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FORMAL MULTIPARAMETER QUANTUM GROUPS,
DEFORMATIONS AND SPECIALIZATIONS

by Gastón Andrés GARCÍA & Fabio GAVARINI (*)

Abstract. — We introduce the notion of formal multiparameter QUEA – in
short FoMpQUEA – as a straightforward generalization of Drinfeld’s quantum
group Uℏ(g). Then we show that the class of FoMpQUEAs is closed under defor-
mations by (“toral”) twists and deformations by (“toral”) 2-cocycles: as a con-
sequence, all “multiparameter formal QUEAs” considered so far are recovered, as
falling within this class. In particular, we prove that any FoMpQUEA is isomorphic
to a suitable deformation, by twist or by 2-cocycle, of Drinfeld’s standard QUEA.

We introduce also multiparameter Lie bialgebras (in short, MpLbA’s), and we
consider their deformations, by twist and by 2-cocycle. The semiclassical limit
of every FoMpQUEA is a suitable MpLbA, and conversely each MpLbA can be
quantized to a suitable FoMpQUEA. In the end, we prove that, roughly speaking,
the two processes of “specialization” – of a FoMpQUEA to a MpLbA – and of
“deformation (by toral twist or toral 2-cocycle)” – at the level of FoMpQUEAs or
of MpLbA’s – do commute with each other.

Résumé. — Nous introduisons la de algèbre enveloppante universelle quantifiée
(=AEUQ) multiparamétrique formelle – en bref AEUQMpFo – comme générali-
sation directe du groupe quantique de Drinfeld Uℏ(g). Ensuite, nous prouvons que
la classe des AEUQMpFo est fermée par rapport aux déformations par torseurs
(“toraux”) et aux déformations 2-cocycles (“toraux”): par conséquent, toutes les
“AEUQ multiparamétrique formelle” considerées jusqu’à ce jour sont retrouvées,
comme incluses en cette classe. En particulier, nous prouvons que toute AEU-
QMpFo est isomorphe à une déformation convenable, par torseur ou par 2-cocycle,
de la AEUQ standard de Drinfeld.

Nous introduisons aussi des bigèbres de Lie multiparamétriques (en bref, bGL-
Mp), et nous considérons leur déformations, par torseur et par 2-cocycle. La limite
semiclassique de chaque AEUQMpFo est une bGLMp convenable, et à l’envers
chaque bGLMp peut être quantifiée à une AEUQMpFo convenable. Finalement,
nous montrons que, en gros, les deux procedures de “specialisation” – d’une AEU-
QMpFo à une bGLMp – et de “déformation (par torseur toral ou 2-cocycle toral)”
– au niveau des AEUQMpFO ou des bGLMp – commutent l’une avec l’autre.
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1. Introduction

Quantum groups can be thought of, roughly speaking, as Hopf algebras
depending on one “parameter” such that, for a “special value” of this pa-
rameter, they turn isomorphic either to the universal enveloping algebra of
some Lie algebra g or to the function algebra of some algebraic group G.
In the first case the quantum group is called “quantized universal envelop-
ing algebra” (or QUEA in short) and in the second “quantized function
algebra” (or QFA in short).

Quite soon, people also began to introduce new quantum groups depend-
ing on two or more parameters, whence the terminology “multiparameter
quantum groups” came in use: see, e.g., [7, 8, 9, 12, 14, 15, 19, 25, 31, 34,
37, 38, 42, 45, 46, 49, 51, 53], and the list might be longer. Nevertheless,
one can typically describe a multiparameter quantum group so that one
single parameter stands “distinguished”, as the continuous one that can
be specialized. The other parameters instead (seen as discrete) parame-
trize different structures on a common “socle” underlying the semiclassical
limit of the quantum group, that is achieved when the continuous parame-
ter is specialized. Indeed, this already occurs with one-parameter quantum
groups: for example, the celebrated Drinfeld’s QUEA Uℏ(g) associated with
a complex, finite-dimensional, semisimple Lie algebra g has a description
where the continuous parameter ℏ bears the quantization nature of Uℏ(g),
while other discrete parameters, namely the entries of the Cartan matrix
of g, describe the Lie algebra structure on g itself.

In this paper we focus onto the study of multiparameter QUEAs; then it
will be possible to realize a parallel study and to achieve the corresponding
results for multiparameter QFA’s by suitably applying duality. Recall that
QUEAs (and QFA’s alike) are usually considered in two versions: the so-
called “formal” one, dealing with topological Hopf algebras over kJℏK, and
the “polynomial” one, dealing with Hopf algebras over a field K with some
q ∈ K entering the game as parameter. One of the first general examples
of multiparameter QUEA, hereafter mentioned as MpQUEA, was provided
by Reshetikhin in [49]. This extends Drinfeld’s definition of Uℏ(g) to a
new object UΨ

ℏ (g) that shares the same algebra structure of Uℏ(g) but
bears a new coalgebra structure, depending on a matrix Ψ that collects the
new, discrete parameters of UΨ

ℏ (g). At the semiclassical limit, these new
parameters (hence Ψ) describe the new Lie coalgebra structure inherited
by g from UΨ

ℏ (g) itself. Note that UΨ
ℏ (g) is defined from scratch as being

the outcome of a deformation by twist of Drinfeld’s Uℏ(g), using a twist
of a specific type (that we shall call “toral”) defined via Ψ. It follows that
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the class of all Reshetikhin’s MpQUEAs is stable under deformation by
toral twists, i.e. any such deformation of an object of this kind is again an
object of the same kind. Even more, this class is “homogeneous”, in that
each UΨ

ℏ (g) is nothing but a twist deformation of Drinfeld’s Uℏ(g).
With a parallel approach, a polynomial version of Reshetikhin’s MpQUE-

As was introduced and studied by Costantini–Varagnolo: see [14, 15], and
also [27]; on the other hand, these works do not consider deformations.
Alternatively, using the duality with quantum coordinate algebras, two-
parameters quantum envelopling algebras of polynomial type are consid-
ered in Dobrev–Parashar [16] and in Dobrev–Tahri [17]. The effect of the
twist can be seen in the description of the coproduct after a change the
presentation à la Drinfeld–Jimbo type.

In another direction, a different version of polynomial MpQUEA (still
working over g as above), call it Uq(g), has been developed in the works of
Andruskiewitsch–Schneider, Rosso, and many others (see for instance [1,
2, 46, 50]). In this case, the “multiparameter” is cast into a matrix q =(
qij
)
i,j∈I whose entries take part in the description of the algebra struc-

ture of Uq(g). Under mild, additional conditions, this yields a very general
family of MpQUEAs which is very well-behaved: in particular, it is stable
under deformations by 2-cocycles of “toral” type. Even better, this family
is “homogeneous”, in that each Uq(g) is a 2-cocycle deformation of Jimbo–
Lusztig’s polynomial version Uq(g) of Drinfeld’s Uℏ(g).

Note that, in Hopf theory, twist and 2-cocycle are notions dual to each
other. Thus the constructions of MpQUEAs by Reshetikhin and by Andrus-
kiewitsch–Schneider (besides the difference in being “formal” or “polyno-
mial”) are somehow dual to each other, and, as such, seem definitely dif-
ferent from each other.

The purpose of this paper is to introduce a new notion of MpQUEA
that encompass both Reshtikhin’s one and Andruskiewitsch–Schneider’s
one. Indeed, we achieve this goal introducing a new family of MpQUEAs
which incorporates Andruskiewitsch–Schneider’s one, hence in particular
it includes Drinfeld’s standard example (see Definition 4.4, Theorem 4.13
and Section 4.5). We show that this new family is stable by toral 2-cocycle
deformations (Theorem 5.13), just as Andruskiewitsch–Schneider’s, and it
is also stable by toral twist deformations (Theorem 5.2), hence it incor-
porates Reshetikhin’s family as well. In particular, we show that every
MpQUEA of the Reshetikhin’s family is actually isomorphic to one of the
Andruskiewitsch-Schneider’s family, and viceversa: the isomorphism is es-
pecially meaningful in itself, in that it amounts to a suitable change of
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presentation via a well-focused change of generators (see Theorem 5.2). In
this sense, we really end up with a single, homogeneous family – not just
a collage of two distinct families; this can be seen as a byproduct of the
intrinsic “self-duality” of Drinfeld’s standard Uℏ(g).

For each one of these MpQUEAs, then, one can decide to focus the de-
pendence on the discrete multiparameters either on the coalgebra structure
(which amounts to adopt Reshetikhin’s point of view) or on the algebra
structure (thus following Andruskiewitsch–Schneider’s approach). In our
definition we choose to adopt the latter point of view, as it is definitely
closer to the classical Serre’s presentation of U(g) – or even to the presen-
tation of Drinfeld’s standard Uℏ(g) – where the discrete multiparameters
given by the Cartan matrix entries rule the algebra structure.

Technically speaking, we adopt the setting and language of formal quan-
tum groups, thus our newly minted objects are “formal MpQUEAs”, in
short “FoMpQUEAs”. This is indeed a necessary option: in fact, the setup
of polynomial MpQUEAs is well-suited when one deals with (toral) 2-
cocycle deformations, but behaves quite poorly under deformations by
(toral) twists. Roughly speaking, the toral part in a polynomial MpQUEA
(in the sense of Andruskiewitsch–Schneider, say) happens to be too rigid, in
general, under twist deformations; this is shown in our previous paper [24],
where we pursued the same goal by means of “polynomial MpQUEAs”,
which eventually prove to be a somewhat less suitable tool.

Thus, one needs to allow a more flexible notion of “toral part” in our
would-be MpQUEA in order to get a notion that is stable under defor-
mation by (toral) twists. We obtain this by choosing to define our formal
MpQUEA as having a toral part with two distinguished sets of “coroots”
and “roots”, whose mutual interaction is encrypted in a “multiparameter
matrix” P whose role generalizes that of the Cartan matrix. We formalize
all this via the notion of realization of the matrix P , which is a natural
extension of Kac’ notion of realization of a generalized Cartan matrix (cf.
Definition 2.1); our FoMpQUEA then is defined much like Drinfeld’s stan-
dard one, with the entries of P playing the role of discrete multiparameters.

By looking at semiclassical limits, we find that our new class of FoM-
pQUEAs gives rise to a new family of multiparameter Lie bialgebras (in
short MpLbA’s) that come equipped with a presentation “à la Serre” in
which the parameters (i.e., the entries of P , again) rule the Lie algebra
structure (cf. Section 3.2.3). Again, we prove that this family is stable by
deformations, in Lie bialgebra theoretical sense, both via “toral” 2-cocycles
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and via “toral” twists (see Theorem 3.17 and Theorem 3.12). In particu-
lar, every such MpLbA admits an alternative presentation in which the Lie
algebra structure stands fixed (always being ruled by a fixed generalized
Cartan matrix) while the Lie coalgebra structure does vary according to
the multiparameter matrix P . Like in the quantum setup, the isomorphism
between the two presentations is quite meaningful, as it boils down to a
well-chosen change of generators (cf. Theorem 3.12). The very definition of
these MpLbA’s, as well as the just mentioned results about them, can be
deduced as byproducts of those for FoMpQUEAs (via the process of special-
ization); otherwise, they can be introduced and proved directly; in short,
we do both (cf. Section 3 and Theorem 6.3). These MpLbA’s were possibly
known in literature, at least in part: yet our construction yields a new,
systematic presentation of their whole family in its full extent, also proving
its stability under deformations by (toral) 2-cocycles and (toral) twists.

As a final, overall comment, we recall that a close relation between mul-
tiparameters and deformations is ubiquitous in several applications, e.g. in
the classification of complex finite-dimensional pointed Hopf algebras over
abelian groups [2, 3], where deformations by 2-cocycle play a central role.
Moreover, MpQUEAs may also serve as interpolating objects in the study
of the representation theory of quantum groups associated with Langlands
dual semi-simple Hopf algebras [22], where deformations by twist instead
are a key tool.

A last word about the organization of the paper.
In Section 2, we introduce the “combinatorial data” underlying our con-

structions of MpLbA’s and FoMpQUEAs alike: the notion of realization of
a multiparameter matrix, and the process of deforming realizations either
by twists or by 2-cocycles.

Section 3 is dedicated to introduce our MpLbA’s and study their defor-
mations by (toral) twists and by (toral) 2-cocycles.

In Section 4 we introduce our newly minted FoMpQUEAs, in particular
using different, independent approaches, and to prove their basic properties.

With Section 5 we discuss deformations of FoMpQUEAs by (toral) twists
and by (toral) 2-cocycles: we prove that these deformations turn FoM-
pQUEAs into new FoMpQUEAs again, the case by twist being possibly
the more surprising.

Finally, in Section 6 we perform specializations of FoMpQUEAs and
look at their resulting semiclassical limit: we find that this limit is always a
MpLbA (in short, by the very definition of MpLbA’s), with the same mul-
tiparameter matrix P as the FoMpQUEA it comes from. Conversely, any
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possible MpLbA does arise as such a limit – in other words, any MpLbA
has a FoMpQUEA which is quantization of it. Then – more important –
we compare deformations (by toral twists or 2-cocycle) before and after
specialization: the outcome is, in a nutshell, that “specialization and de-
formation (of either type) commute with each other” (cf. Theorem 6.4 and
Theorem 6.4). In fact, this last result can be deduced also as a special
instance of a more general one, which in turn is an outcome of a larger
study about deformations (of either type) of formal quantum groups, i.e.,
Drinfeld’s-like QUEAs and their dual, the so-called QFSHA’s, and of their
semiclassical limits. This is a more general chapter in quantum group the-
ory, with its own reasons of interest, thus we shall treat it in a separate
publication (cf. [26]).

Acknowledgements

The authors thank Marco Farinati for several fruitful conversations. They
also especially thank the Referee, whose shrewd remarks and comments
helped a lot to improve the paper.

2. Multiparameters and their realizations

In this section we fix the basic combinatorial data that we need later on.
The definition of our multiparameter Lie bialgebras and formal multipa-
rameter quantum groups requires a full lot of related material that we now
present. In particular, N = {0, 1, . . .} and N+ := N \ {0}, while k will be a
field of characteristic zero.

2.1. Multiparameter matrices, Cartan data, and realizations

We introduce hereafter the “multiparameters”, which we will use to con-
struct (semi)classical and quantum objects as well. The theory can be de-
veloped more in general, but we stick to the case of “Cartan type” as more
relevant to us; accordingly, this will keep us close to the common setup of
Lie algebras of Kac–Moody type, in particular those whose Cartan matrix
is symmetrisable.

ANNALES DE L’INSTITUT FOURIER
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2.1.1. Cartan data and associated Lie algebras

Hereafter we fix n ∈ N+ and I := {1, . . . , n}. Let A :=
(
aij
)
i,j∈I be

a generalized, symmetrisable Cartan matrix; then there exists a unique
diagonal matrix D :=

(
diδij

)
i,j∈I with positive integral, pairwise coprime

entries such that DA is symmetric. Let g = gA be the Kac–Moody algebra
over C associated with A (cf. [35]); we consider a split integral Z-form of
g, and for the latter the scalar extension from Z to any field k: by abuse of
notation, the resulting Lie algebra over k will be denoted by g again.

Let Φ be the root system of g, with Π =
{
αi|i ∈ I

}
as a set of simple

roots, Q =
⊕

i∈I Zαi the associated root lattice, Φ+ the set of positive
roots with respect to Π, Q+ =

⊕
i∈I Nαi the positive root (semi)lattice.

Fix a Cartan subalgebra h of g, whose associated set of roots identifies
with Φ (so kQ ⊆ h∗); then for all α ∈ Φ we call gα the corresponding root
space. Now set h′ := g′ ∩ h where g′ := [g, g] is the derived Lie subalgebra
of g: then

(
h′)∗ = kQ ⊆ h∗. We fix a k-basis Π∨ :=

{
hi := α∨

i

}
i∈I of h′ so

that
(
h,Π,Π∨) is a realization of A, as in [35, Chapter 1]; in particular,

αi(hj) = aji for all i, j ∈ I.
Let h′′ be any vector space complement of h′ inside h. Then there exists a

unique symmetric k-bilinear pairing on h, denoted ( , ), such that (hi,hj) =
aijd

−1
j , (hi, h′′

2) = αi
(
h′′

2
)

and (h′′
1 , h

′′
2) = 0, for all i, j ∈ I, h′′

1 , h
′′
2 ∈ h′′; in

addition, this pairing is invariant and non-degenerate (cf. [35, Chapter 2]).
By non-degeneracy, this pairing induces a k-linear isomorphism t : h∗ ∼=−→h,
and this in turn defines a similar pairing on h∗, again denoted ( , ), via pull-
back, namely

(
t−1(h1), t−1(h2)

)
:= (h1, h2); in particular, on simple roots

this gives (αi, αj) := diaij for all i, j ∈ I. In fact, this pairing on h∗ restricts
to a (symmetric, Z-valued, Z-bilinear) pairing on Q; note that, in terms of
the latter pairing on Q, one has di = (αi, αi)

/
2 and aij = 2(αi,αj)

(αi,αi) (i, j ∈ I).

Moreover t : h∗ ∼=−→h restricts to another isomorphism t′ :
(
h′)∗ ∼=−→h′ for

which we will use notation tα := t′(α) = t(α).
Let n+, resp. n−, be the nilpotent subalgebra in g containing all positive,

resp. negative, root spaces, and set b± := h ⊕ n± be the corresponding
Borel subalgebras. There is a canonical, non-degenerate pairing between
b+ and b−, using which one can construct a Manin double gD = b+ ⊕ b−,
automatically endowed with a structure of Lie bialgebra – roughly, gD is like
g but with two copies of h inside it (cf. [11], Section 1.4), namely h+ := h⊕0
inside b+ and h− := 0 ⊕ h inside b−; accordingly, we set h′

+ := h′ ⊕ 0 and
h′

− := 0⊕h′. By construction both b+ and b− lie in gD as Lie sub-bialgebras.
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8 Gastón Andrés GARCÍA & Fabio GAVARINI

Moreover, there exists a Lie bialgebra epimorphism πgD : gD ↠ g which
maps the copy of b± inside gD identically onto its copy in g.

For later use we fix generators ei,hi, fi(i ∈ I) in g as in the usual Serre’s
presentation of g. Moreover, for the corresponding elements inside gD =
b+ ⊕ b− we adopt notation ei := (ei, 0), h+

i := (hi, 0), h−
i := (0,hi) and

fi := (0, fi), for all i ∈ I. Notice that we have by construction

ei ∈ g+αi , hi = d−1
i tαi ∈ h, fi ∈ g−αi ∀i ∈ I.

In sight of applications to Lie theory, we introduce, mimicking [35, Chap-
ter 1], the notion of realization of a multiparameter matrix:

Definition 2.1. — Let ℏ be a formal variable, and kJℏK the ring of
formal power series in ℏ with coefficients in k. Let h be a free kJℏK-module of
finite rank, and pick subsets Π∨ :=

{
T+
i , T

−
i

}
i∈I ⊆ h, and Π :=

{
αi
}
i∈I ⊆

h∗ := HomkJℏK
(
h,kJℏK

)
. For later use, we also introduce the elements Si :=

2−1(T+
i + T−

i

)
and Λi := 2−1(T+

i − T−
i

)
(for i ∈ I) and the sets Σ :={

Si
}
i∈I ⊆ h and Λ :=

{
Λi
}
i∈I ⊆ h.

Let P ∈Mn

(
kJℏK

)
be any (n× n)-matrix with entries in kJℏK.

(a) We call the triple R :=
(
h,Π,Π∨) a realization of P over kJℏK, with

rank defined as rk(R) := rkkJℏK(h), if:
(a.1) αj

(
T+
i

)
= pij , αj

(
T−
i

)
= pji, for all i, j ∈ I;

(a.2) the set Σ :=
{
Si := Si(mod ℏh)

}
i∈I is k-linearly independent

in h := h
/
ℏh.

N.B. — This is equivalent to saying that Σ itself can be com-
pleted to a kJℏK-basis of h, hence in particular Σ is kJℏK-
linearly independent in h.

(b) We call a realization R :=
(
h,Π,Π∨) of the matrix P

(b.1) straight if the set Π :=
{
αi := αi(mod ℏh∗)

}
i∈I is k-linearly

independent in h∗ := h∗
/
ℏh∗.

N.B. — This is equivalent to saying that Π can be completed
to a kJℏK-basis of h∗, thus in particular Π is kJℏK-linearly
independent in h∗;

(b.2) small if SpankJℏK
(
{Si}i∈I

)
= SpankJℏK

({
T+
i , T

−
i

}
i∈I

)
;

(b.3) split if the set Π∨ :=
{
T±

i := T±
i (mod ℏh)

}
i∈I is k-linearly

independent in h := h
/
ℏh.

N.B. — This is equivalent to saying that Π∨ can be completed
to a kJℏK-basis of h, hence in particular it is kJℏK-linearly
independent in h;

ANNALES DE L’INSTITUT FOURIER
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(b.4) minimal if SpankJℏK
({
T+
i , T

−
i

}
i∈I

)
= h.

N.B. — In particular, the realization R is split and minimal
if and only if

{
T+
i , T

−
i

}
i∈I is a kJℏK-basis of h.

(c) For any pair of realizations R :=
(
h,Π,Π∨) and Ṙ :=

(
ḣ, Π̇, Π̇∨) of

the same matrix P , a (homo)morphism ϕ : R → Ṙ is the datum of
any kJℏK-module morphism ϕ : h→ ḣ such that ϕ

(
T±
i

)
= Ṫ±

σ(i) (for
all i ∈ I) for some permutation σ ∈ SI – the symmetric group over
I – hence, in particular, ϕ

(
Π∨) = Π̇∨, and also that ϕ∗(Π̇) = Π.

N.B. — Realizations along with their morphisms form a category,
in which the iso-/epi-/mono-morphisms are those morphisms ϕ as
above that actually are kJℏK-module iso-/epi-/mono-morphisms.

(d) Let A :=
(
aij
)
i,j∈I ∈Mn(k) be any symmetrisable generalized Car-

tan matrix, and D :=
(
diδij

)
i,j∈I the associated diagonal matrix,

as in Section 2.1.1. We say that a matrix P ∈Mn(kJℏK) is of Cartan
type with corresponding Cartan matrix A if Ps := 2−1(P + PT

)
=

DA.
N.B. — Condition (b.3) is equivalent to requiring that Σ ∪ Λ be

k-linearly independent in h := h
/
ℏh; in turn, this is equivalent to

saying that Σ∪Λ itself can be completed to a kJℏK-basis of h, hence
in particular it is kJℏK-linearly independent. Similarly, the condition
ϕ
(
T±
i

)
= Ṫ±

σ(i) – i ∈ I, for some permutation σ ∈ S(I) – in (c) can
be replaced by ϕ(Si) = Ṡσ(i) and ϕ(Λi) = Λ̇σ(i).

(e) In an entirely similar way, one may define realizations of a ma-
trix P :=

(
pi,j
)
i,j∈I ∈ Mn(k) over a ground field k. Such a re-

alization R :=
(
h,Π,Π∨) consists of a k-vector space h and dis-

tinguished subsets Π∨ :=
{
T+
i , T

−
i

}
i∈I ⊆ h and Π :=

{
αi
}
i∈I ⊆

h∗ := Homk
(
h,k
)
: then condition (a.1) reads the same, while (a.2)

instead says that the set
{
Si = 2−1(T+

i + T−
i

)}
i∈I is linearly inde-

pendent, and the rank of the realization is rk(R) := dimk(h). Also,
R is straight, resp. split, if Π, resp. Π∨, is linearly independent.

Basing on the context, we shall possibly stress the ring we are
working over, namely kJℏK for P ∈ Mn

(
kJℏK

)
and the field k for

P ∈Mn(k).

Remark 2.2. — In the present language, if P = PT is symmetric a real-
ization of it in the sense of [35, Chapter 1, Section 1.1], is also a realization,
in the sense of Definition 2.1, of P which has rank 2n − r, is straight and
small with Λi = 0 for all i ∈ I.
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The following consequence of the definitions yields another link with Kac’
notion of “realization”:

Lemma 2.3. — Let P ∈ Mn(kJℏK) be a matrix as above. If R :=(
h,Π,Π∨) is a straight realization of P , then the triple

(
h,Π,Π∨

S

)
– with

Π∨
S := {Si}i∈I – is a realization of Ps := 2−1(P+PT

)
– over the ring kJℏK –

in the sense of [35, Chapter 1, Section 1.1], but for condition (1.1.3).

Note that condition (1.1.3) in [35, Chapter 1, Section 1.1], is fulfilled
whenever rk(h) = 2n − rk(Ps); in particular, we can always achieve that
condition up to suitably enlarging or restricting h. In any case, from now on
with any straight realization of a matrix P of Cartan type, for some Cartan
matrix A, we shall always associate the realization of Ps = DA given by
Lemma 2.3, hence also the corresponding realization of A and then all the
related data and machinery mentioned in Section 2.1.

We need now a few technical results:

Proposition 2.4.
(a) For every P ∈ Mn

(
kJℏK

)
and every ℓ ⩾ 3n − rk

(
P + PT

)
, there

exists a straight split realization of P with rk(h) = ℓ, which is
unique up to isomorphisms.

(b) Claim (a) still holds true if we drop the condition “straight” and
pick ℓ ⩾ 2n.

Proof.
(a). — Let r := rk

(
P + PT

)
and ℓ ⩾ 3n− r be fixed. We set

Si := 2−1(T+
i + T−

i

)
, Λi := 2−1(T+

i − T
−
i

)
∀i ∈ I

for any choice of elements T±
i (i ∈ I) in any kJℏK-module h; then T±

i =
Si ± Λi for all i ∈ I, so we have

SpankJℏK

({
T+
i , T

−
i

}
i∈I

)
= SpankJℏK

({
Si, Λi

}
i∈I

)
.

Therefore, the existence of a split realization of P amounts to the same as
the existence of the slightly modified notion where:

• instead of the T+
i ’s and the T−

i ’s one considers the Si’s and the
Λi’s,

• condition (a.1) in Definition 2.1 is replaced by condition
(a.1+) αj(Si) = 2−1(pij + pji), αj(Λi) = 2−1(pij − pji) ∀i, j ∈ I;

Therefore, we look now for such a “realization” in this alternative sense.
We consider the matrices (respectively symmetric and antisymmetric)

Ps := 2−1(P + PT
)
, Pa := 2−1(P − PT )
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and then, reordering the indices in I if necessary, we re-write the matrix
Ps in the block form Ps =

(
P⌜

s P⌝
s

P⌞
s P⌟

s

)
where P ⌜

s has size r × r, rk
(
P ⌝
s

)
= r,

and the other blocks have the corresponding sizes; according to the same
reordering of the indices (if any), we also re-write Pa as Pa =

(
P⌜

a P⌝
a

P⌞
a P⌟

a

)
with P ⌜

a of size r × r, and so on.
Now we consider the ℓ× ℓ matrix

(2.1) GP =



P ⌜
s P ⌝

s 0 0 0 0
P ⌞
s P ⌟

s In−r 0 0 0
0 In−r 0 0 0 0
P ⌜
a P ⌝

a 0 Ir 0 0
P ⌞
a P ⌟

a 0 0 In−r 0
0 0 0 0 0 Iℓ−(3n−r)


that is non-degenerate, as det

(
GP
)

= ±det
(
P ⌜
s

)
̸= 0. Now, set h• :=

kJℏK3n−r, fix as Si’s, respectively Λi’s (i ∈ I), the rows of GP (as vectors
in h•) from 1 to n, respectively from 2n− r + 1 to 3n− r, and fix as αj ’s
(j ∈ I) the first n linear coordinate functions on h• (as vectors in h∗

•).
Now set Π∨

S,Λ :=
{
Si, Λi

}
i∈I and let h be the kJℏK-span (inside h•) of the

rows of GP ; then the αj ’s restrict to elements of h∗ (that we still denote
by αj) hence we consider Π := {αj}j∈I as a subset in h∗. Now the triple
RS,Λ :=

(
h,Π,Π∨

S,Λ

)
is a “realization” (in the present, modified sense) of

P which is straight split, thus proving the existence part of claim (a).
As to uniqueness, we reverse the previous line of arguing. Indeed, given

a split “realization”, in modified sense, RS,Λ :=
(
h,Π,Π∨

S,Λ

)
of P , we com-

plete Π∨
S,Λ to a kJℏK-basis of h adding extra elements Y1, . . . , Yℓ−2n; more-

over, we define additional αn+1, . . . , αℓ ∈ h∗ such that the matrix of all
values of the αj ’s on the elements of the ordered basis{

S1, . . . , Sn, Y1, . . . , Yn−r, Λ1, . . . , Λn, Yn−r+1, . . . , Yℓ−2n
}

is given by

(2.2) NP =



P ⌜
s P ⌝

s 0 0 0 0
P ⌞
s P ⌟

s In−r 0 0 0
B< B> 0 0 0 0
P ⌜
a P ⌝

a 0 Ir 0 0
P ⌞
a P ⌟

a 0 0 In−r 0
D< D> 0 0 0 Iℓ−(3n−r)


which by construction is non-degenerate. Now, let us extend scalars for
a while from kJℏK to k((ℏ)): then by Gauss’ elimination algorithm on the
rows (involving in particular the first r rows) we can modify the matrix

TOME 0 (0), FASCICULE 0



12 Gastón Andrés GARCÍA & Fabio GAVARINI

NP in (2.2) till it gets a new form where B< = 0 and D< = 0; moreover,
the “new” submatrix B> fulfills

det
(
P ⌜
s

)
det(B>) = ±det

(
NP
)
̸= 0, hence B> ∈ GLn−r

(
k((ℏ))

)
hence we can choose another basis in Spank((ℏ))

(
Y1, . . . , Yn−r

)
so to get

B> = In−r. Then another Gauss’ elimination process involving the rows
from n+ 1 to 2n− r allows us to modify the last ℓ− (3n− r) rows so as to
get D> = 0.

All this gives us a new split realization (in modified sense) of P over k((ℏ))
and a specific basis, including the Si’s and the Λi’s, of the k((ℏ))-vector space
hk((ℏ)) considered in it: eventually, taking as h the kJℏK-span of that basis
we can easily read off that “realization over k((ℏ))” is a genuine realization
over kJℏK, which is isomorphic to the original one, by construction (indeed,
we only modified a direct sum complement of Spank((ℏ))

(
{Si, Λi}i∈I

)
by a

sheer rescaling, at most). But now, for this final realization the matrix NP
in (2.2) takes the same form as GP in (2.1): so taking as ϕ : h → h the
isomorphism given by change of bases, we are eventually done.

(b). — As claim (a) already guarantees the existence of straight realiza-
tions, the relevant part of claim (b) concerns the uniqueness, that is proved
again like for (a), up to minimal changes. Namely, instead of the matrix
in (2.2) we deal with

N ′
P =


P ⌜
s P ⌝

s 0 0 0 0
P ⌞
s P ⌟

s In−r 0 0 0
P ⌜
a P ⌝

a 0 Ir 0 0
P ⌞
a P ⌟

a 0 0 In−r 0
D< D> 0 0 0 Iℓ−2n


and then we observe that we can again reduce it to a similar matrix where
D< = 0 – acting by Gauss’ elimination on the rows, exploiting the non-
singular square submatrix P ⌜

s – and D> = 0 – where we perform another
Gauss’ elimination on the columns (which in the end amounts to modifying
the αj ’s), exploiting the nonsingular square submatrix Iℓ−2n. □

Remark 2.5. — It follows from definitions that a necessary condition
for a small realization of any P ∈ Mn

(
kJℏK

)
to exist is rk

(
Ps | Pa

)
=

rk(Ps). Conversely, with much the same arguments used in the proof of
Proposition 2.4, we can prove that such a condition is also sufficient, as the
following holds true, indeed:
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Proposition 2.6. — If P ∈ Mn

(
kJℏK

)
is such that rk

(
Ps | Pa

)
=

rk(Ps), then, for all ℓ ⩾ 2n−rk(Ps), there exists a straight small realization
of P with rk(h) = ℓ, and such a realization is unique up to isomorphisms.

After this existence results concerning realizations of special type, we
can achieve a more general result with two additional steps. The first one
tells in short that every realization can be “lifted” to a split one:

Lemma 2.7. — Let R :=
(
h,Π,Π∨) be a realization of P ∈ Mn

(
kJℏK

)
.

Then there exists a split realization Ṙ :=
(
ḣ, Π̇, Π̇∨) of the same matrix

P and an epimorphism of realizations π : Ṙ ↠ R such that, if hT :=
Span

(
{T±

i }i∈I
)

and ḣT := Span
(
{Ṫ±

i }i∈I
)
, then π induces an isomorphism

π∗ : ḣ
/
ḣT ∼= h

/
hT .

If in addition R is straight, resp. minimal, then a split realization Ṙ as
above can be found that is straight, resp. minimal, as well.

Proof. — We proceed in two steps, first working over scalar extensions
from kJℏK to k((ℏ)) and then “pulling back” our result to the original setup.
To this end, hereafter, for any kJℏK-module m we write m(ℏ) := k((ℏ))⊗kJℏKm.

Let hT := Span
(
{T+

i , T
−
i }i∈I

)
. Then h

(ℏ)
T embeds into h(ℏ) and the latter

splits into h(ℏ) = h
(ℏ)
T ⊕ h′

◦ for some k((ℏ))-submodule h′
◦ in h(ℏ). Now fix

formal vectors Ṫ±
i (i ∈ I), the free k((ℏ))-module h′

T with k((ℏ))-basis Π′∨ :=
{Ṫ+

i , Ṫ
−
i }i∈I , and the k((ℏ))-module epimorphism π′ : h′

⊕ := h′
T ⊕h′

◦ ↠ h(ℏ)

given by π′(Ṫ±
i

)
:= T±

i (i ∈ I) and π
∣∣
h◦

:= idh◦ . If we let α(ℏ)
j be the natural

scalar extension of αj (j ∈ I), then every such α(ℏ)
j is a k((ℏ))-linear function

from h(ℏ) to k((ℏ)), and altogether the α(ℏ)
j ’s are linearly independent over

k((ℏ)) if the αj ’s are; therefore, the set Π′ :=
{
α′
j := α

(ℏ)
j ◦ π′}

j∈I lies inside
the k((ℏ))-dual module of h′

⊕, and it is also k((ℏ))-linearly independent if Π
is – in other words, if we are in the straight case.

Now look at h embedded into h(ℏ) and set

ḣ := (π′)−1(h), Π̇∨ :=
(
π′∣∣

ḣ

)−1(Π∨) = Π′∨

Π̇ :=
(
π′∣∣

ḣ

)∗(Π) =
{(
π′∣∣

ḣ

)∗
(
α

(ℏ)
j

)
:= α

(ℏ)
j ◦ π

′∣∣
ḣ

= α′
j

∣∣
ḣ

}
j∈I

.

Then ḣ is a free kJℏK-module containing Π̇∨ and such that ḣ(ℏ) = h′
⊕, while

Π̇ is a subset in the kJℏK-dual of ḣ, that is even kJℏK-linearly independent
if Π is – i.e., if we are in the straight case. Even more, looking in depth
we find that Ṙ := (ḣ, Π̇, Π̇∨) is indeed a split realization of the matrix P –
which is also straight, resp. minimal if such is the original – that together
with the epimorphism π := π′

∣∣
ḣ

: ḣ ↠ h yields all that is prescribed in
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the claim. Indeed, we only have to point out the last step, noting that π
induces an isomorphism π∗ : ḣ

/
π−1(hT ) ∼= h

/
hT and then observing that,

by construction, we have π−1(hT ) = ḣT . □

A last result concerns morphisms between realizations.

Lemma 2.8. — Let R̂ :=
(
ĥ, Π̂, Π̂∨) and qR :=

(
qh, qΠ, qΠ∨) be two realiza-

tions of a same P ∈Mn

(
kJℏK

)
, and let ϕ : R̂ → qR be a morphism between

them. Then Ker
(
ϕ : ĥ→ qh

)
⊆
⋂
j∈I Ker(α̂j).

Proof. — Since α̂j = ϕ∗(qαj) = qαj ◦ ϕ (j ∈ I) by assumption, for all
k ∈ Ker(ϕ) we have α̂j(k) = (qαj ◦ ϕ)(k) = qαj

(
ϕ(k)

)
= qαj(0) = 0 (j ∈ I),

whence the claim. □

Remark 2.9. — Working with matrices in Mn(k) and realizations of them
over k (for some field k), all the previous constructions still make sense;
some results (e.g., Proposition 2.4 and Lemma 2.7) even get stronger and/or
have simpler proofs.

2.2. Twist deformations of multiparameters and realizations

In this subsection we introduce the notion of deformation by twist of
realizations, which will be needed later when dealing with deformations of
multiparameter Lie bialgebras and formal multiparameter quantum uni-
versal enveloping algebras.

2.2.1. Deforming realizations (and matrices) by twist

Fix P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
and a realization R :=

(
h,Π,Π∨),

possibly (up to changing minimal details in what follows) over k if P ∈
Mn(k); in particular di := pii/2 for all i ∈ I.

Recall that h is, by assumption, a free kJℏK-module of finite rank t :=
rk(h). We fix in h any kJℏK-basis

{
Hg

}
g∈G , where G is an index set with

|G| = rk(h) = t.
Fix an antisymmetric square matrix Φ =

(
ϕgk
)
g,k∈G ∈ sot

(
kJℏK

)
– in-

deed, we might work with any Φ ∈Mt

(
kJℏK

)
, but at some point we should

single out its antisymmetric part Φa := 2−1(Φ − ΦT
)

which would be all
that matters. We define the twisted “distinguished toral elements” (also
shortly called “coroots”)

(2.3) T±
Φ,ℓ := T±

ℓ ±
t∑

g,k=1
αℓ(Hg)ϕkgHk.

ANNALES DE L’INSTITUT FOURIER
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As a matter of notation, let T :=
(T+

T−

)
be the (2n× 1)-matrix given by the

column vectors T± =
(
T±
i

)
i∈I . Similarly, let TΦ :=

(T+
Φ

T−
Φ

)
be the (2n × 1)-

matrix given by the (superposed) two column vectors T±
Φ =

(
T±

Φ,i
)
i∈I

, and
H the column vector H :=

(
Hg

)
g∈G . Moreover, denote by A the (n × t)-

matrix with entries in kJℏK given by A :=
(
αℓ(Hg)

)g∈G
ℓ∈I , and set A• :=

(+A
−A

)
,

a matrix of size (2n× t).
Now, using matrix notation we have TΦ = T−A•ΦH. Eventually, define

also

(2.4) PΦ =
(
pΦ
i,j

)
i,j∈I := P − AΦAT .

Now, using the above notation, a direct computation yields

SΦ,i := 2−1(T+
Φ,i + T−

Φ,i
)

= 2−1(T+
i + T−

i

)
= Si ∀i ∈ I

αj
(
T+

Φ,i
)

= pΦ
i,j , αj

(
T−

Φ,i
)

= pΦ
j,i ∀i, j ∈ I

so that the triple RΦ :=
(
hΦ,ΠΦ,Π∨

Φ
)

with hΦ := h, ΠΦ := Π and Π∨
Φ :={

T+
Φ,i, T

−
Φ,i
∣∣ i ∈ I

}
, is a realization of the matrix PΦ =

(
pΦ
i,j

)
i,j∈I , as in

Definition 2.1; also, by construction RΦ is also straight, resp. small, if and
only if such is R. Moreover, PΦ is the sum of P plus an antisymmetric
matrix, so the symmetric part of PΦ is the same as P , i.e.

(
PΦ
)
s

= Ps. In
particular, if P is of Cartan type, then so is PΦ, and they are associated
with the same Cartan matrix. In short, we get:

Proposition 2.10. — With notation as above, the following holds true:

(a) the matrix PΦ := P − AΦAT obeys
(
PΦ
)
s

= Ps; in particular, if P
is of Cartan type, then so is PΦ, and they are associated with the
same Cartan matrix.

(b) the triple

RΦ :=
(
hΦ := h,ΠΦ := Π,Π∨

Φ :=
{
T+

Φ,i, T
−
Φ,i
}
i∈I

)
is a realization of PΦ; moreover, RΦ is straight, resp. small, if and
only if R itself is straight, resp. small.

Definition 2.11. — The realization RΦ :=
(
h,Π,Π∨

Φ
)

of the matrix
PΦ =

(
pΦ
i,j

)
i,j∈I is called a twist deformation (via Φ) of the realization

R =
(
h,Π,Π∨) of P .

Similarly, the matrix PΦ is called a twist deformation of the matrix P .
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Remarks 2.12.
(a) Observe that, by the very definition of twisting one has that(

PΦ
)

Φ′ = PΦ+Φ′ , and
(
RΦ
)

Φ′ = RΦ+Φ′ for all Φ,Φ′ ∈ sot
(
kJℏK

)
.

Therefore, the additive group sot
(
kJℏK

)
acts on the set of (multi-

parameter) matrices of size n := |I| with fixed symmetric part, as
well as on the set of their realizations of (any) fixed rank.When
two matrices P, P ′ ∈ Mn

(
kJℏK

)
belong to the same orbit of this

sot
(
kJℏK

)
-action we say that P and P ′ are twist equivalent.

(b) It follows from Proposition 2.10(a) that if two multiparameter ma-
trices P and P ′ are twist equivalent, then their symmetric part is
the same, that is Ps = P ′

s. Next result shows the converse holds
true as well, up to taking the group sot

(
kJℏK

)
big enough, namely

with t ⩾ 3n− rk(Ps).

Lemma 2.13. — With notation as above, let P, P ′ ∈ Mn

(
kJℏK

)
, and

consider the aforementioned action by twist on Mn

(
kJℏK

)
by any additive

group sot
(
kJℏK

)
with t ⩾ 3n− rk(Ps). Then P and P ′ are twist equivalent

if and only if Ps = P ′
s.

Proof. — We have to prove the “if” part of the statement, so we assume
that Ps = P ′

s and we look for Φ ∈ sot
(
kJℏK

)
such that P ′ = PΦ, that is P ′ =

P − AΦAT . By assumption P ′ = P + Λ with Λ := P ′ − P antisymmetric,
and we want

(2.5) Λ = −AΦAT

for some Φ ∈ sot
(
kJℏK

)
– in other words, we have to show that the equa-

tion (2.5) in the indeterminate Φ has a solution.
By Proposition 2.4(a), there exists a straight split realization of P , say

R =
(
h,Π,Π∨), of rank t. By the straightness assumption, the αℓ’s are

linearly independent in h∗, while the Hg’s form a basis of h, so the matrix
A :=

(
αℓ(Hg)

)g∈G
ℓ∈I has rank |I| = n; therefore, we can write it as a block

matrix A =
(
G | Q

)
Mσ where G, Q and Mσ are matrices of size n × n,

n× (t− n) and t× t, respectively, and moreover G is invertible and Mσ is
a permutation matrix. Then (2.5) reads

(2.6) Λ = −
(
G | Q

)
MσΦMT

σ

(
GT

QT

)
.

Now let us replace the indeterminate matrix Φ with Ψ := MσΦMT
σ and

accordingly let us read (2.6) as an equation in Ψ, namely

(2.7) Λ = −
(
G | Q

)
Ψ
(
GT

QT

)
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then writing the latter in block form as Ψ =
(A|B
C|D

)
where A, B, C and D

has size n×n, n×(t−n), (t−n)×n and (t−n)×(t−n), respectively, we see
at once that a possible solution for (2.7) is Ψ =

(A|0
0|0
)

with A := G−1ΛG−t.
Thus (2.7) has a solution, hence (2.5) has one too. □

Remark 2.14. — A similar notion of twist-equivalence of matrices can be
found in [1] and [50] for matrices corresponding to diagonal braidings.

Next result “upgrades” the previous one to the level of realizations.

Proposition 2.15. — Let P and P ′ be two matrices in Mn

(
kJℏK

)
with

the same symmetric part, i.e. such that Ps = P ′
s.

(a) Let R be a straight realization of P of rank t. Then there exists a
matrix Φ ∈ sot

(
kJℏK

)
such that P ′ = PΦ and the corresponding re-

alization RΦ is straight. In short, if P ′
s = Ps then from any straight

realization of P we can obtain by twist deformation a straight re-
alization (of the same rank) for P ′, and viceversa.

(b) Let R and R′ be straight small realizations of P and P ′, such that
rk(R) = rk(R′) =: t. Then there exists a matrix Φ ∈ sot

(
kJℏK

)
such that R′ ∼= RΦ. In short, if P ′

s = Ps then any straight small
realization of P is isomorphic to a twist deformation of a straight
small realization of P ′ of same rank, and viceversa.

(c) Every straight small realization R of P is isomorphic to some twist
deformation of the standard realization of Ps of the same rank as
R, as in Lemma 2.3.

Proof.

(a). — We can resume the same argument used in the proof of
Lemma 2.13 to show that there exists a suitable Φ ∈ sot

(
kJℏK

)
such

that P ′ = PΦ, the difference being only that now the starting point is
the given realization R of P . But then Proposition 2.10 ensures also that
RΦ :=

(
h,Π,Π∨

Φ
)

is a realization of P ′ = PΦ, which is straight because R
itself is.

(b). — This follows from claim (a), along with the uniqueness (up to
isomorphisms) of straight small realizations (cf. Proposition 2.4(a)).

(c). — This follows as an application of claim (b), taking P ′ := Ps
and R′ :=

(
h,Π,Π∨

S

)
– assuming R =

(
h,Π,Π∨) – as the standard Kac’

realization over kJℏK which is straight and small, see Remark 2.2 and
Lemma 2.3. □
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2.2.2. Stability issues for twisted realizations

Keep notation as above; in particular, from Section 2.2 we consider T± =(
T±
i

)
i∈I and T :=

(T+

T−

)
, we fix a vector of kJℏK-basis elements H :=

(
Hg

)
g∈G

for h and accordingly we set A :=
(
αℓ(Hg)

)g∈G
ℓ∈I and A• :=

(+A
−A

)
. Finally,

given Φ ∈ sot
(
kJℏK

)
we consider the new strings of “coroot vectors” T±

Φ =(
T±

Φ,i
)
i∈I

and TΦ :=
(T+

Φ
T−

Φ

)
that are linked to the old coroot vectors – as in

Section 2.2.1 – by the formulas

(2.8) T±
Φ := T± ∓ AΦH, TΦ = T− A•ΦH.

Eventually, recall also the notation PΦ =
(
pΦ
i,j

)
i,j∈I

:= P − AΦAT .
From Proposition 2.10 we have that the class of (small) minimal realiza-

tions is stable under twist deformations. We look now instead at the split
case.

Assume that the realization R :=
(
h,Π,Π∨) of P is split, i.e. the T±

i ’s
are part of a kJℏK-basis of h. From (2.8) we see that we cannot give for
granted the same property for the T±

Φ,i’s, hence we cannot say either that
the realization RΦ :=

(
h,Π,Π∨

Φ
)

of PΦ be split as well – in fact, all that
depends on the matrix A•Φ. We shall now discuss this issue in detail in a
more restricted setting.

We assume now that R is split minimal, so
{
T+
i , T

−
i

}
i∈I is a kJℏK-basis

of h (cf. Definition 2.1(d)). Again from Definition 2.1, let us consider the
elements Si := 2−1(T+

i + T−
i

)
and Λi := 2−1(T+

i − T
−
i

)
– for all i ∈ I –

and similarly SΦ,i := 2−1(T+
Φ,i+T−

Φ,i
)

and ΛΦ,i := 2−1(T+
Φ,i−T

−
Φ,i
)

– for all
i ∈ I; set also S := 2−1(T+ + T−) and Λ := 2−1(T+ − T−), and similarly
SΦ := 2−1(T+

Φ + T−
Φ
)

and ΛΦ := 2−1(T+
Φ − T

−
Φ
)
. In matrix terms, we have(

S

Λ

)
=
(

+2−1In +2−1In
+2−1In −2−1In

)(
T+

T−

)
and (

SΦ
ΛΦ

)
=
(

+2−1In +2−1In
+2−1In −2−1In

)(
T+

Φ
T−

Φ

)
and conversely also(

T+

T−

)
=
(

+In +In
+In −In

)
SΛ, T+

ΦT
−
Φ =

(
+In +In
+In −In

)
SΦΛΦ.

In particular we have SpankJℏK
(
{Si, Λi}i∈I

)
= SpankJℏK

(
{T+

i , T
−
i }i∈I

)
and

similarly SpankJℏK
(
{SΦ,i, ΛΦ,i}i∈I

)
= SpankJℏK

(
{T+

Φ,i, T
−
Φ,i}i∈I

)
.
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Now, with respect to the previous analysis we pick our fixed kJℏK-basis of
h to be {Hg}g∈G := {T+

i , T
−
i }i∈I : then A reads as a block (n× 2n)-matrix

A = (PTP ), hence the first identity in (2.8) yields, via straightforward
computations,

SΦ = S, ΛΦ = Λ−
(
PTP

)
Φ
(

+In +In
+In −In

)(
S

Λ

)
which in matrix terms reads

(2.9)
(
SΦ
ΛΦ

)
=
(
In 0n
−B′ (

In −B′′))(SΛ
)

where B′ and B′′ are blocks in the matrix
(
PTP

)
Φ
(+In +In

+In −In

)
=
(
B′B′′),

i.e. they are the (n×n)-matrices B′ := PT
(
Φ+,++Φ+,−)+P (Φ−,++Φ−,−)

and B′′ := PT
(
Φ+,+−Φ+,−)+P

(
Φ−,+−Φ−,−), with notation as follows:

we write Φ in block form Φ :=
(

Φ++ Φ+−

Φ−+ Φ−−

)
with Φε1,ε2 =

(
ϕε1,ε2
ij

)
i,j∈I for

all εi, εj ∈ {+,−}.
Now, it is clear that the set

{
T+

Φ,i, T
−
Φ,i
}
i∈I

is kJℏK-linearly independent
if and only if

SpankJℏK

({
T+

Φ,i, T
−
Φ,i
}
i∈I

)
= SpankJℏK

({
T+
i , T

−
i

}
i∈I

)
and the latter is true if and only if

SpankJℏK

({
SΦ,i, ΛΦ,i

}
i∈I

)
= SpankJℏK

({
Si, Λi

}
i∈I

)
.

But the latter holds true, by (2.9), if and only if the matrix
(
In − B′′) is

invertible in Mn

(
kJℏK

)
. Finally, from the explicit form of B′′, we find the

following criterion:
Assume that the realization R :=

(
h,Π,Π∨) of P be split minimal. If

the matrix MΦ
P := In − PT

(
Φ+,+ −Φ+,−)− P (Φ−,+ −Φ−,−) is invertible

in Mn

(
kJℏK

)
, then the realization RΦ :=

(
h,Π,Π∨

Φ
)

of PΦ is split minimal
too (and viceversa).

As an outcome, this proves that the twist deformation of a split real-
ization may be not split (counterexamples do exist, see below), hence the
subclass of all split realizations is not stable under twist deformations.

Examples 2.16. — Note that MΦ
P has the following matrix form

MΦ
P = In −

(
PTP

)
Φ
(

+In
−In

)
.
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Using this, we may find examples where MΦ
P is invertible or not. For

instance, we have:
(a) if Φ = 02n, then MΦ

P = In is invertible;
(b) if

(
PTP

)
Φ
(+In

−In

)
is nilpotent, then MΦ

P is clearly invertible;
(c) Let Φ =

(
0 Φ

−ΦT 0

)
with Φ ∈ Mn

(
kJℏK

)
. Then MΦ

P = In + PTΦ +
PΦT . If we take Φ antisymmetric, we find MΦ

P = In − 2PaΦ where
Pa := 2−1(P − PT

)
is the antisymmetric part of P . Hence, by

taking the canonical multiparameter P = DA, we get MΦ
P = In.

On the other hand, there are plenty of examples such that
(
In −

2PaΦ
)

is non-invertible; for example, take n even, Φ invertible and
antisymmetric, and Pa = 2−1Φ−1. In addition, in this last case is
MΦ
P = 0, hence

SpankJℏK

({
SΦ,i, ΛΦ,i

}
i∈I

)
= SpankJℏK

({
Si
}
i∈I

)
⫋ SpankJℏK

({
Si, Λi

}
i∈I

)
.

By our analysis, this proves that in this case the realization RΦ is
definitely not split – on the contrary it is (small) minimal.

2.3. 2-cocycle deformations of multiparameters and realizations

In this subsection we introduce the notion of deformation by 2-cocycles
of realizations (as well as of multiparameters), which is dual to that of
deformation by twist.

2.3.1. Deforming realizations (and matrices) by 2-cocycles

Fix again P :=
(
pi,j
)
i,j∈I ∈Mn

(
kJℏK

)
and a realization R :=

(
h,Π,Π∨)

of it, setting di := pii/2 for all i ∈ I and DP := diag
(
d1, . . . , dn

)
. We con-

sider special deformations of realizations, called “2-cocycle deformations”.
To this end, like in Section 2.2, we fix in h a kJℏK-basis

{
Hg

}
g∈G , where G

is an index set with |G| = rk(h) = t.
Let χ : h × h → kJℏK be any kJℏK-bilinear map: note that it bijectively

corresponds to some X =
(
χgγ
)
g,γ∈G ∈Mt

(
kJℏK

)
via χgγ = χ(Hg, Hγ). We

assume that χ is antisymmetric, which means χT (x, y) = −χ(x, y) where
χT (x, y) := χ(y, x), for all x, y ∈ h; this is equivalent to saying that X is
antisymmetric, i.e. X ∈ sot

(
kJℏK

)
. We denote by AltkJℏK

(
h × h,kJℏK

)
the
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set of all antisymmetric, kJℏK-bilinear maps from h×h to kJℏK. We assume
also that χ obeys

(2.10) χ(Si,−) = 0 = χ(−, Si) ∀i ∈ I

where Si := 2−1(T+
i + T−

i

)
for all i ∈ I. In particular, this implies (for

i ∈ I, T ∈ h) that χ
(

+ T+
i , T

)
= χ

(
− T−

i , T
)
, χ
(
T,+T+

i

)
= χ

(
T,−T−

i

)
,

hence

(2.11) +χ
(
–, T+

i

)
= −χ

(
–, T−

i

)
∀i ∈ I.

For later use, we introduce also the notation

(2.12) AltSkJℏK(h) :=
{
χ ∈ AltkJℏK

(
h× h,kJℏK

) ∣∣∣ χ obeys (2.10)
}

and to each χ ∈ AltSkJℏK(h) we associate X̊ :=
(
χ̊ij = χ

(
T+
i , T

+
j

))
i,j∈I

,

which is a matrix in son
(
kJℏK

)
.

Basing on the above, we define

P(χ) := P + X̊ =
(
p

(χ)
ij := pij + χ̊ij

)
i,j∈I

Π(χ) :=
{
α

(χ)
i := αi ± χ

(
–, T±

i

)}
i∈I
.

We are now ready for our key result on 2-cocycle deformations.

Proposition 2.17. — Keep notation as above. Then:
(a) P(χ) := P + X̊ obeys

(
P(χ)

)
s

= Ps; in particular, if P is of Cartan
type, then so is P(χ), and they are associated with the same Cartan
matrix.

(b) the triple R(χ) =
(
h,Π(χ),Π∨) is a realization of the matrix P(χ),

which is minimal, resp. split, if so is R.

Proof.
(a). — This is obvious, as X̊ is antisymmetric.
(b). — Since the set Π∨ does not change, condition (a.2) is trivially

satisfied. In particular,R(χ) is minimal, resp. split, if so isR. The conditions
on (a.1) follows easily by definition and (2.11): namely,

α
(χ)
j

(
T+
i

)
= αj

(
T+
i

)
+ χ

(
T+
i , T

+
j

)
= pij + χ̊ij = p

(χ)
ij

α
(χ)
j

(
T−
i

)
= αj

(
T−
i

)
+ χ

(
T−
i , T

+
j

)
= pji − χ

(
T+
j , T

−
i

)
= pji + χ

(
T+
j , T

+
i

)
= pji + χ̊ji = p

(χ)
ji

for all i, j ∈ I. This shows that R(χ) is a realization of P(χ). □
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Definition 2.18. — The realization R(χ) =
(
h,Π(χ),Π∨) of P(χ) =(

p
(χ)
ij

)
i,j∈I is called a 2-cocycle deformation of the (initial) realization R =(

h,Π,Π∨) of P . Similarly, the matrix P(χ) is called a 2-cocycle deformation
of the matrix P .

Remarks 2.19.
(a) The very definitions give(
P(χ)

)
(χ)′ = P(χ+χ′),

(
R(χ)

)
(χ′) = R(χ+χ′) ∀χ, χ′ ∈ AltSkJℏK(h).

Thus, the additive group AltSkJℏK(h) acts on the set of (multiparam-
eter) matrices of size n := |I| with fixed symmetric part, as well
as on the set of their realizations of (any) fixed rank. When two
matrices P and P ′ in Mn

(
kJℏK

)
belong to the same orbit of this

AltSkJℏK(h)-action, we say that P and P ′ are 2-cocycle equivalent.
(b) It follows from Proposition 2.17(a) that if two multiparameter ma-

trices P and P ′ are 2-cocycle equivalent, then their symmetric part
is the same, i.e. Ps = P ′

s. As a consequence of the next result, the
converse holds true as well (cf. Lemma 2.21 below), under mild,
additional assumptions.

Next result concerns the aforementioned AltSkJℏK(h)-action on realiza-
tions; indeed, up to minor details it can be seen as the “2-cocycle analogue”
of Proposition 2.15:

Proposition 2.20. — Let P, P ′ ∈Mn

(
kJℏK

)
be two matrices with the

same symmetric part, i.e. such that Ps = P ′
s. Moreover, let R be a split

realization of P .
(a) There exists a map χ ∈ AltSkJℏK(h) such that P ′ = P(χ) and the

realization R(χ) =
(
h,Π(χ),Π∨) of P ′ = P(χ) is split. In a nutshell,

if P ′
s = Ps then from any split realization of P we can obtain a split

realization (of the same rank) of P ′ by 2-cocycle deformation, and
viceversa.

(b) Assume in addition that R be minimal. Then R is isomorphic to a
2-cocycle deformation of the split minimal realization of Ps.

Proof.
(a). — Since P and P ′ share the same symmetric part, we have Λ :=

P ′ − P ∈ son
(
kJℏK

)
, so P ′ = P + X̊ with X̊ =

(
χ̊ij
)
i,j∈I := Λ. Let

h′′ := SpankJℏK
({
T+
i

}
i∈I

)
. Then X̊ defines a unique antisymmetric, kJℏK-

bilinear map

χ′′ ∈ AltkJℏK
(
h′′ × h′′,kJℏK

)
with χ′′(T+

i , T
+
j

)
:= χ̊ij ∀i, j ∈ I.
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Imposing (2.11), this χ′′ extends to a map, non-unique, in general, χ ∈
AltSkJℏK

(
h × h,kJℏK

)
, obeying (2.11) and such that χ

∣∣
h′′×h′′ = χ′′. Now

choosing Π(χ) :=
{
α

(χ)
i :=αi ± χ

(
–, T±

i

)}
i∈I ⊆ h∗, we get, thanks to Propo-

sition 2.17, that R(χ) :=
(
h,Π(χ),Π∨) is a split realization of P ′ =P(χ).

(b). — Let’s write the split minimal realization of Ps as

Rst =
(
h,Πst,Π∨

st

)
with Π∨

st =
{
T±
i

}
i∈I and Πst =

{
α

(st)
i

}
i∈I . Since P = Ps + Pa – with

Pa := 2−1(P − PT
)

– applying the arguments in (a) above we fix the
matrix X̊ := Pa =

(
χ̊ij
)
i,j∈I ∈ son

(
kJℏK

)
and χ ∈ AltSkJℏK

(
h × h,kJℏK

)
obeying (2.11); moreover, for all i ∈ I we set α(χ)

i := α
(st)
i ± χ

(
–, T±

i

)
. As

R is split minimal and

α
(χ)
j

(
T±
i

)
= α

(st)
j

(
T±
i

)
+χ
(
T±
i , T

+
j

)
=
(
Ps
)
ij

+ χ̊ij =
(
Ps
)
ij

+
(
Pa
)
ij

= pij

for all i, j ∈ I, we get α(χ)
j = αj for all j ∈ I. Thus the realization

(
Rst
)

(χ)
obtained from the 2-cocycle deformation of R afforded by χ coincides with
R. Finally, the assumption “split minimal” implies rk(h) = 2n, so the
uniqueness property in Proposition 2.4(b) gives R ∼= Rst as desired. □

As a byproduct, we find this “2-cocycle counterpart” of Lemma 2.13:

Lemma 2.21. — With notation as above, let P, P ′ ∈ Mn

(
kJℏK

)
. Then

P and P ′ are 2-cocycle equivalent, for the aforementioned 2-cocycle action
on Mn

(
kJℏK

)
of some additive group sot

(
kJℏK

)
, if and only if Ps = P ′

s.

Proof. — The “if” part is Proposition 2.17, so we are left to prove the
“only if”. By the existence result for realizations (cf. Proposition 2.4), we
can pick a realization R of P of rank rk(R) = t: then Proposition 2.20(a)
applies, and we are done. □

Remark 2.22. — To sum up, we wish to stress the following, remarkable
fact. Consider two matrices P, P ′ ∈ Mn

(
kJℏK

)
with the same symmetric

part Ps = P ′
s, and a realization R =

(
h,Π,Π∨) of P that is split and

straight. Then, by Proposition 2.15 and Proposition 2.20, one can construct
two realizations RΦ and R(χ) of P ′ by a twist deformation, respectively
a 2-cocycle deformation, of R that affects only the coroot set Π∨ or the
root set Π, respectively; in particular, RΦ is still straight (yet possibly not
split) and R(χ) is still split (yet possibly not straight), while both have the
same rank as R.
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3. Multiparameter Lie bialgebras and their deformations

In this section we introduce multiparameter Lie bialgebras, i.e. Lie bial-
gebra structures on a given vector space that depend on a multiparameter,
and their deformations. Indeed, these will be the semiclassical objects cor-
responding to the specialization of our formal multiparameter quantum
enveloping algebras at ℏ = 0.

3.1. Lie bialgebras and their deformations

We recall hereafter a few notions concerning Lie bialgebras and their
deformations; all this is classic, so we rely on references for more details.

3.1.1. Generalities on Lie bialgebras

A Lie bialgebra is any triple
(
g; [ , ], δ

)
such that g is a k-module – for

some ground field k – [ , ] is a Lie bracket on g (making the latter into
a Lie algebra), the map δ : g → g ∧ g is a Lie cobracket on g (making it
into a Lie coalgebra, i.e. δ∗ : g∗ ∧ g∗ → g∗ is a Lie algebra bracket on g∗),
and the two structures are linked by the constraint that δ is a 1-cocycle –
for the Chevalley–Eilenberg cohomology of the Lie algebra

(
g; [ , ]

)
with

coefficients in g∧g. As a matter of notation, we set x∧y := 2−1(x⊗y−y⊗x)
and thus we identify g ∧ g with the subspace of antisymmetric tensors in
g⊗ g. Moreover, we use a Sweedler’s-like notation δ(x) = x[1]⊗x[2] for any
x ∈ g.

For example, the compatibility condition between both structures reads

(3.1) δ([x, y]) = adx
(
δ(y)

)
− ady

(
δ(x)

)
=
[
x, y[1]

]
⊗y[2] +y[1]⊗

[
x, y[2]

]
−
[
y, x[1]

]
⊗x[2]−x[1]⊗

[
y, x[2]

]
.

When
(
g; [ , ], δ

)
is a Lie bialgebra, the same holds for

(
g∗; δ∗, [ , ]∗

)
, up

to topological technicalities, if g is infinite-dimensional, which is called the
dual Lie bialgebra to

(
g; [ , ], δ

)
. We shall usually denote a Lie bialgebra

simply by g, hence its dual by g∗.
We need some more notation. Given r = r1⊗ r2 and s = s1⊗ s2 in g⊗ g

(and similarly in g ∧ g) we write r2,1 := r2 ⊗ r1 and

Jr, sK :=
[
r1, s1

]
⊗ r2 ⊗ s2 + r1 ⊗

[
r2, s1

]
⊗ s2 + r1 ⊗ s1 ⊗

[
r2, s2

]
which in compact form reads

Jr, sK := [r1,2, s1,3] + [r1,2, s2,3] + [r1,3, s2,3].

Further details can be found in [11, 41], and references therein.
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3.1.2. Deformations of Lie bialgebras

A general theory of deformations for Lie bialgebras exists, which clearly
springs up as a sub-theory of that of Lie algebras: see, for instance, [13, 43],
and references therein. In the present work, we are mainly interested in two
special kinds of deformations, where either the Lie cobracket or the Lie
bracket alone is deformed, leaving the “other side” of the overall structure
untouched. We begin by deforming the Lie cobracket. Let

(
g; [ , ], δ

)
be a

Lie bialgebra. Let then c ∈ g⊗ g, identified with a 0-cochain, be such that

(3.2) adx
(
(id⊗δ)(c) + c.p. + Jc, cK

)
= 0, adx

(
c+ c2,1

)
= 0 ∀x ∈ g

where adx denotes the standard adjoint action of x and “c.p.” means “cyclic
permutations (on the tensor factors of the previous summand)”.

Then the map δc : g −→ g ∧ g defined by

(3.3) δc := δ − ∂(c), i.e. δc(x) := δ(x)− adx(c) ∀x ∈ g

is a new Lie cobracket on the Lie algebra
(
g; [ , ]

)
making

(
g; [ , ], δc

)
into

a new Lie bialgebra (cf. [41, Theorem 8.1.7]).

Definition 3.1. — Every c ∈ g⊗ g that obeys (3.2) is called a twist of
the Lie bialgebra g, and the associated Lie bialgebra gc :=

(
g; [ , ], δc

)
is

called a deformation by twist (or “twist deformation”) of the original Lie
bialgebra g.

Now we go and deform the Lie bracket. Let again
(
g; [ , ], δ

)
be a Lie

bialgebra. Let now χ ∈ Homk
(
g ⊗ g,k

)
and identify Homk

(
g ⊗ g,k

)
=

(g⊗ g)∗ = g∗⊗g∗ – up to technicalities in the infinite-dimensional case (yet
the outcome is always the same). Then condition (3.2) with g∗ replacing g

and χ in the role of c reads

(3.4) adψ
(
∂∗(χ) + Jχ, χK∗

)
= 0, adψ

(
χ+ χ2,1

)
= 0 ∀ψ ∈ g∗

where χ2,1 := χT , ∂∗ is the coboundary map for the Lie algebra g∗ and
similarly the symbol J , K∗ has the same meaning as above but with respect
to g∗.

For example, the condition adψ
(
χ+ χ2,1

)
= 0 for all ψ ∈ g∗ reads

ψ(x[1])
(
χ(x[2], y) + χ(y, x[2])

)
+ ψ(y[1])

(
χ(x, y[2]) + χ(y[2], x)

)
= 0

for all x, y ∈ g. This is clearly satisfied, for instance, whenever χ is anti-
symmetric, i.e. it is a 2-cochain for the usual Lie algebra cohomology.

Then the map [ , ]χ : g ∧ g −→ g defined by

(3.5) [x, y]χ := [x, y] + χ
(
x[1], y

)
x[2] − χ

(
y[1], x

)
y[2] ∀x, y ∈ g
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is a new Lie bracket on the Lie coalgebra
(
g; δ
)

making
(
g; [ , ]χ, δ

)
into a

new Lie bialgebra (cf. [41, Exercise 8.1.8]).

Definition 3.2. — Every χ ∈ Homk
(
g∧ g,k

)
obeying (3.4) is called a

2-cocycle of the Lie bialgebra g, and the Lie bialgebra gχ :=
(
g; [ , ]χ, δ

)
is

called a deformation by 2-cocycle (or “2-cocycle deformation”) of the Lie
bialgebra g.

At last, we point out that the two notions of “twist” and of “2-cocycle”
for Lie bialgebras, as well as the associated deformations, are so devised as
to be dual to each other. The following result then holds, whose proof is
left to the reader:

Proposition 3.3. — Let g be a Lie bialgebra, and g∗ the dual Lie
bialgebra.

(a) Let c be a twist for g, and χc the image of c in
(
g∗ ⊗ g∗)∗ for the

natural composed embedding g⊗g ↪→ g∗∗⊗g∗∗ ↪→
(
g∗ ⊗ g∗)∗. Then

χc is a 2-cocycle for g∗, and there exists a canonical isomorphism
of Lie bialgebras

(
g∗)

χc

∼=
(
gc
)∗.

(b) Let χ be a 2-cocycle for g; assume that g is finite-dimensional, and
let cχ be the image of χ in the natural identification (g⊗ g)∗ =
g∗ ⊗ g∗. Then cχ is a twist for g∗, and there exists a canonical
isomorphism of Lie bialgebras

(
g∗)cχ ∼=

(
gχ
)∗.

3.2. Multiparameter Lie bialgebras (=MpLbA’s)

Let A :=
(
ai,j
)
i,j∈I be some fixed generalized symmetrizable Cartan

matrix, and let P :=
(
pi,j
)
i,j∈I ∈ Mn(k) be a matrix of Cartan type with

associated Cartan matrix A: about the latter, hereafter we refer to the
notions in Definition 2.1 and all what follows in Section 2, but working
now with k as ground ring instead of kJℏK. Thus P + PT = 2DA, i.e.
pij+pji = 2diaij for all i, j ∈ I, which implies pii = 2di ̸= 0 for all i ∈ I. Let
R :=

(
h,Π,Π∨) be a split minimal realization of P , as in Definition 2.1(b.4)

– so h is free over k with
{
T+
i , T

−
i

}
i∈I as k-basis.

Out of these data, we introduce the “multiparameter Borel Lie bialge-
bras” bP± and a suitable Lie bialgebra pairing among them; then out of
this pairing we construct the associated Manin double, that is a suitable,
canonical structure of Lie bialgebra onto bP+ ⊕ bP− depending on that of
bP± and on the pairing itself. Our recipe follows in the footsteps of Hal-
bout’s construction in [30], that we are just slightly generalizing: indeed,
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all proofs in [30] easily adapt to the present situation, the only assumptions
which are relevant in the calculations being that (αi, αi) = 2di = pii and
(αi, αj) + (αj , αi) = diaij + djaji = pij + pji for all i, j ∈ I.

N.B. — As a matter of notation, as we are dealing with k rather than
kJℏK, comparing with Section 2.1 we identify the space h with h, the roots
αj with αj , etc.

3.2.1. Pre-Borel multiparameter Lie bialgebras

We define the positive, resp. negative, pre-Borel multiparameter Lie bial-
gebra with multiparameter P as being the free Lie algebra over k, denoted
by b̂P+, resp. by b̂P−, with generators T+

i , Ei, resp. T−
i , Fi (i ∈ I). More-

over, we give b̂P+, resp. b̂P−, the unique structure of Lie bialgebra over k
whose Lie cobracket is uniquely defined – still using shorthand notation
x ∧ y := 2−1(x⊗ y − y ⊗ x) – for all i ∈ I, by

δ
(
T
)

= 0, δ
(
Ei
)

= −2T+
i ∧ Ei = −

(
T+
i ⊗ Ei − Ei ⊗ T

+
i

)
resp. by δ

(
T
)

= 0, δ
(
Fi
)

= +2T−
i ∧ Fi = +

(
T−
i ⊗ Fi − Fi ⊗ T

−
i

)
.

One can prove – like in [30] – that there exists a Lie bialgebra pairing

⟨ , ⟩ : b̂P+ × b̂P− −→ k

uniquely given – for all and i, j ∈ I – by〈
T+
i , T

−
j

〉
= pij = αi(T−

j ) = αj(T+
i ),〈

T+
i , Fj

〉
= 0 =

〈
Ei, T

−
j

〉〈
Ei, Fj

〉
= δijp

−1
ii = δij2di−1.

3.2.2. Borel multiparameter Lie bialgebras

We introduce a Lie ideal l± of b̂P± as follows. On the one hand, l+ is the
Lie ideal generated by the elements

T+
i,j :=

[
T+
i , T

+
j

]
, E

(T )
i,j :=

[
T+
i , Ej

]
− αj(T+

i )Ej ∀i, j ∈ I

Ei,j :=
(

ad(Ei)
)1−aij (Ej) ∀i ̸= j
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on the other hand, l− is the Lie ideal generated by the elements

T−
i,j :=

[
T−
i , T

−
j

]
, F

(T )
i,j :=

[
T−
i , Fj

]
+ αj(T−

i )Fj ∀i, j ∈ I

Fi,j :=
(

ad(Fi)
)1−aij (Fj) ∀i ̸= j.

Now, acting once again like in [30], one sees that l+ is contained in the
left radical and l− is contained in the right radical of the pairing ⟨ , ⟩ :
b̂P+ × b̂P− → k introduced above. This has two consequences:

(a) first, l± is in fact a Lie bi-ideal in the Lie bialgebra b̂P±, hence either
quotient bP± := b̂P±

/
l± is a quotient Lie bialgebra indeed: we call

bP+, resp. bP− the positive, resp. the negative, Borel multiparameter
Lie bialgebra with multiparameter P ;

(b) second, the (non-degenerate) Lie bialgebra pairing ⟨ , ⟩ : b̂P+× b̂P− →
k boils down to a (possibly degenerate) Lie bialgebra pairing ⟨ , ⟩ :
bP+ × bP− → k of (multiparameter) Borel Lie bialgebras.

3.2.3. Multiparameter Lie bialgebras as doubles

Still following [30], we proceed now to introduce our multiparameter Lie
bialgebras, in two consecutive steps.

The split minimal case. — By general theory we can use the two Lie bial-
gebras bP+ and bP− and the pairing among them to define their generalized
double (as in [41, Section 8.3]). Namely, we endow gDP := bP+⊕bP− with a Lie
algebra structure described in the same way as in [30, Théorème 1.5], and
the unique Lie coalgebra structure such that

(
bP+
)cop

↪→ gDP ←↩ bP− are Lie
coalgebra embeddings, where a superscript “cop” means that we are taking
the opposite Lie coalgebra structure – cf. [11, Chapter 1, Section 1.4], for
further details, or even [5, Section 2.3] (and references therein), for a quick
recap of this topic and its generalizations. This makes gDP into a Lie bial-
gebra; in addition, when the pairing ⟨ , ⟩ : b+× b− → k is non-degenerate,
the Lie bialgebra gDP is even quasitriangular.

Finally, from the previous description of bP+ and bP− one also deduces an
explicit presentation for gDP . Namely, gDP is the Lie bialgebra generated (as
Lie algebra) by the k-subspace h together with elements Ei and Fi (i ∈ I),
with relations[

T ′, T ′′] = 0,
[
T,Ej

]
− αj(T )Ej = 0,

[
T, Fj

]
+ αj(T )Fj = 0(

ad(Ei)
)1−aij (Ej) = 0,

(
ad(Fi)

)1−aij (Fj) = 0[
Ei, Fj

]
= δij

T+
i + T−

i

2di
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for all T ′, T ′′, T ∈ h, i, j ∈ I, i ̸= j, with Lie bialgebra structure given on
generators – for all T ∈ h and all i ∈ I – by

δ
(
T
)

= 0, δ
(
Ei
)

= 2T+
i ∧ Ei, δ

(
Fi
)

= 2T−
i ∧ Fi.

As a last remark, we stress that in gDP the Lie algebra structure does de-
pend on the multiparameter P , while the Lie coalgebra structure is actually
independent of it.

The general case. — Let now P be again a multiparameter (of Cartan
type) and R :=

(
h,Π,Π∨) be any realization of it – not necessarily split

nor minimal. Then we define a Lie bialgebra gR
P generalizing the notion of

gDP introduced above.
Namely, as a Lie algebra we define gR

P by generators and relations with
(formally) the very same presentation as for gDP right above. The Lie coal-
gebra also has the same form, but we introduce it indirectly.

First of all, using Lemma 2.7 we fix a realization Ṙ :=
(
ḣ, Π̇, Π̇∨) of

P that is split, and we also fix ḣT := Span
(
{T±

i }i∈I
)

inside ḣ. Then we
consider also R̊ :=

(
ḣT , Π̊,Π∨) – where Π̊ :=

{
α̊i := αi

∣∣
ḣT

}
i∈I – that is

again a realization of P , which is now split and minimal. Out of Ṙ and
R̊ we define two Lie algebras – denoted gṘ

P , resp. gR̊
P – via an explicit

presentation, which is again (formally) like the one given above for gDP , up
to the obvious changes. Clearly, the inclusion ḣT ⊆ ḣ induces an embedding
of Lie algebras gR̊

P ↪→ gṘ
P .

Now, as R̊ is split minimal, the Lie algebra gR̊
P actually is one of the

form gDP , and as such it bears a structure of Lie bialgebra as given above.
But then, it follows by construction that there is a unique way to extend
the Lie cobracket of gR̊

P to gṘ
P in such a way that the embedding gR̊

P ↪→ gṘ
P

mentioned above is actually one of Lie bialgebras. In short, gṘ
P bears a Lie

bialgebra structure that is again described by the very same formulas as
for gDP , up to replacing everywhere h with ḣ.

Finally, again by Lemma 2.7 there exists also an epimorphism of realiza-
tions π : Ṙ ↠ R. Then, from the presentation of both gṘ

P and gR
P , this π

induces an epimorphism of Lie algebras Lπ : gṘ
P ↠ gR

P , such that Ker
(
Lπ
)

is generated by Ker
(
π : ḣ ↠ h

)
, and the latter lies in the center of gṘ

P ,
by definitions and by Lemma 2.8; moreover, the Lie cobracket of gṘ

P kills
Ker(π), so the latter is a Lie bi-ideal in the Lie bialgebra gṘ

P . Thus gR
P

inherits via Lπ a quotient Lie bialgebra structure from gṘ
P , again described

by the same formulas given above for gDP .
Every such Lie bialgebra gR

P will be called multiparameter Lie bialgebra,
in short MpLbA. In addition, we say that the MpLbA gR

P is straight, or
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small, or minimal, or split, if such is R, and we define rank of gR
P as

rk
(
gR
P

)
:= rk(R) = rkk(h).

For later use, we remark that every gR
P has two obvious triangular de-

compositions

(3.6) gR
P = n+ ⊕ h⊕ n−, gR

P = n− ⊕ h⊕ n+

as a direct sum of Lie algebras, where n+, resp. n−, is the Lie subalgebra
of gR

P generated by all the Ei’s, resp. all the Fi’s.
The following result points out the fact that the dependence of MpLbA’s

on realizations (for a common, fixed multiparameter matrix) is functorial:

Proposition 3.4. — Let P ∈Mn(k). If bothR′ andR′′ are realizations
of P and ϕ : R′ → R′′ is a morphism between them, then there exists
a unique morphism of Lie bialgebras Lϕ : gR′

P → gR′′

P that extends the
morphism ϕ : h′ → h′′ given by ϕ; moreover, LidR

= idgR
P

and Lϕ′◦ϕ =
Lϕ′ ◦Lϕ (whenever ϕ′ ◦ϕ is defined). Thus, the construction R 7→ gR

P – for
any fixed P – is functorial in R.

Moreover, if ϕ is an epimorphism, resp. a monomorphism, then Lϕ is an
epimorphism, resp. a monomorphism, as well. Finally, for any morphism
ϕ : R′ −→ R′′, the kernel Ker

(
Lϕ
)

of Lϕ coincides with Ker(ϕ), and the
latter is central in gR′

P .
In particular, when ϕ, and hence also Lϕ, is an epimorphism, we have –

setting k := Ker(ϕ) – a central exact sequence of Lie bialgebras

0 −→ k −→ gR′

P

Lϕ

−→ gR′′

P −→ 0.

Proof. — The existence of Lϕ is obvious, as well as all the other claims;
we only spend a moment on the centrality of Ker(ϕ). Lemma 2.8 imply
Ker(ϕ) ⊆

⋂
j∈I Ker(α′

j); then from the relations among the generators of
gR′

P (cf. Section 3.2.3) we get that each element in Ker(ϕ) commutes with
all generators of gR′

P , thus Ker(ϕ) is central. □

Corollary 3.5. — With notation as above, if R′ ∼= R′′ then there
exists a Lie bialgebra isomorphim gR′

P
∼= gR′′

P .
In particular, all MpLbA’s built upon split realizations, respectively small

realizations, of the same matrix P and sharing the same rank of h, are
isomorphic to each other, hence they are independent (up to isomorphisms)
of the specific realization, but only depend on P and on the rank of h.

Proof. — This follows at once from Proposition 3.4 together with the
uniqueness result in Proposition 2.4 and Proposition 2.6. □
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Remark 3.6. — We expect that our definition (and construction) of
MpLbA’s, as well as the related results presented below, can be extended to
the case where the symmetrizable generalized Cartan matrix A is replaced
by a more general symmetrizable Borcherds–Cartan matrix, as in [10]. How-
ever, due to additional technical difficulties, we do not pursue such a goal
in the present paper.

3.2.4. Construction via double cross sums

In this subsection we give another construction of our MpLbA’s, as suit-
able double cross sums; the latter can be seen as a semiclassical version
of the double cross products of FoMpQUEAs given in Section 4.5.4. We
follow [41, Section 8.3] for the exposition.

Definition 3.7 ([41, Definition 8.3.1]). — Two Lie algebras (g,m) form
a right-left matched pair if there is a right action of g on m and a left action
of m on g, denoted

◁ : m⊗ g −→ m and ▷ : m⊗ g −→ g

obeying the following conditions (for all m,n ∈ m and x, y ∈ g):

[m,n] ◁ x = [m ◁ x, n] + [m,n ◁ x] + n ◁ (m ▷ x)−m ◁ (n ▷ x)
m ▷ [x, y] = [m ▷ x, y] + [x,m ▷ y] + (m ◁ y) ▷ x− (m ◁ x) ▷ y.

After the previous definition, the key fact is the following result:

Proposition 3.8 ([41, Proposition 8.3.2]).
(a) Given a matched pair of Lie algebras (g,m), there exists a Lie al-

gebra, called double cross sum Lie algebra and denoted by g ▷◁ m,
whose socle is the vector space g⊕m and whose Lie bracket is (for
all x, y ∈ g and m,n ∈ m)

[x⊕m, y ⊕ n] =
(
[x, y] +m ▷ y − n ▷ x

)
⊕
(
[m,n] +m ◁ y − n ◁ x

)
.

(b) Conversely, if the direct sum space h := g ⊕ m bears a structure
of Lie bialgebra such that the copies of g and m inside it are Lie
subalgebras, then (g,m) is a matched pair of Lie algebras whose
associated double cross sum obeys g ▷◁ m ∼= h, i.e. it is isomorphic
to h. The required actions are recovered from the identities[

j(m), i(x)
]

= i(m ▷ x) + j(m ◁ x) ∀x ∈ g,m ∈ m

where i : g → g ⊕ m =: h
(
y 7→ i(y) := (y, 0m)

)
and likewise j :

m → g ⊕ m =: h
(
n 7→ j(n) := (0g, n)

)
are the natural Lie algebra

monomorphisms.
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In order to extend the notion of matched pair to Lie bialgebras, it is
necessary to have a compatibility of the left-right actions with the Lie
coalgebra structures. Thus assume now that g and m are Lie bialgebras: we
say that m is a right g-module Lie coalgebra if it is a right g-module and
in addition (for m ∈ m and x ∈ g) one has

δm(m ◁ x) =
(
m[1] ◁ x

)
⊗m[2] +m[1] ⊗

(
m[2] ◁ x

)
=: δm(m) ◁ x

the notion of left m-module Lie coalgebra is defined analogously.

Proposition 3.9 ([41, Proposition 8.3.4]). — Let (g,m) be a matched
pair of Lie algebras, with both g and m being Lie bialgebras and with ◁,
resp. ▷, making g into a left m-module Lie coalgebra, resp. m into a right
g-module Lie coalgebra, such that, for all m ∈ m and x ∈ g, we have

0 =m ◁ δg(x) + δm(m) ▷ x
=
(
m ◁ x[1]

)
⊗x[2] +x[1]⊗

(
m ◁ x[2]

)
+
(
m[1] ▷ x

)
⊗m[2] +m[1]⊗

(
m[2] ▷ x

)
.

Then the direct sum Lie coalgebra structure makes g ▷◁ m into a Lie bial-
gebra, which is called the double cross sum Lie bialgebra. □

3.2.5. Multiparameter Lie bialgebras as double cross sums

Let A :=
(
ai,j
)
i,j∈I be some fixed generalized symmetrizable Cartan

matrix, and let P :=
(
pi,j
)
i,j∈I ∈ Mn(k) be a matrix of Cartan type with

associated Cartan matrix A. Then one defines, as in Subsection 3.2.2, the
Borel multiparameter Lie bialgebras bP+ and bP−, dually paired by a Lie
bialgebra pairing, that we denote hereafter by ⟨ , ⟩ : bP+ × bP− → k. Using
this pairing one may define left-right actions

◁ : bP+ ⊗
(
bP−
)op −→ bP+ ▷ : bP+ ⊗

(
bP−
)op −→

(
bP−
)op

m ◁ x := m[1]
〈
m[2], x

〉
m ▷ x := x[1]

〈
m,x[2]

〉
for all m ∈ bP+ and x ∈

(
bP−
)op, cf. [41, Example 8.3.7]. Then these Borel

multiparameter Lie bialgebras form a matched pair
((

bP−
)op

, bP+

)
, whence

the double cross sum Lie bialgebra
(
bP−
)op

▷◁ bP+ is defined. By the very
construction, there exist also Lie bialgebra monomorphisms(

bP−
)op

↪−→
(
bP−
)op

▷◁ bP+ ←−↩ bP+.

An entirely similar construction can be made transposing the opposite
Lie algebra structure on bP− to the co-opposite Lie coalgebra structure on
bP+: in other words, the pairing ⟨ , ⟩ induces skew-parings both on

(
bP−
)op⊗

bP+ and on bP− ⊗
(
bP+
)cop. In this case, we get the matched pair of Lie
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bialgebras
(
bP−,

(
bP+
)cop

)
and the double cross sum bP− ▷◁

(
bP+
)cop; the

latter also admits the Lie bialgebra monomorphisms

bP− ↪−→ bP− ▷◁
(
bP+
)cop ←−↩

(
bP+
)cop

.

Morevoer, by the very definition, this double cross sum is isomorphic to the
Drinfeld double gDP as defined in Section 3.2.3, that is bP− ▷◁

(
bP+
)cop ∼= gDP .

3.3. Deformations of MpLbA’s by toral twists

Let gR
P be a MpLbA as in Section 3.2.3 above; then h is a free k-module

of finite rank t := rk(h): we fix in it a k-basis
{
Hg

}
g∈G , where G is an index

set with |G| = rk(h) =: t.
We begin introducing the so-called “toral” twists for gR

P .

Definition 3.10. — For any antisymmetric matrix Θ =
(
θgk
)
g,k∈G ∈

sot(k), we set

(3.7) jΘ :=
t∑

g,k=1
θgkHg ⊗Hk ∈ h⊗ h ⊆ g⊗ g.

We call jΘ the toral twist (or “twist of toral type”) associated with Θ.

N.B. — When g is a simple Lie algebra, in the classification of [20] via
Belavin–Drinfeld triples the above twist is associated with the empty da-
tum; moreover, it turns out to be a semiclassical limit of a twist for Uℏ(g),
see Section 6.

Next result – which explains our use of terminology – follows by con-
struction; in particular, it makes use of the antisymmetry condition on Θ.

Lemma 3.11. — For any matrix Θ =
(
θgk
)
g,k∈G ∈ sot(k), the element

jΘ given in Definition 3.10 is a twist element for the Lie bialgebra gR
P , in

the sense of (3.2).

Concerning deformations of MpLbA’s by toral twists, our main result
is the next one. To settle its content, let P ∈ Mt(k) be a multiparameter
matrix of Cartan type with associated Cartan matrix A, let R be a realiza-
tion of it, and let gR

P be the associated multiparameter Lie bialgebra; then,
for any given antisymmetric matrix Θ =

(
θgk
)
g,k∈G ∈ sot(k), let jΘ :=∑t

g,k=1 θgkHg ⊗Hk be the associated twist as in (3.7). Moreover, we con-
sider the “deformed” multiparameter matrix PΘ =

(
pΘ
i,j

)
i,j∈I

:= P−AΘAT

as in (2.4) – again of Cartan type, the same as P – and its corresponding
“deformed” realization RΘ :=

(
h,Π,Π∨

Θ := {T+
Θ,i, T

−
Θ,i}i∈I

)
.
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Theorem 3.12. — There exists a Lie bialgebra isomorphism
fΘ
P : gRΘ

PΘ

∼=
↪↠
(
gR
P

)jΘ (notation as above, with in right-hand side the twist
deformation

(
gR
P

)jΘ of gR
P by jΘ occurs) given by Ei 7→ Ei, T 7→ T and

Fi 7→ Fi for all i ∈ I, T ∈ h.
In particular, the class of all MpLbA’s of any fixed Cartan type and of

fixed rank is stable by toral twist deformations. Moreover, inside it the sub-
class of all such MpLbA’s associated with straight, resp. small, realizations
is stable as well.

Proof. — By Section 3.2.3, the Lie algebra structure in
(
gR
P

)jΘ is the
same as in gR

P , and the latter only depends on the αj ’s and the sums
Sj := 2−1(T+

i + T−
i

)
(j ∈ I). Now, both the αj ’s and the Sj ’s do not

change (see above) when we pass from gR
P to gRΘ

PΘ
or viceversa; therefore,

the formulas in the claim (mapping each generator of gRΘ
PΘ

onto the same
name generator of gR

P =
(
gR
P

)jΘ) provide an isomorphism of Lie algebras.
Now consider the toral twist jΘ :=

∑t
g,k=1 θgkHg ⊗ Hk given in (3.7).

By (3.3)

δjΘ(x) := δ(x)− adx
(
jΘ
)

= δ(x)−
t∑

g,k=1
θgk
([
x,Hg

]
⊗Hk +Hg ⊗

[
x,Hk

])
for all x ∈ g. Now take x := Eℓ (ℓ ∈ I): then the previous formula reads

δjΘ(Eℓ) := δ(Eℓ)−
t∑

g,k=1
θgk
([
Eℓ, Hg

]
⊗Hk +Hg ⊗

[
Eℓ, Hk

])
= δ(Eℓ)−

t∑
g,k=1

θgk
(
− αℓ(Hg)Eℓ ⊗Hk −Hg ⊗ αℓ(Hk)Eℓ

)
= T+

ℓ ⊗ Eℓ − Eℓ ⊗ T
+
ℓ

+
t∑

g,k=1
θgk
(
αℓ(Hg)Eℓ ⊗Hk + αℓ(Hk)Hg ⊗ Eℓ

)

=

T+
ℓ +

t∑
g,k=1

θkgαℓ(Hg)Hk

⊗ Eℓ
− Eℓ ⊗

T+
ℓ +

t∑
g,k=1

θkgαℓ(Hg)Hk


= T+

Θ,ℓ ⊗ Eℓ − Eℓ ⊗ T
+
Θ,ℓ = 2T+

Θ,ℓ ∧ Eℓ
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hence in short we get δjΘ(Eℓ) = 2T+
Θ,ℓ ∧ Eℓ. Similar computations give

δjΘ(Ei) = 2T+
Θ,i∧Ei, δjΘ(T ) = 0, δjΘ(Fi) = 2T−

Θ,i∧Fi, ∀i ∈ I, T ∈ h.

This means that, through the Lie algebra isomorphism fΘ
P , the Lie coalge-

bra structure of
(
gR
P

)jΘ is described on generators exactly like that of gRΘ
PΘ

,
with the new “coroots” T±

Θ,i (i ∈ I) in
(
gR
P

)jΘ playing the role of the co-
roots T±

i (i ∈ I) in gRΘ
PΘ

. Therefore fΘ
P : gRΘ

PΘ
→
(
gR
P

)jΘ is an isomorphism
of Lie bialgebras. □

In fact, the previous result can be reversed, somehow. Namely, our next
result shows, in particular, that every straight small MpLbA can be re-
alized as a toral twist deformation of the “standard” MpLbA gDDA (as in
Section 3.2.3) (cf. claim (c) below).

Theorem 3.13. — With assumptions as above, let P and P ′ be two
matrices of Cartan type with the same associated Cartan matrix A, i.e.
such that Ps = P ′

s.
(a) Let R be a straight realization of P and let gR

P be the associated
MpLbA. Then there exists a matrix Θ ∈ sot(k) such that P ′ = PΘ,
the corresponding RΘ is a straight realization of P ′ = PΘ, and for
the twist element jΘ as in (3.7) we have

gRΘ
P ′
∼=
(
gR
P

)jΘ
.

In a nutshell, if P ′
s = Ps then from any straight MpLbA over P

we can obtain by toral twist deformation a straight MpLbA (of the
same rank) over P ′ again.

(b) LetR andR′ be straight small realizations of P and P ′ respectively,
with rk(R) = rk(R′) =: t, and let gR

P and gR′

P ′ be the associated
MpLbA’s. Then there exists a matrix Θ ∈ sot(k) such that for the
twist element jΘ as in (3.7) we have

gR′

P ′ ∼=
(
gR
P

)jΘ
.

In a nutshell, if P ′
s = Ps then any straight small MpLbA over

P ′ is isomorphic to a toral twist deformation of any straight small
MpLbA over P of the same rank.

(c) Every straight small MpLbA is isomorphic to some toral twist de-
formation of the standard MpLbA gDDA (over DA = Ps, cf. Sec-
tion 3.2.3) of the same rank.
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Proof.
(a). — By Theorem 3.12 it is enough to find Θ ∈ sot(k) such that

P ′ = PΘ, that is P ′ = P − AΘAT ; but this is guaranteed by Lemma 2.13,
so we are done.

(b). — This follows from claim (a), along with the uniqueness of straight
small realizations – cf. Proposition 2.4(b) – and Proposition 3.4.

(c). — This follows from (b), taking as gR′

P ′ the given straight small
MpLbA and as gR

P the “standard” MpLbA gDP over P := DA = P ′
s. □

Remarks 3.14.
(a) Theorems 3.12 and 3.13 have the following interpretation. Our

MpLbA’s gR
P depend on the multiparameter P ; at a further level,

once we perform onto gR
P a deformation by toral twist the out-

come gR
P,Θ :=

(
gR
P

)jΘ depends on two multiparameters, namely
P and Θ. Thus all these gR

P,Θ’s form a seemingly richer family
of “twice-multiparametric” MpLbA’s. Nonetheless, Theorem 3.12
above proves that this coincides with the family of all MpLbA’s,
though the latter seems smaller.

In short, Theorems 3.12 and 3.13 show the following. The de-
pendence of the Lie bialgebra structure of gR

P,Θ on the “double pa-
rameter” (P,Θ) is “split” in the algebraic structure – ruled by P –
and in the coalgebraic structure – ruled by Θ. Now, Theorems 3.12
and 3.13 enable us to “polarize” this dependence so to codify it
either entirely within the algebraic structure (while the coalgebraic
one is reduced to a “canonical form”) – so the single multiparame-
ter PΘ is enough to describe it – or entirely within the coalgebraic
structure (with the algebraic one being reduced to the “standard”
one) – so the one multiparameter ΘP is enough indeed.

(b) As we saw at the end of Section 2.2.2, the (sub)class of split realiza-
tions is not closed under twist deformation; as a consequence, the
subclass of all MpLbA’s that are “split” is not closed either under
twist deformation.

3.4. Deformations of MpLbA’s by toral 2-cocycles

Let gR
P be a MpLbA as in Section 3.2.3, and keep notation as above. Du-

ally to what we did before, we consider now the so-called “toral” 2-cocycles
for gR

P .
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Definition 3.15. — Fix an antisymmetric k-linear map χ : h⊗ h→ k
such that

(3.8) χ(Si,−) = 0 = χ(−, Si) ∀i ∈ I

where Si := 2−1(T+
i +T−

i

)
for all i ∈ I (cf. Definition 2.1); in other words,

we have χ ∈ AltSkJℏK(h), cf. (2.12). Moreover, let πgR
P

h : gR
P ↠ h be the

canonical projection induced by any one of the triangular decompositions
in (3.6). We define

χg := χ ◦
(
π
gR

P

h ⊗ πgR
P

h

)
: gR

P ⊗ gR
P −↠ h⊗ h −→ k

and we call it the toral 2-cocycle (or “the 2-cocycle of toral type”) associ-
ated with χ.

Next result follows at once by construction, and explains our use of ter-
minology:

Lemma 3.16. — For any antisymmetric k-linear map χ : h ⊗ h → k
obeying (3.8), the map

χg := χ ◦
(
π
gR

P

h ⊗ πgR
P

h

)
: gR

P ⊗ gR
P −↠ h⊗ h −→ k

is a 2-cocycle for the Lie bialgebra gR
P , in the sense of (3.4).

Proof. — We have to check that χg ∈ Homk
(
gR
P ⊗ gR

P ,k
)

satisfies (3.4),
that is

adψ
(
∂∗(χg)− Jχg, χgK∗

)
= 0, adψ

(
χg + (χg)

2,1

)
= 0 ∀ψ ∈ (gR

P )∗.

Since χ is antisymmetric, we have that χg + (χg)
2,1

= 0, hence the second
condition is trivially satisfied. On the other hand, the first equality follows
from the fact that actually one has ∂∗(χg) = 0 and Jχg, χgK∗ = 0. To
see it, let us describe ∂∗(χg), Jχg, χgK∗ ∈

(
gR
P ⊗ gR

P ⊗ gR
P )∗ explicitly. For

x, y, z ∈ gR
P we have

∂∗(χg)(x, y, z) =
(
(id⊗δ∗)(χg) + c.p.

)
(x, y, z)

= χg

(
x⊗ [y, z]

)
+ c.p.

= χg

(
x, [y, z]

)
+ χg

(
z, [x, y]

)
+ χg

(
y, [z, x]

)
Jχg, χgK∗(x, y, z) = χg(x[1], y)χg(x[2], z) + χg(y[1], z)χg(y[2], x)

+ χg(z[1], x)χg(z[2], y).

Using (3.6), for g ∈ gR
P write g = g+ + g0 + g− with g± ∈ n± and

g0 ∈ h. As χg is defined through the map π
gR

P

h , the map ∂∗(χg) vanishes
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when evaluated at elements in n+ or n−. Moreover, since the bracket on h

is trivial and [h, n±] ⊆ n±, we get

∂∗(χg)(x, y, z) = χ
(
x0, [y+, z−] + [y−, z+]

)
+ c.p.

But [n+, n−] is contained in the Lie subalgebra spanned by the Si’s (i ∈ I),
so we eventually get ∂∗(χg)(x, y, z) = 0 – for all x, y, z ∈ gR

P – by condi-
tion (3.8).

To prove that Jχg, χgK∗(x, y, z) = 0, we use the Lie coalgebra structure.
From (3.1) it follows that δ(n±) ⊆ bP± ⊗ n±. Since δ(h) = 0 by definition
and ∂∗(χg) vanishes on n±, we get that each summand of Jχg, χgK∗(x, y, z)
is zero. □

The second result is the dual analog of Theorem 3.12 and of Theo-
rem 3.13.

We start with some preliminaries. Let P ∈ Mt(k) be a multiparameter
matrix of Cartan type with associated Cartan matrix A, let R be a real-
ization of it, and let gR

P be the associated multiparameter Lie bialgebra;
then, given any χ ∈ AltSkJℏK(h) as in (2.12), let χg : gR

P ⊗ gR
P → k be the

2-cocycle map for gR
P as in Lemma 3.16.

Consider the antisymmetric matrix X̊ :=
(
χ̊ij =χ(T+

i , T
+
j )
)
i,j∈I ∈ son(k).

By Proposition 2.17 we have a matrix P(χ) and a realization R(χ) of it,
given by

P(χ) := P + X̊ =
(
p

(χ)
ij := pij + χ̊ij

)
i,j∈I

and

Π(χ) :=
{
α

(χ)
i := αi ± χ

(
–, T±

i

)}
i∈I
.

In particular, if P is of Cartan type, then so is P(χ) as well, and they are
associated with the same Cartan matrix.

Theorem 3.17. — Keep notation as above.

(a) There exists a Lie bialgebra isomorphism f
(χ)
P : g

R(χ)
P(χ)

∼=
↪↠
(
gR
P

)
χg

,
where

(
gR
P

)
χg

=
(
gR
P ; [ , ]χg

, δ
)

is the 2-cocycle deformation of gR
P

as in Definition 3.2.
In particular, the class of all MpLbA’s of any fixed Cartan type

and of fixed rank is stable by toral 2-cocycle deformations. More-
over, inside it the subclass of all such MpLbA’s associated with
split, resp. minimal, realizations is stable as well.
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(b) Let P and P ′ be two matrices of Cartan type with the same asso-
ciated Cartan matrix A, i.e. such that Ps = P ′

s. Then the following
holds:
(b.1) Let R be a split realization of P and let gR

P be the associated
MpLbA. Then there is χ ∈ AltSk (h) such that P ′ = P(χ), the
corresponding R(χ) is a split realization of P ′ = P(χ), and for
the 2-cocycle χg as in Definition 3.15 we have

g
R(χ)
P ′

∼=
(
gR
P

)
χg

In a nutshell, if P ′
s = Ps then from any split MpLbA over P

we can obtain by toral 2-cocycle deformation a split MpLbA
(of the same rank) over P ′.

(b.2) Let R and R′ be split minimal realizations of P and P ′ re-
spectively, and let gR

P and gR′

P ′ be the associated MpLbA’s.
Then there exists χ ∈ AltSk (h) such that for the 2-cocycle χg

as in Definition 3.15 we have

gR′

P ′ ∼=
(
gR
P

)
χg

In a nutshell, if P ′
s = Ps then any split minimal MpLbA over

P ′ is isomorphic to a toral 2-cocycle deformation of any split
minimal MpLbA over P .

(b.3) Every split minimal MpLbA is isomorphic to some toral 2-
cocycle deformation of the Manin double gDDA := b+ ⊕ b−
associated with DA endowed with the canonical Lie bialgebra
structure given in Section 3.2.3.

Proof.

(a). — By Section 3.1.2, the Lie coalgebra structure in
(
gR
P

)
χg

is the
same as in gR

P , and the latter coincides with the one in g
R(χ)
P(χ)

. In particular,
we have a Lie coalgebra isomorphism among them. With respect to the Lie
algebra structure, we know that the Lie bracket in

(
gR
P

)
χg

is a deformation
of that of gR

P according to (3.5). Let us see that the modified defining
relations in

(
gR
P

)
χg

coincide with the ones in g
R(χ)
P(χ)

, cf. Section 3.2.3; this
will imply that both objects are isomorphic as Lie bialgebras.

As the Lie cobracket on the subalgebra h of gR(χ)
P(χ)

is trivial, we get

[T ′, T ′′]χg
= [T ′, T ′′]− T ′

[1]χg

(
T ′

[2], T
′′)+ T ′′

[1]χg

(
T ′′

[2], T
′) = [T ′, T ′′] = 0
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for all T ′, T ′′ ∈ h. Take now i ∈ I: since δ(T ) = 0, δ(Ei) = 2T+
i ∧ Ei and

δ(Fi) = 2T−
i ∧ Fi, we get that

[T,Ei]χg
= [T,Ei]− Eiχg

(
T+
i , T

)
= αi(T )Ei + χ

(
T, T+

i

)
Ei = α

(χ)
i (T )Ei

[T, Fi]χg
= [T, Fi]− Fiχg

(
T−
i , T

)
= −αi(T )Fi + χg

(
T, T−

i

)
Fi

= −
(
αi(T )Fi − χ

(
T, T−

i

))
Fi = −α(χ)

i (T )Fi

[Ei, Fj ]χg
= [Ei, Fj ] + Eiχg

(
T+
i , Fj

)
− Fjχg

(
T−
j , Ei

)
= [Ei, Fj ] = δij

T+
i + T−

i

2di
.

Note that only the relations involving the roots are changed by the cocycle.
Now, with respect to the Serre relations, as the Lie subalgebras n± are
contained in the right and left radical of χg, analogous calculations as
above yield that(

adχg
(Ei)

)1−aij (Ej) =
(
ad(Ei)

)1−aij (Ej) = 0(
adχg

(Fi)
)1−aij (Fj) =

(
ad(Fi)

)1−aij (Fj) = 0

where hereafter the symbol adχg
denotes the adjoint action with respect

to the deformed bracket [−,−]χg
.

(b.1). — By claim (a), it is enough to find an antisymmetric k-linear
χ : h ⊗ h → k obeying (3.8) such that P ′ = P(χ); this is guaranteed by
Proposition 2.20.

(b.2). — This follows from claim (b.1), along with the uniqueness of
split realizations – cf. Proposition 2.4(b).

(b.3). — This follows as an application of claim (b.2), taking as gR′

P ′ the
given split minimal MpLbA and for gR

P the “standard” MpLbA gDP over
P := DA = P ′

s (cf. Section 3.2.3), which by definition is straight and split
minimal. □

4. Formal multiparameter QUEAs (=FoMpQUEAs)

This section is devoted to introduce formal multiparameter quantized
universal enveloping algebras (in short, FoMpQUEAs) and to study their
deformations.
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4.1. The Hopf algebra setup

Our main references for the theory of Hopf algebras are [44] and [48]. Con-
cerning topological Hopf algebras, in particular ℏ-adically complete ones,
see for instance [11, 36, 39].

4.1.1. Hopf notation

Let us fix our notation for Hopf algebra theory (mainly standard, indeed).
The comultiplication is denoted ∆, the counit ϵ and the antipode S; for the
first, we use the Heyneman–Sweedler notation, namely ∆(x) = x(1) ⊗ x(2).

Hereafter by k we denote the ground ring of our algebras, coalgebras,
etc. In any coalgebra C, the set of group-like elements is denoted by G(C);
also, we denote by C+ := Ker(ϵ) the augmentation ideal. If g, h ∈ G(C),
the set of (g, h)-primitive elements is defined to be Pg,h(C) :=

{
x ∈ C |

∆(x) = x⊗g+h⊗x
}

. In case C is a bialgebra, we write Prim(C) = P1,1(C)
for the space of primitive elements.

For a Hopf algebra H (or just bialgebra), we write Hop, resp. Hcop, for
the Hopf algebra (or bialgebra) given by taking in H the opposite product,
resp. coproduct.

Given a Hopf algebra map π : H → K, then H is a left and right
K-comodule, with structure maps λ := (π ⊗ id)∆ : H → K ⊗ H, ρ :=
(id⊗π)∆ : H → H ⊗K. The space of left and right coinvariants then is
defined, respectively, by

coKH := coπH =
{
h ∈ H

∣∣ (π ⊗ id)
(
∆(h)

)
= 1⊗ h

}
HcoK := Hcoπ =

{
h ∈ H

∣∣ (id⊗π)
(
∆(h)

)
= h⊗ 1

}
.

We recall the (essentially standard) notion of skew-Hopf pairing between
two Hopf algebras and the construction of the Drinfeld’s double.

Definition 4.1 ([4, Section 2.1]). — Given two Hopf algebras H and
K with bijective antipode over the ring k, a k-linear map η : H ⊗k K → k
is called a skew-Hopf pairing (between H and K) if, for all h ∈ H, k ∈ K,
one has

η
(
h, k′k′′) = η

(
h(1), k

′)η(h(2), k
′′)(4.1)

η
(
h′h′′, k

)
= η

(
h′, k(2)

)
η
(
h′′, k(1)

)
(4.2)

η
(
h, 1
)

= ϵ(h), η
(
1, k
)

= ϵ(k)(4.3)

η
(
S±1(h), k

)
= η

(
h,S∓1(k)

)
.(4.4)
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Note that the map η turns out to be convolution invertible: its inverse is
given by η−1(h, k) = η(h,S(k)) = η(S−1(h), k) for all h ∈ H and k ∈ K.

In this setup, the Drinfeld double, or “quantum double”, D(H,K, η) is
the quotient algebra T (H⊕K)/I, where I is the (two-sided) ideal generated
by the relations

1H = 1 = 1K , a⊗ b = ab

x(1) ⊗ y(1) η(y(2), x(2)) = η(y(1), x(1)) y(2) ⊗ x(2)

for all a, b ∈ H or a, b ∈ K and x ∈ K, y ∈ H. This is also endowed
with a standard Hopf algebra structure, for which H and K are Hopf k-
subalgebras.

4.1.2. Topological issues

We will often deal with topological Hopf algebras, namely Hopf algebras
over the ring kJℏK of formal power series over a field k in a formal variable
ℏ. This ring carries a natural topology, called the ℏ-adic topology, coming
from the so-called ℏ-adic norm with respect to which it is complete, namely∥∥anℏn + an+1ℏn+1 + · · ·

∥∥ := C−n (
an ̸= 0

)
where C > 1 is any fixed constant in R. In this sense, we shall consider
topological kJℏK-modules and the completed tensor products among them,
which we denote by ⊗̂kJℏK or simply by ⊗̂. For any k-vector space V , set

V JℏK :=

∑
n⩾0

vnℏn
∣∣∣∣∣∣ vn ∈ V,∀n ⩾ 0


then V JℏK is a complete kJℏK-module. We call a topological kJℏK-module
topologically free if it is isomorphic to V JℏK for some k-vector space V .

For two topologically free modules V JℏK and W JℏK one has that

V JℏK ⊗̂W JℏK ∼=
(
V ⊗W

)
JℏK

see [36, Proposition XVI.3.2]. Then all completed tensor products between
kJℏK-modules will be denoted simply by ⊗, unless we intend to stress the
topological aspect. In particular, we make no distinction on the notation
between Hopf algebras and topological Hopf algebras; we assume it is well-
understood from the context.
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4.1.3. Hopf algebra deformations

There exist two standard methods to deform Hopf algebras, leading to
so-called “2-cocycle deformations” and to “twist deformations”: hereafter
we recall both procedures, adapting them to the setup of topological Hopf
algebras, then later on we apply them to formal quantum groups.

Twist deformations. — Let H be a Hopf algebra (over a commutative
ring), and let F ∈ H ⊗H be an invertible element in H⊗2 (later called a
“twist”) such that

F12
(
∆⊗ id

)
(F) = F23

(
id⊗∆

)
(F),

(
ϵ⊗ id

)
(F) = 1 =

(
id⊗ϵ

)
(F).

Then H bears a second Hopf algebra structure, denoted HF and called
twist deformation of the old one, with the old product, unit and counit,
but with new “twisted” coproduct ∆F and antipode SF given by

∆F (x) := F∆(x)F−1, SF (x) := vS(x)v−1 ∀x ∈ H

where v :=
∑

F S(f ′
1)f ′

2 – with
∑

F f
′
1 ⊗ f ′

2 = F−1 – is invertible in H

(see, [11, Section 4.2.E], for further details). When H is in fact a topological
Hopf algebra – meaning that, in particular, its coproduct ∆ takes values
into H⊗H where now “⊗” stands for a suitable topological tensor product
– then the same notions still make sense, and the related results apply
again, up to properly reading them.

Cocycle deformations. — Let
(
H,m, 1,∆, ϵ

)
be a bialgebra over a ring

k. A convolution invertible linear map σ in Homk(H ⊗ H,k) is called a
(normalized) Hopf 2-cocycle (or just a “2-cocycle” if no confusion arises) if

σ(b(1), c(1))σ(a, b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c)

and σ(a, 1) = ϵ(a) = σ(1, a) for all a, b, c ∈ H, see [44, Section 7.1].
Using a 2-cocycle σ it is possible to define a new algebra structure on H

by deforming the multiplication. Indeed, define mσ = σ∗m∗σ−1 : H⊗H →
H by

mσ(a, b) = a ·σ b = σ(a(1), b(1))a(2)b(2)σ
−1(a(3), b(3)) ∀a, b ∈ H.

If in addition H is a Hopf algebra with antipode S, then define also Sσ :
H → H as Sσ : H → H where

Sσ(a) = σ(a(1),S(a(2)))S(a(3))σ−1(S(a(4)), a(5)) ∀a ∈ H.
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It is known that
(
H,mσ, 1,∆, ϵ

)
is in turn a bialgebra, and similarly also

that
(
H,mσ, 1,∆, ϵ,Sσ

)
is a Hopf algebra: we shall call such a new structure

on H a cocycle deformation of the old one, and we shall graphically denote
it by Hσ; see [18] for more details.

4.1.4. Deformations and duality

The two notions of “2-cocycle” and of “twist” are so devised as to be
dual to each other with respect to Hopf duality. The proof of the following
result (an exercise in Hopf theory) is left to the reader:

Proposition 4.2. — Let H be a Hopf algebra over a field, and H∗ its
linear dual.

(a) Let F be a twist for H, and σF the image of F in (H ⊗H)∗ for the
natural composed embedding H⊗H ↪→ H∗∗⊗H∗∗ ↪→

(
H∗ ⊗H∗)∗.

Then σF is a 2-cocycle for H∗, and there exists a canonical isomor-
phism

(
H∗)

σF

∼=
(
HF)∗.

(b) Let σ be a 2-cocycle for H; assume that H is finite-dimensional, and
let Fσ be the image of σ in the natural identification (H ⊗H)∗ =
H∗ ⊗H∗. Then Fσ is a twist for H∗, and there exists a canonical
isomorphism

(
H∗)Fσ ∼=

(
Hσ

)∗.

4.1.5. Some q-numbers

Let Z
[
q, q−1] be the ring of Laurent polynomials with integral coefficients

in the indeterminate q. For every n ∈ N+ we define

(0)q := 1, (n)q := qn − 1
q − 1 = 1 + q + · · ·+ qn−1 =

n−1∑
s=0

qs

(n)q! := (0)q(1)q · · · (n)q :=
n∏
s=0

(s)q,
(
n

k

)
q

:=
(n)q!

(k)q!(n− k)q!

[0]q := 1, [n]q := qn − q−n

q − q−1 = q−(n−1) + · · ·+ qn−1 =
n−1∑
s=0

q2s−n+1

[n]q! := [0]q[1]q · · · [n]q =
n∏
s=0

[s]q,
[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
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where the objects in the first two lines are elements of Z[q], and those in
the last two are elements of Z

[
q, q−1]. In particular, we have the identities

(n)q2 = qn−1[n]q, (n)q2 ! = q
n(n−1)

2 [n]q,
(
n

k

)
q2

= qk(n−k)
[
n

k

]
q

.

Moreover, for any field F we can think of Laurent polynomials as functions
on F×, hence for any q ∈ F× we shall read every symbol above as a suitable
element in F.

4.2. Formal multiparameter QUEAs

We introduce now the notion of formal multiparameter quantum univer-
sal enveloping algebra, or just “FoMpQUEA”, in short.

Hereafter, k is a field of characteristic zero, kJℏK the ring of formal power
series in ℏ with coefficients in k. In any topological, kJℏK-adically complete
kJℏK-algebra A, if X ∈ A we use the standard notation

eℏX := exp(ℏX) =
+∞∑
n=0

ℏnXn
/
n! ∈ A.

Definition 4.3. — Let A :=
(
ai,j
)
i,j∈I be some fixed generalized sym-

metrizable Cartan matrix, and let P :=
(
pi,j
)
i,j∈I ∈Mn

(
kJℏK

)
be a matrix

of Cartan type associated with A as in the sense of Definition 2.1(d), that
is P + PT = 2DA, i.e. pij + pji = 2diaij for all i, j ∈ I, which implies
pii = 2di ̸= 0 for all i ∈ I.

We define in kJℏK the following elements: q := eℏ = exp(ℏ) ∈ kJℏK, qi :=
eℏdi

(
= qdi

)
, qij := eℏpij

(
= qpij

)
for all i, j ∈ I, and also q1/2

ij := eℏpij/2

for all i, j ∈ I. In particular we have q1/2
ii = eℏdi = qi and qijqji = q

aij

ii for
all i, j ∈ I.

We can now define our FoMpQUEAs, using notation as in Definition 4.3
above.

Definition 4.4. — Let A :=
(
ai,j
)
i,j∈I be a generalized symmetriz-

able Cartan matrix, and P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
a matrix of Cartan

type associated with A. We fix a realization R :=
(
h,Π,Π∨) of P as in

Definition 2.1.
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(a) We define the formal multiparameter quantum universal enveloping
algebra – in short formal MpQUEA, or simply FoMpQUEA – with
multiparameter P and realization R as follows. It is the unital,
associative, topological, ℏ-adically complete kJℏK-algebra UR

P,ℏ(g)
generated by the kJℏK-submodule h together with elements Ei, Fi
(for all i ∈ I), with relations (for all T, T ′, T ′′ ∈ h, i, j ∈ I)

(4.5)

TEj − EjT = +αj(T )Ej , TFj − FjT = −αj(T )Fj

T ′T ′′ = T ′′T ′, EiFj − FjEi = δi,j
e+ℏT+

i − e−ℏT−
i

q+1
i − q

−1
i

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i = 0 (i ̸= j)

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i FjF

k
i = 0 (i ̸= j).

We say that the FoMpQUEA UR
P,ℏ(g) is straight, or small, or

minimal, or split, if such is R; also, we define the rank of UR
P,ℏ(g)

as rk
(
UR
P,ℏ(g)

)
:= rk(R) = rkkJℏK(h).

(b) We define the Cartan subalgebra UR
P,ℏ(h), or just Uℏ(h), of a FoM-

pQUEA UR
P,ℏ(g) as being the unital, ℏ-adically complete topological

kJℏK-subalgebra of UR
P,ℏ(g) generated by the kJℏK-submodule h.

(c) We define the positive, resp. the negative, Borel subalgebra
UR
P,ℏ(b+), resp. UR

P,ℏ(b−), of UR
P,ℏ(g) to be the unital, ℏ-adically

complete topological kJℏK-subalgebra of UR
P,ℏ(g) generated by h and

all the Ei’s, resp. by h and all the Fi’s (i ∈ I).
(d) We define the positive, resp. negative, nilpotent subalgebra

UR
P,ℏ(n+), resp. UR

P,ℏ(n−), of a FoMpQUEA UR
P,ℏ(g) to be the uni-

tal, ℏ-adically complete topological kJℏK-subalgebra of UR
P,ℏ(g) gen-

erated by the Ei’s, resp. the Fi’s, with i ∈ I.

The following two results underscore that the dependence of FoMpQUE-
As on realizations (which includes that on the multiparameter matrix) is
functorial:

Proposition 4.5. — Let P ∈ Mn

(
kJℏK

)
. If both R′ and R′′ are real-

izations of P and ϕ : R′ → R′′ is a morphism between them, then there ex-
ists a unique morphism of unital topological kJℏK-algebras Uϕ : UR′

P,ℏ(g)→
UR′′

P,ℏ (g) that extends the morphism ϕ : h′ → h′′ of kJℏK-modules given by ϕ;
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moreover, UidR
= idUR

P,ℏ(g) and Uϕ′◦ϕ = Uϕ′◦Uϕ (whenever ϕ′◦ϕ is defined).
Thus, the construction R 7→ UR

P,ℏ(g) – for any fixed P – is functorial in R.
Moreover, if ϕ is an epimorphism, resp. a monomorphism, then Uϕ is an

epimorphism, resp. a monomorphism, as well.
Finally, for any morphism ϕ : R′ → R′′, the kernel Ker

(
Uϕ
)

of Uϕ is the
two-sided ideal in UR′

P,ℏ(g) generated by Ker(ϕ), and the latter is central in
UR′

P,ℏ(g).

Proof. — Everything is obvious, we only spend some words on the cen-
trality of Ker(ϕ). Lemma 2.8 gives Ker(ϕ) ⊆

⋂
j∈I Ker(α′

j); then (4.5)
implies that each element in Ker(ϕ) commutes with all generators of the
algebra UR′

P,ℏ(g), so Ker(ϕ) is central in UR′

P,ℏ(g). □

Corollary 4.6. — With notation as above, if R′ ∼= R′′ then there ex-
ists an isomorphism UR′

P,ℏ(g) ∼= UR′′

P,ℏ (g) of (topological) Hopf kJℏK-algebras.
In particular, all FoMpQUEAs built upon split realizations, respectively

small realizations, of the same matrix P and sharing the same rank of h are
isomorphic to each other, hence they are independent (up to isomorphisms)
of the specific realization, but only depend on P and on the rank of h.

Proof. — This follows at once from Proposition 4.5 together with the
uniqueness result in Proposition 2.4 and Proposition 2.6. □

We conclude this subsection with an important structure result, namely
the “triangular decomposition” for FoMpQUEAs. We begin with some pre-
liminaries.

Definition 4.7. — Let A :=
(
ai,j
)
i,j∈I be a generalized symmetriz-

able Cartan matrix, and P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
a matrix of Cartan

type associated with A. We fix a realization R :=
(
h,Π,Π∨) of P as in

Definition 2.1.
(a) We define Û+, resp. Û−, to be the unital, associative, topological,

ℏ-adically complete kJℏK-algebra with generators Ei(i ∈ I), resp.
Fi(i ∈ I), and relations

uXij :=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji X

1−aij−k
i XjX

k
i = 0 (∀i ̸= j)

with X := E, resp. X := F .
(b) We define Û0 to be the unital, associative, commutative, topologi-

cal, ℏ-adically complete kJℏK-algebra generated by h. In other words,
it is Û0 := Ŝℏ(h), the ℏ-adic completion of the symmetric kJℏK-
algebra over the kJℏK-module h.
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(c) We define −→U R,⊗
P,ℏ (g) := Û− ⊗̂kJℏK Û

0 ⊗̂kJℏK Û
+, and we introduce

notation Û−
⊗ := Û− ⊗ kJℏK ⊗ kJℏK, Û0

⊗(h) := kJℏK ⊗ Û0 ⊗ kJℏK,
Û+

⊗ := kJℏK⊗kJℏK⊗Û+, as well as F⊗ := F⊗1⊗1, H⊗ := 1⊗H⊗1,
E⊗ := 1⊗ 1⊗ E for all F ∈ Û− , H ∈ Û0, E ∈ Û+.

Similarly, we set ←−U R,⊗
P,ℏ (g) := Û+ ⊗̂kJℏK Û

0 ⊗̂kJℏK Û
−, and we

consider parallel, suitable notation for elements inside it.

The following, key technical result is also interesting in itself:

Lemma 4.8. — There exists on −→U R,⊗
P,ℏ (g) a unique structure of unital,

associative, topological, ℏ-adically complete kJℏK-algebra such that Û−
⊗, Û0

⊗
and Û+

⊗ are all kJℏK-subalgebras in UR,⊗
P,ℏ (g), and moreover

F⊗
i · T

⊗ = Fi ⊗ T ⊗ 1, T⊗ · E⊗
j = 1⊗ T ⊗ Ej , F⊗

i · E
⊗
j = Fi ⊗ 1⊗ Ej

T⊗ · F⊗
i = Fi ⊗ T ⊗ 1− αi(T )F⊗

i , E⊗
j · T

⊗ = 1⊗ T ⊗ Ej − αj(T )E⊗
j

E⊗
j · F

⊗
i = Fi ⊗ 1⊗ Ej + δij1⊗

e+ℏT+
i − e−ℏT−

i

e+ℏdi − e−ℏdi
⊗ 1.

An parallel claim holds true for
←−
U R,⊗
P,ℏ (g) := Û+ ⊗̂kJℏK Û

0 ⊗̂kJℏK Û
−.

Proof. — It is enough to prove the statement about −→U R,⊗
P,ℏ (g).

We introduce a structure of an ℏ-adically complete, topological kJℏK-
algebra −→U R,⊗

P,ℏ (g) as required by hands, somehow. First, we assume that
in this algebra the submodules Û−

⊗, Û0
⊗ and Û+

⊗ sit as kJℏK-subalgebras –
there is no obstruction to such a requirement. After this, the structure will
be uniquely determined once we fix the products among elements in any
two (different) of these subalgebras. Moreover, as the subalgebra Û−

⊗, resp.
Û0

⊗(h), resp. Û+
⊗, is (topologically) generated by the F⊗

i ’s (i ∈ I), resp. the
T⊗’s (T ∈ h), resp. the E⊗

j ’s (j ∈ I), it is enough to fix the products among
any two such generators (from different sets). Eventually, recall that the
Fi’s, resp. the Ej ’s, are indeed generators for Û−, resp. for Û+, which are
only subject to the “quantum Serre relations” in Definition 4.7(b), while
the T ’s are “commutative free” – but for the fact that they are related
by obvious, built-in relations such as T = c′T ′ + c′′T ′′ inside h implies
T = c′T ′ + c′′T ′′ in Û0

⊗, as h is naturally mapped (linearly) into Û0
⊗. Thus,

one can define the values of the product among F⊗
i , E⊗

j ’ and T⊗ in any
possible way as soon as all “quantum Serre relations” among the F⊗

i ’s
and among the E⊗

j ’s, as well as the “obvious relations” among the T ’s
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from h – namely the “linear relations” (such as T = c′T ′ + c′′T ′′) and the
commutation relations (of the form T ′T ′′ = T ′′T ′) are respected.

By the above discussion, the following choices

F⊗
i · T

⊗ := Fi ⊗ T ⊗ 1, T⊗ · E⊗
j := 1⊗ T ⊗ Ej , F⊗

i · E
⊗
j := Fi ⊗ 1⊗ Ej

T⊗ · F⊗
i := Fi ⊗ T ⊗ 1− αi(T )Fi ⊗ 1⊗ 1

E⊗
j · T

⊗ := 1⊗ T ⊗ Ej − αj(T )1⊗ 1⊗ Ej

E⊗
j · F

⊗
i := Fi ⊗ 1⊗ Ej + δij · 1⊗

e+ℏT+
i − e−ℏT−

i

e+ℏdi − e−ℏdi
⊗ 1

for the values of the product among two generators – from different subal-
gebras Û−

⊗, Û0
⊗ or Û+

⊗ – are enough to determine a unique algebra structure
as required: we only have still to check that, using these defining formu-
las for the product, the relations mentioned above among generators are
respected.

First of all, we consider all linear relations and commutation relations
among the T ’s: in this case, the check is entirely trivial.

Second, we consider the case of quantum Serre relations. Concerning
them, in order to have more readable formulas, we simplify notation (with
a slight abuse) by writing, instead of “F⊗” (∀F ∈ Û−) just “F” again,
and similarly “H” instead of ”H⊗” (∀H ∈ Û0) and “E” instead of ”E⊗”
(∀E ∈ Û+).

Our goal now is to check that the multiplication defined by the previous
formulas “respects” the quantum Serre relations: In turn, this eventually
boils down to verify the following: all products between a factor chosen
in
{
Fi, T, Ej

∣∣ i, j ∈ I, T ∈ h
}

and another (in either order) chosen in{
uEij , u

F
ij

∣∣ i, j ∈ I, i ̸= j
}

is zero.
Clearly all products of type uFij ·Fℓ and Fℓ·uFij , resp. uEij ·Et and Et·uEij , are

zero because so they are in the subalgebra U−, resp. U+. The non-trivial
cases are

T · uEij , uEij · T, T · uFij , uFij · T, uEij ·Fℓ, Fℓ · uEij , uFij ·Et, Et · uFij

but among these, four cases are indeed almost trivial, as definitions give

T · uEij = 1⊗ T ⊗ uEij = 1⊗ T ⊗ 0 = 0

uFij · T = uFij ⊗ T ⊗ 1 = 0⊗ T ⊗ 1 = 0

Fℓ · uEij = Fℓ ⊗ 1⊗ uEij = Fℓ ⊗ 1⊗ 0 = 0

uFij · Et = uFij ⊗ 1⊗ Et = 0⊗ 1⊗ Et = 0.
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Eventually, the remaining, really non-trivial cases are the following four

uEij · T, T · uFij , uEij · Fℓ, Et · uFij

that we now go and analyze in detail.
Let us consider the product T · uFij : straightforward calculations give

T · uFij = T

(1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i FjF

k
i

)

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji TF

1−aij−k
i FjF

k
i

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji

× F 1−aij−k
i FjF

k
i ⊗

(
T −

((
1− aij

)
αi + αj

)
(T )
)
⊗ 1

= uFij ⊗
(
T −

((
1− aij

)
αi + αj

)
(T )
)
⊗ 1

= 0⊗
(
T −

((
1− aij

)
αi + αj

)
(T )
)
⊗ 1 = 0

which is good. The product uEij · T is dealt with in a similar way.
Let us now consider the product uEij · Fℓ: again, direct calculations yield

different results, depending on whether ℓ ∈ {i, j} or not.

Case 1: ℓ ̸∈ {i, j}. —

=⇒ uEij · Fℓ =
(1−aij∑

k=0
(−1)k

[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i

)
Fℓ

= Fℓ⊗1⊗
(1−aij∑

k=0
(−1)k

[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i

)
= Fℓ ⊗ 1⊗ uEij = Fℓ ⊗ 1⊗ 0 = 0

which stands good!
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Case 2: ℓ = j. —

=⇒ uEij · Fℓ =
(1−aij∑

k=0
(−1)k

[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i

)
Fj

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i · Ej · Fj · Eki

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji

× E1−aij−k
i ·

(
Fj · Ej + e+ℏT+

j − e−ℏT−
j

e+ℏdj − e−ℏdj

)
· Eki

= Fj · uEij +
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i

× e+ℏT+
j − e−ℏT−

j

e+ℏdj − e−ℏdj
· Eki

= Fj ⊗ 1⊗ uEij +
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji q

k−1+aij

ji

× e+ℏT+
j

e+ℏdj − e−ℏdj
· E1−aij

i

−
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji q

1−aij−k
ij

× e−ℏT−
j

e+ℏdj − e−ℏdj
· E1−aij

i

= Fj ⊗ 1⊗ uEij + 1⊗
C+
ij (q) e+ℏT+

j −C−
ij (q) e−ℏT−

j

e+ℏdj − e−ℏdj
⊗ E1−aij

i

where in the last line we have Fj ⊗ 1⊗ uEij = Fj ⊗ 1⊗ 0 = 0, and

C+
ij (q) :=

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji q

k−1+aij

ji

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

(
qijqji

)+k/2
q

−1+aij

ji

= q
aij−1
ji

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
kaij

i = 0
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where the very last identity follows from the general, combinatorial q-
identity (see for example [33, Chapter 0], or [40, Section 1.3.4])

N∑
k=0

(−1)k
[
N

k

]
qi

q
k(1−N)
i = 0 ∀N ∈ N+.

In a parallel way we get C−
ij (q) = 0, hence from the above analysis we

conclude that uEij ·Fℓ = uEij ·Fj = 0 whenever ℓ = j. The third and last case
is when ℓ = i. To deal with that, let us notice that standard computations
give us, for all n ∈ N,

Eni · Fi = FiE
n
i +

[
Eni , Fi

]
= FiE

n
i +

n∑
ℓ=0

Eℓi
[
Ei, Fi

]
En−1−ℓ
i

= FiE
n
i +

n−1∑
ℓ=0

Eℓi
e+ℏT+

i − e−ℏT−
i

e+ℏdi − e−ℏdi
En−1−ℓ
i

= Fi · Eni +
∑n−1
ℓ=0 q

−ℓ
ii e+ℏT+

i −
∑n−1
ℓ=0 q

+ℓ
ii e−ℏT−

i

q+1
i − q

−1
i

· En−1
i

= Fi · Eni + [n]qi

q−n+1
i e+ℏT+

i −q+n−1
i e−ℏT−

i

q+1
i − q

−1
i

· En−1
i .

Using this, we compute still more, and get, for all r, s ∈ N,

EriEjE
s
i · Fi

= EriEj

(
Fi · Esi + [s]qi

q−s+1
i e+ℏT+

i −q+s−1
i e−ℏT−

i

q+1
i − q

−1
i

· Es−1
i

)
= Eri · Fi · EjEsi + [s]qi

EriEj ·
q−s+1
i e+ℏT+

i −q+s−1
i e−ℏT−

i

q+1
i − q

−1
i

· Es−1
i

= Fi · EriEjEsi + [r]qi

q−r+1
i e+ℏT+

i −q+r−1
i e−ℏT−

i

q+1
i − q

−1
i

· Er−1
i EjE

s
i

+ [s]qi

q−s+1−2r
i q−1

ij e+ℏT+
i −q+s−1+2r

i q+1
ji e−ℏT−

i

q+1
i − q

−1
i

· EriEjEs−1
i .
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Applying this result, we get the following:

uEij · Fi =
∑

r+s=1−aij

(−1)s
[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji EriEjE

s
i · Fi

=
∑

r+s=1−aij

(−1)s
[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji ·

(
Fi · EriEjEsi

+ [r]qi

q−r+1
i e+ℏT+

i −q+r−1
i e−ℏT−

i

q+1
i − q

−1
i

· Er−1
i EjE

s
i

+ [s]qi

q−s+1−2r
i q−1

ij e+ℏT+
i −q+s−1+2r

i q+1
ji e−ℏT−

i

q+1
i − q

−1
i

· EriEjEs−1
i

)
= Fi ·

∑
r+s=1−aij

(−1)s
[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji EriEjE

s
i

+
∑

h+k=−aij

(−1)kΓ+
h,k

q+1
i − q

−1
i

e+ℏT+
i ·Ehi EjEki

+
∑

h+k=−aij

(−1)kΓ−
h,k

q+1
i − q

−1
i

e−ℏT−
i ·Ehi EjEki

where the coefficients Γ+
h,k and Γ−

h,k are given by where the coefficients Γ+
h,k

and Γ−
h,k are given by

Γ±
h,k = q

+k/2
ij q

−k/2
ji q∓h

i

([
h+ k + 1

k

]
qi

[
h+ 1

]
qi
−
[
h+ k + 1
k + 1

]
qi

[
k + 1

]
qi

)
= 0.

Plugging this result in the previous formulas, we get
ℓ = i. —

=⇒ uEij · Fℓ = Fi ·
∑

r+s=1−aij

(−1)s
[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji EriEjE

s
i + 0 + 0

= Fiu
E
ij + 0 + 0 = Fi ⊗ 1⊗ uEij = Fi ⊗ 1⊗ 0 = 0

which makes the job. The case of Et · uFij is entirely similar, hence it is left
to the reader. □

The next result shows that −→U R,⊗
P,ℏ (g) and ←−U R,⊗

P,ℏ (g) are nothing but dif-
ferent, explicit realizations of our FoMpQUEA UR

P,ℏ(g); moreover, from
this we deduce an explicit description of the nilpotent, Borel and Cartan
quantum subalgebras in UR

P,ℏ(g).
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Theorem 4.9.
(a) There exist natural isomorphisms of topological kJℏK-algebras

−→
U R,⊗
P,ℏ (g) := Û− ⊗̂kJℏK Û

0 ⊗̂kJℏK Û
+ ∼= UR

P,ℏ(g)
←−
U R,⊗
P,ℏ (g) := Û+ ⊗̂kJℏK Û

0 ⊗̂kJℏK Û
− ∼= UR

P,ℏ(g)

induced by multiplication in UR
P,ℏ(g).

(b) With notation as in Definition 4.4, the isomorphisms in claims (a)
above induce by restriction similar isomorphisms

UR
P,ℏ(n−) ∼= Û−, Uℏ(h) ∼= Û0, UR

P,ℏ(n+) ∼= Û+

Û± ⊗̂kJℏK Û
0 ∼= UR

P,ℏ(b±), Û0 ⊗̂kJℏK Û
± ∼= UR

P,ℏ(b±).

It follows then that UR
P,ℏ(n±), Uℏ(h), and UR

P,ℏ(b±) admit the obvi-
ous descriptions (in particular, by generators and relations) inher-
ited from Definition 4.7.

Proof.
(a). — The two cases are entirely similar, so we prove the claim only

for −→U R,⊗
P,ℏ (g).

Consider the kJℏK-algebra −→U R,⊗
P,ℏ (g) := Û− ⊗̂ Û0 ⊗̂ Û+ of Lemma 4.8.

By construction, it is (topologically) generated by the elements F⊗
i , T⊗,

E⊗
j (i, j ∈ I, T ∈ h), and these generators obey the same relations (up

to “inserting/removing” any super/sub-script “⊗”) as the analogous gen-
erators of UR

P,ℏ(g). Therefore, there exists an epimorphism of topological
kJℏK-algebras

π : UR
P,ℏ(g) −↠ UR,⊗

P,ℏ (g), Fi 7−→ F⊗
i , T 7−→ T⊗, Ej 7−→ E⊗

j

(
∀i, j, T

)
.

On the other hand, for each • ∈ {−, 0,+} there is a morphism of alge-
bras Û• η•−→UR

P,ℏ(g) mapping every generator of Û• onto the corresponding
generator in UR

P,ℏ(g). Composing these with “threefold-multiplication” m3

in UR
P,ℏ(g) we obtain a morphism

µ3 := m3 ◦
(
η− ⊗ η0 ⊗ η+

)
: UR,⊗

P,ℏ (g) := Û− ⊗̂ Û0 ⊗̂ Û+ −→ UR
P,ℏ(g)

of topological kJℏK-modules. Now, by construction, the map µ3 is inverse to
π, so the latter is bijective, hence it is a kJℏK-algebra isomorphism. As on
both sides we consider ℏ-adic topology, this π is then an homeomorphism of
topological spaces too, so it is an isomorphism of topological kJℏK-algebras.
Therefore µ3, being the inverse of π, is an isomorphism of topological kJℏK-
algebras too.

(b). — This follows quite easily from claim (a). □
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Remark 4.10. — The proof above relies on an ad-hoc argument which
has roots on well-known Hopf theoretic constructions: bosonization and
lifting. Indeed, the algebras Û± admit a braided Hopf algebra structure
whose comultiplication is defined by setting the generators Ei, resp. Fi,
to be primitive elements, for all i ∈ I. Hereafter, by braided Hopf alge-
bra we mean a Hopf algebra in a braided tensor category; in the present
case, the category is the category Û0

Û0YD of Yetter–Drinfeld modules over
the topological Hopf algebra Û0. Given a Hopf algebra B in a category
of Yetter–Drinfeld modules H

HYD over a Hopf algebra H, there is a pro-
cess to construct a usual Hopf algebra, called the “Radford biproduct”
or bosonization: it is kind of a semidirect product and coproduct, dis-
covered by Radford and interpreted categorically by Majid. As a vector
space, the bosonization B#H is just the vector space B ⊗H. In our case,
the (completed) tensor product Û− ⊗ Û+ of the braided Hopf algebras
is again a braided Hopf algebra, and the bosonization

(
Û− ⊗ Û+)#Û0

is a topological, complete Hopf kJℏK-algebra. By construction, it can be
presented by the generators T ∈ h and Ei, Fi with i ∈ I, satisfying
all the relations in (4.5) except the commuting relation between Ei and
Fj ; in fact, the latter now is replaced simply by

[
Ei, Fj

]
= 0. Here en-

ters into the picture the process of lifting or deformation: through this
process, one deforms the relations in a specific way, in our case, the el-
ement

[
Ei, Fj

]
∈ Û− ⊗ Û+ becomes skew-primitive in the bosonization(

Û− ⊗ Û+)#Û0 and one change the relation by setting it equal to the dif-
ference between the group-like elements appearing in the comultiplication,
that is

EiFj − FjEi = δi,j
e+ℏT+

i − e−ℏT−
i

q+1
i − q

−1
i

.

In general, the lifting process can also be described by means cocycle
deformations.

All these constructions are described explicitly in [23] in the case of poly-
nomial multiparameter quantum groups. It is worth noting that, by means
of a process of bosonization and/or taking quantum doubles, one can gen-
eralize triangular decompositions to more general families of Hopf algebras
or quantum groups; this implies special features in representation theory,
see for example [47].

Eventually, we can now prove the “triangular decomposition” theorem
for our FoMpQUEAs:
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Theorem 4.11 (“Triangular Decompositions” in UR
P,ℏ(g)). — There ex-

ist natural isomorphisms of topological kJℏK-algebras

UR
P,ℏ(n∓) ⊗̂kJℏK Uℏ(h) ∼= UR

P,ℏ(b∓)

Uℏ(h) ⊗̂kJℏK U
R
P,ℏ(n∓) ∼= UR

P,ℏ(b∓)

UR
P,ℏ(n−) ⊗̂kJℏK Uℏ(h) ⊗̂kJℏK U

R
P,ℏ(n+) ∼= UR

P,ℏ(g)

UR
P,ℏ(n+) ⊗̂kJℏK Uℏ(h) ⊗̂kJℏK U

R
P,ℏ(n−) ∼= UR

P,ℏ(g)

(notation as in Definition 4.4) induced by multiplication in UR
P,ℏ(g).

Proof. — This is a direct consequence of Theorem 4.9 above. □

4.3. Hopf structure on FoMpQUEAs

We introduce now on our FoMpQUEAs a structure of topological Hopf
algebra. Another proof of its existence will follow from an alternative con-
struction (cf. Section 4.5). To begin with, we explain the link between our
“formal” and the “polynomial” one.

Remark 4.12. — The usual, formal QUEA Uℏ(g) by Drinfeld has a “poly-
nomial” sibling Uq(g) introduced by Jimbo and Lusztig: the latter is a
(Hopf) subalgebra of the former, over the subring k

[
q, q−1] of kJℏK, with

q±1 := e±ℏ.
Our notion of formal multiparameter QUEA is explicitly tailored so that

this parallelism extend to the multiparameter setting, linking our formal
multiparameter UR

P,ℏ(g) with a “polynomial” multiparameter QUEA Uq(g)
as in [46] or [25].

To see this, we consider a matrix P of Cartan type, whose associated
Cartan matrix is A, and a split realization R =

(
h,Π,Π∨) of it: for this

the algebra UR
P,ℏ(g) is defined and we begin by modifying the presentation

of the latter. First, replace each Fi by Ḟi := qiFi for all i ∈ I. Then the
fourth relation in (4.5) reads

EiḞj − ḞjEi = δi,jqii
e+ℏT+

i − e−ℏT−
i

qii − 1 ∀i, j ∈ I.

Second, using the relation
(
n
k

)
qii

= q
k(n−k)
i

[
n
k

]
qi

(cf. Section 4.1.5) along
with the identity qijqji = q

aij

ii – which follows from the assumption P +
P t = 2DA and definitions, see Definition 4.3, we can re-write the two last
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relations in (4.5) as

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
(k

2)
ii qkijE

1−aij−k
i EjE

k
i = 0 (i ̸= j)

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
(k

2)
ii qkijḞ

1−aij−k
i ḞjḞ

k
i = 0 (i ̸= j).

With this reformulation, UR
P,ℏ(g) has the following, alternative presen-

tation: it is the unital, associative, topological, ℏ-adically complete kJℏK-
algebra generated by the kJℏK-submodule h and the elements Ei, Ḟi (for
all i ∈ I), with relations

(4.6)

TEj − EjT = +αj(T )Ej , T Ḟj − ḞjT = −αj(T )Ḟj

T ′T ′′ = T ′′T ′, EiḞk − ḞkEi = δi,kqii
e+ℏT+

i − e−ℏT−
i

qii − 1
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i = 0

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji Ḟ

1−aij−k
i ḞjḞ

k
i = 0

for all T, T ′, T ′′ ∈ h, i, j, k ∈ I, with i ̸= j.
Now set

q±1 := e±ℏ ∈ kJℏK

and consider the k-subalgebra k
[
q, q−1] of kJℏK, and the elements K±1

i :=
e±ℏT+

i , L±1
i := e∓ℏT−

i (i ∈ I) in UR
P,ℏ(g). Then in the scalar extension

UR
P,ℏ(g) := k(q)⊗k[q,q±1] U

R
P,ℏ(g),

we slightly abuse notation by writing X := 1 ⊗ X for any X ∈ UR
P,ℏ(g),

and we define Uq(g) to be the unital k(q)-subalgebra of UR
P,ℏ(g) generated

by
{
K±1
i , L±1

i , Ei, Ḟi
}
i∈I . By construction and by (4.6), we can describe

Uq(g) as being the unital, associative algebra over k(q) with generators
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K±1
i , L±1

i , Ei, Ḟi (for all i ∈ I) and relations

(4.7)

K±1
i K±1

j = K±1
j K±1

i , K±1
i L±1

j = L±1
j K±1

i , L±1
i L±1

j = L±1
j L±1

i

K+1
i K−1

i = 1 = K−1
i K+1

i , L+1
i L−1

i = 1 = L−1
i L+1

i

K±1
i EjK

∓1
i = q±1

i,j Ej , L±1
i EjL

∓1
i = q∓1

j,i Ej

K±1
i ḞjK

∓1
i = q∓1

i,j Ḟj , L±1
i ḞjL

∓1
i = q±1

j,i Ḟj

EiḞj − ḞjEi = δi,jqii
Ki − Li
qii − 1

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
(k

2)
ii qkijE

1−aij−k
i EjE

k
i = 0 (i ̸= j)

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
(k

2)
ii qkijḞ

1−aij−k
i ḞjḞ

k
i = 0 (i ̸= j).

Next we consider the scalar extension Uℏ(h) := k(q)⊗k[q,q±1] Uℏ(h) of
Uℏ(h) (cf. Definition 4.4(b)) which clearly embeds as a “Cartan subalgebra”
into UR

P,ℏ(g) := k(q)⊗k[q,q±1] U
R
P,ℏ(g); let also Uq(h) be the k(q)-subalgebra

– inside Uq(g), Uℏ(h) and Uℏ(h) – generated by all the K±1
i ’s and all the

L±1
i ’s. Note that inside Uℏ(h) we have ±T+

i = ℏ−1 log
(
K±1
i

)
and ±T−

i =
ℏ−1 log

(
L±1
i

)
. By construction, both Uℏ(h) and Uq(g) are modules (on

the right and on the left, respectively) for the commutative algebra Uq(h);
therefore, the Uq(h)-module Uℏ(h)⊗Uq(h) Uq(g) is well-defined. Finally, the
ℏ-adic completion of the latter actually identifies with its closure inside
UR
P,ℏ(g), which is exactly all of UR

P,ℏ(g): in a nutshell, we have a (complete)
tensor product factorization

UR
P,ℏ(g) = Uℏ(h) ⊗̂Uq(h) Uq(g).

The previous observation is our bridge to achieve the key point about
the notion of formal multiparameter QUEA, that is the following:

Theorem 4.13. — Every FoMpQUEA UR
P,ℏ(g) as in Definition 4.4

bears a well-defined structure of topological Hopf algebra over kJℏK – with
coproduct taking values into the ℏ-adically completed tensor product
UR
P,ℏ(g) ⊗̂kJℏK U

R
P,ℏ(g) – given by (∀T ∈ h, ℓ ∈ I)

(4.8)

∆
(
Eℓ
)

= Eℓ ⊗ 1 + eℏT
+
ℓ ⊗Eℓ

∆
(
T
)

= T ⊗ 1 + 1⊗ T

∆
(
Fℓ
)

= Fℓ ⊗ e−ℏT−
ℓ +1⊗ Fℓ

ANNALES DE L’INSTITUT FOURIER



FORMAL MULTIPARAMETER QUANTUM GROUPS 59

ϵ
(
Eℓ
)

= 0, ϵ
(
T
)

= 0, ϵ
(
Fℓ
)

= 0(4.9)

S
(
Eℓ
)

= − e−ℏT+
ℓ Eℓ, S

(
T
)

= −T, S
(
Fℓ
)

= −Fℓ e+ℏT−
ℓ .(4.10)

Proof. — We provide hereafter two proofs; a third, independent one will
follow from another approach, that is detailed in Section 4.5 later on.

First Proof. — Via a direct approach, the proof is a matter of computa-
tion. First, in the free, topological, ℏ-adically complete, unital, associative
kJℏK-algebra FR generated by the kJℏK-submodule h together with the Ei’s
and the Fi’s, the formulas (4.8) and (4.9) define a structure of (topological)
bialgebra. Then one has to check that the two-sided ideal IR in FR gener-
ated by relations (4.5) is a bi-ideal for that bialgebra. Second, one has to
check that the map S : UR

P,ℏ(g)→ UR
P,ℏ(g)op defined on FR

/
IR =: UR

P,ℏ(g)
by the second line in (4.10) is an algebra anti-morphism with the “right”
properties for the antipode map on the generators. In all cases, compu-
tations are the same as for [11, Definition-Proposition 6.5.1] which treats
Drinfeld’s special case with h of minimal rank. It is worth stressing, though,
a key feature of this generalized result: namely, the assumption that P be
of Cartan type is what one uses to prove that the quantum Serre’s relations
(i.e., the last two relations in (4.5)) are mapped into FR⊗̂IR + IR⊗̂FR
– where ⊗̂ denotes the ℏ-adic completion of the algebraic tensor product –
by the given coproduct on FR. Actually, one shows that the elements Ei,j
and Fi,j represented by the left hand side of these equalities are skew-
primitives, namely

∆(Ei,j) = Ei,j ⊗ 1 + e+(1−aij)ℏT+
i

+ℏT+
j ⊗Ei,j

and similarly

∆(Fi,j) = Fi,j ⊗ e−(1−aij)ℏT−
i

−ℏT−
j +1⊗ Fi,j .

Second Proof. — This alternative method goes through an indirect ap-
proach, based on multiparameter QUEA of “polynomial type”.

First of all, we assume the realization R to be split. In this case, Ob-
servation 4.12 provides a factorization UR

P,ℏ(g) := k(q) ⊗k[q,q±1] U
R
P,ℏ(g) =

Uℏ(h) ⊗̂Uq(h) Uq(g).
Due to its presentation in Observation 4.12, our Uq(g) is a “multipa-

rameter quantum group” in the sense of [46] – cf. also [25], where such an
example of multiparameter quantum group is referred to as being “ratio-
nal”, in that each qij is a power of a single, common parameter q. The
key point then is that any such (“polynomial”) multiparameter quantum
group Uq(g) has a specific Hopf algebra structure (cf. [46] and [23]) given

TOME 0 (0), FASCICULE 0



60 Gastón Andrés GARCÍA & Fabio GAVARINI

(for all ℓ ∈ I) by

(4.11)

∆
(
Eℓ
)

= Eℓ ⊗ 1 +Kℓ ⊗ Eℓ, ϵ
(
Eℓ
)

= 0, S
(
Eℓ
)

= −K−1
ℓ Eℓ

∆
(
K±1
ℓ

)
= K±1

ℓ ⊗K
±1
ℓ , ϵ

(
K±1
ℓ

)
= 1, S

(
K±1
ℓ

)
= K∓1

ℓ

∆
(
L±1
ℓ

)
= L±1

ℓ ⊗ L
±1
ℓ , ϵ

(
L±1
ℓ

)
= 1, S

(
L±1
ℓ

)
= L∓1

ℓ

∆
(
Ḟℓ
)

= Ḟℓ ⊗ Lℓ + 1⊗ Ḟℓ, ϵ
(
Ḟℓ
)

= 0, S
(
Ḟℓ
)

= −ḞℓL−1
ℓ .

Let now Ũq(g) be the k
[
q, q−1]-subalgebra of Uq(g), hence of UR

P,ℏ(g),
generated by

{
Ei,K

±1
i , L±1

i , Ḟi
}
i∈I : it is ℏ-adic dense in Uq(g), and re-

stricting the coproduct ∆ to Ũq(g) yields ∆
(
Ũq(g)

)
⊆ Ũq(g) ⊗k[q,q−1]

Ũq(g). Therefore, since Ki = exp
(
+ℏT+

i

)
and Li = exp

(
−ℏT−

i

)
, there

exists one and only one way to extend (continuously) ∆
∣∣
Ũq(g) to UR

P,ℏ(g),
which gives a map

(4.12) ∆ : UR
P,ℏ(g) −→ UR

P,ℏ(g)⊗̂UR
P,ℏ(g)

described by (4.11) together with the additional constraint that all the
T±
i ’s be primitive.
Since the original map ∆ on Uq(g) obey the axioms of a coproduct,

the same holds true for the map in (4.12) as well – though in a topological
framework. With similar arguments, we deal with counit and antipode map,
so that we end up with a (topological) Hopf structure for UR

P,ℏ(g), uniquely
induced from the one on Uq(g). Tracking the whole construction, we even-
tually see that such a structure is described on generators by (4.8), (4.9)
and (4.10).

Now we consider the case of a realization R :=
(
h,Π,Π∨) of any kind.

By Lemma 2.7, we can then pick a split realization (of the same matrix P
as R), say Ṙ :=

(
ḣ, Π̇, Π̇∨) and an epimorphism of realizations π : Ṙ↠ R.

By functoriality (cf. Proposition 4.5), such a π induces an epimorphism of
FoMpQUEAs Uπ : U Ṙ

P,ℏ(g) ↠ UR
P,ℏ(g), whose kernel Ker

(
Uπ
)

is generated
by Ker(π), and the latter is central in U Ṙ

P,ℏ(g); moreover, every element
in Ker(π) is primitive. Therefore Ker

(
Uπ
)

is indeed a Hopf ideal in the
Hopf algebra U Ṙ

P,ℏ(g), hence UR
P,ℏ(g) automatically inherits via Uπ a quo-

tient Hopf algebra structure from U Ṙ
P,ℏ(g), which is again described by the

formulas in the statement. □

The following is now immediate:

Corollary 4.14. — The Cartan subalgebra Uℏ(h) and the Borel subal-
gebras UR

P,ℏ(b+) and UR
P,ℏ(b−) are actually (topological) Hopf subalgebras

of UR
P,ℏ(g), their Hopf structure being described again via formulas (4.8)
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and (4.10). In addition, when R is split we have that

UR
P,ℏ(b±) ∼= Uℏ(h±) ⋉̂

Uq(h±)
Uq(b±)

where Uq(b±) is the multiparameter quantum group corresponding to the
Borel subalgebras.

The next result follows at once from the second proof of Theorem 4.13.

Proposition 4.15. — Let ϕ : R′ → R′′ be a morphism between realiza-
tions of a same matrix P ∈Mn

(
kJℏK

)
. Then the morphism of unital topo-

logical kJℏK-algebras Uϕ : UR′

P,ℏ(g) → UR′′

P,ℏ (g) granted by Proposition 4.5
is indeed a morphism of (unital topological) Hopf kJℏK-algebras. If we set
k := Ker(ϕ), then Uℏ(k) is a unital, ℏ-adically complete kJℏK-subalgebra
of UR′

P,ℏ(g) which is a central Hopf subalgebra, isomorphic to a quantum
Cartan (in the sense of Definition 4.4(b)), and Ker(Uϕ) = UR′

P,ℏ(g)Uℏ(k)+,
with Uℏ(k)+ the augmentation ideal of Uℏ(k).

In particular, if Uϕ is an epimorphism, then we have that

UR′′

P,ℏ (g) ∼= UR′

P,ℏ(g)
/
UR′

P,ℏ(g)Uℏ(k)+
.

Example 4.16. — Fix P := DA, r := rk
(
DA

)
and let R̂ :=

(
ĥ, Π̂, Π̂∨)

and R :=
(
h,Π,Π∨) be realizations of DA, where R̂ is straight and split

with rk
(
ĥ
)

= 2(2n− r) while R is straight and small with rk(h) = 2n− r;
more precisely, we assume T+

i = T−
i in R, for all i ∈ I. With this setup,

UR
DA,ℏ(g) is the usual Drinfeld’s QUEA Uℏ

(
g

A

)
for the Kac–Moody algebra

g
A

associated with the Cartan matrix A as in Section 2.1.1; in particular, its
semiclassical limit is U(g). Instead, U R̂

DA,ℏ(g) has semiclassical limit U(gD),
with gD the Manin double of g = g

A
(cf. Section 2.1.1).

Now, there exists a (non-unique, if r ≨ n) epimorphism ϕ : R̂ ↠ R
such that ϕ

(
T̂±
i

)
= T±

i (i ∈ I); then z := Ker(ϕ) ⊆
⋂
j∈I Ker(α̂j). Since

every element of ĥ is primitive inside U R̂
DA,ℏ(g), the subalgebra U R̂

ℏ (z) of
U R̂
DA,ℏ(g) generated by z is indeed a Hopf subalgebra; moreover, it is central

in U R̂
DA,ℏ(g) because z ⊆

⋂
j∈I Ker(α̂j). Also, U R̂

ℏ (z) is the ℏ-adic completion
of the polynomial kJℏK-algebra over z∗, so we can loosely think of it as being
a “quantum Cartan algebra” of “rank” 2n− r.

By Proposition 4.15, ϕ yields a (Hopf) epimorphism of (topological) Hopf
algebras Uϕ : U R̂

DA,ℏ(g) ↠ UR
DA,ℏ(g); by construction, the kernel of latter is
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the two-sided ideal generated by z, that is

Ker
(
Uϕ
)

= U R̂
DA,ℏ(g)U R̂

ℏ (z)+
U R̂
DA,ℏ(g) = U R̂

DA,ℏ(g)U R̂
ℏ (z)+

= U R̂
ℏ (z)+

U R̂
DA,ℏ(g)

and we have that UR
DA,ℏ(g) ∼= U R̂

DA,ℏ(g)
/
U R̂
DA,ℏ(g)U R̂

ℏ (z)
+

.
Finally, if we deal instead with R small and R̂ split such that rk

(
ĥ
)

= 2n
and rk(h) = n, then g = g

A
has to be replaced by the derived algebra g′

associated with A, and gD by the Manin double of g′. The previous analysis
then works again.

Remark 4.17. — Let us now take any matrix P (of Cartan type), a re-
alization R of it that is minimal and small with rk(h) = 2n − r – with
r := rk

(
P + PT

)
– and the associated FoMpQUEA UR

P,ℏ(g); then we can
still find another realization Ṙ of P that is split with rk(h) = 2(2n − r)
and an epimorphism of realizations π : Ṙ ↠ R so that zπ := Ker(π) is
again free of rank 2n− r (see Lemma 2.7 and its proof). Then the previous
analysis (that was based upon ϕ : R̂↠ R and Uϕ : U R̂

DA,ℏ(g) ↠ UR
DA,ℏ(g))

can be repeated now, step by step, basing instead upon π : Ṙ ↠ R and
the associated epimorphism Uπ : U Ṙ

P,ℏ(g) ↠ UR
P,ℏ(g) of FoMpQUEAs: this

leads to the sequence of Hopf algebra maps

(4.13) U Ṙ
ℏ (zπ) −→ U Ṙ

P,ℏ(g)
Uπ−−→ UR

P,ℏ(g)

where U Ṙ
ℏ (zπ) is the (central) subalgebra of U Ṙ

P,ℏ(g) generated by zπ, which
is again a “quantum Cartan algebra” of “rank” 2n − r. Again, we obtain
that

UR
P,ℏ(g) ∼= U Ṙ

P,ℏ(g)
/
U Ṙ
P,ℏ(g)U Ṙ

ℏ (zπ)
+
.

Therefore, the situation in general is much similar to what happens in
the special, “standard” case of P = DA; what does actually change, indeed,
is the explicit description of zπ – with respect to that of z, that was quite
clear – hence of the “quantum Cartan algebra of rank 2n− r” U Ṙ

ℏ (zπ).

4.3.1. The case of split (and) minimal FoMpQUEAs

We consider now the special case of a FoMpQUEA UR
P,ℏ(g), as defined

in Definition 4.4, for which the realization R is split and minimal – in
short, split minimal. In this case, it follows by definition that UR

P,ℏ(g) can
be described as follows: it is the unital, associative, topological, ℏ-adically
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complete algebra over kJℏK with generators Ei, T+
i , T−

i , Fi (for all i ∈ I)
and relations

T+
i Ej − EjT

+
i = +pi,jEj , T−

i Ej − EjT
−
i = +pj,iEj

T+
i Fj − FjT

+
i = −pi,jFj , T−

i Fj − FjT
−
i = −pj,iFj

T±
i T

±
j = T±

j T
±
i , T±

i T
∓
j = T∓

j T
±
i

EiFj − FjEi = δi,j
e+ℏT+

i − e−ℏT−
i

q+1
i − q

−1
i

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji X

1−aij−k
i XjX

k
i = 0

X ∈ {E,F}
i ̸= j

and bearing the (topological) Hopf kJℏK-algebra structure given (for all
ℓ ∈ I) by

∆
(
Eℓ
)

= Eℓ ⊗ 1 + e+ℏT+
ℓ ⊗Eℓ, ϵ

(
Eℓ
)

= 0, S
(
Eℓ
)

= − e−ℏT+
ℓ Eℓ

∆
(
T±
ℓ

)
= T±

ℓ ⊗ 1 + 1⊗ T±
ℓ , ϵ

(
T±
ℓ

)
= 0, S

(
T±
ℓ

)
= −T±

ℓ

∆
(
Fℓ
)

= Fℓ ⊗ e−ℏT−
ℓ +1⊗ Fℓ, ϵ

(
Fℓ
)

= 0, S
(
Fℓ
)

= −Fℓ e+ℏT−
ℓ .

Note then that in this case UR
P,ℏ(g) depends only on the matrix P . Indeed,

in the spirit of Observation 4.12, in this special case the formal MpQUEA
UR
P,ℏ(g) is just a “logarithmic version” of the polynomial MpQUEA Uq(g)

in Observation 4.12.
In addition, in this case the FoMpQUEA UR

P,ℏ(g) admits an alternative,
somewhat significant presentation, as follows. Consider inside UR

P,ℏ(g) the
vectors Si := 2−1(T+

i + T−
i

)
and Λi := 2−1(T+

i − T−
i

)
– for all i ∈ I;

these clearly form yet another kJℏK-basis of h. Then UR
P,ℏ(g) admits the

obvious presentation given by construction and taking into account that{
T+
i , T

−
i

}
i∈I is a kJℏK-basis of h, but also the following, alternative one: it

is the ℏ-adically complete, unital kJℏK-algebra with generators Ei, Fi, Si,
Λi (i ∈ I) and relations

[Si, Ej ] = +(pij + pji)
2 Ej = +diaijEj

[Si, Fj ] = −(pij + pji)
2 Fj = −diaijFj

[Λi, Ej ] = +(pij − pji)Ej , [Λi, Fj ] = −(pij − pji)Fj

[Λi, Sj ] = 0, EiFj − FjEi = δi,j e+ℏΛ+
i

e+ℏSi − e−ℏSi

q+1
i − q

−1
i
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1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji X

1−aij−k
i XjX

k
i = 0

X ∈ {E,F}
i ̸= j.

Moreover, the Hopf structure of UR
P,ℏ(g) is then described (for i ∈ I) by

∆
(
Eℓ
)

= Eℓ ⊗ 1 + e+ℏΛℓ e+ℏSℓ ⊗Eℓ
∆
(
Sℓ
)

= Sℓ ⊗ 1 + 1⊗ Sℓ, ∆
(
Λℓ
)

= Λℓ ⊗ 1 + 1⊗ Λℓ
∆
(
Fℓ
)

= Fℓ ⊗ e−ℏSℓ e+ℏΛℓ +1⊗ Fℓ.
In particular, this implies that the ℏ-adically complete, unital subalgebra

Uℏ(b+), rep. Uℏ(b−), of UR
P,ℏ(g) generated by all the Ei’s, resp. all the Fi’s,

and all the Si’s is isomorphic to the “standard” positive, resp. negative,
Borel subalgebra in the derived version of Drinfeld’s QUEA Uℏ(g). On
the other hand, both subalgebras Uℏ(b±) are not Hopf subalgebras inside
UR
P,ℏ(g), contrary to what happens in Drinfeld’s setup.

4.4. Further results on FoMpQUEAs

We present now a few more techniques, which provide alternative proofs
for our results about the structure of quantum nilpotent, Cartan and Borel
subalgebras, as well as the triangular decomposition results. This mainly
follows in the footpath of a standard strategy, already used for one-parame-
ter QUEA’s, yet we also provide a totally new idea for a proof of the
triangular decomposition theorem.

4.4.1. Preformal multiparameter QUEAs and special representations

We introduce now some “preliminary versions of FoMpQUEAs”, essen-
tially defined like the FoMpQUEAs but for dropping from their definition
the quantum Serre relations. These “pre-FoMpQUEAs” will be a key tool
in our analysis, as well as some special representations of them that we also
introduce presently.

Let U be the unital, associative kJℏK-algebra generated by the kJℏK-
submodule h together with elements Ei, Fi (i ∈ I), subject to the same
relations as in (4.5), except the last two (the quantum Serre relations). Let
ŨR
P,ℏ(g) be the ℏ-adic completion of U . From the proof of Theorem 4.13, it

follows at once that ŨR
P,ℏ(g) is a topological Hopf algebra over kJℏK.

Let V :=
⊕

i∈I kJℏK · vi be the free kJℏK-module with basis {vi}i∈I ,
let Tℏ(V ) be the tensor algebra of V over kJℏK, and let T̂ ℏ(V ) be the ℏ-
adic completion of Tℏ(V ). Then, Tℏ(V ) is a free kJℏK-module with basis
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{vJ}J∈J , where J is the set of all finite sequences of elements in I and
vJ := vj1 ⊗ · · · ⊗ vjr

– or simply vJ := vj1 · · · vjr
– is standard monomial

notation for all J := (j1, . . . , jr) ∈ J . For J = (j1, . . . , jr) ∈ J and 1 ⩽
k ⩽ r, write Ĵk := (j1, . . . , jk−1, jk+1, . . . , jr), Jk := (jk+1, . . . , jr) and
αJ :=

∑r
ℓ=1 αjℓ

.

Lemma 4.18. — For every λ ∈ h∗, there exists a unique representation
of U onto Tℏ(V ) – which is then denoted Tλℏ (V ) – such that, for all J =
(j1, . . . , jr) ∈ J

Fi · vJ = v(i,J), T.vJ =
(
λ(T )− αJ(T )

)
vJ

Ei · vJ =
∑

1⩽ℓ⩽r
jℓ=i

q+λ(T+
i

)−αJℓ
(T+

i
) − q−λ(T−

i
)+αJℓ

(T−
i

)

q+1
i − q

−1
i

vĴℓ
.

In addition, this representation – of U onto Tℏ(V ) – induces by continuity
a unique representation ŨR

P,ℏ(g) onto T̂ ℏ(V ), which is hereafter denoted by
T̂λℏ(V ).

Proof. — We must prove that the equalities above do endow Tℏ(V ) with
a structure of U -module: to this end, let us performe a quick check to show
that such an action is well-defined. For every T, T ′ ∈ h we have

T ′ ·
(
T · vJ

)
=
(
λ(T )− αJ(T )

)
T ′ · vJ

=
(
λ(T )− αJ(T )

)(
λ(T ′)− αJ(T ′)

)
vJ = T ·

(
T ′ · vJ

)
.

Take now T ∈ h and Fi with i ∈ I. Then

T ·
(
Fi · vJ

)
− Fi ·

(
T · vJ

)
= T · v(i,J) − Fi ·

((
λ(T )− αJ(T )

)
vJ
)

=
(
λ(T )− α(i,J)(T )− λ(T ) + αJ(T )

)
v(i,J)

=
(
− α(i,J)(T ) + αJ(T )

)
v(i,J)

= −αi(T )v(i,J) = −αi(T )Fi · vJ .

Similarly, for T ∈ h and Ei with i ∈ I we find

T ·
(
Ei ·0vJ

)
=
∑

1⩽ℓ⩽r
i=jℓ

(
λ(T )−αĴℓ

(T )
)q+λ(T+

i
)−αJℓ

(T+
i

)−q−λ(T−
i

)+αJℓ
(T−

i
)

q+1
i − q

−1
i

vĴℓ

Ei ·
(
T ·vJ

)
=
∑

1⩽ℓ⩽r
i=jℓ

(
λ(T )−αJ(T )

)q+λ(T+
i

)−αJℓ
(T+

i
)−q−λ(T−

i
)+αJℓ

(T−
i

)

q+1
i − q

−1
i

vĴℓ
.
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Since αJ(T )− αĴℓ
(T ) = αjℓ

(T ) = αi(T ) for all jℓ = i, we obtain

[T,Ei] · vJ =
∑

1⩽ℓ⩽r
i=jℓ

αi(T )q
+λ(T+

i
)−αJℓ

(T+
i

) − q−λ(T−
i

)+αJℓ
(T−

i
)

q+1
i − q

−1
i

vĴℓ

= αi(T )Ei.vJ .

Finally, to check the commuting relation between Ei and Fj we note
first that

∑m
n=0

ℏn

n! T
n.vJ =

∑m
n=0

ℏn

n!
(
λ(T )− αJ(T )

)n
.vJ for all T ∈ h and

m ⩾ 1. Then, by the continuity of the linear action, we get that

e+ℏT+
i · vJ = q+(λ(T+

i
)−αJ (T+

i
))vJ

and

e−ℏT−
i · vJ = q−(λ(T−

i
)−αJ (T−

i
))vJ .

Then, for i, j ∈ I with i ̸= j, we have

Ei ·
(
Fj · vJ

)
− Fj ·

(
Ei · vJ

)
= Ei · v(j,J) − Fj ·

 ∑
1⩽ℓ⩽r
i=jℓ

q+λ(T+
i

)−αJℓ
(T+

i
) − q−λ(T−

i
)+αJℓ

(T−
i

)

q+1
i − q

−1
i

vĴℓ


= Ei · v(j,J) −

∑
1⩽ℓ⩽r
i=jℓ

q+λ(T+
i

)−αJℓ
(T+

i
) − q−λ(T−

i
)+αJℓ

(T−
i

)

q+1
i − q

−1
i

v(j,Ĵℓ).

First, if i ̸= j, then jℓ = i ̸= j and (̂j, J)ℓ =
(
j, Ĵℓ

)
, α(j,J)ℓ

= αJℓ
for all

1 ⩽ ℓ ⩽ r. Hence

Ei·v(j,J) =
∑

1⩽ℓ⩽r
i=jℓ

(
q+1
i − q

−1
i

)−1(
q+λ(T+

i
)−αJℓ

(T+
i

)−q−λ(T−
i

)+αJℓ
(T−

i
))v(j,Ĵℓ)

which implies that Ei ·
(
Fj · vJ

)
− Fj ·

(
Ei · vJ

)
= 0.

Assume now that i = j. Then for i = jℓ we have (̂i, J)ℓ = J and α(i,J)ℓ
=

αJ for ℓ = 1, while (̂i, J)ℓ =
(
i, Ĵℓ

)
and α(i,J)ℓ

= αJℓ
for ℓ > 1. This implies

that

Ei · v(i,J) =
(
q+1
i − q

−1
i

)−1(
q+λ(T+

i
)−αJ (T+

i
) − q−λ(T−

i
)+αJ (T−

i
))vJ

+
∑

1⩽ℓ⩽r
i=jℓ

(
q+1
i − q

−1
i

)−1(
q+λ(T+

i
)−αJℓ

(T+
i

) − q−λ(T−
i

)+αJℓ
(T−

i
))v(i,Ĵℓ)
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and consequently

Ei ·
(
Fi · vJ

)
− Fi ·

(
Ei · vJ

)
= qλ(T+

i
)−αJ (T+

i
) − q−λ(T−

i
)+αJ (T−

i
)

q+1
i − q

−1
i

· vJ

= eℏT+
i − eℏT−

i

q+1
i − q

−1
i

· vJ .

Therefore, the formulas above define indeed an action of U onto Tℏ(V ).
Finally, since this action is kJℏK-linear, it induces a unique (topological)

action of ŨR
P,ℏ(g) on T̂ ℏ(V ) by completion. This completes the proof. □

With an entirely analogous proof, we obtain the following lemma:

Lemma 4.19. — For every λ ∈ h∗, there exists a unique representation
of U onto Tℏ(V ) – which is then denoted λTℏ(V ) – such that, for all J =
(j1, . . . , jr) ∈ J

Ei · vJ = v(i,J), T · vJ =
(
λ(T ) + αJ(T )

)
vJ

Fi · vJ =
∑

1⩽ℓ⩽r
jℓ=i

q−λ(T−
i

)−αJℓ
(T−

i
) − q+λ(T+

i
)+αJℓ

(T+
i

)

q+1
i − q

−1
i

vĴℓ
.

Moreover, this representation, of U onto Tℏ(V ), induces by continuity a
representation ŨR

P,ℏ(g) onto T̂ ℏ(V ), hereafter denoted by λT̂ ℏ(V ). □

Denote by U0, resp. U+, resp. U−, the unital associative kJℏK-subalgebras
of U generated by h, resp. by all the Ei’s, resp. by all the Fi’s (i ∈ I). Write
Ũ0(= Ũℏ(h) := ŨR

P,ℏ(h)
)
, resp. Ũ+, resp. Ũ−, for the ℏ-adic completion of

them: all these are topological kJℏK-subalgebras of ŨR
P,ℏ(g).

As a first consequence of Lemma 4.18, we get the following:

Proposition 4.20. — The Cartan subalgebra Ũ0 = Ũℏ(h) = ŨR
P,ℏ(h)

is the ℏ-adic completion of Sℏ(h), the symmetric algebra of h over kJℏK. In
particular, Ũℏ(h) is independent of P and R (though not of h) – whence
the simplified notation.

Proof. — We provide two different, independent proofs.

First Proof. — Let Tℏ(h), resp. Sℏ(h), be the tensor algebra, resp. the
symmetric algebra, of h over kJℏK, and let T̂ ℏ(h), resp. Ŝℏ(h) be the ℏ-adic
completion of them. By the commutation relations among elements of h in
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ŨR
P,ℏ(g), we have a diagram of morphisms

T̂ ℏ(h)
pℏ,S // // Ŝℏ(h)

pℏ,U // // Ũℏ(h) �
� ιℏ // ŨR

P,ℏ(g)

Tℏ(h)

OO

pS // // Sℏ(h)

OO 77

pU0 // U0

OO

h

OO 77

where the maps pℏ,S , pℏ,U , pS and pU0 are the canonical epimorphisms,
ιℏ is the canonical inclusion, all vertical arrows are canonical embeddings,
and the diagonal arrows h → Sℏ(h) too. We want to show that pℏ,U is in
fact an isomomorphism.

Let V :=
⊕

i∈I kJℏK.vi be the free kJℏK-module with basis {vi}i∈I . Choos-
ing λ ∈ h∗ and restricting the action defined in Lemma 4.18 to the im-
age of iℏ, we have that Ũℏ(h) acts on T̂λℏ(V ) by the character λ via
T.vJ =

(
λ(T )−αJ(T )

)
vJ , for all T ∈ h and for all J =

(
j1, . . . , jr

)
∈ J . In

particular, T ·v∅ = T ·1 = λ(T ) for all T ∈ h. This action induces an action
of Ŝℏ(h), and of its kJℏK-subalgebra Sℏ(h), on T̂λℏ(V ) via the epimorphism
pℏ,U . By the very definition, this action coincides with the unique action of
Sℏ(h) on T̂λℏ(V ) defined by the character λ ∈ h∗ by the universal properties
of the symmetric and the tensor algebras.

Let t ∈ Sℏ(h) be such that pℏ,U (t) = 0: then 0 = t·v∅ = λS(t) – extending
λ ∈ h∗ to a kJℏK-algebra character λS of Sℏ(h). Since λ is arbitrary, we get
λS(t) = 0 for all λ ∈ h∗, so that t = 0. Similarly, λS further extends,
canonically and uniquely, to a ℏ-adically continuous character of Ŝℏ(h),
denoted λŜ . Then for any t̂ ∈ Ŝℏ(h) such that pℏ,U

(
t̂
)

= 0 we have 0 =
t · v∅ = λŜ

(
t̂
)
, thus λŜ

(
t̂
)

= 0 for all λ ∈ h∗, which implies t̂ = 0. Hence
pℏ,U is injective and Ŝℏ(h) ∼= Ũℏ(h).

Second Proof. — By definition there is a kJℏK-linear morphism from h

to UR
P,ℏ(g), whose image we denote by h′; in other words, h′ is the kJℏK-

submodule of UR
P,ℏ(g) spanned by the generators T ∈ h. By definition,

UR
P,ℏ(h) is (topologically) generated by h′, which in turn is a Lie subalgebra

inside the Lie algebra of primitive elements of the Hopf algebra UR
P,ℏ(h).

Since we are in characteristic zero, by Milnor–Moore’s Theorem we deduce
that UR

P,ℏ(h) is indeed nothing but the ℏ-adic completion of the universal
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enveloping algebra U
(
h′) of h′; in turn, the latter coincides with the sym-

metric kJℏK-algebra Sℏ
(
h′) – hence its completion coincides with Ŝℏ

(
h′) –

because the multiplication therein is commutative, by construction!
Finally, we observe that the built-in epimorphism h ↠ h′ is indeed

an isomorphism, so that h′ ∼= h. This is proved again making use of
Lemma 4.18 above, in particular looking at how h acts on each repre-
sentation T̂λℏ(V ), for all λ ∈ h∗, along the same lines as in the last part of
the First Proof above. □

Let U ′ be the kJℏK-subalgebra of ŨR
P,ℏ(g) generated by U−, U+ and

Ũ0 = Ũℏ(h) – the ℏ-adic completion of U0. By Theorem 4.13, it follows
that U ′ is a (topological) Hopf kJℏK-subalgebra of ŨR

P,ℏ(g).
We fix some more notation. For any finite sequence J =

(
j1, j2, . . . , jr

)
– with r ⩾ 1 – of elements in I, we set T±

∅ := 0 and E∅ := 1 =: F∅, and in
general

T±
J := T±

j1
+ T±

j2
+ · · ·+ T±

jr
, EJ := Ej1Ej2 · · ·Ejr

, FJ := Fj1Fj2 · · ·Fjr
.

As the coproduct of the elements Ei’s and Fi’s in U ′ and in ŨR
P,ℏ(g) coin-

cides with the one defined for the one-parameter polynomial QUEA, the
following lemma follows at once, from [33, Lemma 4.12]:

Lemma 4.21. — Let J be a finite sequence as above. Then there exist
Laurent polynomials cJA,B ∈ Z

[
x, x−1], indexed by finite sequences of ele-

ments of I, with αJ = αA + αB and such that, both in U ′ and in ŨR
P,ℏ(g),

one has

(4.14)

∆
(
EJ
)

=
∑
A,B

cJA,B(q)EA eℏT
+
B ⊗EB

∆
(
FJ
)

=
∑
A,B

cJA,B
(
q−1)FA ⊗ eℏT

−
A FB .

Moreover, one has cJA,∅ = δA,J and cJ∅,B = δB,J . □

As an intermediate result, we get a triangular decomposition for ŨR
P,ℏ(g):

Proposition 4.22. — The multiplication maps
−→µ3 : Ũ− ⊗ Ũℏ(h)⊗ Ũ+ −→ ŨR

P,ℏ(g)

and
←−µ3 : Ũ+ ⊗ Ũℏ(h)⊗ Ũ− −→ ŨR

P,ℏ(g)

induced by restriction of multiplication in ŨR
P,ℏ(g) – the tensor products

here being the ℏ-adically completed ones – are both isomorphisms of topo-
logical kJℏK-modules.
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Proof. — It is enough to prove one case, say that of −→µ3, the other one
being entirely similar.

Consider the map µ3
′ : U− ⊗ Ũℏ(h) ⊗ U+ → U ′ induced by restriction

of multiplication in U ′. We show that this map is bijective.
We prove first that µ3

′ is surjective. Let {Hg}g∈G be a kJℏK-basis of h.
Thanks to the defining relations in the first two lines of (4.5), we see at
once that U ′ is kJℏK-spanned (in ℏ-adic sense) by the set of “monomials”{
Fi1 · · · Fin ·Hi,j ·Ej1 · · ·Ejm

∣∣∣ n, s,m ∈ N, ia, jb ∈ I ∀a, b,Hi,j ∈ Ũℏ(h)
}

and then this guarantees that µ3
′ is onto, since

Fii · · ·Fin ·Hi,j · Ej1 · · ·Ejm = µ3
′((Fii · · ·Fin)⊗Hi,j ⊗

(
Ej1 · · ·Ejm

))
.

Our second, last task is to prove that −→µ3 is injective. Let λ, θ ∈ h∗ and
consider the ŨR

P,ℏ(g)-modules T̂λℏ(V ) and θT̂ ℏ(V ) given by Lemmas 4.18
and 4.19, respectively. Then ŨR

P,ℏ(g) acts on the tensor product T̂λℏ(V ) ⊗
θT̂ ℏ(V ) too, and this yields by restriction a U ′-action as well. Assume we
have a linear dependence relation∑

J,L

aJ,LFJHJ,LEL = 0

for finitely many elements aJ,L ∈ kJℏK, where J , and L are finite sequences
of elements in I and HJ,L ∈ Ũℏ(h).

In the set of finite sequences of elements in I, we consider the partial
order given by J =

(
j1, j2, . . . , jr

)
>
(
ℓ1, ℓ2, . . . , ℓs

)
=: L if and only if

αJ−αL =
∑
k αjk

−
∑
k αℓk

=
∑
t αit for some simple roots αit . Choose J0

such that aJ0,L ̸= 0 for some L, and such that J0 is maximal with respect
to the order given above.

Now, for v∅ ∈ T̂λℏ(V ) \ {0} and w∅ ∈ θT̂ ℏ(V ) \ {0} being “highest weight
vector” and “lowest weight vector”, respectively, definitions give

0 =

∑
J,K,L

aJ,LFJHJ,LEL

 · (v∅ ⊗ w∅)

=
∑
J,L

aJ,L
(
FJHJ,L

)
·
(
EL · (v∅ ⊗ w∅)

)

=
∑
J,L

aJ,L
(
FJHJ,L

)
·

∑
A,B

cLA,B(q)
(
EA eℏT

+
B

)
· v∅ ⊗

(
EB · w∅

)
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=
∑
J,L

aJ,L
(
FJHJ,L

)
·

∑
A,B

cLA,B(q)qλ(T+
B

)EA.v∅ ⊗ wB


=
∑
J,L

aJ,Lc
L
∅,L(q)qλ(T+

L
)(FJHJ,L

)
·
(
v∅ ⊗ wL

)
=
∑
J,L

aJ,Lq
λ(T+

L
)λ
(
(HJ,L)(1)

)
(θ + αL)

(
(HJ,L)(2)

)
FJ ·

(
v∅ ⊗ wL

)
=
∑
J,L

aJ,Lq
λ(T+

L
)λ
(
(HJ,L)(1)

)
(θ + αL)

(
(HJ,L)(2)

)

·

∑
A,B

cJA,B
(
q−1)FA · v∅ ⊗

(
eℏT

−
A FB

)
· wL


=
∑
J,L

aJ,Lq
λ(T+

L
)λ
(
(HJ,L)(1)

)
(θ + αL)

(
(HJ,L)(2)

)
×
∑
A,B

cJA,B
(
q−1)vA ⊗ ( eℏT

−
A FB

)
.wL

where we get third and fifth equality from Lemma 4.21, and we recall
cL∅,L(q) = 1.

Consider now those coefficients with J = J0. Since αJ0 = αA + αB , we
have that A,B ⩽ J0 and A = J0 if and only if B = ∅; therefore

0 =
∑
L

aJ0,Lq
λ(T+

L
)λ
(
(HJ0,L)(1)

)
(θ + αL)

(
(HJ0,L)(2)

)
× cJ0

J0,∅
(
q−1)vJ0 ⊗ eℏT

−
J0 · wL

=
∑
L

aJ0,Lq
λ(T+

L
)λ
(
(HJ0,L)(1)

)
(θ+αL)

(
(HJ0,L)(2)

)
q

(θ+αL)(T−
J0

)
vJ0 ⊗ wL.

Since {vJ ⊗wL}J,L is a basis of the free kJℏK-module T̂λℏ(V )⊗ θT̂ ℏ(V ), for
all L such that aJ0,L ̸= 0 we must have

0 = aJ0,Lq
λ(T+

L
)λ
(
(HJ0,L)(1)

)
(θ + αL)

(
(HJ0,L)(2)

)
q

(θ+αL)(T−
J0

)

= aJ0,Lq
λ(T+

L
)+(θ+αL)(T−

J0
)(
λ ∗ (θ + αL)

)(
HJ0,L

)
where “∗” denotes the convolution product between characters; this implies
that 0 = aJ0,L

(
λ ∗ (θ+αL)

)(
HJ0,L

)
for all λ, θ ∈ h∗. Since Ũℏ(h) ∼= Ŝℏ(h),

this holds true if and only if aJ0,L = 0 for all K, a contradiction. Thus, µ′
3

is injective.
Finally, as µ′

3 is a kJℏK-linear map, it is an isomomorphism between
topological algebras which extends uniquely to an isomorphism −→µ3 on their
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completions. Since the completion of U ′ is exactly our ŨR
P,ℏ(g), we eventu-

ally obtain the isomomorphism −→µ3 : Ũ− ⊗ Ũℏ(h)⊗ Ũ+ → ŨR
P,ℏ(g) which is

described just like in the claim. □

For the last steps, we need more notation: if X ∈ {F,E}, i, j ∈ I (i ̸= j),
set

uXij :=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji X

1−aij−k
i XjX

k
i ∈ ŨR

P,ℏ(g).

Let E+, resp. F−, be the closed, two-sided ideal of Ũ+, resp. of Ũ−,
generated by all the uEij ’s, resp. uFij ’s (i ̸= j). Denote by UR

P,ℏ(n±) the unital,
ℏ-adically complete topological kJℏK-subalgebra of UR

P,ℏ(g) generated by all
the Ei’s, resp. Fi’s (i ∈ I).

Next result describes explicitly the structure of the Cartan and of the
(positive/negative) nilpotent subalgebras in our FoMpQUEAs:

Proposition 4.23.
(a) The closed two-sided ideal of ŨR

P,ℏ(g) generated by all the uEij ’s,
resp. all the uFij ’s, is equal to the image of Ũ− ⊗ Ũℏ(h)⊗ E+, resp.
F−⊗Ũℏ(h)⊗Ũ+, under the multiplication map −→µ3 : Ũ−⊗Ũℏ(h)⊗Ũ+

→ ŨR
P,ℏ(g).

An entirely similar claim holds true as well with ←−µ3 replacing −→µ3.
(b) Ũℏ(h) ∼= UR

P,ℏ(h) through the obvious canonical epimorphism. In
particular, Uℏ(h) := UR

P,ℏ(h) is the ℏ-adic completion of Sℏ(h), the
symmetric algebra of h over kJℏK, hence it is independent of P and
R (it only depends on h).

(c) The algebra UR
P,ℏ(n+), resp. UR

P,ℏ(n−), is isomorphic to the unital,
ℏ-adically complete topological kJℏK-algebra generated by the Ei’s
(i ∈ I), resp. the Fi’s (i ∈ I), with relations uEij = 0, resp. uFij = 0,
for i ̸= j.

Proof.
(a). — This follows mutatis mutandis from [33, Lemma 4.20].
(b). — The first part of the claim follows from the proof of [33, The-

orem 4.21 d)]. Indeed, let J be the kernel of the canonical, ℏ-adically
continuous epimorphism p : ŨR

P,ℏ(g) ↠ UR
P,ℏ(g); by construction, it is the

closed two-sided ideal generated by the uEij and uFij for all i ̸= j in I. By (a),
we have

(4.15) J = −→µ3

(
Ũ− ⊗ Ũℏ(h)⊗ E+ + F− ⊗ Ũℏ(h)⊗ Ũ+

)
.
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Now, the kernel of the canonical epimorphism p
∣∣
Ũℏ(h) : Ũℏ(h) ↠ Uℏ(h) :=

UR
P,ℏ(h) is nothing but J ∩ ŨR

P,ℏ(h); then by (4.15) it is equal to the image
under −→µ3 of(

Ũ− ⊗ Ũℏ(h)⊗ E+ + F− ⊗ Ũℏ(h)⊗ Ũ+
)
∩
(
kJℏK⊗ ŨR

P,ℏ(h)⊗ kJℏK
)

and since the latter is obviously trivial, we get that J ∩ŨR
P,ℏ(h) = 0. There-

fore, p
∣∣
Ũℏ(h) : Ũℏ(h) −−→ UR

P,ℏ(h) is injective, hence it is an isomorphism.
The second part of the claim follows from the first, coupled with Propo-

sition 4.20.
(c). — This is proved much like item (b), but using that

J ∩ Ũ+

= −→µ3

((
Ũ−⊗ Ũℏ(h)⊗E+ +F−⊗ Ũℏ(h)⊗ Ũ+) ∩ (kJℏK⊗kJℏK⊗ Ũ+))

= −→µ3
(
kJℏK⊗ kJℏK⊗ E+) = E+

J ∩ Ũ−

= µ̃3

((
Ũ−⊗ Ũℏ(h)⊗E+ +F−⊗ Ũℏ(h)⊗ Ũ+) ∩ (Ũ−⊗kJℏK⊗kJℏK

))
= −→µ3

(
F− ⊗ kJℏK⊗ kJℏK

)
= F−. □

Remark 4.24. — An alternative, independent argument which also leads
to prove Proposition 4.22 and Proposition 4.23 goes as follows.

First, we can state a strict analogue of Lemma 4.8 where we replace
the kJℏK-module UR,⊗

P,ℏ (g) := U− ⊗ Uℏ(h) ⊗ U+ – taking complete tensor
product – with its “parent” ŨR,⊗

P,ℏ (g) := Ũ− ⊗ Ũℏ(h) ⊗ Ũ+: the claim will
be that ŨR,⊗

P,ℏ (g) bears a structure of ℏ-adically complete, topological kJℏK-
algebra which is uniquely determined by the same recipe (and formulas) as
in Lemma 4.8 – the proof will be quite the same, only a bit simpler because
there will be less relations to deal with.

Second, we provide a strict analogue of Theorem 4.9, now concerning
ŨR,⊗
P,ℏ (g) and ŨR

P,ℏ(g) instead of UR,⊗
P,ℏ (g) and UR

P,ℏ(g); here again, the
proof will follow in the footsteps of the one for the previous case. This
last result eventually will be just a reformulation of Proposition 4.22 and
Proposition 4.23 altogether.

4.4.2. Triangular decomposition – revisited

Using the previous constructions, we present now alternative proofs of
“triangular decomposition” for FoMpQUEAs. Again, it is enough to prove
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one of the various isomorphisms in the statement of Theorem 4.11, so now
we shall deal with

UR
P,ℏ(n−) ⊗̂kJℏK Uℏ(h) ⊗̂kJℏK U

R
P,ℏ(n+) ∼= UR

P,ℏ(g)

where the (would-be) isomorphism is induced by multiplication.
Second Proof. — By construction and by the results reported in Propo-

sition 4.23, we have isomorphisms of (topological) kJℏK-modules

UR
P,ℏ(g) ∼=

(
Ũ−⊗ Ũℏ(h)⊗ Ũ+

)/(
F−⊗ Ũℏ(h)⊗ Ũ+ + Ũ−⊗ Ũℏ(h)⊗E+

)
∼=
(
Ũ−/F−

)
⊗ Ũℏ(h)⊗

(
Ũ+/E+

)
∼= U− ⊗ Ũℏ(h)⊗ U+ = UR

P,ℏ(n−)⊗ Uℏ(h)⊗ UR
P,ℏ(n+)

(using simplified notation for the tensor product), where the isomorphism
(from right to left) is induced by multiplication, hence we are done. □

Third Proof. — The claim amount to saying that the kJℏK-linear map

(4.16) µ3−→
: UR

P,ℏ(n−) ⊗̂kJℏK Uℏ(h) ⊗̂kJℏK U
R
P,ℏ(n+) −→ UR

P,ℏ(g)

induced by multiplication (on three factors) is in fact bijective.
To begin with, let U−, resp. U0, resp. U+, be the kJℏK-subalgebra of

UR
P,ℏ(g) generated by all the Fi’ (i ∈ I), resp. all of h, resp. Ei’s (i ∈

I); then let U−
ℏ := UR

P,ℏ(n−), resp. U0
ℏ := Uℏ(h), resp. U+

ℏ := UR
P,ℏ(n+).

Furthermore, let us define U↓ := SpankJℏK

({
F ·H · E

}
F,H,E

)
where the

F , resp. H, resp. E, are all possible monomials in the Fi’s (i ∈ I), resp.
in the H’s (H ∈ h), resp. in the Ej ’s (j ∈ I); note that U↓ is a kJℏK-
submodule of UR

P,ℏ(g), but not a kJℏK-subalgebra. Finally, we let U be the
kJℏK-subalgebra of UR

P,ℏ(g) generated by U↓.
Clearly, the map µ3−→

in (4.16) restricts to a similar map

(4.17) µ : U− ⊗kJℏK U
0 ⊗kJℏK U

+ −→ U↓

which again is induced by multiplication. We shall presently prove the
following

Claim 4.25. — The map µ in (4.17) is bijective.

Once this is settled, we have that both µ and its inverse µ−1 will be
(mutually inverse) isomorphisms of kJℏK-modules, hence in particular con-
tinuous for the ℏ-adic topology. Then, taking ℏ-adic completion on both
sides, µ and µ−1 will canonically induce (bicontinuous) mutually inverse
isomorphisms of topological kJℏK-modules, denoted µℏ and µ−1

ℏ , between
the ℏ-adic completion of U− ⊗kJℏK U

0 ⊗kJℏK U
+ and the ℏ-adic completion
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of U↓. Now, by construction the ℏ-adic completion of U−⊗kJℏKU
0⊗kJℏKU

+

is just U−
ℏ ⊗̂kJℏKU

0
ℏ⊗̂kJℏKU

+
ℏ , while the ℏ-adic completion of U↓ (which coin-

cides with the ℏ-adic completion of U) is nothing but UR
P,ℏ(g). In particular,

again by construction µℏ coincides with µ
−→3 in (4.16), hence the latter in

turn is an isomorphism of topological kJℏK-modules.
Thus we are left with the task to prove the Claim 4.25 above. As it is

clear that µ is surjective, hence we only have to prove that it is injective too.
For this, we use the Hopf structure of UR

P,ℏ(g), in particular its coproduct,
adapting an argument that does work in the uniparameter case, see e.g. [32,
Section 3.1], or [39, Section 6.1.5].

We saw above that U↓ is kJℏK-spanned by the set of monomials of the
form F ·H · E where each single factor in turn is of type F = Fi1 · · ·Fin ,
resp. H = Hℓ1 · · ·Hℓs

, resp. E = Ej1 · · ·Ejm
, with i1, . . . , in, j1, . . . , jm ∈ I

(n,m ∈ N) and Hℓ1 , . . . ,Hℓs
(s ∈ N) ranging in some fixed, ordered kJℏK-

basis
{
Hℓ

}
ℓ∈L of h. Similarly (with same notation), U−⊗kJℏK U

0⊗kJℏK U
+

is kJℏK-spanned by the set of (tensor) monomial of the form F ⊗ H ⊗ E,
with F , H and E as before.

To begin with, let G be the free Abelian group with basis {εi}i∈I : we en-
dow it with the product order, hereafter denoted by ⪯, induced by the stan-
dard order in Z. We define on U a kJℏK-algebra G-grading U =

⊕
γ∈G Uγ

given on generators by

∂(Ei) := +εi, ∂
(
H
)

:= 0, ∂(Fj) := −εj

for all i, j ∈ I, H ∈ Uℏ(h) \ {0} – the reader can easily check that these
formulas on the generators are indeed compatible with the relations in (4.5)
among them. This restricts to similar G-gradings on U↓ as well as on U−,
U0 and U+ – which then are graded subalgebras of U with respect to this
G-grading – hence on U−⊗kJℏKU

0⊗kJℏKU
+ too. Note then that each one of

the monomials F ·H ·E = Fi1 · · ·Fin ·Hℓ1 · · ·Hℓs
·Ej1 · · ·Ejm

and similarly
F ⊗H ⊗ E considered above is G-homogeneous of degree

∂
(
Fi1 · · ·Fin ·Hℓ1 · · ·Hℓs

·Ej1 · · ·Ejm

)
= εj1 + · · ·+εjm

−εi1−· · ·−εin ∈ G.

Now consider the twofold iteration ∆(2) := (∆ ⊗ id) ◦∆ = (id⊗∆) ◦∆
of the coproduct map ∆ of UR

P,ℏ(g). By the very definition of ∆ we easily
see that

(4.18)

∆(2)(Fi1 · · ·Fin) = 1⊗ 1⊗
(
Fi1 · · ·Fin

)
+
∑
t

ut ⊗ vt ⊗ wt

∆(2)(Ej1 · · ·Ejm

)
=
(
Ej1 · · ·Ejn

)
⊗ 1⊗ 1 +

∑
k

ak ⊗ bk ⊗ ck
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where the wt’s in the first line of (4.18) are elements in UR
P,ℏ(g) which

are G-homogeneous of degree strictly greater – for the order ⪯ in G – than
∂
(
Fi1 · · ·Fin

)
, while similarly the ak’s in second line are elements in UR

P,ℏ(g)
which are G-homogeneous of degree strictly smaller than ∂

(
Ej1 · · ·Ejm

)
;

in short,

(4.19) ∂(wt) ⪶ ∂
(
Fj1 · · ·Fjm

)
∀t, ∂(ak) ⪵ ∂

(
Ei1 · · ·Ein

)
∀k.

Eventually, from (4.18) and (4.19) together we get

∆(2)(Fi1 · · ·FinHℓ1 · · ·Hℓs
Ej1 · · ·Ejm

)
= ∆(2)(Fi1 · · ·Fin ·H · Ej1 · · ·Ejm

)
= ∆(2)(Fi1 · · ·Fin)∆(2)(H)∆(2)(Ej1 · · ·Ejm

)
=
(
Fi1 · · ·Fin ·H(1)

)
⊗H(2) ⊗

(
H(3) · Ej1 · · ·Ejm

)
+
∑
r

Φr ⊗Ξr ⊗Ωr

where each tensor Φr ⊗ Ξr ⊗ Ωr lies in Uϕ ⊗ Uξ ⊗ Uω – with ϕ, ξ and ω

being degrees for the G-grading – and obeys the following condition:

(4.20) ∂
(
Fi1 · · ·Fin

)
⪵ ϕ or ω ⪵ ∂

(
Ej1 · · ·Ejm

)
.

We have to prove that the map µ in (4.17) is injective. As U−⊗U0⊗U+

is kJℏK-spanned by all the (tensor) monomials of the form F ⊗ H ⊗ E

(notation as above, with the monomial H being ordered): so we assume

(4.21) µ

(∑
σ∈S

κσFσ ⊗Hσ ⊗ Eσ

)
= 0

for finitely many κσ ∈ kJℏK, and we prove that∑
σ∈S

κσFσ ⊗Hσ ⊗ Eσ = 0.

First of all, (4.21) yields

∑
σ∈S

κσFσHσEσ = µ

(∑
σ∈S

κσFσ ⊗Hσ ⊗ Eσ

)
= 0.

Second, the previous analysis for ∆(2) gives, for all indices σ,

∆(2)(FσHσEσ
)

=
(
Fσ ·

(
Hσ

)
(1)

)
⊗
(
Hσ

)
(2) ⊗

((
Hσ

)
(3) · Eσ

)
+
∑
r

Φσr ⊗Ξσr ⊗Ωσr
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with the Φσr ⊗Ξσr ⊗Ωσr ’s obeying (4.20) above. Then

0 = ∆(2)(0) = ∆(2)

(∑
σ∈S

κσFσHσEσ

)
=
∑
σ∈S

κσ∆(2)
(
FσHσEσ

)
=
∑
σ∈S

κσ

((
Fσ ·

(
Hσ

)
(1)

)
⊗
(
Hσ

)
(2)⊗

((
Hσ

)
(3) ·Eσ

)
+
∑
r

Φσr ⊗Ξσr ⊗Ωσr

)
.

Now, we select those σ in S for which ∂
(
Fσ
)

has some minimal value – in(
G;⪯

)
– say qµ, and simultaneously ∂

(
Eσ
)

has a maximal value, say µ̂; we
denote by Sµ̂µ̌ the subset of such indices. Then by degree comparison, we
see (cf. (4.20)) that∑

σ∈Sµ̂
µ̌

κσ

(
Fσ ·

(
Hσ

)
(1)

)
⊗
(
Hσ

)
(2) ⊗

((
Hσ

)
(3) · Eσ

)
is the whole homogeneous summand in∑
σ∈S

κσ

((
Fσ ·

(
Hσ

)
(1)

)
⊗
(
Hσ

)
(2) ⊗

((
Hσ

)
(3) · Eσ

)
+
∑
r

Φσr ⊗Ξσr ⊗Ωσr

)

of degree
(

qµ, 0, µ̂
)

with respect to the grading by G × G × G in U ⊗ U ⊗ U
canonically induced by the G-grading of U . For this reason, the identity

∑
σ∈S

κσ

((
Fσ ·

(
Hσ

)
(1)

)
⊗
(
Hσ

)
(2) ⊗

((
Hσ

)
(3) · Eσ

)
+
∑
r

Ωσr ⊗Ξσr ⊗ Φσr

)
= 0

found above implies at once

(4.22)
∑
σ∈Sµ̂

µ̌

κσ

(
Fσ ·

(
Hσ

)
(1)

)
⊗
(
Hσ

)
(2) ⊗

((
Hσ

)
(3) · Eσ

)
= 0.

Now observe that U0 admits as kJℏK-basis the set of all ordered mono-
mials H in the Hℓ’s (i.e., we assume that Hℓ1 ⪯ · · · ⪯ Hℓs

), directly
by construction and by Proposition 4.20. Let D be the Abelian group of
rank t := rk(h) with basis {δℓ}ℓ∈L, that we endow with the product or-
der, again denoted by ⪯, induced by the standard order in Z. There is
a natural D-grading on U0 such that ∂

(
Hℓ

)
= δℓ for all elements of the
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fixed basis
{
Hℓ

}
ℓ∈L, whence H = Hℓ1 · · ·Hℓs

is D-homogenenous of degree
δℓ1 + · · ·+ δℓs

. Also, as the elements of h are primitive in UR
P,ℏ(g), we have

(4.23) ∆(2)(Hℓ1 · · ·Hℓs

)
= 1⊗

(
Hℓ1 · · ·Hℓs

)
⊗ 1 +

∑
r

xr ⊗ yr ⊗ zr

where the yr’s are elements in U0 which are homogeneous (for the D-
grading mentioned above) of degree strictly lower than that of Hℓ1 · · ·Hℓs

,
that is

(4.24) ∂(yr) ⪵ ∂
(
Hℓ1 · · ·Hℓs

)
= s ∀r.

The left-hand side of (4.22) belongs to U−
µ̌ ⊗U0⊗U+

µ̂ ; taking into account
the D-grading in U0 mentioned above, the identity (4.22) implies that each
homogeneous component – with respect to the obvious grading of U− ⊗
U0 ⊗ U+ by G × D × G – in the left-hand side of (4.22) must be zero as
well. In particular, let us focus on a single monomial Hσ = Hℓσ̄

1
· · ·Hℓσ̄

s

which actually occurs in (4.22), having maximal degree in
(
D;⪯

)
: then

for the
(
G × D × G

)
-homogeneous component of degree

(
qµ, ∂

(
Hσ

)
, µ̂
)

=(
qµ, δℓσ̄

1
+ · · ·+ δℓσ̄

s
, µ̂
)

in (4.22) we find, by (4.23) and (4.24)

(4.25)
∑

σ∈Sµ̂
µ̌

(ℓ)

κσFσ ⊗Hσ ⊗ Eσ = 0

where Sµ̂µ̌(ℓ) :=
{
σ ∈ Sµ̂µ̌

∣∣ Hσ = Hσ

}
is a non-empty subset of Sµ̂µ̌ . But

now (4.21) and (4.25) jointly provide the new, shorter linear combination∑
σ∈S\Sµ̂

µ̌

κσEσ ⊗Hσ ⊗ Fσ =
∑
σ

κσEσ ⊗Hσ ⊗ Fσ −
∑
σ∈Sµ̂

µ̌

κσEσ ⊗Hσ ⊗ Fσ

that still belongs to Ker(µ): applying again the same argument, and iter-
ating, we end up with

∑
σ∈S κσEσ ⊗Hσ ⊗ Fσ = 0. □

4.5. Construction of FoMpQUEAs

In this section we provide two new, independent constructions (with re-
spect to what is done in Section 4) of FoMpQUEAs. Namely, when R is
split minimal we construct a FoMpQUEA UR

P,ℏ(g) – with its whole struc-
ture of Hopf algebra – first as (a slight variation of) a quantum double
(or “Drinfeld’s double”), and them as a double cross product. Then from
this special case (via Proposition 2.4, Lemma 2.7 and Proposition 4.15)
we deduce the existence – and explicit presentation – of UR

P,ℏ(g) for any
realization R as a quotient of UR′

P,ℏ(g) for a suitable, split realization R′.
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It is worth explaining a bit what is the general scheme beneath our pre-
sentation. The construction of the quantum double applies to any pair of
Hopf algebras (possibly topological) over a ring R, with an R-valued skew-
Hopf pairing between them. Typically, this applies to any pair of Hopf alge-
bras which are dual to each other, and their canonical (evaluation) pairing.
Now assume we do that for some QUEA, say Uℏ(g), together with its dual
(in topological sense) Uℏ(g)∗ =: FℏJGK – the latter being a “quantum for-
mal series Hopf algebra” (=: QFSHA), in Drinfeld’s terminology. Then the
corresponding quantum double D

(
Uℏ(g), FℏJGK

)
will be a “quantum ob-

ject” – isomorphic to Uℏ(g)⊗ FℏJGK as a coalgebra – whose specialization
at ℏ = 0 will be the Drinfeld’s double D

(
U(g), F JGK

)
; this means that,

roughly speaking, D
(
Uℏ(g), FℏJGK

)
is indeed “half a QUEA” and “half a

QFSHA”. Therefore, if one aims instead to get a new, full QUEA out of
the initial QUEA Uℏ(g), then one has to modify the previous construc-
tion; indeed, there exists a general recipe to perform such a modification
(see [21], Section 12.2) which in turn relies on Drinfeld’s “Quantum Duality
Principle” which allows one to “extract” a suitable QUEA out of a QFSHA
(cf. [28] and references therein). In our presentation we will not formally
apply this general recipe: instead, we will present an ad hoc construction,
tailored to the specific situation we have at hand. However, whatever we
do is directly dictated, step by step, by the general recipe, only we display
our construction in layman’s terms just to spare the reader some extra
theoretical tools that are not needed in full generality. Nevertheless, it is
worth stressing that we are actually applying the general recipe, even we
do not show it in full light: yet it is there, standing in the backstage.

As a first goal, we aim to construct a suitable quantum double of Borel-
like FoMpQUEAs, starting from a pairing among Borel FoMpQUEAs: to
this end, we need to step back and introduce “pre-Borel” FoMpQUEAs
instead, a pairing with values in k((ℏ)) among them, and Borel FoMpQUEAs
as quotients of pre-Borel ones. As second step, we show that this pairing
“pushes-forward” to Borel FoMpQUEAs, hence can be used to perform a
quantum double construction; actually, a priori this would not be feasible,
because the pairing is valued in k((ℏ)) rather than kJℏK: nevertheless, we
prove that in the present case the quantum double construction indeed does
work (in a suitable sense) over kJℏK as well, hence we are done.

Along the way, another obstruction we encounter is that the construc-
tion of the pairing we would need actually clashes with ℏ-completeness
of (pre-)Borel FoMpQUEAs; therefore, we scale down to constructing a
pairing defined on some dense, non-complete subalgebras – of (pre-)Borel
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FoMpQUEAs – and then we manage to carry out the quantum double
construction we are looking for.

Finally, we will present yet another construction – parallel to that via
quantum doubles – of FoMpQUEAs in terms of double cross products of
Borel FoMpQUEAs.

4.5.1. Pre-Borel FoMpQUEAs and their pairings

Our first purpose is to construct quantum doubles of Borel FoMpQUEAs
of split, minimal type; for this, we need a suitable pairing among such Borel
FoMpQUEAs. To this end, we need to step back and introduce “pre-Borel”
FoMpQUEAs instead, a pairing with values in k((ℏ)) among them, and
Borel FoMpQUEAs as quotients of pre-Borel ones.

Definition 4.26. — Let A :=
(
ai,j
)
i,j∈I be a generalized symmetriz-

able Cartan matrix, P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
a matrix of Cartan type

with associated Cartan matrix A and R =
(
h,Π,Π∨) a split minimal re-

alization of P , so that h = SpankJℏK
({
T+
i , T

−
i

}
i∈I

)
and it has rank 2n

(cf. Definition 2.1).
We define the positive, resp. negative, pre-Borel formal multiparameter

quantum universal enveloping algebra – in short positive, resp. negative,
pre-Borel FoMpQUEA – with multiparameter P as being the free unital,
associative, topological, ℏ-adically complete algebra over kJℏK, denoted by
ŨR
P,ℏ(b+), resp. by ŨR

P,ℏ(b−), with generators T+
i , Ei (i ∈ I), resp. T−

i , Fi
(i ∈ I).

Moreover, we give to ŨR
P,ℏ(b+), resp. to ŨR

P,ℏ(b−), the unique, topolog-
ical Hopf kJℏK-algebra structure uniquely defined by (for all i ∈ I)

∆
(
T+
i

)
= T+

i ⊗ 1 + 1⊗ T+
i , S

(
T+
i

)
= −T+

i , ϵ
(
T+
i

)
= 0

∆
(
Ei
)

= Ei ⊗ 1 + e+ℏT+
i ⊗Ei, S

(
Ei
)

= − e−ℏT+
i Ei, ϵ

(
Ei
)

= 0

for ŨR
P,ℏ(b+), and for ŨR

P,ℏ(b−) in turn by (for all i ∈ I)

∆
(
T−
i

)
= T−

i ⊗ 1 + 1⊗ T−
i , S

(
T−
i

)
= −T−

i , ϵ
(
T−
i

)
= 0

∆
(
Fi
)

= Fi ⊗ e−ℏT−
i +1⊗ Fi, S

(
Fi
)

= −Fi e+ℏT−
i , ϵ

(
Fi
)

= 0.

From now on, we work with fixed positive and negative pre-Borel FoM-
pQUEAs ŨR

P,ℏ(b±) as above; in the following construction the two will play
asymmetric roles, but one can also reverse those roles – switching ŨR

P,ℏ(b+)
and ŨR

P,ℏ(b−) among them – and eventually get exactly the same outcome.
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Definition 4.27. — Let us consider T−
t := ℏT−

t , F t := ℏFt ∈ ŨR
P,ℏ(b−),

for t ∈ I. We define ŨR
P,ℏ(b−) to be the ℏ-adic closure in ŨR

P,ℏ(b−) of the
unital kJℏK-subalgebra generated by

{
T−
ℓ , F ℓ

}
ℓ∈I .

Similarly, we define ŨR
P,ℏ(b+) to be the ℏ-adic closure in ŨR

P,ℏ(b+) of the
unital kJℏK-subalgebra generated by

{
T+
k := ℏT+

k , Ek := ℏEk
}
k∈I .

The following, technical result is obvious from definitions

Lemma 4.28. — Let Ẽ(ℏ)
± := Ker

(
ϵŨR

P,ℏ(b±)
)
∩ ŨR

P,ℏ(b±) + ℏŨR
P,ℏ(b±).

Then:
(a) ŨR

P,ℏ(b±) is complete with respect to the Ẽ(ℏ)
± -adic topology, and{

T+
i , Ei

}
i∈I , resp.

{
T−
j , F j

}
j∈I , is a set of topological generators

of it;
(b) ŨR

P,ℏ(b±) is a (topological) Hopf kJℏK-subalgebra of ŨR
P,ℏ(b±).

The key point with pre-Borel FoMpQUEAs is our next result, whose
proof is more or less standard in Hopf theory.

Proposition 4.29. — There exists a kJℏK-linear skew-Hopf pairing

π̃ : ŨR
P,ℏ(b+) ⊗̂kJℏK ŨR

P,ℏ(b−) −→ kJℏK

uniquely given – for all i, j ∈ I – by

π̃
(
T+
i , T

−
j

)
= αi

(
T−
j ) = αj(T+

i ) = pij , π̃
(
T+
i , 1

)
= 0 = π̃

(
1, T−

j

)
π̃
(
T+
i , F j

)
= 0 = π̃

(
Ei, T

−
j

)
, π̃

(
1, F j

)
= 0 = π̃

(
Ei, 1

)
π̃
(
1, 1
)

= 1, π̃
(
Ei, F j

)
= δijℏ
q+1
i − q

−1
i

.

Proof. — Assume first that such a skew-Hopf pairing exists: then it
is uniquely determined by its values on the (topological) algebra gen-
erators of ŨR

P,ℏ(b+) and ŨR
P,ℏ(b−) chosen in the sets

{
T+
i , Ei

}
i∈I and{

T−
j , F j

}
j∈I , respectively; indeed, this follows from repeated applications

of formulas (4.1) and (4.2) in Definition 4.1 along with the fact that
ŨR
P,ℏ(b−) is a Hopf (sub)algebra. Therefore, once the above mentioned

values are specified as in the statement, this proves uniqueness.
To show that such a pairing exists, it is equivalent to prove, as usual,

that there exists a anti-homomorphism γ : ŨR
P,ℏ(b+)→ ŨR

P,ℏ(b−)
∗

of alge-
bras, where ŨR

P,ℏ(b−)
∗

:= HomkJℏK

(
ŨR
P,ℏ(b−),kJℏK

)
. This is known once

it is assigned on the free (topological) generators of ŨR
P,ℏ(b+) picked from{

T+
i , Ei

}
i∈I , and to define γ on those elements we use the coproduct on

them, because ŨR
P,ℏ(b−) is freely generated by

{
T−
j , F j

}
i∈I .
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Given an augmented R-algebra (A, ϵ) over a ring R, a map d : A → R

is called a derivation if d(xy) = d(x)ϵ(y) + ϵ(x)d(y) for all x, y ∈ A. Also,
for two algebra maps α, β ∈ AlgR(A,R), an (α, β)-derivation is a map
d : A→ R such that d(xy) = d(x)α(y) + β(x)d(y) for all x, y ∈ A.

Taking into account that the T+
i ’s are primitive, the Ki := e+ℏT+

i are
group-like and the Ei’s are (1,Ki)-primitive, for all i ∈ I, we define in
ŨR
P,ℏ(b−)

∗
the derivation τi, the algebra morphism κi and the (ϵ, κi)-

derivation ηi by (for all i, j ∈ I)
τi
(
T−
j

)
:= pij , τi

(
F j
)

:= 0, κi
(
T−
j

)
:= pij , κi

(
F j
)

:= 0

ηi
(
T−
j

)
:= 0, ηi

(
F j
)

:= δijℏ
(
q+1
i − q

−1
i

)−1
.

Now consider ŨR
P,ℏ(b−)

∗
as an algebra with the convolution product, that

is, (fg)(x) := f
(
x(1)

)
g
(
x(2)

)
for all f, g ∈ ŨR

P,ℏ(b−)
∗

and x ∈ ŨR
P,ℏ(b−).

As ŨR
P,ℏ(b+) is the free (topological) algebra generated by

{
T+
i , Ei

}
i∈I ,

one has an algebra anti-homomorphism γ : ŨR
P,ℏ(b+) → ŨR

P,ℏ(b−)
∗

given
by γ

(
T+
i

)
:= τi and γ(Ei) := ηi for all i ∈ I. Let π̃ : ŨR

P,ℏ(b+) ⊗kJℏK

ŨR
P,ℏ(b−) → kJℏK be the linear map defined by π̃

(
x, y
)

:=
(
γ(x)

)
(y) for

all x ∈ ŨR
P,ℏ(b+) and y ∈ ŨR

P,ℏ(b−); then by the very construction of γ,
condition (4.2) is satisfied. On the other hand, condition (4.1) is satisfied
because it is satisfied on the generators T+

i and Ei (i ∈ I) and the co-
multiplication is an algebra map; the same holds for the conditions (4.3).
Finally, one may prove conditions (4.4) concerning the antipode using again
the values on the generators, as both S and S−1 are algebra and coalgebra
anti-homomorphisms. □

Remark 4.30. — It is clear by construction that one can also intro-
duce a topological Hopf subalgebra ŨR

P,ℏ(b+) of ŨR
P,ℏ(b+), for which the

analog of Lemma 4.28 holds true, and a suitable skew-Hopf pairing π̃ :
ŨR
P,ℏ(b+) ⊗̂kJℏK Ũ

R
P,ℏ(b−) → kJℏK similar to the one in Proposition 4.29,

and denoted again by π̃. Moreover, both ŨR
P,ℏ(b+) ⊗̂kJℏK ŨR

P,ℏ(b−) and
ŨR
P,ℏ(b+) ⊗̂kJℏK Ũ

R
P,ℏ(b−) will embed in ŨR

P,ℏ(b+) ⊗̂kJℏK Ũ
R
P,ℏ(b−), their in-

tersection will coincide with ŨR
P,ℏ(b+) ⊗̂kJℏK ŨR

P,ℏ(b−), and the restrictions
to this last submodule of the two pairings considered so far will coincide.

4.5.2. From pre-Borel FoMpQUEAs to Borel FoMpQUEAs

We introduce now Borel FoMpQUEAs, as quotients of pre-Borel FoM-
pQUEAs: indeed, the former are carefully devised so to inherit from the
latter all possible “good” properties.
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Definition 4.31. — Let pre-Borel FoMpQUEAs ŨR
P,ℏ(b±) be given as

in Definition 4.26. We define Ĩ+ to be the closure – in the ℏ-adic topology
– of the two-sided ideal in ŨR

P,ℏ(b+) generated by the elements (i, j ∈ I)

T+
i,j := T+

i T
+
j − T

+
j T

+
i , E

(T )
i,j := T+

i Ej − EjT
+
i − αj(T

+
i )Ej

Ei,j :=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i (i ̸= j)

and we define Ĩ− to be the closure – in the ℏ-adic topology – of the two-
sided ideal in ŨR

P,ℏ(b−) generated by all the elements (i, j ∈ I)

T−
i,j := T−

i T
−
j − T

−
j T

−
i , F

(T )
i,j := T−

i Fj − FjT
−
i + αj(T−

i )Ej

Fi,j :=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i FjF

k
i (i ̸= j).

Moreover, we define the positive, resp. negative, Borel formal multipa-
rameter quantum universal enveloping algebra – in short positive, resp.
negative, Borel FoMpQUEA – with multiparameter P as being the quo-
tient UR

P,ℏ(b+) := ŨR
P,ℏ(b+)

/
Ĩ+, resp. UR

P,ℏ(b−) := ŨR
P,ℏ(b−)

/
Ĩ−. With a

standard abuse of notation, hereafter we shall denote with the same symbol
any element in ŨR

P,ℏ(b±) as well as its image (via the quotient map) in the
quotient algebra UR

P,ℏ(b±) := ŨR
P,ℏ(b±)

/
Ĩ±.

We need also similar definitions for the Hopf subalgebras ŨR
P,ℏ(b±):

Definition 4.32. — Let ŨR
P,ℏ(b±) be defined as in Definition 4.27, and

consider in it Ẽ(ℏ)
± := Ker

(
ϵŨR

P,ℏ(b±)
)
∩ ŨR

P,ℏ(b±) + ℏŨR
P,ℏ(b±). We define

Ĩ+ to be the closure, in the Ẽ(ℏ)
+ -adic topology, of the two-sided ideal in

ŨR
P,ℏ(b+) generated by the elements (for all i, j ∈ I)

T+
i,j := T+

i T
+
j − T

+
j T

+
i , E

(T )
i,j := T+

i Ej − EjT
+
i − ℏαj

(
T+
i

)
Ej

Ei,j :=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i (i ̸= j)
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and we define Ĩ− to be the closure – in the Ẽ(ℏ)
− -adic topology – of the

two-sided ideal in ŨR
P,ℏ(b−) generated by the elements (for all i, j ∈ I)

T−
i,j := T−

i T
−
j − T

−
j T

−
i , F

(T )
i,j := T−

i F j − F jT
−
i + ℏαj

(
T−
i

)
F j

F i,j :=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i F jF

k
i (i ̸= j).

Accordingly, we consider the quotients UR
P,ℏ(b±) := ŨR

P,ℏ(b±)
/
Ĩ±, and,

with standard abuse of notation, we shall denote with the same symbol any
element in ŨR

P,ℏ(b±) as well as its coset in the quotient algebra UR
P,ℏ(b±) :=

ŨR
P,ℏ(b±)

/
Ĩ±.

The key point concerning Borel FoMpQUEAs is the following:

Proposition 4.33.
(a) Ĩ± is a Hopf ideal of ŨR

P,ℏ(b±), so that UR
P,ℏ(b±) := ŨR

P,ℏ(b±)
/
Ĩ± is

a quotient Hopf algebra. Similarly, Ĩ± is a Hopf ideal of ŨR
P,ℏ(b±),

therefore the quotient UR
P,ℏ(b±) := ŨR

P,ℏ(b±)
/
Ĩ± is in fact a Hopf

algebra.
Moreover, UR

P,ℏ(b±) is a (topological) Hopf subalgebra in
UR
P,ℏ(b±).

(b) The ideal Ĩ+, resp. Ĩ−, is contained in the left, resp. right, radical of
the pairing π̃ : ŨR

P,ℏ(b+) ⊗̂ ŨR
P,ℏ(b−)→ kJℏK in Proposition 4.29.

Similarly, the ideal Ĩ+, resp. Ĩ−, is contained in the left, resp.
right, radical of the pairing π̃ : ŨR

P,ℏ(b+) ⊗̂ ŨR
P,ℏ(b−) → kJℏK in

Remark 4.30.
(c) The two skew-Hopf pairings π̃ : ŨR

P,ℏ(b+) ⊗̂ ŨR
P,ℏ(b−) → kJℏK

and π̃ : ŨR
P,ℏ(b+) ⊗̂ ŨR

P,ℏ(b−) → kJℏK mentioned in (b) uniquely
induce skew-Hopf pairings π : UR

P,ℏ(b+) ⊗̂ UR
P,ℏ(b−) → kJℏK and

π : UR
P,ℏ(b+) ⊗̂ UR

P,ℏ(b−)→ kJℏK described by obvious formulas as
in Proposition 4.29.

Proof. — Claim (c) follows at once from (a) and (b), so now we prove
the latter ones.

As to (a), computations show that the T+
i,j ’s are primitive, while the

E
(T )
i,j ’s are skew-primitive, namely ∆

(
E

(T )
i,j

)
= E

(T )
i,j ⊗ 1 + e+T+

j ⊗E(T )
i,j ;

similarly, again direct computations prove also that ∆(Ei,j) = Ei,j ⊗ 1 +
e+(1−aij)ℏT+

i
+ℏT+

j ⊗Ei,j . This implies that Ĩ+ is a Hopf ideal of ŨR
P,ℏ(b+).

With similar arguments, one proves the claim for Ĩ− and for Ĩ± as well.
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Finally, the statement about being a Hopf subalgebra follows by con-
struction.

As to (b), again direct computation shows that Ĩ+ lies in the left radical
of the pairing π̃. For instance, the functional π̃

(
T+
i T

+
j ,−

)
is non-zero only

when it is evaluated in elements of the form T−
k T

−
ℓ for some 1 ⩽ k, ℓ ⩽ n;

in this case,

π̃
(
T+
i T

+
j , T

−
k T

−
ℓ

)
= π̃

(
T+
i , T

−
ℓ

)
π̃
(
T+
j , T

−
k

)
+ π̃

(
T+
i , T

−
k

)
π̃
(
T+
j , T

−
ℓ

)
= piℓpjk + pikpjℓ = π̃

(
T+
j T

+
i , T

−
k T

−
ℓ

)
so the generators T+

i,j := T−
i T

−
j − T

−
j T

−
i of Ĩ+ lie in the left radical for all

i, j ∈ I.
Similarly, we saw that the generators E(T )

i,j := T+
i Ej−EjT

+
i −αj(T

+
i )Ej

are skew-primitive again, namely ∆
(
E

(T )
i,j

)
= E

(T )
i,j ⊗ 1 + e+T+

j ⊗E(T )
i,j .

Thanks to this, in order to prove that the E
(T )
i,j ’s are contained in the

left radical it is enough to show that they kill the generators of ŨR
P,ℏ(b−),

because for all x, y ∈ ŨR
P,ℏ(b−) we have

π̃
(
E

(T )
i,j , xy

)
= π̃

(
E

(T )
i,j , x

)
π̃(1, y) + π̃

(
e+T+

j , x
)
π̃
(
E

(T )
i,j , y

)
.

Now, from π̃
(
Eℓ, 1

)
= 0 for all ℓ ∈ I, the properties of the skew-Hopf

pairing imply that π̃
(
E

(T )
i,j , 1

)
= 0 too, for all i, j ∈ I. Similarly, direct

computation gives, using notation π̃⊗(a⊗ b, u⊗ v) := π̃(a, u)π̃(b, v),

π̃
(
E

(T )
i,j , T

−
k

)
= π̃

(
T+
i Ej − EjT

+
i − αj(T

+
i )Ej , T−

k

)
= π̃⊗

(
T+
i ⊗ Ej − Ej ⊗ T

+
i − αj(T

+
i )Ej ⊗ 1,∆

(
T−
k

))
= π̃⊗

(
T+
i ⊗Ej−Ej⊗T

+
i −αj(T

+
i )Ej⊗1, T−

k ⊗1+1⊗T−
k

)
= 0

exactly because π̃
(
Ej , 1

)
= 0 = π̃

(
Ej , T

−
k

)
for all j, k ∈ I. Likewise, we

also have

π̃
(
E

(T )
i,j , F k

)
= π̃

(
T+
i Ej − EjT

+
i − αj(T

+
i )Ej , F k

)
= π̃⊗

(
T+
i ⊗ Ej − Ej ⊗ T

+
i − αj(T

+
i )Ej ⊗ 1,∆

(
F k
))

= π̃⊗

(
T+
i ⊗ Ej − Ej ⊗ T

+
i − αj(T

+
i )Ej ⊗ 1, F k ⊗ e−T−

k +1⊗ F k
)

= 0
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because when we expand the last line the only non-trivial summands are

−π̃
(
Ej , F k

)
· π̃
(
T+
i , e

−T−
k

)
= +δj,kℏ

(
q+1
j − q

−1
j

)−1 · αk
(
T+
i

)
and

−αj
(
T+
i

)
π̃
(
Ej , F k

)
· π̃
(

1, e−T−
k

)
= −αj

(
T+
i

)
δj,kℏ

(
q+1
j − q

−1
j

)−1 · 1

which add up to zero.
Finally, the Ei,j ’s are skew-primitives too, so again it is enough to show

that they kill the generators of ŨR
P,ℏ(b−). This follows again by direct

calculation, for instance

π̃
(
Ei,j , F k

)
= π̃

(1−aij∑
s=0

(−1)s
[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji E

1−aij−s
i EjE

s
i , F k

)

=
1−aij∑
s=0

(−1)s
[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji π̃

(3)
⊗

(
E

1−aij−s
i ⊗Ej ⊗Esi ,∆(3)(F k))

=
1−aij∑
s=0

(−1)s
[
1− aij

s

]
qi

q
+s/2
ij q

−s/2
ji

×π̃(3)
⊗

(
E

1−aij−s
i ⊗Ej⊗Esi , F k⊗e−T−

k ⊗e−T−
k +1⊗F k⊗e−T−

k +1⊗1⊗F k
)

so that for all s we get

π̃
(3)
⊗

(
E

1−aij−s
i ⊗Ej⊗Esi , F k⊗e−T−

k ⊗ e−T−
k +1⊗F k⊗e−T−

k +1⊗1⊗F k
)

= 0

because π̃
(
Ej , e−T−

k

)
= 0 = π̃

(
Ej , 1

)
and π̃

(
E

1−aij−s
j , 1

)
= 0. □

Remarks 4.34.
(a) Constructions imply that UR

P,ℏ(b±) in Proposition 4.33(a) coincide
with the Borel FoMpQUEAs of Definition 4.4(c), with their whole
Hopf structure (cf. Proposition 4.14), so we use again same notation
and terminology.

(b) Denote by r+ andR−, respectivelyR+ and r−, the left and the right
radical of the skew-Hopf pairing π̃ : ŨR

P,ℏ(b+)⊗̂ŨR
P,ℏ(b−) → kJℏK,

respectively π̃ : ŨR
P,ℏ(b+)⊗̂ŨR

P,ℏ(b−) → kJℏK; all these are Hopf
ideals, and then – in both cases – the pairings π̃ induce similar skew
Hopf pairings between the quotient Hopf algebras ŨR

P,ℏ(b+)
/
r+ and

ŨR
P,ℏ(b−)

/
R−, resp. ŨR

P,ℏ(b+)
/
R+ and ŨR

P,ℏ(b−)
/
r−, which are

non-degenerate. When the matrix P is symmetric, hence equal to
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DA, basing on [35, Theorem 9.11], one can prove that the relations
in Definition 4.31, resp. in Definition 4.32, generate the Hopf ideals
r±, resp. R∓, hence one has that ŨR

P,ℏ(b±)
/
r± ∼= UR

P,ℏ(b±) and
ŨR
P,ℏ(b±)

/
R± ∼= UR

P,ℏ(b±).

Next result points out a technical property of the Borel FoMpQUEAs.

Lemma 4.35. — The algebras UR
P,ℏ(b±) are topologically free, i.e. they

are torsion-free as kJℏK-modules and they are separated and complete for
the ℏ-adic topology.

Proof. — It is proved in Theorem 5.15(b) later on, in a way indepen-
dent of whatever follows from here to there, that in the split minimal case
the FoMpQUEA UR

P,ℏ(g) is just a deformation (in a proper sense) of Drin-
feld’s Uℏ(g) – in “double version”, i.e. with Cartan subalgebra of rank
2|I|; in particular, UR

P,ℏ(g) and Uℏ(g) have the same kJℏK-module struc-
ture. Now Uℏ(g) is known to be topologically free, so the same holds for
UR
P,ℏ(g), and then this property is inherited by the subalgebras UR

P,ℏ(b±)
too. Alternatively, the proof of Theorem 5.15(b) also applies directly to
UR
P,ℏ(b±), proving that the former are suitable deformations of Drinfeld’s

Uℏ(b±): the latter are known to be topologically free, so the same holds for
UR
P,ℏ(b±) too. □

4.5.3. FoMpQUEAs as quasi-doubles of Borel FoMpQUEAs

The analysis carried on from Section 4.5.2 on provides skew-Hopf pairings
between Borel FoMpQUEAs UR

P,ℏ(b±) and UR
P,ℏ(b∓). Following the recipe

in Definition 4.1, we can then consider the associated (Drinfeld’s) quantum
doubles, that we denote by

(4.26)
−→
DR
P,ℏ(g) := D

(
UR
P,ℏ(b+),UR

P,ℏ(b−), π
)

←−
DR
P,ℏ(g) := D

(
UR
P,ℏ(b+), UR

P,ℏ(b−), π
)
.

By definition of Drinfeld’s quantum double, there exists an isomorphism
of (topological) kJℏK-coalgebras −→DR

P,ℏ(g) ∼= UR
P,ℏ(b+) ⊗̂kJℏK UR

P,ℏ(b−). Even
more, both UR

P,ℏ(b+) and UR
P,ℏ(b−) embed into −→DR

P,ℏ(g) – via u 7→ u ⊗ 1
and v 7→ 1⊗ v, respectively – as Hopf subalgebras, and these (Hopf) subal-
gebras actually generate all of −→DR

P,ℏ(g), as a topological algebra. A similar
analysis applies to ←−DR

P,ℏ(g). Note that here we apply Lemma 4.35: by it,
UR
P,ℏ(b±) is topologically free, thus also UR

P,ℏ(b±) is, hence the products
UR
P,ℏ(b±) ⊗̂kJℏK UR

P,ℏ(b∓) are topologically free too.
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Our next result is an explicit description of these quantum double Hopf
algebras.

Proposition 4.36. — With assumptions as above, the quantum double
Hopf algebra −→DR

P,ℏ(g) in (4.26) admits the following presentation: it is the
unital, associative, topological, ℏ-adically complete algebra over kJℏK with
generators Ei, T+

i , T−
j , F j , (i, j ∈ I) and relations (for i, j ∈ I)

(4.27)

T+
i T

+
j = T+

j T
+
i , T+

i Ej − EjT
+
i = +pijEj

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i = 0 (i ̸= j)

T−
i T

−
j = T−

j T
−
i , T−

i F j − F jT
−
i = −ℏpjiF j

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i F jF

k
i = 0 (i ̸= j)

T−
i Ej − EjT

−
i = +ℏpjiEj , T+

i F j − F jT
+
i = −pijF j

T+
i T

−
j = T−

j T
+
i , EiF j − F jEi = δi,jℏ

e+ℏT+
i − e−T−

i

q+1
i − q

−1
i

with Hopf structure given on the above generators (for all i ∈ I) by

(4.28)

∆
(
Ei
)

= Ei ⊗ 1 + e+ℏT+
i ⊗Ei, ∆

(
T+
i

)
= T+

i ⊗ 1 + 1⊗ T+
i

∆
(
T−
i

)
= T−

i ⊗ 1 + 1⊗ T−
i , ∆

(
F i
)

= F i ⊗ e−T−
i +1⊗ F i

ϵ
(
Ei
)

= 0, ϵ
(
T+
i

)
= 0, ϵ

(
T−
i

)
= 0, ϵ

(
F i
)

= 0

S
(
Eℓ
)

= − e−ℏT+
i Ei, S

(
T+
i

)
= −T+

i

S
(
T−
i

)
= −T−

i , S
(
F i
)

= − e+T−
i F i.

A similar result provides a likewise presentation of ←−DR
P,ℏ(g).

Proof. — Recall that we have an isomorphism of (topological) kJℏK-
coalgebras −→DR

P,ℏ(g) ∼= UR
P,ℏ(b+) ⊗̂kJℏK UR

P,ℏ(b−). Moreover, through it
both UR

P,ℏ(b+) and UR
P,ℏ(b−) embed into −→DR

P,ℏ(g) – via u 7→ u ⊗ 1 and
via v 7→ 1 ⊗ v – as Hopf subalgebras, which generate −→DR

P,ℏ(g), as a topo-
logical algebra. In particular, as a matter of notation we shall write u for
u ⊗ 1 and v for 1 ⊗ v. From all this it follows that −→DR

P,ℏ(g) admits a pre-
sentation with generators Ei, T+

i , T−
j , F j , (i, j ∈ I) – as these generate

UR
P,ℏ(b+) and UR

P,ℏ(b−) – and relations given by the first two lines in (4.27)
– because these are the relations among the Ei’s and T+

i ’s inside UR
P,ℏ(b+) –
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and the mid two lines in (4.27) – since these are those among the T−
j ’s and

F j ’s inside UR
P,ℏ(b−) – plus the additional relations, given at the end of

Definition 4.1, that link the generators Ei and T+
i (i ∈ I) inside UR

P,ℏ(b+)
with the generators T−

j and F j (j ∈ I) inside UR
P,ℏ(b−). Concerning these

last set of relations, direct computation proves that they are given by the
last two lines in (4.27).

For example, taking x = T−
j and y = T+

i we have that

x(1)y(1)π
(
y(2), x(2)

)
= T−T+

i π(1, 1) + T−
j π
(
T+
i , 1

)
+ T+

i π
(
1, T−

j

)
+ π

(
T+
i , T

−
j

)
= T−

j T
+
i + pij

π
(
y(1), x(1)

)
y(2)x(2)

= π
(
T+
i , T

−
j

)
+ π

(
T+
i , 1

)
T−
j + π

(
1, T−

j

)
T+
i + π(1, 1)T+

i T
−
j

= pij + T+
i T

−
j

which yields T+
i T

−
j = T−

j T
+
i for all i, j ∈ I; similarly, for x = F j and

y = Ei, we get
x(1)y(1)π

(
y(2), x(2)

)
= F jEiπ

(
1, e−T−

j
)

+F j eℏT
+
i π
(
Ei, e−T−

j
)

+Eiπ
(
1, F j

)
+eℏT

+
i π
(
Ei, F j

)
= F jEi + δi,jℏ eℏT

+
i

(
q+1
i − q

−1
i

)−1

π
(
y(1), x(1)

)
y(2)x(2)

= π
(
Ei, Fj

)
e−T−

j +π
(
Ei, 1

)
Fj+π

(
e+ℏT+

i , Fj
)
Ei e−T−

j +π
(
e+ℏT+

i , 1
)
EiFj

= δi,jℏ e−T−
j
(
q+1
i − q

−1
i

)−1 + EiF j

which yields the relation EiF j − F jEi = δi,jℏ eℏT
+
i − eℏT

−
i

q+1
i

−q−1
i

(i, j ∈ I).
Finally, the Hopf structure is given once we know how it looks on gener-

ators, hence it is given by (4.28) because UR
P,ℏ(b+) and UR

P,ℏ(b−) are both
Hopf subalgebras.

A parallel argument yields a similar presentation for ←−DR
P,ℏ(g). □

We still need some auxiliary ingredients:

Definition 4.37.
(a) We denote by −→DR

P,ℏ(g) the ℏ-adic completion of the kJℏK-subalgebra
generated in −→DR

P,ℏ(g) by
{
Ei, T

+
i , T

−
i = ℏ−1T−

i , Fi = ℏ−1F i
}
i∈I .

(b) We denote by←−DR
P,ℏ(g) the ℏ-adic completion of the kJℏK-subalgebra

generated in ←−DR
P,ℏ(g) by

{
Ei = ℏ−1Ei, T

+
i = ℏ−1T+

i , T
−
i , Fi

}
i∈I .
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We are finally ready for the main result we are looking for:

Theorem 4.38. — Let A :=
(
ai,j
)
i,j∈I be a generalized symmetrizable

Cartan matrix, and let P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
be a matrix of Car-

tan type with associated Cartan matrix A. With assumptions as above,
both −→DR

P,ℏ(g) and←−DR
P,ℏ(g) are topological, ℏ-adically complete Hopf kJℏK-

algebras, which are isomorphic to the FoMpQUEA UR
P,ℏ(g) given in Defi-

nition 4.4.

Proof. — The claim follows directly from the construction of −→DR
P,ℏ(g)

and ←−DR
P,ℏ(g), and from Proposition 4.36 above: in fact, all this yields

a presentation for −→DR
P,ℏ(g) and one for ←−DR

P,ℏ(g) – with generating set{
Ei, T

+
i , T

−
i , Fi

}
i∈I , in both cases – that just coincide, hence these two

algebras are isomorphic. At the same time, the formulas for the Hopf
structure in −→DR

P,ℏ(g) and ←−DR
P,ℏ(g) show that these algebras inherit the

Hopf structure as well. Comparing this presentation with the one defin-
ing UR

P,ℏ(g) one sees that they coincide again, whence the last part of the
claim. □

4.5.4. Construction as double cross products

In this subsection we implement an alternative construction of UR
P,ℏ(g)

as a subalgebra of a double cross product, which is also an alternative way
of constructing a quantum double. We follow Majid [41, Section 7.2] for
the description of the double cross product. We begin by introducing the
construction in the general context of matched pairs of Hopf algebras.

Definition 4.39 ([41, Definition 7.2.1]). — Two bialgebras or Hopf al-
gebras A and H form a right-left matched pair if H is a right A-module
coalgebra and A is a left H-module coalgebra with mutual actions ◁ :
H ⊗A→ H, ▷ : H ⊗A→ A that obey the compatibility conditions

(hg) ◁ a =
(
h ◁
(
g(1) ▷ a(1)

))(
g(2) ◁ a(2)

)
, 1 ◁ a = ϵ(a)

h ▷ (ab) =
(
h(1) ▷ a(1)

)(
(h(2) ◁ a(2)

)
▷ b
)
, h ▷ 1 = ϵ(h)(

h(1) ◁ a(1)
)
⊗
(
h(2) ▷ a(2)

)
=
(
h(2) ◁ a(2)

)
⊗
(
h(1) ▷ a(1)

)
.

Theorem 4.40 ([41, Theorem 7.2.2]). — Given a matched pair of bial-
gebras (A,H), there exists a double cross product bialgebra A ▷◁ H built
on the vector space A⊗H with product

(a⊗ h) · (b⊗ g) := a
(
h(1) ◁ b(1)

)
⊗
(
h(2) ▷ b(2)

)
g ∀a, b ∈ A, h, g ∈ H
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and tensor product unit, counit and coproduct maps. Moreover, A and H

are subbialgebras via the canonical inclusions, and A ▷◁ H is generated by
them with relations

h · a =
(
h(1) ◁ b(1)

)
⊗
(
h(2) ▷ b(2)

)
∀h ∈ H, a ∈ A.

If in addition A and H are Hopf algebras, then so is their double cross
product, with antipode

S(a⊗h) =
(
1⊗S(h)

)(
S(a)⊗1

)
=
(
S
(
h(2)

)
◁S
(
b(2)
))
⊗
(
S
(
h(1)

)
▷S
(
b(1)
))
.

4.5.5. From skew-Hopf pairings to double cross products

Let R be a ring, let A, H be two R-bialgebras and let η : H ⊗ A → R

be a skew-Hopf pairing which is convolution invertible. Then H is a right
A-module coalgebra and A is a left H-module coalgebra via the actions

h ▷ a := h(2)η
−1(h(1), a(1)

)
η
(
h(3), a(2)

)
h ◁ a := a(2)η

−1(h(1), a(1)
)
η
(
h(2), a(3)

)
for all h ∈ H and a ∈ A. In particular, then, there exists a double cross
product bialgebra A ▷◁ H built upon A⊗H; as we know, it has the tensor
product unit, counit and coproduct, while its product now explicitly reads,
in terms of the pairing, as follows (see [41, Example 7.2.7]):

(a⊗ h) · (b⊗ g) := η−1(h(1), b(1)
)
ab(2) ⊗ h(2)gη

(
h(3), b(3)

)
.

In addition, when both A and H are Hopf algebras then such is A ▷◁ H as
well.

4.5.6. FoMpQUEAs as double cross products

Using the skew-Hopf pairing between our Borel FoMpQUEAs given by
Proposition 4.33, namely

π : UR
P,ℏ(b+) ⊗̂ UR

P,ℏ(b−) −→ kJℏK

and

π : UR
P,ℏ(b+) ⊗̂ UR

P,ℏ(b−) −→ kJℏK

we may apply the general construction in Section 4.5.5 above and define
two new, double crossed-product Hopf algebras

UR
P,ℏ(b−) ▷◁ UR

P,ℏ(b+) and UR
P,ℏ(b−) ▷◁ UR

P,ℏ(b+).
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Following the recipe in Section 4.5.5, the actions of UR
P,ℏ(b−) on UR

P,ℏ(b+)
and of UR

P,ℏ(b+) on UR
P,ℏ(b−) via the skew-Hopf paring π are given by

T+
i ▷ T−

j = 0, T+
i ◁ T−

j = 0, T+
i ◁ F j = 0, Ei ▷ T

−
j = 0

T+
i ▷ F j = −pijF j , Ei ◁ T

−
j = −ℏpijEi

Ei ▷ F j = δij
ℏ
(
1− e−T−

j
)

q+1
i − q

−1
i

, Ei ◁ F j = δij
ℏ
(

e+ℏT+
i −1

)
q+1
i − q

−1
i

X ▷ 1 = 0, 1 ◁ X = 0 ∀X ∈
{
Ei, T

+
i , F i, T

−
i

}
i∈I

(for all i, j ∈ I). It is clear that these formulae completely define the cross
product structure on UR

P,ℏ(b−) ▷◁ UR
P,ℏ(b+). For example, let us compute

Ei ◁ F j explicitly. Set Lj = e−T−
j and Ki = eT+

i : then computations give

Ei ▷ F j =
(
F j
)

(2)η
−1((Ei)(1),

(
F j
)

(1)

)
η
(
(Ei)(2),

(
F j
)

(3)

)
= Ljη

−1(Ei, F j)η(1, Lj) + Ljη
−1(Ki, F j

)
η(Ei, Lj)

+ F jη
−1(Ei, 1)η(1, Lj) + F jη

−1(Ki, 1)η(Ei, Lj)

+ 1η−1(Ei, 1)η
(
1, F j

)
+ 1η−1(Ki, 1)η

(
Ei, F j

)
= Ljη

−1(Ei, F j)+ η
(
Ei, F j

)
= Ljη

(
Ei,S

(
F j
))

+ η
(
Ei, F j

)
= Ljη

(
Ei,−F jL−1

j

)
+ η
(
Ei, F j

)
= (1− Lj)η

(
Ei, F j

)
= δij

ℏ(1− Lj)
q+1
i − q

−1
i

.

Now, the formulae above show that actually even
(
UR
P,ℏ(b−), UR

P,ℏ(b+)
)

is indeed a matched pair of Hopf algebras, with actions uniquely induced in
the obvious way from the actions for the pair

(
UR
P,ℏ(b−), UR

P,ℏ(b+)
)

which
are explicitly given by

T+
i ▷ T−

j = 0, T+
i ◁ T−

j = 0, T+
i ◁ Fj = 0, Ei ▷ T

−
j = 0

T+
i ▷ Fj = −pijFj , Ei ◁ T

−
j = −pijEi

Ei ▷ Fj = δij

(
1− e−ℏT−

j
)

q+1
i − q

−1
i

, Ei ◁ Fj = δij

(
e+ℏT+

i −1
)

q+1
i − q

−1
i

Y ▷ 1 = 0, ◁Y = 0 ∀Y ∈
{
Ei, T

+
i , Fi, T

−
i

}
i∈I .

Therefore, a well-defined double cross product UR
P,ℏ(b−) ▷◁ UR

P,ℏ(b+)
exists, which is a Hopf algebra containing both UR

P,ℏ(b+) and UR
P,ℏ(b−) as

Hopf subalgebras.
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With a similar situation as for Theorem 4.38, we may then obtain our
FoMpQUEA UR

P,ℏ(g) as a double cross product Hopf algebra, namely the
following holds:

Theorem 4.41. — Let A :=
(
ai,j
)
i,j∈I be a generalized symmetriz-

able Cartan matrix, and let P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
be a matrix

of Cartan type with associated Cartan matrix A. With assumptions as
above, UR

P,ℏ(b−) ▷◁ UR
P,ℏ(b+) is a topological, ℏ-adically complete Hopf

kJℏK-algebra, which is isomorphic to the FoMpQUEA UR
P,ℏ(g) given in Def-

inition 4.4. □

Remark 4.42. — Here again, it is worth pointing out that the procedure
we followed above to construct UR

P,ℏ(b−) ▷◁ UR
P,ℏ(b+) follows a general

recipe. Namely, starting with a QUEA Uℏ and its dual QFSHA U∗
ℏ := Fℏ,

one has the right-left matched pair
(
Uℏ, Fℏ

)
, with Uℏ acting on Fℏ by

coadjoint action, and viceversa; thus one can construct Uℏ ▷◁ Fℏ, which is
isomorphic to the quantum double D

(
Uℏ, Fℏ

)
and, as such, is not yet the

kind of object we are looking for. Then one observes (see [6, Section A.5])
that the right-left matched pair

(
Uℏ, Fℏ

)
induces another similar right-left

matched pair
(
Uℏ, U

∨
ℏ
)
, where U∨

ℏ denotes (in notation of [6]) the QUEA
that is associated by Drinfeld’s Quantum Duality Principle with the QF-
SHA Fℏ. Finally, we can consider the double cross product Uℏ ▷◁ U∨

ℏ
– isomorphic to

(
Uℏ, U

∨
ℏ
)

– which is now exactly the kind of QUEA we
are looking for.

Instead of applying verbatim the recipe sketched above, in the previous
construction we followed an explicit, concrete approach that seems totally
independent; however, it is important to understand that what we did is in
fact nothing but a concrete “realization” of the general recipe, even though
it is not formally apparent.

4.5.7. The general case: third proof of Theorem 4.13

The previous analysis provides an explicit construction of any FoM-
pQUEA defined on a realization R which is split minimal. Out of this,
we now deduce a construction of a FoMpQUEA on R of any type, by a
process of “extension and quotient”. In the end, we find another proof for
Theorem 4.13.

Let P be a multiparameter matrix (of Cartan type), let R :=
(
h,Π,Π∨)

be any realization of it, and let UR
P,ℏ(g) be the associated (topological,

unital, associative) kJℏK-algebra, as in Definition 4.4.
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By Lemma 2.7, we can also pick a split realization of P , say Ṙ :=(
ḣ, Π̇, Π̇∨), and ḣT := Span

({
T±
i

}
i∈I

)
inside ḣ. Then we take the FoM-

pQUEA U Ṙ
P,ℏ(g) associated with Ṙ: inside it, we consider the Cartan sub-

algebras Uℏ
(
ḣ
)

:= U Ṙ
P,ℏ
(
ḣ
)

and Uℏ
(
ḣT
)

:= U Ṙ
P,ℏ
(
ḣT
)

– both independent of
R and P , as for every Cartan subalgebra – and also the complete, unital
kJℏK-subalgebra generated by ḣT , the Ei’s and the Fi’s: the latter is clearly
yet another FoMpQUEA, namely U R̊

P,ℏ(g), where R̊ :=
(
ḣT , Π̊,Π∨) – with

Π̊ :=
{
α̊i := αi

∣∣
ḣT

}
i∈I – is again a realization of P , now split and minimal.

Thanks to Theorem 4.38 then, there exists a Hopf algebra structure on
U R̊
P,ℏ(g), which is described by formulas as in (4.8), (4.9), (4.10).
On the other hand, definitions imply that U Ṙ

P,ℏ(g) ∼= Uℏ
(
ḣ
)
⊗̂Uℏ(ḣT )

U R̊
P,ℏ(g). Then there is only one way to extend the Hopf structure in U R̊

P,ℏ(g)
mentioned above to a Hopf structure on U Ṙ

P,ℏ(g) ∼= Uℏ
(
ḣ
)
⊗̂Uℏ(ḣT ) U

R̊
P,ℏ(g)

so that all elements in ḣ are primitive; in other words, there exists a unique
(topological) Hopf structure in Uℏ

(
ḣ
)
⊗̂Uℏ(ḣT ) U

R̊
P,ℏ(g) ∼= U Ṙ

P,ℏ(g) which
coincides with the given one on the right-hand factor and makes all elements
of ḣ primitive in the left-hand factor.

Finally, again by Lemma 2.7, there exists an epimorphism of realizations
π : Ṙ ↠ R. By functoriality, we get an epimorphism Uπ : U Ṙ

P,ℏ(g) ↠
UR
P,ℏ(g) with Ker

(
Uπ
)

generated by Ker(π) (cf. Proposition 4.5); more-
over, every element in Ker(π) is primitive and is central in U Ṙ

P,ℏ(g). Thus
Ker

(
Uπ
)

is a Hopf ideal in the Hopf algebra U Ṙ
P,ℏ(g), hence UR

P,ℏ(g) inherits
via Uπ a quotient Hopf algebra structure from U Ṙ

P,ℏ(g), again described by
the formulas in (4.8)–(4.10).

Remark 4.43. — We expect that our definition (and construction) of
FoMpQUEAs, and all related results presented hereafter, can be extended
to the case when the symmetrizable generalized Cartan matrix A is re-
placed by a more general symmetrizable Borcherds–Cartan matrix, see [5]
and references therein. However, due to additional technical difficulties, we
do not pursue such a goal in this paper.

5. Deformations of formal multiparameter QUEAs

After introducing formal MpQUEAs, in the previous section, now in the
present section we go and study their deformations, either by twist or by
2-cocycle – both of “toral type”, say.
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5.1. Deformations of FoMpQUEAs by toral twists

We discuss now suitable twist deformations (of “toral type”) of FoM-
pQUEAs, proving that they are again FoMpQUEAs. By the results in [20]
one can show that all possible twist elements F for Drinfeld’s Uℏ(g) can
be constructed from data associated with Belavin–Drinfeld triples which
classify classical r-matrices for g itself: in this respect, our “toral” twists
correspond to the trivial Belavin–Drinfeld triples.

5.1.1. Toral twist deformations of UR
P,ℏ(g)

We fix a matrix P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
of Cartan type with asso-

ciated Cartan matrix A, a realization R :=
(
h,Π,Π∨) of it and the FoM-

pQUEA UR
P,ℏ(g), as in Section 2 and Section 4; in particular, di := pii/2

(i ∈ I), and h is a free kJℏK-module of finite rank t := rk(h). We fix in h

any kJℏK-basis
{
Hg

}
g∈G , where |G| = rk(h) = t. Pick Φ =

(
ϕgk
)
g,k∈G ∈

sot
(
kJℏK

)
, and set

JΦ :=
t∑

g,k=1
ϕgkHg ⊗Hk ∈ h⊗ h ⊆ UR

P,ℏ(h)⊗ UR
P,ℏ(h).

By direct check, we see that the element

(5.1) FΦ := eℏ2−1JΦ = exp

ℏ2−1
t∑

g,k=1
ϕgkHg ⊗Hk


in UR

P,ℏ(h) ⊗̂ UR
P,ℏ(h) is actually a twist for UR

P,ℏ(g) in the sense of Sec-
tion 4.1.3. Using it, we construct a new (topological) Hopf algebra(
UR
P,ℏ(g)

)FΦ , isomorphic to UR
P,ℏ(g) as an algebra but with a new, twisted

coalgebra structure, as in Section 4.1.3. A direct calculation yields explicit
formulas for the new coproduct on generators, namely

∆Φ(Eℓ) = Eℓ ⊗ L+1
Φ,ℓ + e+ℏT+

ℓ K+1
Φ,ℓ ⊗ Eℓ

(
∀ℓ ∈ I

)
∆Φ(T ) = T ⊗ 1 + 1⊗ T

(
∀T ∈ h

)
∆Φ(Fℓ) = Fℓ ⊗ L−1

Φ,ℓ e−ℏT−
ℓ +K−1

Φ,ℓ ⊗ Fℓ
(
∀ℓ ∈ I

)
with

LΦ,ℓ := e+ℏ2−1
∑t

g,k=1
αℓ(Hg)ϕgkHk , KΦ,ℓ := e+ℏ2−1

∑t

g,k=1
αℓ(Hg)ϕkgHk
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for all ℓ ∈ I. Similarly, the “twisted” antipode SΦ := SFΦ and the counit
ϵΦ := ϵ are given by

SΦ(Eℓ) = − e−ℏT+
ℓ K−1

Φ,ℓEℓL
−1
Φ,ℓ, ϵΦ

(
Eℓ
)

= 0
(
∀ℓ ∈ I

)
SΦ(T ) = −T, ϵΦ

(
T
)

= 0
(
∀T ∈ h

)
SΦ(Fℓ) = −K+1

Φ,ℓFℓL
+1
Φ,ℓ e+ℏT−

ℓ , ϵΦ
(
Fℓ
)

= 0
(
∀ℓ ∈ I

)
.

Remark 5.1. — The twist FΦ is an example of Reshetikhin’s twist as
in [49], only “adapted” to the present case of our more general FoMpQUEA
UR
P,ℏ(g). When g is a simple Lie algebra, this twist corresponds to empty

datum of the Belavin–Drinfeld triple with respect to the classification in [20]
of twists for Uℏ(g).

5.1.2. Twisted generators

From the explicit description of the coproduct ∆Φ, it follows that(
UR
P,ℏ(g)

)FΦ is generated by group-likes and skew-primitive elements; in
particular, it is a pointed Hopf algebra. Moreover, both Hopf algebras
UR
P,ℏ(g) and

(
UR
P,ℏ(g)

)FΦ have the same coradical and the same space
of skew-primitive elements. As the coproduct is changed by the twist,
one sees that the skew-primitive generators of UR

P,ℏ(g), which are (1, g)-
or (g, 1)-primitive for some g ∈ G

(
UR
P,ℏ(g)

)
, with respect to ∆, become

(h, k)-primitive for ∆Φ. Looking at the coradical filtration, and the associ-
ated graded Hopf algebra, one may find from that set of generators some
new (1, ℓ)- or (ℓ, 1)-primitives for

(
UR
P,ℏ(g)

)FΦ . This leads to devise (new)
twisted generators and a corresponding presentation for

(
UR
P,ℏ(g)

)FΦ , which
yields a Hopf algebra isormorphism between

(
UR
P,ℏ(g)

)FΦ and a new FoM-
pQUEA with suitable multiparameter matrix and realization.

Motivated by the above analysis, we introduce now in
(
UR
P,ℏ(g)

)Fϕ the
“twisted” generators (for all ℓ ∈ I) EΦ

ℓ := L−1
Φ,ℓEℓ, FΦ

ℓ := FℓK+1
Φ,ℓ and

the twisted “distinguished toral elements” (or “coroots”) that were already
defined in (2.3), i.e. T±

Φ,ℓ := T±
ℓ ±

∑t
g,k=1 αℓ(Hg)ϕkgHk. Still from Sec-

tion 2.2.1, we recall also PΦ :=
(
pΦ
i,j

)
i,j∈I and RΦ :=

(
h,Π,Π∨

Φ
)
, the latter

being a realization of the former.
Second, the commutation relations in the algebra

(
UR
P,ℏ(g)

)FΦ give new
commutation relations between twisted generators. Namely, by straightfor-
ward computations, for instance using that

KΦ,jEi = eℏ2−1
∑t

g,k=1
αj(Hg)ϕkgαi(Hk)

EiKΦ,j
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and that
e+ℏT±

Φ,i = e+ℏT±
i

(
KΦ,iL−1

Φ,i
)±1

,

one proves that inside
(
UR
P,ℏ(g)

)FΦ the following identities hold true (for
all T, T ′, T ′′ ∈ h, i, j, ℓ ∈ I, i ̸= j, X ∈ {E,F}):

TEΦ
j − EΦ

j T = +αj(T )EΦ
j , TFΦ

j − FΦ
j T = −αj(T )FΦ

j

T ′T ′′ = T ′′T ′, EΦ
i F

Φ
ℓ − FΦ

ℓ E
Φ
i = δi,ℓ

e+ℏT+
Φ,i − e−ℏT−

Φ,i

q+1
i − q

−1
i

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

(
qΦ
ij

)+k/2(
qΦ
ji

)−k/2(
XΦ
i

)1−aij−k
XΦ
j

(
XΦ
i

)k
i

= 0

with qΦ
i,j := eℏp

Φ
i,j (i, j ∈ I) – so that qΦ

i,i = eℏp
Φ
i,i = eℏpi,i = eℏ2di = q2

i .
Third, the Hopf operations on the twisted generators read (ℓ ∈ I, T ∈ h)

∆Φ(EΦ
ℓ

)
= EΦ

ℓ ⊗ 1 + e+ℏT+
Φ,ℓ ⊗ EΦ

ℓ , ϵΦ
(
EΦ
ℓ

)
= 0

∆Φ(T ) = T ⊗ 1 + 1⊗ T, ϵΦ
(
T
)

= 0

∆Φ(FΦ
ℓ

)
= FΦ

ℓ ⊗ e−ℏT−
Φ,ℓ +1⊗ FΦ

ℓ , ϵΦ
(
FΦ
ℓ

)
= 0

SΦ(EΦ
ℓ

)
= − e−ℏT+

Φ,ℓ EΦ
ℓ , SΦ(T ) = −T, SΦ(FΦ

ℓ

)
= −FΦ

ℓ e+ℏT−
Φ,ℓ .

In a nutshell, the above analysis proves the following result:

Theorem 5.2. — There exists an isomomorphism of topological Hopf
algebras

fΦ
P : URΦ

PΦ,ℏ(g)
∼=
↪−↠

(
UR
P,ℏ(g)

)FΦ

given by Ei 7→ EΦ
i , T 7→ T and Fi 7→ FΦ

i for all i ∈ I, T ∈ h.
In particular, the class of all FoMpQUEAs of any fixed Cartan type

and of fixed rank is stable by toral twist deformations. Moreover, inside it
the subclass of all such FoMpQUEAs associated with straight, resp. small,
realizations is stable as well.

Similar, parallel statements hold true for the Borel FoMpQUEAs, namely
there exist isomorphisms fΦ

P,± : URΦ
PΦ,ℏ(b±)

∼=
↪↠
(
UR
P,ℏ(b±)

)FΦ given by for-
mulas as above. □

In fact, the previous result can be somehow reversed, as the following
shows: in particular, loosely speaking, we end up finding that every straight
small FoMpQUEA can be realized as a toral twist deformation of the “stan-
dard” FoMpQUEA by Drinfeld (cf. claim (c) in Theorem 5.3 here below).

Theorem 5.3. — With assumptions as above, let P and P ′ be two
matrices of Cartan type with the same associated Cartan matrix A.
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(a) Let R be a straight realization of P and let UR
P,ℏ(g) be the asso-

ciated FoMpQUEA. Then there exists a straight realization qR′ of
P ′ and a matrix Φ ∈ sot

(
kJℏK

)
such that for the associated twist

element FΦ as in (5.1) we have

U Ř′

P ′,ℏ(g) ∼=
(
UR
P,ℏ(g)

)FΦ
.

In a nutshell, if P ′
s = Ps then from any straight FoMpQUEA over

P we can obtain by toral twist deformation a straight FoMpQUEA
(of the same rank) over P ′.

Conversely, if R′ is any straight realization of P ′ and UR′

P ′,ℏ(g) is
the associated FoMpQUEA, then there exists a straight realization
R̂ of P and a matrix Φ ∈ sot

(
kJℏK

)
such that for the associated

twist element FΦ as in (5.1) we have

UR′

P ′,ℏ(g) ∼=
(
U R̂
P,ℏ(g)

)FΦ .

(b) LetR andR′ be straight small realizations of P and P ′ respectively,
with rk(R) = rk(R′) = t, and let UR

P,ℏ(g) and UR′

P ′,ℏ(g) be the
associated FoMpQUEAs. Then there exists a matrix Φ ∈ sot

(
kJℏK

)
such that for FΦ as in (5.1) we have

UR′

P ′,ℏ(g) ∼=
(
UR
P,ℏ(g)

)FΦ .

In other words, if P ′
s = Ps any straight small FoMpQUEA over

P ′ is isomorphic to a toral twist deformation of any straight small
FoMpQUEA over P of same rank.

(c) Every straight small FoMpQUEA is isomorphic to some toral twist
deformation of Drinfeld’s standard FoMpQUEA (over DA = Ps) of
the same rank.

(d) Similar, parallel statements hold true for the Borel FoMpQUEAs.

Proof.
(a). — By Theorem 5.2 it is enough to find Φ ∈ sot(k) such that P ′ =

PΦ, that is P ′ = P −AΦAT ; but this is guaranteed by Lemma 2.13, so we
are done.

(b). — Like for Theorem 3.13(b), this follows from claim (a), along
with the uniqueness of straight small realizations, by Proposition 2.4(b),
and Proposition 3.4.

(c). — This follows applying (b), with UR′

P ′,ℏ(g) the given straight small
FoMpQUEA and UR

P,ℏ(g) the “standard” FoMpQUEA UR
P,ℏ
(
gDP
)

over P :=
DA = P ′

s as in Drinfeld’s definition (up to “taking the double”), which is
straight and split minimal. □
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Remark 5.4. — Theorems 5.2 and 5.3 have the following interpretation.
Our FoMpQUEAs UR

P,ℏ(g) are quantum objects depending on the multipa-
rameter P ; but when we perform onto UR

P,ℏ(g) a deformation by twist as
in Section 5.1.1, the output UR,Φ

P,ℏ (g) :=
(
UR
P,ℏ(g)

)FΦ depends on two mul-
tiparameters, namely P and Φ. Thus all these UR,Φ

P,ℏ (g)’s form a seemingly
richer family of “twice-multiparametric” formal QUEAs. Nonetheless, The-
orem 5.2 above proves that this family actually coincides with the family
of all FoMpQUEAs, although the latter seems a priori smaller.

In short, Theorems 5.2 and 5.3 show the following. The dependence of
the Hopf structure of UR,Φ

P,ℏ (g) on the “double parameter” (P,Φ) is “split”
in the algebraic structure (ruled by P ) and in the coalgebraic structure
(ruled by Φ); now Theorems 5.2 and 5.3 enable us to “polarize” this depen-
dence so to codify it either entirely within the algebraic structure (while
the coalgebraic one is reduced to a “canonical form”), so that the single
multiparameter PΦ is enough to describe it, or entirely within the coalge-
braic structure (with the algebraic one being reduced to the “standard”
Drinfeld’s one), so that the multiparameter ΦP alone is enough.

Remark 5.5. — As the subclass of split realizations is not closed under
twist (cf. the end of Section 2.2.2), the subclass of all “split” FoMpQUEAs
is not closed too under twist deformation; this is a quantum analogue of
Remark 3.14(b).

5.2. Deformations of FoMpQUEAs by toral 2-cocycles

We consider now some 2-cocycle deformations (called “of toral type”
again) of the formal MpQUEAs UR

P,ℏ(g), and we prove that these are again
formal MpQUEAs.

5.2.1. Special 2-cocycles of UP,ℏ(h)

Fix again P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
of Cartan type with associated

Cartan matrix A, a realization R :=
(
h,Π,Π∨) of it and the (topological)

Hopf algebra UR
P,ℏ(g), as in Section 2 and Section 4, setting di := pii/2

for all i ∈ I and DP := diag
(
d1, . . . , dn

)
. We consider special 2-cocycles

of UR
P,ℏ(g), called “toral” as they are induced from the quantum torus. To

this end, like in Section 5.1.1, we fix in h a kJℏK-basis
{
Hg

}
g∈G , where G

is an index set with |G| = rk(h) = t.
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Like in Section 2.3.1, we fix an antisymmetric, kJℏK-bilinear map χ :
h × h → kJℏK, that corresponds to some X =

(
χgγ
)
g,γ∈G ∈ sot

(
kJℏK

)
via χgγ = χ(Hg, Hγ). We also consider the antisymmetric matrix X̊ :=(
χ̊ij = χ

(
T+
i , T

+
j

))
i,j∈I ∈ son(kJℏK). Any such map χ induces uniquely an

antisymmetric, kJℏK-bilinear map

χ̃U : UR
P,ℏ(h)× UR

P,ℏ(h) −→ kJℏK

as follows. By definition, UR
P,ℏ(h) is an ℏ-adically complete topologically

free Hopf algebra isomorphic to ŜkJℏK(h) := ̂⊕
n∈N S

n
kJℏK(h) – the ℏ-adic

completion of the symmetric algebra SkJℏK(h) =
⊕

n∈N S
n
kJℏK(h) – hence the

following makes sense:

Definition 5.6. — We define χ̃U as the unique kJℏK-linear (hence ℏ-
adically continuous) map UR

P,ℏ(h) ⊗ UR
P,ℏ(h) χ̃U−→kJℏK such that (with iden-

tifications as above)

χ̃U (z, 1) := ϵ(z) =: χ̃U (1, z) ∀z ∈ ŜkJℏK(h)

χ̃U (x, y) := χ(x, y) ∀x, y ∈ S1
kJℏK(h)

χ̃U (x, y) := 0 ∀x ∈ Srk(h), y ∈ Ssk(h) : r, s ⩾ 1, r + s > 2.

By construction, χ̃U is a normalized Hochschild 2-cocycle on UR
P,ℏ(h),

that is for all x, y, z ∈ UR
P,ℏ(h) we have

ϵ(x)χ̃U (y, z)− χ̃U (xy, z) + χ̃U (x, yz)− χ̃U (x, y)ϵ(z) = 0.

Now recall that, given two linear maps η, ϑ : UR
P,ℏ(h) ⊗ UR

P,ℏ(h) → kJℏK,
one may define the convolution product map η ∗ ϑ : UR

P,ℏ(h)⊗2 → kJℏK –
using on UR

P,ℏ(h)⊗2 ∼= ŜkJℏK(h)
⊗2 ∼= ŜkJℏK(h ⊕ h) the standard coalgebra

structure – by the formula

(η ∗ ϑ)(x⊗ y) := η(x(1), y(1))ϑ(x(2), y(2)) ∀x, y ∈ UR
P,ℏ(h).

Then by η∗m we denote the m-th power with respect to the convolution
product of any map η as above; in particular, we set η∗0 := ϵ⊗ ϵ.

The following result describes the powers of our map χ̃U :

Lemma 5.7. — For all H+, H− ∈ h and k, ℓ,m ∈ N+, we have

χ̃U
∗m(Hk

+, H
ℓ
−
)

=
{
δk,mδℓ,m

(
m!
)2
χ(H+, H−)m form ⩾ 1,

δk,0δℓ,0 form = 0.

Proof. — The proof follows by a direct computation. □
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Definition 5.8. — Keep notation as above. We define χU as the unique
kJℏK-linear map from UR

P,ℏ(h) ⊗kJℏK U
R
P,ℏ(h) to k((ℏ)) given by the exponen-

tiation of ℏ−12−1χ̃U , i.e.

χU := eℏ
−12−1χ̃U =

∑
m⩾0

ℏ−mχ̃U
∗m
/

2mm! .

Lemma 5.9. — The map χU is a well defined, normalized, k((ℏ))-valued
Hopf 2-cocycle for UR

P,ℏ(h), such that, for all H+, H− ∈ h, and setting
K± := eℏH± ,

χ±1
U (H+, H−) = ±ℏ−12−1χ(H+, H−), χU (K+,K−) = eℏ2−1χ(H+,H−) .

Proof. — The identities follow from Lemma 5.7, hence χU is well defined.
The other claims follow from the proof of [52, Theorem 4.1], see also [29,
Lemma 4.1]. □

5.2.2. Toral 2-cocycles of UR
P,ℏ(g)

The previous construction provides, starting from χ, a normalized Hopf
2-cocycle that will be denoted χU : UR

P,ℏ(h)× UR
P,ℏ(h)→ k((ℏ)).

We assume now that the map χ satisfies the additional requirement (2.10),
in other words we require that χ ∈ AltSkJℏK(h) – notation of Section 2.3.
The latter map canonically induces a kJℏK-bilinear map χ : h × h → kJℏK,
where h := h

/
s with s := SpankJℏK

(
{Si}i∈I

)
, given by

χ
(
T ′ + s, T ′′ + s

)
:= χ

(
T ′, T ′′) ∀T ′, T ′′ ∈ h.

Now, replaying the construction above but with h and χ replacing h and
χ, we can construct a normalized Hopf 2-cocycle χU : UR

P,ℏ
(
h
)
×UR

P,ℏ
(
h
)
−→

k((ℏ)); for the latter, the analogue of Lemma 5.9 holds true again. Moreover,
note that UR

P,ℏ
(
h
) ∼= ŜkJℏK

(
h
)
, and, thanks to (2.10), there exists a unique

Hopf algebra epimorphism π : UR
P,ℏ(g) ↠ UR

P,ℏ
(
h
)

given by π(Ei) := 0,
π(Fi) := 0 – for i ∈ I – and π(T ) := (T + s) ∈ h ⊆ UR

P,ℏ
(
h
)

– for T ∈ h.
Then we consider

σχ := χU ◦ (π × π) : UR
P,ℏ(g)× UR

P,ℏ(g) −↠ k((ℏ))

which, with a slight abuse of terminology, is automatically a normalized,
k((ℏ))-valued Hopf 2-cocycle on UR

P,ℏ(g).

Definition 5.10. — We shall call all normalized Hopf 2-cocycles σχ of
UR
P,ℏ(g) obtained, from all χ ∈ AltSkJℏK(h), via the above construction as

“of toral type”, or “toral 2-cocycles”; we denote by Z2
(
UR
P,ℏ(g)

)
the set of

all of them, which is actually independent of P , indeed.
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5.2.3. Formulas for the σχ-deformed product

Let a toral 2-cocycle σχ ∈ Z2
(
UR
P,ℏ(g)

)
as above be given. Following

Section 4.1.3, using σχ we introduce in UR
P,ℏ(g) a “deformed product”,

hereafter denoted by σ̇χ; then X(n)σχ = X σ̇χ · · · σ̇χX will denote the n-th
power of any X ∈ UR

P,ℏ(g) with respect to this deformed product.
Directly from definitions, sheer computation yields the following formu-

las, relating the deformed product with the old one (T ′, T ′′, T ∈ h, i, j ∈ I):

T ′
σ̇χT

′′ = T ′T ′′, Eiσ̇χFj = EiFj , Fj σ̇χEi = FjEi

T σ̇χEj = TEj + 2−1χ
(
T, T+

j

)
Ej , Ej σ̇χT = EjT + 2−1χ

(
T+
j , T

))
Ej

T σ̇χFj = TFj + 2−1χ
(
T, T−

j

)
Fj , Fj σ̇χT = FjT + 2−1χ

(
T−
j , T

)
Fj

E
(m)σχ

i =
m−1∏
ℓ=1

σχ

(
e+ℏℓT+

i , e+ℏT+
i

)
Emi = Emi

Emi σ̇χE
n
j = σχ

(
e+ℏmT+

i , e+ℏnT+
j

)
Emi E

n
j = e+ℏmn2−1χ̊ij Emi E

n
j

E
(m)σχ

i σ̇χEj σ̇χE
(n)σχ

k

=
(
m−1∏
ℓ=1

σχ

(
e+ℏℓT+

i , e+ℏT+
i

))(n−1∏
t=1

σχ

(
e+ℏTT+

k , e+ℏT+
k

))
· σχ

(
e+ℏmT+

i , e+ℏT+
j

)
σχ

(
e+ℏ(mT+

i
+T+

j
), e+ℏnT+

k

)
Emi EjE

n
k

F
(m)σχ

i =
m−1∏
ℓ=1

σ−1
χ

(
e−ℏℓT−

i , e−ℏT−
i

)
Fmi = Fmi

Fmi σ̇χF
n
j = σ−1

χ

(
e−ℏmT−

i , e−ℏnT−
j

)
Fmi F

n
j = e−ℏmn2−1χ̊ij Fmi F

n
j

F
(m)σχ

i σ̇χFj σ̇χF
(n)σχ

k

=
(
m−1∏
ℓ=1

σ−1
χ

(
e−ℏℓT−

i , e−ℏT−
i

))(n−1∏
t=1

σ−1
χ

(
e−ℏTT−

k , e−ℏT−
k

))
· σ−1

χ

(
e−ℏmT−

i , e−ℏT−
j

)
σ−1
χ

(
e−ℏ(mT−

i
+T−

j
), e−ℏnT−

k

)
Fmi FjF

n
k

F
(m)σχ

i σ̇χFj σ̇χF
(n)σχ

k

=
(
m−1∏
ℓ=1

σ−1
χ

(
e−ℏℓT−

i , e−ℏT−
i

))(n−1∏
t=1

σ−1
χ

(
e−ℏTT−

k , e−ℏT−
k

))
· σ−1

χ

(
e−ℏmT−

i , e−ℏT−
j

)
σ−1
χ

(
e−ℏ(mT−

i
+T−

j
), e−ℏnT−

k

)
Fmi FjF

n
k .
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It is also worth remarking that the identity T ′
σ̇χT

′′ =T ′T ′′ (for T ′, T ′′ ∈ h)
also implies that T (n)σχ = Tn (for T ∈ h and n ∈ N) – i.e., each “deformed”
power of any toral element coincides with the corresponding “undeformed”
power. It follows then that the exponential of any toral element with respect
to the deformed product σ̇χ is the same as with respect to the old one.

Remark 5.11. — Observe that the whole procedure of 2-cocycle deforma-
tion by σχ should apply to the scalar extension k((ℏ)) ⊗kJℏK U

R
P,ℏ(g), since

a priori the 2-cocycle σχ takes values in k((ℏ)) rather than in kJℏK. Nev-
ertheless, the formulas above show that UR

P,ℏ(g) is actually closed for the
deformed product “σ̇χ” provided by this procedure, hence the deformation
eventually “restricts” to UR

P,ℏ(g) itself, so that we eventually end up with
a well-defined 2-cocycle deformation

(
UR
P,ℏ(g)

)
σχ

.

A first, direct consequence of these formulas is the following:

Proposition 5.12. — With notations as above, the deformed algebra(
UR
P,ℏ(g)

)
σχ

is still generated by the elements Ei, Fi and T (with i ∈ I and
T ∈ h) of UR

P,ℏ(g).

5.2.4. Toral 2-cocycle deformations of UR
P,ℏ(g)

Our key result concerns 2-cocycle deformations by means of toral 2-
cocycles. In order to state it, we need some more notation, which we now
settle.

Let P :=
(
pij
)
i,j∈I ∈ Mn

(
kJℏK

)
be a multiparameter matrix of Car-

tan type with associated Cartan matrix A (cf. Definition 2.1) and fix a
realization R =

(
h,Π,Π∨) of P . Fix an antisymmetric kJℏK-bilinear map

χ : h × h → kJℏK enjoying (2.10) – that is, χ ∈ AltSkJℏK(h) – we asso-
ciate with it the matrix X̊ :=

(
χ̊ij = χ

(
T+
i , T

+
j

))
i,j∈I as above. Note that

+χ
(
–, T+

j

)
= −χ

(
–, T−

j

)
for all j ∈ I, as direct consequence of (2.10).

Basing on the above, like in Section 2.3 we define

P(χ) := P + X̊ =
(
p

(χ)
ij := pij + χ̊ij

)
i,j∈I

and

Π(χ) :=
{
α

(χ)
i := αi ± χ

(
–, T±

i

)}
i∈I
.

Then, still from Section 2.3 we know that P(χ) is a matrix of Cartan type,
the same of P indeed, and R(χ) =

(
h,Π(χ),Π∨) is a realization of it.
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We are now ready for our result on toral 2-cocycle deformations. Note in
particular that, though toral 2-cocycles have values in k((ℏ)), the deformed
multiplication is still well defined within our initial FoMpQUEA, which is
defined over kJℏK.

Theorem 5.13. — There exists an isomorphism of topological Hopf
algebras (

UR
P,ℏ(g)

)
σχ

∼= U
R(χ)
P(χ),ℏ(g)

which is the identity on generators. In short, every toral 2-cocycle deforma-
tion of a FoMpQUEA is another FoMpQUEA, whose multiparameter P(χ)
and realization R(χ) depend on the original P and R, as well as on χ, as
explained in Section 2.3.

Similar statements hold true for the Borel FoMpQUEAs and their defor-
mations by σχ, namely there exist isomorphisms(

UR
P,ℏ(b±)

)
σχ

∼= U
R(χ)
P(χ),ℏ(b±).

Proof. — We begin by noting the following key

Fact. — The generators of UR
P,ℏ(g), when thought of as elements of

the deformed algebra
(
UR
P,ℏ(g)

)
σχ

, obey the defining relations of the (same

name) generators of UR(χ)
P(χ),ℏ(g), with respect to the deformed product σ̇χ.

Indeed, most relations follow at once from the formulas in Section 5.2.3.
Namely, the identities T ′

σ̇χT
′′ = T ′T ′′ imply T ′

σ̇χT
′′ = T ′′

σ̇χT
′ – for all

T ′, T ′′ ∈ h. Also, from T σ̇χEj = TEj + 2−1χ
(
T, T+

j

)
Ej and Ej σ̇χT =

EjT + 2−1χ
(
T+
j , T

)
Ej – for all T ∈ h and j ∈ I – we get (since χ is

antisymmetric)

T σ̇χEj − Ej σ̇χT =
(
αj(T ) + 2−1(χ− χT )(T, T+

j

))
Ej = +α(χ)

j (T )Ej .

A similar, direct analysis also yields T σ̇χFj − Fj σ̇χT = −α(χ)
j (T )Fj .

The identities Eiσ̇χFj = EiFj and Fj σ̇χEi = FjEi in turn imply

Eiσ̇χFj − Fj σ̇χEi = EiFj − FjEi = δi,j
e+ℏT+

i − e−ℏT−
i

e+ℏpii/2− e−ℏpii/2 .

Eventually, since pii = p
(χ)
ii by definition, and the exponential of toral

elements with respect to σ̇χ is the same as with respect to the old product,
we conclude that

Eiσ̇χFj − Fj σ̇χEi = δi,j
e+ℏT+

i
σχ − e−ℏT−

i
σχ

e+ℏp(χ)
ii
/2− e−ℏp(χ)

ii
/2

where eXσχ
denotes the exponential of any X with respect to σ̇χ.
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What is less trivial is proving the quantum Serre relations for the de-
formed product; we do this for the relation involving the Ei’s, leaving the
relation involving the Fi’s as an exercise for the reader. To this end, set

q
(χ)
ij := eℏp

(χ)
ij = eℏ(pij+χ̊ij) for all i, j ∈ I.

As
(
P(χ)

)
s

= Ps = DA, we have q(χ)
ii = qii and q(χ)

i = e+ℏp(χ)
ii
/2 = qi for all

i ∈ I. Then, for all i ̸= j ∈ I we have to prove that
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

(
q

(χ)
ij

)+k/2(
q

(χ)
ji

)−k/2
E

(1−aij−k)σχ

i σ̇χEj σ̇χE
(k)σχ

i = 0.

To prove that, we analyze the factors in the summands separately.
Claim 1. — For all i ̸= j ∈ I, we have(

q
(χ)
ij

)+k/2(
q

(χ)
ji

)−k/2
= q

+k/2
ij q

−k/2
ji eℏkχ̊ij .

This follows by direct computation. Next claim instead is a consequence
of Section 5.2.3:

Claim 2. — Fix i ̸= j ∈ I and write m := 1− aij . Then

E
(m−k)σχ

i σ̇χEj σ̇χE
(k)σχ

i = σχ
(
Km−k
i ,Kj

)
σχ
(
Km−k
i Kj ,K

k
i

)
Em−k
i EjE

k
i .

Now we evaluate the value of the toral 2-cocycle using the exponentials.
Claim 3. — For all i, j ∈ I and m, k, ℓ ∈ N, we have
(a) σχ

(
Kℓ
i ,Kj

)
= eℏℓ2−1χ̊ij ,

(b) σχ
(
Km−k
i Kj ,K

k
i

)
= eℏk2−1χ̊ji ,

(c) σχ
(
Km−k
i ,Kj

)
σχ
(
Km−k
i Kj ,K

k
i

)
= eℏ(m−2k)2−1χ̊ij .

All assertions follow by computation using Lemma 5.9. Indeed, for (a)
we have

σχ
(
Kℓ
i ,Kj

)
= χU

(
Kℓ
i ,Kj

)
= eℏ2−1χ(ℓT+

i
,T+

j
) = eℏℓ2

−1χ̊ij .

For item (b), Lemma 5.9 yields

σχ
(
Km−k
i Kj ,K

k
i

)
= χU

(
Km−k
i Kj ,K

k
i

)
= χU

(
eℏ((m−k)T+

i
+T+

j
), eℏkT

+
i

)
= eℏ2−1χ((m−k)T+

i
+T+

j
,kT+

i
) = eℏk2−1χ̊ji.

Now, putting altogether (a) and (b) we eventually get (c), because

σχ
(
Km−k
i ,Kj

)
σχ
(
Km−k
i Kj ,K

k
i

)
= eℏ(m−k)2−1χ̊ij eℏk2−1χ̊ji = eℏ(m−2k)2−1χ̊ij.
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Finally, Claim 1, 2 and 3 altogether yield, for m := 1− aij ,

m∑
k=0

(−1)k
[
m

k

]
qi

(
q

(χ)
ij

)+k/2(
q

(χ)
ji

)−k/2
E

(m−k)σχ

i σ̇χEj σ̇χE
(k)σχ

i

=
m∑
k=0

(−1)k
[
m

k

]
qi

q
+k/2
ij q

−k/2
ji eℏkχ̊ij eℏ(m−2k)2−1χ̊ij Em−k

i EjE
k
i

= eℏm2−1χ̊ij

m∑
k=0

(−1)k
[
m

k

]
qi

q
+k/2
ij q

−k/2
ji Em−k

i EjE
k
i = 0

where the last equality follows from the quantum Serre relation.
Now, the Fact above implies that there exists a well-defined homomor-

phism of topological Hopf algebras ℓ : UR(χ)
P(χ),ℏ(g) →

(
UR
P,ℏ(g)

)
σχ

given on
generators by ℓ(Ei) := Ei, ℓ(Fi) := Fi, ℓ

(
T ) := T (i ∈ I, T ∈ h) – in short,

it is the identity on generators. Moreover, thanks to Proposition 5.12 this is
in fact an epimorphism. As an application of this result, there exists also an
epimorphism of topological Hopf algebras ℓ′ : UR

P,ℏ(g) →
(
U

R(χ)
P(χ),ℏ(g)

)
σ−χ

which again is the identity on generators – just replace χ with −χ and P

with P(χ).
Mimicking what we did for UR

P,ℏ(g), we can construct, out of χ, a nor-
malized Hopf 2-cocycle σ̇χ for

(
U

R(χ)
P(χ),ℏ(g)

)
σ−χ

; then we also have a similar

2-cocycle σ′
χ on UR

P,ℏ(g) defined as the pull-back of σ̇χ via ℓ′, and a unique,
induced Hopf algebra homomorphism

ℓ′
σ̇χ

:
(
UR
P,ℏ(g)

)
σ′

χ

−→
((
U

R(χ)
P(χ),ℏ(g)

)
σ−χ

)
σ̇χ

between deformed Hopf algebras, which is again the identity on generators.
Now, tracking the whole construction one sees at once that σ′

χ = σχ, so
that(
UR
P,ℏ(g)

)
σ′

χ

=
(
UR
P,ℏ(g)

)
σχ
, and

((
U

R(χ)
P(χ),ℏ(g)

)
σ−χ

)
σ̇χ

= U
R(χ)
P(χ),ℏ(g).

But then composition gives two homomorphisms

ℓ′
σ̇χ
◦ ℓ : UR(χ)

P(χ),ℏ(g) −→
(
UR
P,ℏ(g)

)
σχ
−→ U

R(χ)
P(χ),ℏ(g)

ℓ ◦ ℓ′
σ̇χ

:
(
UR
P,ℏ(g)

)
σχ
−→ U

R(χ)
P(χ),ℏ(g) −→

(
UR
P,ℏ(g)

)
σχ

which (both) are the identity on generators: hence we get ℓ′
σ̇χ
◦ ℓ = id and

ℓ ◦ ℓ′
σ̇χ

= id, thus in particular ℓ is an isomorphism. □
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Remark 5.14. — With notation of Theorem 5.13, we have P(χ) − P = Λ

for some antisymmetric matrix Λ ∈ son
(
kJℏK

)
. Conversely, under mild

assumptions on P , this result can be “reversed” as it is shown below.

Theorem 5.15. — Let P, P ′ ∈ Mn

(
kJℏK

)
be two matrices of Cartan

type with the same associated Cartan matrix A.

(a) Let R be a split realization of P and UR
P,ℏ(g) be the associated

FoMpQUEA. Then there exists a split realization qR′ of P ′, a matrix
X̊ =

(
χ̊ij
)
i,j∈I ∈ son

(
kJℏK

)
and a toral 2-cocycle σχ such that

UR′

P ′,ℏ(g) ∼=
(
UR
P,ℏ(g)

)
σχ
.

In a nutshell, if P ′
s = Ps then from any split FoMpQUEA over P

we can obtain a split FoMpQUEA (of the same rank) over P ′ by a
toral 2-cocycle deformation.

(b) Let R be a split minimal realization of P . Then the FoMpQUEA
UR
P,ℏ(g) is isomorphic to a toral 2-cocycle deformation of the Drin-

feld’s standard double QUEA, that is there exists some bilinear map
χ ∈ AltSkJℏK(h) such that

UR
P,ℏ(g) ∼=

(
UDA,ℏ(g)

)
σχ
.

(c) Similar, parallel statements hold true for the Borel FoMpQUEAs.

Proof.

(a). — By Proposition 2.20(a), there exists χ ∈ AltSkJℏK(h) such that
P ′ = P(χ) and the triple – constructed as in Section 2.3 – R′ := R(χ) =(
h,Π(χ),Π∨) is a split realization of P ′ =P(χ). Then

UR′

P ′,ℏ(g)∼=
(
UR
P,ℏ(g)

)
σχ

by Theorem 5.13.

(b). — Drinfeld’s UDA,ℏ(g) is – in our language – nothing but the
FoMpQUEA built upon a split minimal realization Rst =

(
h,Πst,Π∨

st

)
of DA, for which we write Π∨

st =
{
T±
i

}
i∈I and Πst =

{
α

(st)
i

}
i∈I . From

Proposition 2.20(b) we have a suitable form χ ∈ AltSkJℏK(h) such that
the realization

(
Rst
)

(χ) obtained as toral 2-cocycle deformation of Rst
through χ coincides with R. Then, by Theorem 5.13 we get eventually
UR
P,ℏ(g) ∼=

(
UDA,ℏ(gD)

)
σχ

as desired. □
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6. Specialization and quantization: FoMpQUEAs
vs. MpLbA’s

This section dwells upon the interplay of specialization – applied to quan-
tum objects as our FoMpQUEAs – and, conversely, of quantization – per-
formed onto such semiclassical objects as our MpLbA’s.

First of all, we shall see that the specialization of a FoMpQUEA yields
a suitable MpLbA; conversely, any MpLbA has at least one quantization,
in the form of a well defined FoMpQUEA. Then, we shall investigate the
interaction between the process of specialization – at ℏ = 0 – of any FoM-
pQUEA and the process of deformation – either by (toral) twist or by
(toral) 2-cocycle – of the same FoMpQUEA or of the MpLbA which is its
semiclassical limit. In particular we will find out that, in a suitable, natural
sense, the two processes commute with each other.

6.1. Deformation vs. specialization for FoMpQUEAs and
MpLbA’s

Recall that a deformation algebra is a topological, unital, associative
kJℏK-algebra A which is topologically free as a kJℏK-module. Conversely, a
deformation of a (unital, associative) k-algebra A0 is by definition a defor-
mation algebra A such that A0 ∼= A

/
ℏA. The same criteria apply to the

notion of “deformation Hopf algebra”, just replacing “topological, unital,
associative kJℏK-algebra” with “topological Hopf kJℏK-algebra”. Following
Drinfeld, we say that a deformation Hopf algebra H is a quantized univer-
sal enveloping algebra (or QUEA in short) if H

/
ℏH ∼= U(g) for some Lie

algebra g. In particular, the Lie bracket in g comes from the multiplication
in U(g) ∼= H

/
ℏH. Moreover, this g inherits a Lie coalgebra structure from

the QUEA, making it into a Lie bialgebra, thanks to the following result:

Theorem 6.1 (cf. [11, Proposition 6.2.7], [21, Theorem 9.1]). — Let H
be a quantized universal enveloping algebra with H

/
ℏH ∼= U(g). Then the

Lie algebra g is naturally equipped with a Lie bialgebra structure, whose
Lie cobracket is defined by

(6.1) δ(x) := ∆(x)−∆op(x)
ℏ

(
mod ℏ

)
where x ∈ H is any lifting of x ∈ g ⊆ U(g) ∼= H

/
ℏH. □

Definition 6.2 ([11, 21]). — The semiclassical limit of a quantized uni-
versal enveloping algebra H is the Lie bialgebra

(
g, [−,−], δ

)
where g is the
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Lie algebra s. t. H
/
ℏH ∼= U(g) and δ is defined as above. Conversely, we

say that H is a quantization of the Lie bialgebra
(
g, [−,−], δ

)
.

6.1.1. Formal MpQUEAs vs. MpLbA’s

In this section we finally compare our FoMpQUEAs with our MpLbA’s.
Mainly, we show that the FoMpQUEAs are indeed quantized universal
enveloping algebras; in particular, we prove that their specialization at
ℏ = 0 is a universal enveloping algebra of a MpLbA as those in Section 3.
Thus the specialization of each FoMpQUEA is a MpLbA; conversely, any
FoMpQUEA is the quantization of some MpLbA. The other way round is
true as well: every MpLbA admits a FoMpQUEA as its quantization.

Second, we describe the interplay between the process of specializing/
quantizing (switching between FoMpQUEAs and MpLbA’s) and the pro-
cess of deforming within either family of FoMpQUEAs or MpLbA’s, sepa-
rately – by twist or by 2-cocycle.

We fix a matrix P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
of Cartan type with asso-

ciated Cartan matrix A, and a realization R :=
(
h,Π,Π∨) of P . Then we

have the associated (topological) Hopf algebra UR
P,ℏ(g), as in Definition 2.1

and Section 4. Similarly, we also have the MpLbA gR
P

introduced in Sec-
tion 3.2.3, where we use (loose) obvious notation such as R := R(modℏ)
and P := P (modℏ).

Our first result points out that FoMpQUEAs and MpLbA’s are in bijec-
tion through the specialization/quantization process, as one might expect:

Theorem 6.3. — UR
P,ℏ(g) is a quantized universal enveloping algebra

in the sense of Section 6.1, whose semiclassical limit is U
(
gR
P

)
.

In short, for each pair (P,R) as above – R being a realization of P – and
for the FoMpQUEA UR

P,ℏ(g) and the MpLbA gR
P

associated with (P,R),
we have: gR

P
is the specialization of UR

P,ℏ(g), or – equivalently – UR
P,ℏ(g) is

a quantization of gR
P

.

Proof. — First of all, we note that H := UR
P,ℏ(g) is topologically free.

We prove that by reducing the problem to the case of Drinfeld’s standard
double QUEA. Namely, we begin assuming that UR

P,ℏ(g) is split minimal,
i.e. such is the realization R. Then by Theorem 5.15(c) we have an isomor-
phism UR

P,ℏ(g) ∼=
(
UDA,ℏ(g)

)
σχ

as topological Hopf kJℏK-algebras, where(
UDA,ℏ(g)

)
σχ

is a suitable 2-cocycle deformation of Drinfeld’s standard
double QUEA UDA,ℏ(g). As the latter is known to be a topologically free
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kJℏK-module, and 2-cocycle deformation does not affect the kJℏK-module
structure, we conclude that UR

P,ℏ(g) is topologically free as well.
Now assume that UR

P,ℏ(g) is just split (possibly not minimal): then,
by definition, Π∨ :=

{
T+
i , T

−
i

}
i∈I can be completed to a kJℏK-basis of

h, hence h′ := SpankJℏK
(
Π∨) has a direct sum complement h′′ so that

h = h′ ⊕ h′′; therefore Uℏ(h) = Uℏ
(
h′) ⊗̂ Uℏ

(
h′′) as algebras. Further-

more, the realization R clearly “restricts” to another realization R′ of P
whose Cartan (sub)algebra is h′, which in addition is split minimal: then
as Uℏ(h) = Uℏ

(
h′) ⊗̂ Uℏ

(
h′′) one also gets easily

(6.2) UR
P,ℏ(g) ∼= UR′

P,ℏ(g) ⊗̂ Uℏ
(
h′′) as kJℏK-modules

(by construction). Indeed, by definition we have a natural monomorphism
of realizations R′ ↪→ R induced by the monomorphism h′ ↪→ h of Cartan
(sub)algebras; by Propositions 4.5 and 4.15, this induces a monomorphism
UR′

P,ℏ(g) ↪→ UR
P,ℏ(g) between FoMpQUEAs – the image of the latter is the

(complete) kJℏK-subalgebra generated by the Ei’s, the T±
i ’s and the Fi’s

(i ∈ I). Now, applying twice Theorem 4.11 – yielding triangular decompo-
sitions for UR

P,ℏ(g) and UR′

P,ℏ(g) – we get

UR
P,ℏ(g) ∼= UR

P,ℏ(n−) ⊗̂ Uℏ(h) ⊗̂ UR
P,ℏ(n+)

∼= UR
P,ℏ(n−) ⊗̂ Uℏ

(
h′) ⊗̂ Uℏ

(
h′′) ⊗̂ UR

P,ℏ(n+)
∼= UR

P,ℏ(n−) ⊗̂ Uℏ
(
h′) ⊗̂ UR

P,ℏ(n+) ⊗̂ Uℏ
(
h′′) ∼= UR′

P,ℏ(g) ⊗̂ Uℏ
(
h′′)

where we applied also Uℏ
(
h′′) ⊗̂ UR

P,ℏ(n+) ∼= UR
P,ℏ(n+) ⊗̂ Uℏ

(
h′′), which is

clear, and Uℏ(h) = Uℏ
(
h′) ⊗̂ Uℏ

(
h′′),which proves our claim.

Therefore, as UR′

P,ℏ(g) is topologically free by the previous analysis (as
R′ is split minimal) and Uℏ

(
h′′) is also topologically free by construction,

from (6.2) we deduce the same for UR
P,ℏ(g) as well.

Finally, let’s cope with the general case. By Lemma 2.7 there exists an
epimorphism π : Ṙ↠ R, where Ṙ :=

(
ḣ, Π̇, Π̇∨) is a split realization of P :

by Proposition 4.15, this induces an epimorphism of Hopf algebras (though,

for us, it is enough to be one of algebras, indeed) U Ṙ
P,ℏ(g)

Uπ

−↠ UR
P,ℏ(g)

whose kernel is generated by Uℏ(k)+ with k := Ker(π), where π : ḣ ↠ h is
the epimorphism of Cartan (sub)algebras associated with π. As h is free of
finite rank, we have ḣ = k⊕h′ ∼= k⊕h for some free submodule h′ ∼= h inside
ḣ; therefore Uℏ

(
ḣ
)

= Uℏ(k)⊗̂Uℏ(h) ∼= Uℏ(k)⊗Uℏ(h) as algebras, whence, as
in (6.2), one gets U Ṙ

P,ℏ(g) ∼= Uℏ(k)⊗̂UR
P,ℏ(g) as kJℏK-modules. As U Ṙ

P,ℏ(g) is
topologically free as seen before and Uℏ(k) is too, we deduce the same for
UR
P,ℏ(g) too.
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Second, we must prove that UR
P,ℏ(g)

/
ℏUR

P,ℏ(g), as a co-Poisson Hopf al-
gebra, is isomorphic to U

(
gR
P

)
. Indeed, from the presentation of UR

P,ℏ(g) we
get that UR

P,ℏ(g)
/
ℏUR

P,ℏ(g) is generated by the cosets (modulo ℏUR
P,ℏ(g))

of the Fi’s, T ’s and Ei’s (i ∈ I, T ∈ h); moreover, these cosets X := X

mod ℏUR
P,ℏ(g) obey all relations induced modulo ℏ by the defining relations

among the original generators X of UR
P,ℏ(g). On the other hand, by con-

struction the Lie bialgebra gR
P

is endowed with a built-in presentation (as
a Lie algebra) by generators – the Fi’s, T ’s and Ei’s – and relations, and
explicit formulas for the value of the Lie cobracket δ on the given gener-
ators. From this, a presentation of U

(
gR
P

)
is obtained in the obvious way,

where the generators are again the Fi’s, T ’s and Ei’s as before, as well as
explicit formulas for the value of the Poisson cobracket δ on each one of
those generators.

Comparing, the presentation of U
(
gR
P

)
with that of UR

P,ℏ(g)
/
ℏUR

P,ℏ(g)
we find that all the given relations among generators of the latter algebra
do correspond to identical relations among the corresponding generators in
the former: namely, mapping X to X – for all X ∈

{
Ei, Fi | i ∈ I

}
∪ h –

turns every relation among the X’s into a same-look relation among the
X’s. This implies that a well-defined epimorphism of Hopf algebras

(6.3)
ϕ : U

(
gR
P

)
−↠ UR

P,ℏ(g)/ℏUR
P,ℏ(g)

Ei 7−→ Ei, T 7−→ T , Fi 7−→ Fi

(i ∈ I, T ∈ h) exists; moreover, comparing the formulas on both sides for
the co-Poisson bracket on generators we see that this is also a co-Poisson
Hopf epimorphism.

On the other hand, we can make U
(
gR
P

)
into a kJℏK-algebra by scalar

restriction – via kJℏK ↠ kJℏK
/
ℏkJℏK ∼= k. Then the same remark about

relations implies that there exists a well-defined kJℏK-algebra epimorphism

ψ′ : UR
P,ℏ(g) −↠ U

(
gR
P

)
, Ei 7−→ Ei, T 7−→ T, Fi 7−→ Fi

(i ∈ I, T ∈ h) with Ker
(
ψ′) ⊇ ℏUR

P,ℏ(g); so a k-algebra epimorphism

(6.4)
ψ : UR

P,ℏ(g)
/
ℏUR

P,ℏ(g) −↠ U
(
gR
P

)
Ei 7−→ Ei, T 7−→ T, Fi 7−→ Fi

(i ∈ I, T ∈ h) is induced too. Direct comparison between (6.3) and (6.4)
shows that ϕ and ψ are inverse to each other, hence ψ is a Hopf morphism
too and we are done. □
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6.2. Blending specialization and deformation

In this section we compare the process of deformation at the quantum
level or at the semiclassical level. The outcome, in a nutshell, is as follows:
deformation (by twist or by 2-cocycle) commutes with specialization.

6.2.1. Blending specialization and twist deformation

Once more, we fix again P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
of Cartan type, a

realization R :=
(
h,Π,Π∨) of it, and the associated FoMpQUEA UR

P,ℏ(g)
and MpLbA gR

P
. As h is a free kJℏK-module of finite rank t, we fix a kJℏK-

basis
{
Hg

}
g∈G , with |G| = rk(h) = t.

Pick a matrix Ψ =
(
ψgk
)
g,k∈G ∈ sot

(
kJℏK

)
. Out of it, we define

jΨ :=
t∑

g,k=1
ψgkHg ⊗Hk ∈ h⊗ h as in (3.7)

FΨ := exp

ℏ2−1
t∑

g,k=1
ψgkHg ⊗Hk

 ∈ UR
P,ℏ(g) ⊗̂ UR

P,ℏ(g) as in (5.1)

with jΨ being a (toral) twist for the Lie bialgebra gR
P

and FΨ is a (toral)
twist for the Hopf algebra UR

P,ℏ(g). Then we consider the deformation(
gR
P

)jΨ
of gR

P
by the (Lie) twist jΨ and the deformation

(
UR
P,ℏ(g)

)FΨ of
UR
P,ℏ(g) by the (Hopf) twist FΨ.
Again out of Ψ, we define also the matrix PΨ and its realization RΨ :=(

h,Π,Π∨
Ψ
)
, as in Proposition 2.10. Then the FoMpQUEA URΨ

PΨ,ℏ(g) and the
MpLbA gRΨ

PΨ
both exist, again linked with each other by a quantization/

specialization relationship.
We can now state our result, which in particular claims (roughly speak-

ing) that “deformation by twist commutes with specialization”.

Theorem 6.4. — With assumptions as above,
(
UR
P,ℏ(g)

)FΨ is a quan-

tized universal enveloping algebra, whose semiclassical limit is U
((
gR
P

)jΨ̄).
More precisely, we have

(
UR
P,ℏ(g)

)FΨ ∼= URΨ
PΨ,ℏ(g) and

(
gR
P

)jΨ̄ ∼= gRΨ
PΨ

.

Proof. — The claim follows, as direct application, from the three iso-
morphisms

(
UR
P,ℏ(g)

)FΨ
5.2∼= URΨ

PΨ,ℏ(g), URΨ
PΨ,ℏ(g)

/
ℏURΨ

PΨ,ℏ(g)
6.3∼= Uℏ

(
gRΨ
PΨ

)
and

gRΨ
PΨ

3.12∼=
(
gR
P

)jΨ̄ which respectively come from Theorem 5.2, Theorem 6.3
and Theorem 3.12. □
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6.2.2. Blending specialization and 2-cocycle deformation

Now we analyze what happens when combining deformations by 2-cocycle,
for both FoMpQUEAs and MpLbA’s, with the specialization process (from
the former to the latter ones).

We start with P :=
(
pi,j
)
i,j∈I ∈ Mn

(
kJℏK

)
of Cartan type, a realiza-

tion R :=
(
h,Π,Π∨) of P , and a fixed kJℏK-basis

{
Hg

}
g∈G of h, with

|G| = rk(h) = t. Then we have also UR
P,ℏ(g) and gR

P
, interlocked via quan-

tization/specialization.
Like in Section 5.2.1, let χ : h × h −→ kJℏK be an antisymmetric kJℏK-

bilinear map which obeys (3.8). Taking everything modulo ℏ, this χ defines
a similar antisymmetric, k-bilinear map γ :=

(
χ mod ℏ

)
: h0 × h0 → k,

where h0 := h
/
ℏh = h, which obeys (3.8) again, up to replacing “χ” with

“γ”. Following Section 5.2.2, we construct out of χ a k((ℏ))-valued toral 2-
cocycle σχ : UR

P,ℏ(g)⊗UR
P,ℏ(g) −→ k((ℏ)), and then out of this the 2-cocycle

deformed Hopf algebra
(
UR
P,ℏ(g)

)
σχ

. Similarly, out of γ we construct, as in
Section 3.4 (but replacing “χ” with “γ”) a toral 2-cocycle γg for the Lie
bialgebra gR

P
, and out of it the 2-cocycle deformed Lie bialgebra

(
gR
P

)
γg

.
Still out of χ, we define the matrix P(χ) and its realization R(χ) :=(

h,Π(χ),Π∨), as in Proposition 2.17; similarly, out of γ we get the ma-
trix P(γ) and its realization R(γ): then by construction P(γ) = P (χ) and

R(γ) = R(χ). Attached to these we have U
R(χ)
P(χ),ℏ(g) and g

R(γ)
P(γ)

= g
R(χ)

P (χ)
,

again connected via quantization/specialization.
Next result claims that, roughly speaking, “deformation by 2-cocycle

commutes with specialization”.

Theorem 6.5. — With assumptions as above,
(
UR
P,ℏ(g)

)
σχ

is a quan-
tized universal enveloping algebra, with semiclassical limit U

(
(gR
P )γg

)
.

Proof. — The claim follows, as direct application, from the isomorphisms(
UR
P,ℏ(g)

)
σχ

5.13∼= U
R(χ)
P(χ),ℏ(g),

U
R(χ)
P(χ),ℏ(g)

/
ℏUR(χ)

P(χ),ℏ(g)
6.3∼= Uℏ

(
g

R(γ)
P(γ)

)
and

g
R(γ)
P(γ)

3.17∼= (gR
P )γg

which respectively come from Theorem 5.13, Theorem 6.3 and Theo-
rem 3.17. □
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6.3. Final overview

In this paper we studied multiparametric versions of formal quantum
universal enveloping algebras and their semiclassical limits. As these are
presented by generators and relations, their very definition highlights the
relation between the multiparameters and the action of a fixed commutative
subalgebra: like for Kac–Moody algebras, this is encoded in the notion
of realization of a multiparameter matrix P related to a symmetrizable
Cartan matrix. This tool allows us to relate the quantum objects with the
semiclassical limit, and the multiparameter objects with the standard ones:
the latter is done via deformation(s) and an explicit change of generators.

In conclusion, loosely speaking, one may say that:
(a) multiparameters are encoded in realizations;
(b) FoMpQUEAs are quantizations of MpLbAs;
(c) multiparameter objects are given by deformation of either the al-

gebra or the coalgebra structure (both options being available) of
standard objects.

Finally, we provide a “pictorial sketch” of the global picture. What we
have in one single glance is summed up in the following diagram:

URΨ
PΨ,ℏ(g) ∼=

(
UR
P,ℏ(g)

)FΨ oo Theorem 6.3 // U
(
gRΨ
PΨ

)
∼= U

((
gR
P

)jΨ̄
)

UR
P,ℏ(g)
��

Theorem 5.3

OO

oo Theorem 6.3 //
OO

Theorem 5.15

��

U
(
gR
P

)��
Theorem 3.13

OO

OO

Theorem 3.17

��(
UR
P,ℏ(g)

)
σχ

∼= U
R(χ)
P(χ),ℏ(g) oo Theorem 6.3 // U

((
gR
P

)
χ

)
∼= U

(
g

R(χ)

P (χ)

)
Note that in this diagram each horizontal arrow (with dotted shaft)

denotes a “quantization/specialization (rightwards/leftwards) relationship”
– which involves the “continuous parameter” ℏ – whereas each vertical
arrow (having a waving shaft) denotes a relationship “via deformation”
– which involves “discrete parameters”.
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