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SMOOTHLY KNOTTED AND TOPOLOGICALLY
UNKNOTTED NULLHOMOLOGOUS SURFACES IN

4-MANIFOLDS

by Rafael TORRES

Abstract. — We point out that recent constructions of inequivalent smooth
structures yield a manufacturing procedure of infinite sets of topologically isotopic
and pairwise smoothly inequivalent nullhomologous 2-spheres and 2-tori inside a
myriad of 4-manifolds. These surfaces bound a locally flat embedded handlebody
but not a smoothly embedded one, and include the first examples of nullhomotopic
2-spheres in closed 4-manifolds to display such behavior. We exhibit an example of
a locally flat non-smoothable embedding of a nullhomotopic 2-sphere in a closed
smooth simply connected 4-manifold.

Résumé. — On remarque que des constructions récentes de structures lisses
non équivalentes donnent lieu à une procédure de fabrication d’ensembles infinis
de 2-sphères et de 2-tores homologiquement triviaux, topologiquement isotopes et
deux à deux lissement non équivalent, à l’intérieur d’une myriade de 4-variétés.
Ces surfaces bordent un corps d’anses plongé localement plat, maîs qui ne peut
pas être plongé de manière lisse, et incluent les premiers exemples de 2-sphères
homotopiquement triviales dans des 4-variétés fermées ayant un tel comportement.
Nous donnons un exemple d’un plongement localement plat non lissifiable d’une
2-sphère homotopiquement triviale dans une 4-variété fermée, lisse et simplement
connexe.

1. Introduction and main result

All manifolds and embeddings in this paper are in the smooth category
unless it is otherwise specified. Two surfaces Σ1 and Σ2 embedded in a
4-manifold X are said to be equivalent if there is a diffeomorphism of pairs

(1.1) (X, Σ1) −→ (X, Σ2)

and inequivalent if there is no such map. The surface Σi is said to be
smoothly knotted if it does not bound an embedded handlebody H ⊂ X
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2 Rafael TORRES

up to isotopy. When the surfaces Σ1 and Σ2 are locally flat embedded in
a topological 4-manifold X, we say that they are topologically isotopic if
there is a homeomorphism of pairs as (1.1) that is isotopic to the iden-
tity map. Furthermore, we say that Σi is topologically unknotted if it
is topologically isotopic to a locally flat embedded surface Σ ⊂ X that
bounds a locally flat embedded handlebody H ⊂ X. Among the many
interesting four-dimensional phenomena is the existence of embedded sur-
faces Σi ↪→ X that are inequivalent within a fixed topological isotopy class.
We call such embeddings exotic embeddings. Fintushel–Stern introduced
a surgery procedure on an embedded 2-torus that results in infinite sets
of exotic embeddings of 2-tori with simply connected complement [19].
Finashin [16], Kim [35], and Kim–Ruberman [36, 37] used a variation of
Fintushel–Stern’s surgery procedure to construct exotic embeddings of sur-
faces whose complements have cyclic fundamental groups. Examples of ex-
otic embeddings of homologically essential 2-spheres have been constructed
by Akbulut [4], Auckly–Kim–Melvin–Ruberman [9], and Ruberman [46].
In [33, Theorem 1], Hoffman–Sunukjian exhibited infinite sets of exotic
embeddings of nullhomologous 2-tori that are topologically unknotted and
smoothly knotted, which arise from Fintushel–Stern’s knot surgery con-
struction [20].

While it is still unknown if there are exotic embeddings of topologi-
cally unknotted 2-spheres in the 4-sphere, we provide the first examples of
smoothly knotted/topologically unknotted nullhomotopic 2-spheres inside
closed 4-manifolds in this paper.

Theorem 1.1. — Let X be a closed symplectic 4-manifold that con-
tains a 2-torus T , which is either symplectic or homologically essential and
Lagrangian. Suppose that the normal bundle of T is trivial, and that both
X and X \ ν(T ) are simply connected.

• There is an infinite set of topologically isotopic 2-spheres

(1.2) {Si : i ∈ Z}

embedded in X#S2 × S2 that satisfy [Si] = 0 ∈ H2(X#S2 × S2;Z)
and 2-knot group π1(X#S2 × S2\ν(Si)) = Z for every i ∈ Z, and
which are pairwise inequivalent.

Performing surgery to X#S2 × S2 along each element of (1.2)
yields an infinite set {Xn(1) : n ∈ Z} of pairwise non-diffeomorphic
4-manifolds that are homeomorphic to X#S2 × S2#S1 × S3.
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DIFF KNOTTED/TOP UNKNOTTED 2-SPHERES 3

• Suppose that b2(X) ⩾ |σ(X)| + 6. There is a an infinite set of
topologically isotopic 2-tori

(1.3) {T ′
i : i ∈ N}

embedded in X that satisfy [T ′
i ] = 0 ∈ H2(X;Z) and π1(X\ν(T ′

i )) =
Z for every i ∈ Z, and which are pairwise inequivalent.

There is a torus surgery that can be performed to X along each
element of (1.3), which yields an infinite set {Xn(1) : n ∈ Z} of
pairwise non-diffeomorphic 4-manifolds that are homeomorphic to
X#S2 × S2#S1 × S3.

Each element of (1.2) and (1.3) is topologically unknotted and smoothly
knotted in X#S2 × S2 and X, respectively; see Section 3.1. For instance,
each element of (1.2) bounds a locally flat embedded 3-ball in X#S2 × S2

up to isotopy, but no element bounds an embedded 3-ball. The first part of
Theorem 1.1 was kindly suggested to us by Bob Gompf after an unsuccess-
ful attempt to construct inequivalent smooth structures on 4-manifolds that
lack an almost-complex structure à la Fintushel–Stern [18, Section 5]. Pre-
viously known examples of exotic embeddings require either for the 2-sphere
to be homologically essential, for the nullhomologous surfaces to have genus
equal to one or for the ambient 4-manifold to have non-empty boundary;
see Akbulut [4], Auckly–Kim–Melvin–Ruberman [9], Fintushel–Stern [19],
Mark [40], Kim–Ruberman [37], Hayden [31], Hoffman–Sunukjian [33],
Juhász–Miller–Zemke [34], Oba [43], Ruberman [46]. The second part of
Theorem 1.1 is verbatim a result of Hoffman–Sunukjian [33, Theorem 1.1].
Our contribution here is a different proof of their result, where the 2-tori
are distinguished using an invariant introduced by Fintushel–Stern [21, Sec-
tion 2].

Sunukjian provided conditions for the existence of a homeomorphism
of pairs (1.1) for two locally flat embedded surfaces Σi in a topological
4-manifold X [48, Section 7]. In the case the fundamental group of the
complement X \ ν(Σi) is cyclic, Sunukjian obtained a criteria to determine
when the surfaces are topologically isotopic [48, Theorems 7.1–7.4]. An-
other contribution of this paper is a criteria to determine the existence of a
homeomorphism of pairs for locally flat embedded 2-spheres in terms of the
homeomorphism classes of the 4-manifolds obtained by applying surgery to
them; see Section 2.2. The definition of product framing in the following
statement is given in Definition 2.2.

Theorem 1.2. — Let Xi be a closed connected orientable 4-manifold
that contains an embedded 2-torus T of self-intersection zero and fix a
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4 Rafael TORRES

framing ν(T ) → T 2 × D2. Let γi ⊂ T ⊂ Xi be an embedded loop whose
homotopy class is a generator of the group π1Xi = Z, which is assumed
to have the product framing for i = 1, 2. Let Xγi

be the closed connected
simply connected 4-manifold that is obtained by carving out a tubular
neighborhood ν(γi) of the loop γi ⊂ Xi and gluing back in a copy of
D2 × S2, and denote by Si := {0} × S2 ⊂ D2 × S2 be the belt 2-sphere of
the surgery.

The following statements are equivalent
(1) There is a homeomorphism

(1.4) X1 −→ X2.

(2) There is a homeomorphism of pairs

(1.5) f : (X1, γ1) −→ (X2, γ2).

(3) There is a homeomorphism of pairs

(1.6) F : (Xγ1 , S1) −→ (Xγ2 , S2).

Furthermore, a homeomorphism (1.6) taken as a homeomorphism F :
Xγ1 → Xγ2 is degree 1 normally bordant to the identity of Xγ2 .

The choice of framing is relevant as Gordon’s examples of topologi-
cally inequivalent 2-spheres inside S4 in [29] indicate. The utility of Theo-
rem 1.2 arises from a codimension three property of loops embedded in a
4-manifold: any two homotopic embeddings γj ↪→ X are isotopic [28, Def-
inition 1.1.5, Example 4.1.3]. In the situation of Theorem 1.1, there is a
diffeomorphism between Xγ1 and Xγ2 , and we regard the 2-spheres S1 and
S2 as embedded in Xγ2 . Work of Perron [44] and Quinn [45] allows us to
conclude that S1 is topologically isotopic to S2 in this case.

Hambleton–Teichner [30] and Friedl–Hambleton–Melvin–Teichner [25]
constructed closed orientable non-smoothable topological 4-manifolds with
fundamental group Z that are not homotopy equivalent to the connected
sum of a simply connected 4-manifold with S1 × S3. An interesting conse-
quence of their work is the following result.

Theorem 1.3. — There are locally flat embedded nullhomotopic 2-
spheres

(1.7) S, Σ ↪−→ 4CP2

that are concordant and whose exteriors are not homotopy equivalent.
While the embedding (1.7) can be taken to be smooth for S, the locally

flat embedding of Σ is not topologically isotopic to a smooth embedding.
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Theorem 1.3 exhibits the first example of a locally flat embedded null-
homotopic 2-sphere in a closed 4-manifold that is topologically concordant
but not topologically isotopic to a smooth embedding. Moreover, while
Freedman–Quinn [24, 11.7A Theorem] have shown that any 2-sphere in-
side S4 with infinite cyclic 2-knot group is topologically unknotted, The-
orem 1.3 points out that this unknotting phenomena need not occur for
2-spheres that are locally flat embedded in closed 4-manifolds with larger
second Betti number.

The cut-and-paste techniques considered in this paper yield several
choices of ambient manifolds as we sample in the following theorem.

Theorem 1.4. — Let X ∈ {S2 × S2, S1 × S3, S2 × T 2}. There is an
infinite set

(1.8) {T ′
i : i ∈ Z}

of pairwise smoothly inequivalent 2-tori embedded in X whose second ho-
mology class is [T ′

i ] = 0 ∈ H2(X;Z).
There is a an infinite set

(1.9) {Si : i ∈ Z}

of pairwise smoothly inequivalent 2-spheres embedded in X#S2×S2 whose
second homology class is [Si] = 0 ∈ H2(X#S2 × S2;Z).

Theorem 1.4 places torus surgeries and surgeries along as additions to the
list of constructions of examples of surfaces with interesting 2-knot group.
The latter include twist spinning surfaces in Kim [35] and the principle of
localized knotted of Hayden in[31]. Our proofs of Theorem 1.1 and Theo-
rem 1.4 are driven by recent constructions of inequivalent smooth structures
on closed simply connected 4-manifolds X with small second Betti num-
ber due to Akhmedov–Park [7, 8], Akhmedov–Baykur–Park [6], Baldridge–
Kirk [11, 12], Fintushel–Stern [22, 23], Fintushel–Stern–Park [17],
Szabó [49]. These results are based on performing torus surgeries (see Sec-
tion 2.1 for the definition) to a 4-manifold Y with non-trivial fundamental
group and non-trivial Seiberg–Witten invariants. Under the right condi-
tions, the toughest step in all of these constructions is arguably the com-
putation of the fundamental group. We observe that it is straight-forward
to produce a simply connected 4-manifold if one is willing to apply to Y

either a torus surgery of multiplicity zero or a surgery along a loop whose
homotopy class corresponds to a generator of the fundamental group; Sec-
tion 2.1 and Section 2.2. Performing either of these surgeries to Y comes
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6 Rafael TORRES

at the price of rendering useless the gauge theoretical invariants of the 4-
manifold produced for the purposes of discerning smooth structures. More-
over, in a myriad of instances, the 4-manifold obtained after the surgeries
is diffeomorphic to X and no inequivalent smooth structure is unveiled.
Nevertheless, our efforts are not entirely moot and we do obtain infinitely
many pairwise smoothly inequivalent nullhomologous surfaces inside X and
X#S2 × S2.

We organized the paper in the following way. The results that are in-
volved in the proofs of our theorems are contained in Section 2. A de-
scription of the cut-and-paste constructions of 4-manifolds that are used
is given in Section 2.1 and in Section 2.2. The latter contains a proof of
Theorem 1.2. Specific choices of surgeries as well as several diffeomorphisms
that are useful for our proof of Theorem 1.1 are given in Section 2.3. Proofs
of Theorem 1.1, Theorem 1.3 and Theorem 1.4 are given in Section 3.
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for patiently pointing out the need to rectify the proof of Lemma 1 in an
earlier version of the note. We thank Maggie Miller and Danny Ruberman,
and an anonymous referee for their suggestions that helped us improve the
note. We also thank Baptiste Morin and Alejandra Foggia for help with
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2. Tools and technology

2.1. Torus surgeries

Let T ↪→ X be an embedded 2-torus inside a closed smooth 4-manifold
X. Suppose that [T ]2 = 0 so that its tubular neighborhood ν(T ) is diffeo-
morphic to the thick torus T 2 × D2. A framing of T is a diffeomorphism

(2.1) ϕ : νT −→ T 2 × D2

such that ϕ−1(T 2 × {0}) = T . Consider the projection π : T 2 × D2 → T 2

and denote by {x, y} homotopy classes of loops that carry the generators
of the fundamental group π1(T ) = Zx ⊕ Zy. The push-offs of x and y are
loops on ∂ν(T ) given by

ANNALES DE L’INSTITUT FOURIER
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m = ϕ−1(π(x) × {d}) and l = ϕ−1(π(y) × {d})
for d ∈ ∂D2. The framing of T is encoded by the pair {m, l}, with m and l

being homologous to x and y, respectively, in ν(T ). The meridian µT of the
2-torus T in the complement X\ν(T ) is a fixed curve in the isotopy class
of {t} × ∂D2 ⊂ ∂ν(T ), and the group H1(∂ν(T );Z) = Z3 is generated by

(2.2) {m, l, µT }.

The surgery curve γ ⊂ ∂ν(T ) is the push off of a primitive loop in T .

Definition 2.1. — Let T ⊂ X be an embedded 2-torus with a fixed
framing (2.1) and a surgery curve γ ⊂ T . A (p, q, r)-torus surgery on T

along γ is the cut-and-paste operation that removes a copy of ν(T ) from X

and glues back a copy of T 2 × D2 to produce a closed smooth 4-manifold

(2.3) XT,γ(p, q, r) := (X\ν(T )) ∪φ (T 2 × D2)

where the common boundaries are identified by a diffeomorphism

(2.4) φ : T 2 × ∂D2 −→ ∂(X\ν(T ))

that satisfies

(2.5) φ∗([{pt} × ∂D2]) = p[m] + q[l] + r[µT ]

in H1(∂(X\ν(T ));Z) for integers p, q, and r. The integer r is known as the
multiplicity of the (p, q, r)-torus surgery.

The cut-and-paste construction of Definition 2.1 is also known as a
smooth logarithmic transformation in the literature [28, p. 83], [13, Sec-
tion 2.2]. A (p, q, r)-torus surgery (2.3) can be undone. The 4-manifold X

is recovered by applying a (p′, q′, r′)-torus surgery on the core torus

(2.6) T ′ ⊂ XT,γ(p, q, r)

for T ′ := T 2 × {0} ⊂ T 2 × D2 in (2.3) along a surgery curve γ′ ⊂
XT,γ(p, q, r). This is a local operation on the 4-manifold in the sense that

(2.7) XT,γ(p, q, r) \ ν(T ′) = X \ ν(T ).

If the 2-torus T and the surgery curve γ are essential in H2(X) and
H1(X\ν(T )), respectively, then the core 2-torus (2.6) is nullhomologous [23,
Section 3]. A nullhomologous 2-torus has a canonical framing known as the
nullhomologous framing. This is the framing of T such that ϕ−1

∗ ([T ×{d}]) ∈
ker i∗ for the inclusion map i : ∂ν(T ) → X \ ν(T ). In particular, the loops
{m, l} are nullhomologous in the complement.

TOME 0 (0), FASCICULE 0
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2.2. Surgeries along loops and 2-spheres

Let γ ⊂ X be a loop embedded in a closed smooth orientable 4-manifold
X. The tubular neighborhood ν(γ) is diffeomorphic to S1 × D3. There are
two choices of framing for γ given that π1(O(3)) = Z/2 [28, Section 4.1].
We pin down a specific choice of framing in the following definition.

Definition 2.2. — Let T ⊂ X be a 2-torus of self-intersection zero with
a fixed framing ν(T ) → T 2 × D2, and such that γ ⊂ T ⊂ X. The product
framing on the loop γ ⊂ X is the framing induced by the ν(T ) = T 2 × D2

product structure.

Now that a framing has been pinned down, we can unambiguously define
the 4-manifold obtained from X by doing surgery along γ in the following
definition.

Definition 2.3 ([28, Definition 5.2.1]). — A surgery on X along a
closed simple loop that is contained in an embedded T 2 × D2 ⊂ X is the
cut-and-paste procedure that removes a copy of ν(γ) from X and caps the
boundary off with a copy of D2 ×S2 to produce a closed smooth 4-manifold

(2.8) Xγ := (X\ν(γ)) ∪Id (D2 × S2)

using a diffeomorphism of the boundary that is isotopic to the identity
map.

Notice that the surgery of Definition 2.3 can be reversed. The belt 2-
sphere of the surgery (2.8) is an embedded 2-sphere S ↪→ Xγ of self-
intersection zero, and we recover the original 4-manifold as

(2.9) X = (Xγ\ν(S)) ∪Id (S1 × D3),

where the gluing diffeomorphism of the boundary is isotopic to the identity
map.

In the main constructions in this paper, the homotopy class of the belt
2-sphere is zero as we state in the following lemma.

Lemma 2.4. — Let X be a closed oriented 4-manifold and let γ ⊂ X be
an embedded loop whose homotopy class generates the fundamental group
π1X = Z. The belt 2-sphere S ⊂ Xγ of the surgery (2.8) is nullhomotopic.

By employing results of Freedman–Quinn [24, Section 9.3] on the ex-
istence and uniqueness of a tubular neighborhood of a submanifold of a
topological 4-manifold in the locally flat category allow, it is possible to
obtain a natural extension of these results to the locally flat category.

ANNALES DE L’INSTITUT FOURIER



DIFF KNOTTED/TOP UNKNOTTED 2-SPHERES 9

We now recall the statement of Theorem 1.2 from the introduction and
prove it.

Theorem 2.5. — Let Xi be a closed connected orientable 4-manifold
that contains an embedded 2-torus T of self-intersection zero and fix a
framing ν(T ) → T 2 × D2. Let γi ⊂ T ⊂ Xi be an embedded loop whose
homotopy class is a generator of the group π1Xi = Z, and which is assumed
to have the product framing for i = 1, 2 as in Definition 2.2. Let Xγi

be the closed connected simply connected 4-manifold that is obtained by
performing surgery along γi ⊂ Xi.

The belt 2-sphere Si := {0} × S2 ⊂ D2 × S2 of the surgery (2.8) is
nullhomotopic.

The following statements are equivalent
(1) There is a homeomorphism

(2.10) X1 −→ X2.

(2) There is a homeomorphism of pairs

(2.11) f : (X1, γ1) −→ (X2, γ2).

(3) There is a homeomorphism of pairs

(2.12) F : (Xγ1 , S1) −→ (Xγ2 , S2).

The homeomorphism of pairs (2.12) taken as a homeomorphism

(2.13) F : Xγ1 −→ Xγ2

is normally bordant to the identity of Xγ2 .

We follow closely work of Kim–Ruberman [37, Appendix, Proofs of The-
orem 1.2 and Theorem 1.3] in the proof of the result.

Proof. — The equivalence (1) ⇔ (2) follows from the codimension three
property of the submanifolds γi ⊂ Xi, which says that they are isotopic
if and only if they are homotopic [28, Example 4.1.3]. The homeomor-
phism (2.10) yields a homeomorphism of pairs (X1, γ1) → (X2, γ2): since
[γ1] = [γ2] ∈ π1(Xi), then the loops are isotopic.

We argue the equivalence (2) ⇔ (3). Assuming (2), we have the diagram

(2.14)

X1 \ ν(γ1) Id1−−−−→ Xγ1 \ ν(S1)yf0

yF0

X2 \ ν(γ2) Id2−−−−→ Xγ2 \ ν(S2).
Both horizontal homeomorphisms exist due to the local nature of the

cut-and-paste construction (2.8) and the vertical homeomorphism f0 on
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10 Rafael TORRES

the left-side of the diagram exists by the existence of the homeomor-
phism (2.11). We obtain a homeomorphism F0 : Xγ1 \ ν(S1) → Xγ2 \ ν(S2)
that extends to a homeomorphism of pairs F : (Xγ1 , S1) → (Xγ2 , S2) due to
the choice of product framing on the loops and the gluing diffeomorphism
in (2.8) being isotopic to the identity map. We conclude that (2) ⇒ (3).
The converse implication follows similarly.

We need to show that the homeomorphism (2.12) has trivial normal in-
variant. The normal invariant n(F ) of the homeomorphism (2.12) lies in
the group [Xγ , G/TOP ] ∼= H2(Xγ ;Z/2) ⊕ H4(Xγ ;Z) [45, Section 2], [14].
As argued by Kim–Ruberman [37, p. 5872], the component of n(F ) that
lies in the fourth cohomology group vanishes since F is a homeomor-
phism; their argument works for homotopy equivalences. Denote by S(F )
the component of the normal invariant n(F ) that lies in H2(Xγ ;Z/2) =
Hom(H2(Xγ ;Z/2),Z/2). The class S(F ) is determined by its evaluation
⟨S(F ), [Σ]⟩ on surfaces Σ ⊂ Xγ , and Kim–Ruberman provide a method to
evaluate it in terms of the Arf invariant [37, Proof of Lemma 2.4] using
Cochran–Habegger [14, Theorem 5.1]. Perturbing F , we get a normal map
F −1Σ → Σ with surgery obstruction ⟨S(F ), [Σ]⟩. The evaluation depends
only on the homology class of the surface, but not on its representative and
it is given by the Arf invariant [37, p. 5873]. The invariant vanishes since
the 2-spheres are nullhomologous. □

Remark 2.6. — Work of Freedman–Quinn [24, Theorem 10.7A] and
Conway–Powell [15, Theorem 5.17] can be used to show that the impli-
cation (3) ⇒ (1) of Theorem 2.5 holds. Denote by Λ := Z[t±] the group
ring of Laurent polynomials [15]. We reconstruct the Λ-valued intersection
forms λX1 and λX2 from Diagram (2.14) and show that they are isometric
building on an argument due to Conway–Powell [15, proof of Lemma 5.16].
Diagram (2.14) implies that there is an isometry

(2.15) λX1\ν(γ1) −→ λX2\ν(γ2)

of the Λ-valued intersection forms λX1\ν(γ1) and λX2\ν(γ2). It also holds
that

(2.16) H1(∂(X1\ν(γi)); Λ) = H1(S1 × S2; Λ) = H1(R × S2;Z) = 0.

At this point we use the universal coefficient spectral sequence with second
page E2

p,q = TorΛ
p (Hq(Xi\ν(γi); Λ),Z) that converges to H∗(Xi\ν(γi)) to

conclude that,

(2.17) TorΛ
2 (H0(Xi\ν(γi); Λ),Z) = TorΛ

2 (Z,Z) = H2(Z,Z) = 0.

ANNALES DE L’INSTITUT FOURIER
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Therefore,

(2.18) H2(Xi\ν(γi);Z) = H2(Xi\ν(γi); Λ) ⊗Λ Z

are isomorphic for i = 1, 2. Since Xi is the union of Xi\ν(γi)) and S1 ×D3,
we conclude that the Λ-valued intersection forms λX1 and λX2 are isometric
by [15, Proposition 3.9]. A result of Freedman–Quinn [24, Theorem 10.7A]
implies that X1 is homeomorphic to X2.

2.3. Three pairs of geometrically dual 2-tori in the 4-torus,
some useful diffeomorphisms and a homeomorphism

We proceed to build several 4-manifolds from the 4-torus that will be
useful in determining the diffeomorphism types in the proof of Theorem 1.1.
Define

(2.19) T 4 = x × y × a × b,

where x, y, a, b is each a copy of S1 and their homotopy classes generate
the free abelian group

(2.20) π1(T 4) = Z4 = Zx ⊕ Zy ⊕ Za ⊕ Zb.

We will follow the notation of Baldridge–Kirk [12, Section 2.2] and denote
by X and Y parallel push offs of x and y, respectively, in x×y×{pa}×{pb}
for points pa ∈ a and pb ∈ b. Analogously, we let A1, A2 and A3, and B be
parallel push offs of a and b, respectively in {px} × {py} × a × b for points
px ∈ x and py ∈ y; see [12, Figure 1].

We define three disjoint submanifolds of (2.19). The first two are

(2.21) T1 := X × {py} × A1 × {pb},

and

(2.22) T2 := {px} × Y × A2 × {pb},

which are chosen exactly as it is done by Baldridge–Kirk in [12, Section 2.2].
The third submanifold is

(2.23) T3 := {px} × {py} × A3 × B.

The 2-tori (2.21) (2.22) (2.23), together with their geometrically dual
2-tori, generate the second homology group H2(T 4;Z) = Z6. We specify
the framings for the 2-tori that were discussed in Section 2.1 by equipping
the 4-torus with the product symplectic structure (x × y) × (a × b). The 2-
torus (2.23) is a symplectic submanifold, while the 2-tori (2.21) and (2.22)
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12 Rafael TORRES

are Lagrangian with respect to this choice of symplectic structure. The
(p, q, r)-torus surgeries on (2.21) and/or (2.22) are performed with respect
to the Lagrangian framing [32]. Performing torus surgeries and surgeries
along loops to the 4-torus yields the following 4-manifolds. We follow the no-
tation in [12, Section 2.1] and the terminology introduced in Definition 2.1
and Definition 2.2.

Lemma 2.7. — Let n ∈ Z. Let Wn be the 4-manifold that is obtained
from the 4-torus by applying a (1, 0, n)-torus surgery on T1 along m = x

and a (0, 1, 0)-torus surgery on T3 along l = b. There is a diffeomorphism

(2.24) Wn ≈ S2 × T 2

for every n ∈ Z.
Let Zn be the 4-manifold that is obtained from the 4-torus by applying

a (1, 0, n)-torus surgery on T1 along m = x and a surgery along the loop
l = b with respect to the product framing induced by l ⊂ ν(T3). There is a
diffeomorphism

(2.25) Zn ≈ S2 × T 2#S2 × S2

for every n ∈ Z.
Let Mn be the 4-manifold that is obtained from the 4-torus by applying

a (0, 1, 1)-torus surgery on T2 along m = y, a (1, 0, n)-torus surgery on T1
along m = x, and a (0, 1, 0)-torus surgery on T3 along l = b. There is a
diffeomorphism

(2.26) Mn ≈ S1 × S3

for every n ∈ Z.
Let Fn be the 4-manifold that is obtained from the 4-torus by applying

a (0, 1, 1)-torus surgery on T2 along m = y, a (1, 0, n)-torus surgery on T1
along m = x and a surgery along the loop l = b with respect to the product
framing induced by l ⊂ ν(T3). There is a diffeomorphism

(2.27) Fn ≈ S1 × S3#S2 × S2

for every n ∈ Z.

Proof. — Any diffeomorphism f : M3 → M3 of a 3-manifold M3 ex-
tends to a diffeomorphism f × Id : M3 × S1 → M3 × S1. To show the
existence of the diffeomorphism (2.24), after fixing an n ∈ Z, we use a
standard argument used by Baldridge–Kirk in [12, Proof Lemma 2]. The
4-manifold Wn is diffeomorphic to the product M3 × S1 of a 3-manifold
M3 with the circle. The 3-manifold M3 fibers over the circle with mon-
odromy given by Dn

x ◦ D0
b , where Dx and Db are Dehn twists along x and
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b in T 2. These Dehn twists correspond to an application of an (1, n)-Dehn
surgery along m = x and a (1, 0)-Dehn surgery along l = b to the 3-torus
x × y × b; cf. (2.19). It is immediate to see that M3 is diffeomorphic to
S2 × S1. The loop y generates the fundamental group π1(M3) = Zy. We
conclude Wn ≈ (S2 × S1) × S1. Since the choice of n was arbitrary, the
existence of the diffeomorphism (2.24) follows. Adapting the previous ar-
gument to the construction of Mn allows us to conclude the existence of
the diffeomorphism (2.26).

We argue the existence of the diffeomorphism (2.25) using a classical
argument due to Moishezon [41, Lemma 13] (see the exposition in [26,
Lemma 3] too). Fix an integer n ∈ Z, and let Nn = T 4

T1,b(1, 0, n) be the
4-manifold that is obtained from the 4-torus by applying a (1, 0, n)-torus
surgery on T1 along m = x. Part of the discussion in the previous para-
graph implies that Nn ≈ Xn × S1 for a 3-manifold Xn that fibers over the
circle with monodromy given by the corresponding Dehn twist Dn

x . The 4-
manifold Zn is obtained from Nn by performing surgery along the essential
loop l = b ⊂ T3 with the framing that is induced by the product structure
of ν(T3) = T 2 × D2; the 4-manifold Zn corresponds to N∗ in Gompf’s no-
tation in [26, proof of Lemma 3]. The surgery along l = b with the chosen
framing does not change the intersection form over the integers nor the
second Stiefel–Whitney class. In particular, Zn = N̂n#S2 × S2 for some
4-manifold N̂n. As Gompf explains [26, Proof of Lemma 3], performing
surgery to N∗ = Zn on one of these 2-spheres yields the 4-manifold N̂n,
and the aforementioned argument of Moishezon implies that N̂n is obtained
from Nn by performing a (0, 1, 0)-torus surgery on T3 along l = b, i.e.,

(2.28) N̂n = (Nn)T3,b(0, 1, 0) = Wn ≈ S2 × T 2

by (2.24). We conclude that the 4-manifold Zn is diffeomorphic to S2 ×
T 2#S2 × S2. Since n was arbitrary, we conclude that there is a diffeo-
morphism (2.25) for every n ∈ Z. Adapting the previous argument to the
construction of Fn allows us to conclude the existence of the diffeomor-
phism (2.27). This concludes the proof of Lemma 2.7. □

We record several properties of our principal building block in the proof
of Theorem 1.1.

Lemma 2.8. — Denote by {Wn(1) : n ∈ Z} the infinite set of 4-manifolds
that are obtained by applying a (1, 0, n)-torus surgery on T1 along m = x to
the 4-torus for any n ∈ Z−{0}; cf. Lemma 2.7. Since the 2-tori T2, T3 ⊂ T 4

are disjoint from the surgery, we conclude that T2, T3 ⊂ Wn(1) for every
n ∈ Z. These 2-tori and their geometric duals generate the second homology
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group H2(Wn(1);Z) = Z4 and the intersection form over the integers is

(2.29) QWn(1) =
2⊕

i=1

(
0 1
1 0

)
.

Moreover, the 4-manifold Wn(1) is aspherical for every n ∈ Z − {0}.

The claim regarding asphericity follows from a modification to an argu-
ment of Baldridge–Kirk [12, Lemma 2]: the 4-manifold Wn(1) is aspherical
since it is a product Wn(1) = S1 × U of the circle and an aspherical 3-
manifold U for every n ∈ Z − {0}.

We finish this section with a discussion of an application of work of
Freedman–Quinn [24] and a homeomorphism criteria that is employed in
the assembly of the 4-manifolds for the proof of Theorem 1.1 in Section 3.1.

Lemma 2.9. — Let X be a closed connected simply connected 4-manifold
that contains a smoothly embedded 2-torus T ↪→ X of self-intersection
[T ]2 = 0 and with simply connected complement π1(X \ ν(T )) = {1}. For
any n ∈ Z, consider the fiber sum

(2.30) Xn(1) := (X \ ν(T )) ∪ϕ (Wn(1) \ ν(T2))

where the gluing diffeomorphism

(2.31) ϕ : ∂(X \ ν(T )) −→ ∂(Wn(1) \ ν(T2))

maps the meridian µT in X \ ν(T ) to the meridian µT2 in Wn(1) \ ν(T2).
The closed connected orientable 4-manifold Xn(1) has infinite cyclic fun-
damental group, and its Λ-intersection form is extended from the integers.
In particular, Xn(1) is homeomorphic to X#S2 × S2#S1 × S3 for every
n ∈ Z.

A more precise description of the 4-manifold (2.30) and the gluing dif-
feomorphism (2.31) that makes it clear that its Seiberg–Witten invariant
is non-trivial is given in Section 3.1.

Proof. — The hypothesis π1(X) = {1} = π1(X \ ν(T )) and the Seifert-
van Kampen theorem imply that π1(Xn(1)) = Z for every n ∈ Z. If the
second Stiefel–Whitney class of X satisfies w2(X) = 0, then w2(X(1)n) = 0
for every n ∈ Z by a result of Gompf [27, Proposition 1.2]. Fix an n ∈ Z,
and let Λ = Z[t±]. For 4-manifolds with infinite cyclic fundamental group,
the homology H∗(Xn(1); Λ) is computed as the homology of the universal
cover as a Λ-module. Since Wn(1) is aspherical, its universal cover of Wn(1)
is contractible, and we have that H2(X̃n(1);Z) = Λb2(X)+2 [24] and

(2.32) H2(Xn(1); Λ) = (H2(X;Z) ⊕ Z2) ⊗Z Λ.
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Using the Z-valued intersection form of Wn(1) of Lemma 2.8, we compute
the Λ-valued intersection form to be

(2.33) λXn(1) =
(

QX ⊕
(

0 1
1 0

))
⊗Z Λ.

Since n ∈ Z was arbitrary, a result of Theorem 107.A(2) in Freedman–
Quinn [24], [47] implies that every member in the infinite set {Xn(1) : n ∈
Z} is homeomorphic to the connected sum X#S2 × S2#S1 × S3. □

2.4. Examples out of Reverse-Engineering of 4-manifolds

We now describe how Fintushel–Park–Stern’s work can be used to pro-
duce examples of infinitely many smoothly non-isotopic nullhomologous 2-
tori inside S2 × S2 and nullhomologous 2-spheres inside S2 × S2#S2 × S2.
In [17, Section 4], Fintushel–Park–Stern construct an infinite set {Xn :
n ∈ Z} of pairwise non-diffeomorphic closed smooth 4-manifold such that
Xn is homologically equivalent to S2 × S2 for every n ∈ Z. We briefly
recall their construction and set-up some notation. Let {a1, b1, a2, b2} and
{c1, d1, c2, d2} be loops whose homotopy classes form a standard set of gen-
erators for the fundamental group π1(Σ2) × π1(Σ2) = π1(Σ2 × Σ2), where
Σg is a closed orientable surface of genus two. Push-offs of a loop ai ⊂ Σ2
are denoted by a′

i and a′′
i . Once the 4-manifold Σ2×Σ2 is equipped with the

canonical product symplectic form, Fintushel–Park–Stern choose the fol-
lowing eight disjoint homologically essential Lagrangian 2-tori and surgery
curves:

• T1 := a′
1 × c′

1, m1 = a′
1, T2 := a′

2 × c′
1, l2 = c′

1
• T3 := a′′

2 × d′
1, l3 = d′

1, T4 := b′
1 × c′′

1 , m4 = b′
1

• T5 := a′
2 × c′

2, m5 = a′
2, T6 := a′

1 × c′
2, l6 = c′

2
• T7 := a′′

1 × d′
2, m5 = d′

2, and T8 := b′
2 × c′′

2 , m1 = b′
2.

Fintushel–Park–Stern construct an infinite set

(2.34) {X(1, n) : n ∈ Z}

of pairwise non-diffeomorphic closed smooth 4-manifolds that are homo-
logically equivalent to the connected sum 2(S2 ×S2)#S1 ×S3 with infinite
cyclic first homology group

(2.35) H1(X(1, n);Z) = Zb2
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by applying to Σ2 × Σ2 the following torus surgeries with respect to the
Lagrangian framing

• (1, 0, −1)-torus surgery on T1 along γ1 = a′
1,

• (0, 1, 1)-torus surgery on T2 along the surgery curve γ2 = c′
1,

• (0, 1, 1)-torus surgery on T3 along the surgery curve γ3 = d′′
1 ,

• (1, 0, −1)-torus surgery on T4 along the surgery curve γ4 = b′
1,

• (1, 0, −1)-torus surgery on T5 along the surgery curve γ5 = a′
2,

• (0, 1, 1)-torus surgery on T6 along the surgery curve γ6 = c′
2, and

• (0, 1, n)-torus surgery on T7 along the surgery curve γ7 = d′
2.

For each n ∈ Z, the corresponding 4-manifold contains the eighth 2-torus

(2.36) T8 ⊂ X(1, n),

which carries a loop whose homotopy/homology class corresponds to the
generator b2 in (2.35). We build a 4-manifold X(0, n) by applying a

• (1, 0, 0)-torus surgery to X(1, n) on T8 along the surgery curve γ8 = b′
2.

Similarly, build a 4-manifold Y (0, n) by applying
• a surgery to X(1, n) along the curve γ8 = b′

2 using the 2-torus T8
to induce the product framing on γ8 as in Definition 2.2. The following
diffeomorphism types are obtained this way.

Lemma 2.10. — There are diffeomorphisms

(2.37) X(0, n) ≈ S2 × S2

and

(2.38) Y (0, n) ≈ S2 × S2#S2 × S2

for every n ∈ Z.

An argument to prove Lemma 2.10 can be found in [22, Proposition 6].

Sketch of Proof. — We outline an argument to prove Lemma 2.10 that
is based on handlebody calculus and which builds on work of Akbulut in [1,
2, 3]. Akbulut draws a handlebody diagram of the handle decomposition
of a genus two surface bundle over a genus two surface in [1, Figure 2], and
the following small modification to it yields a handlebody of the product
Σ2 × Σ2 of a pair of surfaces of genus two. Deconstruct the latter into two
copies of the product of a genus two surface and a punctured 2-torus

(2.39) Σ2 × (T 2\D2)
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glued along the common Σ2 × S1 boundary

(2.40) Σ2 × Σ2 = ((Σ2 × T 2)\Σ2 × D2) ∪ ((Σ2 × T 2)\Σ2 × D2).

That is, (2.40) is the double of (2.39) and a handlebody of the latter is
constructed in [1, Section 3, Figure 11]. Akbulut calls this 4-manifold E0
in his paper. In order to make the surgery 2-tori visible, Akbulut glues two
copies of (2.39) using a cylinder Σ2 × S1 × [0, 1] as

(2.41) Σ2 × Σ2

= ((Σ2 × T 2)\Σ2 × D2) ∪Id (Σ2 × S1 × [0, 1]) ∪Id−1 ((Σ2 × T 2)\Σ2 × D2).

A handlebody diagram for the handle decomposition of (2.41) is drawn
by substituting the lower part of [1, Figure 23] with a copy of the up-
per part, i.e., two copies of (2.39). The eight torus surgeries that are per-
formed to Σ2 × Σ2 to construct X(0, n) as indicated in Section 2.4 are
divided in two sets of four torus surgeries. Each set is performed to a copy
of (2.39) in the decomposition (2.41). Akbulut constructs a handlebody
diagram of the handle decomposition of the 4-manifold Ẽ0 that is obtained
from (2.39) by applying four torus surgeries with coefficients (1, 0, 1) or
(0, 1, 1) in [3, Figure 6]; the coefficients of these torus surgeries correspond
to Luttinger surgeries [10, 39]. If we were to glue two copies of the han-
dlebody of Ẽ0, we would obtain a handlebody of an irreducible symplectic
4-manifold that is homology equivalent to S2 × S2. Instead of doing so,
we modify the handlebody of Ẽ0 in [3, Figure 6] to obtain a handlebody
of the 4-manifold Ê0 that is obtained from (2.39) by applying two Lut-
tinger surgeries, a (0, 1, n)-torus surgery, and a (1, 0, 0)-torus surgery; see
Section 2.4. This consist in changing the framing coefficients in [3, Fig-
ure 6] of the 2-handles involved in the torus surgeries. A handlebody di-
agram of X(0, n) = Ẽ0 ∪ Ê0 for fixed n ∈ Z is constructed from a copy
of [3, Figure 6] and its modified handlebody diagram. Several handle slides
pivoted on the 0-framed 2-handles unlink the diagram, and handle can-
cellations allows us to conclude that X(0, n) is diffeomorphic to S2 × S2.
Surgering a circle-dot 1-handle in the handlebody diagram of X(0, n) to a
0-framed 2-handle allows us to conclude that Y (0, n) is diffeomorphic to
S2 × S2#S2 × S2. □

2.5. Fintushel–Stern’s invariant of 2-tori

In this section we recall the invariant that we will use to distinguish the
2-tori of Theorem 1.1 and follow almost verbatim the exposition in [21,
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Section 2]. The Seiberg–Witten invariant of a smooth closed oriented 4-
manifold X is a map SW′

X : SX → Z from the set SX of isomorphism
classes of SpinC-structures on a closed 4-manifold X to the integers. We fix
an orientation on H0(X;Z) ⊗ det H2

+(X;R) ⊗ det H1(X;R), hence a sign
of SW′

X in what follows; see [42, Remark 1.2]. Fintushel–Stern [21] use the
modified Seiberg–Witten invariant

(2.42) SWX : {k ∈ H2(X;Z) : k = w2(X) mod 2} −→ Z

defined by

(2.43) SWX(k) =
∑

c(s)=k

SW′
X(s)

where c(s) ∈ H2(X;Z) is the Poincaré dual to the first Chern class c1(W +
s )

of the bundle of positive spinors W +
s over X that corresponds to the SpinC-

structure s. Denote by {±β1, . . . , ±βn} the set of basic classes of X and
regard the Seiberg–Witten invariant of X as an element of the integral
group ring ZH2(X) in terms of the Laurent polynomial

(2.44) SWX = SWX(0)+
n∑

j=1
SWX(βj)·(tβj

+(−1)(χ+σ)/4)t−1
βi

) ∈ ZH2(X)

for tβj
the element in the group ring that corresponds to βj ∈ H2(X), the

Euler characteristic of X is denoted by χ and the signature by σ.
The Seiberg–Witten invariant of a 4-manifold XT,γ(p, q, r) that is ob-

tained by performing a torus surgery along T ⊂ X as defined in Section 2.1
is calculated using the Morgan–Mrowka–Szabó formula [42] given by

(2.45)
∑

i

SWXT,γ (p,q,r)(k(p,q,r) + i[Tp,q,r])

= p
∑

i

SWXT,γ (1,0,0)(k(1,0,0) + i[T(1,0,0)])

+ q
∑

i

SWXT,γ (0,1,0)(k(0,1,0) + i[T(0,1,0)])

+ r
∑

i

SWXT,γ (0,0,1)(k(0,0,1) + i[T(0,0,1)]).

In (2.45), we denote by T(a,b,c) the core 2-torus of XT,γ(a, b, c) for any
a, b, c ∈ Z and k(a,b,c) ∈ H2(XT,γ(a, b, c)) is any class that agrees with the
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restriction of a given class k ∈ H2(X) in H2(X \ ν(T ), ∂) in the diagram

(2.46)

H2(XT,γ(p, q, r)) −−−−→ H2(XT,γ(p, q, r), T × D2)y∼=

H2(X \ T × D2, ∂)y∼=

H2(X) −−−−→ H2(X, T × D2).

There is an indeterminacy in the formula (2.45) due to multiples of the
core 2-tori [Ta,b,c], and one removes it as follows. From the diagram (2.46),
we obtain both a map

(2.47) π(a, b, c) : H2(XT,γ(a, b, c)) −→ H2(X \ T × D2, ∂)

and the induced map on integral group rings

(2.48) π(a, b, c)∗ : ZH2(XT,γ(a, b, c)) −→ ZH2(X \ T × D2, ∂),

and work with the invariant

(2.49) SW(X,T ) = π(a, b, c)∗(SWXT,γ
(a, b, c)) ∈ ZH2(X \ T × D2, ∂).

Using (2.49), we rewrite formula (2.45) as

SW(XT,γ (p,q,r),T(p,q,r)) = p · SW(XT,γ (1,0,0),T(1,0,0))

+ q · SW(XT,γ (0,1,0),T(0,1,0)) + r · SW(XT,γ (0,0,1),T(0,0,1)).

Once the indeterminacy in (2.45) has been removed, Fintushel–Stern
used this collection of Seiberg–Witten invariants to define an invariant of
the pair (X, T ) as follows.

Definition 2.11 ([21, p. 951]). — Let T be an embedded 2-torus in
a closed oriented 4-manifold X such that [T ]2 = 0. The Fintushel–Stern
invariant of the pair (X, T ) is

(2.50) I(X, T ) := {SW(XT,γ (a,b,c),T(a,b,c)) : a, b, c ∈ Z}.

We finish this section with the following proposition, which will be used
to discern the 2-tori of Theorem 1.1.

Proposition 2.12 (Fintushel–Stern [21, Proposition 2.1]). — Let Ti ↪→
X be an embedded nullhomolgous 2-torus for i = 1, 2 inside a 4-manifold X

with a fixed homology orientation, and with b+
2 (X\ν(Ti)) > 1. If I(X, T1) ̸=

I(X, T2), then there is no diffeomorphism of pairs (X, T1) → (X, T2).
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3. Proof of main results

3.1. Proof of Theorem 1.1

We follow the notation of Section 2.3. The proof consists of nine steps.
The first step is to construct a closed 4-manifold X(2) with four proper-
ties(1) :

(1) it has a symplectic structure(2) ,
(2) its fundamental group is isomorphic to

(3.1) Z2 = Zx ⊕ Zb.

(3) There are two disjoint homologically essential 2-tori of self-inter-
section zero T1 and T3 embedded in X(2) such that the inclusion
induced homomorphism

(3.2) π1(X(2)\(ν(T1) ⊔ ν(T3))) −→ π1(X(2))

is an isomorphism. The torus T1 contains a loop whose homotopy
class corresponds to x and the torus T3 contains a loop whose ho-
motopy class corresponds to b, where x and b are the generators of
the group (3.1).

(4) The Euler characteristic satisfies χ(X(2)) = χ(X), the signature
is σ(X(2)) = σ(X), and the second Stiefel–Whitney class is
w2(X(2)) = w2(X).

Define the 4-manifold as the symplectic sum [27]

(3.3) X(2) := (X\ν(T )) ∪ (T 2 × T 2\ν(T2)),

where T2 = Y × A2 as in Section 2.3. Notice that T2 is a homologi-
cally essential Lagrangian submanifold of a symplectic 4-torus, and the
symplectic structure can be perturbed so that T2 becomes a symplectic
submanifold [27, Lemma 1.6]. The 4-manifold (3.3) admits a symplectic
structure and this concludes the proof of Property (1). We now argue
that (3.3) satisfies Property (2). Let µ2 be the homotopy class of the merid-
ian of the torus (2.22). The hypothesis on the existence of an isomorphism
π1(X\ν(T )) → π1(X) = {1} implies that the relations

(3.4) µ2 = 1 = y = a

hold in the fundamental group of X(2) and we conclude that the group
π1(X(2)) is the rank two free abelian group on the generators x and b

(1) Szabó describes a similar construction in [49, Section 2]
(2) A result of Taubes [50] implies SWX(2) ̸= 0
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using the Seifert-van Kampen theorem. Regarding Property (3), notice that
the 2-tori (2.21) and (2.23) are disjoint from the 2-torus (2.22) that was
employed in the construction of X(2). Therefore, both (2.21) and (2.23)
are contained in X(2). To show that the group isomorphism (3.2) exists,
we show that the meridians µ1 and µ3 of the two 2-tori are nullhomotopic
in X(2)\(ν(T1) ⊔ ν(T2)). Following the calculations of Baldridge–Kirk [11,
p. 922], with our choice of framings for T1 and T3, we can conclude that
the meridian of T1 is given by [̃b, ỹ] and the meridian of T3 is [x̃, ỹ] where
g̃ denotes a conjugate of the element g. By (3.4), we conclude that the
relations

(3.5) µ1 = 1 = µ3

hold in the group π1(X(2)\(ν(T1) ⊔ ν(T2))) and the existence of the iso-
morphism (3.2) follows. We now address Property (4) of (3.3). A Mayer–
Vietoris sequence reveals that χ(X(2)) = χ(X). Novikov additivity im-
plies σ(X(2)) = σ(X). An argument guaranteeing that the second Stiefel–
Whitney class of X(2) is zero whenever w2(X) = 0 was given by Gompf
in [27, Proposition 1.2].

The second step is to construct an infinite set

(3.6) {Xn(1) : n ∈ Z}

of closed irreducible 4-manifolds with infinite cyclic fundamental group Zb

that satisfy three properties:
(1′) Xn(1) is homeomorphic to X#S2 × S2#S1 × S3 for every n ∈ Z.
(2′) Xn1(1) is not diffeomorphic to Xn2(1) if n1 ̸= n2.
(3′) For every n ∈ Z, there is a homologically essential 2-torus of self-

intersection zero T3 embedded in Xn(1) such that the inclusion
induced homomorphism

(3.7) π1(Xn(1)\(ν(T3))) −→ π1(Xn(1)) = Z

is an isomorphism. The torus T3 contains a loop whose homotopy
class b is the generator of the fundamental group π1(Xn(1)) = Zb.

Fix an n ∈ Z and define a closed 4-manifold

(3.8) Xn(1) := X(2)T1,x(1, 0, n),

i.e., the 4-manifold that is obtained by applying a (1, 0, n)-torus surgery to
X on the 2-torus T1 along the surgery curve m = x. Since the meridian
µ1 is nullhomotopic in the complement (cf. (3.2) and (3.5)), the Seifert-van
Kampen theorem implies

(3.9) π1(Xn(1)) = ⟨x, b : [x, b] = 1 = x⟩ = Zb.

TOME 0 (0), FASCICULE 0



22 Rafael TORRES

The claim that the 4-manifold (3.8) satisfies Property (1′) follows from
Lemma 2.8 and Lemma 2.9. Property (2′) holds since the Seiberg–Witten
invariants satisfy

(3.10) SWXn1 (1) ̸= SWXn2 (1)

for n1 ̸= n2 as follows from the Morgan–Mrowka–Szabó formula (2.45). For
details on the computation of the Seiberg–Witten invariants of Xn(1), the
reader is directed to [49, Section 3] or [17, Corollary 1]. Results of Szabó [49]
and Kotschick [38, Section 5.2] imply that the 4-manifolds (3.6) are irre-
ducible since Z is a residually finite group. An argument to prove the claim
that the 4-manifold (3.8) satisfies Property (3′) is obtained by a small tweak
to the argument used in the proof of Property (3) for X(2). Indeed, the
2-torus T3 ⊂ X(2) is disjoint from the surgery and is contained in X(1)n.
The existence of the isomorphism (3.7) follows from (3.5). This concludes
the construction of the infinite set (3.6) of pairwise non-diffeomorphic irre-
ducible 4-manifolds in the homeomorphism class of X#S2 × S2#S1 × S3.

Let us set up the third step: fix n ∈ Z and apply a (0, 1, 0)-torus surgery
to Xn(1) on T2 along l = b and denote the resulting 4-manifold by Xn.
That is,

(3.11) Xn := Xn(1)T2,b(0, 1, 0).

In particular, Xn is simply connected. The third step is to show that there
is a diffeomorphism

(3.12) Xn ≈ X

for every n ∈ Z. The 4-manifold Xn is diffeomorphic to a generalized fiber
sum of X and the 4-manifold that is obtained from the 4-torus by applying
a (1, 0, n)-torus surgery on T1 along m = x and a (0, 1, 0)-torus surgery on
T3 along l = b for a fixed n ∈ Z. The latter is diffeomorphic to the product of
a 2-sphere and 2-torus by the diffeomorphism (2.24) of Lemma 2.7. Notice
that X1 is the 4-manifold obtained as the symplectic sum of X and T 2 ×S2

along T and T 2 × {s} ⊂ T 2 × S2. In particular, Xn is obtained from X

by performing a (0, 0, 1)-torus surgery along T . This torus surgery changes
nothing and produces the original 4-manifold X. Since the choice of n was
arbitrary, we conclude that there is a diffeomorphism (3.12).

The fourth step is to construct an infinite set of nullhomologous 2-tori
as in (1.3). Let

(3.13) T ′
n := T 2 × {0} ⊂ Xn

be the core 2-torus of the surgery (3.11). Notice that T ′
n is a nullhomolo-

gous 2-torus since T2 was a homologically essential 2-torus for every n ∈ Z.
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The infinite set (1.3) is made of the image of (3.13) under the diffeomor-
phism (3.12).

The fifth step is to argue that these 2-tori are pairwise topologically iso-
topic and inequivalent. A result of Sunukjian [48, Theorem 7.2] says that
the 2-tori are topologically unknotted since b2(X) ⩾ |σ(X)|+6. We use the
invariant of Definition 2.11 to show that these 2-tori are smoothly inequiv-
alent. We can undo the construction (3.11) by applying a torus surgery to
Xn on T ′

n and obtain Xn(1) back for any n ∈ Z. Since the set (3.6) consists
of 4-manifolds with pairwise different Seiberg–Witten invariant, possibly
after passing to a subsequence, we have that I(Xni

, T ′
ni

) ̸= I(Xnj
, T ′

nj
) for

i ̸= j(3) . Hence, any two 2-tori (3.13) are inequivalent.
Let us set up the sixth step. Fix an n ∈ Z and consider the essential loop

l = b ⊂ T3 ⊂ Xn(1) that generates the infinite cyclic group π1Xn(1) = Z.
We choose the framing on l = b that is induced by the product structure
ν(T3) ≈ T 2 × D2; see Section 2.2. We do surgery along l = b with this
choice of framing to obtain a 4-manifold

(3.14) Yn := (Xn(1)\ν(b)) ∪ (D2 × S2).

The sixth step consists of showing that there is a diffeomorphism

(3.15) Yn ≈ X#S2 × S2.

for every n ∈ Z. This follows from Lemma 2.7, the diffeomorphism (3.12)
and the argument due to Moishezon used in the proof of Lemma 2.7.

The seventh step consists of producing the nullhomotopic 2-spheres
of (1.2). The belt 2-sphere

(3.16) Sn := {0} × S2 ⊂ D2 × S2 ⊂ Yn

is nullhomologous for every n ∈ Z. Since π1Yn = {1}, we have that Sn

is nullhomotopic since H2(Yn) = π2(Yn) for every n ∈ Z by the Hurewicz
theorem. The infinite set (1.2) consists of the image of (3.16) under the
diffeomorphism (3.15) for n ∈ Z. This concludes the construction of the
infinite set (1.2) embedded in X#S2 × S2.

We discern these submanifolds in the eighth step by reversing the
surgery (3.14). That is, we perform surgery on the belt 2-sphere (3.16)
to Yn ≈ X#S2 × S2 and obtain X(1)n back. Given that two 4-manifolds
X(1)n1 and X(1)n2 in the set (3.6) are not diffeomorphic if n1 ̸= n2, there
is no diffeomorphism of pairs (X#S2 × S2, Sn1) → (X#S2 × S2, Sn2). We
conclude that the 2-spheres in the set (1.2) are pairwise inequivalent.

(3) We could have used a similar argument to [33, Section 3, Proof of Theorem 1.1] as
well
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In the ninth and final step, we prove that any two such 2-spheres are
topologically unknotted. Theorem 2.5 and the diffeomorphism (3.15) imply
that there is a homeomorphism of pairs

(3.17) F : (X#S2 × S2, S1) −→ (X#S2 × S2, S2),

which as a self-homeomorphism of X#S2 × S2 has trivial normal invari-
ant. Work of Quinn [45] says that F is homotopic to the identity map;
cf. [14]. Work of Perron [44] and Quinn [45] imply that the homeomor-
phism F is topologically isotopic to the identity, and the isotopy takes S2
onto S1. Without loss of generality, we can assume that the exterior of
S1 is homeomorphic to X#S2 × S2#S1 × D3. In particular, S1 bounds a
locally flat embedded solid handlebody in X#S2 × S2. It is also possible
to invoke [48, Theorem 7.2] to prove the claim. This concludes the proof of
the theorem. □

Remark 3.1. — Infinite sets of pairwise inequivalent nullhomotopic 2-
spheres embedded in 2CP2#(k + 1)CP⊭ and inequivalent 2-tori embedded
in CP2#kCP⊭ are built by applying the techniques in this paper to work of
Akhmedov–Park [7, 8], Baldridge–Kirk [11, 12], Fintushel–Stern [22, 23].
Work of Akbulut on handlebodies [1, 2, 3, 5], work of Baykur–Sunukjian on
stabilizations [13] along with results of Moishezon [41] and Gompf [26] are
useful to pin down the diffeomorphism type of the 4-manifolds constructed.

3.2. Proof of Theorem 1.3

A closed non-smoothable topological 4-manifold M with π1M = Z that
is not homotopy equivalent to a connected sum M0#S1 × S3, where M0
is a simply connected 4-manifold was constructed in [30, Corollary 3], [25,
Theorem 1.2]. Its Euler characteristic and signature are χ(M) = 4 = σ(M),
its second Stiefel–Whitney class is non-zero w2(M) ̸= 0, and its Kirby–
Siebenmann invariant is trivial KS(M) = 0. We perform the cut-and-paste
operation of Section 2.2 solely in the topological category in this section.
Construct a closed simply connected 4-manifold Y := M\ν(γ) ∪ D2 × S2,
where an arbitrary framing has been chosen and γ ⊂ M is a loop whose
homotopy class generates π1M = Z. Although we have not specified a
framing, we have that w2(Y ) ̸= 0 and we can pin down a specific topological
4-manifold Y . Consider the nullhomotopic 2-sphere Σ := {0} × S2 ⊂ D2 ×
S2 that is locally flat embedded in Y . A result of Freedman–Quinn [24,
Section 10.1] implies that Y is homeomorphic to #4CP2. There is a locally
flat nullhomologous 2-sphere S ⊂ 4CP2 whose exterior is 4CP2#S1 × D3.
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These two surfaces are concordant by [48, Theorem 6.1]. The exteriors of
Σ and S are not homotopy equivalent since M is not homotopy equivalent
to 4CP2#S1 × S3 [30, Corollary 3]. □

3.3. Proof of Theorem 1.4

The constructions of the 4-manifolds and the surfaces (1.8) and (1.9)
were described in Section 2.3. The invariant of Definition 2.11 discerns these
submanifolds as it was argued in Section 3.1. The corresponding diffeomor-
phisms are established in (2.24), (2.25), (2.26), and (2.27) of Lemma 2.7,
and Lemma 2.10. □
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