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CRYSTALLINE REPRESENTATIONS AND WACH
MODULES IN THE RELATIVE CASE

by ABHINANDAN

ABSTRACT. — We study the notion of Wach modules in the relative setting, gen-
eralizing the arithmetic case. Over an unramified base, for a p-adic representation
admitting such structure, we examine the relationship between its relative Wach
module and filtered (p, 9)-module. Moreover, we show that such a representation is
crystalline (in the sense of Faltings-Brinon), and one can recover its filtered (¢, 9)-
module from the relative Wach module. Conversely, for low Hodge-Tate weights
[0, p — 2], we construct relative Wach modules from free relative Fontaine-Laffaille
modules (in the sense of Faltings).

RiESUME. — Nous étudions la notion de module de Wach dans le cas relatif en
généralisant le cas arithmétique. Sur une base non-ramifiée, pour une représenta-
tion p-adique admettant une telle structure, nous examinons la relation entre son
module de Wach relatif et son (¢, 8)-module filtré. De plus, nous montrons qu’une
telle représentation est cristalline (au sens de Faltings—Brinon) et que 'on récu-
pére son (p, d)-module filtré & partir du module de Wach relatif. Réciproquement,
pour les poids faibles de Hodge—Tate [0, p — 2], nous construisons des modules de
Wach relatifs & partir de modules libres de Fontaine-Laffaille relatifs (au sens de
Faltings).

1. Introduction

The theory of Wach modules for p-adic crystalline representations of the
absolute Galois group of a finite unramified extension of Q, was intro-
duced in the paper of Fontaine [21]. This notion was further developed by
Wach [37, 38] and Berger [7]. Over the years, this theory has found many
applications, for example, to the Iwasawa theory of crystalline representa-
tions in [5, 6], and in the study of the p-adic local Langlands program [8].
Wach modules were also among one of the motivations for Scholze’s idea of
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380 ABHINANDAN

g-deformations [34], which in turn paved the way for the theory of prisms
and prismatic cohomology of Bhatt and Scholze developed in [11].

Our goal in this article is to upgrade the notion of Wach modules to
the relative case by which we mean certain étale algebras over a formal
torus (see Section 1.4 for precise setup). But before examining the rela-
tive case, let us recall the relation between Wach modules and crystalline
representations in the arithmetic case.

1.1. The arithmetic case

Let p be a fixed prime number and let x denote a finite field of char-
acteristic p; set Op = W(k) to be the ring of p-typical Witt vectors with
coefficients in x and F' = Fr (OF). Let F denote a fixed algebraic closure
of F, C, :=F the p-adic completion, and G = Gal(F/F) the absolute
Galois group of F'. Further, let Foo = J,, F'(ptpn) with I'p := Gal(F /F)
and Hp = Gal(F/F,,). Finally, let (C; denote the tilt of C,,.

1.1.1. (p,I'p)-modules

Using a certain period ring A C W((C}b,) stable under the Frobenius
on Witt vectors and the Gp-action (see Section 3.1 for precise defini-
tion), Fontaine functorially attached to any Z,-representation T' of Gp
(i.e. finitely generated Z,-modules equipped with a linear and continuous
Gp-action), the module D(T) = (A ®z, T)"* over the two dimensional
local ring Ar = Af#. The module D(T) is equipped with a (induced
from A) Frobenius-semilinear operator ¢ such that the image of ¢ gener-
ates D(T), i.e. D(T) is étale. Moreover, D(T) is equipped with a contin-
uous and semilinear action of I'r and if T is free the A p-rank of D(T)
equals the Z,-rank of T. In [21] Fontaine estalished an equivalence of cat-
egories between Z,-representations of Gp and étale (¢, I'r)-modules over
A . Furthermore, this construction naturally extends to p-adic represen-
tations of G r. Namely, using the period ring B = A [%] , Fontaine functori-
ally attached to any p-adic representation V of G an étale (¢, I'r)-module
D(V) = (B®g, V)" over B = BH¥ (i.e. there exists a Z,-lattice T C V
such that D(T) is an étale (¢, ' r)-module over A ). Moreover, he showed
that this induces an equivalence between p-adic representations of Gg and
étale (p,T'F)-modules over Bp.

ANNALES DE L’INSTITUT FOURIER



CRYSTALLINE REPRESENTATIONS AND WACH MODULES 381

1.1.2. Crystalline representations of G

Using another period ring B,is also equipped with a Frobenius and conti-
nuous Gg-action (see Section 2.2 for precise definition), Fontaine functorially
attached to any p-adic representation V of G an F-vector space D,i5(V) =
(Beris®q, V)&r . The F-vector space D.is(V) is a filtered ¢-module, i.e. it is
equipped with a (induced from B,,;s) Frobenius-semilinear operator ¢ and
a filtration. In case dimp D¢,is(V) = dimg, V, such a representation is said
to be crystalline (the terminology crystalline comes from the fact that for a
smooth proper scheme X/Op and ¢ € N the p-adic étale cohomology group
of the generic fiber V; = Héft(XF, Qp) is crystalline as a G p-representation
ris (XH/F) is
naturally isomorphic to D,s(V;)). Restricting the functor Dg,is to the sub-
category of crystalline representations, in [20] Fontaine observed that the

and the crystalline cohomology group of the special fiber H!

associated filtered p-modules are weakly admissible (a property relating
the endomorphism ¢ and filtration on Dgs(V) in a non-trivial manner).
In fact, in [16] Colmez and Fontaine showed that crystalline representations
of G are equivalent to weakly admissible filtered @-modules.

1.1.3. Arithmetic Wach modules

From the discussion above, it is a natural question to ask: Does there
exist some direct relation between the étale (¢, I')-module of a crystalline
representation and its associated weakly admissible filtered ¢-module? For
a fixed representation, this question could be rephrased in terms of compar-
ing certain elements of the period rings B and B.,;s. However, the rings B
and Bg,js are not comparable. So to answer this question, Fontaine consid-
ered a smaller period ring BT C B stable under Frobenius and G g-action
and such that BT »— B, stable under Frobenius and G g-action. Using
BT he defined: a p-adic representation V of G is said to be of finite height
if the associated (¢, 'r)-module D(V') admits a (¢, 'p)-stable lattice over
the subring B} = (BT)Hr C Bp (see Section 4.1 for precise definitions).

In [21] Fontaine conjectured that for a crystalline representation V' of
Gr there exist lattices inside D(V') over which the action of I'r admits a
simpler form. More precisely, finite height and crystalline representations
of G are related as follows:

THEOREM 1.1 (Wach [37], Colmez [15], Berger [7]). — Let V' be a p-adic
representation of Gg. Then V is crystalline if and only if it is of finite
height and there exists r € Z and a free Bj.-submodule N C D(V) of rank
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382 ABHINANDAN

= dimg, V, stable under the action of I'r and such that I'r acts trivially
over (N/wN)(—r).

Here (—r) denotes the Tate twist. Note that in the situation of Theo-
rem 1.1, the module N is not unique. A functorial construction was given
by Berger in [7], i.e. to any p-adic crystalline representation V' of G he
attached a canonical B}-submodule N(V) C D(V) which he called the
Wach module of V. Moreover, Berger established an equivalence of cate-
gories between crystalline representations of Gp and Wach modules over
Bf. Furthermore, Berger obtained an integral version of his result by
considering the period ring AT = A N BT C B stable under Frobenius
and Gp-action. He showed that for a crystalline representation V' of G,
there exists a bijection between G p-stable Z,-lattices ' C V' and integral
Wach modules N(T') € N(V) where N(T) is defined over the integral sub-
ring AL = (A+)Hr. Finally, given N(V) one can canonically recover the
other linear algebraic object attached to V, i.e. Deys(V) (see [7, Proposi-
tions I1.2.1 & II1.4.4]).

1.2. The relative case

The motivation for defining Wach modules in the relative case and explor-
ing its relation with OD¢i5(V') (see Section 2 for notations) comes from the
hope of computing Galois cohomology of p-adic representations using syn-
tomic complexes with coefficients in OD,,i5(V'). Using syntomic complexes
and techniques from the theory of (¢, I')-modules, this was done for the
trivial representation by Colmez and Niziol [17]. A generalization of these
complexes to non-trivial coefficients can be found in [2] and [1, Chapter 5].

In this article, we are interested in the p-adic Hodge theory of an étale
algebra over a formal torus defined over Op. More precisely, let d € N and
X = (X1, Xo,...,Xq) be some indeterminates, Op{X, X!} the p-adic
completion of a d-dimensional torus over O and let R denote the p-adic
completion of an étale algebra over Or{X, X 1} with non-empty and geo-
metrically integral special fiber. Next, let G denote the étale fundamental
group of R[ﬂ and I'p the Galois group of the cyclotomic tower over R
and Hr = Ker (Gr — I'r) (see Section 3.1 for precise definitions). In the
relative setting, on one hand Brinon has developed the theory of crystalline
representations of G [14], while on the other hand Andreatta, Brinon and
Tovita have developed the theory of (¢, I'g)-modules in [3, 4].

Remark 1.2. — Note that in Theorem 1.1 it is important to restrict to an
unramified extension F/Q,. For ramified extensions, such a statement does
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not hold in general. Therefore, in the relative setting we consider an ana-
logue of “unramified extension of Q,” (indeed, by removing the geometric
coordinates one obtains R = Op).

1.2.1. (p,T'r)-modules

Analogous to the arithmetic case, we have relative period rings A C
B D> BT and AT = ANBT C B (see Section 3.1 for precise definition)
equipped with Frobenius and a continuous action of Gg. Let V' be a p-adic
representation of G, then one can functorially attach to V' a projective
and étale (¢, T'g)-module D(V) = (B ®q, V)% over Bg = B¥% of rank
= dimg, V' equipped with a Frobenius-semilinear operator ¢ and a semi-
linear and continuous action of I'g. This induces an equivalence of cate-
gories between p-adic representations of G and étale (¢, I'g)-modules over
Bpg. Similarly, using the period ring A one can functorially attach to any
Zy-representation T of G an étale (¢, I'g)-module D(T) = (A @z, T)H=
over the period ring Agr = AHR. Again, this induces an equivalence be-
tween Z,-representations of Gg and étale (¢, I'g)-modules over Ap.

1.2.2. Relative Wach modules

Using the period ring A™ we set DT(T) = (A* @z, T)"%, which is a
(¢, Tr)-module over AL, = (AT)Hr and let ¢ = %ﬂ), where 7 is the usual
element in Fontaine’s constructions (see Section 2.1 for notations). Note
that for a finite free Z,-representation 7' of G the A pg-module D(T) is
finite projective, however it is not known whether D (T') is projective. So,
we introduce the following definition:

DEFINITION 1.3. — A positive finite g-height representation is a p-adic
representation V' of Gr admitting a Z,-lattice T C V such that there
exists a finite projective Aj;-submodule N(T) C D™ (T) of rank = dimg, V/
satisfying the following conditions:

(i) N(T) is stable under the action of ¢ and I'p and AR ®pt N(T) &
D(T);
(ii) The Aj-module N(T)/¢*(N(T)) is killed by ¢* for some s € N;

(iii) The action of T'g is trivial on N(T')/7IN(T);

(iv) There exists R’ C R finite étale over R such that the A},,-module

Al ®at N(T) is free.
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384 ABHINANDAN

The module N(T') is a Wach module associated to T and we set N(V') :=

N(T) [%] which satisfies analogous properties. The height of V' is the small-

est s € N satisfying (ii) above.

Remarks 1.4.

(i) A finite g-height representation is twist of a positive one by some
power of the p-adic cyclotomic character (see Definition 4.9 for de-
tails). The terminology “positive” refers to the fact that the Wach
module N(T) is stable under the Frobenius-semilinear operator ¢.
It is motivated by the fact (and as we will show) that V' is positive
crystalline (see Theorem 1.6).

(ii) In the arithmetic case, i.e. R = Op, the notion of finite height
representations in Theorem 1.1 and finite g-height representations
in Definition 1.3 are related. In fact, in the arithmetic case using
Definition 1.3 one obtains the functorial Wach module of Berger
mentioned above (see [7, Proposition II.1.1]).

1.2.3. Crystalline representations of G

Using the period ring OB.,is(R) Brinon functorially attaches to any
p-adic representation V of G an R[ﬂ—module

ODcris(V) = (OBCFiS(R) ®Qp V)

The module OD,is(V) is called a filtered (¢, d)-module, i.e. it is equipped
with a filtration, a Frobenius-semilinear endomorphism ¢ and a quasi-
nilpotent integrable connection O satisfying Griffiths transversality with
respect to the filtration (see Section 2.3 for precise definitons). The repre-
sentation V is said to be crystalline if the natural map is an isomorphism

OBcris(R) ®R[1/p] ODcris(V) % OBcris(R) ®Qp ‘/7

Gr

compatible with Frobenius, filtration, connection and the action of Gr on
each side. Moreover, Brinon also defined the notion of weak admissibility
in the relative case and showed that OD;s(V) is weakly admissible for
crystalline representations (see [14, Chapitre 8] for more details).

Notation 1.5. — We use period rings such as OBgis(R) which is a mod-
ified version of Fontaine’s relative period ring Beis(R) (see Section 2.2 for
details). The notation O here indicates that apart from Frobenius, filtration

and G r-action, we have a connection over OBgis(R) and we will call such
rings fat relative period rings. However, note that in [14] Brinon denotes
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these rings as Beis(R) and BY, (R), respectively. Similarly, we will use the

notation OD¢,is(V) and D,i5(V') for modules instead of Brinon’s De,is(V)
and DY,.(V), respectively. We hope it is not confusing for the reader.

1.2.4. Main result

Our aim is to show that for positive finite ¢-height representations, the
Bj-module N(V) and the R[ﬂ—module ODy,is(V) are related in a precise
manner and the latter can be recovered from the former. To relate these
objects we consider the ring R[w] where w = (, — 1 for a primitive p-th
root of unity ¢, (take @ = (,2 — 1 if p = 2 for a primitve p*>-th root of unity
(p2), and using this ring we construct a fat relative period ring OAE,BU C
OB.;is(R) equipped with compatible Frobenius, filtration, connection and
the action of I'r (see Section 4.3 for precise definitions). The main result

of this article is as follows:

THEOREM 1.6 (see Theorem 4.25). — Let V' be a positive finite g-height
representation of Gr, then
(i) V is a positive crystalline representation.
(i) Let M = (OARY, Dat N(T))FR, then after extending scalars to

OA%PW and inverting p, we obtain a natural isomorphism
11 ~
OAR, @r M M — OALD, @51 N(V),

compatible with Frobenius, filtration, connection and the action of
I'r on each side.
(iii) We have an isomorphism of R[%] -modules
~ PD Fr 1
ODeyis(V) <= (OARE, @, N(T)) HE
compatible with Frobenius, filtration, and connection on each side.
Therefore, we obtain a comparison isomorphism

OAL @4+ N(V) = OARD, @k ODeris(V),

compatible with Frobenius, filtration, connection and the action of
I'r on each side.

Let us mention the idea of the proof. In case N(T') is free, we proceed in
two steps: First, we describe a process (see Proposition 4.28 for details) by
which we can recover a submodule of ODgis(V) starting with the Wach
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module N(T'), establishing a comparison over OA%PW between the submod-
ule obtained and the Wach module. Next, the claims made in the theorem
are shown by exploiting properties of Wach modules and the comparison
obtained in the first step. In the first step, one can take two approaches to
obtain generators of the promised submodule of OD,,s(V): either by tak-
ing I'g-fixed points of OAIP}]?W Da N(T') (by successively approximating
for T'g-action on a basis of N(7')); or by taking elements killed by differen-
tial operators defined using topological generators of I'p (see Lemma 4.41
for details). In this paper, we take the latter approach whereas the former
approach is detailed in [1, Chapter 3]. In the general case when N(T') is
projective, using property (iv) in Definition 1.3 one can pass to an extension
AE C A7}, to obtain a free Wach module, then use the preceding argument
and finally apply Galois descent to obtain the theorem (see Proposition 4.28
for details). Finally, we also show that all one-dimensional crystalline repre-
sentations are of finite g-height and for such representations one can directly
compare ODgis(V) and the Wach module N(V).

1.3. Relative Fontaine—Laffaille modules

After obtaining Theorem 1.6 above, it is natural to wonder if a converse
statement could be true, i.e. starting with a lattice T' C V of a crystalline
representation Gg, is it possible to construct the Wach module N(7)? In
the arithmetic setting, for p-adic crystalline representations of G, this was
shown to be true by Wach [37], and the statement was refined by Berger [7].
In the relative case, the picture is quite encouraging when we restrict to
Hodge-Tate length < p — 2 (also see Remark 1.9).

For a p-adic crystalline representation of Gp with Hodge-Tate length
< p — 1, there exists a canonical Op-lattice inside D¢,is(V) called the
Fontaine-Laffaille module defined in [23]. In this case, Wach constructed
Wach modules out of Fontaine-Laffaille data in [38]. In the relative setting,
Faltings studied relative Fontaine-Laffaille modules in [19] and used them
to functorially recover Z,-lattices inside crystalline representations of G'r.
Recently, for free relative Fontaine-Laffaille modules of filtration length
< p — 2, adapting techniques from Wach’s computations, Tsuji has con-
structed generalized representations of G over Aj,¢(R) (see [36]). In fact,
it is possible to show that starting with a free relative Fontaine—Laffaille
module, one can obtain a free relative Wach module over A;g.

ANNALES DE L’INSTITUT FOURIER



CRYSTALLINE REPRESENTATIONS AND WACH MODULES 387

THEOREM 1.7 (see Theorem 5.5). — Let M be a free relative Fontaine—
Laffaille module over R of level [0, p—2], and let Teyis (M) denote the associ-
ated Z,-representation of Gr. Then, the p-adic representation Ve,is(M) =
Qp ®z, Teris(M) is a positive finite g-height representation.

Twisting the representation thus obtained by powers of the cyclotomic
character, generalizes the statement to all free Fontaine—Laffaille modules
with filtration length < p — 2.

The proof of the theorem crucially exploits the computation of
Fontaine [22], Wach [38] and Tsuji [36]. It follows in three steps: First,
starting with a Fontaine-Laffaille module, we obtain an AP -module us-
ing formal properties of crystalline site for maps 6 : AEPW — R and
Or : (’)AEPW — R (see Section 5.3.1 for details). Next, we exploit equiv-
alence of categories obtained in Theorem 5.21 by extending scalars along
AR, — ARD JIP-DAPD & AL _/IPTDAY o« A} (see Proposi-
tion 5.12 for explanations). This gives us an Agw—module with precise
description of the Frobenius and the action of I'g. Finally, we descend over
to the ring AE by exploiting the Frobenius and I'g-action, thus obtaining
a Wach module over A}, and proving the theorem (see Section 5.3.2).

Remark 1.8. — In a recent work, Morrow and Tsuji have developed a
theory of coefficients for integral p-adic Hodge theory in [32]. Extending
scalars of relative Wach modules along Op[r] — Ai¢(Og) would yield
generalized representions over AL (R) in the sense of Morrow-Tsuji.

Remark 1.9. — Recent developments in the theory of prismatic crys-
tals [12, 18, 28], indicate that to obtain a full converse statement, i.e. to
construct Wach modules from lattices inside crystalline representations,
one needs to generalize Definition 1.3 slightly. This is a work in progress
and we will report further on this line of investigation in future.

1.4. Setup and notations
In this section we will describe the setup for the rest of the text and fix
some notations.

CONVENTION. — We will work under the convention that 0 € N, the
set of natural numbers.

Let p be a fixed prime number, « a finite field of characteristic p, W =
W (k) the ring of p-typical Witt vectors with coefficients in x and F :=

TOME 75 (2025), FASCICULE 1
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W[%], the fraction field of W. In particular, F' is an unramified extension

of Q, with ring of integers Op = W. Let F be a fixed algebraic closure of F
so that its residue field, denoted as &, is an algebraic closure of k. Further,
we denote by Gr = Gal(F/F), the absolute Galois group of F'.

Let Z=(Z1,...,Zs) denote a set of indeterminates and k = (k1,...,ks) €
N* be a multi-index, then we write ZX :== Z¥' ... Z*s For k — 400 we will
mean that Y k; — 4+00. Now for a topological algebra A we define

ANZ} = { Z axZ¥, where ax € A and ax — 0 as k —» —|—oo} .
keNs

We fix d € N and let X = (X1, Xs,...,X4) be some indeterminates. Let
R be the p-adic completion of an étale algebra over Op{X, X'} with
non-empty geometrically integral special fiber. In particular, we have a
presentation

R=0p{X,X"HZ1,.... Z:}/ (Q1,---,Qs),
where Q;(Z1,...,2s) € Op{X, X '}[Z1,...,Zs] for 1 < i < s are mul-
99 is invertible in R. The

tivariate polynomials such that det ( 3
algebra R[ ] is the relative analogue of “finite unramified extension of Q,,”

2 )1<z‘,j<s
1
p

(indeed, by removing the geometric coordinates we will obtain R[%] =F).
Remark 1.10. — Note that Theorem 1.1 serves as our main motivation
for the theory developed in this article. The assumptions we put on R

generalizes the fact that “F' is unramified over Q,”.

The p-adic Hodge theory over R is the study of p-adic representations

of the étale fundamental group of R[%], which we introduce next. We

fix an algebraic closure Fr(R) of Fr(R) containing F. Let R denote the

union of finite R-subalgebras S C Fr(R), such that S[%] is étale over
R[%]. Let 77 denote a geometric point of the generic fiber SpecR[%] and
let Gp == 7§t (SpecR[%],ﬁ) denote the étale fundamental group. By [27,

Exposé V, Section 8], we can write this étale fundamental group as the
Galois group (of the fraction field of R[ } over the fraction field of R[ ])

1 1
P P

et (e ) - s}

For n € N, let F,, := F(u,n). From now onwards, we will fix some
m € N3q (take m € Nxq if p = 2) and set K := F},, with its ring of integers
Ok . The element @ = (pm —1 € Ok is a uniformizer of K, and its minimal
(14+x)P" —1

RS or is an Eisenstein polynomial in W[X] of

polynomial P (X) =
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degree e := [K : F] = p™~1(p — 1). Finally, for S = R[w| = O ®0, R
we have that R[w]| is totally ramified at the prime ideal (p) C R[w]. And
similar to above, we obtain Galois groups G <G g and Gg<G g respectively,
such that Gr/Gs = Gp/Gg = Gal(K/F). Finally, we have that R and
R[w] are small algebras in the sense of Faltings (see [19, Section II(a)]).

For ke N, let Q’}c denote the p-adic completion of module of k-differentials
of R relative to Z. Then, we have

d k
Op = P RdlogX;, and Qf = /\ Q.
i=1 R
We also have that R/pR = S/wS and for all n € N, R/p"R is a smooth
Z/p"Z-algebra. Finally, we have a unique lift ¢ : R — R of the absolute
Frobenius z + zP over R/pR such that ¢(X;) = X7, for all 1 <i < d (in
general, a lift of Frobenius modulo p need not be unique, see [14, p. 9]).

CONVENTION. — Let A be a ring and I C A an ideal. We say that an
A-module M is I-adically complete if and only if M =5 lim,, M /I" M.
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2. p-adic Hodge theory

In this section we will recall some constructions and results in relative
p-adic Hodge theory developed in [14], albeit in a simpler setting compared
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to Brinon’s book. As we will be using different notations compared to
Brinon, we will make most of the definitions explicit.

We are interested in exploring the relationship between p-adic crystalline
representations and finite height representations of Gg. This will be de-
tailed in Section 4 and Section 5. To carry out some computations in the
aforementioned sections, we will need to extend our base field (hence the
base ring) by adjoining some p-power roots of unity (see the field K and the
ring S = R[w] in Section 1.4). As a consequence, we will also require the
corresponding period rings defined for such rings. However, in Section 2.1,
Section 2.2 & Section 2.3 we will only recall results from [14] by fixing our
base as R. As we shall see the period rings will only depend on R and we

have S = R C Fr(R) = Fr(S), therefore fixing our base as R is sufficient
(see [14] for general constructions).

2.1. The de Rham period ring

We will recall definitions and properties of the relative version of
Fontaine’s period ring Bar (see [22] for classical case).

2.1.1. The ring C*(R) and its tilt

Let C, denote the p-adic completion of F. Recall that R is the union of
finite R-subalgebras S C Fr(R) = Fr (R[w]), such that S [%] is étale over
R [%] . Let C*(R) denote the p-adic completion of R and C(R) = C*(R) [%] .
We define the tilt C*(R)” := limg, ;.» Ct(R)/p = limg,,,» R/p and equip it
with the inverse limit topology (where we equip R/p with the discrete topol-
ogy) and let C(R)’ = C*(E)b[p%] for p° = (p,pl/p,pl/pQ,...) € Ct(R)
and equipped with the coarsest ring topology such that C*(R) is an open
subring. Note that an element 2 € C(R)” can be described as a sequence
(23)nen, with z,, € C(R) and fo_l = x, for all n € N. These rings admit
a continuous Ggr-action for the topology described.

We fix some choices of compatible p-power roots which will appear in the
sequel. Let € == (1,(p, (p2,...) € (C;, Xib = (Xi,Xil/p,Xil/pz, ) ) € C(R)
for 1 < i < d. We set Ajue(R) == W(CH(R)"), the ring of p-typical Witt
vectors with coefficients in (C"’(ITB)b equipped with weak topology (see [4,
Section 2.10]). The absolute Frobenius on C*(R)” lifts to an endomorphism

¢+ Aipe(R) = Aine(R) and the Gg-action extends to Aj,¢(R) such that
the action is continuous for the weak topology. For x € C*(R)®, let [z] =
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(2,0,0,...) € Ains(R) denote its Teichmiiller representative. So we have
[€] € Apne(R) with gle] = []X@) for g € G and x : G — Z, the p-adic

cyclotomic character and ¢([e]) = [¢]’. Now any element © € Aj,e(R)
can be uniquely written as @ = >, .y p*[zi] for 2 € CT(R)’. So we set
mi=[e] -1, m = ¢ r) = [/P] - 1, and ¢ = —-. Clearly we have

g(m)=(1 +7T)X(9) —1for g € Gg and p(7) = (1 + )P — 1.

2.1.2. Definition of OBggr(R)

We have Fontaine’s §-map defined as 6 : Aj(R) — CH(R) sending
Sren Prlze] = Y ien pkxi, it is a Gg-equivariant surjective ring homo-
morphism whose kernel is principal and generated by, for example, p — [p’]
or ¢ (see [20, Proposition 2.4(ii)]). By Q,-linearity, the map 6 can be ex-
tended to 6 : Aj¢(R) [ﬂ — C(R) and we define

BZ{R(E) = li7rln At (R) Ll)] / (Ker 6)",

as the (Ker 6)-adic completion of Ainf(ﬁ)[%]. The ring Bl (R) is an
F-algebra equippedw with an action of Ggr. The map 0 further extends
to a Gp-equivariant surjective ring homomorphism 6 : BIz (R) — C(R)
with Ker 0 = tB; (R), where t := log[e] = log(1+7) = ZkeN(—l)’”];k—J:l1 €
BI:(R) such that g € Gg acts by g(t) = x(g)t. By functoriality of the
construction of B, (R), the homomorphism Oz — R induces an injec-
tion Bj(Of) — Bji(R). The ring B (R) is t-torsion free, so we set
Bar(R) = BJ;(R)[1]. The Gg-action extends to Bqr(R) and the ring
Bz (R) admits a natural Gg-stable filtration given as Fil'Bgr(R) =
t"BIz(R) for r € Z and we equip B (R) with the induced filtration
(see [14, Section 5.1] for details).

We can extend the map 6 : Aj¢(R) — CT(R) by R-linearity to obtain a
ring homomorphism 0 : R®z Aint(R) — CT(R). Let OA;u(R) denote the
05" (pC*(R))-adic completion of R ®z Ais(R) (the ideal 05" (pC*(R)) is
generated by p and Ker ), then 6 extends to a surjective homomorphism
Or : OAinf(R)[%] — C(R). Define

OB(TR(R) = hrILIl OAinf(R) |:2];:| /(Ker QR)n’

as the (Ker §r)-adic completion of OA;.¢(R) [%] The ring OB} (R) is
an R[%]—algebra and admits a G g-action. The homomorphism 6z extends
to a Gp-equivariant surjective homomorphism 0 : OB} (R) — C(R).
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The ring Bl (R) is t-torsion free and we set OBgr(R) = OB} (R)[3].
Moreover, the G g-action extends to OBgr(R).

2.1.3. Structure and properties of OBgr(R)

A more explicit description of the ring OB = (R) can be given. Note that
Xi®l—-1® [XH € Ker g C R®z Aine(R) for 1 < i < d and let z; denote
its image in OAine(R) C OBz (R). Since OB (R) is complete for the
(Ker 0g)-adic topology, the homomorphism B, (R) — OB (R) extends
to a homomorphism

f : BXR(R) [[Tl7 ey Td]] — OB(J{R(R)

T, — z;, for1 <i<d.
In fact, f is an isomorphism and Ker 0 = (t,21,...,24) C OBlR(R).
Therefore, one can identify Bl (R) with a subring of OB (R). There
is a natural Gg-stable filtration on OB (R) given by Fil"OBI;(R) =
(Ker 0g)" for r € N. We set Fil’OBggr(R) = Y./t "Fil"OB}(R) =
OB (R)[%,..., %] and Fil"OBygr(R) = tTFIIOOBdR( ) for r € Z, sat-
isfying the same conditions. Moreover, the induced filtrations on OB (R),

B (R) and Bgr(R) match with the ones defined before. Finally, we have
(OBgar(R ))GR = R[%] (see [14, Section 5.2] for details).

We can equip the rings OB (R) and OBgr(R) with a connection. Let
N; denote the unique (Ker fg)-adically continuous, B (R)-linear deriva-
tion on OB (R) given as N;(z;) = 6;;X; for 1 < i,j < d, where §;;
denotes the Kronecker delta symbol. Furthremore, the derivation N, ex-
tends to a Bggr(R)-linear derivation on OBgg(R), since N;(t) = 0. Define
a connection

0: OBdR( )—) OBdR(R) [%} Ql |:]1):|

d
T — ZNi(x) ® dlogX;.

The connection 9 is Gr-equivariant and satisfies Griffiths transversality
with respect to the filtration, i.e.

_ 1
a(FﬂTOBdR(R)) CcFil"™™ 1OBdR( )®R[ ]QR |:p:| .

Its restriction to R[] is the canonical differential operator. Moreover, we
0

have (OB (R))"™" = Bi,(R) and (OBar(R))’™" = Bar(R) (see [14,
Section 5.3] for details).
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2.2. The crystalline period ring

In this section, we will recall the definition and properties of crystalline
period rings following [14]. Note that Brinon defines these rings under a
certain assumption on his base ring (see condition (BR) on [14, p. 9]) which
is always true in our setting.

2.2.1. Definition of OB.s(R)

Let us consider the map 6 : Aj,¢(R) — C*(R) whose kernel is a principal
ideal generated by & or p — [p°]. Let us denote z!* := “]“;—I: for z € Ker 6 C
A ¢(R) and k € N. The divided power envelope of A;n¢(R) with respect
to Ker 0 is given as Aj,¢(R) [x[k], z € Ker 9] = Ai¢(R) [ﬁ[k}]keN. We
define

keN

A iis(R) == p-adic completion of Aj,¢(R) [S[k]} N

This is a W{(k)-algebra equipped with a continuous action of Gg. The

ring Acis(R) is p-torsion free and the Frobenius on Aj,¢(R) extends to
A is(R). The homomorphism € in Section 2.1.2 extends to a surjective
homomorphism 6 : As(R) — CT(R). Also, we have t = log(l + ) €
Ker 6 C Ais(R) and the Frobenius ¢ on this element is given as ¢(t) = pt.
Moreover, Ker § C Ais(R) is a divided power ideal. Further, the ring
Aiis(R) is t-torsion free, so we set (1) = ﬁ and define BY, (R) =
A.is(R) [Iﬂ and Beis(R) == BY(R)[1]. These are F-algebras, equipped
with a continuous action of G and the Frobenius ¢ (see [14, Section 6.1
and Section 6.2] for details).

Next, let us consider the map 0r : R ®z Aijus(R) — CH(R). The kernel
of this map is an ideal generated by {1 ® &, z1,..., 24}, where z; = X; ®
1-1® [Xf] for 1 < i < d. The divided power envelope of R ®z Aine(R)
with respect to Ker 0y is given as R @z Aiue(R) [a:[k], x € Ker 0g] ren: We
define

OA .is(R) == p-adic completion of R ®7 Aj¢(R) [m[k}, z € Ker HR]kGN.

This is an R-algebra equipped with a continuous action of Gg. Taking
the diagonal action of the Frobenius on R ®z Aj¢(R) it can be shown
that the Frobenius extends to (’)Acris(ﬁ) and we denote this extension
again by . The homomorphism g from Section 2.1 extends to surjective

homomorphism 0 : OAis(R) — CT(R) (see [14, p. 64] for details).
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2.2.2. Structure and properties of OBis(R)

Let T = (T1,...,7q) be some indeterminates as in Section 2.1.3 and
let us denote by Ais(R)(T)" the p-adic completion of the divided power
polynomial algebra in indeterminates T and coefficients in Ayis(R ) Then
we obtain an isomorphism of As(R)-algebras (see [14, Proposition 6.1.5])

fcris : Acris(R) <T>/\ — OAcris(R)
T;— z; for 1<i<d.

The ring OAqis(R) is p-torsion free as well as t-torsion free, so we
set OB} (R) = OAcris(E)[f} and OBgis(R) = OB (R)[1]. These
R[;]-algebras are equipped with a continuous action of Gg and the action
of Frobenius extends to these rings and we denote this extension again by
¢ (see [14, Section 6.1 and Section 6.2] for details).

Note that there exist natural morphisms of rings Ais(R) — B (R) and
OAis(R) — OB} (R). So we obtain induced homomorphisms BY,, (R) —
BI:(R), OB (R) - OBIz(R), Beris(R) — Bar(R) and OBgis(R) —
OBgr(R), which are injective and Gg-equivariant. Using this, we get in-
duced filtrations on crystalline period rings as Fil"Beis(R) = Bais(R) N
Fil'Bgr(R) and Fil"OBis(R) = OBeis(R) N Fil"OBgr(R) for r € Z
(see [14, Section 6.2] for details).

Next, we will consider a connection on OB,s(R) induced from the con-
nection on OBgr(R). For n € N, we have 8(21["]) = zl[n_l] ® dX; for
1 <i < d, so we get that for any 2 € OA,is(R) = Aeis(R)(T)", we have

O(zx ) € OACUS( R) ®r Qk. This gives us an induced connection

0 OB yis(B) — OBoyia(R) @1 U m

The connection 0 is Gg-equivariant and satisfies Griffiths transversality
with respect to the filtration, since the same is true over OBgyr(R). Its
restriction to R[%] is the canonical differential operator. Moreover, taking
horizontal sections we get (OA} (R ))820 = Au.is(R), (OBl (R ))8 =
Bli(R) and (OBgis(R ))a = = Beis(R). We equip QL [+] with the unique
Frobenius-linear map ¢ satisfying ¢(da) = dp(z) for « € R. Then, over
OB.is(R) the Frobenius operator commutes with the connection, i.e. 9 =
Dy (see [14, Proposition 6.2.5]). Furthermore, we have (OBgs(R ))GR =
R[}]. Finally, the natural map R[1] — OBeis(R) is faithfully flat (see [14,
Section 6.2 and Section 6.3] for details).
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2.3. p-adic representations

In this section we will recall results on linear algebra data associated to
p-adic de Rham and crystalline representations of the Galois group Gg.
We will use the G r-regularity of a topological Q,-algebra B in the sense
of [14, p. 106]. If V is a p-adic representation of Gg, we set

Dp(V) = (Bag, V) .

This is a B"-module and we have a natural morphism of B-modules,
functorial in V'

aB(V) : B®BGR DB(V) — B®Qp Vv
b®d+— bd.

The representation V is said to be B-admissible if ap is an isomorphism.

2.3.1. Unramified representations

Let R" denote the union of finite étale R-subalgebras S C R, and let

Rur denote its p-adic completion. It is an R-subalgebra of C(R) equipped

with a continuous action of G'g. Further, we have (EE [%] )GR = R[%] and
Rur [%] is Gp-regular. Let us set G := Gal(R"™/R) which is a quotient of

GRr. A p-adic representation p : Gg — GL(V) is said to be unramified, if p
factorizes through Gr — G%.
Let V be a p-adic representation of G and we set

GRr

o= ([ 0r)”

which is an R[%]—module and we say that V' is unramified if and only if V'

is R [%]—admissible (see [14, Section 8.1]).

Remark 2.1. — Let V be an h-dimensional p-adic representation of G
and T' C V a Zp-lattice stable under the action of Gr such that the ac-
tion is trivial modulo p. Consider the associated continuous cocycle f :
Gy — GLy,(R™) describing the action of G over R ®z, T. Since V' is
unramified, f is cohomologous to the trivial cocycle and from [14, proof of
Proposition 8.1.2], there exists b € 1 + p - Mat(h, I/%B) such that f is given
as g — f(g) = g(b)b~* for g € Gg. In this case, we say that f is trivialised
by b € 1+ p- Mat(h, R™).
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2.3.2. de Rham representations
Note that OBggr(R) is a Gg-regular R[l]—algebra. We set

ODdR( ) = (OBdR( ) ®q, V)
The representation V is said to be de Rham if it is OBdR(E)—admissible.
The R[%}—module ODygr (V) is equipped with a decreasing, separated and

exhaustive filtration induced from the filtration on OBgg (R) ®g, V where
we consider the G g-stable filtration on OBg4g (R) from Section 2.1.3. More-
over, the module ODyg (V) is equipped with an integrable connection, in-
duced from the Gr-equivariant integrable connection

1
J: V®Q OB4r(R )—> V®Q OB4r(R )®R[ ]Q}% LJ

vRbr— v ®a(b).

We denote the induced connection on ODggr (V') again by 9. Since the con-
nection 9 on OBy (R) satisfies Griffiths transversality, the same is true for
OD4r(V), i.e. (Fil"ODygr(V)) C Fil" ' ODgr(V) ® R Q2 k(5] Further,
ODgygr (V) is projective of rank < dim(V) over (OBdR(R))GR = R[p]. If
V is de Rham then for all r» € Z, the R[%]—modules Fil"ODgyg (V) and
gr"ODygr (V) are projective of ﬁnite type and for such a representation the

collection of integers r; for 1 < i < dimg, (V) such that gr="*ODggr (V') # 0
are called Hodge-Tate We1ghts of V Moreover, we say that V is positive
if and only if r; < 0 for all 1 < ¢ < dimg, (V) (see [14, Section 8.3] for
details).

2.3.3. Crystalline representations
Note that OBeis(R) is a Gr-regular R[}]-algebra. We set

ODCI”ib( ) (OBcrls( )®Q V)GR

The representation V is said to be crystalline if it is OBcris(R)—admissible
and we denote the category of all crystalline representations of Ggr by
RepcrlS(GR). The R[%]-module OD,,i5(V) is equipped with a Frobenius-
semilinear operator ¢ induced from the Frobenius on OBeis(R) ®q, V,
where we consider the G g-equivariant Frobenius on OBcris(R). Further,
OD,,i5s(V) is an R[%}—Submodule of ODg4gr(V), and we equip the former
with induced filtration and connection which satisfies Griffiths transver-
sality with respect to the filtration. Additionally, we have 0p = 0 over
OD,,i5s(V') (see [14, Section 8.3] for details).
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The R[%]—module OD.,is(V) is projective of rank < dim(V). If V is
crystalline, then the R[%]—linear homomorphism

1
1® @ R |:p:| ®R[%]v‘/’ ODcris(V) — ODcris(V)

is an isomorphism and ODg,s(V) is called a filtered (¢, d)-module. The
inclusion OBis(R) — OBgr(R) induces the inclusion ODgs(V) —
ODygr(V). Let V be a non-trivial de Rham representation of Gr, then
the inclusion ODg,i5(V) — ODgr (V) # 0 is surjective if and only if V' is
crystalline (see [14, Section 8.2 and Section 8.3] for details).

In conclusion, we have a functor

: 1
OD, s : Repgsms(GR) — filtered (¢, d)-modules over R L}] .

Objects in the essential image are called admissible filtered (¢, 9)-modules
and the functor induces an equivalence of categories with the essential
image (see [14, Théorémes 8.4.2, 8.5.1]).

Remark 2.2. — In the arithmetic case, the essential image of D¢, i.e.
admissible filtered ¢-modules can be described more explicitly. In partic-
ular; using certain invariants attached to filtered p-modules one considers
the full subcategory of weakly admissible filtered ¢-modules and it is a
result of Colmez and Fontaine that weakly admissible filtered ¢-modules
are admissible (in the sense above, see [16, Théoréme A]). In the relative
case, Brinon gave a definition of weakly admissible filtered (¢, d)-modules
(see [14, p. 136]). However, the notion is not completely satisfactory as one
does not obtain an equivalence between admissible and weakly admissible
filtered (¢, d)-modules (see [31, Theorem 1.3]).

2.3.4. One dimensional de Rham and crystalline representations

In the 1-dimensional case, it is possible to classify all crystalline repre-
sentations:

PROPOSITION 2.3 ([14, Propositions 8.4.1, 8.6.1]). — Let n: Ggr — Z)
be a continuous character.
(i) n is de Rham if and only if we can write n = ey, x" where ns is
a finite character, 1y, is an unramified character taking values in
1+ pZ, (therefore trivialized ov € 1+ pﬁa, see Remark 2.1) and x
is the p-adic cyclotomic character and n € Z.
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(ii) n is crystalline if and only if we can write 1 = Ny, x™ where s is
a finite unramified character, n,, is an unramified character taking
values in 1 + pZ, (therefore trivialized by some o € 1 + pﬁﬁ , see
Remark 2.1) and x is the p-adic cyclotomic character and n € Z.

In particular, a 1-dimensional de Rham representation is potentially crys-
talline.

(iii) Let V' = Qu(n) be a one-dimensional crystalline representation.
Then there exists a finite étale extension R — R’ such that the
R/[%}_module R/[%] ®R[1] ODy,is(V) is free. In particular, if n¢ is
trivial then ODg,is(V) is a free R[ ]-modu]e of rank 1.

1
P

3. (¢,I')-modules and crystalline coordinates

We will keep the setting and notations of Section 2. In particular, we
have that F is a finite unramified extension of Q, and K = F(u,m)
for a fixed m € Ny; (fix m € Nyq if p = 2). Recall that R is étale
over Or{X, X'} and we have multivariate polynomials Q;(Z1, ..., Zs) €
Op{X, X '} Z,...,Z] for 1 <i < s such that det (g%) is invertible in
R. In particular, the ring Or{X, X'} provides a system of coordinates
for R.

3.1. (p,T')-modules

In this section, we briefly recall the theory of relative (¢,T')-modules
from [3, 4].
Let F,, = F(pp») for n € N and Foo = J,, Frn. We take R,, to be the

integral closure of R ®¢,(x+1) OF, [X{fn7 ... ,ngn] inside E[%] and set
Ry = Un>m R,, noting that F., C R [%] From Section 2.1.2 recall that
C(R) = C*(E)[}ﬂ and C(R)” denotes its tilt. The ring C(R)” is perfect

of characteristic p and we set Ag = W (C(R)), the ring of p-typical Witt

vectors with coefficients in (C(R)b and endowed with the weak topology
(see [4, Section 2.10]). The absolute Frobenius over C(R)" lifts to an endo-
morphism ¢ : Az — Ag, which we again call the Frobenius. The action
of Gr on C(R)" extends to a continuous action on A 7 commuting with
the Frobenius. The inclusion F C R[ﬂ induces inclusions (Clb, c C(R)
and Az C Agz. Recall that we set Ajy¢(R) := W(C*(R)"). The inclusion
Oz C R induces inclusions O(bcp C CH(R)” and Aint(OF) C Aume(R).
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3.1.1. The group I'r
The ring R [ﬂ is a Galois extension of R[%] with Galois group I'r =
Gal(Rw[%}/R[%]) isomorphic to the semidirect product of I'p and I'j,
where I'p = Gal(Fx/F) and I'y; = Gal(Rs [%]/FOOR[%]) In particular,
we have an exact sequence
(3.1) 1—Ty —Tr—Tr—1,

where (see [14, p. 9] and [3, Section 2.4])
1 1
= Gal (Roo H FoR H) =z
R p / p D
X :Tp=Gal(Fy/F) = 7.

The group I'» can be viewed as a subgroup of I'g, i.e. we can take a section
of the projection map in (3.1) such that for v € I'y and g € I');, we have

vgy~ ' = gX(). So we can choose topological generators {v,71y--+,7a} of
I'r such that
7(e) = X, Yile) =¢ for 1 <i<d,
%(X7) =X}, %(ij.):X;. fori#jand1<j<d,

and that 79 = ~¢ with x(7) = exp(p™), is a topological generator of
'k = Gal(K«/K), where Koo = Fy and e = [K : F]. It follows that
{71,...,74} are topological generators of I'};, v is a lift of a topological
generator of I'p, and 7 is a topological generator of I'k. In particular,

X: Tk =Gal(Fy/K) — 1+ p™Z,.

3.1.2. Setup

In [24, 25, 39], using the field-of-norms functor, Fontaine and Winten-
berger constructed a non-archimedean complete discrete valuation field
Ex C K go of characteristic p with residue field x and admitting a continu-
ous action of 'k (notation is a bit unfortunate as Ex depends only on K,).
Utilizing the isomorphism of Galois groups Gal(F/K.) — Gal(E%"/Ef)
(also see tilting correspondence in [33] for a modern treatment), Fontaine
classified mod-p representations of Gk in terms of étale (p,I'k)-modules
over Ex. By some technical considerations one can then lift this to the
classification of Z,-representations of G in terms of étale (¢, I'x)-modules
over a certain two dimensional regular local ring Ax C W (K”,) (see [21]
for details).
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We have an analogous theory in the relative setting, to describe which we
need to consider generically étale algebras over finite extensions of R in the
cyclotomic tower R.,/R. More precisely, let S C R be a finite R,,-algebra
with S [%] étale over R, [%] For k > n denote by Sj the integral closure of
S ®pg, R in R[%] and set Soo = Uk>n Sk. We have that S, is a normal
R.-algebra and an integral domain as a subring of R. As in the case of
R, for S we define Gg := Gal(R[}%]/S[ﬂ), Ig = Gal(S’oo [%]/S[%D and
Hg :=Ker (Gg — I's). Again, T'g is isomorphic to the semidirect product
of I'p, and I'y, where I'y = Gal(S’oo [ ]/FOOS[ ]) is a finite index subgroup

1 1
P P
of T = Zg.
3.1.3. Rings in characteristic p

In the relative setting, Andreatta in [3] constructed an analogue of the
subfield Ex C IA(gO, i.e. to any S as above, he associated a ring Eg C Fr :9\20
functorial in So.. Let us recall his definition: Let E; denote the valuation
ring of Er and we have m € W(ﬁgo) such that its reduction modulo p,
denoted as T = ¢ — 1, is a uniformizer of E; Depending on S, let § €
QnN10,1] small enough and N € N large enough (see [3, Definition 4.2] for
precise formulations of § and N), and define the ring

Ef = {(ao,...,ak, ... € §ZO, such that ay, € Sy /p°Sy, for all k > N}.

The ring E{ is finite and torsion free as an Ef,-module. It is a reduced Noe-
therian ring which is 7-adically complete. By construction, it is endowed
with a w-adically continuous action of I'g and a Frobenius endomorphism
, commuting with each other and compatible with respective structures
on :S'\go Moreover, E:g is a normal extension of EE, étale after inverting 7
and of degree equal to the generic degree of R,, C S. Further, the set of
elements {7, X?,..., X5} form an absolute p-basis of Ef; (see [3, Propo-
sition 4.5, Corollaries 5.3 & 5.4]). The ring §go coincides with the 7-adic
completion of the perfect closure of EJSr and the extension E;C — §go is

faithfully flat. Finally, set Eg := E; [%]

DEFINITION 3.1. — Define E* = |Jg E!, where the union runs over

R,,-subalgebras S C R for some n € N such that S is normal and finite
as an R,-module and S[%] is étale over R, [ﬂ Also, we set E :=Et [%]
These rings are T-adically complete and equipped with a Frobenius and a
continuous G g-action.
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Remark 3.2. — From [4, Proposition 2.9], we have ((C“‘(R))HR = ﬁoo,
(CH(RP)™™ = B, (C(RY)™ = R, [L], (BY)Hr = B}, and E#= = Ep,

T

Remark 3.3. — We will describe (CJF(E)b as the ring of power-bounded
elements inside C(R)” (for the spectral norm). Recall that R is the union

of finite R-subalgebras S C Fr (R) such that S [%] is étale over R[%]. Since
R is an integral domain and p-adically separated, i.e. Npenp®*R = 0, we
obtain that the filtration by powers of the ideal pR C R induces a sub-
multiplicative norm (see [13, Section 1.3.3, Proposition 1]) which extends

to R [%] A further “smoothening” of the aforementioned norm yields a

power-multiplicative norm on R[%] (see [13, Section 1.3.2]) which we call
the spectral norm on E[%}. Let C denote the completion of E[ﬂ for the
spectral norm and C° its power-bounded elements.

Next, one can show that under the spectral norm the power-bounded

elements (or equivalently, the closed unit ball) of }?[%] written as (R[%Do
is exactly R. Indeed, we have the obvious inclusion R C (R[%])O and for

the converse taking =z € (E[%Do, one can reduce the claim to a finite

R-subalgebra S C R integrally closed in R[%] and such that x € S[%].
Then it easily follows that S = (5[%])0 = S[}%] N (E[%])O C R[%]. So

we obtain that the topology induced by the spectral norm is equivalent
to the p-adic topology on E[%], therefore C = C(R) and C° = CH(R)
and (C(R),C*(R)) is a uniform adic Banach Q,-algebra (see [29, Defini-
tions 2.4.1 and 2.8.1]).

Finally, by the perfectoid correspondence of uniform adic Banach al-
gebras in [29, Theorem 3.6.5], we obtain that (C(R)”,C*(R)") is a uni-
form adic Banach Fj-algebra such that the topology induced by the spec-
tral norm (arising from the sub-multiplicative norm induced by the ideal
p’CH(R)” € CT(R)") is equivalent to the topology on (C(R)?, C*(R)") de-
scribed in Section 2.1.2. Finally, since C*(R) is the ring of power-bounded
elements in C(R) we obtain that the its tilt C*(R)” is the ring of power-
bounded elements in C(R)’.

Remark 3.4. — Let us denote the natural valuation on (Czb) by v°. Then
one can show that v°(%) = z% > 0, i.e. T is not invertible in O(%p. Since
O%p = C,NC*(R)” C C(R)", we obtain that 7 is not invertible in C*(R)".
Moreover, as C*(R)” is the ring of power-bounded elements in C*(R)” (see
Remark 3.3) we conclude that ET = ENCH(R)” c C(R)".
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3.1.4. Rings in characteristic 0

We have liftings of the rings discussed above to characteristic 0. In other
words, there exists a Noetherian regular domain Ar C W(]@;O [%D, com-
plete for the weak topology and endowed with a continuous action of I'g and
a Frobenius such that Ar/pAr = Eg. Moreover, Ar contains a subring
AL lifting E}, complete for the weak topology with 7, [X}],...,[X}] € A%
(see [3, Appendix C]). Furthermore, for S as in Definition 3.1 let Ag de-
note the unique finite étale A p-algebra lifting the finite étale extension
Er C Eg. It is a Noetherian regular domain, complete for the weak topol-
ogy and endowed with a continuous action of I's and a Frobenius, lifting
the ones defined on Eg. Moreover, it contains a subring A; lifting Ej{ SO
that the former is complete for the weak topology. In characteristic 0, we
set By = AE[%] = UjeN p‘jAE equipped with the direct limit topology
(see [3, Section 7] for details).

DEFINITION 3.5. — Define A := completion of | J¢ As C Ap for the
p-adic topology, where the union runs over all R, -subalgebras S C R as in
Definition 3.1. Equip A with the weak topology induced by the inclusion
A C Ag. Moreover, we set AT := AN Ajye(R), Bf = AT [%] and B =
A[%] equipped with induced weak topology. These rings are stable under
¢ and admit a continuous G g-action.

Remark 3.6. — In Definition 3.5 one can take the base ring as R[w]
instead of R to obtain period rings AL C A, (instead of AT C A). In
particular, one has that m,, = ¢~ ™(r) € AL and it easily follows that

At C ALY C Ay¢(R) compatible with Frobenius and G g-action.

Remarks 3.7.
(i) Tt follows from definitions that

pz&jL =pAnN Ainf(E) =AnN pAinf(E) = p(A n Ainf(ﬁ)).

Therefore, from Remark 3.4 it easily follows that AT /pAT = ET.
(ii) From [4, Lemma 2.11] we have A% = Ay and (AT)Hr = A},

3.1.5. Some lemmas on matrices

Let us note some results which will be useful in the proof of Proposi-
tion 4.11.
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LEMMA 3.8. — Let h € N and matrices Y € Mat(h,E) and X, Z,W €
Mat(h, ET) such that ¢(Y) = XY Z + W, then Y € Mat(h,E™).

Proof. — From Remark 3.4 we have ET = ENC*(R)’. So it is enough to
show that Y € Mat(h, C*t(R)"). Recall that we have C(R)” = C*(R)® [1%]
Therefore, for some smallest k£ € N, we can write Y = ﬁYl with Y7 €
Mat(h,C*(R)"). Now, applying ¢ we get that cp(( 3L Yl) =G g)kXYlZ—k

W, which can be rewritten as Ep;;kY = o Y XY1Z + (p°)FW), where

p? = cpfl(p ). In the last equality, note that the expression on the left
EPE;: Yy € Mat(h, C(R)"), whereas the expression on the right ¢~ (XY, Z +
(p°)*W) € Mat(h, ’1((C+( ) )) = Mat(h,C*(R)") since C*(R)’ is per-
fect. So we obtain that g;;k Y; € Mat(h,C*(R)"), ie. Y = ﬁYl €
Mat (h, B b)k(CJr( R)"). Next, write Y = B ,,),CYQ with Y3 € Mat(h, Ct(R)®).

Again, applying ¢ and arguing as above, one gets Y € Mat (h, W(C“‘( R) ),
2

where pb, = @_Q(p ). Now, it easily follows by induction on n € N that
Y € Mat(h, e »)k C*(R)"), where p}, = ¢~ "(p"). Therefore, we get that
1 — _
Y € Mat <h, ﬁneN(b)k(CJ”(R)b) C Mat(h, C(R)").

Dn
But since C*(R)" is the ring of power-bounded elements in C(R)®, we
obtain that

1 — —

Mnen——CT(R)’ = CY(R)’.
€ (p" )k ( )

n

Hence, we get Y € Mat(h, C*(R)”) as desired. O

LEMMA 3.9. — Let h € N and matrices Y € Mat(h,A) and X, Z,W €
Mat(h, A™) such that o(Y) = XY Z + W, then Y € Mat(h, A™).

Proof. — Reducing the equation modulo p we have p(Y) = XY Z +
W, with Y € Mat(h,E) and X,Z, W < Mat(h, E*). Therefore, from
Lemma 3.8 we obtain that Y € Mat(h,ET). As we have At /pAt =
ET (see Remark 3.7(ii)), let Vo € Mat(h, A") such that ¥ = V{ and
©(Vo) = X Vo Z+W. So we can write Y = V +pY; with Y; € Mat(h, A),
and obtain that o(Vp + pY1) = X (Vo + pY1)Z + W. Simplifying the lat-
ter expression, we have p(Vp) — (XVoZ + W) = p(XY1Z — ¢(Y1)). Since
o(Vo) — (XVoZ + W) € Mat(h,pA™), we conclude that

(p(Yl) — Xle € Mat(h,A*).
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In other words, we have an equality p(Y1) = XY1Z + Wi with Y7 €
Mat(h, A) and X, Z, Wy € Mat(h, AT). Repeating the argument as above,
we get that Y, € Mat(h,ET) and we can take a lift to write ¥V; =
Vi + pYs with Vi € Mat(h, A") and Y2 € Mat(h, A). This gives us that
Y = Vo + pVi + p*Ys. Now, it easily follows by induction on n € N that
Y = Vot+pVi+- - 4+p" 1V, 1 +p"Y, with V; € Mat(h, A1) for 0 <i < n—1
and Y, € Mat(h,A). Letting n — +o0o and noting that AT is p-adically
complete, we obtain that Y € Mat(h, AT) as desired. O

3.1.6. Etale (¢, T'g)-modules

DEFINITION 3.10. — A (p,T'g)-module D over Ay is a finitely gener-
ated module equipped with

(i) A semilinear action of I'r, continuous for the weak topology,

(ii) A I'g-equivariant Frobenius-semilinear endomorphism .
We say that D is étale if the natural map 1 ® ¢ : Ar ®ar,, D — D is an
isomorphism of A g-modules.

Denote by (¢, FR)—Modf{R the category of étale (¢, I'g)-modules over A
with morphisms between objects being continuous, (¢, g)-equivariant
morphisms of Ag-modules. Next, denote by Rep; (Gr) the category of
finitely generated Z,-modules equipped with a linear and continuous
action of Gg, with morphisms between objects being continuous and
G r-equivariant morphisms of Z,-modules.

Let T be a Z,-representation of Gg. The Apg-module D(T) =
(A ®z, T)H% is equipped with a semilinear operator ¢ and a continu-
ous (for the weak topology) and semilinear action of I'r, commuting with
each other. Moreover, D(T) is an étale (¢,'g)-module. Furthermore, if T
is free of finite rank, then D(T') is a projective module of rank = rkz T’
(see [3, Theorem 7.11]). The functor

(3.2) D : Rep;, (Gr) — (¢,T'r)-Mody .

induces an equivalence of categories (see [3, Theorem 7.11}), and the natural
map A®a, D(T) = A ®z, T' is an isomorphism of A-modules compatible
with Frobenius and the action of G on each side.

3.2. Crystalline coordinates

In this section we will introduce certain “coordinate” rings. As we shall
see in the next section, these rings are related to period rings appearing in
Section 2 and Section 3.1.
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Let rf and r,, denote the algebras Op[Xo] and Op[Xo]{X, }. Sending
Xo to @ induces a surjective homomorphism rf — O. Let R;’D denote
the completion of Or[Xo, X, X 1] for the (p, Xo)-adic topology. Sending
X to w induces a surjective homomorphism R; o = Ox{X, X1}, whose
kernel is generated by P = Pg(Xy). This proviéies a closed embedding of
Spf Ok {X, X1} into a formal scheme Spf R;D, which is smooth over
Op. Recall that R is étale over Op{X, X '} and we have multivariate
polynomials Q;(Z1,...,7Zs) € Op{X, X 1}[Z1,...,Zs] for 1 < i < s such

that det (%) is invertible in R. So we can set R}Y to be the quotient by
J

(Q1,...,Qs) of the completion of R;D[Zl, ..., Z] for (p, Xg)-adic topol-
ogy. Again, we have that det (g%) is invertible in Rt (since R — RL).

Hence, R is étale over R;D and smooth over Op. Sending Xy to w
induces a surjective homomorphism Rf — R[w] whose kernel is gen-
erated by P = P,(Xp). This can be summarized by the commutative
diagram

Spf R[w] Spf R

Spf R

l

Spf OF{X,Xil}

T

Spf O {X, X1} Spf RY o,

where the vertical arrows are étale extensions and the horizontal maps are
obtained by sending Xy + w, and the rest are natural maps. Finally, we
set Ry = p-adic completion of Rt [X%J

Next, since P = X§ mod p, we have

e = [

So, we set RED := p-adic completion of R} [%:C] EN" In summary, we have

a diagram of formal schemes where the horizontal arrows are closed embed-
dings into formal schemes smooth over O, obtained by sending X, — w
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on the level of algebras,

Spf REP

— T~

Spf R[w] Spf R,

Spf Ok {X, X1} Spf RE

Spf Ok / Spf %

Recall that P generates the kernel of the surjective map Rf, — R[w| and
divided powers of P generate the kernel of the surjective map REP — R[w].

Spf OF.

DEFINITION 3.11. — Endow the ring REP with a filtration by divided
power ideals as

Fil*REP = (P n > k) c REP for ke N.

In other words, the filtration on REYP is given by divided powers of the
kernel of REP — R[w]. Furthermore, the ring RY is endowed with the
induced filtration

Fil* Rt == RE NFil*REP = P*RE for k € N,

where the last equality follows since P generates the kernel of Rt — R[w].

3.3. Cyclotomic embedding

In this section, we will describe the relationship between RX for x €
{,+,PD} and the period rings discussed in Section 2 and Section 3.1. We
start by defining the (cyclotomic) Frobenius endomorphism on the former
rings. Over R; g define a lift of the absolute Frobenius on R; o/p by

p: R; o— R; O
Xo+— (1+X0)p—1
X;— XP, for 1<i<d,
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which we will call the (cyclotomic) Frobenius. Clearly, ¢(z) — 2? € pRY
for x € R;D. Using the implicit function theorem for topological rings [17,
Proposition 2.1], we can extend the Frobenius homomorphism to ¢ : Rf —
RE. By continuity, the Frobenius endomorphism ¢ admits unique exten-
sions ¢ : REP — RPP and ¢ : Ry, — Re.

3.3.1. The rings Agw

We will describe the (cyclotomic) embeddings of RY into various period
rings discussed in Section 2 and Section 3.1. Define an embedding

Leyel R;,D — Aint(R)
Xo —> T = <P_m(7r)>
X, — [X7], for 1<i<d.

LEMMA 3.12. — The map tcyc has a unique extension to an embedding

RY — Ai¢(R) such that 6 o ey s the projection RY, — R[w].

Proof. — We can use the implicit function theorem [17, Proposition 2.1]
to extend the embedding to teya : RE — Ai¢(R). Next, from defintions
we already have that 0 o ieye : R;,D — Og{X, X'} coincides with the
canonical projection and R is étale over R;D, hence the second claim
follows. O

This embedding commutes with Frobenius on either side, i.e. tcyc1 0 @ =
¢ 0 leyel- By continuity, the morphism iy extends to embeddings ey :
RPD s A is(R) and leyel @ R — Ag. Denote by AE,w and AR o the
image in Az of R and R respectively, under the map toyc. Similarly, let
Ag?w = Loyl (RED ) C Acris(R). These rings are stable under the action of
T'r (see [17, Section 2.5.3]). Moreover, these embeddings induce a filtration
on A% _ for x € {+,PD} and r € Z (use Definition 3.11).

Remark 3.13. — Note that we write AEW and so on instead of slightly
cumbersome notation A;[w] or simpler notation A; for S = R[w], in order
to emphasize the choice of root of unity in the definition.

We note a simple lemma that will be useful later.

to: . PD PD
LEMMA 3.14. — = is a unit in AF@, C AR@,.
Proof. — We can write the fraction

b log(1+ ) :Z(_l)k 7r

s s
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Formally, we can write

T T
SR —— R bomr2 & bamS + - - -
7 Tog(1 + ) + 017 + b + 03T + ,

where v, (bg) > ——pfl for all k& > 1. Since 7 = (1 + m,,)?" — 1, we get

that m € (p, anm)AEw (as m > 1). By induction over k, we can easily
conclude that 7 € (p, Wﬂn)kAf;Eﬂ. Using this, we can re-express the series
>, bt as a power series in 7, written as >, ¢;mi,. We need to check
that this re-expressed series converges in AIP;%. To do this, we collect the
terms with coefficients having the smallest p-adic valuation for each power
of Wf;lm in the re-expressed series. For k£ > 1, by has the smallest p-adic
valuation among the coefficients of 72"* and therefore it has the least
p-adic valuation among coefficients of 7i for p™k < i < p™(k + 1). We
write the collection of these terms as

m m Pk
63 S0 T 2]

= = e ] lpmk/e]

and by the preceding discussion it is sufficient to show that these coefficients
goto 0 as k — +o0. Moreover, for (3.3) it would suffice to check the estimate
for k = (p—1)j as j — 400 (this gets rid of the floor function above). With
the observation in Remark 3.15, we have

o (z;k V”"’“J !) = vy (i) + vp((p3))

> _e=Vi  pi=s®l) _T=sW) oy
p—1 p—1 p—1

which goes to 4+00 as j — +oo. Hence, T converges in AYP and is an

) ¢
inverse to % O

The following elementary observation was used above,

Remark 3.15. — Let n € N, so we can write n = Zf:o n;p' for some
k €N, where 0 < n; < p—1for 0 < i< k. Let us set sp(n) = Zf:onz*
Then we have

O e e

J
S R j=1i=j
k i k i
. p—1 n—s,(n
:Eni pJ:Eni _1: _pi)-
i=1  j=1 i1 P p

Also, note that we have s,(pn) = s,(n) for any n € N.
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LeEMMA 3.16. — Leti € {0,1,...,d}. Then (v; — 1)A% , C TA} , for
* c {+,PD};
Proof. — First, let i+ = 0. Then we have
T ) X(0) =1 — 1)
Tm)P" ¢ = 1) = (1 + ) (1 +7)* — 1)

ala—1) o ala—1)(a—2)
T 3 ”3+”'>:m’

(o = D7 = (14 7m) (
(

for some x € A;’w, ie (yo— 1wy, € 7TA+ . Then it follows that
(o — 1)A¥. C TA}., for * € {+,PD}.

Next, for i € {1,...,d} we have (y; — 1)[X!] = 7[X?] € WAJIQ/_@ and
(vi — (XY = —n(1+m)7 LX) € FAE’W. Therefore, we get the
claim. O

3.3.2. The ring A},

The preceding discussion works well for R[w] where w = (pm — 1 for
m € N3 (m € Ny if p=2). For R one can repeat the construction above
to obtain the period ring A%, C AE@ (the embedding RE — A ¢(R) for R
sends Xy — 7). Moreover, restriction of the map 6 gives us a surjective map
0: AE — R whose kernel is principal and generated by 7 (since fotcyc = id
on R). Next, over AJr the filtration is given as Fil A;gw = §kARw,
where { = . However, f ¢ A Therefore, we equip A}, with the induced
filtration FilkAE = AEﬂFilkAJé)w. Then describing the filtration as kernel
of the # map, we obtain

LEMMA 3.17. — Fil*Af = nF AT,

Remark 3.18. — Let AT be the ring from Definition 3.5 and AL be the
ring defined in Remark 3.6. From the definitions it follows that
Ag’w ®at AT 5 AL compatible with Frobenius and G gr-action. More-
over, we have A}, = (AT)"r and A}, _ = (AL)"r= where Hg o = Hp.
Now, if we equip AT C AL C Ajne(R) with the induced filtration, then we
see that the isomorphism A} e Oat A+ 5 Al is compatible with filtra-
tions as well (where on the left we consider the tensor product filtration).
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3.4. Fat period rings

In this section we will introduce an alternative construction of fat pe-
riod rings. This will be helpful in constructing some auxiliary rings in
the proof of Proposition 4.28. Let S and A be p-adically complete filtered
Op-algebras. Let ¢ : S — A be a continuous injective morphism of filtered
Op-algebras and let f : S® A — A be the morphism sending x ®y — ¢(x)y.

DEFINITION 3.19. — Define SA to be the p-adic completion of the di-
vided power envelope of S ® A with respect to Ker f.

Now, let S = R, RFP| where over R we consider the trivial filtration,

whereas over RCP we consider the filtration described in Definition 3.11.
Then we have,

Remarks 3.20.

(i) The ring SA is the p-adic completion of S ® A adjoined
(x®1—1®a( N, for = € Sandn € Nand (V; — DI for
S dand k € N, where V; = 1=+ (X)forl <d.

(ii) The HlOI‘phlSIIl f:S®A — A extends umquely to a continuous
morphism f: SA — A.

(iii) There is a natural filtration over SA where we define Fil"SA to
be the topological closure of the ideal generated by the products
of the form zi2o [[(V; — 1)[’“], with 21 € Fil"' S, 25 € Fil™A and
71 +T’2+Zki >r.

(iv) From [17, Lemma 2.36], we have that any element € SA can be
uniquely written as 2 = > e 2k(1 — Vi)l (1 = V) kel with
7k € Aforallk = (ki,...,ks) € NYand 2y — Oas [k| = Z?Zlki —
~+00. Moreover, an element z € Fil"SA if and only if z) € Film~ %A
for all k € N

4. Finite height representations
In this section we will study Wach modules and their relationship with
crystalline modules for crystalline representations.
4.1. The arithmetic case
Recall that we have G = Gal(F/F) as the absolute Galois group of F,

I'p == Gal(F/F) and Hp = Gal(F/Fx), where Fys, = J, F(ppn). From
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the theory of (p,I'r)-modules, we have a two dimensional local ring A g
given as the p-adic completion of O [7] [%] and Bp = Ap [%] is a complete
discrete valuation field with uniformizer p and residue field x((7)), the field
of Laurent series with uniformizer 7 (the reduction of 7 modulo p).

Next, we have certain subrings A}, :== Op[r] C Ap and B}, = A}, [zﬂ C
B, stable under the action of ¢ and I'p. Let V' be a p-adic representation
of Gp, then DT(V) = (BT ®q, V)r is a free module over the princi-
pal domain B; of rank < dimg, V', equipped with a Frobenius-semilinear
endomorphism ¢ and a continuous and semilinear action of I'p. Further,
let D(V) = (B ®q, V)* be the associated (p,I'r)-module which is a
Bp-vector space of dimension = dimg, V', equipped with a Frobenius-
semilinear endomorphism ¢ and a continuous and semilinear action of I'p.
We have a B}-linear inclusion D* (V') € D(V) compatible with the action
of ¢ and I'p. We say that V is of finite height if D* (V) is a B}-lattice
inside D(V).

Similarly, if T' C V is a free Z,-lattice, stable under the action of G,
then DH(T) = (AT ®z, T)"* is a free Af-module of rank < dimg, V,
stable under the action of ¢ and I'p (see [21, Section B.1.2]). Moreover,
D(T) = (A ®z, )" is a free Ap-module of rank = dimg, V' equipped
with a Frobenius-semilinear operator ¢ and a continuous and semilinear
action of I'p, and we have D™ (T") C D(T).

Fontaine showed that V is of finite height if and only if there exists a
finite free Bf-submodule of D(V) of rank = dimg, V, stable under the
operator ¢ (see [21, Section B.2.1] and [15, Section III.2]). Moreover, if
T C V is a free Z,-lattice as above and V of finite height, then DT (T') is
a free Af-module of rank = dimg, V such that Ap ®at D(T) = D(T)
(see [21, Théoréme B.1.4.2]).

For crystalline representations there exist submodules of D (V) admit-
ting a simpler action of I' z. Finite height and crystalline representations of
G are related by the following result:

THEOREM 4.1 ([7, 15, 37]). — Let V be a p-adic representation of G.
Then V is crystalline if and only if it is of finite height and there exists
r € Z and a Bf--submodule N C D*(V) of rank = dimg, V, stable under
the action of I'p, such that I'p acts trivially over (N/wN)(—r).

In the situation of Theorem 4.1, the module N is not unique. A functorial
construction was given by Berger:

PROPOSITION 4.2 ([7, Proposition I1.1.1]). — Let V be a positive crys-
talline representation of G, i.e. all Hodge—Tate weights of V are < 0. Let
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T C V be a free Z,-lattice, stable under the action of Gr. Then there ex-
ists a unique Ajf-module N(T) C D(T), which is free of rank = dimg, V/,
stable under the action of ¢ and I'p, and the action of I'p is trivial over
N(T)/7N(T). Moreover, there exists s € N such that =D+ (T) c N(T).
Finally, set N(V) := B}, Rt N(T'), then N(V) is a unique B--submodule
of DV (V) satisfying analogous properties.

Notation 4.3. — For an algebra S admitting an action of the Frobenius
and an S-module M admitting a Frobenius-semilinear endomorphism ¢ :
M — M, we denote by ¢*(M) C M the S-submodule generated by the
image of .

Remarks 4.4.

(i) In Proposition 4.2 for positive crystalline representations, Berger
applies Theorem 4.1 with r = 0 to define N(V) = D*(V) n
N[ﬁ]n%, where ¢ = @. Using this one can take N(7T') =
N(V)ND(T) and it can be shown to satisfy the desired properties.

(ii) Berger further showed that in the setup of Proposition 4.2, if we
take s to be the maximum among the absolute values of Hodge—
Tate weights of V', then N(T) /¢*(N(T)) is killed by ¢° and we have
that 7°A* ®z, T C A* @5+ N(T) (see [7, Théoreme IIL3.1]). The
former observation can be thought of as a finite g-height property of
Wach modules. We will impose it as one of the main conditions for
defining finite ¢g-height representations in the relative case (see 4.9).

DEFINITION 4.5. — Let a, b € Z with b > a. A Wach module with
weights in the interval [a,b] is a finite free A}-module or a Bl-module
N, equipped with a continuous and semilinear action of I'r such that the
action of T'p is trivial on N/mN and a Frobenius-semilinear operator ¢ :
N[i] = N[ﬁ] commuting with the action of I'r, p(7°N) C ©®*N and

™

7PN /o* (7’ N) is killed by ¢*~°.

Remark 4.6. — The definition of the functor IN can be extended to crys-
talline representations of arbitrary Hodge-Tate weights quite easily. In-
deed, let V € Repgis(G r) with Hodge-Tate weights in the interval [a, b]
and let T C V a free Z,-lattice, stable under the action of Gr. Then
N(T) = 7" N(T(—b)) ®z, Zy(b) is a Wach module over A}, with weights
in the interval [a, b].

As it turns out, one can recover the crystalline representation from a
given Wach module:
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PROPOSITION 4.7 ([7, Proposition I11.4.2]). — The functor
N: RepS;S(GF) — Wach modules over B},
V— N(V),

establishes an equivalence of categories with a quasi-inverse given by N
(B ®B; N)¥=L. These functors are compatible with tensor products, duality
and preserve exact sequences. Moreover, for a crystalline representation V,
the map T +— N(T') induces a bijection between Z,-lattices inside V' and
Wach modules over A}. contained in N(V').

We have a natural filtration on Wach modules given as
Fil*N(V) = {z € N(V) such that p(z) € ¢*N(V)} for k € Z.

If V is positive crystalline, i.e. all its Hodge—Tate weights are < 0, then for
r € N we have

Fil*N(V(r)) = Fil* #7"N(V) (r) = = "FilF T""N(V) (r).

Using this filtration on N(V'), one can also recover the other linear algebraic
object associated to V, i.e. the filtered ¢-module Deyis(V): Let Bj‘ig g C
F[r] denote the subring of convergent power series over the open unit

disc. Then we have Di5(V) C B;'E&F gt N(V) and this gives De,is(V) =

(Bjigf gt N(V))FF (see [7, Proposition I1.2.1]). Moreover, the induced
map

Deris(V) — (Bfiy r @51 N(V)) /7 (Bf, p @5 N(V)) =N(V)/aN(V),

is an isomorphism of filtered p-modules (see [7, Proposition I11.4.4]).

4.2. The relative case

In this section, we will introduce the notion of relative Wach modules
and study representations of finite height. Recall that we fixed m € N3,
(fix m € Nyo if p = 2) and we have K = F,;, = F((,m). The element
w = (pm — 1 is a uniformizer of K. We have X = (Xi,...,X,4) a set
of indeterminates and we defined R to be the p-adic completion of an
étale algebra over Or[X, X 1] having non-empty and geometrically integral
special fiber and R[w] = Ok ®o, R. For R and R[w], we can use the
(¢, T')-module theory discussed in Section 3.1, as well as the constructions
in Section 3.2 and Section 3.3.

Setting g = @
relative Wach modules:

and using the formulation in Definition 4.5, we define
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DEFINITION 4.8. — Let a, b € Z with b > a. A Wach module over AE
(resp. BE) with weights in the interval [a, b] is a finite projective Ag—module
(resp. BE—module) N, equipped with a continuous and semilinear action
of I'g such that the action of ' is trivial on N/wN. Further, there is a
Frobenius-semilinear operator ¢ : N E] — N [ﬁ] commuting with the
action of T'g such that p(m°N) C 7°N and 7°N/* (7 N) is killed by ¢*~°.

Let V be a p-adic representation of the Galois group G admitting a
Zy-lattice T' C V stable under the action of Gg. Then we have the finitely
generated Af-module D (T) := (A*®q,T)"*. We introduce the following
definition:

DEFINITION 4.9. — A positive finite g-height representation is a p-adic
representation V' of Gr admitting a Z,-lattice T C V such that there
exists a finite projective Af-submodule N(T') C D(T) of rank = dimg, V/
satisfying the following conditions:

(i) N(T) is stable under the action of ¢ and I'r, and A g DAt N(T) &
D(T);
(ii) The AfL-module N(T)/¢*(N(T)) is killed by q* for some s € N;

(iii) The action of 'y is trivial on N(T')/7IN(T);

(iv) There exists a R’ C R finite étale over R such that the A%, -module

A7, Rt N(T) is free.
The module N(T') is a Wach module associated to T with weights in the
interval [—s,0] and we set N(V) = N(T)[%] satisfying properties analo-
gous to (i)-(iv) above. The height of V' is defined to be the smallest s € N
satisfying (ii) above.

For r € Z, we set V(r) =V ®q, Qu(r) and T'(r) =T ®z, Zy(r). We will
call these twists as representations of finite g-height and define
1 1
N(T(r)) = FN(T)(T) and N(V(r)) = ;N(V)(r).
Since N(V) and N(T') are Wach modules with weights in the interval
[—s, 0], twisting by 7 gives us Wach modules in the sense of Definition 4.8
with weights in the interval [r — s,r]. We will say that height of V(r) =
(height of V') —r.

Remarks 4.10.

(i) In the arithmetic case, i.e. R = Op, the notion of finite height
representations in Theorem 4.1 and finite g-height representations
in Definition 4.9 are related. In fact, in the arithmetic case using
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Definition 4.9 one obtains the functorial object of Berger mentioned
above (see [7, Proposition II.1.1]).

(ii) In Definition 4.9 conditions (i), (ii) and (iii) are motivated from the
definition of finite height representations of Gr admitting a Wach
module structure. The last condition, i.e. (iv) is inspired by Brinon’s
definition of weak admissibility in the relative case (see [14, p. 136]).

(iii) In Definition 4.9 following Remark 4.4(i), one can first define Wach
module for the representation V' and then consider the module
N(T) = N(V) N D(T) associated to T. However, it is not clear
whether the latter module, defined in this fashion, is a projective
A7 -module. Therefore, we impose the condition on N(T') to be
projective, which is required in establishing several results in this
section.

4.2.1. Some properties of Wach modules

Let us note some important properties of Wach modules associated to
finite g-height representations

PRroOPOSITION 4.11. — Let V' be a positive finite g-height representation
and T C V a Gp-stable Z,-lattice. Then we have m*A" @z T C A™ ®at
N(T), where s € N is the height of the representation V.

Proof. — To show the claim, we can assume that N(7T') is free by base
changing to the period ring corresponding to the finite étale extension R’
of R. Then A* Oat, (A R4t N(T)) =A™ ®a+ N(T) is free. Since the
discussion of previous chapters hold for the p-adic completion of a finite
étale extension of R (see [14, Chapitre 2] and [4, Section 2] for more on
this), base changing to R’ is harmless. So with a slight abuse of notation,
below we will replace R’ obtained in this manner by R and assume N(7T')
to be free of rank h = dimg, V over A}

Note that by definition we have N(T') ¢ DT(T) = (A* ®, T)"r C
At ®z T.Solet A € Mat(h,AT) be the matrix obtained by expressing
a basis of N(T) in a chosen basis of 7. Also, let P € Mat(h,A};) be
the matrix of ¢ in the basis of N(T'). Then we have ¢(A) = AP and
therefore p(m°A™1) = (¢*P~1)(n*A~1). The fact that N(T)/p*(N(T)) is
killed by ¢°* implies that ¢* P~ € Mat(h, AE)7 therefore from Lemma 3.9 we
obtain that m$A~" € Mat(h, AT). Hence, we conclude that 7A* ®z, T C
At ® A% N(T). O

COROLLARY 4.12. — By taking Hpg-invariants in Proposition 4.11 it
follows that m*D*(T) c N(T).
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ProposITION 4.13. — Let V' be a finite g-height representation Gp.
The Wach module N(V) over BE is unique. Same holds true for the
At -module N(T).

Proof. — The argument carries over from the classical case [7, p. 13].
First note that we can assume that V is positive, since by definition the
uniquess of Wach module for such a representation is equivalent to unique-
ness for all its Tate twists. In this case, let N; and Ny be two AE—moduleS
satisfying the conditions of Definition 4.9 (the proof stays the same for
N(V)). By symmetry, it is enough to show that Ny C Nj. Since we have
7Ny C DT (T) C Ny (see Corollary 4.12) and Ns is m-torsion free, there-
fore for any x € N; there exists k < s such that 7%z € N, but 7z &Z TNs.
Varying over all x € N1\ wN7, we can take k < s to be the minimal integer
such that 7 Ny C Ns. Since 7%z € Ny and 'y acts trivially on Na/mNo,
we have that (yo — 1)(7*z) € TN,. So we can write

(Yo — D)(7*z) = 70(*) (v0(z) — 2) + (yo(7"*) — 7")a.
Since ' also acts trivially on N;/7N; and 7Ny Ny, we see that
Yo(m*) (y0(z) — ) € TNy, therefore (yo(7*) — 7¥)z € 7Ny, which means
that (x(70)* — 1)7*z € 7No. But 71 (x(70)* —1) if k > 1, and 7%z & 7Ny.
Hence, we must have k = 0, i.e. Ny C Ns. O

The uniqueness of Wach modules helps us in establishing compatibility
with usual operations:

PROPOSITION 4.14. — Let V and V' be two finite gq-height represen-
tations of Gr. Then we have that N(V @ V') = N(V) @ N(V’) and
NV ®V')=N(V)@N(V'). Similar statements hold for N(T') and N(T").

Proof. — We note similar to previous lemma that it is enough to show
the statement for V and V' such that both representations are positive.
By uniqueness of Wach modules proved in Proposition 4.13, it is enough to
show that direct sum and tensor product of finite g-height representations
are again of finite g-height.

First, it is straightforward to see that N(7T') & N(T") ¢ DY (T' @ T") is
a projective A jf-module of rank rkz, (T @& T”) such that Ag ®at (NT)o®
N(T")) = D(T)@D(T"). Similarly, we have that N(T)®@N(T") c DY (T'®
T") is a projective Af-module of rank rky, (T ® T") such that

Ar@,: (N(T) @ N(T')) < D(T) @ D(T").

Next, let s and s’ denote the height of representations V and V' respec-
tively and let ¢ :== max(s, s’). Then we see that (N(T)®N(T"))/¢*(N(T) &
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N(T")) is killed by ¢ and (N(T") @ N(T"))/¢*(N(T) @ N(T")) is killed by
¢**¢". Further, T acts trivially modulo = on N(T) & N(T”) and N(T) ®
N(T"). This verifies conditions (i), (ii) and (iii) for these modules. For con-
dition (iv), note that given any two finite étale extensions R’ and R” of R,
there exists a finite étale extension S over R such that S is finite étale over
R’ as well as R”. Hence, we get the claim. O

COROLLARY 4.15. — Let V be a finite g-height representation of G.
Then, for k € N the representations Sym”* (V') and A*V are of finite ¢-height.

Proof. — Note that the compatibility with tensor products in Proposi-
tion 4.14 is enough to establish the compatibility with symmetric powers
and exterior powers because then we can set

N (Sym*(T)) = Sym"(N(T)), and N (A*T) = AFN(T).
We have N (Sym"(T)) ¢ Sym*(D*(T)) ¢ D*(Sym*(T)), since
AT @41 Sym*(DT(T)) c AT ®a1 DT (Sym*(1)).
Similarly, N( NF T) c D" (/\k T). Rest of the assumptions of Definition 4.9
follows in a same manner as in the proof of Proposition 4.14. This establshes

that Sym" (V) and AFV are finite g-height representations and gives us the
corresponding Wach modules. O

4.2.2. Filtration on Wach modules

There is a natural filtration on Wach modules associated to finite g-height
representations. We will introduce this filtration next and prove a lemma
concerning this filtration.

DEFINITION 4.16. — Let V be a positive finite q-height represenation
of Gr and r € N. Then there is a natural filtration on the associated Wach
modules given as

Fil"N(V (r)) == {z € N(V(r)), such that p(z) € ¢*N(V(r))} fork € Z,
and we set Fil*N(T'(r)) == Fil*N(V (1)) N N(T'(r)), where the intersection
is taken inside N(V (r)).

LEMMA 4.17. — With notations as above, we have
(i) Fil*N(T(r)) = {x € N(T(r)), such that o(x) € ¢*N(T(r))}.
(i) Fi*N(V(r)) = Fil*7z="N(V)(r) = 7 "Fil*"N(V)(r) and simi-
larly for Fil*N(T(r)).
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Proof. — To show (i), note that for k£ < 0, the claim is obvious, so we
assume that k& > 0. Then we are reduced to showing that ¢*N(V(r)) N
N(T(r)) = ¢*N(T(r)). To prove this claim, note that it is enough to
work under the assumption that N(7'(r)) is free. Indeed, for any finite
g-height representation V(r), there exists a finite étale R-algebra R’ such
that AL, ®A;N(T(r)) is free. Since A}, is faithfully flat over A}, the claim
is equivalent to showing that AL, At (¢"N(V)NN(T)) =¢* AT, ®A;N(T)'
But one can easily obtain that

Aty ©ay (@"NOV)NN(T) = (A% @45 NV)) 0 (A @4y N(T))

(or see [30, Theorem 7.4(i)]) as submodules of A}, ®at N(V). So below
we will assume that N(7'(r)) is free over A} with a basis {f1,..., fa},
where h = dimg, V(r). Let z = Z?zl zifi € ¢*N(V(r)) N N(T(r)) with
z; € A}. Since {f1,..., fn} is also a B}-basis of N(V/(r)), we can write
z =g~ 2?21 yi fi with y; € BE. Comparing the two expressions for x we
obtain that ¢*y; = x; € AE, i.e.y; € Ag for 1 <7 < h. But this just means
that y; € BEQAR = AJIQ, therefore x; = qkyi € qkAjg for 1 < i < h. Hence,
x € ¢"N(T(r)) as desired. The other inclusion is obvious.

To show (ii), note that the inclusion 7= "Fil* ™" N(V)(r) C Fil*z~"N(V)(r)
is obvious. To show the converse let 7"z ® €®” € Fil*z7—"N(V)(r), with
z € N(V) and €®" being a basis of Q,(r). Then we have that (7 "z ®
€¥r) = ¢ " "p(x) ® " € ¢*n"N(V)(r). Therefore, we obtain that
o(z) € ¢FTTN(V), ie. z € FilFT"N(V). O

Remark 4.18. — For V = Q, the filtration in Definition 4.16 coincides
with the filtration in Lemma 3.17

Proof. — We have T = Z, and N(T) = AL and let @ = (, — 1 (let
w = (p2 — 1 if p = 2) in this proof. Since 7" A}, C Fil*N(T') (where the
term on right is the filtration in Definiton 4.16), we only need to show that
Fil*N(T) c 7*AL = A} n ¢FAT; - Let o € Af; such that o(x) = ¢*y for
some y € AL, As we have Af, C A, we can also write p(z) = ¢(£F)y €
©(ARw) C Ap,ie. y € p(Apo)NA} = @(AEW) (where the intersection
is taken inside A ). Therefore, we obtain that y = ¢(z) for some z € A;ﬁw.
Since @ : A;)w — ARW is injective, we must have z = £+z € AEOf’“AJIgAw,
as desired. O

ANNALES DE L’INSTITUT FOURIER



CRYSTALLINE REPRESENTATIONS AND WACH MODULES 419

4.3. Statement of the main result

In this section, we will relate the notion of crystalline and finite ¢g-height
representations. As we will see, we can recover the R [%]—module OD,is(V)
from the A;-module N(T) after passing to a larger period ring and invert-
ing p. We begin by introducing this ring below.

Recall from Section 1.4 that we have F as a finite unramified extenion of
Q, with ring of integers Op and we take K = F((,m) for a fixed m € N34
(fix m € N3 if p = 2). Note that the formulation of the results and proofs
depend on m and it is necessary to have m > 1 (m > 2 if p = 2) for the
discussion below to make sense.

4.3.1. The ring OA%]?W

In this section, we will work with the ring A%, _ defined in Section 3.3,
equipped with an action of the Frobenius ¢ and a continuous action of
I'g. Since we have a natural injection AE,W — Aint(R), we obtain a
G r-equivariant commutative diagram

Ah. —" s Rl

Ainf (R) 4» (CJF (

By R-linearity, extending scalars for the map 6 above, we obtain a ring
homomorphism

Or: R®y AAjL — R[ ]
send1ngX®1»—>XZ,l®[Xb]n—>Xforl i<dand 1®my, — Gm — 1.
Note that we have inclusion of ideals (£, X;®1—1®[X?], for 1 <i<d) C
Ker 0r C R ®7 A}w, where £ = X. We have AEW C Aif(R) and 6y
above is the restriction of 0p : R ®7 Amf( R) —» C*(R) (see Section 2.2.1).
So similar to OAj,¢(R) in Section 2.1.3 and OAis(R) in Section 2.2.2 we
define the following rings:

DEFINITION 4.19.
(i) Define OAEW to be 0" (pR[w])-adic completion of R @, Ang.
(ii) Let 2™ := 2" /n! for x € Ker 0. Define (’)Agl?w to be the p-adic
completion of the divided power envelope of R®ZAE,W with respect
to Ker 0g.

Note that we have (’)AE,W = OAi(R) N OAE]?W C OA.is(R).
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Taking the divided power envelope of 6 /p", note that OAE]?W /p" —
OA..is(R)/p". Since we have OAEI?W = lim,, (’)Agl?w/p” and OA,is(R) =
lim,, OAis(R)/p™, and (projective) limit is left exact, it follows that for
the p-adic completion of divided power envelope of §r, we have OALP R C
OA ..is(R). Now, over the ring (’)A 2 we can consider the induced action
of I'r under which it is stable, and 1t admits a Frobenius endomorphism
arising from the Frobenius on each component of the tensor product. In
particular, from the diagram above we obtain a G g-equivariant commuta-
tive diagram

OAPD %" Rlw]

I

OA..is(R) L TN C*(R).

Note that the left vertical arrow is Frobenius-equivariant.

Next, we will give an alternative description of the ring OA%PW. Let T =
(T1,...,Ty) denote a set of indeterminates and let Ais(R)(T)" denote the
p-adic completion of the divided power polynomial algebra A .is(R)(T) =
Ais(R) [T‘["]7 n € N, 1 < i < d]. Recall from Section 2.2.2 that we have

1
an isomorphism of rings

fcris : Acris(R) <T>/\ ;> OAcris(E)
T— X;®1-10[X)], for 1 <i<d.
Now recall that A%]?w is the p-adic completion of the divided power enve-

lope of the surjective map 6 : A};w — R[w| with respect to its kernel (see
Section 3.2). Next, let A%PW<T>A denote the p-adic completion of the di-
vided power polynomial algebra A%PW<T> = A%l?w [Ti["], neN, 1<i<d].
Then via the isomorphism fFP (see Lemma 4.20 below), we will show that
the preimage of OAEI?w7 under fes is exactly A%I?w<T>A. In other words,

LEMMA 4.20. — The morphism of rings
fPD : AE]?W<T>A — OAI%PW
Ti— X, 1 —-1®[X]], forl<i<d,
is an isomorphism.

Proof. — The proof follows [14, Proposition 6.1.5] closely.
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Recall that we have a surjective ring homomorphism 6 : AE]?W — R[w],
which is the restriction of the map 0 : Aqis(R) — CT(R) defined in Sec-
tion 2.2. This can be extended in a unique manner into the homomor-
phism 6 : A.is(R)(T)" — CT(R). Restriction of the latter map gives us
0: ARD (T)" — R[w] such that H(Ti["]) =0forl<i<dandn>1.

First, we will show that the Op{X*!}-algebra structure on A%Pw (THy™
given by X; +— [X?] + T;, extends uniquely to an R-algebra structure.
Let A = (Eng/fpflEEw)[Tl, LT /(T ..., TY). We have a surjec-
tive map 6 : AE,w — R[w] and its reduction modulo p is given as 0 :
EE’W — R[w]/pR[w]. Since & = 7P~ mod p, where ¢ = 7 is a genera-
tor of Ker 6 C A}w, we obtain that @ factors as 0 : EE’W/%I’_lEEw —
R[w]/pR[w]. This can be extended to a map 6 : A — R[w]|/pR[w] by
setting é(Tl) =0 for 1 < i < d. The kernel T = Ker § C A is gener-
ated by £ = %11771 mod p and {7} }1<i<q- Now from the natural inclusion
R/pR — R[w]/pR[w] and the isomorphism A/Z = R[w]/pR[w=] via 0, we
obtain a map g : R/pR — A/Z such that g(X;) = X;, which is the image
of X! € A under the map 6. So we obtain a commutative diagram

KXE] — 5 A

A
_ p
-
g -
-
.
B
P
.
.
.
.

R/pR —— A/T

where the top horizontal arrow is the map X; +— Xi? + T;. Note that
ZW@+r = (. Since R/pR is étale over x[X*!], there exists a unique lift
of g: R/pR — A/Z to a homomorphism g : R/pR — A (which we again
denote by g by slight abuse of notations).

Further, by the description of divided power envelope in [14, Proposi-
tion 6.1.1] we have that

AJI%,w[YO’ Yi,.. ]/(pYb — &P pYnq1 — Yf)ngl = AE{Dw
gpn+1

Y, — sy

Therefore,
(Ef /T EL L)Y Y1, /(YD) nz1 — ARl /DAL
Similarly, we have that AE]?W<T> is isomorphic to

(AR%IT, ., T [Ti0, Tins - )/ (0Ti0 = T, pTingr — T, ) 1<i<d, neN
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Therefore, A}%Dw (T) /pAE]?w<T> is isomorphic to
(AR /PARTY, - Tl[Ti0, Tin, - 1/ (TP, TP, )1<i<d, nen-
In conclusion, we have
A[YOa Yla s aTi,Ov Ti,lv < ]/(Yn ) Tz n)1<i<d7 neN L> AZ]PW<T>/pA§]?w<T>

From the discussion above we obtain a natural map of x[X*!]-algebras by
composition g; : R/pR — A — A%l?w <T)/pAE-£ﬂ<T>.
Now let n € N, then modulo p™ we have a natural map

Op{XF1}/p"Op{X*1} — ARD(T) /" ARL(T).

Again, since R/p" R is étale over Op{X*!}/p"Op{X*!'}, we have a unique
lift of g, : R/p"R — ARD_(T)/p" AR (T) in the commutative diagram

Op{X*1}/p"Op{X*1} ——— ARD(T)/p"AR2(T)

R/p"R - AR AT) /PAR(T).

Via this lifting, the following diagram commutes

Rfp™ R~ AR (T) /5 ARD(T)

J |

R/p"R ———— ARD (T)/p" AR (T),

where the vertical arrows are natural projection maps. From the universal
property of inverse limit of the right side of the diagram, we obtain a natural
map of Op{X*!}-algebras

Now, let § : ARD <T>/pAE]?w(T> — R[w]/pR[w] denote the reduction
of § modulo p. Recall that by construction, # o g is the inclusion of R/pR
in R[w]/pR[w]. Therefore, the reduction modulo p of # o g and the natural
inclusion R — R[w]| coincide. As R is p-torsion free, arguing as above we
get that for each n € N, the natural inclusion and 6 o g coincide modulo p™.

Next, by AJ}g,w—linearity, g can be extended to a map g : R®o, A};w —
ALD_(T)". From the discussion above and the definition of 6r, we have
that 6 coincides with the homomorphism fog: R®o, AEW — R[w]. In
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particular, g(Ker 0r) C Ker 6 C A%]?w (T)". Since Ker 0 contains divided
powers, the map g extends to a map

g: (R®op Ap.w) [z, 2 € Ker Og,n € N] — A%PW<T>/\.

Finally, since ARD_(T)" is p-adically complete, g extends to a map g :
OAZ]?W — A%Pw (Y.
Now by uniqueness of g : R — Agl?w (T)Y™, the composition

OARD 25 ARD (1)n L, 0ARD

coincides with the identity over R ¢ OAEP . Since it also coincides with
identity on the image of A;ng (by Agw—linéarity), we obtain that fFPog =
id over OAIP;BW. Similarly, the homomorphism g o fP coincides with iden-
tity over AE’;U as well as over Op{X*!} (since g lifts the map Op{X*!} —
ARD(T)"), therefore it is identity over AR (T)". This establishes that
fFP is an isomorphism of rings. O

Remark 4.21. — We can give an alternative construction of the ring
OA%]?W. Note that we have a ring homomorphism ¢ : R — A%{)w, where
X; + [X?] for 1 < i < d. As in Definition 3.19, we define a map g :
R ®7 Algl?w — A%I?w, where x ® y — «(x)y. We obtain that Ker g =
(Xi®1—-1®[X!], for 1 <i<d) CKer g C OAcs(R). Since R®y, AR,
already contains divided powers of &, from Definition 4.19 we obtain that
the p-adic completion of the divided power envelope of R ®z A%Pw with

: PD
respect to Ker g is the same as (’)AR’w.

There is a natural filtration over (’)A%]?w by I'g-stable submodules:

b
DEFINITION 4.22. — Let U; = 1;?%1]

the filtration over OA%{)W as

for 1 < i< dandr € Z, define

d
FierAPR]?w = <(a ®0b) H(Ul — 1kl g OA}P;PW, such that

i=1

a€RbeFVARY andj+ ) ki > r>.
i

Remark 4.23. — The filtration over AR (via its identification with
RPD | see Section 3.3 and Definition 3.11) coincides with the filtration

W

induced from its embedding in A.s(R). Indeed, in both cases we have
Fil'ARD = (¢M, k < r) ¢ ARR, for r > 0, whereas Fil"ARD = ARD.
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for r < 0. Next, the filtration on OAis(R) is defined as the induced filtra-
tion from its embedding inside OB (R) and the filtration on the latter
ring is given by powers of Ker 0 (see Section 2.1 & 2.2 for definition and
notation). The induced filtration over O Ais(R) is therefore given by di-
vided powers of the ideal Ker fp C OA;s(R). Since the filtration over
OAIP}]?W in Definition 4.22 is again given by divided powers of the ideal
Ker 0 C OA%PW, we infer that this filtration coincides with the one in-

duced by its embedding into OAis(R).
LEMMA 4.24.

i) The action of T' o is trivial on OAYPL /x whereas T'r/Tr.o acts
> R,w s

trivially over OAEPW /T
(ii) We have (OALP '# = R and (Fil' OALP) = = 0.

Proof.

(i). — The first part follows from the definition of OAEPW and the
action of I'g o on ALY (see Lemma 3.16). The second part follows from
observing that I'r/Tr.o = I'r/Tk is a finite cyclic group of order [K :
F] =p™Y(p—1), and a lift g € T'r of a generator of ['g/Tr » acts as
9(mm) = (1 + 7 )X — 1.

(ii). — This is straightforward, since
Gr

RC (OARR )™ c (OALi(R)“™ =R
and
(Fil'OATPY'® © (Fil' OBgis(R)) 97 C (Fil'OBgr(R))" = 0
(for last equality see the proof of [14, Proposition 5.2.12]). O

Next we consider a connection over (’)AIP;]?W induced by the connection
on OAis(R),
9: OARP, — OALP @ Qf,
where we have 9(X; ® 1 —1® [Xib])[n] = (X;®1-1®[X]) dX;.
This connection over (’)A%]?w satisfies Griffiths transversality with respect

to the filtration since it does so over OA is(R).

[n—1)

4.3.2. Main result
THEOREM 4.25. — Let V be a positive finite q-height representation of

GR, then

(i) V is a positive crystalline representation.
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(i) Let M = (OARY, Dpt N(T))FR, then after extending scalars to

OAIP;]?W and inverting p, we obtain a natural isomorphism
11 ~
OARD, ®@r M m — OALL, @51 N(V),

compatible with Frobenius, filtration, connection and the action of
I'r on each side.
(iii) We have an isomorphism of R[%] -modules
~ PD e [1
ODerio(V) < (OARD, @51 N(T)) S|
compatible with Frobenius, filtration, and connection on each side.

Therefore, we obtain a comparison isomorphism
OAL, @r ODais(V) — OARD, @5+ N(V),

compatible with Frobenius, filtration, connection and the action of
I'r on each side.

Remark 4.26. — The statement of Theorem 4.25 can be seen an ana-
logue of the result of Berger [7, Proposition II.2.1] (see the discussion after
Proposition 4.7).

Recall that from Definition 4.9 any finite g-height representation is a twist
of a positive finite g-height representation by Q,(r), for r € N. Since twist
by Q,(r) of crystalline representations are again crystalline, we obtain:

COROLLARY 4.27. — All finite g-height representations of G are crys-
talline.

The proof of Theorem 4.25 will proceed in two steps: First, we will de-
scribe a process by which we can recover a submodule of ODy,5(V) starting
from the Wach module (see Proposition 4.28), here we establish the com-
parison displayed in (ii). Next, the remaining claims made in the theorem
are shown by exploiting some properties of Wach modules and the compar-
ison obtained in the first step.

In Section 4.6, we will explicitly state the structure of Wach module
attached to a one-dimensional finite g-height representation and we will
also show that all one-dimensional crystalline representations are of finite
g-height and one can recover ODy¢,is(V) starting with the Wach module
N(V). Combining this with the theorem above, we will obtain that the
notion of crystalline representations and finite g-height representations co-
incide in dimension 1.
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4.4. From (p,T")-modules to (p,d)-modules

The objective of this section is to prove the following:

PROPOSITION 4.28. — Let V' be an h-dimensional positive finite q-height
representation of Ggr, T C V' a Zy-lattice of rank h stable under the action
of Gg and N(T') the associated Wach module. Then

(i) M= (OAR", Rt N(T))FR is a finitely generated R-module con-
tained in OD¢is(V).

(i) M [%] is a finitely generated projective R[%] -module of rank h and
the natural inclusion

1
OARD ®r M M — OARY, ®ar N(V),

is an isomorphism compatible with Frobenius, filtration, connection
and the action of I'g.

(iii) If N(T) is free over A}, then there exists a free R-module My C M
such that My [ﬂ = M[%] are free modules of rank h over R[%].

Proof. — We will use the notation of Definition 4.9 without repeating
them. The first claim is easy to establish. Since Hr = Gal(}?[%]/Roo [%]),

therefore M = (OA%{DW ®at N(T))FR is contained in

(OAZPW @p; DF(T ) c ( aris(R) 7 @ 5+ D+(T)) e
(4.1) C(OAms " @as (AT @, T )FR’
C (OAuis(R) @2, T)" € ODeis(V).

The module ((’)Ams( ) ®z, T) Gr s finitely generated over R. Since R is
Noetherian, M is finitely generated.

Independently, we have that R[%] is Noetherian and ODs(V) is a
finitely generated R[%]—module7 therefore M [%}] C OD,s(V) is finitely
generated over R[%] . Moreover, the module (’)A%Pw ® At N(T) is equipped
with an A%l_)w—linear and integrable connection dy = 0 ® 1, where 0 is
the connection on OALP. described after Lemma 4.24. Therefore, we can
consider the induced connection on M [%]7 which is integrable since it is
integrable over OA%?W DAt N(T). This connection is compatible with the
one on OD¢is(V) since the connection over OARY_is induced from the
connection over OAs(R). So by [14, Proposition 7.1.2] we obtain that

M[%] must be projective of rank < h. Furthermore, the inclusion M[lﬂ C
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ODy,is(V) is compatible with natural Frobenius on each module since all
the inclusions in (4.1) are compatible with Frobenius.

Next, we will show that the rank of M [%] as a projective R[%]—module is
exactly h. But first let us prove that it is enough to show that the rank is h
after a finite étale extension of R. Let us consider R’ to be a finite étale ex-

tension of R such that the corresponding scalar extension A}, ® At N(T) is
a free module of rank & (see Definition 4.9) and R’ [1%] /R[}ﬂ is Galois. The
discussion of previous chapters hold for R’ (see [14, Chapitre 2] and [4, Sec-
tion 2] for more on this). In particular, for R'[cw] we have rings AL, AE,,W,
AP, and OALP . Let R/, []ﬂ denote the cyclotomic tower over R’ [%]

1 1
T'r = Gal (Réo |:p:| /R/ |:p:|) and Hp = Ker (GR/ — FR/).

Similarly, we have Galois groups I'g: and Hps. Let us define

6= (. 5] e |] ) = ot () 1] i 1)
ou(e L)

then we have that Hg /Hp' o = Hr/Hpr = G’'. So we obtain that
A; — (A+)HR _ ((A+)HR/)HR/HR/ _ (A;,)G,.

Moreover, for the base ring R[w] (instead of R) one can consider the ring
Al as in Remark 3.6. Then we have

AE,w — (A:_S)HRW _ ((A;)HR,,W)HR’W/HRI’W _ (AE“W)G’.

From these equalities and the description of the action of I'g on £ = Wll, it

is clear that
A%l?w = (AIP}?W)G , and therefore OA%]?W = (OA%?w)G .
Now, since N(T') is projective and G’ acts trivially on it, we obtain that

(OARP @ar (Afy @as N(T))” = OARD @, N(T)

G/
1 1
((OAE?W QR (R’ ®r M L;D) =O0AY, @r M u .

In particular, base changing to AE, to obtain N(T') as a free module is
harmless. For the convenience in notation, below we will replace R’ ob-
tained in this manner by R and assume N(T') to be free over AE.

In order to show that the rank of M [%] is at least h, we will find I g-fixed
elements of OAE]?W @At N(T) corresponding to a basis of N(7'), which are
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linearly independent elements of M [%] . To carry this out, first we will define
several new rings following [37, Section B.1] and examine their relation with
OAPR]?W. After extending scalars of N(7T'), we will define differential oper-
ators on the obtained module, corresponding to the topological generators
of T'r. Next, for any element of N(T"), we will write down a corresponding
element killed by the differential operators, i.e. an element fixed by I'g.

Remark 4.29. — Note that the I'p-fixed elements of OAPD DAt N(T)
can be obtained by successive approximation as well. This computatlon
was carried out in [1, Section 3.2.3].

4.4.1. Auxiliary rings and modules

For n € N, let us define a p-adically complete ring

k
57D M{ i ””m}
i) 21p2n ’ k!pkn’

Let L[f} denote the ideal of SED generated by ﬁzn for k > ¢ and we set

(4.2) SPD lim SPP /1l

Note that §ED is p-adically complete as well. Further, note that we can
write ¢(7) = (1 4+ )P — 1 = 7P + pra for some = € A}, therefore

o) (@ tpme)t S ()T m)
k l(n(p—l)—p) ahH(p—1)i k=i
€ SPD

k n— n—1
= N G DT

Using this, the Frobenius operator on S can be extended to a map ¢ :

§5D SSDD which we will again call Frobenius. The ring §5D readily

admits a continuous action of I'p which commutes with the Frobenius.
LEMMA 4.30. — The ring §(1)3 is a subring of ARW, and therefore
" (SP) € ARE..
Proof. — The first claim is true because we have

i i—1 .
7 =7 mod pA} __, which gives 7} ="  mod p'A} _.
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So for k > p* we can write

ﬂ.k _ fkﬂ'k Ek

Ok R

e (k) ghtr
ip a7T1 E p 71—1 k!pz 1 (kJr - 1)

. (ﬂ-pi—l + pla)

€ pl 1AFw7

for some a € A;w Therefore, we get that Ij '] C pi_lA%Pw and hence

§P D APD The second claim is obvious. O

In the relative setting, we need slightly larger rings. Let us consider the
Op-linear homomorphism of rings

t:R— SFP

X — [X]] for 1 <j<d.

Using ¢ we can define an Op-linear morphism of rings

[ R®o, §PD — :S'\TF:D

n

a®br— (a)b.

Let O§5D denote the p-adic completion of the divided power envelope
of R ®o, §5D with respect to Ker f. Further, the morphism f extends
uniquely to a continuous morphism f : (9§5D — S\f D Now, it easily fol-
lows from the discussion in Section 3.4 that the kernel of the morphism f is

generated by divided powers of the ideal generated by (1 —Vi,...,1—Vy),
X;®1

1®[X"] for 1 < j < d. The Frobenius operator extends to

where V; =

OSPP as well as the continuous action of I'r. From the discussion above
we have ¢ (S/HD Dy ¢ §P D c APD , and following the description of OS
in Section 3.4 and of (’)A}P}Dw from Remark 4.21, we obtain that

OSEP c OALD. and " (OSEP) c OARYD

Moreover, we have a canonical inclusion of §5 OS compatible with
all the structures.
Now let us take n € N3 and consider the ring (93’5 D below. Set

J = (;,11/1,...,1%) c 0§D,

and its divided power inside (9§5D as

) [ko] _& d
JUl ;:<7r [Ta—vkl, (ko,kl,...,kd)eNd“wi‘chij>z‘>.

nk}o
p j=1 Jj=0
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By construction of O§5D, it is clear that a summation ZiEN r;a; with a; €
Jl and x; € SPP goes to 0 as i — +00, converges in OSLP. Moreover, ev-
ery x € OggD has a presentation as x =) ) cnat1 xk% H;l:l(l — V)l
where xx € A}, goes to 0 as |k| = > kj — +oo.

Next, we set

ONP = OS;P @+ N(T).

Again, ONPP is p-adically complete and it is equipped with a Frobenius-
semilinear operator ¢ : OSFP Dat N(T) — OSFD, At N(T) and a
continuous and semilinear action of I'r. Now recall that we fixed m € N3,
(fix m € Ny if p = 2) such that K = F((,m). So we take

M’ = (ONEPY'™ and M” = (M")'r = (ONFP)"".

Since we assumed N(T') to be free, therefore ONPP is a free (’)S’\TF;D-module
of rank h. As we have o™ (OSFP) ¢ OARD, so we get that "™ (M") C

(OAR", Dt N(T))FR = M. Therefore, to show that the R[%]—rank of
M[%] is at least h, it is enough to show that for each x € N(T') there
exists unique 2/ € M” € ONEP fixed by T and « = 2" mod JIMONPP

(see Lemma 4.43).

4.4.2. Infinitesimal action of I'p

From Section 3.1 recall that we have {v,71,...,74} as a set of topological
generators of I'g such that {y1,...,74} generate I'y topologically, and ~ is
a lift of a topological generator of I'r where v¢ = ~q is a lift of a topological
generator of I'e, e = [K : F] and x(y0) = exp(p™) where we fixed m € N3,

(fix m € N>y if p = 2). Further, we have the identity yo7y; = A X(0)

g for
1 < i < d. In this section we will study the infinitesimal action of I'r on

the rings and modules constructed in previous section.

LEMMA 4.31. — Let k € Ny n > m and i € {0,1,...,d}. Then (vy; —
D™, mFSEP C (pm,m)MEEP.

Proof. — First, let ¢ = 0. Recall that we have x(y9) = exp(p™) =
1+p™a€l+pmZ,. So we can write

(Yo — D = (1 +m)*X) — (1 + )

<X(’Yo)7r + X(WO)(XQ(!PY()) — 1)7T2 +- ) -7 = (x(yo)u—1)m,

ANNALES DE L’INSTITUT FOURIER



CRYSTALLINE REPRESENTATIONS AND WACH MODULES 431

for some u = 1+7x € 1+ WAE. Therefore, x(vo)u — 1 = p™a + 7z +
pmarx € (p™,m)A}, which gives us that (yo — 1) € (p™,m)TAL. Now
we have (v — 1)A}, C m#A}, C (p™,m)A}, so proceeding by induction
on k > 1 and using the fact that 79 — 1 acts as a twisted derivation (i.e.
(vo—1D)ay = (o — 1)z y+70(2) (70 — 1)y for z,y € A}), we conclude that

(o = D)™, m)* AL C (p™, ™)1 AL

Next, any f € SPD can be written as = 2 sen fsﬁ such that

n

fs € AE goes to 0 as s — +00. Clearly we have

s Su® — 1) o~
('YO _ 1) ; _ (X(VO) ) c ( m7ﬂ,) ED
s.pns s!pns Slpns

s

Combining the discussion for AE and # using induction on k£ > 1 and

ns 9y

using the fact that y — 1 acts as a twisted derivation, we conclude that
(o — (@™, ™) S < (p, m)F ISP
Finally, for i € {1,...,d} we have (y; —1)[X}] = n[X}] € (p™,7)A}, and
(vi—1)([X?]7Y) = —m(14+7) "L [X?] ! € (p™, ) A} Again by induction on
k > 1 and using the fact that v; — 1 acts as a twisted derivation, we get that
(vi = D™ m* AR C (0™, 1) AL

Now any f € :9\513 can be written as f = ) fs# such that fs € AE
goes to 0 as s — 400, and ~; acts trivially on 7 for 1 < i < d, so we
conclude that

(v = D™, SR C (o, m) ISP, O
LEMMA 4.32. — Forn > m and ¢ € {0,1,...,d} the operators

k(%‘*l)kﬂ
E+1 7

Vi=logy, =y (-1)

keN
converge as series of operators on §§ D,
Proof. — From Lemma 4.31, we have that for K € N
(3 = D™ 28 C (o, m) ISP,

Therefore, using the fact that v, — 1 acts as a twisted derivation (i.e.
(vi — Dy = (vi — D -y + vi(z)(y — Dy for 2,y € SPP), we obtain
that for x € SPP

(4.3) (i — D) (2) € (p™, m)FH1SED.
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§PD

n

Vi(z) = Z(_l)km.

P k+1

Therefore, the following series converges in

This allows us to conlcude. O

Remark 4.33. — Note that I'r acts trivially modulo 7 on AE. Therefore,
we also get that it acts trivially modulo 7 over gED. Hence, for 0 < i < d
we have V;(SFP) ¢ 78PD = t5FP | where the last equality follow from the
fact that £ is a unit in SEP (see Lemma 4.35 below).

Remark 4.34. — The operators V; for 0 < 7 < d, defined in Lemma 4.32,
describe the action of the Lie algebra Lie T'r on SEP, ie. V; acts as a dif-
ferential operator on SEP.

LEMMA 4.35. — % is a unit in :S'\SD for n > m.

Proof. — We can write the fraction

t  log(l+m) e T
L= BT NT(1 .
0 0 Z( ) k+1

k>0

Formally, we can write
s ™

S bort2 4 bamtS 4 - - -
t  log(l1+m) 0 D1 B2 o+ b e

where by = 1 and v, (bg) > 7p751 for all k > 1. But rewriting the series as

a power series in kf;)ﬁ, we get that

k
™ ™
R 1,k
+ Z biklp klpnk”
keN

The p-adic valuation of coefficients in the series above is given as

p—2
p—1

—k
vy (bik!p™) > pT1 + nk +vy(k!) = nk + v, (k!),

s i QPD .
, § converges in 5, and is

an inverse to £. O

which clearly goes to 400 as k — 400. Hence

Now let us consider the ring (9:5'\5 D and divided power ideals

ko] 4 d
i ™ . . .
J = <pnk0 1=Vl k= (ko, k1, ..., ka) €Nl with Y " k; >z> :
j=1 j=0
Arguments similar to Lemmas 4.31 and 4.32 show that for 0 < i <

kbt
E+1

O§5D. Moreover, from Remark 4.33 we obtain that for 0 < i < d, we have

d the series of operators V; = logvy; = >, y(—1) converge over
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V:(OSPD) c tOSFD. Also, it is easy to observe that we have Vo(t) =

log(x(70))t = p™t and V,;(V;) = tV; for 1 < ¢ < d. Finally, recall that

Yiv; = v5v for 1 < 4,5 < dand vy = %X(%)'yo, therefore we conclude that

Vi, V;] =0,
[Vi, Vo] = log(x(70)) Vi = p"'V;.
Now we will adapt the discussion above to scalar extension of Wach

module N(T) to OSFP, i.e. for ONFP .= OSPD ®at N(T).

LEMMA 4.36. — Forn > m and i € {0,1,...,d} the operators

; — 1 k+1
keN

converge as series of operators on ONPP.
Proof. — For 0 < i < d, observe that v; — 1 acts as a twisted derivation,

i.e. for a € OSFP and z € N(T), we have

(vi = D(az) = (vi = Da -z +v(a)(vi — 1)z
The action of T'g is trivial on N(7)/7IN(T'), so we can write (v; —1)x = 7y,
for some y € N(T), i.e. (y; — 1)ONEP C (p™, m)ONEFP. From the proof of
Lemma 4.32 and (4.3) and induction over k > 1, it follows that

(v = D™, m*ONP € (™, m)* T ON,P.
Next, using the fact that v; — 1 acts as a twisted derivation, we obtain that

(7 — 1) (az) € (™, m)*TTONEP.
Therefore, the following series converges in ONPP
k(i = D) (az)

Vilaz) = Z(—l) )

keN
This allows us to conlcude. [l

Remark 4.37. — Note that I'r acts trivially modulo 7 on (’)§5D and
N(T). Therefore, we also get that it acts trivially modulo 7 over ONLP.

Hence, for 0 < i < d we have V;(ONFP) c tONFP = tONFP | where

the last equality follows from the fact that £ is a unit in O§5D (see

Lemma 4.35).

Again, over ON'P we have
Vi, V] =0,
[Vi, Vo] = log(x(70))Vi = p™ V3,
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which enables us to define differential operators 9; over ONFP using the
formula
9 — —t_lvO for i =0,
' =Wy, for 1 <i<d,

where V; = n ®1[%] for 1 < ¢ < d. Note that 9; is well defined since

(ONPD) C tONPP (see Remark 4.37).

LEMMA 4.38. — Forn > m, the differential operators defined on O NP
commute, i.e. 9;00; = 0j00; for 0 < 4,5 < d.

Proof. — From above we have [V;,V,] = 0 for 1 < i,j < d, whereas
Vo, V] =p™V,, for 1 < i < d. So it follows that over (’)NPD we have the
composition of operators

tQV;‘/}(al 9] 8j — aj 9] 81) = tV;al o thc“)j — thaj o tVZ&
=V;0V; =V;0V; =0, for1<4,j<d.
Next, for 1 < i < d, we have
VooV, —=V,;0Vy=—tdyo (tV;0;) + tV;0; o (t0y)
= —p"tV;0; — t*V;0y 0 8; + t2V;0; 0 O,
= pmVi - tQVI((?O ] 8,» - 81- o 80)
In particular, 9; 0 9; —9; 0 9; = 0 for 0 < i,j < d since ONFP is t-torsion
free. O

For the rest of the section, let us now assume n = m.

LEMMA 4.39. — Let 1 < ¢ < d and = € N(T), then we have that
OF(x) — 0 in ONEP as k — +oo.

Proof. — First, let us note that since 0;(V;) = 1, 8 (V;) =0for j #i
and 9;(m) = 0, so we have that 9”(OSEP) ¢ pOSEL. Moreover, an easy

m
computation shows that for € N(T") we have

0i(p(x)) = W%x» _ so%(x))

= pVP ' p(8i(x)) € OSLP oat) PN(T)),
where note that we have

#(0:(@)) € ¢ (OFER, @5 N(T)) € OFEP @, a5 ¢(N(T)

since 9;(x) converges over OSm+1 Dat N(T) by Lemma 4.36.
Next, from Definiton 4.9 recall that we have ¢*N(T) C ¢*(N(T)). Let
us write ¢°z = Z;.Lzl a;jp(e;) for a; € AL and {e1,...,en} an Af-basis of
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N(T). Then it follows that 97 (¢°z) € pqS(O:S’\ﬁLD ®pat) ¢(N(T))), there-
fore 0F(z) € pﬁ(’)gf@D ®p(at) ©(N(T))). By induction on k we see that
"k (z) € p* (OS§D®¢(A;)¢(N(T))) C p*ONEP and the claim follows. [0

Remark 4.40. — Note that one can recover the action of v; using the dif-

ferential operator ;. For i € {1,...,d} we have v; = exp(tV;0;), whereas
for i = 0 we have vy = exp(—t0y).

From the remark above it is clear that for 0 < i < d and x € ONEP we
have 7;(z) = z if and only if 9;(x) =0

LEMMA 4.41. — For any x € N(T) there exists a unique 2" € ONEP

such that
"=z  mod JHONEP,
vi(a") =a" for0<i<d.

In particular, " € M" = (ON,I:LD)FR

Proof. — For x € N(T'), we set

= 0to-odyi(x)(1 - V)l (1 - Vylkd € ONJP
keNd

The summation converges since for 1 < i < d we have that ak" ) 81“ <e-0
oM (x) — 0 as |k| = Zl 1 ki = o0 from Lemma 4.39. Note that we have
an isomorphism of rings SPD (OSPD)FR’ Compatlble with FR/FR/ =

I' 7-action. Therefore, by the description of Sm n (4.2) and since 2’ €
(ONEP)TR we see that the following sum converges

Since the differential operators on ONFP commute by Lemma 4.38, we get
that

= > Arodforodi(a)
keNd+1
tlkol

(L= R (= € ONP

By the definition of z” it is clear that 2 =  mod JIMONPP. Next, using

the fact that 9; 0 9; = 9; 0 9; for O i, j < d (see Lemma 4.38) as well as
O(t) = —pm and 0;(V;) =1for 1 < d it is easy to deduce that 9;(z") =
0 for 0 <7 < d. So by Remark 4. 40 we get that v;(2") = 2’ for 0 < i < d.
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Uniqueness of z” follows from Lemma 4.43. Finally, let ¢ € T'r be a
lift of a generator of the cyclic group I'r /T k. Then we have that g(z”) €
ONPP satisfies the conditions of the claim (since (¢ — 1)z € 7IN(T) C
JUONPDP). But by uniqueness, we obtain that g(z”) = 2", ie. 2" €
(ONED)® — pp7. 0

Remark 4.42. — Note that the lemma above can also be obtained by a
“successive approximation” argument (see [1, Lemmas 3.33 & 3.37]).

Following claim was used above:

LEMMA 4.43. — For any x € N(T) suppose there exists 2 € ONFP
such that

"=z  mod JHONEP,
vi(x")=2a" for0<i<d.

Then " is unique.

Proof. — Let {f1,..., fn} denote an AE—basis of N(T)). Then {f1,..., fn}
is also an OSYP-basis of ONFP. Now using the formula in (4.4), for all
1<i<hlet

tlkol
Ji= 2 000000y () S (L= V)R- (1= Vo)) € ON,P.
keNd+!
We want to show that {f{’,..., f//} also form an OSPD basis of ONPP

Let us write f/' = f; + 2?21 a;jfj with a;; € JUOSPD and let A =
idp, + (ai;) € Mat(h, O@P;D) denote the h x h matrix thus obtained. We
have that det A = 1+ = with z € J[”O:S'\,IZD and 1 —z +a2?—23+4 ... =
S nen(=1)"nlzl" converges in OSEP as an inverse of 1 + z, i.e. det A is
invertible in OSEP. Therefore, {f/, ..., '} form a basis of ONFP.

Now for any « € N(T'), writing = Z?zl z; f!' and plugging into the
formula (4.4) we obtain z” € ONEFP such that 2” = 2 mod JIMONPP

and v;(z”) = 2" for all 0 < j < d. By linear independence of {f{’,..., f/}
over OSPD we obtain that z” is unique. O
Remark 4.44. — The uniquess claim can also be established by a “suc-

cessive approximation” argument (see [1, p. 63- 65]).
LEMMA 4.45. — We have OSIP @p M" 5 OSIP @, N(T).

Proof. — Let {fi,..., fn} denote an A}-basis of N(T)). Then {f1,..., fn}
is also an OSPP-basis of ONEP. From the proof of Lemmas 4.41 & 4.43

we have f/’ € M"” for all 1 < i < h, such that {f{,..., f/} also form an
OSPP_basis of ONFP. Therefore, OSYP @ M" = ONEP. O
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4.4.3. Finishing the proof of Proposition 4.28

Recall that at the beginning of the proof we assumed N(T) to be free
of rank h (after extension of scalars to A, which we again wrote as A%
by abusing notations), therefore ONFP is free of rank h. Further, we have
M = (OA%)W ®at N(T))FR and since M[%] is equipped with an inte-
grable connection, it is projective of rank < h (see the beginning of the
proof). So applying Lemma 4.41 to a basis of N(T'), we obtain that the
rank of M[%] as an R[%]—module is exactly h.

Next, we want to show that the natural inclusion OARD ©r M [%] —
OA%PW Dat N(V) is bijective. To show this claim, we require the following
lemma:

LEMMA 4.46. — We have a natural isomorphism
" (OARD, @,: N(V)) = (OARD, 0, N(V)).

Proof. — Recall that we are working under the assumption that N(V)
is free and by definition of a positive finite ¢-height representation we have
that the cokernel of the inclusion *(IN(V)) — N(V) is killed by ¢® where
s € N is the height of the representation V. Extending scalars to OAR"_,
we obtain that the cokernel of the inclusion ¢* (OAIP}]’DW ®pt N(V)) —
(OA%PW Bpt N(V)) is killed by ¢°. Now note that we have g = @ =
p(p(%)% where % is a unit in A%{Dw (see Lemma 3.14), i.e. p and ¢ are
associates in A" . Therefore, the cokernel of the inclusion in the claim
is killed by p®. But, p is invertible in OA}%]?W [%] Hence, we obtain that
o (OALD, ©,: N(V)) 5 (OAER, 5,5, N(V)). 0

Since we assumed N(7T') to be a free module, let {f1,..., fn} be its
A} -basis. Let P € Mat(h, A%) denote the matrix for the action of Frobe-
nius on N(T') in the chosen basis. In Lemma 4.46 we obtained that det P
is invertible in OAE]?W [%]

Now, recall that ONEP = O SPD @a+ N(T) and M" = ((’)NED)FR. So
we consider the following commutative }éliagram

OSPP @ M" ——~—— ONEFD

OAPR, @ M —— OARR @51 N(T),
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where the top horizontal arrow is bijective (see Lemma 4.45) and all other

arrows are injective. We also have that {f1,..., fn} is an OAE]?w—basis of
OAL", ®at N(T') as well as an (’)§PD-basis of ONFP. From Lemmas 4.41
& 4.45 and the discussion above, for 1 < i < h we have f/’ € M" such

Trl

Mat(h, OA,F,;D) denote the h x h matrix obtained in this manner. From the
proof of Lemma 4.43 we have that det A is invertible in Oggp.

Now let v; = (¢ @ ™) /' = @™ (fi) + X_y ™ (as)¢™ (f;) € M and
let My be the free R-submodule of M generated by {v1,...,v}. From the
expression of {vy,..., vy} in the basis of OALP wOAt N(T'), we get that the
determinant of the inclusion OAIP}DW ®r My — OA w Oat N(T) is given

by ¢™(det A)p™~1(det P)p™2(det P) - - p(det P)(det P). Since det A is
invertible in OS,];D, we have that ¢ (det A) is invertible in OAPD and
from above we already have that det P is invertible in (’)A%Dw[l] There—

fore, the natural inclusions

that f/ = f; + S0, ai; f; for ay; € J[”(’)APD and let A = idj, + (a;;) €

(4.5) OARD, @k Mo [p]—%’)A ®RM[p}—>OA @t N(V),

are bijective. The maps above are compatible with Frobenius, connection
and the action of I'r on each side and compability of the second map
with filtrations follows from Corollary 4.54. This shows the second claim
of Proposition 4.28.

Finally, note that above we assumed N(T) to be free of rank h, therefore
we obtain a free R-submodule My C M such that

uf ool
= fonpcxn ] -u ]

which are free of rank h over R[%]. This shows the last claim of Propos-
tion 4.28. In general, when N(T') is projective of rank h, we obtain that
M[%] is projective of rank k. This sums up our proof. U

4.5. Proof of Theorem 4.25
Let M = (OA w®at N(T))FR. From Proposition 4.28 we already have

the isomorphism of (’)AP o [%]-modules

OAD ®r M M = OALY, @4+ N(V),
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compatible with Frobenius, filtration (see Corollary 4.54), connection and
the action of I'g on each side. This proves the second claim and we are left
to show that V is crystalline and M[%] 5 ODyis(V) compatible with
supplementary structures. Also note from Proposition 4.28 that we al-
ready have the inclusion of projective R[%]—modules of rank h = dimg, V,
M[}] € ODgyis(V). So we are left to show that this inclusion is bijective
and compatible with supplementary structures.

First, we will show that V is crystalline and the inclusion described above
is in fact bijective. Extending scalars along OAED [7} — OBeis(R) for
the isomorphism OARD ®p M[E] = OAR ®A+ N(V), we obtain an

isomorphism of OBs(R)-modules
= 1
OBCYiS(R) ®R[%] M |:p:| —> OBCrlS( )®B+ N(V)

compatible with Frobenius, connection and Gpg-action. Now, recall that
from the definitions we have a natural inclusion of free AT-modules
AT ® AL N(V)— AT ® ar V' compatible with supplementary structures
and the cokernel of this inclusion is killed by 7° (see Proposition 4.11). Since
7 is invertible in OB.is(R), extending scalars along AT — OB.is(R), we
obtain an isomorphism of OB,is(R)-modules

OBcriS(R) ®B; N( ) AN OBCUS( )®Q V,
compatible with Frobenius, connection and Gpg-action. Finally, since

R[1] = OB.is(R) is faithfully flat (see [14, Théoréme 6.3.8]), we obtain
P

an inclusion of OBis(R)-modules
— 1
OBcris(R) ®R[%] |:p:| C OBCY!S( ) ®R[ ODcris(V)a

compatible with Frobenius, connection and the action of Gg. In particular,
we have a commutative diagram

OBaris(R) ®ppy M[}] ——— OBais(R) @g1 N(V)

I |

O CTIS(E) ®R[%] ODcris(V) —_— OBcris(R) ®@p V,
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compatible with Frobenius, connection and G g-action. As the top horizon-
tal arrow and right vertical arrow are bijections, it is immediately clear from
the diagram that the left vertical arrow and bottom horizontal arrow must
be bijective as well. The bijection of bottom horizontal arrow implies that
V' is a crystalline representation of G . Moreover, since R[%] — OBis(R)
is faithfully flat (see [14, Théoréme 6.3.8]), we obtain an isomorphism of
R[%]—modules M[%] 5 OD s (V).

Finally, we note that the isomorphism M [%] 5 ODyis(V) is compati-
ble with supplementary structures. From Proposition 4.28 it is clear that
this isomorphism is compatible with Frobenius and connection. Combining
Proposition 4.49 with observations made before, we obtain that the isomor-
phism of R[%]—modules M [%] 5 OD,is(V) is compatible with Frobenius,
filtration and connection on each side.

Finally, we can compose these natural maps as

r
OARD, @ ODesy(V) < OARD, @r (OARD, @y N(V))

where the second map is compatible with the Frobenius, filtration (see
Corollary 4.54), connection and the action of I'r on each side (see Propo-
sition 4.28). This proves the theorem.

Remark 4.47. — In the case when N(7) is a free Aj- module of rank h,
from Proposition 4.28 we obtain that M[%] 5 ODgis(V) is a free
R[%]—module of rank h. In particular, for finite g-height representations
there exists a finite étale extension R’ over R such that

1
R [p] D ri2) ODeris(V)

is free of rank h.

Remark 4.48. — For 0 < i < d, one can define [¢]-derivatives by the for-
mula %'ﬂ_l : N(T) — N(T'). Considering the reduction modulo 7 of Frobe-
nius, filtration and [¢]-connection on N(T') defined above, we conjecture
that we have (N(T)/WN(T))[%] 5 ODgis(V) as filtered (¢, d)-modules

over R[+]. Details on this line of thought and its connection with [11]
and [26] will appear elsewhere.
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4.5.1. Compatibility between filtrations

Note that using Definition 4.16 and Remark 4.21, the filtration on M [%]
is given as

T'r
Filk M H (ZFF(’)A o @ Fil* lN(V)) .

€N
PROPOSITION 4.49. — We have Fil* M [1] = Fil* OD is(V) for k € Z.

Proof. — We only need to show the claim for k£ > 1. Note that from (4.1),
Remark 4.23 and Lemma 4.53 we have

Fil* M m - (Filk (OA 2 ©at N(V)))FR

(Fllk (OBuis(R) ®g, V)) "
= Fil*OD (V).

Conversely, let {e1,...,e,} denote a Q,-basis of V and we take z €
FilkODms(V) \Filk+1(’)Dcris(V). Since = # 0, we can write

h
r = E biei
i=1

where either b; = 0 or b; € Filk(/)ch( R)\ F1lk+1(’)Bcrls( ) for each 1 <

1 < h and at least one b; # 0. Moreover, we have M[p] 5 OD (V)
as R[%]—modules so we take r < k to be the largest integer such that
x € FIITM[ |, in particular z ¢ F11T+1M[ |. Let us write z = dienG ®
fr—j with ¢; € FiIVOARD and f,_; € FIV—J’N(V) for all j € N. By
assumption on x there exists ) ## I C N such that for each j € I we have
c; € FIVOALD \FiVHTOAERP | f._; € FiI" IN(V) \ Fil" 7*!N(V) with

> @ fo_, €FIl (OA 2 ®ps N(V ))\Fﬂ”l (OA 2 ®as N(V))
jerl

> @ fry e P (OARD 0, N(V)).
JEN\I

Equip B with the induced filtration

_ _ 1
Fil"B*t := Bt N Fil"Bys(R) = BT NFil” (Amf(R) H) for n € N.
p
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Using the definition of filtration on N(V) (see Definition 4.16) and
Lemma 4.53, we have that Fil" /N(V) = (Fil" /Bt ®q, V) NN(V) for all
j € N. Therefore, in the expression Zjel ¢ ® fr—; we must have

frej € (FiI" /BT ®g, V) \ (FiI' 7T'B* ®qg, V) forall j € I.

This implies that in the basis of V' we can write

h
frfj = Z fﬁ?jei
=1

with f(i_)j € Fil" /Bt \ Fil" 7*'B* forall j € I and all 1 < i < h. In
conclusion, we obtain

h
xr — Z c; ® fr_j = ZCj ® <Z f,gl)jei>
1=1

iEN\I jeI
(4.6) ’

h
(e 125 | e
=1

jer

with ¢; € FiIVOARD \ FiVT'OARD and f, € Fil' 7B+ \ Fil' 7+ B+
foralll1<i¢< handjel.

Let us set g; = Ejel ¢ ® fr(i)J for 1 < i < h. Then by the discussion
above we have that g; € FilT((’)AE{)w ®A; BT) for 1 < ¢ < h, where
OARD, ® At B is equipped with the tensor product filtration. Note that

z € Fil'M H \ Fil" M H
p p

and

> ¢ @ frg € I (OARD, @, N(V)) .
FEN\I

Moreover, from Lemma 4.50 and Remark 4.51 we deduce that for n € N

and inside OBis(R) ®g, V' we have

Fil" (OA,P;PW Das N(V))

= (Fil" (0AR, @, BY) @, V) N (OARD, @, N(V)).
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Therefore, we conclude that we must have at least one ¢ = iy such that

i, € Fil"(OAR" > ®a+ BT) \ Fil' " (OALD = @ax BY).

Now using Lemma 4.52 and Remark 4.51 we further note that for n € N
and inside OB.is(R) we have

Fil” (OAR . @ar B+) ((’)AR . @ar B+) A Fil" OBeys (R).

Therefore, we get that g; € Fil"OBes(R) for all 1 < i < h and g;, €
Fil"OBeis(R) \FﬂrHOme( ). For convenience, let us erte

h
Z ¢ ® fr_j = Zdiei
=1

JEN\TI
with d; € Fil" T OB,s(R) for all 1 < i < h. In particular, comparing (4.6)
with the expression z = Zi:l bie; at the start of the proof, we get b;, =
gi() + dio’

Finally, since r < k, consider the following commutative diagram with
exact rows

0 — Fil*" OBuis(R) — Fil*OBeis(R) — gr*OBeis(R) — 0

| | |

0 — FiI"™ OB4is(R) — Fil"OBis(R) — 21" OBeis(R) — 0,

where the left and middle vertical arrows are injective and the right ver-
tical arrow is non-trivial if and only if r = k. From the fact that ¢;, €
Fil"OB.is(R) \ Fil" T OBis(R), we see that the image of b, is non-zero
in gr"OBis(R). But we already have that image of b;, is non-zero in
gr*OB.is(R). Therefore, the right vertical arrow must be non trivial, i.e.
r = k. Hence z € Fil*M [p]. This proves the claim. O

LEMMA 4.50. — For k € N, inside OA .is(R) ®z, T we have
Fil® (OA . Oas N(T))

— (Fil* (OARD. @41 AY) @2, T) 1 (OARD, @41 N(T)).
Proof. — From Section 3.1 we have rings AT C AL C Aj,¢(R) equipped

with an induced filtration from As(R) and from Remark 3.18 we have an
isomorphism A}, _ ®,+ AT 5 AL compatible with Frobenius, filtration
) R
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and Gg-action. Since AE — AJ}%W is flat and FiliARw = fiAEw, using
Lemma 4.53 we note that

(4.7) Fil* (A;’w N N(T))

= Y Fil'A} @a: ((FIVAT @7, T) NN(T))
i+j=k

= | X AL, @a; FIVAT @, T | 0 (Af 0, N(T))
itj=k
- (FﬂkA; 2z, T) N (A;@ Dar N(T)) .
From Definition 4.19 recall that we have the ring OA}W and we claim
that it is flat over AJIQ’W. Indeed, let T1,...,T; denote a set of indeter-
minates and define a map AJIg,w[Tl, Ty — OAE,W via T, — X; —

[X?], then the target may be identified with (p,&, Ty, ..., Ty)-adic com-
pletion of the source which is noetherian, in particular, (’)A+w is flat

over AJr . Let us set OAL = OAEW ®at AT S OARm ®at Al
equlpped w1th tensor product filtration, Frobemus and Gg- action. Let
J= (X1 - [X3],..., X4 — [Xd])OAE)w then the filtration on OAZ can
also be given as Fil"OAL = Dtk J"(’)AEW I &AL Let us set
N};w = A};,w ®at N(T) equipped with tensor product filtration. Then
since J is flat as an AE,w—module an argument similar to (4.7) gives us
that

(4.8) Fil* (OA}QW N N(T))
= Fil* (OAf. ®x;  Ni.,)
= > JOAL @as ((FVAL 2, T) NN

i+j=h

= | Y T0AL ey AL, T |0 (0AL @as NEL)
itj=k

= (FI"OAL ©z, T) N (OAf, , @4+ N(T)).
Let us set OAFPD = OARw ZIN AL 5 OAERD = ®at At where

the isomorphism is compatible with Frobenlus ﬁltratlon connection and
G r-action. We will show our claim that

Fil® (OA 2 @ps N(T )) - (FilkOAgD ®z, T) N (OAIP;?W ®at N(T)) .

ANNALES DE L’INSTITUT FOURIER



CRYSTALLINE REPRESENTATIONS AND WACH MODULES 445

Let f € {£, X1 — [X?],..., X4 — [X]]} be one of the generators of the
ideal (&, X1 — [X38],..., X4 — [X}))OALP and 2 € OALP ®; T. Then to
obtain our claim, it is enough to show that if fl*la (f[k](’)AgD ®z, T) \
(f+UOAEP @5 T) such that

iy e ((’)AE]?W Dat N(T))

then fFz e Fil® (OA%PW Bat N(T)). Note that the claim is true for
k =0.Solet k> 1and f as above. Let fl¥Flz e (f[k](’)A;D ®z, T) \
(f[kH]OAgD ®z, T) such that fFlg e ((’)A%{)w Dt N(T)). Since z # 0,

by induction on k£ we may assume that x = Z?:l zie; € OAL ®z, T with
either x; = 0 or z; € fFOAL \ f*T1OAL for each 1 <i < h and at least
one z; # 0. Recall that we have * AT @z, T C A* ®at N(T), therefore

sz € OAL DAt N(T). But then inside OB,is(R) ®at N(T) we must
have '
Fro =kl e (OAPD ®pt N(T)) Nt (0A+ ®pt N(T))
. R, AR iy w AR
= OAE,w ®A; N(T)
Therefore,

frae (FitOAL @2, T)N(0Af, @5 N(T)) =Fil* (OA], , @5 N(T))

where the last equality follows from (4.8). Hence, inside

OB..is(R) ®at N(T') we have

1.
Mz e —Fil* (OA;@ EIN N(T)) N (OAng N N(T))
c Fil* (OAIP;{; Ot N(T))
as desired. 0

Remark 4.51. — From Lemma 4.52 below, it easily follows that inside

OB..is(R) we have
Fil® ((’)AE]?W Dpt B+) - ((’)Af}’?w ®at B+) A Fil* OB yis(R).

So from Lemma 4.50 we get that the corresponding rational version of the

statement is also true, i.e. inside OB is(R) ®q, V we have
Fil® (OAEPW Das N(V))

= (Filk (OAE}{; ®at B*) ®q, V) N (OAE}{; ®at N(V)) :
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LEMMA 4.52. — For k € N, inside OAis(R) we have
Fil* (OARD, @51 AT) = (OARD, @51 AT) NFI O A ().

Proof. — Recall that filtrations on (’)A;]?w and OAs(R) are com-
patible (see Remark 4.23). Moreover, from Section 3.1 the inclusion of
rings AT C AL C A;(R) is compatible with induced filtration from
A is(R). From the proof of Lemma 4.50 we have an isomorphism of rings
OALP = OALD, ®at At 5 OAFD w Oat A7 compatible with tensor
product filtrations. Now by the descrlptlon of filtration on the rightmost
term we get that OAPP is equipped with filtration by divided powers of
the ideal (¢, X; — [X?],..., X4 — [X}])OALP. Finally, the natural multipli-
cation map OAR - ®A+ AL — OA.is(R) is injective. Hence, it follows

that for k£ € N, inside (’)Acms(ﬁ) we have
Fil* (OARD, @51 AT) = (OARD, 0,1 AY) NFIFOAGi (). O

LEMMA 4.53. — For k € N we have (Fil"A* @z T)NN(T) = Fil"N(T)
and (Fil"B* ®g, V) NN(V) = Fil*N(V).

Proof. — 1Tt is enough to show that (Fil*B* @g V)NN(V) = Fil"N(V).
Indeed, from Definition 4.16 we have Fil*N(T) = Fil*N(V) N N(T) =
(Fil*B* @g, V) NN(V) N N(T) = (Fil* A+ ®g, T) " N(T) since Fil"B* N
A+ = Fil*A*. Next, the inclusion Fil*N(V) C (Fil*B* ®q, V) is obvious.
For the converse, we claim that it is enough to show that (¢"B* ®g, V) N
N(V) = ¢"N(V). Indeed, if we have = € (Fil*B* ®g, V) N N(V) then
p(z) € (¢*B* @, V) NN(V) = ¢"N(V), i.e. z € Fil*N(V).

The inclusion ¢*N(V) C (¢"*B* ®g, V) N N(V) is obvious. To show
the converse, first let us assume that N(V) is free with {f1, fo,..., fa}
as a BE—basis, and let {e1,...,en} be a Qp-basis of V. Now let ¢z €
(¢"BT ®g, V) NN(V) for z = Z?Zl zie; € BT ®g, V. We can also write
¢’z = Z?Zl yifi € N(V) with y; € BE. Next, from Proposition 4.11 we
have 7Bt ®q, V C Bt ®pi N(V), so we can write

h h

h

k —s k s —s k k

¢"r=7""%¢q g e, =7 °%q g IZE zijfj=7""q E g 2z | fi,
i=1 i=1  j=1 i=1 \j=

with 2;; € BT. But then we must have m=*¢* Z?:l xjz5 = y; for all 1 <
1 < h. Since Hpg, acts trivially on 7, g and y;, we get that w; = Z;’:l
BE. But y; € BE and 7 and ¢ are coprime in BE (since ¢ = p mod WBE),

Tjzj; €
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therefore we obtain that w; € ’/TSBE. In particular, y; € quJ]g, therefore
h
¢ r = D1 Vifi € ¢"N(V). Hence, (¢*B* ®q, V)NN(V) = a*N(V).
Next, if N(V) is projective (and not free) over B}, let R’ be the p-adic
completion of a finite étale algebra over R such that the scalar exten-

sion B}, ®@g+ N(V) is a free module over B}, and R'[1]/R[1] is Galois
R P P

(see Definition 4.9). Then we can argue as above and conclude by taking

Gal(R' [%] /R[%])—invariants of ¢*BF, gt N(V). O

COROLLARY 4.54. — For k € N we have Fil® (OA}%]?W ®R M[%]) =
Filk(C)AIP}]’Dﬁ @pt N(V)) under the isomorphism (4.5).
Proof. — From the definition of filtration on the left term we know that

the map in claim is injective. To check the surjectivity, using Proposi-
tion 4.49, it is enough to show that under the isomorphisms

~ 1] ~
OALD. 55 ODuu(V) < OAL. @p M M =) OARR ©,. N(V)

we have

Fil"N(V) C Fil* (OARR, ® g ODyi5(V)) for all k € N.

Using Lemma 4.53, note that inside OBeis(R) ®q, V, we have
Fil*N(V) C Fil* (OBeuis(R) ®g, V) N OAL, @k ODeis(V).

We claim that the last term equals Filk(OAg]?w ®pr ODi5(V)), i.e. the
induced filtration on (’)A%]?w ®r OD¢is(V) is the tensor product filtration
(or equivalently, on OARD [1] ® 1) ODeys (V) since Fil*(OARD )[L] =

P P

Fil® (OA%PW[%])). Indeed, from Section 2.3 recall that ODgs(V),
FilkODcris(V) and gr*OD,,is(V) are projective R[%]—modules for all k£ €

N. Then it easily follows that for ¢, € N such that i + j = k, inside
Fil® ((’)AE]?W[%] ®p(1 OD,,i5(V)) we have

| 1 '
(FHZOAF}PW M D) FﬂﬂoDms(V))

1
ﬂF11k+1 <OA%{DW |:p:| ®R[%] ODcrlb(V)>
= Fil'OARY, E] @ gy FiV ™ ODeis (V)

—+ FIIH_1 OA%,DW |:p:| ®R[%] Fllj ODcris (V) .
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Therefore, we get that

1
g | OALD, H &) OD.is(V)
PI R

i+i=k

= @ gr' OAED [} ®ngODcris(V).
PR
P

Similarly, one can also show that

grk OBcris(E) ® ODcris(V)
RIL]

= P 2'0OB.is(R) R) gr? ODeyis (V).
it+j=k R[]

Since the filtration on OA%]?W [1%] is induced from the filtration on OBis(R)
(see Remark 4.23), the natural map gr*OARD [1] — gr"OBes(R) is
injective. Therefore, the natural map gr’ (OAZ]?W[%] QR ODcriS(V)) —
gr¥(OBis(R) ®R[%] ODis(V)) = gr*(OBe.is(R) ®qq, V) is injective as
well. Hence, we have Filk(OBcris(R) ®q, V)N OA}%]?W ®r ODgis(V) =

Fil*(OAY", ®p ODeyis(V)) for all k € N. O

4.6. One-dimensional representations

In this section we will show that all one-dimensional crystalline repre-
sentations are of finite g-height by writing down the corresponding Wach
modules precisely.

PROPOSITION 4.55. — All one-dimensional crystalline representations
of G are of finite q-height. Furthermore, for a one-dimensional crystalline
representation V. we have an isomorphism of R[%] -modules

PD Tr
(OARR, 9, N(V)) " =5 ODose(1).
Therefore, there exists natural isomorphisms
~ I'r
OARD, @ ODeis(V) < OARD, @p (OARD, @5 N(V))
> OARD, ®p+ N(V),

compatible with Frobenius, filtration and the action of I'g.
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Proof. — The structure of one-dimensional crystalline representations of
Gr is well-known (see [14, Section 8.6]). From Proposition 2.3 we have that
for n: Gr — Z,, a continuous character, V' = Q(n) is crystalline if and
only if we can write n = Ny X" with n € Z, and where 7 is a finite un-
ramified character, 7, is an unramified character taking values in 1+ pZ,
and trivialized by an element o € 1 4 p]/%ﬁ , and y is the p-adic cyclotomic
character. Recall that a p-adic representation of G'g is unramified if the ac-
tion of Gg factorizes through the quotient G} (see Section 2.3). Moreover,
if 9 is trivial then OD¢i5(V) is a free R[%]—module of rank 1.

In Lemma 4.56 below, we show that crystalline representations V; =
Qp(nimur) and Vo == Q,(x™) are of finite g-height. For a one-dimensional
crystalline representation V' := Q,(n) = Q,(nmur) ®q, Qp(x™) = V1 ®q, V2
as above, by compatibility of tensor products in Propositions 4.14 we get
that V is a finite g-height representation as well with

N(V) = N(Vi) 9 N(V2).

From the isomorphisms of OAEPw—modules in Lemma 4.56, compatibil-
ity of Wach modules with tensor product in Proposition 4.14 and com-
patibility of the functor OD,,s with tensor products in Section 2.3 (see

also [14, Théoreme 8.4.2]), we get a string of isomorphisms of OB;PW =

(’)A%]?w [l]—modules compatible with Frobenius, filtration and the action

P
of FR,
OAD @k ODi(V)
L> (OAE{DW QR ODcris(Vl)) ®0B%?m (OAIP;]?W QR ODcris(‘/Q))
- (OARD, @43 N(W)) Gongn (OARD, @43 N(12))
> OALL, @4+ N (Vi @, Vo) = OALT, @44 N(V).
Taking TI'g-invariants of the first and the last term gives us that
OD.is(V) = (OARY, NG N(V))FR, compatible with Frobenius and fil-
tration. ]

Following claim was used above:

LEMMA 4.56.

(i) Let n: Gr — Z,; be a continuous unramified character. Then the
p-adic representation Q,(n) is a finite g-height representation.

(ii) Let x be the p-adic cyclotomic character then for n € Z, the p-adic
representation Q,(n) is a finite ¢-height representation.
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Further, for V= Qp(n), Qy(n) we have an isomorphism ofR[ﬂ -modules
T'r ~
((’)AEBU Dpt N(V)) s ODes(V).
Therefore, there exists natural isomorphisms
I'r
OARD, @R ODeis(V) < OARR, @p (OARD, @, N(V))
> OARD, ®p+ N(V),
compatible with Frobenius, filtration and the action of I'g.

Proof. — Let n = ngmur, where n¢ is an unramified character of finite
order and 7y, is an unramified character taking values in 1 + pZ, and
trivialised by an element o € 1 + pE‘H (see Proposition 2.3).

First, let us consider the finite unramified character ns. Set T' = Zy () =
Zpe, such that g(e) = n¢(g)e. We have

H
D" (Zy(ne)) = (AT @z, Zy(ne)) "
5 {a®e, witha € AT such that g(a) = n; *(9)a, forg € Hp}.
Since 7 is a finite unramified character, it trivializes over a finite Ga-
lois extension S over R (see [14, Proposition 8.6.1]), and we have that
Gal(S[%]/R[%]) = Gr/Gs = Hr/Hs = T'r/T's. As S is finite étale
over R the construction of previous chapters apply and we obtain that
the Af-module DY (Z, () = (AT @z, Zy ()" = Af (n) = Afe s free
of rank 1. Further, we know that D (Z, (1)) = D¥ (Zp(nf))HR/HS, which
implies that the natural inclusion

A§ @ps DT (Zp()) — D (Zp(r)),

is bijective. Since A}, — A} is faithfully flat, we obtain that DT (Z,(ny)) is
projective of rank 1. Moreover, D+ (Zp(nf)) admits a Frobenius-semilinear
endomorphism ¢ such that D¥(Z,(n)) = ¢* (D" (Zy(1¢))) (one can ob-
tain this after faithfully flat scalar extension AE — Afgr and applying
descent as above, since ¢ commutes with G g-action). The action of I'g is
trivial on DT (Z,(ns)). Now, we can take N(Z,(nr)) = DT (Zy(n)). From
the discussion above, N(Zp(nf)) clearly satisfies the conditions of Defini-
tion 4.9. Also, we have that N(Q, (7)) = D*(Q,(n)). On the other hand,
we have

ODcris (Qp(nf)) = (OBcris(R> ®Qp Qp(nf))GR
= {b® e, withb € OByis(R) such that g(b) = ne(g)b}.
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Since 7y trivializes over the finite Galois extension S over R, we have

(OA ®A+ N(Qp(nf)))FS =S5y |:1:| e= (OBCHS( ) ®q, @p(nf))gs ,

where the rings (’)A - and OBgis(S ) are defined for S over which all the
construction of prev10u5 sections apply (since S is finite étale over R). Now
taking invariants under the finite Galois group Gal (S [%] /R[%]) = Gr/Gs,
gives us

(OAR @ N(@u()))" = ODers (@ (00,

Clearly, the natural maps
'r
OARD, @R ODais (@) < OARR, @n (OARD, @51 N(Qy(m))

—> OA ®A+ N(Qp('f]f))

are isomorphisms compatible with Frobenlus, filtration and the action of I'g.
Next, let us consider the unramified character 7., which takes values in
1+ pZ, and trivialised by an element « € 1 + pR™ (see Proposition 2.3).
Set T' = Zy(nur) = Zye, such that g(e) = nu:(g)e. We have
D+ (Zp(nur)) = (A+ ®Zp Zp(nur)) = AJ}%a&
So we take N(Zy(nur)) = DV (Zy(nw)) = Afce. This clearly satisfies the
conditions of Definition 4.9. Also, we have that N(Qp(7ur)) = DT (Qp(1ur))-
On the other hand, we have
ODcris (Qp(nur)) (OBCTIS( ) ®Qp @p(nur))
= {b ® e, with b € OB,s(R) such that g(b) = nur(g)b}

[}

Therefore, we obtain

(oaz ®A+N(@p<nur>))FR:Rm — (OBusn(R) 90, Q1))

Hp

GRr

Gr

Clearly, the natural maps
OA ®R ODCYIS (Qp(nur)) é OAIP;’/DW ®R (OAEDW ®AJr N(Qp(nur)))FR
A (’)A ®A+ N(Qp(nur))

are isomorphisms compatible with Frobemus, filtration and the action of I'g.

Finally, let T = Z,(n) = Zpe,, such that g(e,) = x(9)"en, then V =
Qp ®z, T is a crystalline representation and we can take N(Z,(n)) =
Afm"e,. Note that for n < 0, we have that N(Zy(n))/¢* (N(Zy(n))) i

»n
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killed by ¢~", where ¢ = @. It can easily be verified that I'g acts trivially
modulo 7 on N(T'). So, we set N(Q,(n)) = BLn "e,. Similarly,

1

ODcris (Qp(n>) = (OBcris(E) ®Qp Qp(n))GR =R |:p

} t ey,

r -n
and (OARD, ®at N(Qy(n))) ™ = R[]t "en = ODeyis(Qy(n)) compat-
ible with Frobenius, filtration and connection on each side. Finally, the
map

OAL @r ODeis (Qp(n)) — OART, ® 41 N(Qp(n))

—n Trn —n
t en»—>t—nﬂ' €n-

is trivially an isomorphism compatible with Frobenius, filtration and the
action of I'g, since % € OALD are units for n € Z (see Lemma 3.14).

t‘”.
This proves the lemma. O

Remark 4.57. — Note that for T = Z, (nfnur) or Zy(n), we even have an
isomorphism on the integral level

r
OARD, or (OARD @, N(T))) " =5 OARD @, N(T).

5. Relative Fontaine—Laffaille modules

In this section we will consider relative Fontaine-Laffaille data and con-
struct Wach modules given such data. Carrying out such a process would
involve starting with a module over R and constructing modules over the
ring AEPW and AE_W, and finally descending over to the ring AE.

Explicitly, we will work with objects of the category MF ;,_g), free(R, @, 0),
defined by [36, Section 4] as a full subcategory of the abelian category
DJTS’[%J,_Q] (R) introduced by Faltings in [19, Section II]. In particular,

DEFINITION 5.1. — Define the category of free relative Fontaine—Laffaille
modules of level [0,p — 2], denoted by MF|o ,_, frec(RR, ®,0), as follows:
An object with weights in the interval [0, p—2] is a quadruple (M, Fil* M, 9, ®)
such that,

(i) M is a free R-module of finite rank.

(ii) M is equipped with a decreasing filtration {Fil*M},cz by finite
R-submodules with Fil° M = M and Fil*** M = 0 such that grk, M
is a finite free R-module for every k € 7.
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(iii) The connection 8 : M — M ®pr Q} is p-adically quasi-nilpotent
and integrable, and satisfies Griffiths transversality with respect to
the filtration, i.e. A(Fil* M) C Fil* " 'M @ Q) for k € Z.
(iv) Let (¢*(M),¢*(9)) denote the pullback of (M,0) by ¢ : R — R,
and equip it with a decreasing filtration defined as Fﬂ]; (p*(M)) =
Y ieN pll*(Fil*~" M) for k € 7.. We suppose that there is an R-linear
morphism ® : ¢*(M) — M such that ® is compatible with con-
nections, @(Filﬁ(g@* (M))) € p"M for 0 < k < s, and we have
>reo p*kCIJ(FiII;(cp* (M))) = M. We denote the composition M —
©* (M) 2 M by .
A morphism between two objects of the category MF[ ,_o) free(R, ®,0)
is a continuous R-linear map compatible with the homomorphism ®, the
connection 0 and filtration on each side.

Notation 5.2. — Abusing notations, we will denote (M, Fil* M, 0, ?) €
MF (9, p—2), free (R, ®,0) by M and say that it is of level [0,p — 2].

To an object M € MF|g ,_), frec( R, ®, ), We associate a Z,-module as
(5.1) T* (M) = HOIIlR71:11,(P73(]\47 OAcris(R)),

cris

i.e. R-linear maps from M to OA,s(R) compatible with Frobenius, filtra-
tion and connection, where we have ¢ : M — ¢*(M) 2 M.

PROPOSITION 5.3.

(i) For a free Fontaine-Laffaille module M of level [0,p — 2], the
Zy-module T,

cris

(M) is a free module of rank = rkrM equipped
with a continuous action of Ggr. Further, the p-adic representation
Viis(M) = Qp ®z, Tpi(M) is a crystalline representation of Gr
with Hodge—Tate weights in the interval [0,p — 2].

(ii) The contravariant Z,-linear functor

Tl MF[O,p72], free(Ra (I)a 8) — Repzp, free(GR)a

cris
is fully faithful. Here Repy  1..(Gr) denotes the category of finite
free Zy,-modules equipped with a continuous action of Gg.

Proof. — The claim in (i) follows from [19, Theorem 2.4] and [36, Propo-
sition 66]. Further, the claim in (ii) follows from [19, Theorem 2.4] and [36,
Theorem 77]. a

DEFINITION 5.4. — Let M be a free relative Fontaine—Laffaille module
of level [0,p — 2], and set
Teris(M) := Homg, (T},

cris

(M), Zp),

TOME 75 (2025), FASCICULE 1



454 ABHINANDAN

which is a free Zy-module of rank = rkr M, admitting a continuous action
of GR.

The main result of this section is as follows:

THEOREM 5.5. — For a free relative Fontaine—Laffaille module M over R
of level [0, p—2], the associated representation Veis(M) = Qp ®z, Teris(M)
is a positive finite g-height representation (in the sense of Definition 4.9).

The proof crucially exploits the computation of Fontaine [22], Wach [38]
and Tsuji [36]. It follows in three steps: First, starting with a Fontaine-
Laffaille module, we obtain an AR"_-module using formal consequences of
crystalline site for maps 6 : ARD — R[w], and 0z : OARY — R[w] (see
Proposition 5.25, we also give an alternate proof of the proposition). Next,
we exploit equivalence of categories obtained in Theorem 5.21 by extending
scalars along ARD — ARD /Ip=DALD & AL /T-DAL -« Af .
This gives us an AE,w—module with precise description of the Frobenius
and the action of ' (see Proposition 5.30). Finally, we descend over to
the ring A; by exploiting the Frobenius and I'z-action, thus obtaining a
Wach module over AE and proving the theorem (see Section 5.3.2).

For clarity of exposition and notational convenience in explaining the
result of the first step, we start with preliminaries on some ideals of AE’W
and A}%]?w (appearing in the second step in the paragraph above) which will
help us in proving categorical equivalence between certain modules over the
concerned rings.

5.1. Some ideals of AE@ and AE%

In this section, we will collect some technical results about the rings
AE,W and AE]?W and some of their ideals. The results are motivated by
the corresponding results over Aj,¢(R) and Ais(R) and their respective
ideals, studied in [22, Section 5].

LEMMA 5.6. — Let a € AE’W such that A;’w/pAE’w is a-torsion free
and a-adically complete. Then,
(i) AE,w is (p, a)-adically complete.
(ii) Forn € N, the rings AE’w/a”AE’w are p-torsion free and p-adically
complete.
(iii) ForneN, A;,w and A;yw/p"AEw are a-torsion free and a-adically
complete.
(iv) The (p,a)-adic topology coincides with (p, 7., )-adic topology.

ANNALES DE L’INSTITUT FOURIER



CRYSTALLINE REPRESENTATIONS AND WACH MODULES 455

Proof. — As AJ}%W is a flat Z,-algebra, claims (i), (ii) and (iii) follow
from [36, Lemma 2]|. The last claim follows from [36, Lemma 1] and the
fact that AE,W C Aint(R), where the former ring is equipped with the
induced topology. O

For n € N, let us write n = (p — 1) f(n) + r(n), with r(n), f(n) € N and

0<r(n) <p—1. Let ti"} = Wf(n)r

LEMMA 5.7. — We have t?~' € pAR") . therefore tint € ARD..

Proof. — Note that we have ¢ = —) = pgo( ) . Since % is a unit in

AE]?E, (see Lemma 3.14), we get that ¢ and p are associates in APD But
also, g = @ =P g p(rP~ 24+ +1),ie 7Pl e pA Agam using
Lemma 3.14, we get that tP~! € pAg{Dw. O
Note that we also have m = exp(t) —1= >, -, % =D 1 cntt™ where
Fn)
= Pﬂif(”)’ such that ¢, — 0 as n — 400 (see [22, Section 5.2.4]). Let

A= {Z antt™ with a,, € Op such that a,, — 0 as n —» —I—oo}
neN

be a ring and let z = 3 []le) and 7y = 2z — p. then we have 1y =
=101, p-1)n tn—ﬂ, € A. Further, we have that mp € pA and there
exists v € A* such that “2 = v%, see [22, Section 5.2.5].

Next, recall that the filtration on Acus(R) is given as Fil*Aqs(R) =
€M n > k) € Augis(R), for k € N (see Section 2.2). The filtration on
Ain¢(R) is defined as the induced filtration, i.e. Fil® Aj,¢(R) = Fil* A s (R)N
Af(R) = €8 Aj¢(R). Similarly, the filtration on APDw is again given by
divided powers of ¢, i.e. FilkAg3 € n >k c AR 2, for k € N (see
Definition 3.11). The filtration on Ang is defined as the induced filtration,
ie Fil"Af  =TFil"AFD nAf = ¢FAu(R).

Now, for k € N let us define an ideal of A ¢(R) as

I® As¢(R) = {x € Ain(R) such that ¢"(z) € Fil* Aj¢(R) for n € N}.

Similarly, we define respective ideals I (k)Acris(E) CAuis(R), I (k) A+
A} and IMWARD c ALP . We have

Al =Aun(R)NApe C W(C(R)"),

so we obtain that
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LEMMA 5.8.
(i) The ideal I(k)AE’w is generated by m".
(ii) The element m, is a generator of I(p_l)AE’w.
(iii) Let Sy = W{mo] then there exists a unit u € Sy such that p(m) =
umgzP~ L.

Proof. — From the definitions it is clear that I(k)Ainf(R) N AE’W =
I(k)AE’w, where we take the intersection inside Aj,¢(R). Now, from [22,
Section 5.1.3, Proposition] we have that I®) A;¢(R) = 7% A;nt(R). Take
T € I(k)AEw - I(k)Ainf(R) and write x = ¥y for some y € Aus(R).
But then we have z = 7%y € Ap o, i.e. y € Ajpf(R) N Apo = AEW.
So we obtain that I(k)AE@ = kaE,w. This shows (i). For (ii), note that
T € A}E,w, and Ag’w = Aiu(R) N AR . So arguing as above we get
WOAiIlf(R)mAE7w = ”OAE,w' Now, from [22, Section 5.2.6, Proposition (i)]
we have that I~ A ¢(R) = moAine(R). So we obtain that I(p’l)A}w =
TP~V A (R)NAT, | = moAime(R)NAY, , = m0A}; - Claim in (iii) follows
from [22, Section 5.2.6, Proposition (ii)]. O

PROPOSITION 5.9. — The continuous morphism of AE -algebras

. + I~ PD
o AR,w ®SOA — AR,w

(n] (n]
Yoo () =X ()
neN p p
is an isomorphism.

Proof. — The proof follows in a manner similar to the proof of [22, Sec-
tion 5.2.7, Théoréme]. The homomorphism « in the claim is well defined and
continuous since % € FillAE]?w. So we are left to show that « is an isomor-
phism. Since the source and targets are p-adically complete p-torsion-free
rings, it is enough to show that « is an isomorphism modulo p.

Let 21 = p71(2) € Ag,w. Note that ARD modulo p is the divided
power envelope of EJ}%,w with respect to the ideal generated by z; = &
mod p. Therefore, it is a free module over ng/zﬁp with basis the im-

[pn] 21\ [n]

ages of z; ', or equivalently (?) . From Lemma 5.8(iii), we have that

©(m0) = umzP~t, with u € S . Therefore, 7y = @ (u)p ™ (m)2l ! =
o (u)(z1 — p)2¥~", which implies that EE’W/ZTP = EE@,/WO and A}Psz
modulo p is a free module over EJﬁ,w /7o with basis the images of (%) ],
Since it is immediate that the same is true for AE@ ®s, A modulo p, we
get the claim. O
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LEMMA 5.10. — For k € N the ideal I(k)A%?w is a divided power ideal
which is the associated Ava—submodule of A%{)w generated by t1"} for
n=>k.

Proof. — The proof follows in a manner similar to the proof of [22, Sec-
tion 5.3.5, Proposition]. Let J*) be the A};)w—submodule of AZPW
ated by t1"} for n > k. It is straightforward to check that J*) c 1) and
J®) is a divided power ideal. Thus it remains to show that I®) ¢ J*) We
will show this by induction on k. The case k = 0 is trivial.

Now suppose k > 1 and = € I®). The induction hypothesis allows us
to write x = Zn2k_1 a,t1"} where a, € Ang goes to 0 as n — +oo. If
b= an_1, we have a = bt1"~1} 4+ o/ where a’ € J®) c I®) thus bt~} ¢
IR But @ (btlk—1}) = pk=Ds o8 (p)tlk =1} = ¢f 0% (b)t1F~1} | where ¢ 4 is
a nonzero rational number. Since tF~1 € Filk_lAE]?w \ FilkAﬁl?w, one has
bel mAEPW N Ag’w, which is the principal ideal generated by m. Thus
btt#=1} belongs to an ideal of Agl?w generated by mt{k=1}. But L € A%]?w
is a unit (see Lemma 3.14). Hence, bt1*~1} belongs to an ideal generated
by ¢ - t{#=1}, which is contained in J*). O

Following is an immediate consequence of Lemma 5.10:

gener-

COROLLARY 5.11. — For k € N, consider the homomorphism AE’W —
I(k)Ang sending x — x - t1¥}. Then, the induced map AE}W/I(I)AEW —
TWARP JTRTD ARD is bijective.

Now, from [22, Section 5.3.5, Proposition], we have a natural isomor-
phism Aiue(R)/I® Aine(R) = Acris(R)/I® Acis(R), for 0 <k <p—1. A
similar statement is true in our setting:

PROPOSITION 5.12. — Fork € N, A}, _/I®WAY and ARD /1) AED

are p-torsion free. Moreover, if 0 < k < p — 1, then the natural map
AE@,/I(’“)AEW — A%Pw/l(k)Agl?w is an isomorphism.

Proof. — The proof follows from arguments similar to the proof of [22,
Section 5.3.5, Proposition]. First, note that for every k € N, A%]?w / FilkA%]?w
is torsion free. Further, the kernel of the map

z+— (¢"(x) mod FilkA}%]?w)keN,
is I®MALD . Therefore, we get A _/I®AL —— ARD /TR AED

(ARD,/F ilkA%]?w)N, which implies that the former two rings are torsion
free.

TOME 75 (2025), FASCICULE 1



458 ABHINANDAN

From Proposition 5.9 and Lemma 5.10, it follows that as Agw—module,
AE]?W/I(@A;PW is generated by the images of (%) " for 0 < (p—Dn < k.
For 0 < k£ < p—1, we have that (%O)M S AJIQ’W, hence we get the claim. [

Next, we mention a lemma useful for the proof of Proposition 5.20.

LEMMA 5.13.
(i) For 0 < k < j, we have that I(k)A}%]?w/I(j)A]P;]?w is p-torsion free.
(ii) For k € N, we have that I(k)AEPw is p-adically complete.

Proof. — The proof (i) is similar to the proof of [35, Lemma A3.19(1)].
Let z € IMAFD and assume that pz € IV ALD . Then py'(z) € Fil ARD,
for all 4 € N. Since A%]?w/File%]?w C Aqis(R)/FilV Acis(R) is p-torsion
free (see [35, Lemma A2.11(2)]), we get that ¢'(x) € File%{)w foralli € N,
ie.x € I(j)AE]?w.

The proof of (ii) is similar to the proof of [35, Lemma A3.27]. We will
prove the statement by induction on k. For k& = 0, the statement is trivial by
the definition of A%l?w. Next, from part (i) and Corollary 5.11, we have that
I (k)Agl?w /1 (kH)AE]?w is p-torsion free and p-adically complete. Therefore,
we obtain exact sequences

0 — lim (I*VAED ®Z/p"Z) — lim (IMAED ®Z/p"Z)
— IMARD JIFHDARD  —s 0.

The statement now follows by induction on k. O

5.2. Equivalence of categories

In [36], Tsuji has established a relationship between free relative Fontaine—
Laffaille modules (see Definition 5.1) and Aj,¢(R)-representations as well
as Ais(R)-representations of G (in a precise functorial manner). Tsuji’s
computations are motivated by computations of Wach in [38] for the arith-
metic case.

Recall from Section 5.1 that for k¥ € N we have the ideal
I(k)Ainf(Fi) = {2 € Ajnt(R) such that p"(x) € FﬂkAinf(R) for n € N}.

Similarly, we define respective ideals I(k)AcriS(E) C Auis(R), I(k)A};w C
AE’W and I (’“)AIP}BW C ARD.. Given a free Fontaine Laffaille module,

in [36, Section 5] Tsuji functorially obtains an A.,is(R)-module (in a manner
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similar to Proposition 5.25). Furthermore, he exploits the natural isomor-
phism A (R)/IP VA (R) = Acis(R)/IP Y Ais(R), to construct an
A (R)-representation of Gr. The last step is carried out by establishing
certain equivalence of categories. Tsuji’s computations are general and fol-
lows from certain assumptions on the structure of the rings and modules,
one is studying. In this section, we will recall and verify those assumptions
in our case, which would help us in establishing equivalence between several
categories (see Theorem 5.21).

Let A=A} _, AL /TP VAL ARD or AP /TP=DALD .
LEMMA 5.14. — Let ¢ = @ € A, then q is a non-zero-divisor in A.

Proof. — For A = AEW and AEP | the claim follows from the def-
o egs _ _ — +
initions. Next, note that we have ¢ = @ = 7P~ 4 pu € AR’W for
some unit u € Aﬁw, in particular, ¢ = pu mod 7P~ !. As I(p_l)AEw =
wpflAE‘w by Lemma 5.8(ii), we obtain that ¢ and p are associates in
Af I VAL S APD JTe"DARD | Since Af /IPTVAL  and
A}P}]?w /1 (p_l)Ag]?w are p-torsion free, we conclude by Proposition 5.12. O

Next, note that we have Fil’4A = A and Fil'A - FiVA ¢ Fil'" A for
i,j € Z, and @(FilkA) C ¢*A for k € N. In particular, we see that our
choice of A and ¢ satisfies [36, Condition 39].

DEFINITION 5.15. — Define the category MF[qO,p—Q], tree (A, 0, T'R) as fol-
lows: An object is a triplet (N, Fil* N, ¢) such that,

(i) N is a free A-module of rank h.

(ii) The filtration Fil* N is decreasing and there exists an A-basis of N
as {e1,...,en} and integers kq, ..., k, € Ng,_o such that we have
Fil* N = 30 Fil* % Ae; for 0 < k <p — 2.

(iii) A Frobenius-semilinear endomorphism ¢ : N — N such that we
have @(Fil*N) € ¢*N for 0 < k < p— 2 and

p—2
> A-qgFp(FiFN) = N.
k=0

(iv) N is equipped with a continuous action of I'r such that Fil*N is
stable under this action, and the endomorphism ¢ commutes with

the action of T'g.
A morphism between two objects of the category MF([]O,p—Q], free(A, 0, T'R)
is a continuous A-linear morphism commuting with the endomorphism ¢

and the action of I'p on each side.
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Notation 5.16. — Abusing notations, we will denote (N, Fil*N, 8, ) €

MFE’O ] troo (A, 0, T'R) by N and say that it has filtration of level [0, p—2].

Remark 5.17. — In A%]?w, note that we can write ¢ = p%cp(%), and since
% is a unit in A%Pw (see Lemma 3.14), we obtain that ¢ and p are asso-
ciates in A%{)w. Therefore, for A = A}%]?w in Definition 5.15, we can replace
g by p. Further, since ¢ = 7~ + pu for u € (AE,W)X and 7P~1 generates
I®P=DAY _ (see Lemma 5.8(ii)), we obtain that ¢ = pu mod I®"DAfL
ie. ¢ and p are associates in AEW/I(?’DAE’W = A%l?w/[(pfl)A%]?w.
Therefore, for A = AE’W/I(Z’_UAE@ in Definition 5.15, we can replace
g by p, and similarly for A%]?w/[(p_l)AE]?w.

LEMMA 5.18 ([36, Lemma 41]). — K Let (N, Fil*N) be as in Defini-
tion 5.15(i), (ii). Then a Frobenius-semilinear endomorphism ¢ : N — N
satisfies the conditions in Definition 5.15(iii) if and only if p(e;) € " N for

<i<hand{g"p(er),...,qg " p(en)} is an A-basis of N.

Proof. — Let us assume that (N, Fil* N) satisfies the condition in Defini-
tion 5.15(iii). Then, since e; € Fil* N, we have ¢(e;) € ¢" N for 1 <i < h.
Now for 0 < k < p — 2, we have

p(Fil* ™" Ae;) = (Fil* ™™ A)p(ei) € 4" A q M p(es) € ¢"N.

Therefore, from the identity S"7_2 A - ¢ *(Fil* N) = N, we obtain that
{g7 " p(er),...,q % p(en)} generate N as an A-module. Since N is free of
rank h over A, we get that {g %1 ¢(e1),...,¢ ¥ ¢(en)} is indeed a basis.

Conversely, assume ¢(e;) € ¢ N for 1 < i < h such that the ele-
ments {g %1 ¢(e1),...,q ¥ p(ep)} form an A-basis of N. Then, from Defi-
nition 5.15(ii), we have

h
o(Fil*N) = (Z Fil* % Ae, ) C quikiAgo(ei)

i=1

—quA g *ip(e) = ¢"N.

Further, since {g *1p(e1),...,q *p(en)} € ZZ;%A g Fp(Fil*N), we
obtain the last equality in Definition 5.15(iii). O

Remark 5.19. — We introduce some necessary conditions in order to
adapt Tsuji’s results from [36, Section 4-Section 8]. Let A = Agw, A%]?w

and ¢ = @ € A. Consider the projection map A — A/J for some ideal
J C A and assume that
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(i) The ideal J is contained in the Jacobson radical of A, and J C
Fil?~2 A. Moreover, ¢(J) C J and ¢(J) C ¢?~ ' A. Further, the ideal
J is preserved under the action of I'g.

(ii) The ideal J is closed as a submodule of A.

(iii) There exists a decreasing sequence of ideals -+ C H,41 C H, C
-+« C Hy C A for n € N, such that H,, form a fundamental system
of neighborhoods of 0 in A, the homomorphism A — lim,, A/H,, is
an isomorphism, and ¢~ P~Yo(H, N.J) C H, N J for every n € N.

(iv) The image of ¢ in A/J is a non-zero-divisor. Moreover, the sequence
[Tieo ¢"(q) € A converges to 0 as n — +oc.

(v) The homomorphism ¢ : A — A is continuous and multiplication by
q induces a homeomorphism A — gA, where the latter is equipped
with the induced topology.

PROPOSITION 5.20.
(i) Let
A=A7
with J = IP~VAL . and H, = p"A},  + " "P"'AL . Then
A;’w satisfies conditions in Remark 5.19.
(ii) Let A = ARP_ with J = I®»=DAED and H, = p"A}" . Then
A%Pw satisfies conditions in Remark 5.19.

Proof. — The proof follows in a manner similar to the proof of [36,
Proposition 59]. For (i), note that the ring AEW is m-adically complete,
and since I(pfl)AEw = ﬂpflAEw C WAEW, we see that I(”’l)A}m is
contained in the Jacobson radical of AE’W. Moreover, note that we have
inclusions w(wp_lAEyw) - qp_lﬂp_lAEw - Wp_lAE@, therefore we get
I(p_l)ARw C FﬂP‘QA;)w. It is clear that I(p_l)AEw is stable under the
action of I'g. Therefore, the condition in Remark 5.19(i) is satisfied.

Now we have H,, = p”AEw + 7r"+p_1AEw for n € N, which is a funda-
mental system of neighborhoods of 0 € AE@ and AEW = lim,, A}w/Hn
(see Lemma 5.6). Further, since AE’W/I(p*I)AEW is p-torsion free, we ob-
tain that H, N I®"DAL = (p"Af _ + a7 1AL YN IP-YDAL =
p"I(p_l)AE’w + W"I(p_l)AE’w. The condition in Remark 5.19(iii) now
follows from this. Moreover, [ (p_l)AE’w is a free A}w—module of rank
1, so it follows that J is a closed submodule of AE,W by Lemma 5.6(i)
& (iv), verifying the condition in Remark 5.19(ii). Next, from Lemma 5.14
we have that ¢ € Agw/l(p’l)AE,w is a non-zero-divisor. Moreover, we

have ©*(q) = ¢*t1(¢) € <pk+1(FillA§7w) C cpkﬂ(pAgw + 7T1A§7w) C

TOME 75 (2025), FASCICULE 1



462 ABHINANDAN

pA};w + ﬂAEw, for k € N. Therefore, [[,_,¢"(q) converges to 0 as
n — oo, and the condition in Remark 5.19(iv) has been verified. By
the definition of ¢ in Section 3.3, we see that it is continuous. Further,
from Lemma 5.6(iii), it follows that AEyw/qAE’w is p-torsion free. There-
fore, we have (p"AEw + q”HAE’w) N qAJr = "(qAEw) + q”(qAE’w).

By Lemma 5.6(i), it follows that A} _ xa, qA}

verifying the condition in Remark 5.19(v). This shows the claim in (i).
For the claim in (ii), note that we have ¢ = pap(%) %, which implies that
q and p are associates in Algl?w (see Lemma 3.14). Therefore, it is enough
to verfiy the conditions in Remark 5.19, with ¢ replaced by p everywhere.
We have I(P— 1)APDW C FlllAPD + pAR", APDw is p-adically com-
plete and FlllA -y pFil' AFD s a nil ideal of ARP / pAng Therefore,

w

is a homeomorphism,

IP=DAP Dw is contalned in the Jacobson radical of APD Moreover, we
have IP~DAPD c FilP2ATD and o(IP-VALD ) C I(P DAPD . Also,
go(I(p 1)APPW) C ¢~ 1AP]?W = ppflAE]?w. It is clear that (P~ 1)AP]?W is
stable under the action of I'p. Therefore, the condition in Remark 5.19(i)
is satisfied. Next, we know that AEPW is p-adically complete and the ring
AE]?W /1 (p’l)Agl?w is p-torsion free by Proposition 5.12, therefore p"A%Pmﬂ
1 (pfl)A%]?w =p" (p’l)Agl?w. This gives us the condition in Remark 5.19(iii).
Further, I (pfl)AE]?w is p-adically complete by Lemma 5.13(ii), so we get the
condition in Remark 5.19(ii). Conditions in Remark 5.19(iv) & (v) follow
trivially from the fact that AE]?W = lim,, A}%l?w / p”Agl?w. d
Finally, we come to the main result of this section. Note that categories
MF? below are defined by combining Definition 5.15 and Remark 5.17.

THEOREM 5.21. — The natural maps A}, _ — Af, _/I®"VAL =
A%Pw/ I _1)A§]’3 AP D induce equ1valence of categones
(1)
MF:FO p—2], free(A%],:)wv @ FR) MF}[JO p—2], free (APD /I(p l)AR w P FR)
(2) _
MF[pO p—2], free< E,W/I(p 1)Ag,w7 P, FR)

( ) 4
MF?O p—2], free (AR,w7 ¥ FR)'

Proof. — The natural projection map AEW —» AJIQ@/I(?_DAE@ is
compatible with Frobenius and the action of I'r and we have ¢ = pu
mod I(p_l)AE’w for u € (AE’W)X (see also Remark 5.17), i.e. ¢ and p
are associates in AE’W /T (1’_1)AJr . Further, A7}, k. Satisfies the conditions
in Remark 5.19. Therefore, from [367 Proposition 56], we obtain that the
functor in (3) is an equivalence of categories.
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~

From Proposition 5.12, we have an isomorphism AEW/I@*I)AEW —
AEPW /I (p’l)Agl?w, compatible with Frobenius and the action of I'. There-
fore, we obtain that the functor in (2) is an equivalence of catgeories.

Finally, the natural projection map A%Pw —» AIP;]?W /1 (pfl)A%]?w is com-
patible with Frobenius and the action of ' and ¢ = pu mod I(pfl)AE’w
for some u € (AE,W) X (see also Remark 5.17), i.e. ¢ and p are associates in
AL JIPDAT 5 ARD /IP=DALD | Further, ARD satisfies the con-
ditions in Remark 5.19. Therefore, from [36, Proposition 56|, we obtain
that the functor in (1) is an equivalence of categories. O

5.3. Wach modules from Fontaine—Laffaille data

In this section, we will work with objects of MF[g ,_9) free(R, ®,0) (see
Definition 5.1) and using these objects we will construct Wach modules
over A}, (see Definition 4.8). In Section 5.3.1, starting with a Fontaine-
Laffaille module, we will first obtain a free module over AJ}%,W with desired
properties and in Section 5.3.2 we will descend over to AJIQ. Note that
in Section 5.3.1, we will first establish a mod p" statement (see (5.2))
and as a consequence deduce a p-adic statement (see Proposition 5.25).
However, it is possible to prove the p-adic statement directly (see proof
of Proposition 5.25). Readers interested only in the p-adic statement may
directly skip to Proposition 5.25.

5.3.1. From Fontaine-Laffaille modules to Agw—modules

Following [36, Section 4], set X,, = Spec (R/p™) and ¥,, = Spec (Op/p™)
for n € Ny and consider big crystalline sites CRIS(X,,>,) and
CRIS(X1, ¥,,) and respective toposes (X, /2, )cris and (X;1/3,)cris, with
the PD-ideal (p(Op/p™),[ ]). Let Fy, : ¥, — X, denote a lifting of the
absolute Frobenius of ¥, such that it is a PD-morphism with repsect to
the PD-structure. The absolute Frobenius Fx, of X; and Fx, define a mor-
phism of PD-ringed topos Fx, /s, cris : (X1/En)cris = (X1/%,)cris.

Let (M,Fil*M, 0, ®) € MF[g ;,_9), free (R, ®, D) be a free relative Fontaine—
Laffaille module (see Definition 5.1), and let (M,,Fil*M,,d, ®) denote
its modulo p™ reduction. Then, by [36, Definition 26, Theorems 17 & 29]
this data corresponds to a quasi-coherent filtered crystal (F,,Fil*F,) on
CRIS(X,/%,). Similarly, by [36, Definition 26, Theorems 22 & 29] this
data also corresponds to a quasi-coherent crystal G, on CRIS(X;/%,).
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The reduction modulo p™ of ® : *M — M equip G, with a morphism
g, - F)"‘(l/zmcms(gn) — G,,. Further, for the morphism of ringed topos
in,cris : (X1/2n)cris — (Xn/2n)cris induced by the closed immersion
in : X1 — X, over idyg_, we have i:L,CRIS(]:n) = G, (see [36, Proposi-
tions 25 & 32]). Moreover, we have similar statements for the morphism of
ringed topos induced by X,, = X, +1 and ¥,, = ¥, 11.

Now, for n € N5 let X, := Spec (R[w]/p"), D, = Spec (AR", /p™) and
Fp, : D, — D, be the lifting of the absolute Frobenius on D defined by
¢ of A%Pw/p". We have the surjective map 6 : AE’W — R[w]. So taking
mod p™ reduction, we obtain an embedding X, — Spec (Aﬁw/p") and
taking divided power envelope, we obtain a closed immersion X/ — D,
(resp. X1 — D,,) which can naturally be regarded as an object of the site
CRIS(X,,/%,) (resp. CRIS(X;/X,)), endowed with a right action of I'g.

DEFINITION 5.22. — Define an AEPw/p"—module by setting NP =
D(X! ~ Dy, Fn) = T(X] — Dy, Gp).

The right action of I'g on D,, induces a left action on NPP. The filtration
on F,, induces a filtration by AEPW /p"-submodules on NI'P | which is stable
under the T'g-action. Then NFP is a finite free filtered A%{)w /p™-module of
level [0, p—2] (see [36, Lemma 20]). The Frobenius ®¢, of G,, and the lifting
of Frobenius Fp, on D,, define a semilinear I' zg-equivariant endomorphism

of I'(X} = D, G,) and hence that of N*'P as T'(X} — D,,,G,,) — (X} —

Dy, F%, crisYn) Lon, I'(X{ — Dy, Gy), where the first homomorphism is

induced by Fx; and Fp,,.

Let [] denote the PD-structure on the ideal p(AR"_/p™) + FillAE]?w/p"
of AEPW /p". Then we have the big crystalline sites CRIS(X),/D,,) and
CRIS(X{/D,,), and the respective topos (X,,/Dy)cris and (X1/Dy)cris
with the PD-ideal (p(AEPw/p") + FillA%]?w/p”, []) of A%]?w/p". By taking
the pullback of (F,,, Fil*F,,) (resp. G,,) under the morphism of ringed topos
(X0/Dn)oris = (Xn/Zn)cris (vesp. (X{/Dp)cris — (X1/En)cris), we
obtain a quasi-coherent filtered crystal (F,,, Fil*F}) (resp. a quasi-coherent
crystal G, with a morphism ®g/ : F)*({/DMCRIS(Q;L) — G, endowed with
compatible I'g-action. Since X, — D, (resp. X] — D,,) is a final object of
CRIS(X/,/D,,) (resp. CRIS(X{/D,,)), we have canonical AEPw/p"—linear is-
morphisms NFP 5 T'((X} /Dy)cris, Fh) — D((X]/Dyn)cris, G,) compat-
ible with supplementary structures (see [36, p. 188-189]).

Next, for n € Nsg, similar to above let E,, := Spec(OAL"_/p™) and
Fg, ' B, = E, be the lifting of the absolute Frobenius on E; defined by
@ of OALD /p™. We have the surjective map 0r : R ®z A, | — R[w]. So
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taking mod p™ reduction, we have an embedding
X! — Spec (R ®z Agyw/p">

and taking divided power envelope, we obtain a closed immersion X, — E,
(resp. X{ — E,) which can naturally be regarded as an object of the site
CRIS(X],/D,,) (resp. CRIS(X{/D,,)), endowed with a right action of I'g.

DEFINITION 5.23. — Define an OAR"_ /p"-module by setting ONP :=
(X! — E,, F.) 5 T(X] — E,,G).

The right action of I'gr on E,, induces a left action on ONI'P. The fil-
tration on F, induces a filtration by OA%]?W /p"-submodules on ONFP,
which is stable under the I'g-action. Then ONFP is a finite free filtered
OA%Pw/p”—module of level [0, p — 2] (see [36, Lemma 20]). Further, by [36,
Theorem 29, Proposition 32] ONEP is equipped with a I'g-equivariant
integrable connection compatible with the connection on OARD_/p™ and
satisfying Griffiths transversality with the respect to the filtration. More-
over, this the I'g-action and connection are compatible with the respec-
tive structures on I'(X] — E,,G},) (see [36, Propositions 25 & 32]). The
Frobenius ®g, of G;, and the lifting of Frobenius F'g, on E,, define a semi-
linear I"g-equivariant endomorphism ¢ of I'(X}] — E,, G,) and hence that
of ONPP. Further, the Frobenius-semilinear endomorphism ¢ commutes
with the connection on ONIP.

From [9, Proposition 4.1.4] and [10, Theorem 7.1], we have a descrip-
tion of the global sections of a crystal in terms of horizontal sections
of the corresponding module with an integrable connection on the PD-
envelope of an embedding into a smooth scheme. In other words, we have
an A%]?w/p”—linear isomorphism NFP = (ONED)BZO
tration, Frobenius and the action of I'r on each side (see [36, p. 190]).
Since X/ — D,, (resp. X] — D,,) is a final object of CRIS(X},/D,,) (resp.
CRIS(X{/D,)), we obtain a canonical OAR"_/p™-linear ismorphism

OA%]?w/pn ®Ang/pn N,PL)D — ONTIL)D,

, compatible with fil-

compatible with Frobenius, filtration, connection and the action of ' on
each side. Here the connection on the tensor product on the left is given as
8OA;D ® 1. Moreover, from [36, Propositions 24, 25 & 32|, we obtain an

(’)A%]?w /p"-linear ismorphism
OAE]?W/p7L ®R/p" M/pn L> ON,SD7

compatible with Frobenius, filtration, connection and the action of I'r on
each side (see [36, p. 191]). Here the connection on the tensor product on
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the left is given as Jp Arp @ 1+ 1® 0p. Combining the two isomorphisms

above, we obtain an (’)A}%Dw /p"-linear isomorphism

(5.2) w/p ®APD > Jpn N —)OA /p ®R/p M/p,

compatible with Frobenius, filtration, connection and the action of I'g on
each side. Therefore, we also have an ARP_/p™-linear ismorphism

~ n 1y 0=0
NP = (OARL/p" @Ry M/p")

compatible with Frobenius, filtration and the action of I'g on each side.

DEFINITION 5.24. — Define an AEP -module as NFP (M) := lim,, NFP,
equipped with a semilinear and contmuous action of ', a filtration given
as Fil* NPP(M) := lim,, Fil* NPP | which is stable under the action of T,
and a Frobenius-semilinear I" g-equivariant endomorphism .

Passing to the limit in (5.2) we obtain an OARD -linear isomorphism
OA%]?W ®A;1?w NPD(M) = OA - Qr M,

compatible with Frobenius, filtration, connection and the action of I'r on
each side. Therefore, we have the following conclusion:

PROPOSITION 5.25. — Let M be a free relative Fontaine—Laffaille mod-
ule. Then

N¥P(M) = (OARD, @R M)
is a finite free Ag]?w—module equipped with a decreasing filtration of level
[0,p — 2], a Frobenius-semilinear endomorphism ¢ : N¥P (M) — NFP(M)
and a continuous action of I'p on each side. In particular, NYP (M) €
MFf07p72], fmc(A}%]?w, ©,'r). Further, we have a natural isomorphism

(53) OA APD N (M) AN OA - OR M

compatible with the Frobenius, filtration, connection and the action of T'g
on each side.

Another proof of Proposition 5.25. — Let us consider a Frobenius-
equivaraint injective map OF{Xlil, e ,Xczltl} — A%Pw by sending X; —
[X?] and we extend it uniquely, by étaleness of Op{Xlil, . ,X;ltl} — R
to obtain a Frobenius-equivariant injective map R — Agl?w

LEMMA 5.26. — We have an AE’ -linear isomorphism A > @r M =
(OAR", ®r M)°=

ANNALES DE L’INSTITUT FOURIER



CRYSTALLINE REPRESENTATIONS AND WACH MODULES 467

Proof. — Let J = ([X}] = X1,...,[X}] — Xa) OARD and let JI! denote
its n-th divided power for n > 1. We have the projection map,

OARW@)RMHARw@RM

via the map X; ~ [X?] and the kernel is given as JI!l @ p M. Moreover, we
have an APD -linear section of the projection above given as

A ®RM—>OA ®RM

d
1@d— 3 Haf"(d)H([X;] — X

KkeNd i=1 i=1
Note that the image of the section lies in (OA}D, ©@r M)?=0. Now let
Q=JU®r M and Q' = (OARL, @r M)/(OAFD, @ M)?=C and we
consider the following diagram with exact rows (the top row is split exact)

(5.4)

0 — ARP ®RM—>(’)A S OrM — Q —— 0

l [ |

O%(OA%‘%@RMWO%C)A QrM — Q' —— 0.

Note that the left vertical arrow is an injection and the right vertical arrow
is a surjection. To get that the left vertical arrow is a bijection we need to
show that the right vertical arrow is an injection. We have

0=0
(J[l} ®R M)@:O (JOBcrls( ) ®R[ ] ODCI‘IS( ))

= (JOBes(R) @g, V)™

)

where V' = V(M) is crystalline (see Proposition 5.3(i)) and the ideal

JOBis(R) C OBeis(R) is generated by ([ ] Xi,...,[X5] — X4). Then
it easily follows that (JOBs(R ) ®Q V) = 0 and we conclude that
ALY ©r M = (OARD, ®RM) : O

From the identification N*P (M) = (OA%]?W ®r M) =0 ~ A%]?w Qr M
(where the rightmost term is equipped with a I'g-action as in Remark 5.27),
it easily follows that N*P (M) € MFf, o tree (AR, ©, Tr). Next, we can
OA%Pw—linearly extend the map in (5.4) to obtain
(5.5)

OA% s ©arp (AR, @r M) — OARL @r M

d
1@d— > Hafi (@) T (171 = x5t

keNd i=1 i=1
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We equip the left term with a I'g-action as in Remark 5.27. Choosing a basis
of M it is easy to see that the determinant of the map in (5.5) is invertible
in OA%PW, i.e. the map (5.5) is bijective. Moreover, it is compatible with
Frobenius, filtration, connection and the action of I'r. Now we have a
natural injective map

OALY, DAL NYP(M) — OAR", @r M,

compatible with the Frobenius, filtration, connection and the action of I'p
on each side. The map above is bijective because of the following commu-
tative diagram

OA%],)W ®aro. NPP(M) r—s OA%?w ®r M

L |

OAI%],DW ®A§Dw (A%]?w QR M) — OA}P%PW ®r M,

where the bottom horizontal arrow is the isomorphism in (5.5). This con-
cludes the proof. d

Remark 5.27. — Using (5.5) and the AZPw—linear isomorphism in

Lemma 5.26, AEJ?W QrM S (OA%% R M)BZO

tion of I'g on the left term explitcitly. The action is given by the formula
d ; d .

g(a®@d) = g(a) ® Yyena [Ti=y 07 (d) TTi=, (9([X7]) — [XID, for g € T'r.

LEMMA 5.28. — Let NYP(M) as in Proposition 5.25. Then, the action
of TR o is trivial on NYP(M)/mN¥P (M), whereas T'r/T g acts trivially
over NFP (M) /7, NPP(M).

, we can describe the ac-

Proof. — This follows from the I'g-equivariant isomorphism in (5.3) (or
from Lemma 5.26 and Remark 5.27) and the action of I'r on OARD_ (see
Lemma 4.24(i)). O

PROPOSITION 5.29. — The following functor is fully faithful

NPD : MF[O,p72], free(Ra (I), a) — MF[pQ,p_Q], free(AIPg)w’ ©, FR)
M —s NPP(M) = (OARD, @, M)"°

Proof. — By taking I'g-invariants in (5.3), we obtain an R-linear iso-
morphism (OAIP}{DW ®arn NPD(M>)FR
filtration, connection on each side, and functorial in M. O

5 M compatible with Frobenius,
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Having obtained a finite free module with desired structures over the ring
A%?w, we will now pass to the ring AE?W. Let M € MF[g ;_2), free(R, ®,0)
and NFP(M) € MF][DO’p_Q]’ tree (AR ©, Tr) the ARD_-module obtained un-
der the functor of Proposition 5.29.

Next, from Theorem 5.21 we have that MFZ[DO,p—Q],free(AEBH’<p7FR) =
MF?O,p—2],free(A£,w’ ©,T'g) sending NFP(M) — NT(M) for M as above.

Combining this with Propositions 5.25 & 5.29, we obtain:
PROPOSITION 5.30. — The following functor is fully faithful
N MF(g ], free(R, ®,0) —> MF(, , tree(ATe 00, TR)
M +— NT(M).
For M and N+ (M) as above, we have a natural isomorphism
(5.6) OA", EIN Nt (M) = OAYD, @r M,

compatible with the Frobenius, filtration, connection and the action of I'g
on each side.

LEMMA 5.31. — Let N* (M) as in Proposition 5.30. Then, the action of
IR, is trivial on N*(M)/mN* (M), whereas T'r /T » acts trivially over
N*(M)/mmNT(M).

Proof. — This follows from the I"g-equivariant isomorphism in (5.6) and
the action of I'r on OA}%]?W (see Lemma 4.24(i)). O

5.3.2. Obtaining Wach modules

For the rest of this section we will fix m =1 (fix m = 2 if p = 2), i.e.
we take K = F'((,) (take K = F((,2) if p = 2). Consider the localization
S =A% ,[£]. Let M and M’ be free relative Fontaine-Laffaille modules

Y

and N*(M) and N*(M') the respective A}, _-modules obtained by the
functor in Proposition 5.30.

LEMMA 5.32. — We have a natural bijection

(5:7) Homy: 1 (N*(M), N*(M"))

R

— Homg, (N*(M) [1} SN (M) [1]) .

1 1
Proof. — As we are working with free modules and the morphism of
rings A}E’w — AEW[L] = S is flat, we obtain that (5.7) is injective. To

m

check surjectivity, let f: N*(M) [Fll] — N*(M')[] be an S-linear and

1
m
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I'g-equivariant morphism. We need to show that f(N1(M)) Cc N*t(M').
Assume f(NT(M)) C 7y *N*T(M’) for k € N, and consider the reduction
of f modulo 7, which is again I"g-equivariant. Now from Lemma 5.31, we
have that T'g acts trivially over N*(M) /w1 NT (M), whereas the action of
I'x is non-trivial over w; *N*(M') /a7 ¥ N*(M’) for k # 0 (the action
of 79 € T'k is non-trivial for k£ # 0). Hence, we must have k = 0, i.e.

f(NT(M)) Cc N*(M’), which shows the claim. O

Note that we have a morphism ¢ : S = A;qw [ﬂ%] — A;,,w [%] The re-
spective Frobenius-semilinear endomorphisms ¢ on N (M) and Nt (M)
induce semilinear morphisms ¢ : Nt (M) [%] — NT(M)[L] and ¢ :

NHT(M) 2] = NT(M")[+]. Let f e HomSI;r(NJF(M) =], NH (M) [])
be a morphism, such that the following diagram commutes
NFM[E] Lo N[ L]

T

[ L

NFM)[2] L N[,

where the bottom horizontal arrow is well-defined due to Lemma 5.32. We
will call such a morphism f to be (¢, 'g)-equivariant.

LEMMA 5.33. — We have a natural bijection
Homas o (N (M), N* (M)
~ 1 1
ot (v [ L] v [ 1]).
T1 ™1

Proof of Theorem 5.5. — Let M € MF (g ,,_9 free(R, ®,0) and let N* (M)
denote the A;A’w—module obtained from M from the functor of Proposi-
tion 5.30. We will show that a basis of N* (M) descends over to Af.

In the notation of Definition 5.15, let {eq,...,en} denote an A§7w—basis
of N*(M). Then from Lemma 5.18, we get that {g =" p(e1),...,q¢ % p(en)}
is also an A;ng—basis of Nt(M). Without loss of generality, we may fur-
ther assume that kp < kp_1 < --- < k1. Let us set s := k1, so we get that
NH(M)/o*(NT(M)) is killed by ¢* and s € N is the smallest such number.

Let D(M) = NT(M) [7%1] " where " denotes the p-adic completion.
Then D(M) is an étale (¢, ', »)-module over Ap o, = Ag’m [7%1] " free of
rank h. Since Nt (M) is free, it follows that N* (M) [w—ll} /p™ = D(M)/p".
Similar to the proof of Lemma 5.32 and using dévissage we obtain that the
functor N (M) — D(M) is fully faithful. Therefore, using Proposition 5.30
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we conclude that the functor

NIF[O,p—Z]7 free(Ra (I)a 8) — (307 I‘R)'MOdézAtRﬂ

1 A
M +— NT(M) {} ,
!
is fully faithful.

Now, from Proposition 5.3 and Definition 5.4 we have that T := Teys(M)
is a free Zj,-representation of Gr. Considering T' as a representation of
GR,w, we have the associated (¢,T'r,-)-module Dg . (T) over Ag . By
the full faithfullness of the functor above and equivalence of categories
in (3.2), we conclude that D(M) = Dpg (T) as étale (p,T'g o )-module
over Ap . Also, we have ¢(Dg (T)) C D(T), where the latter module
is an étale (¢, 'gp)-module over Apg, free of rank h.

Next, let N := NT(M) N D(T) where we take the intersection inside
Dpgr o (T). Note that N is equipped with a Frobenius-semilinear endomor-
phism ¢ and it is stable under the action of I'r. We claim that

LEMMA 5.34. — The elements {g~*1¢(e1),...,q " ¢(epn)} form a basis
of N.

Proof. — Let us set N’ := 2?21 Atg*ip(e;). Since we have ¢ *ip(e;) €
Nt(M)ND(T) = N, therefore N’ C N. This also implies that ¢(e;) €
¢"i N. Extending scalars along the faithfully flat morphism of rings AE —
AEW we get that NT(M) = AE,W ®at N’ C Ag,w ®ar N C NT(M).
Therefore, Aaw DAt N5 A;’w ®at N. But since the map A}, — A}w
is faithfully flat, we obtain that N’ = N. O

We will now verify the conditions of Definition 4.9 for V' = Q,®z,T'. Since
V arises from a Fontaine-Laffaille module of level [0, p—2], we have that V is
crystalline with non-positive Hodge-Tate weights. We have that NV is a free
Ag—module of rank h stable under ¢ and I'g, and such that N C DT (T) as
well as Ap ®at N 5 D(T). Next, we want to show that ¢*N C ¢*(N) as
AE—modules, where s = ky. Since AE — AEW is faithfully flat, it is equiv-
alent to showing that qSAE’w ®at N C AEW ®at ©*(N). But the latter in-
clusion can be re-expressed as ¢* N1 (M) C ¢*(N*(M)) as AEw—modules7
which was established above by showing that
NH(M)/e*(Nt(M)) is killed by ¢*. Therefore, we conclude that N/p*(N)
is killed by ¢® and s € N is the smallest such number.

Next, we look at the action of I'p over N. Recall from Section 3.1 that
we have {y0,71,...,7a} as topological generators of I'g o, where v is a lift
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of a topological generator of I'x. The action of 7, on the basis elements of
NT(M) can be given as

vi(e;)) =e +mx;; for 1<i<h, 0<j<d and J;HEA

Since ¢ is I'g-equivariant, we get that v;(p(e;)) = (e;) +q7rga(xi,j), where
o(xi ;) € p(NT(M)) € NT(M)nD(T) = N Now ¢(e;) € ¢¥' N, so we
must have that gmo(z; ;) € ¢""NNgrN = ¢* 7N C N, for 1 <i < h and
0 < j < d. Therefore, we get that

—ks “kip(e;) mod 7N for 1< j<d.

vilg " ele) =g
For j = 0, recall that vo(w) =
Therefore, we have v0(q) = go(u)u=! and 70(¢7!) = ¢ rp(u1)u. So we
obtain

(’}/o)ﬂ'u for some unit u € 1+ TA%.

“FipuFub (p(es) + qmo(i ;)

p(e;) mod mN.

Y0(g " p(ei)) = v0(g " )0 (p(es) = g

= qiki

Finally, let g € T'r be a lift of a generator § € I'r/T'g , a finite group of
order p—1. Then we have g(e;) = e; +my; for 1 <i< handy, € N*T(M).
Since ¢ is I'g-equivariant, we get that g(v(e;)) = w(e;) + mp(y;), where
o(y;) € o(NFT(M)) C N*( yND(T ) N. Now p(e;) € qkiN so we must
have that mo(y;) € ¢ N NN = ¢¥ixN C N, for 1 < i < h. Further,
we know that g(m) = x(g)mv for some unit v € 1 + 1A}, Wthh gives us

that g(q) = gp(v)v~t. Therefore, g(¢ " ¢(e;)) = ¢ ki@(u*’”)uki(w(ei) +

wo(yi)) = g *p(e;) mod wN, for 1 < i < h. Hence, I'g acts trivially over
N/nN.

Setting N(T') := N, we see that conditions of Definition 4.9 have been
satisfied. In particular, V' is a positive finite g-height representation. g
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