,α) ∈ K . In order to conclude, we
just need to prove that there exists ϕ ∈ O3(R) such that ϕ(D) = D∞ and
ϕ(α) = α∞.

Thanks to the first part of the proof, (Dn, αn) → (D,α) implies that
ΦD(Dn, αn) → ΦD(D,α). However, ΦD(Dn, αn) → ΦD(D∞, α∞) by as-
sumption. Hence, ΦD(D∞, α∞) is isometric to ΦD(D,α). However,
ΦD(D∞, α∞) is homeomorphic to D; therefore, we necessarily have 2 ⩽
dim(D), i.e. (D,α) ∈ K2⩽3. Thus, since ΨD : K2⩽3/O3(R) → Mcurv⩾0(D)
is a 1-1 correspondence, we have [D,α] = [D∞, α∞], which concludes the
proof. □
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5.3.5. Moduli spaces of RCD(0, 2)-structures

We finally show that the moduli spaces of RCD(0, 2)-structures M0,2(S2),
M0,2(RP2), and M0,2(D) are contractible.

Proposition 5.38. — The moduli space M0,2(S2) of RCD(0, 2)-struc-
tures on S2 is homeomorphic to R×{Ks

2⩽3/O3(R)}. In particular, M0,2(S2)
is contractible.

Proof. — Thanks to Lemma 3.4 and Theorem 5.15, M0,2(S2) is home-
omorphic to R>0 × {Ks

2⩽3/O3(R)} which is itself homeomorphic to R ×
{Ks

2⩽3/O3(R)}. To conclude, we only need to show that Ks
2⩽3/O3(R) is

contractible. To do so, we define H : I × Ks
2⩽3 → Ks

2⩽3 by H(t,D) :=
tB + (1 − t)D for every (t,D) ∈ I × Ks

2⩽3 (where + is the Minkowski
sum and B is the unit ball in R3). Observe that H is O3(R)-equivariant,
satisfies H(0, ·) = idKs

2⩽3
, and H(1, ·) is the constant function equal to

B. Hence, to conclude we just need to show that H is continuous. Let
D1, D2 ∈ Ks

2⩽3 and let t, s ∈ I. Assume that y ∈ B and z ∈ D1, and let
xt := ty+ (1 − t)z ∈ H(t,D1) and xs := sy+ (1 − s)z ∈ H(s,D1). Observe
that dE(xt, xs) = |t− s|dE(y, z) ⩽ |t− s|(1 + Diam(D1)). Hence, we have:

(5.17) dR3

H (H(t,D1), H(s,D1)) ⩽ |t− s|(1 + Diam(D1)).

Observe that there exists z′ ∈ D2 such that dE(z, z′) ⩽ ϵ (where ϵ > 0 is any
positive number such that dR3

H (D1, D2) < ϵ). Denoting x′
s := sy+(1−s)z′ ∈

H(s,D2), we have dE(xs, x
′
s) = (1 − s)dE(z, z′) ⩽ (1 − s)ϵ. Therefore, we

have dR3

H (H(D1, s), H(D2, s)) ⩽ (1 − s)ϵ and, letting ϵ go to dR3

H (D1, D2),
we obtain:

(5.18) dR3

H (H(s,D1), H(s,D2)) ⩽ (1 − s)dR3

H (D1, D2).

Applying the triangle inequality to dR3

H and using (5.17) and (5.18) we
finally get:

dR3

H (H(t,D1), H(s,D2)) ⩽ |t− s|(1 + Diam(D1)) + (1 − s)dR3

H (D1, D2).

In particular, H is continuous. □

Proposition 5.39. — The moduli space M0,2(RP2) of RCD(0, 2)-struc-
tures on RP2 is homeomorphic to R × {K̃2⩽3/O3(R)}; in particular, it is
contractible.

Proof. — First of all, note that thanks to Theorem 2.8, the lift map
p∗: M0,2(RP2) →Meq

0,2(S2) is a homeomorphism (where p : S2 → S2/{±1} =
RP2 is the quotient map). Moreover, applying Lemma 3.4, Meq

0,2(S2) is
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homeomorphic to R>0 × M eq
curv⩾0(S2). Thus, thanks to Proposition 5.36,

Meq
0,2(S2) is homeomorphic to R × {K̃2⩽3/O3(R)}. Now, observe that the

map H : I × Ks
2⩽3 → Ks

2⩽3 introduced in the proof of Proposition 5.38
satisfies H(I × K̃2⩽3) ⊂ K̃2⩽3. Hence, K̃2⩽3/O3(R) is contractible and, a
fortiori, M0,2(RP2) is contractible. □

Proposition 5.40. — The moduli space M0,2(D) of RCD(0, 2)-struc-
tures on D is homeomorphic to R × {K2⩽3/O3(R)} (where K2⩽3 is intro-
duced in Notation 5.20); in particular, it is contractible.

Proof. — Observe that thanks to Lemma 3.4, M0,2(D) is homeomorphic
to R>0 × Mcurv⩾0(D) which is itself homeomorphic to R × Mcurv⩾0(D).
Thus, thanks to Proposition 5.37, M0,2(D) is homeomorphic to R ×
{K2⩽3/O3(R)}. Now let us consider the mapHD : I×K2⩽3 → K2⩽3 defined
by HD(t,D, α) := (H(t,D), α), where H : I × Ks

2⩽3 → Ks
2⩽3 is introduced

in the proof of Proposition 5.38. Observe that HD is continuous since H
is continuous. Moreover, note that HD is equivariant w.r.t. the action of
O3(R) on K2⩽3. To conclude, note that since O3(R) acts transitively on
S2, we have [HD(1, ·)] ≡ [B, (0, 0, 1)] ∈ K2⩽3/O3(R); hence, K2⩽3/O3(R) is
contractible. □
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