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ON THE RIGIDITY OF INVARIANT NORMS ON THE
p-ADIC SCHRÖDINGER REPRESENTATION

by Amit OPHIR

Abstract. — Motivated by questions about Cp-valued Fourier transform on the
locally compact group (Qd

p, +), we study invariant norms on the p-adic Schrödinger
representation of the Heisenberg group. Our main result is a minimality and rigidity
property for norms in a family of invariant norms parameterized by a Grassman-
nian. This family is the orbit of the sup norm under the action of the symplec-
tic group, acting via intertwining operators. We also prove general fundamental
properties of quotients of the universal unitary completion of cyclic algebraic rep-
resentations. Combined with the rigidity property, we are able to show that the
completion of the Schrödinger representation in any of the norms in that family
satisfies a strong notion of irreducibility and a version of Schur’s lemma. Norms
that can be formed as the maximum of a finite number of norms from that family
are also studied. We conclude this paper with a list of open questions.

Résumé. — Motivés par des questions sur la transformée de Fourier à valeurs
dans Cp sur le groupe localement compact (Qd

p, +), nous étudions les normes inva-
riantes dans la représentation de Schrödinger p-adique du groupe de Heisenberg.
Notre principal résultat est une propriété de minimalité et de rigidité pour les
normes dans une famille de normes invariantes paramétrées par une Grassman-
nienne. Cette famille est l’orbite de la norme uniforme sous l’action du groupe
symplectique, agissant via des opérateurs d’entrelacement. Nous prouvons égale-
ment des propriétés fondamentales générales des quotients de la complétion unitaire
universelle des représentations algébriques cycliques. Combinées à la propriété de
rigidité, nous sommes en mesure de montrer que la complétion de la représentation
de Schrödinger dans chacune des normes de cette famille satisfait une notion forte
d’irréductibilité et une version du lemme de Schur. Nous étudions également les
normes qui peuvent être obtenues comme le maximum d’un nombre fini de normes
de cette famille. Nous concluons cet article par une liste de questions ouvertes.

1. Introduction

Let p be a prime number and let Qp be the field of p-adic numbers.
Let H2d+1(Qp) be the 2d+ 1-dimensional Heisenberg group over Qp (Def-
inition 2.1). A classification of the irreducible smooth representations of
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2 Amit OPHIR

H2d+1(Qp) over an algebraically closed field C of characteristic zero is well
known and we recall it in Section 2.1. This classification is analogous to
the classical Stone–von Neumann theorem for Heisenberg groups over R.
Taking C to be the field of complex numbers, any irreducible representa-
tion of H2d+1(Qp) admits an invariant unitary structure ([16, Theorem 4]),
and the classification of irreducible unitary representations of H2d+1(Qp)
is similar to the classification of irreducible smooth representations.

In this work we take the field C to be the field Cp, the completion of
an algebraic closure of Qp. There are no inner products over Cp. As a
replacement, we study invariant (non-archimedean) norms on the smooth
irreducible representations of H2d+1(Qp) over Cp. The interaction between
the p-adic topology of H2d+1(Qp) and the p-adic topology of Cp leads to
complications. For example, the Heisenberg groups do not admit a Cp-
valued Haar measure, hence we cannot use classical tools that relay on
integration. Nevertheless, we are able to construct invariant norms with
a surprising rigidity property (Theorem 4.3). Moreover, the completions
with respect to these norms behave in certain ways like irreducible unitary
representations (Theorem 4.5 and Proposition 4.6).

Part of our motivation comes from a p-adic Fourier transform on Qdp.

1.1. Invariant norms on the smooth Schrödinger representation

For the sake of exposition we describe in the introduction the case d = 1,
i.e. the 3-dimensional Heisenberg group, but study the general case in the
rest of the paper. The main ideas are already apparent in the case d = 1.

The 3-dimensional Heisenberg group over Qp is the group of upper tri-
angular unipotent matrices:

H3(Qp) =


1 a t

0 1 b

0 0 1

 ⊂ GL3(Qp).

We denote its elements by [a, b, t]. Note that this construction is different
than the one given in Definition 2.1 (with d = 1), but both constructions
give rise to isomorphic topological groups.

Fix a non-trivial smooth character ψ : (Qp,+) → C×
p . Recall that ψ

is a smooth character if ker(ψ) is open. Let S(Qp) denote the space of
all functions f : Qp → Cp which are compactly supported and locally
constant. A function f ∈ S(Qp) is called a Schwartz function. The smooth
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Schrödinger representation ρψ : H3(Qp) → GL(S(Qp)) attached to ψ is
defined by

(ρψ([a, b, t])f) (x) = ψ(t+ bx) · f(x+ a).

The representation ρψ is irreducible and the smooth Stone-von Neumann
theorem says that, up to isomorphism, ρψ is the unique smooth irreducible
representation of H3(Qp) with central character ψ ([16, Theorem 3], [11,
Theorem 1.1], [13, Chapter 2, Theorem I.2,]).

A H3(Qp)−invariant norm, or simply an invariant norm, on the smooth
Schrödinger representation ρψ is a non-archimedean norm ∥·∥ on S(Qp)
such that

∥ρψ(h)f∥ = ∥f∥,

for any f ∈ S(Qp) and any h ∈ H3(Qp). The prominent example of a
H3(Qp)-invariant norm on S(Qp) is the sup norm:

∥f∥∞ = max
x∈ Qp

|f(x)| .

The completion of S(Qp) with respect to ∥·∥∞ is the space C0(Qp) of Cp-
valued, continuous functions on Qp that go to zero at infinity.

By composing the sup norm with intertwining operators (defined in Sec-
tion 2.2), we get new H3(Qp)-invariant norms. In Section 4.1 we show
that, up to homothety, these norms are parameterized by the projective
line P1(Qp). Thus, for each α ∈ P1(Qp) we attach an invariant norm ∥·∥α.
When α = ∞ ∈ P1(Qp), the norm ∥·∥α is the sup norm.

Our main result is Theorem 4.3, which can be thought of as a minimality
and rigidity result for the norms ∥·∥α.

Theorem 1.1 (Theorem 4.3). — Let α ∈ P1(Qp). Let ∥·∥ be an H3(Qp)-
invariant norm on S(Qp) that is dominated by ∥·∥α (i.e. ∥·∥ ⩽ c · ∥·∥α for
some c > 0). Then there exists r > 0 such that ∥·∥ = r · ∥·∥α.

Denote the completion of S(Qp) with respect to ∥·∥α by S(Qp)∥·∥α
. In

Theorem 4.5 we prove that S(Qp)∥·∥α
is topologically irreducible. In fact,

we show that the completions satisfy a stronger notion of irreducibility, a
notion that we call strong irreducibility (Definition 3.13).
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4 Amit OPHIR

Theorem 1.2 (Theorem 4.5). — Let α ∈ P1(Qp).
(1) The completion S(Qp)∥·∥α

is a strongly irreducible Banach repre-
sentation of H3(Qp).

(2) Let β ∈ P1(Qp). The space of continuous H3(Qp)-equivariant maps
from S(Qp)∥·∥α

to S(Qp)∥·∥β
is given by

HomH3(Qp)

(
S(Qp)∥·∥α

,S(Qp)∥·∥β

)
≃

{
Cp α = β

0 α ̸= β
.

We remark that Any strongly irreducible Banach representation of a
group G is topologically irreducible, but the converse is false. At the end of
Section 3 we give an example of a topologically irreducible representation
which is not strongly irreducible.

The following result is in the spirit of Schur’s lemma.

Proposition 1.3 (Proposition 4.6). — Let α ∈ P1(Qp). Let (B, ∥·∥) be
a topologically irreducible Banach representation of H3(Qp) (see Defini-
tion 3.1). Assume that we are in one of the two following cases.

(1) F : B → S(Qp)∥·∥α
is a nonzero continuous map of representations.

(2) F : S(Qp)∥·∥α
→ B is a nonzero continuous map of representations.

Then F is an isomorphism. Moreover, there exists r > 0 such that by
replacing ∥·∥ with r∥·∥, F becomes an isometric isomorphism.

The main ingredients in the proofs of Theorem 1.2 and Proposition 1.3
are Theorem 1.1 and “soft” functional analysis results about Banach rep-
resentations from Section 3.

In Section 5 we make a series of reduction steps and show that Theo-
rem 4.3 follows from the following theorem, which is interesting in its own
right.

Theorem 1.4 (Theorem 4.4). — Let ∥·∥ be a norm on S(Zp) that is
dominated by the sup norm and invariant under translations and multi-
plication by the smooth characters of Zp. Then ∥·∥ = r · ∥·∥∞ for some
r > 0.

Here, S(Zp) is the space of all Cp-valued, locally constant functions on Zp.
The proof of Theorem 1.4 is the most technical part of this work. It

consists of showing that the sup norm satisfies a minimality property (Def-
inition 3.2) with respect to translations and a maximality property (Defini-
tion 3.6) with respect to multiplication by smooth characters. The minimal-
ity is easy while the maximality is much deeper. Proving the maximality
property is the goal of Section 6.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.5. — The completions that we study of the Schrödinger repre-
sentation are large in the sense that the reduction of their unit ball modulo
the maximal ideal of OCp

is a non-admissible smooth representation over
Fp (the residue field of OCp

).

1.2. p-adic Fourier transform on Qp

Let dt be the unique Cp-valued Haar distribution on the space of Schwartz
functions S(Qp), normalized such that

∫
1Zp

(t) dt = 1, where 1Zp
(t) is the

characteristic function of Zp. The Haar distribution dt is not a measure and
we cannot define the integral

∫
f(t) dt for a general continuous function

f : Qp → Cp, even if f is compactly supported.
Fix a non-trivial smooth character ψ : (Qp,+) → C×

p . The Fourier trans-
form of f ∈ S(Qp) is defined by

(1.1) f̂(x) =
∫
Qp

ψ(xt)f(t) dt.

We have that f̂ ∈ S(Qp), for any f ∈ S(Qp). The Fourier transform is
not continuous with respect to the sup norm. In [14], we showed that the
Fourier transform is “as discontinuous as it can get” in the sense that the
graph {

(f, f̂)
∣∣∣ f ∈ S(Qp)

}
is dense in C0(Qp)×C0(Qp). The Fourier transform is an intertwining oper-
ator in the sense of Section 2.2. This raises the question: is a similar result
holds for other intertwining operators? If T1 and T2 are intertwining oper-
ators, one can use the above result from [14] together with the fact that
the action of Sp2(Qp) = SL2(Qp) on P1(Qp) is doubly transitive to show
that the set

{(T1(f), T2(f)) | f ∈ S(Qp)}
is dense in C0(Qp) × C0(Qp), as long as T1, T2 do not lie in the same orbit
of the upper triangular matrices.

Now consider three intertwining operators T1, T2, T3. Is

{(T1(f), T2(f), T3(f)) | f ∈ S(Qp)}

dense in C0(Qp)3? Already this case seems to be beyond the reach of the
methods of [14].

Using the rigidity of the norms ∥·∥α (Theorem 1.1) we are able to answer
this question in the affirmative for any finite number of intertwining oper-
ators (Proposition 7.9). In particular, we reprove the main result in [14].

TOME 0 (0), FASCICULE 0
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1.3. Relation to previous work of J. Fresnel and B. de Mathan

Let ψ : (Qp,+) → C×
p be a smooth character with ker(ψ) = Zp. Although

the Fourier transform (defined in (1.1)) is not continuous with respect to
the sup norm, its restriction to the space S(Qp/Zp) is continuous. Here,
S(Qp/Zp) is the space of Schwartz functions which are constant on cosets
of Zp. If f ∈ S(Qp/Zp), the Schwartz function f̂ is supported on Zp. Thus,
the Fourier transform extends to a map F :

F : C0 (Qp/Zp) → C (Zp)

given by
F(f)(x) =

∑
t∈ Qp/Zp

ψ(tx)f(t).

Surprisingly, F is not injective. This was proven independently by Fresnel
and de Mathan [6, 7] and Amice and Escassut [1]. Fresnel and de Mathan
proved the following stronger and deep result.

Theorem 1.6 ([7, Theorem 2]). — The Fourier transform F is surjec-
tive, its the kernel K = ker(F) is nonzero, and the induced map

C0 (Qp/Zp) /K → C (Zp)

is an isometric isomorphism.

It follows from the results of Section 3 that Theorem 1.6 is equivalent
to the property that the sup norm on S(Zp) is locally maximal (Defini-
tion 3.6) at 1Zp

(x) with respect to multiplication by smooth characters. In
Section 4.3 we give another proof of [7, Theorem 2] based on Theorem 4.4.

Remark 1.7.
(1) Our methods are different than the methods in [7]. Our proof,

using q-arithmetic, can be generalized to include the case where
ψ : (Qp,+) → C×

p is continuous but not smooth, and this case
does not follow from [7]. These results will appear in a forthcoming
paper.

(2) The space C0(Qp/Zp) is a Banach algebra with convolution, and
C(Zp) is a Banach algebra with the pointwise multiplication. The
Fourier transform is a homomorphism of Banach algebras. A deep
result by Fresnel and de Mathan ([5, 8]) says that the kernel K
of the Fourier transform contains nilpotent elements, and that the
nilpotent elements are dense in K. We do not how to reproduce this
result with our methods.

ANNALES DE L’INSTITUT FOURIER
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List of notation

Throughout this paper we fix a prime number p and an algebraic closure
Qalp of Qp. The absolute value |·|p on Qp extends uniquely to Qalp and
we denote by Cp the completion of Qalp with respect to |·|p. The field Cp
is a complete non-archimedean normed field and algebraically closed. We
denote by OCp the ring {a ∈ Cp | |a|p ⩽ 1}.

Fix a positive integer d. The following notation will be used.
H = H2d+1(Qp) - The 2d + 1-dimensional Heisenberg group over
Qp (see Definition 2.1).
Sp2d(Qp) - The 2d-dimensional symplectic group.
P - The Siegel parabolic subgroup of Sp2d(Qp) (defined in the dis-
cussion preceding Definition 4.2).
Gr - The right cosets space P\ Sp2d(Qp). It can be realised as the
Grassmannian of maximal isotropic subspaces of the standard 2d-
dimensional symplectic space.
S = S(Qdp) - The space of locally constant and compactly supported
functions on Qdp.
S(Zdp) - The space of locally constant functions on Zdp.
ψ - A fixed non-trivial smooth character ψ : (Qp,+) → C×

p .
ρψ - the Schrödinger representation of H on S with central character
ψ (defined in the discussion preceding Theorem 2.2).
N (V )G - The set of norms on V which are invariant under the
action of G. Here, V is a representation of a group G over Cp.
C(Zdp) - The Banach space of Cp-valued continuous functions on Zdp,
with the sup norm.
C0(Qdp) - The Banach space of Cp-valued continuous functions on
Qdp that goes to zero at infinity, with the sup norm. A function
f : Qdp → Cp is said to go to zero at infinity if for any ϵ > 0 there
exists a compact subset K ⊂ Qdp such that |f(x)|p < ϵ for any
x ∈ Qdp\K.
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8 Amit OPHIR

C0(Qp/Zp) - The Banach space of Cp-valued functions on Qp that
goes to zero at infinity and are constant on cosets of Zp.

2. A reminder on p-adic Heisenberg groups and
Schrödinger representations

In this section we recall the classical theory of smooth irreducible repre-
sentations of p-adic Heisenberg groups. This section is based on [11, 16].

In the introduction we used a construction of H3(Qp) as a matrix group,
but for the treatment of higher dimensional Heisenberg groups, and espe-
cially for introducing intertwining operators, we found it more convenient
to use a different construction. The construction we will use throughout
the paper is given in this section. Both constructions result in isomorphic
groups, but some formulas (such as the one used to define the Schrödinger
representations) take different forms than the ones given in the introduc-
tion.

2.1. The Heisenberg group over Qp and its smooth
representations

Let W = Qdp ⊕ Qdp and denote by ω the symplectic form on W given
by ω((x1, y1), (x2, y2)) = x1·y2 − y1·x2, where a·b, for a, b ∈ Qdp, is the
standard scalar product.

Definition 2.1. — The 2d+ 1-dimensional Heisenberg group over Qp,
denoted by H2d+1(Qp), is the topological group whose underlying set is
W × Qp and the multiplication is given by

[w1, t1] · [w2, t2] =
[
w1 + w2, t1 + t2 + 1

2ω(w1, w2)
]
.

Since d is fixed, we denote H2d+1(Qp) by H. One easily verifies that the
center of H, which is also its commutator subgroup, is Z := {[0, t] | t ∈ Qp},
and that H/Z ≃ W = Q2d

p . In particular, H is nilpotent group of class two.
As a topological group, H inherits a topology from the topology of Qp.

This makes H a totally disconnected and locally compact topological group.
Recall that a representation (V, π) of a totally disconnected group G over

C is said to be smooth if the stabilizer StabG(v) in G of any vector v ∈ V

is open. A smooth representation of G is called admissible if for any open

ANNALES DE L’INSTITUT FOURIER
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compact subgroup K ⊂ G the sub-space V K of vectors fixed by K is finite
dimensional.

By Schur’s lemma, if (V, π) is a smooth irreducible representation of H,
the center of H acts on V via a character ψ, called the central character
of ρ. We identify the center of H with Qp and view ψ as a character ψ :
(Qp,+) → C×

p . Since π is smooth, the kernel of ψ is an open subgroup of
Qp and we say that ψ is a smooth character.

The classification of smooth irreducible representations of H is well known,
and we recall it. If ψ is trivial, the action of H factors through an abelian
quotient, and V is 1-dimensional. Assume that ψ is non-trivial. We con-
struct a representation ρψ, called the Schrödinger representation of H,
which has central character ψ.

Let S = S(Qdp) be the space of Schwartz functions, that is functions
f : Qdp → Cp which are locally constant and compactly supported. It is an
infinite dimensional vector space over Cp. Define a representation ρψ of H
on S as follows. Let w = (a, b) with a, b ∈ Qdp. Then

(2.1) (ρψ([w, t])f)(x) = ψ

(
t+ 1

2a·b+ b·x
)

· f(x+ a).

Theorem 2.2 (Smooth Stone-von Neumann). — Let ψ be a non-trivial
smooth character of (Qp,+).

(1) The representation ρψ is a smooth, irreducible and admissible rep-
resentation of H and has central character ψ.

(2) Let (V, π) be a smooth representation of H. Assume that the center
of H acts via the character ψ. Then V decomposes as a direct sum
of sub-representations, each isomorphic to ρψ.

It is important to note that in the Schrödinger representation, the Heisen-
berg group acts on S by translations and by multiplication by the smooth
characters of Qdp. A smooth character of Qdp is a homomorphism α : (Qdp,+)
→ C×

p with an open kernel. By definition, any translation appears as
an action of an element of the Heisenberg group. It is also true that if
α : Qdp → C×

p is a smooth character, there exists an element [0, b, 0] whose
action is multiplication by α. Indeed, if ψ is a non-trivial smooth character
of Qp, any smooth character of Qdp is of the form ψ ◦ λ, for some λ in the
dual space of Qdp.

TOME 0 (0), FASCICULE 0
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2.2. Automorphisms of the Heisenberg group and intertwining
operators on the Schrödinger representation

Let J = ( 0 Id

−Id 0 ) and Sp2d(Qp) be the symplectic group

Sp2d(Qp) =
{
g ∈ GL2d(Qp)

∣∣ gJgt = J
}
.

Thinking about the vectors in Qdp ⊕ Qdp as row vectors, an element g ∈
Sp2d(Qp) acts on W by right multiplication: w 7→ wg and preserves the
symplectic form ω. This defines a right action of the symplectic group on
the Heisenberg group by automorphisms as follows:

[w, t] · g = [wg, t].

These automorphisms are continuous and their restriction to the center
Z = {[0, t] | t ∈ Qp} is the identity.

Let g ∈ Sp2d(Qp). Define a new representation ρg,ψ of H on S by

ρg,ψ([w, t])f = ρψ([w, t] · g)f

for any [w, t] ∈ H and f ∈ S. The representation ρg,ψ is smooth, irreducible
and has ψ as its central character. Thus, by the Stone–von Neumann the-
orem, ρψ ≃ ρg,ψ, so there exists an invertible linear operator Tg on S such
that

ρψ([w, t]) ◦ Tg = Tg ◦ ρg,ψ([w, t])
for any [w, t] ∈ H. By Schur’s lemma, Tg is unique up to a multiplicative
constant. It also follows that Tg1·g2 is equal, up to a constant, to Tg1 ◦ Tg2 ,
so g 7→ Tg is a projective representation, called the Weil representation.
There is an explicit formula for the operators Tg. Let g ∈ Sp2d(Qp) and
write it as

g =
(
a b

c d

)
where a, b, c, d ∈ Md(Qp) are square matrices.

Proposition 2.3 ([11, Proposition 2.3]). — Let g be as above and Tg
an intertwining operator corresponding to g. There is a unique choice of a
Cp-valued Haar distribution dµ on Im(c) such that

Tg(f)(x) =
∫

Im(c)

ψ

(
1
2(xa)·(xb) − (xb)·y + 1

2y·(yd)
)

· f(xa+ y) dµ(y).

Here, Im(c) is the space {vc | v ∈ Qdp}.

Note that if g = J , the formula gives, up to normalization, the usual
Fourier transform. If c = 0, we get the operation of multiplication by a
quadratic exponential accompanied by the dilation x 7→ xa.

ANNALES DE L’INSTITUT FOURIER
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3. Banach representations

The goal of this section is twofold. We introduce the terminology about
norms and Banach representations that will be used throughout this pa-
per, and we prove some fundamental properties of Banach representations
that we will later need. We address two issues. The first is a notion of
minimality of norms that we call weak minimality. The second consists of
several characterizations of quotients of universal unitary completions of
(algebraically) cyclic representations. Let G be an abstract group and V a
representation of G over Cp. We say that V is a cyclic representation of G
if V is a cyclic Cp[G]-module. Under the assumptions that V is cyclic, V
has a universal unitary completion in the sense of [4] that we denote by V̂ .
The quotients of V̂ by closed sub-representations will play an important
role in this paper, especially quotients by maximal sub-representations. We
give two intrinsic characterizations of these quotients: in terms of a special
type of norms which we call locally maximal and in terms of the existence
of a special type of vectors which we call strongly cyclic.

3.1. General terminology and notation

Let V be vector space over Cp. A norm on V is a map ∥·∥ : V → R⩾0
such that

(1) ∥v∥ = 0 if and only if v = 0.
(2) ∥a · v∥ = |a|p · ∥v∥ for any v ∈ V and a ∈ Cp.
(3) ∥v1 + v2∥ ⩽ max(∥v1∥, ∥v2∥).

If ∥·∥ satisfies only 2 and 3 we say that it is a seminorm.
Let ∥·∥1, ∥·∥2 be two norms on V . We write ∥·∥1 ⩽ ∥·∥2 if ∥v∥1 ⩽ ∥v∥2

for any v ∈ V . We say that ∥·∥1 is dominated by ∥·∥2, and denote it by
∥·∥1 ⪯ ∥·∥2 if there exists a constant D > 0 such that ∥·∥1 ⩽ D·∥·∥2. We say
that ∥·∥1 and ∥·∥2 are equivalent if each dominates the other: ∥·∥1 ⪯ ∥·∥2
and ∥·∥2 ⪯ ∥·∥1. These two norms are called homothetic if there exists
c > 0 such that ∥v∥1 = c · ∥v∥2 for any v ∈ V .

If v ∈ V is a nonzero vector, we say that ∥·∥ is normalized at v if ∥v∥ = 1.
In any homothety class of norms there is exactly one norm that is normal-
ized at v.

Given a norm ∥·∥ on V , we denote the completion of V with respect to
∥·∥ by V∥·∥.

Assume that a group G acts on V . A norm ∥·∥ on V is said to be G-
invariant if ∥gv∥ = ∥v∥ for any v ∈ V and g ∈ G. When there is no
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12 Amit OPHIR

ambiguity about the group G, we will simply say that ∥·∥ is an invariant
norm. We denote the set of norms on V by N (V ) and by N (V )G its subset
of G-invariant norms.

In this paper the term Banach representation means the following.

Definition 3.1. — A Banach representation (over Cp) of G is a pair
(B, ∥·∥) of a G-representation B and a G-invariant norm ∥·∥ such that B
is complete with respect to ∥·∥.

A morphism of Banach representations ofG is a continuousG-equivariant
map, but it need not be an isometry. In particular, isomorphic Banach
representations of G are not necessarily isometric.

3.2. Weakly minimal norms

Definition 3.2. — Let (B, ∥·∥) be a Banach representation of the group
G and v ∈ B a nonzero vector. We say that ∥·∥ is weakly minimal at v if
the following holds.

• For any G-invariant norm ∥·∥′ on B such that ∥·∥′ ⩽ ∥·∥ and ∥v∥′ =
∥v∥, we have ∥·∥′ = ∥·∥.

Let (B, ∥·∥) be a Banach space over Cp. The values of ∥·∥ is the set
of non-negative real numbers {∥v∥ | v ∈ V }. Similarly, the values of the
absolute value |·|p on Cp is the set {|a|p | a ∈ Cp}. Unlike Banach spaces
over R or C, the values of a norm ∥·∥ of a Cp-Banach space need not be
equal to the values of the absolute value |·|p.

Lemma 3.3. — Let (B, ∥·∥) be a Banach representation of G. Assume
that the values of ∥·∥ are the same as the values of |·|p on Cp. Assume that
v ∈ B is a nonzero vector such that ∥v∥ = 1 and such that its image v in
the quotient

B(∥·∥) := {v ∈ B | ∥v∥ ⩽ 1}/{v ∈ B | ∥v∥ < 1}
is contained in any nonzero sub-representation of B(∥·∥). Then ∥·∥ is weakly
minimal at v.

Proof. — Let ∥·∥′ ∈ N (B)G be a G-invariant norm such that ∥v∥′ = 1
and ∥·∥′ ⩽ ∥·∥. The identity map Id : B → B induces a map T : B(∥·∥) →
B(∥·∥′). The kernel of T is a sub-representation of B(∥·∥) that does not
contain v, hence by assumption, this kernel is trivial. It follows that T is
injective. Therefore, ∥w∥′ = 1 for any w with ∥w∥ = 1. Since the values of
∥·∥ are the same as the values of |·|p, ∥·∥′ = ∥·∥. □
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Proposition 3.4. — Let G be a pro-p group. Let C(G) denote the space
of continuous functions on G with values in Cp and let ∥·∥∞ be the sup
norm on C(G). Consider the action of G on C(G) by right translations. The
sup norm is weakly minimal at 1, where 1 denotes the constant function
1(x) = 1.

Proof. — Identify the quotient
{f ∈ C(G) | ∥f∥∞ ⩽ 1}/{f ∈ C(G) | ∥f∥∞ < 1}

with the space S(G,Fp) of locally constant functions on G with values
in an algebraic closure Fp of Fp. By the previous lemma, it is enough to
show that any nonzero sub-representation of S(G,Fp) contains the constant
function 1. Here, Fp is the residue field of OCp . Let f ∈ S(G,Fp) be nonzero
and denote by V the sub-representation generated by f . As f is fixed by
some open normal subgroup N ⊂ G, V is a cyclic representation of the
finite group G/N . In particular, V is a finite dimensional representation of
the finite p-group G/N over Fp. Thus, V contains a nonzero G-invariant
vector ϕ. This ϕ is a nonzero constant function. □

3.3. The universal unitary completion of a cyclic representation

Let V be a representation of G and assume that v ∈ V is a cyclic vector.
In addition, assume that N (V )G is non-empty, i.e. there exists aG-invariant
norm on V .

If ∥·∥ ∈ N (V )G, its closed unit ball {w ∈ V | ∥w∥ ⩽ 1} is an OCp
[G]-

module that contains a nonzero multiple of any vector in V , but contains no
Cp-lines. Such an OCp

-module is called an integral structure. Conversely,
any integral structure L defines a G-invariant norm, called the gauge of L,
by

∥v∥L = inf {|a|p | v ∈ a · L} .
We stress the fact that in general L might not be equal to the closed unit
ball nor to the open unit ball of ∥·∥L, but lies strictly between them. For
future use we record the following formulas for the closed and open unit
balls of ∥·∥L,

{v ∈ V | ∥v∥L ⩽ 1} =
⋂

λ∈ Cp

|λ|p > 1

λL,

{v ∈ V | ∥v∥L < 1} =
⋃

λ∈ Cp

|λ|p < 1

λL.
(3.1)

TOME 0 (0), FASCICULE 0



14 Amit OPHIR

Since Cp is not discretely valued, two different invariant norms give rise
to different integral structures, but two different integral structures might
define the same norm. Nevertheless, the correspondence between invariant
norms and integral structures inverts order.

The set Lv := OCp [G] · v is an integral structure. Indeed, it contains a
multiple of any vector since v is cyclic, and it contains no lines because of the
existence of an invariant norm. As Lv is the smallest integral structure that
contains v, its corresponding norm, which we denote by ∥·∥v, is normalized
at v and is the maximal invariant norm normalized at v. This means that
if ∥·∥ ∈ N (V )G is normalized at v, then ∥·∥ ⩽ ∥·∥v. We call the norm ∥·∥v
the maximal invariant norm at v or the maximal norm at v for short.

If v1, v2 ∈ V are two cyclic vectors of V , the norms ∥·∥v1
and ∥·∥v2

are
equivalent. In particular the completion of V with respect to ∥·∥v, where
v is a cyclic vector, is independent of v as a topological vector space. We
denote this completion by V̂ and call it the universal unitary completion of
V , or the universal completion for short. Note that this is a particular case
of [4, Example A]. The universal completion of V has the following universal
property: if (B, ∥·∥) is a Banach representation of G and T : V → (B, ∥·∥)
is G-equivariant, then T factors continuously through V̂ .

Remark 3.5. — The assumption that N (V )G ̸= ϕ is superfluous, is made
for simplification and because this is the case that will appear later. If V
does not have a G-invariant norm, OCp

[G] · v contains Cp-lines. The union
of these lines is a sub-representation W ⊂ V and the quotient V ′ = V/W

is cyclic and has an invariant norm. The universal completion of V is V̂ ′.

Any element of V̂ can be written as∑
g∈G

λg · g(v)

where (λg)g∈G ⊂ Cp is summable, meaning that for any ϵ > 0, at most
finitely many of the λg satisfy |λg|p ⩾ ϵ. Conversely, any series of this form
converges in V̂ .

Definition 3.6. — Let W be a representation of G and ∥·∥ ∈ N (W )G.
Let w ∈ W a nonzero vector such that ∥·∥ is normalized at w. We say that
∥·∥ is locally maximal at w if the following property holds.

• For any ∥·∥′ ∈ N (W )G that is normalized at w and is dominated
by ∥·∥ we have ∥·∥′ ⩽ ∥·∥.

For example, the norm ∥·∥v on V is a locally maximal norm at v. Consider
the Schrödinger representation of H3(Qp) on S(Qp), and the two norms
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∥·∥f , ∥·∥g, where f(x) = 1Zp
(x) and g(x) = 1pZp

(x). Were ∥·∥f also locally
maximal at g, then the two norms ∥·∥f and ∥·∥g, being equivalent, would
be homothetic. One can show that ∥g∥f = p and ∥f∥g = 1, so the two
norms are not homothetic, and ∥·∥f is locally maximal at f but not at g.
Thus a norm which is locally maximal at one cyclic vector is in general not
locally maximal at another one.

For another example, consider the space C0(Qdp) of Cp-valued continuous
functions on Qdp that go to zero at infinity, and the action of the Heisenberg
group H on it by the formula given in the previous section. We will later
show that the sup norm ∥·∥∞ is a locally maximal norm on C0(Qdp) at f ,
for any nonzero f ∈ C0(Qdp).

Definition 3.7. — Let (B, ∥·∥) be a Banach representation of G and
v ∈ B a nonzero vector. We say that v is topologically cyclic if v generates
(algebraically) a dense representation in B. We say that v is strongly cyclic
if any w ∈ V can be written as

w =
∑
g∈G

λg · g(v),

where the (λg)g ∈G is summable.

For example, if v ∈ V is a cyclic vector, then v is strongly cyclic in V̂ . In
the end of this section we give an example of a topologically cyclic vector
which is not a strongly cyclic vector.

We make the following two observations. Let T : B′ → B be a map of
Banach representations of G.

• Assume that the image of T contains a strongly cyclic vector. Then
T is surjective.

• Assume that v′ ∈ B′ is strongly cyclic and that T is surjective.
Then v = T (v′) is strongly cyclic in B.

We begin with two lemmas. The first says that a quotient norm of a
locally maximal one is locally maximal. The second says that strongly cyclic
vectors give rise to locally maximal norms.

Lemma 3.8. — Let W be a representation of G, ∥·∥ ∈ N (W )G and
K ⊂ W a closed (with respect to ∥·∥) sub-representation. Assume that ∥·∥
is normalized and locally maximal at w ∈ W . Then the quotient norm on
W/K is normalized and locally maximal at the image of w.

Proof. — Let ∥·∥′ denote the quotient norm on W/K. Let ∥·∥2 be a
G-invariant norm on W/K that is normalized at the image of w and dom-
inated by ∥·∥′. Using the quotient map W → W/K we view ∥·∥2 also as a
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semi-norm on W . Then max(∥·∥2, ∥·∥) is a G-invariant norm on W that is
normalized at w and dominated by ∥·∥. Thus, ∥·∥2 ⩽ ∥·∥, as semi-norms on
W . Taking the quotient by K, we obtain ∥·∥2 ⩽ ∥·∥′, as norms on W/K. □

Lemma 3.9. — Assume that (B, ∥·∥) is a Banach representation of G
and that 0 ̸= v ∈ B is a strongly cyclic vector. Then there exists a unique
norm, which we denote by ∥·∥v,B , which is normalized and locally maximal
at v and is equivalent to ∥·∥. In addition, if w ∈ B with ∥w∥v,B = r, then
for any ϵ > 0 there exists a summable sequence (λg)g ∈G such that

w =
∑
g∈G

λg · g(v)

and maxg∈G|λg|p < (1 + ϵ) · r.

Proof. — The uniqueness of a normalized and locally maximal norm at
v is clear. In the rest of the proof we construct the norm ∥·∥v,B using an
integral structure and show the additional property.

Let L be the closure in B of

L =

∑
g ∈G

λg · g(v)

∣∣∣∣∣∣ (λg)g ∈G is summable and |λg|p ⩽ 1 for all g ∈ G

 .

Assume, for convenience, that ∥v∥ = 1. We first show that L is an open
integral structure. It is straightforward that L is an integral structure, the
only non-obvious part is that L contains no Cp-lines. This is true since L,
and therefore L, is contained in the closed unit ball of ∥·∥. We now show
that L is open. Since v is strongly cyclic, B =

⋃∞
n=0 p

−n · L. Since B is
a complete metric space, it follows from Baire’s category theorem that L
has a non-empty interior, and since L is a topological subgroup, it must
be open. Let ∥·∥v,B be the norm that corresponds to L. Since L is an open
integral structure, ∥·∥v,B is a G-invariant norm and equivalent to ∥·∥.

Now we show that ∥·∥v,B is normalized at v and locally maximal at v.
Since v ∈ L, it follows that ∥v∥v,B ⩽ 1. Let ∥·∥′ be a G-invariant norm
dominated by ∥·∥v,B and normalized at v. The closed unit ball of ∥·∥′

contains L, and since
∥·∥′ ⪯ ∥·∥v,B ⪯ ∥·∥

its unit ball is closed in B. Thus, the unit ball of ∥·∥′ contains L. There-
fore, ∥·∥′ ⩽ ∥·∥v,B . Substituting v, we see that ∥v∥v,B ⩾ 1, so ∥·∥v,B is
normalized at v and locally maximal at v.

Finally, we prove the additional property. Let w ∈ B and let ϵ > 0. We
may assume that (1 + ϵ)−1 < ∥w∥v,B < 1. By (3.1) (formula for the open
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unit ball), w ∈ L, so there exists w0 ∈ L such that ∥w − w0∥v,B < p−1.
Similarly, there exists w1 ∈ pL such that ∥w − w0 − p · w1∥v,B < p−2.
Continuing in this manner we obtain a sequence (wn)∞

n=0, where wn ∈ pn ·L
for all n, and w =

∑∞
n=0 wn. Therefore, w ∈ L, so it can be written as

w =
∑
g∈G λg · g(v) and maxg∈G|λg|p < 1 < (1 + ϵ) · ∥w∥v,B . □

Remark 3.10. — Note that the last step in the proof can be modified
slightly to show that L = L. However, the closed unit ball of ∥·∥v,B might
be strictly larger than L.

Theorem 3.11. — Let (B, ∥·∥) be a Banach representation of G and
v ∈ B a nonzero vector. The following are equivalent.

(1) v is a strongly cyclic vector of B and ∥·∥ = ∥·∥v,B .
(2) Let V be the (algebraic) sub-representation generated by v. Then

the map I : V̂ → B is surjective and if K is its kernel, the induced
map V̂ /K → B is an isometry when we equip V̂ with the norm
∥·∥v.

(3) ∥·∥ is normalized at v and locally maximal at v.

Proof. — We will show (1)⇒ (2)⇒ (3)⇒ (1). Assume (1). Since v is
strongly cyclic, the map I : V̂ → B is surjective. Equip V̂ with the norm
∥·∥v and let ∥·∥′ denote the quotient norm on V̂ /K. Via I, we view ∥·∥′

as a norm on B. By the open mapping theorem, ∥·∥′ and ∥·∥ = ∥·∥v,B are
equivalent. By Lemma 3.8 and Lemma 3.9, these two norms are normalized
and locally maximal at v. Thus, they are equal.

Assume (2). (3) Follows from Lemma 3.8.
Assume (3). We will prove (1). We assume that ∥·∥ is normalized and

locally maximal at v. Let w ∈ B; we want to show that w is of the form∑
g∈G λg ·g(v), where (λg)g∈G is summable. We may assume that ∥w∥ ⩽ 1.

Let L = OCp [G] · v and let D be the closed unit ball of ∥·∥. Then L+ p2 ·D
is an open integral structure in B that contains v. Its corresponding norm,
that we denote by ∥·∥′, is dominated by ∥·∥ and satisfies ∥v∥′ ⩽ 1. Therefore,
by (3), ∥·∥′ ⩽ ∥·∥. By (3.1) (formula for the closed unit ball) it follows that

w ∈ D ⊂
⋂

λ∈ Cp

|λ|p>1

λ
(
L+ p2 ·D

)
⊂ p−1 (L+ p2 ·D

)
= p−1L+ pD.

Thus, there exist x1 ∈ L and d1 ∈ D such that w = p−1x1+p·d1. Repeating
this process with d1 instead of w, there exist x2 ∈ L and d2 ∈ D such that
d1 = p−1x2 + pd2. Thus, w = p−1x1 + p(p−1x2 + pd2) = p−1x1 +x2 + p2d2.
Repeating this process, we obtain sequences (xn)∞

n=1 ⊂ L and (dn)∞
n=1 ⊂ D
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such that dn = p−1xn+1 + pdn+1 for any n ⩾ 0. Thus, w =
∑∞
n=0 p

n−1 · xn
which is of the desired form. □

Corollary 3.12. — Let (B, ∥·∥) be a Banach representation of G. The
following are equivalent.

(1) B is isomorphic to a quotient of a universal completion of a cyclic
representation.

(2) B has a strongly cyclic vector.
(3) ∥·∥ is equivalent to a locally maximal norm with respect to some

vector v.
(4) There exists v ∈ B such that any map T : B′ → B of Banach

representations of G such that v lies in its image is surjective.

3.4. Strongly irreducible Banach representations

Definition 3.13. — Let (B, ∥·∥) be a Banach representation of G. We
say that B is strongly irreducible if any nonzero vector in B is strongly
cyclic.

Clearly, a strongly irreducible Banach representation is topologically ir-
reducible. The converse is not true (see the example at the end of this
section).

Proposition 3.14. — Let (B, ∥·∥) be a Banach representation of G and
v ∈ B a strongly cyclic vector. Assume that ∥·∥ is normalized and locally
maximal at v. Then, any w ∈ B with ∥v − w∥ < 1 is also strongly cyclic.

Proof. — First, note that ∥·∥ is equal to ∥·∥v,B from Lemma 3.9. Let
w ∈ B such that ∥v − w∥ < 1. By Theorem 3.11, it is enough to show
that ∥·∥ is normalized and locally maximal at w. That ∥·∥ is normalized at
w follows from the strong triangle inequality. To show that ∥·∥ is locally
maximal at w, let ∥·∥′ ∈ N (V )G a norm that is dominated by ∥·∥ and
normalized at w. By Lemma 3.9 we can write v − w =

∑
g ∈G λg · g(v),

where (λg)g ∈G is summable and maxg∈G(λg) < 1. Therefore, if ∥w∥′ = 1,
then also ∥v∥′ = 1. Since ∥·∥ is locally maximal at v, ∥·∥′ ⩽ ∥·∥. This proves
that ∥·∥ is also locally maximal at w. □

Proposition 3.15. — Let (B, ∥·∥) be a Banach representation of G.
The set of all strongly cyclic vectors in B is open (possibly empty).

Proof. — Assume that the set of strongly cyclic vectors inB is not empty.
Let v be a strongly cyclic vector in B. By the previous proposition, all the
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vectors in the open unit ball around v with respect to ∥·∥v,B are strongly
cyclic. By Lemma 3.9, the open unit ball of ∥·∥v,B is open in B. □

Corollary 3.16. — Let (B, ∥·∥) be a Banach representation of G and
assume that B contains a strongly cyclic vector. If B is not strongly irre-
ducible, then B contains a nonzero proper closed sub-representation.

Proof. — Let U be the open subset of strongly cyclic vectors in B. By
assumption, U is not empty. Assume that B is not strongly irreducible and
let 0 ̸= w ∈ B be a vector that is not strongly cyclic. Denote by W the
algebraic representation generated by w in B, then W ⊂ B\U . Thus, the
closure of W is a proper nonzero closed sub-representation of B. □

Theorem 3.17. — Let (B, ∥·∥) be a Banach representation of G. The
following are equivalent.

(1) B is strongly irreducible.
(2) B is topologically irreducible and there exists a strongly cyclic vec-

tor in B.
(3) B is topologically irreducible and there exists a locally maximal

norm at some vector 0 ̸= v ∈ B on B, equivalent to ∥·∥.
(4) Any nonzero G-equivariant bounded map B′ → B, where (B′, ∥·∥′)

is a Banach representation of G, is surjective.
(5) (B, ∥·∥) is isomorphic to a quotient of a universal completion of a

cyclic representation of G by a maximal sub-representation.

Proof. — The implication (1)⇒ (2) is trivial and the implication (2)⇒(1)
follows from Corollary 3.16. The equivalence (2) ⇐⇒ (3) follows from
Theorem 3.11. Next we show (1) ⇐⇒ (4). Assume (1). Let (B′, ∥·∥′) be
a Banach representation of G and T : B′ → B a nonzero G-equivariant
bounded map. Let 0 ̸= v ∈ Im(T ). Then v is strongly cyclic and by a pre-
vious observation, T is surjective. Assume (4). Let v ∈ B nonzero. Let V
be the algebraic representation generated by v in B. The map I : V̂ → B

is a nonzero G-equivariant bounded map, so by assumption I is surjec-
tive. Thus, by a previous observation, v is strongly cyclic in B. Finally, we
prove (2) ⇐⇒ (5). Assume (2). Let v ∈ B be a strongly cyclic vector, let
V be the algebraic representation generated by v and I : V̂ → B. Since v
is strongly cyclic, I is surjective. If W ⊂ V̂ denotes the kernel of I, then
V̂ /W is isomorphic to B. Since B is topologically irreducible, W is a max-
imal closed sub-representation. Assume (5). As a quotient of a universal
completion of a cyclic representation by a maximal sub-representation, B
is topologically irreducible and contains a strongly cyclic vector. By Corol-
lary 3.16, B is strongly cyclic. □
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Proposition 3.18. — Let (Bi, ∥·∥i), for i = 1, . . . , n, be pairwise non-
isomorphic strongly irreducible Banach representations of G. Let B be the
Banach representation B =

⊕n
i=1 Bi, equipped with the norm max(∥·∥1,

. . . , ∥·∥n). Then any x = (x1, . . . , xn) ∈ B such that xi ̸= 0 for all i is
strongly cyclic in B.

Proof. — By induction on n. The case n = 1 is trivial. Assume that
n > 1 and that the claim holds for any 1 ⩽ k < n. By Theorem 3.11, it is
enough to show that for any Banach representation (B′, ∥·∥′) of G and any
continuous map of representations T : B′ → B, if x lies in the image of T
then T is surjective. Let T : B′ → B be such a map. Denote by P1 : B → B1
and P2 : B →

⊕n
i=2 Bi the projections. Since x1 lies in the image of P1 ◦T

and (x2, . . . , xn) lies in the image of P2 ◦ T , it follows from the induction
hypothesis that both P1 ◦ T and P2 ◦ T are surjective. Let K1,K2 be the
kernels of P1◦T and P2◦T respectively. Then K2 is not contained in K1, for
otherwise we would have a nonzero map

⊕n
i=2 Bi → B1. Such a map would

give a nonzero map between one of the Bi, for i ⩾ 2, and B1. Since both
B1 and Bi are strongly irreducible, such a map must be an isomorphism,
contradicting the hypothesis. Therefore, the restriction of P1 ◦ T to K2 is
a nonzero map, hence surjective since B1 is strongly irreducible. It follows
that B1 is contained in the image of T . Similarly, for any 1 ⩽ i ⩽ n, Bi is
contained in the image of T . Thus, T is surjective. □

We end this section with an example of a topologically irreducible Banach
representation which is not strongly irreducible.

Example. — Let C(Zp) be the space of continuous functions on Zp with
values in Cp, equipped with the sup norm ∥·∥∞. We choose q ∈ Cp, not a
root of unity, such that |q − 1|p < 1 and denote by G the group generated
by translations and by multiplications by qnx, n ∈ Z. The sup norm is
invariant under the action of G, so C(Zp) is a Banach representation of G.

As a representation of G, C(Zp) is topologically irreducible, as we now
show. Let A be the linear span of the functions qnx, n ∈ Z. Then A is an
algebra in C(Zp) that separates points and contains the constant functions.
By the p-adic Stone–Weierstrass theorem ([10]), A is dense in C(Zp). Let
0 ̸= f ∈ C(Zp) and W be the closed sub-representation generated by f .
We will show that W = C(Zp). We first show that W contains a nowhere
vanishing function. The Zp-representation

W = {h ∈ W | ∥h∥∞ ⩽ 1}/{h ∈ W | ∥h∥∞ < 1}

is nonzero and smooth. Let 0 ̸= v ∈ W , and let E be the Zp-sub-representa-
tion generated by v. Then E is a finite dimensional representation of a finite
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quotient of Zp over a field of characteristic p (the residue field of OCp
). Thus,

there exists a nonzero v′ ∈ E which is fixed by Zp. Let g ∈ W a lift of v′.
Then g is a nowhere vanishing function. Then A · g ⊂ W is dense in C(Zp),
so W = C(Zp).

We show that the constant function 1(x) is not a strongly cyclic vector,
thus C(Zp) is not a strongly irreducible representation of G. Let f(x) ∈
C(Zp) and assume that it can be written as

f(x) =
∑
n∈ Z

λn · qnx,

where limn→∞ λn = 0. The Mahler expansion of f(x) is

f(x) =
∑
n∈ Z

λn · (qn)x =
∑
n∈ Z

λn ·
∞∑
k=0

(qn − 1)k ·
(
x

k

)

=
∞∑
k=0

(∑
n∈ Z

λn · (qn − 1)k
)

·
(
x

k

)
=

∞∑
k=0

bk ·
(
x

k

)
.

There exists 0 < ϵ < 1 such that |qn − 1|p < ϵ for all n ∈ Z. Let m =
maxn∈ Z|λn|p. Then the coefficients (bk)∞

k=1 obey the asymptotic formula

|bk|p ⩽ m · ϵk.

In particular, the function f ∈ C(Zp) with Mahler expansion f(x) =∑∞
k=0 p

k ·
(
x
pk

)
is not of the form

∑
n∈ Z λn · qnx.

4. The main results

In this section and for the rest of this paper all the representations are
assumed to be over Cp. Fix a non-trivial smooth character ψ : (Qp,+) →
C×
p , and let (ρψ,S) be the Schrödinger representation of the Heisenberg

group H = H2d+1(Qp). In particular, the functions in S = S(Qdp) are valued
in Cp. The action of H on S is generated by translations and multiplication
by smooth characters. An H-invariant norm on S is therefore a norm ∥·∥
on S such that

∥f(x+ a)∥ = ∥f(x)∥, ∥χ(x) · f(x)∥ = ∥f(x)∥

for any f ∈ S, any a ∈ Qp and any smooth character χ of Qdp.
Our main results concern a family of H-invariant norms on S with a

surprising rigidity. This family is the orbit of the sup norm by intertwining
operators. In the first sub-section we define these norms and show that
they are parameterized by a Grassmannian. In the second sub-section we
state the main results. The proofs are given in the next sections.

TOME 0 (0), FASCICULE 0



22 Amit OPHIR

4.1. A special family of H-invariant norms parameterized by a
Grassmannian

Let g = ( a bc d ) be a matrix in the symplectic group Sp2d(Qp) and choose
Tg, a corresponding intertwining operator. Recall that intertwining oper-
ators were defined in Section 2.2. If ∥·∥ is an H-invariant norm on S, the
norm f 7→ ∥Tg(f)∥ is also H-invariant. Indeed,

∥Tg([w, t]f)∥ = ∥[wg, t]Tg(f)∥ = ∥Tg(f)∥ .

As the Tg are determined up to a constant, this defines a right action of
Sp2d(Qp) on the space NH(S)H of homothety classes of H-invariant norm
on S. If x ∈ NH(S)H denotes the homothety class of the norm ∥·∥, then
we denote by xg the homothety class of the norm ∥Tg(·)∥. Then (xg1)g2 =
x(g1g2) are both equal to the homothety class of the norm ∥Tg1(Tg2(·))∥.

An important example of an H-invariant norm on S is the sup norm:

∥f∥∞ = sup
x∈ Qd

p

|f(x)|p.

In the following proposition we determine the stabilizer in Sp2d(Qp) of the
homothety class of the sup norm.

Proposition 4.1. — Let g = ( a bc d ) be a matrix in the symplectic group
Sp2d(Qp) and Tg a corresponding intertwining operator. The norms ∥·∥∞
and ∥Tg(·)∥∞ are homothetic if and only if they are equivalent, if and only
if c = 0.

Proof. — If c = 0, Proposition 2.3 says that there exists λ ∈ C×
p such

that
Tg(f)(x) = λ · ψ

(
1
2(xa)·(xb)

)
· f(xa).

As a must be invertible, ∥f(xa)∥∞ = |λ|p · ∥f(x)∥∞. Thus, ∥·∥∞ and
∥Tg(·)∥∞ are homothetic and therefore equivalent.

Assume that c ̸= 0 and let k ⩾ 1 be the dimension of Im(c). Recall the
definition of Im(c) from Proposition 2.3. Choose a basis v1, .., vk of Im(c)
and complete it to a basis v1, . . . , vk, vk+1, . . . , vd of Qdp. Let Un and Vn
be the compact open sets in Qdp and in Im(c) respectively, given by

Un =
{

d∑
i=1

λivi

∣∣∣∣∣ λ1, . . . , λd ∈ pnZp

}
,

Vn =
{

k∑
i=1

λivi

∣∣∣∣∣ λ1, . . . , λk ∈ pnZp

}
.
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Denote by fn(x) the characteristic function of Un. Note that fn(x) ∈ S.
By Proposition 2.3, there exists a Haar distribution dµ on Im(c) such that

Tg(fn)(x) =
∫

Im(c)

ψ

(
1
2(xa)·(xb) − (xb)·y + 1

2y·(yd)
)

· fn(xa+ y) dµ(y).

We may assume that µ(V0) = 1. Substituting x = 0, we obtain

Tg(fn)(0) =
∫

Im(c)

ψ

(
1
2y·(yd)

)
· fn(y) dµ(y) =

∫
Vn

ψ

(
1
2y·(yd)

)
dµ(y).

When n is sufficiently large, 1
2y·(yd) ∈ ker(ψ) for any y ∈ Vn, so

Tg(fn)(0) =
∫
Vn

1 dµ(y) = p−nk.

Thus, limn→∞∥Tg(fn)∥∞ = ∞, whereas ∥fn∥∞ = 1 for any n. Then ∥·∥g
and ∥·∥∞ are not equivalent and therefore not homothetic. □

Let P be the Siegel parabolic subgroup

P =
{(

a b

0 d

)
∈ Sp2d(Qp)

}
,

and denote Gr = P\ Sp2d(Qp). Then Gr is the Grassmannian of maximal
isotropic subspaces of (W,ω).

Definition 4.2. — We denote the point that corresponds to P in Gr
by ∞. For any α = Pg ∈ Gr we denote by ∥·∥α the unique H-invariant
norm in the homothety class of ∥Tg(·)∥∞ that is normalized at 1Zd

p
(x).

4.2. The main results

Our deepest results are Theorem 4.3 and Theorem 4.4 below. Their
proofs will occupy Section 5 and Section 6 of the paper.

Theorem 4.3 (Rigidity). — Let α ∈ Gr. If ∥·∥ is an H-invariant norm
on S that is dominated by ∥·∥α, then ∥·∥ = r ·∥·∥α for some constant r > 0.

In particular, each ∥·∥α is locally maximal at every nonzero vector in the
completion S∥·∥α

.
In order to prove Theorem 4.3 we will prove its Zp-analog. We denote

by S(Zdp) the space of locally constant Cp-valued functions on Zdp. The sup
norm on S(Zdp) is invariant under translations and under multiplication by
the smooth characters of Zdp. Here, as before, a smooth character of Zdp is
a homomorphism χ : (Zdp,+) → C×

p with an open kernel.
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Theorem 4.4. — Let ∥·∥ be a norm on S(Zdp) that is dominated by
the sup norm and invariant under translations and multiplication by the
smooth characters of Zdp. Then ∥·∥ = r · ∥·∥∞ for some r > 0.

Compare Theorem 4.3 with the complex coefficients case: Denote by SC

the space of complex-valued Schwartz functions on Qdp, and let ρCψ be the
complex Schrödinger representation of H on SC (defined in the same way
as in Section 2.1). We have a H-invariant inner product on SC:

⟨f, g⟩ =
∫
Qd

p

f(x)g(x) dx,

where dx a C-valued Haar measure on Qdp. Since ρCψ is smooth and ad-
missible, it follows from Schur’s lemma that any other H-invariant inner
product on SC is a positive multiple of ⟨·, ·⟩. Over Cp, we do not have
uniqueness of invariant norms, but each ∥·∥α, for α ∈ Gr, is unique among
the H-invariant norms that it dominates.

The following proposition gives some basic properties of the completions
of S by a norm ∥·∥α.

Theorem 4.5. — Let α ∈ Gr and ∥·∥α the corresponding norm.
(1) The completion S∥·∥α

is a strongly irreducible Banach representa-
tion of H.

(2) The smooth part of S∥·∥α
is precisely S.

(3) Let β ∈ Gr. The space of continuous H-equivariant maps from S∥·∥α

to S∥·∥β
is given by

HomH

(
S∥·∥α

,S∥·∥β

)
≃

{
Cp α = β

0 α ̸= β
.

Proof. — (1). By Theorem 4.3, the norm ∥·∥α is locally maximal at
f , for any f ∈ S∥·∥α

with ∥f∥α = 1. By Theorem 3.17 it is enough to
show that S∥·∥α

is topologically irreducible. Let W be a proper closed sub-
representation of S∥·∥α

. The quotient norm on S∥·∥α
/W induces an invariant

semi-norm ∥·∥ on S that is dominated by ∥·∥α. Since S is irreducible, ∥·∥
is a norm and by Theorem 4.3, ∥·∥ = r · ∥·∥α for some r > 0, and W = 0.

(2). We first prove the claim for S∥·∥∞
= C0(Qdp). It is clear that any

function in S has an open stabilizer in H. Let f ∈ C0(Qdp) with an open
stabilizer in H. Recall the action of the Heisenberg group given in (2.1).
Then

f(x) = ψ(b·x) · f(x+ a)
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for all a, b ∈ Znp , for some large enough n. Letting b = 0, we see that f
is constant on cosets of Zdp. Letting a = 0, we see that f is supported on
p−n+kZdp, where ker(ψ) = pkZp. For the general case, let g ∈ Sp2d(Qp)
such that α = Pg, and let Tg be a corresponding intertwining operator,
normalized such that ∥·∥α = ∥Tg(·)∥∞ on S. Then Tg extends to an isomet-
ric isomorphism Tg : S∥·∥α

→ C0(Qdp). Although Tg is not H-equivariant, it
satisfies

Tg([w, t]f) = [wg, t]Tg(f).

In particular, Tg(f) is a smooth vector in C0(Qdp) if and only if f is a smooth
vector in S∥·∥α

.
(3) Let T : S∥·∥α

→ S∥·∥β
be a continuous H-equivariant map. By the

previous part, the restriction of T to S ⊂ S∥·∥α
is an H-equivariant map T ′ :

S → S. By Schur’s lemma for smooth representations, T ′ is multiplication
by a constant. If this constant is nonzero, it means that ∥·∥α and ∥·∥β ,
considered on S, are homothetic. By Proposition 4.1 this could only be the
case if α = β. Thus, if α ̸= β, T = 0. If α = β then by continuity, T is a
multiplication by a scalar. □

Proposition 4.6. — Let α ∈ Gr. Let (B, ∥·∥) be a topologically irre-
ducible Banach representation of H (see Definition 3.1). Assume that we
are in one of the two following cases.

(1) F : B → S∥·∥α
is a nonzero continuous map of representations.

(2) F : S∥·∥α
→ B is a nonzero continuous map of representations.

Then F is an isomorphism. Moreover, there exists r > 0 such that by
replacing ∥·∥ with r · ∥·∥, F becomes an isometric isomorphism.

Proof. — Let (B, ∥·∥) be an irreducible Banach representation of H. As-
sume we are in the first case, and let F : B → S∥·∥α

be a continuous
map of representations. Assume that F is nonzero. Since B is topologi-
cally irreducible, the kernel of F is zero, so F is injective. By Theorem 4.5
and Theorem 3.17, F is surjective. Thus, F is an isomorphism. The norm∥∥F−1(·)

∥∥ is an H-invariant norm on S∥·∥α
that is dominated by ∥·∥α. By

Theorem 4.3, there exists r > 0 such that r ·
∥∥F−1(·)

∥∥ = ∥·∥α. Replacing
∥·∥ by r · ∥·∥, F becomes an isometry.

Assume we are in the second case and let F : S∥·∥α
→ B a continuous

map of representations. Assume that F is nonzero. The norm ∥F (·)∥ is an
H-invariant norm on S∥·∥α

that is dominated by ∥·∥α. By Theorem 4.3,
there exists r > 0 such that r · ∥F (·)∥ = ∥·∥α. Replacing ∥·∥ by r · ∥·∥,
F becomes an isometry. In particular, F is injective. The image of F is

TOME 0 (0), FASCICULE 0



26 Amit OPHIR

therefore a closed sub-representation of B, and since B is topologically
irreducible, F is surjective. □

4.3. A new proof of a results of Fresnel and de Mathan

Let ψ : (Qp,+) → C×
p be a smooth character with ker(ψ) = Zp. Recall

that the Fourier transform F on Qp (see Section 1.2) is not continuous with
respect to the sup norm. The restriction of F to the space S(Qp/Zp) of
Schwartz functions on Qp which are constant on cosets of Zp, is continuous.
If f ∈ S(Qp/Zp), then F(f) is a Schwartz function supported on Zp. Thus,
the restriction of the Fourier transform extends to a map between the
completions

F : C0(Qp/Zp) → C(Zp),
given by

F(f)(x) =
∑

x∈ Qp/Zp

ψ(tx) · f(t).

In [7] Fresnel and de Mathan proves the following theorem.

Theorem 4.7 ([7, Theorem 2]). — The Fourier transform F is surjec-
tive and is not injective. Moreover, if K denotes its kernel, the induced
map

C0(Qp/Zp)/K → C(Zp)
is a surjective isometry.

Proof. — Let H(Zp) be the following subgroup of the Heisenberg group
H3(Qp),

H(Zp) = {[a, b, t] | a ∈ Zp} .
Then H(Zp) acts on C(Zp) by the usual rule

([a, b, t]f)(x) = ψ(t+ bx) · f(x+ a),

namely, by translations and multiplication by smooth characters. The group
H(Zp) also acts on C0(Qp/Zp) by the rule

([a, b, t]g)(x) = ψ(t− ab+ ax) · g(x− b).

It is easy to verify that

F : C0 (Qp/Zp) → C(Zp)

is a continuous homomorphism of Banach representations of H(Zp). By
Theorem 4.4, the sup norm on C(Zp) is locally maximal with respect to
any f ∈ C(Zp) with ∥f∥∞ = 1. It follows from Theorem 3.11 that any
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nonzero f ∈ C(Zp) is strongly cyclic, hence that C(Zp) is a strongly irre-
ducible representation. By Theorem 3.17, F is surjective. If F were also
injective, it would be, by the open mapping theorem, an isomorphism
of Banach spaces. To see that this is not true, consider the characteris-
tic functions ϕn(x) := 1p−nZp

(x) ∈ C0(Qp/Zp). Then ∥ϕn∥∞ = 1, while
∥F(ϕn)∥∞ =

∥∥pn · 1pnZp

∥∥
∞ = p−n. Therefore, F is not injective. Finally,

denoting the kernel of F by K, we have the induced isomorphism of Banach
representations

C (Qp/Zp)0 /K → C(Zp).

By Theorem 4.4, there exists a real number r > 0 such that by taking
the norm r · ∥·∥∞ on C(Zp), the above isomorphism is an isometry. To
show that r = 1, it is enough to show that the image of ϕ0 in the quo-
tient C0(Qp/Zp)/K has norm 1. Note that ϕ0 is a strongly cyclic vector in
C0(Qp/Zp), and that ∥·∥∞ is normalized and locally maximal at ϕ0. Thus,
by Proposition 3.14, the open unit ball around ϕ0 in C0(Qp/Zp) consists of
strongly cyclic vectors. In particular, all elements of K are at distance at
least 1 from ϕ0. It follows that the image of ϕ0 in the quotient has norm 1.
Therefore, r = 1. □

Remark 4.8. — In [7], Fresnel and de Mathan first show that F is not
injective by constructing nonzero elements in the kernel of F . These ele-
ments have some special properties which then enable them to show that
F is surjective.

5. Reduction steps

In this section we show that Theorem 4.3 (rigidity of ∥·∥α on Qdp) fol-
lows from Theorem 4.4 (rigidity of the sup norm on Zdp), and also that
Theorem 4.4 follows from the particular case of Theorem 4.4 when d = 1.

Proposition 5.1. — If Theorem 4.3 holds for the sup norm then it
holds for ∥·∥α for any α ∈ Gr.

Proof. — Let Pg = α ∈ Gr, where g ∈ Sp2d(Qp), and let Tg be an
intertwining operator such that ∥·∥α = ∥Tg(·)∥∞. Let ∥·∥ be an H-invariant
norm on S, dominated by ∥·∥α.

The operators Tg and (Tg)−1 act on N (S)H and preserve order. In partic-
ular,

∥∥(Tg)−1(·)
∥∥ is an H-invariant norm, dominated by the sup norm. By

assumption,
∥∥(Tg)−1(·)

∥∥ = r · ∥·∥∞ for some r > 0. Thus, ∥·∥ = r · ∥·∥α. □
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Next we show that Theorem 4.3 for the sup norm follows from Theo-
rem 4.4.

Proposition 5.2. — Assume that Theorem 4.4 holds. Let ∥·∥ be an
H-invariant norm on S that is dominated by the sup norm. Then ∥·∥ =
r · ∥·∥∞ for some r > 0.

Proof. — For any n ∈ N we denote Vn = S(p−nZdp) and think about Vn
as the subspace of S(Qdp) of functions supported on the disc p−nZdp. The
restriction of ∥·∥ to Vn is invariant under translations by p−nZdp and mul-
tiplication by smooth characters. By Theorem 4.4 and an obvious change
of variables, there exists rn > 0 such that ∥f∥ = rn · ∥f∥∞ for any f ∈ Vn.
The function 1Zd

p
(x) lies in any of the Vn, so the numbers (rn)n∈ N must

be equal to the same r. Then ∥f∥ = r · ∥f∥∞ for any compactly supported
function f . □

Proposition 5.3. — If Theorem 4.4 holds for Zp then it holds for Zdp
for any d.

Proof. — The proof is by induction, the case d = 1 being assumed to
be true. Let d > 1 and assume that Theorem 4.4 holds for d − 1. Let ∥·∥
be a norm on S(Zdp) that is invariant under translations and multiplica-
tion by smooth characters, dominated by the sup norm and normalized on
1Zd

p
(x). By Proposition 3.4 it is enough to show that ∥·∥ ⩽ ∥·∥∞. The latter

follows if we show that for any n, ∥1pnZd
p
(x)∥ = 1, where 1pnZd

p
(x) is the

characteristic function pnZdp.
Let 0 < n ∈ N. Let Pd be the projection α : Zdp → Zp given by

α(a1, . . . , ad) = ad, and denote by P ∗
d the induced map P ∗

d : S(Zp) →
S(Zdp). It is easy to see that the norm ∥P ∗

d (·)∥ on S(Zp) is invariant un-
der translations and multiplication by smooth characters, dominated by
the sup norm and normalized at 1Zp

(x). Thus, ∥P ∗
d (f)∥ = ∥f∥∞ for any

f ∈ S(Zp). In particular, ∥∥P ∗
d

(
1pn·Zp(x)

)∥∥ = 1,

Note that
P ∗
d

(
1pn·Zp(x)

)
= 1Zd−1

p ×(pn·Zp)(x).

Now, consider the projection β : Zd−1
p ×(pn ·Zp) → Zd−1

p given by β(a1, . . . ,

ad−1, ad) = (a1, .., ad−1), and the induced map β∗ : S(Zd−1
p ) → S(Zdp). The

norm ∥β∗(·)∥ on S(Zd−1
p ) is invariant under translations and multiplication

by smooth characters and dominated by the sup norm. Since

β∗
(

1Zd−1
p

(x)
)

= 1Zd−1
p ×(pn·Zp)(x)
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and since ∥1Zd−1
p ×(pn·Zp)(x)∥ = 1, we deduce that ∥β∗(·)∥ is normalized on

1Zd−1
p

. Therefore ∥β∗(·)∥ = ∥·∥∞. In particular,∥∥∥β∗
(

1pn·Zd−1
p

(x)
)∥∥∥ = 1.

Note that
β∗
(

1pn·Zd−1
p

(x)
)

= 1pn·Zd
p
(x).

Thus, ∥1pn·Zd
p
(x)∥ = 1. □

It remains to prove Theorem 4.4 for Zp. This is done in the next section.

6. Proof of Theorem 4.4 for Zp

In this section we prove Theorem 4.4 for Zp. We begin by noting that in
the formulation of Theorem 4.4, the space S(Zp) can be replaced by C(Zp),
which is its completion with respect to the sup norm. Working with C(Zp)
allows us to use functions, such as polynomials, which are not in S(Zp).

Clearly, Theorem 4.4 follows if we know that ∥·∥∞ is both weakly minimal
and locally maximal at 1Zp

(x). That the sup norm is weakly minimal at
1Zp(x) follows from Proposition 3.4. Thus, it remains to show that ∥·∥∞ is
locally maximal at 1Zp

(x).
The proof uses two main ingredients:
(1) The growth modulus of a norm. This is a real valued function

associated with norms on C(Zp) that are dominated by the sup
norm.

(2) The q-Mahler bases. To each q ∈ Cp with |q − 1|p < 1, there corre-
sponds a basis of C(Zp) called the q-Mahler basis which shares some
nice properties with the Mahler basis:

{(
x
n

)
| n ⩾ 0

}
. The q-Mahler

bases can be viewed as a family of deformations of the Mahler basis.

6.1. The growth modulus of a norm

The beginning of this section is an adaptation of [15, Chapter 6, part 1.4].
Let (an)∞

n=0 be a bounded sequence of non-negative real numbers. The
growth modulus associated with the sequence (an)∞

n=0 is the function

r 7→ sup
n
anr

n

defined on the interval [0, 1]. It is a continuous, non-decreasing and convex
function (part of the Classical Lemma in [15, p. 292]).
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We say that a real number 0 < r < 1 is regular with respect to the
sequence (an)∞

n=0 if there exists n such that anrn > amr
m for any m ̸= n.

Otherwise, we call r a critical value (with respect to the sequence).
We remark that if r is a regular value and anrn > amr

m for any m ̸= n,
there exists some interval containing r on which the growth modulus is
equal to anxn. In particular the growth modulus is smooth at the regular
values.

The fundamental lemma about critical values is the following.

Lemma 6.1. — Assume that (an)∞
n=0 is not the zero sequence. The set

of critical values is discrete in [0, 1).

Proof. — See the discussion that follows the Classical Lemma in [15].
□

Until the end of this subsection, fix a norm ∥·∥ on C(Zp) that is dominated
by the sup norm and normalized at 1Zp

(x). Let
(
x
n

)
be the nth binomial

polynomial. Since ∥·∥ is dominated by ∥·∥∞, and
∥∥(x
n

)∥∥
∞ = 1 for all n ⩾ 0,

the sequence (
∥∥(x
n

)∥∥)n⩾ 0 is bounded. We define the growth modulus of the
norm ∥·∥ to be the growth modulus of that sequence. We denote the growth
modulus of ∥·∥ by G∥·∥(r). Explicitly, G∥·∥(r) : [0, 1] → R is the function

G∥·∥(r) = sup
n⩾ 0

(∥∥∥∥(xn
)∥∥∥∥ · rn

)
.

We call r ∈ [0, 1] a regular (resp. critical) value for the norm ∥·∥ if it is
regular (resp. critical) with respect to the sequence (

∥∥(x
n

)∥∥)n⩾ 0.
The connection between the growth modulus of ∥·∥ and the study of the

norm itself comes from the work of Mahler. We recall the basic facts about
the Mahler basis.

Theorem 6.2 (Mahler [12]). — Any f ∈ C(Zp) can be written as

f(x) =
∞∑
n=0

an ·
(
x

n

)
where limn→∞ an = 0 and the sum converges to f in the sup norm. More-
over, ∥f∥∞ = maxn|an|p.

The following proposition immediately follows.

Proposition 6.3. — Let M be the smallest number such that ∥·∥ ⩽
M · ∥·∥∞. Then

M = G∥·∥(1) = sup
n⩾ 0

∥∥∥∥(xn
)∥∥∥∥.
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We note that by Proposition 3.4, if ∥·∥ is a translation invariant norm
on C(Zp) which is dominated by ∥·∥∞ and normalized at 1Zp

(x), then
∥·∥ = ∥·∥∞ if and only if M = 1.

We conclude this subsection with the following proposition.

Proposition 6.4. — Let ∥·∥ be a norm on C(Zp) dominated by the sup
norm. Let q ∈ Cp with r := |q − 1|p < 1. Then ∥qx∥ ⩽ G∥·∥(r). Moreover,
if r is a regular value for the norm ∥·∥ then

∥qx∥ = G∥·∥(r).

Proof. — Using the Mahler expansion of the function qx and the non-
archimedean triangle inequality,

(6.1) ∥qx∥ =

∥∥∥∥∥
∞∑
k=0

(q − 1)k
(
x

k

)∥∥∥∥∥ ⩽ sup
k⩾ 0

(
|q − 1|kp

∥∥∥∥(xk
)∥∥∥∥) = G∥·∥(r).

If r = |q − 1|p is a regular value, there exists n ⩾ 0 such that

rn
∥∥∥∥(xn

)∥∥∥∥ > rm
∥∥∥∥(xm

)∥∥∥∥
for any m ̸= n, and therefore we have an equality instead of inequality
in (6.1). □

Example. —
(1) The growth modulus of the sup norm is constant G∥·∥(r) = 1.
(2) Assume that ∥·∥ is invariant under multiplication by smooth char-

acters, normalized at 1Zp(x), and that G∥·∥(1) > 1. Then, for any
N large enough and ζ a root of unity of order pN , r = |ζ − 1|p
is a critical value for the norm ∥·∥. Indeed, for N large enough,
G∥·∥(r) > 1 while ∥ζx∥ = 1, so r is a critical value by the previous
proposition.

Remark 6.5. — In general, ∥qx∥ is not a function of |1 − q|p, i.e. it might
be the case that ∥qx1 ∥ ≠ ∥qx2 ∥ while |q1 − 1|p = |q2 − 1|p.

6.2. q-Mahler bases

We briefly recall the q-analog terminology, the q-Mahler bases and the
expansion formula for exponents in these bases. This subsection is self
contained. For a more thorough exposition to the q-analog formalism and
its properties we refer to [2, 9]. For more on the q-analog of the Mahler
basis see [3].
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Let q be an indeterminate. The q-analog of the natural number n is the
following expression in Z[q]

[n]q = 1 − qn

1 − q
= 1 + q + · · · + qn−1.

The q-analog of the factorial of n is

[n]q! = [1]q · [2]q · . . . . · [n]q

and the q-binomial coefficients, also known as Gaussian binomial coeffi-
cients, are defined by the analogous formula[

n

k

]
q

= [n]q!
[k]q! · [n− k]q!

whenever 0 ⩽ k ⩽ n, and zero otherwise. The q-Pochhammer symbol is the
expression

(a; q)n =
n−1∏
i=0

(
1 − aqi

)
.

When a = q we get

(q; q)n =
n∏
i=1

(
1 − qi

)
.

By expanding the terms in the definition, it is easy to verify that[
n

k

]
q

= (q; q)n
(q; q)k(q; q)n−k

.

The q-Pascal identity

(6.2)
[
n+ 1
k + 1

]
q

=
[

n

k + 1

]
q

+ qn−k ·
[
n

k

]
q

,

implies, by induction, that
[
n
k

]
q

is a polynomial in q with integer coefficients.
From now on q will not be an indeterminate but an element in Cp such

that |q − 1|p < 1. The map n 7→
[
n
k

]
q

is continuous with respect to the
p-adic topologies on Z and on Cp, and therefore extends to a map x 7→

[
x
k

]
q

that lies in C(Zp).
Since for any x ∈ N the expression

[
x
k

]
q

is a polynomial with integral
coefficients in q, we have |

[
x
k

]
q
| ⩽ 1. By continuity, ∥

[
x
k

]
q
∥ ⩽ 1. Substituting

x = k we see that ∥∥∥∥∥
[
x

k

]
q

∥∥∥∥∥
∞

= 1.
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Note that if q is not a root of unity the term (q; q)k is nonzero for any
k, so [

x

k

]
q

=
(
1 − qx−(k−1)) ·

(
1 − qx−(k−2)) · · · · · (1 − qx)

(1 − q) (1 − q2) . . . (1 − qk) .

We will need two results about q-binomial functions. The first is the q-
analog of Mahler’s theorem. The second is the expansion of an exponent
ζx with respect to the q-Mahler basis. Both results appear in [3], the first
is a combination of Theorem 3.3 and Theorem 4.1, and the second is the
example at the beginning of page 14. For completeness we will prove both
results.

Theorem 6.6. — Let q ∈ Cp with |q − 1|p < 1. Then for any function
f ∈ C(Zp) there exists a unique sequence (an)∞

n=0 of numbers in Cp such
that the series

∞∑
k=0

ak

[
x

k

]
q

converges in the sup norm to f (in particular limk→∞ ak = 0). Moreover,

∥f∥∞ = max
k⩾ 0

|ak|p.

Proof. — Consider the operator T = ∆
qx on C(Zp), where ∆ is the forward

difference operator. Thus,

Tf(x) = f(x+ 1) − f(x)
qx

.

We begin by showing that for any f ∈
Con(Zp), the sequence (Tnf(0))∞

n=0 converges to zero. Afterwards we will
construct the sequence (an)∞

n=0 from (Tnf(0))∞
n=0.

Recall that |q − 1|p < 1, and denote r = |q − 1|p. Denote r = |q − 1|p
and recall the assumption that r < 1. We consider the quotient space

W = {f ∈ C(Zp) | ∥f∥∞ ⩽ 1}/{f ∈ C(Zp) | ∥f∥∞ ⩽ r} .

Its elements can be realized as locally constant functions on Zp with values
in OCp/(q− 1)OCp . Since the operator T is norm reducing, i.e. ∥T (f)∥∞ ⩽
∥f∥∞ for any f ∈ C(Zp), T induces an operator on W . Since the image of
qx in W is the constant function 1, the operator T reduces in W to the
forward difference operator ∆. If v ∈ W , there exists some number N such
that ∆pN

v = 0. Thus, for any functions f ∈ C(Zp) there exists N > 0 such
that ∥∥∥T pN

f
∥∥∥

∞
⩽ r · ∥f∥∞.
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Together with the fact that T is norm reducing, it follows that

lim
n→∞

∥Tnf∥∞ = 0.

In particular, limn→∞ Tnf(0) = 0.
By rearranging the q-Pascal identity (6.2) we get

q(
k
2)[n+1

k

]
q

− q(
k
2)[n

k

]
q

qn
= q(

k−1
2 )
[

n

k − 1

]
q

.

Continuity with respect to n implies that

T

(
q(

k
2)
[
x

k

]
q

)
= q(

k−1
2 )
[

x

k − 1

]
q

for any k ⩾ 1. When k = 1 the function q0[x
0
]
q

is just the constant function
1, and clearly T (1) = 0.

Let f ∈ C(Zp) and denote an = q(
n
2)(Tnf)(0). The series

h(x) =
∞∑
k=0

ak

[
x

k

]
q

converges in C(Zp), and we have

Tnh(0) = Tnf(0),

for any n ⩾ 0. Since h(0) = f(0), it follows that h(n) = f(n) for any n ⩾ 0.
By continuity we must have h = f . Thus,

f(x) =
∞∑
k=0

(T kf)(0)q(
k
2)
[
x

k

]
q

.

This formula implies that ∥f∥∞ ⩽ maxk|ak|p. The inequality in the other
direction follows from the fact that T is norm-reducing, so

|ak|p = |(Tnf)(0)|p ⩽ ∥Tnf∥∞ ⩽ ∥f∥∞. □

Definition 6.7. — We denote

[ζ, q]k = (ζ − 1)
(
ζ − q1) . . . (ζ − qk−1) = (−1)k · q(

k
2) ·
(
ζ; q−1)

k
,

for k > 0 and [ζ, q]0 = 1.

Corollary 6.8. — Let ζ, q ∈ Cp with |q − 1|p < 1 and |ζ − 1|p < 1.
Then

ζx =
∞∑
k=0

[ζ, q]k ·
[
x

k

]
q

.
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Proof. — We have T 0(ζx)(0) = ζ0 = 1 = [ζ, q]0. Compute

T (ζx) = ζx+1 − ζx

qx
= (ζ − 1)

(
ζ

q

)x
.

By induction:

T k (ζx) = (ζ − 1)
(
ζ

q
− 1
)
. . .

(
ζ

qk−1 − 1
)(

ζ

qk

)x
.

By the proof of Theorem 6.6, the coefficient of
[
x
k

]
q

in the expansion of ζx
is

q(
k
2) ·
(
T kf

)
(0) = q(

k
2)(ζ − 1)

(
ζ

q
− 1
)
. . .

(
ζ

qk−1 − 1
)(

ζ

qk

)0

= (ζ − 1)(ζ − q) . . .
(
ζ − qk−1) . □

6.3. The p-adic valuation of (ζ; ζ)n when ζ is a root of unity

Fix N ∈ N and let ζ be a primitive pNth root of unity in Cp. In this
subsection we study the p-adic valuation of the expression

(ζ; ζ)n = (1 − ζ)
(
1 − ζ2) . . . (1 − ζn)

for 1 ⩽ n < pN . We will use the following notation.

Definition 6.9.
(1) We denote by ℓp : R>0 → R the real logarithm to the base p.
(2) For a ∈ Cp, we denote its valuation by vp(a) = −ℓp(|a|p).

It will be convenient to denote λ = vp(1 − ζ) = 1
pN−1(p−1) .

Proposition 6.10. — Let 1 ⩽ n < pN , and let d be the largest integer
such that pd ⩽ n. Then

λ−1vp((ζ; ζ)n) =
d∑
k=0

pk
(⌊

n

pk

⌋
−
⌊

n

pk+1

⌋)
.

Proof. — Let 1 ⩽ i ⩽ n and write i = pku, where p ∤ u. Note that k ⩽ d.
Then

vp
(
1 − ζi

)
= 1
pN−k(p− 1) = pkλ.

There are exactly ⌊ n
pk ⌋−⌊ n

pk+1 ⌋ numbers between 1 and n that are divisible
by pk but not by pk+1. Therefore,

vp((ζ; ζ)n) =
n∑
i=1

vp
(
1 − ζi

)
=

d∑
k=0

λpk ·
(⌊

n

pk

⌋
−
⌊

n

pk+1

⌋)
. □
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Proposition 6.11. — Let 1 ⩽ n < pN , and let d be largest integer
such that pd ⩽ n. Then

(6.3) λ−1vp((ζ; ζ)n) ⩾ p− 1
p

dn

Proof. — Rewrite (6.3) as

λ−1vp((ζ; ζ)n) = n+
d∑
k=1

(
pk − pk−1) ⌊ n

pk

⌋
.

Note that

pd − 1 =
d∑
k=1

(
pk − pk−1) .

Then

n+
d∑
k=1

(
pk − pk−1) ⌊ n

pk

⌋

= n−
(
pd − 1

)
+

d∑
k=1

(
pk − pk−1)(⌊ n

pk

⌋
+ 1
)

⩾ n+ 1 − pd +
d∑
k=1

(
pk − pk−1) n

pk

= n+ 1 − pd +
d∑
k=1

(
1 − 1

p

)
n

= n+ 1 − pd + p− 1
p

dn.

The claim follows from the assumption that n ⩾ pd. □

Proposition 6.12. — Assume that N > 2, and let p2 ⩽ n < pN . Then

λ−1vp((ζ; ζ)n) ⩾ 1
4nℓp(n).

Proof. — For any prime p, p−1
p ⩾ 1

2 . Let d be the largest integer such
that pd ⩽ n. Then d+ 1 > ℓp(n) ⩾ 2, so

d > ℓp(n) − 1 ⩾
1
2ℓp(n).

Together with Equation (6.3),

λ−1vp((ζ; ζ)n) ⩾ p− 1
p

dn ⩾
1
2dn ⩾

1
4nℓp(n). □
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6.4. Completing the proof of Theorem 4.4 for Zp

Let ∥·∥ be a norm on C(Zp), dominated by the sup norm, normalized
at 1Zp

(x) and invariant under multiplication by smooth characters of Zp.
We let M be the smallest positive number such that ∥·∥ ⩽ M · ∥·∥∞. Let
G∥·∥(r) be the growth modulus of ∥·∥. We need to show that M = 1.
Supposing that G∥·∥(1) > 1 and reaching a contradiction is enough thanks
to Proposition 6.3.

By the assumption that G∥·∥(1) > 1, the continuity of G∥·∥(r) and the
density of regular values (Lemma 6.1), there exists h ∈ Cp such that s :=
|h|p < 1 is a regular value for the norm ∥·∥ and such that G∥·∥(s) > 1. We
may also assume that s ⩾ p−1/(p−1). The last assumption can be written
as ℓp( 1

s ) ⩽ 1
p−1 . Recall that ℓp denotes the real logarithm to base p. We fix

such h and denote s = |h|p. We remark that h and s depend only on the
norm ∥·∥.

From now on, ζ denotes a primitive pN th root of unity and N is assumed
to be very large (in a way that will be made explicit below). We denote
λ = vp(1 − ζ) and let q = ζ + h.

Thus, h is fixed and ζ is at our disposal, close as we wish to the circum-
ference of the unit disc around 1, and q varies with ζ at a fixed distance s
from it.

The idea of the proof is to use the expansion

ζx =
∞∑
k=0

[ζ, q]k ·
[
x

k

]
q

to show, under the assumption that N is very large, that

(6.4)

∥∥∥∥∥[ζ, q]1 ·
[
x

1

]
q

∥∥∥∥∥ >
∥∥∥∥∥[ζ, q]k ·

[
x

k

]
q

∥∥∥∥∥
for any k ̸= 1. Then, by the strong triangle inequality,

∥ζx∥ =

∥∥∥∥∥[ζ, q]1 ·
[
x

1

]
q

∥∥∥∥∥ >
∥∥∥∥∥[ζ, q]0 ·

[
x

0

]
q

∥∥∥∥∥ = ∥1(x)∥ = 1

which is a contradiction to the assumption that ∥·∥ is invariant under mul-
tiplication by ζx and normalized at 1Zp

(x).
The proof of (6.4) will be divided into three cases. The first, k = 0, is

the easiest. The second and third cases are when 1 < k < 1
λℓp(

1√
s
) and

k ⩾ 1
λℓp(

1√
s
) respectively. In each of these cases we will need to use different

types of inequalities.
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Proposition 6.13. — We have that ∥qx∥ = G∥·∥(s) and ∥qax∥ ⩽ ∥qx∥
for any a ∈ Zp.

Proof. — Write

qx = (ζ + h)x = ζx
(

1 + h

ζ

)x
.

Since ∥·∥ is invariant under multiplication by smooth characters∥∥∥∥ζx(1 + h

ζ

)x∥∥∥∥ =
∥∥∥∥(1 + h

ζ

)x∥∥∥∥.
Since |h/ζ|p = |h|p = s is a regular value for the norm ∥·∥, we have, by
Proposition 6.4, an equality∥∥∥∥(1 + h

ζ

)x∥∥∥∥ = G∥·∥(s).

Thus, ∥qx∥ = G∥·∥(s). To show that ∥qax∥ ⩽ ∥qx∥ we use the same trick.
Write

∥qax∥ = ∥(ζ + h)ax∥ =
∥∥∥∥ζax ·

(
1 + h

ζ

)ax∥∥∥∥
=
∥∥∥∥(1 + h

ζ

)ax∥∥∥∥ = ∥(1 + h′)x∥,

where h′ = (1 + h/ζ)a − 1. Then |h′|p ⩽ |h|p. Since G∥·∥(r) is monotone
increasing, and by Proposition 6.4,

∥qax∥ = ∥(1 + h′)x∥ ⩽ G(|h′|p) ⩽ G(|h|p) = ∥qx∥. □

Proposition 6.14. — Assume that |1 − ζ|p > s.
(1) Let s < r < 1. Then for any 1 ⩽ i ⩽ 1

λℓp(
1
r )

|1 − qi|p = |1 − ζi|p ⩾ r.

(2) For any 1 < k ⩽ 1
λℓp(

1√
s
)

|[ζ, q]k|p ⩽
√
s · |(q; q)k|p

Proof. — First, recall our assumption that ℓp( 1
s ) ⩽ 1

p−1 . Then

1
λ
ℓp

(
1
r

)
⩽

1
λ
ℓp

(
1
s

)
⩽

1
(p− 1)λ = pN−1,

for any s < r < 1. In particular, any indices i and k that appear in this
proof are in {0, 1, . . . , pN − 1}, so the expressions ζi, ζk are not equal to 1.
Second, note that if N is not large enough, the interval [1, 1

λℓp(
1
r )] may be

empty.
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(1) For any i ⩾ 1,
∣∣ζi − qi

∣∣
p
⩽ |ζ − q|p = s < r. The condition i ⩽ 1

λℓp(
1
r )

is equivalent to
r ⩽ p−λi = |ζ − 1|ip.

Write i = apk with p ∤ a. Then∣∣1 − ζi
∣∣
p

=
∣∣∣1 − ζp

k
∣∣∣
p

= |1 − ζ|p
k

p ⩾ |1 − ζ|ip ⩾ r.

Thus, ∣∣1 − qi
∣∣
p

=
∣∣(ζi − qi) + (1 − ζi)

∣∣
p

= |1 − ζi|p ⩾ r.

(2) We use part (1) with r =
√
s > s. Then,

|1 − qi|p = |1 − ζi|p ⩾
√
s > s,

for all 1 ⩽ i ⩽ 1
λℓp(

1√
s
). If in addition i > 1, then by writing ζ − qi =

(ζ − q) + q(1 − qi−1) we see that

|ζ − qi|p = |q
(
1 − qi−1)|p = |1 − qi−1|p.

Let 1 < k ⩽ 1
λℓp(

1√
s
). Then

[ζ, q]k
(q; q)k

=
(ζ − 1)(ζ − q)(ζ − q2) . . .

(
ζ − qk−1)

(1 − q) (1 − q2) (1 − q3) . . . (1 − qk)

= (ζ − 1)(ζ − q)
(1 − qk−1) (1 − qk) ·

(
ζ − q2

1 − q

)
·
(
ζ − q3

1 − q2

)
· · · · ·

(
ζ − qk−1

1 − qk−2

)
(Note that (q; q)k ̸= 0). Using the equality |ζ − qi|p = |1 − qi−1|p for any
2 ⩽ i ⩽ k − 1 we see that

|[ζ, q]k|p
|(q; q)k|p

= |(ζ − 1)|p|(ζ − q)|p
|(1 − qk−1)|p|(1 − qk)|p

.

By part (1), |1 − qk|p ⩾
√
s and |1 − qk−1|p ⩾

√
s. Moreover, since one

of k or k − 1 is not divisible by p, the p-adic absolute value of one of
them is equal to |1 − q|p. The assumption that |ζ − 1|p > s implies that
|ζ − 1|p = |q − 1|p. Thus,

|[ζ, q]k|p
|(q; q)k|p

⩽
|ζ − 1|p · s

|ζ − 1|p ·
√
s

=
√
s. □

Proof of (6.4). — Let N be a positive integer, ζ a primitive pNth root
of unity, and denote

α = 1
2λℓp

(
1√
s

)
= 1

2p
N−1(p− 1)ℓp

(
1√
s

)
.

We assume that N is large enough so that the following conditions hold.
(1) |1 − ζ|p > s.

TOME 0 (0), FASCICULE 0



40 Amit OPHIR

(2) α > p2.
(3) λ

4αℓp(α) ⩾ ℓp( M√s ). Note that λ
4αℓp(α) = A · ℓp( 1

λ ) +B where A =
1
8ℓp(

1√
s
) > 0 and B = A · ℓp( 1

2ℓp(
1√
s
)). Note that B and ℓp( M√s ) do

not depend on ζ.
Under these assumptions we will show that∥∥∥∥∥[ζ, q]1 ·

[
x

1

]
q

∥∥∥∥∥ >
∥∥∥∥∥[ζ, q]k ·

[
x

k

]
q

∥∥∥∥∥
for any k ̸= 1.

We begin by showing that ∥
[
x
1
]
q
∥ = ∥qx∥ > 1. Indeed, by the assumption

that |ζ − 1| > s we have that |ζ − 1| = |q − 1|. Thus,∥∥∥∥∥[ζ, q]1 ·
[
x

1

]
q

∥∥∥∥∥ =
∥∥∥∥(ζ − 1)1 − qx

1 − q

∥∥∥∥ = ∥1 − qx∥.

By Proposition 6.13, ∥qx∥ = G∥·∥(s) > 1. Therefore,

∥1 − qx∥ = ∥qx∥ > 1.

Assume that k = 0. Then∥∥∥∥∥[ζ, q]0 ·
[
x

0

]
q

∥∥∥∥∥ =
∥∥1Zp

(x)
∥∥ = 1.

Assume 1 < k ⩽ 1
λℓp(

1√
s
). By part (2) of Proposition 6.14 and by Propo-

sition 6.13,∥∥∥∥∥[ζ, q]k ·
[
x

k

]
q

∥∥∥∥∥
= |[ζ, q]k|p

|(q; q)k|p
·
∥∥(qx − 1) (qx − q) . . .

(
qx − qk−1)∥∥ ⩽

√
s · ∥qx∥ < ∥qx∥

=

∥∥∥∥∥[ζ, q]1 ·
[
x

1

]
q

∥∥∥∥∥.
Assume that k > 1

λℓp(
1√
s
). Let m be an integer with

1
2λℓp

(
1√
s

)
⩽ m <

1
λ
ℓp

(
1√
s

)
.

Such an integer exists, since 1
λℓp(

1√
s
) > 2p2 > 4. As k > m, |[ζ, q]k|p

⩽ |[ζ, q]m|p. By the second and first parts of Proposition 6.14 we have

|[ζ, q]m|p ⩽
√
s · |(q; q)m|p =

√
s · |(ζ; ζ)m|p.
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Since m > p8 we can apply Proposition 6.12, and together with the as-
sumption that m ⩾ α we get

ℓp(|(ζ; ζ)m|p) ⩽ −λ

4mℓp(m) ⩽ −λ

4αℓp(α) ⩽ −ℓp
(
M√
s

)
.

In the last inequality we used our assumption (3). Then |(ζ; ζ)m|p ⩽
√
s

M .
Therefore,

|[ζ, q]k|p ⩽
√
s · |(ζ; ζ)m|p ⩽

√
s ·

√
s

M
= s

M
.

Finally, ∥∥∥∥∥[ζ, q]k ·
[
x

k

]
q

∥∥∥∥∥ ⩽ |[ζ, q]k|p ·M ⩽ s < 1 <

∥∥∥∥∥[ζ, q]1 ·
[
x

1

]
q

∥∥∥∥∥.
This completes the proof of (6.4), hence of Theorem 4.4 for Zp. □

7. Further discussion about H-invariant norms on S

This section is motivated by the search for other minimal invariant norms
on S. In addition, Proposition 7.9 is a generalization of the discontinuity
of the Fourier transform proved in [14] to finite families of intertwining
operators.

By now we have constructed two types of H-invariant norms on S: the
family of minimal norms {∥·∥α | α ∈ Gr}, and, for each nonzero f ∈ S,
the maximal invariant norm at f which we denoted by ∥·∥f . The latter
belong to the maximal equivalence class of H-invariant norms. Given any
subset I ⊂ Gr, we can form the norm supα∈ I∥·∥α. The supremum exists
since all the ∥·∥α, being normalized at 1Zd

p
(x), are bounded from above by

the maximal invariant norm at 1pdZp
(x). In this section we consider finite

families I ⊂ Gr and the norms

∥·∥I := max
α∈ I

∥·∥α,

and answer the question: are there new minimal norms that lie below
∥·∥I? We show that the answer is negative. In fact, we will show the fol-
lowing.

Theorem 7.1.
(1) Let I, J ⊂ Gr be distinct finite subsets. Then ∥·∥I and ∥·∥J are not

equivalent.
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(2) Let ∥·∥ be an H-invariant norm which is dominated by ∥·∥I , where
I ⊂ Gr is finite. Then there exists J ⊆ I such that ∥·∥ is equivalent
to ∥·∥J .

(3) If I1, I2 ⊂ Gr are finite and disjoint, there does not exist any H-
invariant norm on S which is dominated by both ∥·∥I1

and by ∥·∥I2
.

Clearly, (1) implies that the J ⊂ I in (2) is unique, and (1) and (2)
imply (3). If Lα is the unit ball of ∥·∥α, the meaning of (3) is that if we
put LI =

⋂
α∈ I Lα, then LI1 + LI2 = S.

We will also show that any norm of the form ∥·∥I , where I ⊂ Gr is finite,
is equivalent to a norm which is locally maximal at some vector.

To prove these results, we introduce a notion of independence of norms.

7.1. Independence of norms

The setting in this sub-section is general. Let V be a vector space over
Cp.

Proposition 7.2. — Let ∥·∥1, ∥·∥2 be two norms on V . The following
are equivalent.

(1) There exists no (nonzero) seminorm on V which is dominated by
both ∥·∥1 and ∥·∥2.

(2) The diagonal map

V → V∥·∥1
⊕ V∥·∥2

has a dense image, where the norm on the right hand side is (v, w) 7→
max(∥v∥1, ∥w∥2).

(3) Let L1, L2 be the closed unit balls of ∥·∥1, ∥·∥2 respectively. Then
L1 + L2 = V .

Proof. — We will show that each of (1) and (2) is equivalent to (3). If
To show that (1) and (3) are equivalent, note that the gauge of L1 + L2 is
either zero, if L1 + L2 = V , or defines a nonzero seminorm ∥·∥′ on V . The
seminorm ∥·∥′ is dominated by both ∥·∥1 and ∥·∥2, and any seminorm that
is dominated by both ∥·∥1 and ∥·∥2 is also dominated by ∥·∥′. From this it
follows that (1) and (3) are equivalent.

We now show that (2) and (3) are equivalent. It is easy to see that (2)
is equivalent to the statement that for any w ∈ V and ϵ > 0 there exists
v ∈ V such that ∥v − w∥1 < ϵ and ∥v∥2 < ϵ. This statement is equivalent
to the claim that any w ∈ V can be written as w = v1 + v2 with ∥v1∥1 < ϵ

and ∥v2∥2 < ϵ, and this is equivalent to (3). □
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Definition 7.3. — We say that two norms ∥·∥1, ∥·∥2 on V are inde-
pendent if one of the equivalent conditions of the previous proposition is
satisfied.

The following Proposition is left as an exercise to the reader.

Proposition 7.4. — Assume that V is an irreducible representation of
a group G, and ∥·∥1, ∥·∥2 ∈ N (V )G. Then ∥·∥1 and ∥·∥2 are independent
if and only if there exists no G-invariant norm on V that is dominated by
both ∥·∥1 and ∥·∥2.

Definition 7.5. — We say that the norms ∥·∥1, . . . , ∥·∥n on V are
independent if for any 1 ⩽ i ⩽ n the two norms:

∥·∥i and max
1 ⩽ j⩽n
j ̸= i

∥·∥j

are independent.

Note that if ∥·∥1, . . . , ∥·∥n are independent, so is any subset of them.

Proposition 7.6. — Let ∥·∥1, . . . , ∥·∥n be norms on V . The following
are equivalent.

(1) ∥·∥1, . . . , ∥·∥n are independent.
(2) The diagonal embedding

V
△−−→

n⊕
i=1

V∥·∥i

has a dense image.
(3) For any two disjoint sets I, J ⊂ {1, 2, .., n} the norms

max
i∈ I

∥·∥i and max
j ∈ J

∥·∥j

are independent.

Proof. — As (1) is a particular case of (3), it remains to show (1)⇒(2)⇒
(3). We will prove this by induction on n. The case n = 2 is essentially
Proposition 7.2.

Assume (1). By the assumption and Proposition 7.2, the diagonal map

V → V∥·∥1
⊕ Vmax1 < i ⩽ n∥·∥i

has a dense image. The norms ∥·∥2, . . . , ∥·∥n are also independent and by
the induction hypothesis the map

Vmax1 < i ⩽ n∥·∥i
→

⊕
1< i⩽n

V∥·∥i
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is an isomorphism. Thus, V →
⊕

1 ⩽ i⩽n V∥·∥i
also has a dense image.

Assume (2) and let I, J ⊂ {1, . . . , n} be non-empty disjoint subsets.
We may assume that I ∪ J = {1, . . . , n}. Denote ∥·∥I = maxi∈ I∥·∥i and
∥·∥J = maxj ∈ J∥·∥j . Consider the maps:

V
△−→ V∥·∥I

⊕ V∥·∥J
→

⊕
1 ⩽ i⩽n

V∥·∥i
.

By the induction hypothesis, the second arrow is an isometric isomorphism.
The first arrow ∆ therefore has a dense image, so (3) follows from Propo-
sition 7.2. □

7.2. Proofs of the claims in this section

Proposition 7.7. — Let I ⊂ Gr be a finite subset. The norms {∥·∥α | α
∈ I} are independent.

Proof. — The proof is by induction on the size of the set I. If |I| = 1
there is nothing to prove. Assume that |I| = n > 1. Let α ∈ I, we need to
show that the two norms

∥·∥α and ∥·∥I\{α} := max
β ∈ I\{α}

∥·∥β

are independent. By Theorem 4.3 and Proposition 7.4 it is enough to prove
that ∥·∥I\{α} does not dominate ∥·∥α. Suppose, for a contradiction, that
∥·∥α ⪯ ∥·∥I\{α}. By the induction hypothesis, there is an isometry

SI\{α}
∼−→

⊕
β ∈ I\{α}

S∥·∥β
.

Thus, we obtain a nonzero map⊕
β ∈ I\{α}

S∥·∥β
→ S∥·∥α

.

Then there exists β ∈ I\{α} such that the reduced map S∥·∥β
→ S∥·∥α

is
nonzero. By Theorem 4.5 we have α = β, a contradiction. □

Corollary 7.8. — Let I ⊂ Gr be a finite subset. The norm ∥·∥I is
equivalent to a locally maximal norm (with respect to some vector).

Proof. — Since the norms {∥·∥α | α ∈ I} are independent, it follows by
Proposition 7.6 that

S∥·∥ ≃
⊕
α∈ I

S∥·∥α
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are isomorphic Banach representations (and even isometrically isomorphic).
By Theorem 4.5, the spaces {S∥·∥α

| α ∈ I} are pairwise non-isomorphic.
By Proposition 3.18,

⊕
α∈ I S∥·∥α

has a strongly cyclic vector, and by The-
orem 3.11, ∥·∥ is equivalent to a locally maximal norm. □

Proof of Theorem 7.1. — As already noted, (3) follows from (1) and (2).
(1) follows from the fact that the ∥·∥α are independent (Proposition 7.7)
and by Proposition 7.6. We prove (2) by induction on the size of I. When
|I| = 1 the claim follows from Theorem 4.3. Assume that |I| = n > 1,
and that the claim is true for all subsets of Gr of size < n. Let ∥·∥ be
an H-invariant norm on S that is dominated by ∥·∥I . Then ∥·∥ extends
to an H-invariant seminorm on the completion S∥·∥I

, which, by the inde-
pendence of the ∥·∥α, is isometrically isomorphic to

⊕
α∈ I S∥·∥α

via the
diagonal embedding. By Proposition 3.18, the kernel of ∥·∥ is of the form⊕

α∈K S∥·∥α
for some subset K ⊂ I. Using the diagonal embedding, this

means that ∥·∥ is already dominated by ∥·∥I\K . If K is non-empty, then
|I\K| < |I| and the claim is true by the induction hypothesis. Assume that
K is empty. Then ∥·∥ is a norm on

⊕
α∈ I S∥·∥α

. We want to show that in
this case ∥·∥ is equivalent to ∥·∥I . Choose α ∈ I and denote J = I\{α}. By
Theorem 4.3, the restriction of ∥·∥ to the component S∥·∥α

is of the form
rα · ∥·∥α. Similarly, the seminorm on S∥·∥α

, obtained from ∥·∥ by taking the
quotient of

⊕
α∈ I S∥·∥α

by
⊕

β ∈ J S∥·∥β
is of the form sα · ∥·∥α. Clearly,

sα ⩽ rα. We claim that 0 < sα. By the induction hypothesis, the restric-
tion of ∥·∥ to the component

⊕
β ∈ J S∥·∥β

is equivalent to ∥·∥J . It follows
that

⊕
β ∈ J S∥·∥β

is a closed subspace of
⊕

α∈ I S∥·∥α
with respect to the

topology induced by ∥·∥. Therefore, sα · ∥·∥α is a norm, so sα > 0. This is
true for any α ∈ I, so

max
α∈ I

(sα · ∥·∥α) ⩽ ∥·∥′ ⩽ max
α∈ I

(rα · ∥·∥α),

which shows that ∥·∥ is equivalent to ∥·∥I . □

Proposition 7.9. — Let g1, . . . , gn ∈ Sp2d(Qp) such that all the cosets
Pg1, . . . , Pgn are distinct. Let T1, . . . , Tn be intertwining operators corre-
sponding to g1, . . . gn respectively. The set

(7.1)
{

(T1(f), . . . Tn(f))
∣∣ f ∈ S

(
Qdp
)}

is dense in C0(Qdp)n.

Proof. — For each 1 ⩽ i ⩽ n, let αi = giP ∈ Gr. Consider the maps

S
(
Qdp
) △−−→

n⊕
i=1

S
(
Qdp
)

∥·∥αi

β−−→
n⊕
i=1

C0
(
Qdp
)
,
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where β(v1, . . . , vn) = (T1(v1), . . . , Tn(vn)). Note that β is not a map of
representations, but it is an isomorphism of Banach spaces. By Proposi-
tion 7.7 and Proposition 7.6, β ◦ △ has dense image in C0(Qdp). The image
of β ◦ △ is exactly (7.1). □

7.3. Open questions

We conclude with some open questions that we find interesting.

Question 7.10. — Does there exist an H-invariant norm on S which
does not dominate any of the norms ∥·∥α, for α ∈ Gr?

We find this question especially interesting, regardless of the answer. If
the answer is negative, the spaces {S∥·∥α

| α ∈ Gr} form a complete list of
the irreducible completions of S. If the answer is positive, constructing such
norms will require new ideas that could be useful in the study of Banach
representations of p-adic groups. In the latter case, we also ask

Question 7.11. — Does there exist another H-invariant norm on S, the
completion by which is an (strongly) irreducible Banach representation?

The last section gives a complete picture of those norms which are domi-
nated by some ∥·∥I , for a finite subset I ⊂ Gr. When I is not finite, we can
still define the norm ∥·∥I as before. Now it seems reasonable to consider
the topology of Gr.

Question 7.12. — Let I1, I2 be closed and disjoint subsets of Gr.
(1) Are the norms ∥·∥I1

and ∥·∥I2
independent?

(2) Is there a simple description of the completion S∥·∥I1
in terms of

the completions S∥·∥α
for α ∈ I1?

Finally, taking I = Gr, we ask

Question 7.13. — Does the norm supα∈ Gr∥·∥α belong to the maximal
equivalence class of H-invariant norms on S?
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