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CHARACTERIZATIONS OF UNIFORMLY
DIFFERENTIABLE CO-HORIZONTAL INTRINSIC

GRAPHS IN CARNOT GROUPS

by Gioacchino ANTONELLI, Daniela DI DONATO,
Sebastiano DON & Enrico LE DONNE (*)

Abstract. — In arbitrary Carnot groups we study intrinsic graphs of maps
with horizontal target. These graphs are C1

H regular exactly when the map is uni-
formly intrinsically differentiable. Our first main result characterizes the uniformly
intrinsic differentiability by means of Hölder properties along the projections of
left-invariant vector fields on the graph.

We strengthen the result in step-2 Carnot groups for intrinsic real-valued maps
by only requiring horizontal regularity. We remark that such a refinement is not
possible already in the easiest step-3 group.

As a by-product of independent interest, in every Carnot group we prove an
area-formula for uniformly intrinsically differentiable real-valued maps. We also
explicitly write the area element in terms of the intrinsic derivatives of the map.

Résumé. — Dans les groupes de Carnot, nous étudions les graphes intrinsèques
des fonctions avec codomaine horizontal. Ces graphes sont C1

H réguliers quand la
fonction est uniformément intrinsèquement différentiable. Notre premier résultat
est une caractérisation de la différentiabilité intrinsèque en termes de régularité
Hölder des projections sur le graphe des champs de vecteurs invariants à gauche.

Nous améliorons le résultat dans les groupes de Carnot de rang 2 pour les fonc-
tions avec codomaine unidimensionnel: dans ce cas, la régularité horizontale suffit
pour obtenir le résultat. Nous remarquons que cette amélioration n’est pas vraie
dans le groupe de Carnot de rang 3 le plus simple. Enfin on montre une formule de
l’aire pour les fonctions uniformément intrinsèquement différentiables avec codo-
maine unidimensionnel et on donne une expression explicite de l’élément de surface
en fonctions des dérivées intrinsèques de la fonction.
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Notation

G, g Carnot group and its Lie algebra, respectively.
(φ, φ̃), (γ, γ̃), . . . □ is the representation of □̃ in exponential co-

ordinates. See Definition 2.3.
Lg, Rg Left-translation and right-translation by g ∈ G.

deg Holonomic degree. See Section 2.
∥ · ∥, ∥ · ∥G Homogeneous norm on G. See (2.3).

V1 Horizontal bundle of G. See (2.1).
πV1 Projection on the horizontal bundle. See (2.2).

(W,L) Complementary subgroups. See Definition 2.1.
πW(g), gW Projection of g ∈ G onto the homogeneous

subgroup W, given the splitting G = W · L.
See (2.4).

hα(U ;Rk) Rk-valued α-little Hölder functions defined on
U ⊆ Rn. See Definition 2.6.

Φ̃(Ũ), graph(φ̃) Intrinsic graph of φ̃ : Ũ ⊆ W → L, given the
splitting G = W · L. See Definition 2.8.

φ̃q : Ũq ⊆ W → L Intrinsic q-translation, with q ∈ G, of the func-
tion φ̃ : Ũ ⊆ W → L, given the splitting
G = W · L. See Definition 2.9.

dPf Pansu differential of the C1
H function f . See Def-

inition 2.15.
dφφa0 ,dφφ(a0) :W→L Intrinsic differential of the function φ̃ : Ũ ⊆

W → L, at a point a0 ∈ Ũ , given the splitting
G = W · L. See Definition 2.17.

(U)ID(Ũ ,W;L) Set of (uniformly) intrinsically differentiable
function φ̃ : Ũ ⊆ W → L, given a splitting
G = W · L. See Definition 2.17.

∇φφa0 ,∇φφ(a0) When L is horizontal, the map, identified
with a k × (m − k)-matrix, in Lin(Lie(W) ∩
V1,Lie(L)), corresponding to the intrinsic dif-
ferential dφφa0 . See Definition 2.20 and Re-
mark 2.21.

∇φ
j φ,∇φφ(Xj) The j-th component, either a number or a vec-

tor, of the intrinsic gradient ∇φφ. See (4.24).
∇Hf = (∇Lf | ∇Wf) Pansu differential of f ∈ C1

H(Ṽ ;Rk) in coordi-
nates adapted to the splitting G = W · L. See
Definition 2.26.
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Dφ
W Intrinsic projected vector field on Ũ ⊆ W, rela-

tive to the vector field W ∈ Lie(W), and to the
function φ̃ : Ũ ⊆ W → L, given the splitting
G = W · L. See Definition 3.1.

Dφ
j Intrinsic projected vector field when W = Xj ,

with Xj ∈ Lie(W). See Proposition 3.9.
Dφφ The vector field Dφ acting on the function φ.

See Proposition 4.10.
L n n-dimensional Lebesgue measure. See (4.25).
S n n-dimensional spherical Hausdorff measure.

See (4.34).

1. Introduction

1.1. A historical account of the notion of C1
H-surface in Carnot

groups

In these last twenty years there has been an increasing interest in a
fine study of parametrized intrinsically regular surfaces in sub-Riemannian
settings. The search for a good such notion was motivated by a negative re-
sult obtained in [2]. Indeed, in the reference the authors show that the sub-
Riemannian Heisenberg group H1 is not k-rectifiable in Federer’s sense [19],
for k = 2, 3, 4. Hence in [34] Magnani proves the purely k-unrectifiability
of H1 for all k ⩾ 2, and a more general unrectifiability result for arbitrary
Carnot groups.

A notion of intrinsic C1 regular surface was firstly introduced and studied
in [23], and then in [24] in arbitrary Carnot groups G. Initially, the authors
only took C1

H-hypersurfaces into account. A first step toward a general
definition of C1

H-surfaces in arbitrary codimensions was done in [27, Def-
inition 3.1, Definition 3.2] in the setting of Heisenberg groups Hn. Then
a general notion of (G,M) regular surface, where G and M are Carnot
groups, was proposed by Magnani in [35, Definition 3.5]. According to the
latter definition, a (G,M) regular surface is locally the zero level set of an
M-valued C1

H-function defined on an open subset of G and whose intrinsic
Pansu differential dPf is surjective.

A first natural question one could try to answer is whether it is possible
to (locally) write a C1

H-surface as an intrinsic graph of a function. An
intrinsic graph in a Carnot group G is the set of points of the form p ·φ(p),
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given a function φ : U ⊆ W → L, where W and L are homogeneous and
complementary subgroups, namely G = W·L, and W∩L = {e}. The answer
to this question is affirmative for C1

H-hypersurfaces. Moreover the graphing
function is intrinsically Lipschitz according to the definition of [26, 22],
while it is in general neither Euclidean Lipschitz nor Lipschitz with respect
to any sub-Riemannian distance, see [26, Example 3.3 and Proposition 3.4].

A more general implicit function theorem was proved by Magnani in [36,
Theorem 1.4]. This theorem holds for arbitrary (G,M) regular surfaces with
the additional property that Ker(dPf(x)) has a complementary subgroup in
G, where x is the point around which we want to parametrize the surface.
From [36, Eq. (1.8)] it follows that this parametrization is intrinsically
Lipschitz. The validity of the implicit function theorem leads the way to
a very general definition of (G,M) regular sets for G, where M is just a
homogeneous group, given in [36, Definition 10.2]. We will not deal with
objects at this level of generality, but we refer the interested reader to [36,
Sections 10,11,12]. The class of intrinsically regular surfaces is also studied
in [30], where area and coarea formulae are proved. For an alternative proof
of the implicit function theorem, one can also see [30, Section 2.5].

We will mainly deal with co-horizontal C1
H-surfaces, that have been stud-

ied in [31, 18, 15], see Definition 2.27.

Definition 1.1 (Co-horizontal C1
H-surface). — Let G be a Carnot

group, and let k ∈ N. We say that Σ ⊂ G is a co-horizontal C1
H-surface of

codimension k if, for any p ∈ Σ, there exist a neighborhood U of p and a
map f ∈ C1

H(U ;Rk) such that

Σ ∩ U = {g ∈ U : f(g) = 0},

and the Pansu-differential dPf(p) : G → Rk is surjective.
If, morevoer, the subgroup Ker(dPf)(p) admits a horizontal complement,

we say that Σ is a co-horizontal C1
H-surface with complemented tangents.

We call Ker(dPf(p)) the homogeneous tangent space to Σ at p. In this case,
the homogeneous subgroup at p is independent of the choice of f , see [36,
Theorem 1.7].

Uniform intrinsic differentiability of the parametrizing function

A fine study on the regularity of the parametrizing function of a C1
H-

surface has been initiated in [3] in the setting of Heisenberg groups Hn,
for the class of C1

H-hypersurfaces. For this study in arbitrary CC-spaces,
see also [13]. In [3], the authors introduced the notion of uniform intrinsic
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differentiability. In this paper we abbreviate “intrinsically differentiable”
and “uniformly intrinsically differentiable” with ID and UID, respectively.

From the analytic viewpoint, the notion of (U)ID is defined in a transla-
tion invariant way, mimicking the Euclidean notion of derivative. For the
sake of exposition, we recall ID at the identity. Then, building on this
definition, one can define the notion of (U)ID at any point by means of
translations, see Definition 2.9, and Definition 2.17. In the following, ∥ · ∥
is a homogeneous norm on G.

Definition 1.2 (Intrinsic differentiability). — Let G be a Carnot group,
with identity e, and a splitting G = W · L. Let e ∈ U ⊆ W be a relatively
open subset, and φ : U ⊆ W → L, with φ(e) = e.

We say that φ is intrinsically differentiable at e if there exists an intrin-
sically linear map dφφe : W → L such that

lim
ϱ→0

(
sup

{
∥dφφe(b)−1 · φ(b)∥

∥b∥
: b ∈ U, 0 < ∥b∥ < ϱ

})
= 0,

where we say that a function is intrinsically linear if its intrinsic graph is
a homogeneous subgroup. The function dφφe is called intrinsic differential
of φ at e.

Building upon an implicit function theorem, the authors in [3] prove that
in Hn the graphing map φ for a C1

H-hypersurface is UID. The idea behind
this implication is the following: a function f ∈ C1

H not only has continuous
derivatives, but also its horizontal gradient ∇Hf uniformly approximates f
at first order, see [36, Theorem 1.2], and [30, Proposition 2.4]. This notion
is often referred to as strict differentiability. This fact has a strong analogy
with the Euclidean setting. Indeed, in this framework, a function f with
continuous partial derivatives is Fréchet-differentiable, and the proof relies
on a use of a mean value inequality, that is exactly what one finds in [36,
Theorem 1.2], and [3, Lemma 4.2]. We stress that [3, Lemma 4.2] is an
instance of the stratified mean value theorem that can be found in [20].
The uniform differentiability of f translates into the uniform intrinsic dif-
ferentiability of φ.

The fact that the graphing function is UID was proved in the case of
co-horizontal C1

H-surfaces in Hn [5], and more in general for co-horizontal
C1

H-surfaces with complemented tangents in any Carnot groups, in [18].
The inverse implication, i.e., the fact that the graph of a UID function is
a C1

H-surface, was firstly shown to be true in [3, 5] in the setting of Hn,
and lately generalized in [18] for arbitrary Carnot groups G to functions
with horizontal target, see our Proposition 2.28 for a precise statement.
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Notice that the lack of generality in the statement, namely, the fact that
one restricts the target to be horizontal, is due to the fact that a generalized
version of Whitney’s extension theorem is not known to be true.

1.2. Main theorems

Definitions and statements

For the notation we refer to Section 2. Given an arbitrary Carnot group
G of step s, with layers Vi, with 1 ⩽ i ⩽ s, we fix a splitting G = W · L,
where L is horizontal. We denote by ∥ · ∥ a (fixed) homogeneous norm on G.

We first aim at characterizing the uniform intrinsic differentiability of
a map φ : U ⊆ W → L defined on a relatively open subset U ⊆ W. This
is done by means of a correct Lipschitz/Hölder property of φ along the
integral curves of projected vector fields on U ⊆ W, that we define here.
See also Definition 3.1.

Definition 1.3 (Projected vector fields). — Let U be a relatively open
subset of W. Given a continuous function φ : U ⊆ W → L, for every W ∈
Lie(W), we take Dφ

W as the continuous vector field on U defined by

(1.1) Dφ
W (p) := (dπW)p·φ(p) Wp·φ(p). ∀ p ∈ U,

where πW is the projection on W. Notice that if φ is C1, then Dφ is a
C1-vector field.

We define the notion of broad* regularity, mimicking the definition in [3,
10], and we then introduce the notion of vertically broad* hölder regularity,
see Definition 3.24, and Definition 4.3, respectively.

Definition 1.4 (Broad* regularity). — Let G be a Carnot group, with
splitting G = W · L, and L horizontal. Let U be a relatively open subset
in W, φ : U ⊆ W → L be a continuous function, and let ω : U ⊆ W →
Lin(Lie(W) ∩ V1;L) be a continuous function with values in the space of
linear maps.

We say that Dφφ = ω in the broad* sense on U if the following holds:
for every a0 ∈ U , there exists a neighborhood Ua0 ⋐ U of a0 and T > 0
such that, for every a ∈ Ua0 and every W ∈ Lie(W) ∩ V1 with ∥W∥ ⩽ 1,
there exists an integral curve γ : [−T, T ] → U of Dφ

W such that γ(0) = a

and

φ(γ(s))−1 · φ(γ(t)) =
∫ t

s

ω(γ(r))(W )dr, ∀ t, s ∈ [−T, T ].

ANNALES DE L’INSTITUT FOURIER
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Since L is a horizontal subgroup, we stress that

φ(γ(s))−1 · φ(γ(t)) = exp(exp−1(φ(γ(t))) − exp−1(φ(γ(s)))).

Definition 1.5 (Vertically broad* hölder regularity). — Let G be a
Carnot group, with splitting G = W · L, and L horizontal. Let U be a
relatively open subset in W, and let φ : U ⊆ W → L be a continuous
function.

We say that φ is vertically broad* hölder on U if the following holds:
for every a0 ∈ U there exists a neighborhood Ua0 ⋐ U of a0 and T > 0
such that for every a ∈ Ua0 and every W ∈ Lie(W) ∩ Vd, with d > 1 and
∥W∥ ⩽ 1, there exists an integral curve γ : [−T, T ] → U of Dφ

W such that
γ(0) = a and

lim
ϱ→0

(
sup

{
∥φ(γ(s))−1 · φ(γ(t))∥

|t− s|1/d
: t, s ∈ [−T, T ], |t− s| ⩽ ϱ

})
= 0,

and the limit is uniform on a ∈ Ua0 and on W ∈ Lie(W) ∩ Vd, with d > 1,
and ∥W∥ ⩽ 1.

We next state our first main result in a free-coordinate fashion. We refer
the reader to Theorem 4.16 for a coordinate-dependent, though equivalent,
statement. We remark that the equivalence (a) ⇔ (b) of the forthcoming
Theorem 1.6 is not in the statement of Theorem 4.16, but it is an outcome
of Proposition 2.28, and the implicit function theorem [36, Theorem 1.4].

Theorem 1.6. — Let G be a Carnot group with splitting G = W·L, and
L horizontal. Let U be a relatively open subset in W, and let φ : U ⊆ W → L
be a continuous function. The following facts are equivalent.

(a) graph(φ) is a co-horizontal C1
H-surface with homogeneous tangent

spaces complemented by L (see Definition 1.1).
(b) φ is uniformly intrinsically differentiable on U (see Definition 1.2).
(c) φ is vertically broad* hölder on U (see Definition 1.5), and there

exists a continuous function ω : U → Lin(Lie(W)∩V1;L), such that,
for every a ∈ U , there exist δ > 0 and a family of functions {φε ∈
C1(B(a, δ);L) : ε ∈ (0, 1)} such that, for every W ∈ Lie(W) ∩ V1,
one has

(1.2) lim
ε→0

φε(p) = φ(p) and lim
ε→0

(Dφε
W φε)(p) = ω(p)(W )

uniformly for p ∈ B(a, δ).
(d) φ is vertically broad* hölder on U (see Definition 1.5) and there

exists a continuous function ω : U → Lin(Lie(W) ∩ V1;L) such that
Dφφ = ω in the broad* sense on U (see Definition 1.4).

TOME 74 (2024), FASCICULE 6
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Our second main result is an improvement of Theorem 1.6 for step-
2 Carnot groups, in the case L is one-dimensional. Again, we here give
a coordinate-free statement. We refer the reader to Theorem 6.17 for a
coordinate-dependent, though equivalent, statement. We stress that in the
forthcoming theorem we are removing the vertically broad* hölder con-
dition of Theorem 1.6, and we work with L that is one-dimensional. We
also stress that in general in the statement of Theorem 1.6 one cannot
remove the vertically broad* hölder condition, see Remark 4.17, and [31,
Example 4.5.1] for a counterexample in the easiest step-3 group, namely
the Engel group.

Theorem 1.7. — Let G be a Carnot group of step 2 with a splitting G =
W ·L, and L one-dimensional horizontal. Let U be a relatively open subset
in W, and let φ : U ⊆ W → L be a continuous function. The following facts
are equivalent.

(a) graph(φ) is a C1
H-hypersurface with homogeneous tangent spaces

complemented by L (see Definition 1.1).
(b) φ is uniformly intrinsically differentiable in U (see Definition 1.2).
(c) There exists a continuous map ω : U → Lin(Lie(W) ∩ V1;L), such

that, for every a ∈ U , there exist δ > 0 and a family of functions
{φε ∈ C1(B(a, δ);L) : ε ∈ (0, 1)} such that, for every W ∈ Lie(W)∩
V1, one has

lim
ε→0

φε(p) = φ(p) and lim
ε→0

(Dφε
W φε)(p) = ω(p)(W )

uniformly for p ∈ B(a, δ).
(d) There exists a continuous function ω : U → Lin(Lie(W)∩V1;L) such

that Dφφ = ω in the broad* sense on U (see Definition 1.4).

The last main result that we state is an area formula for uniformly dif-
ferentiable intrinsic real-valued maps, which we believe has its independent
interest. We here give its statement. We refer the reader to Proposition 4.10,
and Remark 4.11 for the full result and some observations on the result.

Proposition 1.8. — Let W and L be two complementary subgroups
of a Carnot group G with L horizontal and one-dimensional, and let
(X1, . . . , Xn) be an adapted basis of the Lie algebra g such that L =
exp(span{X1}) and W = exp(span{X2, . . . , Xn}). Let U ⊆ W be open
and consider φ ∈ UID(U,W;L).
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Then, the subgraph of φ defined by Eφ := {w · exp(tX1) : w ∈ U, t <

φ(w)} has locally finite G-perimeter(1) in U ·exp(RX1) and its G-perimeter
measure |∂Eφ|G is given by

(1.3) |∂Eφ|G(V ) =
∫

Φ−1(V )

√
1 + |∇φφ|2m−1 dL n−1,

for every Borel set V ⊆ U · exp (RX1), where Φ: U → Rn is the graph
function of φ composed with the exponential coordinates, L n−1 denotes
the Lebesgue measure on W and with a little abuse of notation we identified
U · exp(RX1) with a subset of Rn by means of exponential coordinates.

Comments on the statements

We point out that in Definition 1.4, and Definition 1.5 we give coordinate-
free definitions of the broad* conditions, while in Definition 3.24, and Defi-
nition 4.3, we will give apparently weaker definitions, choosing an adapted
basis. Nevertheless the broad* condition and the vertically broad* hölder
condition, when coupled together, are independent on the choice of the
basis, see Remark 3.26, and Remark 4.4.

We comment on the statement of Theorem 1.6, and we refer the reader
to the introduction of Section 4 for a more detailed discussion. We notice
that (a) ⇔ (d) is [31, Theorem 4.3.1]. In the reference the proof of this
latter fact is heavily based on the characterization of co-horizontal C1

H-
surfaces in terms of uniform convergence to Hausdorff tangents, see [31,
Theorem 3.1.12]. We give a self-contained different proof of this equivalence,
with analytic flavor. Namely, we first show (b) ⇔ (d), whose proof is based
on ideas coming from [3], and [18], and thus, as a corollary, we eventually
recover [31, Theorem 4.3.1] by using this and (a) ⇔ (b).

The approximating condition in (1.2) of item (c) could be interpreted as a
weak formulation of the equality Dφφ = ω on U , and it is the one that was
first proposed and studied in [3], see Remark 4.13 for a detailed discussion
about this condition. Indeed, in that reference, in the case G = Hn and
L one-dimensional, the equivalence (b) ⇔ (c) has been proved, even in
the stronger version obtained by removing the vertically broad* hölder
regularity, see [3, Theorem 5.1]. The fact that Dφφ = ω holds in the sense
of distributions on U , that is part of [3, Theorem 5.1], follows in general
from the argument of item (c) of our Proposition 4.10.

(1) Here we take the usual definition of the horizontal perimeter with respect to the
orthonormal basis (X1, . . . , Xm), see [24, Definition 2.18].

TOME 74 (2024), FASCICULE 6
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We comment on the statement of Theorem 1.7, and we refer the reader
to the introduction of Section 6 for a more detailed discussion on the idea
behind the proof. First, we notice that the main difference between this
statement and the one in Theorem 1.6 is in the fact that, in all the equiva-
lences, we are able to drop the vertically broad* hölder regularity on φ. The
equivalence (b) ⇔ (c) results in being a generalization of [3, Theorem 5.1]
to all step-2 Carnot groups. In [3, Theorem 5.1], the authors also proved
that Dφφ = dφφ holds in the distributional sense. We recover also this
conclusion in arbitrary Carnot groups, see item (c) of Proposition 4.10.

The equivalence (b) ⇔ (d) generalizes the result in [10, Theorem 1.2],
if one also takes item (d) of Proposition 4.10 into account, in order to
explicitly write the intrinsic normal of graph(φ) in terms of the intrinsic
derivatives of φ.

The area formula presented in Proposition 1.8 together with a result of
representation of the perimeter with respect to spherical Hausdorff measure
due to Magnani ([37]) allows in certain situations to express the spherical
Hausdorff measure restricted to the graph of a uniformly intrinsically dif-
ferentiable map φ : U ⊆ W → L with respect to the spherical Hausdorff
measure restricted on W, see (4.34). A formula of this kind has been recently
obtained in [16] for parametrized co-horizontal C1

H-surfaces with comple-
mented tangents of arbitrary codimensions in Hn (see [16, Theorem 4.2]),
building on an upper blow-up theorem, see [16, Theorem 1.1]. Very recently,
in [30, Theorem 1.1], an area formula for C1

H-surfaces has been proved in
great generality. In that reference the area element is left implicit, depend-
ing only on the tangent to the surface and on the homogeneous distance on
the group. We stress that, with the formula (4.34), we explicitly write the
area element in terms of the intrinsic derivatives of φ, in the case the target
is one-dimensional. For an area formula for intrinsically Lipschitz function
in Hn, one can also see [14].

We also mention that in orthonormal coordinates we can explicitly com-
pute the intrinsic normal to the graph, see item (d) of Proposition 4.10,
thus generalizing the formulas already proved in Heisenberg groups and in
Carnot groups of step 2 in [3, 18]. We refer the reader to Remark 4.11 for
a more detailed discussion on Proposition 1.8.

Geometric characterizations of intrinsic differentiability

The notion of (U)ID has a geometric meaning. Indeed, a function φ : U ⊆
W → L is ID at w0 ∈ U if and only if the Hausdorff tangent to graph(φ)

ANNALES DE L’INSTITUT FOURIER
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at w0 · φ(w0) is a homogeneous subgroup that is complementary to L, see
Remark 2.24.

Moreover, at least in the case L is horizontal, the Hausdorff-convergence
is uniform if and only if φ is UID, see [31, Theorem 3.1.1], and [31, The-
orem 3.1.12]. The proof of these statements are rather involved and based
on the so-called four cones theorem, see [8]. We remark that we will not
use this particular uniformity result throughout the paper.

We point out that the mere existence of Hausdorff tangents for C1
H reg-

ular surfaces - without any information on the uniformity of convergence -
has been proved in great generality also in [36, Theorem 1.7], and in [30,
Lemma 2.14].

Now a natural question can be raised. Is it true that an ID function φ with
continuous intrinsic gradient dφφ is UID? Taking the geometric interpreta-
tion into account, the question can be reformulated, at least in the category
of co-horizontal C1

H-surfaces: is it true that, if a co-horizontal graph(φ) has
continuously varying Hausdorff tangents, then it is a co-horizontal C1

H-
surface? If true, this would be the counterpart of an already known result
in the Euclidean setting that goes back to the beginning of twentieth cen-
tury. We refer the reader to [7, Proposition 2.1] and references therein for
an historical account of the problem.

The answer to the previous question is affirmative in Heisenberg groups
Hn, see [41, Theorem 4.95], and [15, Theorem 1.4]. In this paper we obtain a
new result in this direction. We prove that the answer is affirmative also for
hypersurfaces in every step-2 Carnot group, see (b) ⇒ (a) in Theorem 6.17,
thus generalizing [41, Theorem 4.95].

We give also a partial affirmative answer for arbitrary Carnot groups,
by requiring the additional hypothesis of the vertically broad* hölder con-
dition on φ, see Corollary 4.7. This weaker implication might not be so
satisfactory. Indeed, the intrinsic differentiability (even if it is not uniform)
by itself already implies a 1/d-little Hölder continuity on integral curves
of the vector fields Dφ

W , with W ∈ Lie(W) ∩ Vd. Nevertheless, this little
Hölder continuity, a priori, might not be uniform, see Proposition 3.19,
Remark 4.8, and Example 2.7.

1.3. Structure of the paper

In Section 2 we introduce the common terminology and notation we use
throughout the paper. We introduce Carnot groups, little Hölder functions,
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intrinsic submanifolds, intrinsically Lipschitz functions, (uniformly) intrin-
sically differentiable functions and we describe their basic properties and
relations.

In Section 3 we introduce the projected vector fields and we study their
basic properties: in particular, we show some invariance properties that
will be crucial in the proof of the main theorems. We also show how the
(uniformly) intrinsic differentiability affects metric properties along integral
curves of the projected vector fields.

In Section 4 we prove the main results Theorem 1.6 and Proposition 1.8
we discussed above.

In Section 5 we construct examples and apply our results also to obtain
different proofs of particular cases of theorems already contained in the
literature.

In Section 6 we give a proof of Theorem 1.7.
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2. Preliminaries

2.1. Carnot groups

A Carnot group G is a connected and simply connected Lie group, whose
Lie algebra g is stratified. Namely, there exist subspaces V1, . . . , Vs of the
Lie algebra g such that

g = V1 ⊕ · · · ⊕ Vs, [V1, Vj ] = Vj+1 ∀ j = 1, . . . , s− 1, [V1, Vs] = {0}.

The integer s is called step of the group G, while m := dim(V1) is called
rank of G. We call n := dimG the topological dimension of G. We denote
by e the identity element of G.
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It is well known that the exponential map exp: g → G is a diffeomor-
phism. We call

(2.1) V1 := exp(V1),

the horizontal bundle of G. We write

(2.2) πV1 := exp ◦πV1 ◦ exp−1,

to denote the projection on the horizontal bundle V1, where πV1 is the
linear projection in g onto V1.

Every Carnot group has a one-parameter family of dilations that we
denote by {δλ : λ > 0}. These dilations act on g as

(δλ)|Vi = λi(id)|Vi , ∀ λ > 0, ∀ 1 ⩽ i ⩽ s,

and are extended linearly. We will indicate with δλ both the dilations on g

and the group automorphisms corresponding to them via the exponential
map.

We fix a scalar product ⟨ · , · ⟩ in V1, that can be extended left-invariantly
on the horizontal bundle V1 = exp(V1), and a homogeneous norm ∥ · ∥ on
G. We recall that ∥ · ∥ is a homogeneous norm on G if

(2.3)

∥g∥ = 0 if and only if g = 0,
∥δλg∥ = λ∥g∥, ∀ λ > 0, ∀ g ∈ G,

∥g∥ = ∥g−1∥, ∀ g ∈ G.

Sometimes we will also call the homogeneous norm ∥ · ∥G. We also fix on
G a left-invariant δλ-homogeneous distance d and we denote by B(g, r)
(respectively B(g, r)) the open (respectively closed) balls of center g ∈ G
and radius r > 0 according to this distance. We next give the definition of
complementary subgroups.

Definition 2.1 (Complementary subgroups). — Given a Carnot group
G, we say that two subgroups W and L are complementary subgroups in G
if they are homogeneous, i.e., closed under the action of δλ for every λ > 0,
G = W · L and W ∩ L = {e}.

We say that the subgroup L is horizontal and k-dimensional, if there exist
linearly independent X1, . . . , Xk∈V1 such that L=exp(span{X1, . . . , Xk}).
Given W and L two complementary subgroups, we denote the projection
maps from G onto W and onto L by πW and πL, respectively. Defining
gW := πWg and gL := πLg for any g ∈ G, one has

(2.4) g = (πWg) · (πLg) = gW · gL,
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and, whenever W is normal (for example this is true when L is horizontal),
we have

(g · h)L = gL · hL, (g · h)W = gW ·
(
gL · hW · (gL)−1

)
, ∀ g, h ∈ G.

Remark 2.2. — If W and L are complementary subgroups of G and L is
one-dimensional, then it is easy to see that L is horizontal. For the sake
of clarity, we will always write L horizontal and one-dimensional even if
one-dimensional is technically sufficient.

Let us set m0 := 0 and mj := dimVj for any j = 1, . . . , s. We recall
that m = m1. Let us define n0 := 0, and nj :=

∑j
ℓ=1 mℓ. The ordered set

(X1, . . . , Xn) is an adapted basis for g if the following facts hold.
(i) The vector fields Xnj+1, . . . , Xnj+1 are chosen among the iterated

commutators of order j of the vector fields X1, . . . , Xm, for every
j = 0, . . . , s− 1.

(ii) The set {Xnj+1, . . . , Xnj+1} is a basis for Vj+1 for every j = 0, . . . ,
s− 1.

If we fix an adapted basis (X1, . . . , Xn), and ℓ ∈ {1, . . . , n}, we define the
holonomic degree of ℓ to be the unique j∗ ∈ {1, . . . , s} such that nj∗−1+1 ⩽
ℓ ⩽ nj∗ . We denote deg ℓ := j∗ and we also say that j∗ is the holonomic
degree of Xℓ, i.e., deg(Xℓ) := j∗.

Definition 2.3 (Exponential coordinates). — Let G be a Carnot group
of dimension n and let (X1, . . . , Xn) be an adapted basis of its Lie algebra.
We define the exponential coordinates of the first kind associated with
(X1, . . . , Xn) by the map F : Rn → G defined by

F (x1, . . . , xn) := exp (x1X1 + . . .+ xnXn) .

It is well known that F is a diffeomorphism from Rn to G. We will often
need to consider maps in exponential coordinates. To avoid inconvenient
notation we will use the following conventions.

• If Ũ ⊆ G, then U := F−1(Ũ).
• If U ⊆ Rn, then Ũ := F (U).
• If W and L are complementary subgroups of G and L is horizontal and
k-dimensional, we may assume that L = exp(span{X1, . . . , Xk}) and
W = exp(span{Xk+1, . . . , Xn}) for an adapted basis (X1, . . . , Xn).
Therefore F is one-to-one from Rk × {0Rn−k} onto L and also from
{0Rk} × Rn−k onto W.

• If Ũ ⊆ W and φ̃ : Ũ → L is a function, then φ : U ⊆ Rn−k → Rk
denotes the composition of φ̃ with F , namely φ := F−1 ◦ φ̃ ◦ F .
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• If φ : U ⊆ Rn−k → Rk is a function, then we denote by φ̃ : Ũ ⊆ W → L
the map defined by φ̃ := F ◦ φ ◦ F−1.

• If p ∈ G and j = 1, . . . , s, then pj ∈ Rmj is the vector of the coordinates
of p in the jth layer, namely pj := (F−1(p)nj−1+1, . . . , F

−1(p)nj ).
• If p ∈ G and j = 1, . . . , s, then ∥pj∥mj denotes the Euclidean norm of
pj in Rmj .

It is well known that all the homogeneous norms on G are bi-Lipschitz
equivalent. Thus, when it will be convenient in the proofs, we work with
the anisotropic norm that in exponential coordinates reads as

∥(x1, . . . , xn)∥G =
n∑
ℓ=1

|xℓ|1/ deg ℓ.

We remark that a slight variation of the previous homogeneous norm gives
rise to a homogeneous norm that induces a left-invariant homogeneous
distance, see [24, Theorem 5.1].

We recall that the homogeneous degree of the monomial xa1
1 · · · · · xann in

exponential coordinates, is
∑n
ℓ=1 aℓ · deg ℓ.

For the expression of the operation on the group G in exponential coor-
dinates we refer to [24, Proposition 2.1]. In the following result we point
out a useful estimate for the norm of the conjugate.

Proposition 2.4 ([22, Lemma 3.12]). — There exist P = (P1, . . . ,Ps) :
G × G → Rm1 × · · · × Rms such that, for every p, q ∈ G, one has

(2.5) F−1(p−1qp) = F−1(q) + P(p, q),

where P1 = 0 and, for each i = 2, . . . s, Pi is a vector valued δλ-homogeneous
polynomial of degree i. Moreover, for any bounded set B ⊂ G, there exists
C := C(B,G) > 0 such that

|Pi(p, q)| ⩽ C
(
∥q1∥m1 + · · · + ∥qi−1∥mi−1

)
,

for every p, q ∈ B and every i = 2, . . . , s.

Remark 2.5. — With a little abuse of notation, (2.5) will be always writ-
ten as

(2.6) p−1qp = q + P(p, q),

where the identification of G with Rn has to be understood via exponential
coordinates. Notice, however, that if one chooses a different diffeomorphism
between Rn and G, such as exponential coordinates of the second kind or
of mixed type, the polynomial P, the constant C and the components pj
have to be changed accordingly.

TOME 74 (2024), FASCICULE 6



2538 Antonelli, Di Donato, Don & Le Donne

2.2. Little Hölder continuous functions

We introduce and discuss the notion of α-little Hölder continuous func-
tion.

Definition 2.6 (little Hölder functions, [33]). — Let U ⊆ Rn be an
open set. We denote by hα(U ;Rk) the set of all α-little Hölder continuous
functions of order 0 < α < 1, i.e., the set of maps φ ∈ C(U ;Rk) satisfying

(2.7) lim
r→0

(
sup
{

|φ(b′) − φ(b)|
|b′ − b|α

: b, b′ ∈ U , 0 < |b′ − b| < r

})
= 0.

We also define hαloc(U ;Rk) the set of all functions φ ∈ C(U ;Rk) such that
φ ∈ hα(U ′;Rk) for any open set U ′ ⋐ U .

The following example is, in some sense, “pathological”. As it will be clear
during the paper, it gives a flavor of the difference between intrinsically
differentiable functions and uniformly intrinsically differentiable functions,
see Remark 4.8. We thank R. Serapioni for having shared this example
with us.

Example 2.7. — We are going to construct a real-valued function φ : R →
R such that φ ∈ h

1/2
loc (R \ {0}), φ /∈ h

1/2
loc (R), but still it holds

(2.8) lim
x→0

|φ(x) − φ(0)|
|x|1/2 = 0.

Let us first notice that, for n ⩾ 2, the intervals In := [1/n− 1/n3, 1/n+
1/n3] are mutually disjoint. Let us define, for n ⩾ 2, the functions φn : R →
R as

(2.9) φn(x) :=
{
n3
∣∣x− 1

n

∣∣ if x ∈ In,
1 otherwise.

Notice that for each n ⩾ 2, the function φn is globally Lipschitz. Define
φ : R → R as

φ(x) := |x| ·
+∞∏
n=2

φn(x).

Being In pairwise disjoint for n ⩾ 2, the infinite product is well-defined,
since, if x /∈ In, then φn(x) = 1. Moreover, being each φn globally Lipschitz,
we get that φ ∈ Liploc(R \ {0}) and thus φ ∈ h

1/2
loc (R \ {0}). We now prove

that φ /∈ h
1/2
loc (R). In particular this will follow from the fact that, for every

compact neighborhood U of the origin, φ /∈ h1/2(U).
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Indeed, by definition of φ, we get the following equalities

(2.10)
∣∣φ ( 1

n + 1
n3

)
− φ

( 1
n

)∣∣( 1
n3

)1/2 =
1
n + 1

n3

1
n3/2

= n2 + 1
n3/2 , ∀ n ⩾ 2.

Thus, if U is an arbitrary compact neighborhood of 0, we get that, for
every n large enough, one has [1/n, 1/n + 1/n3] ⊂ U , and thus (2.10)
implies that (2.7) cannot hold, because 1/n3 =

(
1/n+ 1/n3) − 1/n → 0

but (n2 + 1)/(n3/2) → +∞ as n → +∞. Thus φ ̸∈ h1/2(U).
Finally, by definition of φ, we get that, for x ̸= 0,

|φ(x) − φ(0)|
|x|1/2 = |x|1/2 ·

+∞∏
n=2

φn(x),

and thus (2.8) holds, because
∏+∞
n=2 φn is bounded.

We remark that, by a little modification of this example, one can replace
1/2 with any 0 < α < 1.

2.3. Intrinsic surfaces, Intrinsically Lipschitz and Intrinsically
differentiable functions

In this section we recall the notion of intrinsic graph of a function, and
see what happens to the defining map if we translate the graph. Then we
recall the definitions of intrinsically Lipschitz and intrinsically differentiable
maps. Finally we discuss the notion of co-horizontal C1

H-surface.

Definition 2.8 (Intrinsic graph of a function). — Given W and L two
complementary subgroups in G, and φ̃ : Ũ ⊆ W → L a function, we denote

Φ̃(Ũ) = graph(φ̃) := {Φ̃(w) := w · φ̃(w) : w ∈ Ũ}.

Definition 2.9 (Intrinsic translation of a function). — Given W and
L two complementary subgroups of a Carnot group G and a map φ̃ : Ũ ⊆
W → L, we define, for every q ∈ G,

Ũq := {a ∈ W : πW(q−1 · a) ∈ Ũ},

and φ̃q : Ũq ⊆ W → L by setting

(2.11) φ̃q(a) :=
(
πL(q−1 · a)

)−1 · φ̃
(
πW(q−1 · a)

)
.

Proposition 2.10. — Let W and L be two complementary subgroups
of a Carnot group G and let φ̃ : Ũ ⊆ W → L be a function. Then, for every
q ∈ G, the following facts hold.

(a) graph(φ̃q) = q · graph(φ̃);
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(b) (φ̃q)q−1 = φ̃;
(c) If W is normal, then Ũq = qW ·

(
qL · Ũ · q−1

L

)
and

φ̃q(a) = qL · φ̃(q−1
L · q−1

W · a · qL),

for any a ∈ Ũq;
(d) If q = φ̃(a)−1 · a−1 for some a ∈ Ũ , then

φ̃q(e) = e.

Proof. — The proof of (a), directly follows from (2.11), which yields

(2.12) a · φ̃q(a) = q · πW(q−1 · a) · φ̃
(
πW(q−1 · a)

)
, ∀ a ∈ Ũq.

To prove (b), it is enough to apply twice (2.11).
For the proof of (c), decompose q = qW · qL. Then, for every a ∈ Ũq,

q−1 · a = (q−1
L · q−1

W · a · qL) · q−1
L ,

and whenever W is normal one gets

(2.13) πL(q−1 · a) = q−1
L , πW(q−1 · a) = q−1

L · q−1
W · a · qL.

As a consequence we get Ũq = qW ·
(
qL · Ũ · q−1

L

)
and, using again (2.11),

we obtain (c).
To prove (d), it is enough to evaluate (2.12) in a = e and q = φ̃(a)−1 ·

a−1. □

We introduce the notion of intrinsically Lipschitz function and state some
properties. See [22, Section 3].

Definition 2.11 (Intrinsic Cone). — Let W and L be two complemen-
tary subgroups of a Carnot group G. The intrinsic cone CW,L(q, α) of basis
W and axis L, centered at q and of opening α ⩾ 0, is defined by

CW,L(q, α) := q · {p ∈ G : ∥pW∥ ⩽ α∥pL∥}.

Definition 2.12 (Intrinsically Lipschitz function). — Let W and L be
complementary subgroups of a Carnot group G. We say that a function
φ̃ : Ũ ⊆ W → L is intrinsically L-Lipschitz in Ũ , with L > 0, if

CW,L(p, L−1) ∩ graph(φ̃) = {p}, ∀ p ∈ graph(φ̃).

Proposition 2.13 ([22, Theorem 3.2 and Proposition 3.3]). — Let W
and L be two complementary subgroups in a Carnot group G and let
φ̃ : Ũ ⊆ W → L be a function. Then the following facts are equivalent.

(a) φ̃ is intrinsically L-Lipschitz in Ũ ;
(b) ∥πL

(
p−1 · q

)
∥ ⩽ L∥πW

(
p−1 · q

)
∥ for every p, q ∈ graph(φ̃);
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(c) for any a ∈ Ũ , setting q := φ̃(a)−1 · a−1, one has ∥φ̃q(b)∥ ⩽ L∥b∥
for every b ∈ Ũq, where φ̃q and Ũq are defined in Definition 2.9.

Moreover, for every a ∈ Ũ , setting q := φ̃(a)−1 · a−1, one has that φ̃ is
intrinsically L-Lipschitz in Ũ if and only if φ̃q is intrinsically L-Lipschitz
in Ũq.

We now define the notion of intrinsically linear function, intrinsically
differentiable function and uniformly intrinsically differentiable function.
General properties are studied in [21], see for example [21, Proposition 3.1.3
and Proposition 3.1.6]. For the forthcoming definitions and properties of
intrinsically differentiable functions we follow also [18].

The notion of intrinsic differentiability was first given in [26, Defini-
tion 4.4] and then first studied in [3], see [3, Definition 1.1]. In this last
reference the notion of intrinsic differentiability is given in terms of the
graph distance. We here give a slightly different definition of intrinsic dif-
ferentiability that is indeed equivalent to ours, by [41, Proposition 4.76],
when W is a normal subgroup, that will always be in our case.

Definition 2.14 (Intrinsically linear function). — Let W and L be
complementary subgroups in G. Then ℓ : W → L is intrinsically linear
if graph(ℓ) is a homogeneous subgroup of G.

Definition 2.15 (Pansu differentiability). — Let G and G′ be two
Carnot groups endowed with left-invariant homogeneous distances dG and
dG′ and let Ω ⊆ G be an open set. A function f : G → G′ is said to be
Pansu differentiable at a point p ∈ Ω if there exists a Carnot homomor-
phism L : G → G′, i.e., a group homomorphism that commutes with the
dilations δλ, such that

lim
x→p

dG′(f(p)−1f(x), L(p−1x))
dG(x, p) = 0.

The map L is uniquely determined, whenever it exists, and it is called the
Pansu differential of f at p and it is denoted by dPf(p).

Definition 2.16 (C1
H-function). — Let Ω ⊆ G be an open subset of a

Carnot group G. A map f : Ω → Rk is said to be of class C1
H if it is Pansu

differentiable and the Pansu differential dPf : G → Rk is continuous. We
denote by C1

H(Ω;Rk) the set of Rk-valued functions of class C1
H in Ω.

Definition 2.17 (Uniformly intrinsic differentiability). — Let W and L
be complementary subgroups of a Carnot group G and let φ̃ : Ũ ⊆ W → L
be a function with Ũ open in W. For a0 ∈ Ũ , let p0 := φ̃(a0)−1 · a−1

0 and
denote by φ̃p0 : Ũp0 ⊆ W → L the shifted function defined in Definition 2.9.
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We say that φ̃ is intrinsically differentiable at a0 if the shifted function
φ̃p0 is intrinsically differentiable at e, i.e., if there is an intrinsically linear
map dφφa0 : W → L such that

(2.14) lim
r→0

(
sup

{
∥dφφa0(b)−1 · φ̃p0(b)∥

∥b∥
: b ∈ Ũp0 , 0 < ∥b∥ < r

})
= 0.

The function dφφa0 , sometimes denoted also by dφφ(a0), is called intrinsic
differential of φ̃ at a0, and we say that φ̃ is intrinsically differentiable if
it is intrinsically differentiable at any point a0 ∈ Ũ . We also denote by
ID(Ũ ,W;L) the set of intrinsically differentiable functions φ̃ : Ũ ⊆ W → L.

We say that φ̃ is uniformly intrinsically differentiable at a0 if, setting
pa := φ̃(a)−1 · a−1 for any a ∈ Ũ , we have

(2.15) lim
r→0

(
sup

{
∥dφφa0(b)−1 · φ̃pa(b)∥

∥b∥

})
= 0,

where the supremum is taken among all a ∈ Ũ ∩ B(a0, r), b ∈ Ũpa ∩
B(a0, r), a ̸= b. We say that φ̃ is uniformly intrinsically differentiable on Ũ
if it is uniformly intrinsically differentiable at any a0 ∈ Ũ . We finally denote
by UID(Ũ ,W;L) the set of uniformly intrinsically differentiable functions
φ̃ : Ũ ⊆ W → L.

Remark 2.18 (Intrinsic difference quotients). — In the papers [26, 40],
the authors introduce and study the following two notions, giving charac-
terizations for intrinsically Lipschitz continuity, see [40, Proposition 3.11
and Theorem 3.21]. For a continuous function φ̃ : Ũ ⊆ W → L, defined on
Ũ open, the intrinsic difference quotients of φ̃ at the point w ∈ Ũ in the
direction Y ∈ Lie(W) at time t > 0, are defined as

∇Y φ̃(w, t) := δ1/tφ̃p(δt expY ),

for every t > 0, where p := φ̃(w)−1 · w−1, and whenever δt expY is in
Ũp. The intrinsic directional derivative of φ̃ at w ∈ Ũ in the direction
Y ∈ Lie(W) is defined by

DY φ̃(w) := lim
t→0

∇Y φ̃(w, t),

whenever the limit exists. In analogy with Euclidean Calculus, we notice
that, if φ̃ ∈ ID(Ũ ,W;L), then it admits intrinsic directional derivatives at
any w ∈ Ũ along any Y ∈ Lie(W), and, moreover, one has DY φ̃(w) =
dφφ(w)(expY ), for any w ∈ Ũ and every Y ∈ Lie(W). Indeed, this is a
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consequence of the following identity

∥dφφ(w)(expY )−1δ1/tφ̃p(δt expY )∥

= ∥(dφφ(w)(δt expY ))−1
φ̃p(δt expY )∥

t
,

that simply comes from the fact both the norm ∥ · ∥ and dφφ are δλ-
homogeneous. Then from the previous equality and (2.14) with a0 = w,
and b = δt expY , we get the sought claim taking t → 0.

Proposition 2.19 ([18, Proposition 3.4]). — Let W and L be two
complementary subgroups of a Carnot group G with L horizontal and k-
dimensional and let ℓ : W → L be an intrinsically linear function. Then ℓ

only depends on the horizontal components of the elements in W, namely
on W1 := W ∩ V1, where V1 = exp(V1). In particular, if πV1 denotes the
projection from G to V1, see (2.2), one has

ℓ(a) = ℓ(πV1a), ∀ a ∈ W.

As a consequence, exp−1 ◦ ℓ ◦ exp|Lie(W)∩V1
: Lie(W) ∩V1 → Lie(L) is linear,

and there exists a constant C := C(ℓ) > 0 such that

(2.16) ∥ℓ(a)∥ ⩽ C∥πV1a∥, ∀ a ∈ W.

Definition 2.20 (Intrinsic gradient). — Let W and L be two comple-
mentary subgroups of a Carnot group G with L horizontal and k-dimens-
ional, let Ũ ⊆ W be open, and let φ̃ : Ũ → L be intrinsically differentiable
at a0 ∈ Ũ . By Proposition 2.19, the map exp−1 ◦(dφφa0) ◦ exp|Lie(W)∩V1

is
linear and thus there exists a linear map ∇φφa0 ∈ Lin(Lie(W)∩V1; Lie(L))
such that

dφφa0(expW ) = exp (∇φφa0(W )) , ∀ W ∈ Lie(W) ∩ V1.

Remark 2.21 (Intrinsic gradient in exponential coordinates). — Assume
(X1, . . . , Xn) is an adapted basis of the Lie algebra g such that L =
span{X1, . . . , Xk} and W = span{Xk+1, . . . , Xn} and identify W and L
with Rn−k and Rk, respectively, through exponential coordinates as ex-
plained in Definition 2.3. Then, by Definition 2.20, with a little abuse of
notation, we get a k× (m−k) matrix ∇φφa0 such that, in coordinates, one
has

dφφa0(a) =
(
∇φφa0(ak+1, . . . , am)T, 0, . . . , 0

)
.

for every a = (ak+1, . . . , an) ∈ W ≡ Rn−k.
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The following proposition gives us a more explicit way to write the def-
inition of functions in ID(Ũ ,W;L) and in UID(Ũ ,W;L), whenever L is
horizontal.

Proposition 2.22 ([18, Proposition 3.5]). — Let W and L be com-
plementary subgroups in a Carnot group G, with L horizontal, and let
φ̃ : Ũ ⊆ W → L with Ũ open in W. Then the following facts hold.

(a) φ̃ is intrinsically differentiable at ã0 ∈ Ũ if and only if

(2.17) lim
r→0

(
sup
{

|φ(b)−φ(a0)−∇φφa0 (a−1
0 ·b)|

∥φ̃(a0)−1a−1
0 ·b φ̃(a0)∥

: b∈U, 0< ∥a−1
0 · b∥<r

})
= 0.

(b) φ̃ is uniformly intrinsically differentiable at ã0 if and only if

(2.18) lim
r→0

(
sup
{

|φ(b)−φ(a)−∇φφa0 (a−1·b)|
∥φ̃(a)−1a−1b φ̃(a)∥

: a, b∈B(a0, r)∩U, a ̸= b
})

= 0.

Remark 2.23. — We notice that in (2.17) and (2.18) there is a little abuse
of notation, for the sake of simplicity. First we are identifying L with Rk
in order to write the differences in the numerators, and moreover we write
∇φφa0(a−1

0 · b) but we mean ∇φφa0(πV1 exp−1(ã−1
0 · exp b)).

Remark 2.24 (Intrinsic differentiability and tangent subgroups). — Let
us collect the following observations about Definition 2.17.

(i) If φ̃ is intrinsically differentiable at a0 ∈ Ũ , there is a unique in-
trinsically linear function dφφa0 satisfying (2.14). Moreover φ̃ is
continuous at a0, see [21, Theorem 3.2.8 and Proposition 3.2.3].

(ii) The notion of intrinsic differentiability is invariant under group
translations. More precisely, let a, b be in Ũ and let p := φ̃(a)−1 ·a−1

and q := φ̃(b)−1 · b−1. Then φ̃ is intrinsically differentiable at a if
and only if φ̃q−1p = (φ̃p)q−1 is intrinsically differentiable at b, see
([21, Remark 3.2.2]).

(iii) The analytic definition of intrinsic differentiability has an equivalent
geometric formulation. Indeed, the intrinsic differentiability at one
point is equivalent to the existence of a tangent subgroup to the
graph, see [28, Theorem 4.15] for the proof in the case of Heisenberg
groups Hn. If we have φ̃ : Ũ ⊆ W → L, and w0 ∈ Ũ , we say that a
homogeneous subgroup T of G is a tangent subgroup to graph(φ̃)
at w0 · φ̃(w0) if the following facts hold.
(1) T is a complementary subgroup of L;
(2) In any compact subset of G, the limit

lim
λ→∞

δλ
(
(w0 · φ̃(w0))−1 · graph(φ̃)

)
= T

holds in the sense of Hausdorff convergence.
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In the introduction of [21] the authors say that φ̃ is intrinsically
differentiable at w0 if and only if graph(φ̃) has a tangent subgroup
T in w0 · φ̃(w0) and in this case T = graph(dφφw0). The complete
proof can be given building on [21, Theorem 3.2.8], that shows one
part of the statement, and generalizing [28, Theorem 4.15], that
holds verbatim in the context of arbitrary Carnot groups. We thank
Sebastiano Nicolussi Golo for having shared with us some notes
containing a detailed proof of the previously discussed statement.

Proposition 2.25 ([18, Proposition 3.7]). — Let W and L be comple-
mentary subgroups of a Carnot group G with L horizontal and k-dimens-
ional, let Ũ ⊆ W be open and let φ̃ ∈ UID(Ũ ,W;L). Then the following
facts hold.

(a) φ̃ is intrinsically Lipschitz continuous on every relatively compact
subset of Ũ .

(b) the function a 7→ ∇φφa is continuous from Ũ to the space of ma-
trices Rk×(m−k). Here ∇φφ is the intrinsic gradient, see Defini-
tion 2.20.

Definition 2.26 (∇W,∇L). — Let W and L be two complementary
subgroups of a Carnot group G, with L horizontal and k-dimensional and let
f ∈ C1

H(Ũ ;Rk). Consider an adapted basis (X1, . . . , Xn) of the Lie algebra g

such that L = exp(span{X1, . . . , Xk}) and W = exp(span{Xk+1, . . . , Xn}).
Then, we define ∇Lf and ∇Wf by setting

∇Lf :=

X1f
(1) . . . Xkf

(1)

...
. . .

...
X1f

(k) . . . Xkf
(k)

 , ∇Wf :=

Xk+1f
(1) . . . Xmf

(1)

...
. . .

...
Xk+1f

(k) . . . Xmf
(k)

 .

In particular, one has that, in exponential coordinates, ∇Hf=(∇Lf | ∇Wf).
We recall the notion of co-horizontal C1

H-surface of arbitrary codimen-
sion, see [31, Definition 3.3.4]. We stress that we changed the terminology
with respect to [31, Definition 3.3.4]. What he calls co-Abelian surface, for
us is a co-horizontal surface. For a very general definition of C1

H-surface,
we refer the reader to [35, Definition 3.1], [36, Definition 10.2] and to [30,
Section 2.5].

Definition 2.27 (co-horizontal C1
H-surface). — Let G be a Carnot

group of rank m and let 1 ⩽ k ⩽ m. We say that Σ ⊂ G is a co-horizontal
C1

H-surface of codimension k if, for any p ∈ Σ, there exist a neighborhood
Ũ of p and a map f ∈ C1

H(Ũ ;Rk) such that

(2.19) Σ ∩ Ũ = {g ∈ Ũ : f(g) = 0},
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and the Pansu-differential dPf(p) : G → Rk of f is surjective.
We say that Σ is a codimension k co-horizontal C1

H-surface with comple-
mented tangents if, in addition, given a representation around p as in (2.19),
the homogeneous subgroup Ker(dPf(p)) admits a horizontal complement
(of dimension k). In this case, we call Ker(dPf(p)) the homogeneous tan-
gent space to Σ at p. This homogeneous subgroup at p is independent of
the choice of f , see [36, Theorem 1.7].

We remark that, if Σ ⊆ G is a co-horizontal C1
H-surface with comple-

mented tangents, then one can use the implicit function Theorem, see [25,
Theorem 2.1] for the one-codimensional case, and see [36, Theorem 1.4] for
the more general statement, to locally represent the surface as a graph of
a function φ̃ : Ũ ⊆ W := Ker(dPf(p)) → L, with W and L complementary
subgroups.

The following proposition follows from [18, Theorems 4.1 and 4.6] and
relates level sets of Rk-valued C1

H-functions, and ultimately co-horizontal
C1

H-surfaces with complemented tangents, with uniformly intrinsically dif-
ferentiable functions.

Proposition 2.28 ([18, Theorem 4.1 and Theorem 4.6]). — Let W and
L be two complementary subgroups of a Carnot group G, with L horizontal
and k-dimensional, take Ũ ⊆ W open and φ̃ ∈ UID(Ũ ,W;L). Then, for
every a ∈ Ũ , there exist a neighborhood Ṽ of a · φ̃(a) in G, and f ∈
C1

H(Ṽ ;Rk), such that

Φ̃(Ũ) ∩ Ṽ = {g ∈ Ṽ : f(g) = 0},

and, for every g ∈ Ṽ , the Pansu differential dPf(g)|L : L → Rk is bijec-
tive. As a consequence graph(φ̃) is a co-horizontal C1

H-surface of codimen-
sion k, with tangents complemented by L. Moreover, if (X1, . . . , Xn) is an
adapted basis of the Lie algebra g such that L = exp(span{X1, . . . , Xk})
and W = exp(span{Xk+1, . . . , Xn}), then det ∇Lf ̸= 0 and, in exponential
coordinates, one has

(2.20) ∇φφ(a) = −
(

∇Lf(Φ̃(a))
)−1

∇Wf(Φ̃(a)), ∀ a ∈ Ũ .

For the definition of ∇φφ,∇W and ∇L we refer to Definition 2.20 and
Definition 2.26.

On the other hand, if 1 ⩽ k ⩽ m and Σ is a codimension k co-horizontal
C1

H-surface with complemented tangents, then, for every p ∈ Σ, there exist
two complementary subgroups W and L of G with L horizontal and k-
dimensional, a neighborhood Ṽ ⊆ G of p and φ̃ ∈ UID(Ũ ,W;L), with
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Ũ = πW(Ṽ ), such that
Σ ∩ Ṽ = graph(φ̃).

Remark 2.29. — Notice that, in the setting of Proposition 2.28, in the
case k = 1, one may assume X1f ̸= 0 on Ṽ , and, in coordinates, for-
mula (2.20) reads as

(2.21) ∇φφ(a) = −
(
X2f

X1f
, . . . ,

Xmf

X1f

)
◦ Φ(a), ∀ a ∈ Ũ .

Remark 2.30 (Tangent subgroups to C1
H-surfaces). — From the previ-

ous Proposition 2.28 and Remark 2.24 it directly follows that every co-
horizontal C1

H-surface with complemented tangents has Hausdorff tangent
everywhere. For a proof of this property in a more general context one can
see [36, Theorem 1.7], or [30, Lemma 2.14, point (iii)]. This convergence is
moreover locally uniform: we will not use this information, but this comes
from [31, Theorem 3.1.1].

3. Intrinsic projected vector fields on subgroups

In this section we mainly deal with complementary subgroups W and L
of a Carnot group G along with a continuous map φ̃ : Ũ ⊆ W → L, where
Ũ is open in W.

In Section 3.1 we shall define, for some W ∈ Lie(W), the projected vec-
tor field Dφ

W on W by taking the projection on W of W restricted the
graph Φ̃(Ũ) of φ̃ (see Definition 3.1), and we discuss some basic proper-
ties of these vector fields. We give explicit formulas for these vector fields
in Heisenberg groups Hn, in Carnot groups of step 2, and in the Engel
group E (see Example 3.4, Example 3.6, and Example 3.8, respectively). In
Proposition 3.9 we show an explicit expression of such vector fields in expo-
nential coordinates. The definition of the projected vector fields appeared
first in [31], see Remark 3.2. In [31] the author gives equivalent conditions
for Φ̃(Ũ) to be an intrinsically Lipschitz graph (respectively a co-horizontal
C1

H-surfaces with complemented tangents) in terms of Hölder properties of
the integral curves of the vector fields Dφ

W , see [31, Theorem 4.2.16] (re-
spectively [31, Theorem 4.3.1]). Within our context we recover these results
by using invariance properties of such vector fields, see the introduction to
Section 4.

In Section 3.2 we prove some invariance properties of the projected vector
fields with respect to the intrinsic translations (see Definition 2.9) of φ̃. In
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particular we write how the vector fieldDφq changes with respect toDφ and
how the integral curves of Dφq change with respect to the integral curves
of Dφ, see Lemmas 3.12 and 3.13 when L is horizontal, and Remark 3.14
for the general case in which W is normal. These invariance properties will
be crucial for the proof of the results in Section 4.

In Section 3.3 we recall that if φ̃ is intrinsically Lipschitz, then φ̃ ◦ γ̃ is
1/j-Hölder whenever γ̃ is an integral curve of Dφ

W with degW = j, see
Proposition 3.17. We stress that this property was already known from [31,
Theorem 4.2.16]. We improve this result when φ̃ is more regular. Namely
if φ̃ is intrinsically differentiable, then φ̃ ◦ γ̃ is Euclidean differentiable
whenever γ̃ is an integral curve of Dφ

W with degW = 1, while if degW > 1
we obtain a pointwise little Hölder continuity of φ̃◦ γ̃, see Proposition 3.19.
This pointwise little Hölder continuity improves to a uniform little Hölder
continuity if φ̃ is uniformly intrinsically differentiable, see Proposition 3.21,
and Proposition 3.22 for a more refined conclusion.

In Section 3.4 we recall the notion of broad* solution to the system
Dφφ = ω, with a continuous datum ω. The study of the relation between
being a broad* solution to the system Dφφ = ω with a continuous ω and
the intrinsic regularity of graph(φ̃) was first initiated, in Hn for L one-
dimensional in [3, Section 5], and then continued in [9, 10, 6]. For the
case G = Hn and L horizontal and k-dimensional see also [15] and for the
general case of Carnot groups of step 2 and L one-dimensional, see [18, 17].
In Proposition 3.27 we give a sufficient condition for the map φ to be a
broad* solution to the system Dφφ = ω, with ω continuous. This condition
is the intrinsic differentiability plus the continuity of the intrinsic gradient.

3.1. Definition of Dφ and main properties

In this subsection we define the projected vector fields Dφ
W and state

some of their properties.

Definition 3.1 (Projected vector fields). — Given two complementary
subgroups W and L in a Carnot group G, and a continuous function φ̃ : Ũ ⊆
W → L defined on an open set Ũ of W, we define, for every W ∈ Lie(W),
the continuous projected vector field Dφ

W , by setting

(3.1) (Dφ
W )|w(f) := W|

w·φ̃(w)
(f ◦ πW),

for all w ∈ Ũ and all f ∈ C∞(W). When W is an element Xj of an adapted
basis (X1, . . . , Xn) we also denote Dφ

j := Dφ
Xj

.
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Remark 3.2. — The Definition 3.1 is well posed since the projection πW
is polynomial and hence C∞ for every arbitrary splitting. Notice that if φ̃
is C∞ then Dφ

W is a vector field with C∞ coefficients.
Definition 3.1 has been given in [31, Definition 4.2.12] and it has been

studied in the case W is a homogeneous normal subgroup and, more specif-
ically, when L is horizontal and k-dimensional. We refer to the discussion
in the introduction of Section 3. From now on W denotes a homogeneous
normal subgroup of G.

Remark 3.3. — Notice that (3.1) is equivalent to

(3.2) (Dφ
W )|w = d(πW)Φ̃(w)(W|

Φ̃(w)
),

that is, Dφ
W is the push-forward of the vector field W towards the map

(πW)|
Φ̃(Ũ)

: Φ̃(Ũ) → Ũ . Thus, as already observed in [31, Equation 4.4], one
has

(3.3)

(Dφ
W )|w = d

dt |t=0
πW(Φ̃(w) · exp(tW ))

= d
dt |t=0

w · φ̃(w) · exp(tW ) · φ̃(w)−1

= d
dt |t=0

Lw ◦ L
φ̃(w) ◦R

φ̃(w)−1(exp(tW ))

= d(Lw)e ◦ d(L
φ̃(w))φ̃(w)−1 ◦ d(R

φ̃(w)−1)e(W|e)

= d(Lw)e ◦ Ad
φ̃(w)(W|e).

For the previous computation, we used the definition of the differential and,
in the second equality, the fact that

πW(Φ̃(w) · exp(tW )) = πW(w · φ̃(w) · exp(tW ) · φ̃(w)−1 · φ̃(w))

= w · φ̃(w) · exp(tW ) · φ̃(w)−1,

for every w ∈ W and W ∈ Lie(W), where the last equality holds since W
is normal.

Example 3.4 (Projected vector fields on Heisenberg groups). — Consider
the Heisenberg group Hn, with an adapted basis (X1, . . . , X2n+1) of its Lie
algebra such that the only nonvanishing relations are [Xi, Xn+i] = X2n+1,
for every 1 ⩽ i ⩽ n. Fix 1 ⩽ k ⩽ n, identify Hn with R2n+1 by means of
exponential coordinates associated with (X1, . . . , X2n+1) and define W :=
{x1 = · · · = xk = 0}, and L := {xk+1 = · · · = x2n+1 = 0}. Then, for a
continuous φ̃ : Ũ ⊆ W → L, with Ũ open, one can compute in exponential
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coordinates
(Dφ

Xj
)|w = (Xj)|w , k + 1 ⩽ j ⩽ n ∨ k + n+ 1 ⩽ j ⩽ 2n,

(Dφ
Xn+i

)|w = (∂xn+i)|w + φ(i)(w)(∂x2n+1)|w , i = 1, . . . , k.
(3.4)

(3.5) (Dφ
X2n+1

)|w = (∂x2n+1)|w .

for every w ∈ U , where φ denotes the composition of φ̃ with the exponential
coordinates and φ(i) is its i-th component of φ. Notice that we do not have
the first condition in case k = n.

Remark 3.5. — For the computations of Example 3.4, we refer to [31, Sec-
tion 4.4.2], where the constant is slightly different from ours because of the
fact that the author considers the model of Hn with relations [Xi, Xn+i] =
−4X2n+1, for every 1 ⩽ i ⩽ n. The expression of the projected vector fields
in case L is k-dimensional is also in [15, Definition 3.6].

It is by now well known, from the papers [3, 9, 10, 6], that in every
Heisenberg group Hn, in case L is one-dimensional, the intrinsic regularity
of graph(φ̃) depends on the regularity of the vector field Dφ applied to φ,
i.e., Dφφ := (Dφ

X2
φ, . . . ,Dφ

X2n
φ), which has to be considered in the sense of

distributions. For the full results we refer to [41, Theorems 4.90 and 4.92].
In particular graph(φ̃) is an intrinsically Lipschitz graph (respectively a
C1

H-hypersurface) if and only if Dφφ = ω, in the distributional sense, for
some ω ∈ L∞(U) (respectively ω ∈ C(U)).

A step towards obtaining analogous results in Hn, in case L has higher
dimension and ω is continuous, has been recently done by Corni in [15]. In
particular, the author proves that, if L is horizontal k-dimensional, the set
graph(φ̃) is a co-horizontal C1

H-surface if and only if φ is a broad* solution
to Dφφ = ω for some ω ∈ C(U). We shall recall the definition of broad* in
Definition 3.24.

Example 3.6 (Projected vector fields on Carnot groups of step 2). —
Consider a Carnot group G of rank m and step 2 with an adapted basis
(X1, . . . , Xn). For 1 ⩽ s, ℓ ⩽ m andm+1 ⩽ i ⩽ n, let us define the structure
constants ciℓs by means of the relation [Xℓ, Xs] =:

∑n
i=m+1 c

i
ℓsXi. Identify

G with Rn by means of exponential coordinates and take W := {x1 = 0},
and L := {x2 = · · · = xn = 0}. Then, if φ̃ : Ũ ⊆ W → L is continuous, with
Ũ open, by explicit computations one has in exponential coordinates

(3.6) (Dφ
Xj

)|w = (Xj)|w +
n∑

i=m+1
ci1jφ(w)(∂xi)|w , for j = 2, . . . ,m;

(3.7) (Dφ
Xj

)|w = (Xj)|w = (∂xj )|w , for j = m+ 1, . . . , n,
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for every w ∈ U , where φ denotes the composition of φ̃ with the exponential
coordinates.

Remark 3.7. — For the expression of the projected vector fields in Ex-
ample 3.6 we refer also to [18, Definition 5.2]. In the papers [17] and [18]
the author started to generalize the results already proved in the Heisen-
berg groups Hn (see Remark 3.5) to Carnot groups of step 2, in case L is
one-dimensional.

In particular, in [18], in the setting of Carnot groups of step 2, the au-
thor deals with the characterization of maps φ̃ such that graph(φ̃) is a
C1

H-hypersurface. In [18, Theorem 5.8], the author recovers partially the
result in [3, Theorem 5.1], thus making the first step through the complete
characterization in step 2 Carnot groups analogous to the one discussed in
Remark 3.5 for the Heisenberg group. We stress that in this paper of ours
we generalize [3, Theorem 5.1] to all step-2 Carnot groups, thus improving
also [18, Theorem 5.8], see Theorem 6.17.

In [17, Theorem 7.1 and 7.2], in the setting of Carnot groups of step 2,
with L one-dimensional, the author recovers [6, Theorem 1.1] with an addi-
tional assumption: graph(φ̃) is intrinsically Lipschitz if and only ifDφφ = ω

in the sense of distribution for some ω ∈ L∞(U) and φ is locally 1/2-Hölder
along the vertical coordinates. We expect that the techniques of Section 6
can be used to drop the previous additional assumption on the locally 1/2-
Hölder continuity along the vertical coordinates. This will be subject of
further investigations.

Example 3.8 (Projected vector fields on Engel group). — Consider the
Engel group E, which is the Carnot group of topological dimension 4 whose
Lie algebra e admits an adapted basis (X1, X2, X3, X4) such that

e := span{X1, X2} ⊕ span{X3} ⊕ span{X4},

where the only nonvanishing relations are [X1, X2] = X3, [X1, X3] = X4.
We identify E with R4 by means of exponential coordinates, and we de-
fine W := {x1 = 0}, and L := {x2 = x3 = x4 = 0}. Then, by explicit
computations that can be found in [31, Section 4.4.1], we get that, given
a continuous function φ̃ : Ũ ⊆ W → L, with Ũ open, the projected vector
fields on W are

(3.8) Dφ
X2

= ∂x2 + φ∂x3 + φ2

2 ∂x4 , Dφ
X3

= ∂x3 + φ∂x4 , Dφ
X4

= ∂x4 .

In [31, Setion 4.4.1], one can find the computations of the projected vector
fields also for the pair ({x2 = 0}, {x1 = x3 = x4 = 0}) of complementary
subgroups. It is worth mentioning that in [31, Section 4.5] there are some
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counterexamples, for the Engel group E with the splitting discussed here, to
some of the statements discussed in Remark 3.5, and Remark 3.7, that hold
for Carnot groups of step 2. For one of these examples, see also Remark 4.17.

We now prove a proposition about the general form of the projected
vector fields, in an arbitrary Carnot group G, in exponential coordinates.
The proposition below can be found in [31, Proposition 4.1.15], but we
however write the proof for the sake of completeness.

Proposition 3.9 (Projected vector fields in coordinates). — Let W and
L be complementary subgroups of a Carnot group G such that L is horizon-
tal and k-dimensional, and let φ̃ : Ũ ⊆ W → L be a continuous function on
an open set Ũ . Fix an adapted basis (X1, . . . , Xn) of the Lie algebra g such
that W = exp (span{Xk+1, . . . , Xn}) and L = exp (span{X1, . . . , Xk}). If
we identify G with Rn by means of exponential coordinates associated with
(X1, . . . , Xn), then the vector fields Dφ

j := Dφ
Xj

defined in (3.1) have the
following expression:

(3.9) Dφ
j|(0,...,0,xk+1,...,xn)

= ∂xj +
n∑

i=ndeg j+1
P ji (φ(1), . . . , φ(k), xk+1, . . . , xndeg i−1)∂xi ,

for every j = k + 1, . . . , n, where φ is the composition of φ̃ with the ex-
ponential map, φ(i) = φ(i)(xk+1, . . . , xn) denotes the i-th component of
φ, and P ji is a polynomial of homogeneous degree deg i − deg j, with the
convention that the degree of the φ(i) components in the polynomial is 1.
For the notation n□ and deg, see the discussion before Definition 2.3.

Proof. — Since L is horizontal, then W is normal and (3.3) holds. Now
the result follows from (3.3) and the following general fact that holds for ar-
bitrary Carnot groups. Let us fix, in exponential coordinates, x ∈ G ≡ Rn.
The differential of the left (respectively right) translation evaluated at a
point x′ ∈ G ≡ Rn, that we denote by d(Lx)x′ (respectively d(Rx)x′), is
a matrix with identity (mℓ × mℓ)-blocks on the diagonal, with 1 ⩽ ℓ ⩽ s,
and moreover the element of position ij is a polynomial in the coordi-
nates of x, x′ of homogeneous degree deg i− deg j, if deg i > deg j. Instead
if deg i < deg j the element of position ij is zero. This last statement
about the structure of the differential of left and right translations follows
by the explicit expression of the product in coordinates, see [24, Proposi-
tion 2.1]. □
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Remark 3.10. — Notice that, for notational purposes, Proposition 3.9 is
stated just for L horizontal but an expression similar to (3.9) holds also in
the more general case in which W is normal, see also [31, Proposition 4.1.15].
The difference is that the zeros should be put in the components of L,
which are not necessarily all in the first layer, and the φ(i) components in
the polynomial are not necessarily of degree 1.

Lemma 3.11 (Locally connectible with projected vector fields). — Let
W and L be complementary subgroups of G with W normal, and let φ̃ : Ũ ⊆
W → L be a continuous function on an open set Ũ . Then, for every Ũ ′ ⋐ Ũ

and every w̃ ∈ Ũ ′, there exists a neighborhood Ṽ ⋐ Ũ ′ of w̃ such that, for
every ṽ, ṽ′ ∈ Ṽ there exists a path, entirely contained in Ũ ′, connecting ṽ
to ṽ′, made of a finite concatenation of integral curves for the vector fields
Dφ
W , for W ∈ Lie(W).

Proof. — We give the proof in the case L is horizontal and k-dimensional.
The same proof can be given in the general case in which W is normal
taking Remark 3.10 into account. We fix an adapted basis (X1, . . . , Xn)
of the Lie algebra g, such that W = exp(span{Xk+1, . . . , Xn}) and L =
exp(span{X1, . . . , Xk}). We denote by φ : U ⊆ Rn−k → Rk the composition
of φ̃ with the exponential coordinates and we set Dφ

j := Dφ
Xj

for every j =
k+ 1, . . . , n. Using the particular form of Dφ

j , see (3.9), we shall prove that
U is locally connectible by means of integral curves of the vector fields Dφ

j ,
with j = k+1, . . . , n. Indeed, if we fix w ∈ U , and j ∈ {k+1, . . . , n}, Peano’s
Theorem [29, Theorem 1.1] and the estimate for the existing time [29,
Corollary 1.1] imply that, for every open neighborhood U ′ ⋐ U of w, there
exist 0 < α := α(U ′, φ) and an open neighborhood V ′′ := V ′′(U ′, φ) of
w with V ′′ ⋐ U ′, such that, for every v ∈ V ′′, there exists at least one
integral curve γ of Dφ

j starting from v, defined in [−α, α], and such that
γ([−α, α]) ⊆ U ′.

We can iterate the argument for each j, eventually considering a smaller
neighborhood V ′′ and a smaller time at each stage of the iteration. Thus
we obtain a neighborhood V ′ ⋐ U ′ of w and a time δ > 0 such that,
starting from an arbitrary point in V ′, there exists a concatenation of n−k

integral curves of Dφ
j , with j = k + 1, . . . , n, with interval of definition

containing [−δ, δ], and this concatenation is supported in U ′. Eventually,
up to reducing V ′, we deduce that for every U ′ ⋐ U containing w there
exists a neighborhood V ⋐ V ′ ⋐ U ′ of w such that, for every v, v′ ∈ V ,
there exists at least one path from v to v′, made of integral curves of the
vector fields Dφ

j , with j = k+1, . . . , n, entirely contained in U ′. We remark
that this can be done taking into account that any integral curve of Dφ

j
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is a line along the j-th coordinate, and adjusting one coordinate at time.
When we adjust one coordinate, we do not have the check the previous
ones because of the triangular form of the vector fields Dφ

j , see (3.9). □

3.2. Invariance properties of Dφ

Now we prove some invariance properties of the vector fields Dφ un-
der the operation of translating graphs that we have introduced in Defini-
tion 2.9.

Lemma 3.12. — Let W and L be two complementary subgroups of a
Carnot group G, with L k-dimensional and horizontal and let φ̃ : Ũ ⊆
W → L be a continuous function defined on Ũ open. Take W ∈ Lie(W), let
f̃ : Ũ ⊆ W → L be a C∞ function and let us denote Dφ := Dφ

W . Fix q ∈ G
and denote by φ̃q and f̃q the translated functions defined as in (2.11) with
domain Ũq. Denote by f, φ : U ⊆ Rn−k → Rk and fq, φq : Uq ⊆ Rn−k → Rk

the composition of f̃ , φ̃, f̃q, φ̃q with the exponential coordinates, respec-
tively. Then, for every w ∈ Uq, the following equality holds in exponential
coordinates

(3.10) D
φq
|w (fq) = Dφ

|πW(q−1·w)
(f),

where Dφ(f) stands for the vector (Dφ(f (1)), . . . , Dφ(f (k))), when f is
vector-valued.

Proof. — We will make use of some abuse of notation throughout the
proof, by exploiting the identifications in Definition 2.3 without explicitly
writing the exponential map F or F−1.

By (3.1) and (2.12), if we fix w ∈ Uq and set g := πW(q−1 ·w) · φ̃(πW(q−1 ·
w)), we get

(3.11) D
φq
|w (fq) = W|

w·φ̃q(w)
(fq ◦πW) = W|q·g (fq ◦πW) = W|g (fq ◦πW ◦Lq),

where in the last equality we used the fact that W is left-invariant, namely
W|q·g = d(Lq)g(W|g ). By definition of g and the definition of Dφ, see (3.1),
one has

(3.12) Dφ
|πW(q−1·w)

(f) = W|g (f ◦ πW).

Thus, taking (3.11) and (3.12) into account, we are left to show that

(3.13) W|g (fq ◦ πW ◦ Lq) = W|g (f ◦ πW).
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Indeed, if a ∈ G, we have

(3.14) f̃q ◦ πW ◦ Lq(a)

= f̃q ◦ πW(q · a) = f̃q ◦ πW
((
qW · qL · aW · q−1

L
)

· qL · aL
)

= f̃q(qW · qL · aW · q−1
L ) = qL · f̃(aW) = qL · f̃ ◦ πW(a),

where in the third equality we used that W is a normal subgroup, and in
the fourth equality we used (c) of Proposition 2.10. Then, the functions
f̃q ◦ πW ◦ Lq and f̃ ◦ πW differ only by a left translation of the element qL.
Thus, in exponential coordinates, they are Rk-valued functions that differ
by the fixed Euclidean translation of the Rk-vector corresponding to qL.
This last observation comes from the fact that, in exponential coordinates,
the operation of the group restricted to L is the Euclidean sum, being L
horizontal, see [24, Proposition 2.1]. Finally, (3.13) holds true by the fact
that, component by component, we are differentiating along a vector field
two functions that differ by a fixed constant. □

Lemma 3.13. — Consider the setting of the Lemma 3.12 above, let T >

0 and let γ̃ : [0, T ] → Ũ be a C1 regular solution of the Cauchy problem

(3.15)
{
γ̃′(t) = Dφ ◦ γ̃(t),
γ̃(0) = w.

Then for every q ∈ G there exists a unique C1 map γ̃q : [0, T ] → Ũq such
that

(3.16) πW(q−1 · γ̃q(t)) = γ̃(t), ∀ t ∈ [0, T ].

In addition, γ̃q is a solution of the Cauchy problem

(3.17)
{
γ̃′
q(t) = Dφq ◦ γ̃q(t),
γ̃q(0) = qW · qL · w · q−1

L .

Moreover, if there exists a continuous function ω : U ⊆ Rn−k → Rk such
that

φ(γ(t)) − φ(γ(0)) =
∫ t

0
ω(γ(s))ds, ∀ t ∈ [0, T ],

then, there exists a continuous function ωq : Uq ⊆ Rn−k → Rk such that

φq(γq(t)) − φq(γq(0)) =
∫ t

0
ωq(γq(s))ds, ∀ t ∈ [0, T ].

Proof. — We stress a little abuse of notation throughout the proof, for
the sake of simplicity. We exploit the identifications as in Definition 2.3
without explicitly writing the exponential map F or F−1.
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For every q ∈ G, we define

γ̃q(t) := qW · qL · γ̃(t) · q−1
L , ∀ t ∈ [0, T ].

Then γ̃q takes values in Ũq, see item (c) of Proposition 2.10, and γ̃q(0) =
qW · qL · w · q−1

L . Moreover, one also has

πW(q−1 · γ̃q(t)) = πW(q−1
L · q−1

W · qW · qL · γ̃(t) · q−1
L ) = γ̃(t), ∀ t ∈ [0, T ].

Moreover, if we impose (3.16), the uniqueness of γ̃q is guaranteed by the
second equation of (2.13), and the equivalence

(3.18) q−1
L ·q−1

W ·γ̃q(t)·qL = γ̃(t) ⇔ γ̃q(t) = qW·qL·γ̃(t)·q−1
L , ∀ t ∈ [0, T ].

Now we want to check that γ̃q is a solution to the Cauchy problem (3.17).
We work in exponential coordinates. For every vector-valued function
f : Uq ⊆ Rn−k → Rk of class C∞, we have that, for every t ∈ [0, T ], it
holds, in exponential coordinates, the following chain of equalities:

(3.19)

D
φq
|γq(t)

(f) = D
φq
|γq(t)

((fq−1)q) = Dφ
|γ(t)

(fq−1)

= γ′(t)(fq−1) = d
dt (fq

−1 ◦ γ(t))

= d
dt
(
fq−1 ◦ πW ◦ Lq−1(γq(t))

)
= d

dt
(
(q−1)L · f ◦ πW(γq(t))

)
= d

dt
(
(q−1)L · f ◦ γq(t))

)
= d

dt (f ◦ γq(t)) = γ′
q(t)(f),

where in the first equality we used item (b) of Proposition 2.10, and in the
second one we used (3.10) and the fact that πW(q−1 · γ̃q(t)) = γ̃(t). In the
fifth equality we used the coordinate version of πW(q−1 · γ̃q(t)) = γ̃(t) with
a little abuse of notation, and in the sixth equality we used the coordinate
version of (3.14) with q−1 in place of q. Finally, in the eighth equality we
used the fact that, being L horizontal, the product with a fixed element
of L, in exponential coordinates, is a Euclidean translation and hence it
does not affect the time derivative. This comes from the explicit expression
of the product in coordinates, see [24, Proposition 2.1]. Thus the proof
of (3.17) is finished by (3.19).

By a further inspection, following the equalities starting from the right
hand side of the second line to the right hand side of the fourth line
of (3.19), we have proved, only by exploiting the fact that W is normal,
that if Ũ is open then for every function G̃ : Ũ ⊆ W → L, for every q ∈ G,
and every t ∈ [0, T ], it holds

(3.20) G̃ ◦ γ̃(t) = (q−1)L · G̃q ◦ γ̃q(t).
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Since L is horizontal, in exponential coordinates this equality reads as

(3.21) G ◦ γ(t) = Gq ◦ γq(t) + (q−1)L.

Assume there exists a continuous map ω : U ⊆ Rn−k → Rk as in the
statement. Then, by composing with exponential coordinates we get a
continuous ω̃ : Ũ ⊆ W → L. We then define ω̃q as in (2.11) and we set
ωq : Uq ⊆ Rn−k → Rk to be the composition of ω̃q with the exponential
coordinates. We are then in a position to define ωq by setting

(3.22) ωq(x) := ωq(x) + (q−1)L, ∀ x ∈ Uq.

Then, we have, for every t ∈ [0, T ],

(3.23) φq(γq(t)) − φq(γq(0)) = φ(γ(t)) − φ(γ(0)) =
∫ t

0
ω(γ(s))ds

=
∫ t

0

(
ωq(γq(s)) + (q−1)L

)
ds =

∫ t

0
ωq(γq(s))ds,

where in the first and in the third equality we used (3.21). This completes
the proof. □

Remark 3.14. — The curve γ̃q defined in (3.18) solves (3.17) also in the
general case when W is normal, but one should run more involved com-
putations, because the invariance property (3.10) might not be true. We
presented the invariance in (3.10) in the specific case L is horizontal and
k-dimensional because it will be frequently used in the last theorems of this
section and in Section 4.

We give a sketch of the proof in the general case. For a reference, one
can also read the first item of [31, Proposition 4.2.15]. Given q ∈ G, define
the map σq on W by σq(w) := qW · qL · w · (qL)−1. By (2.13), we get
that σq−1(w) = πW(q−1 · w). Then, in case L is horizontal, the invariance
property proved in (3.10) reads as Dφq

|w = Dφ ◦ σq−1(w). In case L is not
horizontal, using the properties stated in Proposition 2.10, one can prove
that

D
φq
|w = d(σq)σq−1 (w)

(
Dφ ◦ σq−1(w)

)
,

for every w ∈ Ũ and q ∈ G. One can hence use the previous equality and
the definition of γ̃q as in (3.18) to show that, if a curve γ̃ satisfies (3.15),
then γ̃q satisfies (3.17).
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3.3. Metric properties of integral curves of Dφ

In this subsection we study how the intrinsically Lipschitz regularity of
φ̃ affects the metric regularity of the integral curves of the vector fields
Dφ (see Proposition 3.17). We also see how the conclusions obtained can
be improved when we assume φ̃ to be intrinsically differentiable (Propo-
sition 3.19) or uniformly intrinsically differentiable (see Propositions 3.21
and 3.22).

The following lemma is essentially the implication (1) ⇒ (3) of [31,
Theorem 4.2.16]. For the reader convenience, and for some benefit toward
Remark 3.18, we give the proof here, without going through all the precise
estimates, and claiming no originality.

Lemma 3.15. — Let W and L be two complementary subgroups of a
Carnot group G, with W normal, let Ũ ⊆ W be an open neighborhood of
the identity e and let φ̃ : Ũ → L be a function such that φ̃(e) = e. Assume
there exists a constant C > 0 with

(3.24) ∥φ̃(w)∥G ⩽ C∥w∥G, ∀ w ∈ Ũ .

Then for every integer d ⩾ 1, every W ∈ Lie(W) ∩ Vd, and every integral
curve γ̃ : [0, T ] → Ũ of Dφ

W starting from e, there exists C ′ depending only
on C and W , such that

(3.25) ∥γ̃(t)∥G ⩽ C ′t1/d, ∥φ̃(γ̃(t))∥G ⩽ C ′t1/d, ∀ t ∈ [0, T ].

Proof. — We give the proof in case L is k-dimensional and horizontal,
just for notational purposes. Then, taking Remark 3.10 into account, the
proof can be given in the general case. We recall that, from the fact that
all the homogeneous norms are equivalent, we may fix ∥(x1, . . . , xn)∥G :=∑n
i=1 |xi|1/ deg i. Then, in case L is horizontal, ∥φ̃ ◦ γ̃∥G = |φ ◦ γ|.
We fix an adapted basis (X1, . . . , Xn) of the Lie algebra g such that

W = Xj for some j ∈ {k + 1, . . . , n}. Then deg j = d and, according to
Proposition 3.9, we have, in exponential coordinates adapted to this basis,
that Dφ

j := Dφ
Xj

= Dφ
W writes as

(3.26) Dφ
j |(0,...,0,xk+1,...,xn)

= ∂xj +
n∑

i=nd+1
P ji (φ(1), . . . , φ(k), xk+1, . . . , xndeg i−1)∂xi ,

for some polynomials P ji of homogeneous degree deg i − d. By the use of
triangle inequality and Young’s inequality, we get that for every i = nd +
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1, . . . , n there exists a constant C1,i > 0 depending only on the polynomial
P ji , and a constant C2,i > 0 that depends only on C1,i and on n, such that

(3.27) |P ji (φ(1), . . . , φ(k), xk+1, . . . , xndeg i−1)|

⩽ C1,i∥(0, . . . , 0, φ(1), . . . , φ(k), xk+1, . . . , xndeg i−1)∥deg i−d
G

⩽ C2,i(∥(0, . . . , 0, φ(1), . . . , φ(k), 0, . . . , 0)∥deg i−d
G

+ ∥(0, . . . , 0, xk+1, . . . , xn)∥deg i−d
G ).

Fix t ∈ [0, T ] and define

mγ(t) := max
s∈[0,t]

∥γ̃(s)∥G, mφ(t) := max
s∈[0,t]

|φ(γ(s))|.

Then, by the fact that γ̃ is an integral curve of Dφ
j and the particular form

of Dφ
j in (3.26), we get that γj(t) = t for every t ∈ [0, T ], and γℓ(t) ≡ 0

for every t ∈ [0, T ] and every ℓ ̸= j with 1 ⩽ ℓ ⩽ nd. The estimate (3.27)
implies that, for every i ⩾ nd + 1 and any s ∈ [0, t], one has

(3.28) |γi(s)|

⩽
∫ s

0

∣∣∣P ji (φ(1)(γ(r)), . . . , φ(k)(γ(r)), γk+1(r), . . . , γndeg i−1(r)
)∣∣∣dr

⩽ tC2,i
(
(mγ(t))deg i−d + (mφ(t))deg i−d) ⩽ tC3,i(mγ(t))deg i−d,

where in the last inequality we used mφ(t) ⩽ Cmγ(t) for every t ∈ [0, T ],
that comes from the hypothesis (3.24), and where C3,i depends only on
C2,i and C. Thus, from (3.28) and the fact that the only other nonzero
component of γ is γj(t) = t, we get

∥γ̃(s)∥G ⩽ C4

(
t1/d +

n∑
i=md+1

t1/ deg i(mγ(t))1−d/ deg i

)

⩽ nC4 max
i∈{nd+1,...,n}

{
t1/d, t1/ deg i(mγ(t))1−d/ deg i

}
,

for every s ∈ [0, t], where C4 depends only on all the constants C3,i, with
i ⩾ md + 1. Maximizing the previous inequality with respect to s ∈ [0, t],
gives

mγ(t) ⩽ nC4 max
i∈{nd+1,...,n}

{
t1/d, t1/ deg i(mγ(t))1−d/ deg i

}
,

for every t ∈ [0, T ]. As a consequence we get mγ(t) ⩽ C5t
1/d for all t ∈

[0, T ], for a constant C5 depending only on C4 and on G. We have thus
proved

∥γ̃(t)∥G ⩽ C5t
1/d, ∀ t ∈ [0, T ].
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To conclude the proof, it is enough to choose C ′ := max{C5, CC5} and
to use (3.24). Finally, taking into account all the dependencies of the con-
stants, the constant C ′ only depends on C and on the coefficients of Dφ

j in
coordinates, and thus ultimately on the vector field W ∈ Lie(W). □

Remark 3.16. — Condition (3.24) in Lemma 3.15 can be deduced as
soon as φ̃ : Ũ ⊆ W → L is intrinsically Lipschitz at e, see the item (c)
of Proposition 2.13. We will give a general statement in this direction in
the forthcoming Proposition 3.17, that is a restatement of the implication
(1) ⇒ ((2) and (3)) of [31, Theorem 4.2.16].

Notice that in Lemma 3.15 we only exploited the particular triangular
form of Dφ

j , see (3.9). The same result as in Lemma 3.15 holds if we take
the integral curves, starting from e, of any vector field of the same form as
the right hand side of (3.26), satisfying the homogeneity conditions on the
polynomials P ji given in Proposition 3.9. On the contrary, for the forth-
coming Proposition 3.17, we need that we are dealing precisely with the
vector fields Dφ

j in order to use the invariance properties in Lemma 3.12,
and Lemma 3.13.

Proposition 3.17. — Let W and L be two complementary subgroups
of a Carnot group G, with W normal, let Ũ be an open subset of W, and let
φ̃ : Ũ → L be an intrinsically L-Lipschitz function with Lipschitz constant
L > 0.

Then for every integer d ⩾ 1, every W ∈ Lie(W) ∩Vd, and every integral
curve γ̃ : [0, T ] → Ũ of Dφ

W , there exists a constant C ′ > 0 depending only
on L and W such that

(3.29) ∥φ̃(γ̃(s))−1 ·γ̃−1(s)·γ̃(t)·φ̃(γ̃(s))∥G ⩽ C ′|t−s|1/d, 0 ⩽ s < t ⩽ T ;

(3.30) ∥φ̃(γ̃(s))−1 · φ̃(γ̃(t))∥G ⩽ C ′|t− s|1/d, 0 ⩽ s < t ⩽ T.

Proof. — Fix s ∈ [0, T ] and define q := φ̃(γ̃(s))−1 · γ̃(s)−1. By exploiting
item (d) of Proposition 2.10, item (c) of Proposition 2.13, and the fact that
φ̃ is intrinsically L-Lipschitz, we get that φ̃q(e) = e and ∥φ̃q(w)∥G ⩽ L∥w∥G
for every w ∈ Ũq. We now apply Lemma 3.13 to get that the curve γ̃q
defined by γ̃q(t) := φ̃(γ̃(s))−1 · γ̃−1(s) · γ̃(t) · φ̃(γ̃(s)) is an integral curve of
the vector field D

φq
W . Notice that this curve takes values in Ũq as noticed

in Lemma 3.13. We stress that Lemma 3.13 is stated only for L horizontal,
but it also holds in case W is normal, see Remark 3.14.

Define γ̃+
q ( · ) := γ̃q( · + s). Since γ̃+

q (0) = e, we are in a position to apply
Lemma 3.15 to the function φ̃q and to the curve γ̃+

q . Evaluating the first
inequality of (3.25) at time t − s we get (3.29). Finally, by (3.20) - that
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holds in the general case in which W is normal - and by evaluating the
second inequality of (3.25) at time t− s, we get (3.30). □

Remark 3.18 (An improvement of [4, Proposition 6.6]). — A simple mod-
ification of the proof of Proposition 3.17 provides a general argument for
the second part of [4, Proposition 6.6], that was proved only in the setting
of Carnot groups of step 2 and in case L is 1-dimensional. The general-
ization reads as follows. Fix two complementary subgroups W and L of a
Carnot group G, with W normal, and an intrinsically Lipschitz function
φ̃ : Ũ ⊆ W → L, where Ũ is open. Consider a solution γ̃ : I → Ũ of

(3.31) γ̃′(t) =
m∑

j=k+1
aj(t)(Dφ

Xj
)|
γ̃(t)

,

for some controls aj(t) of class L∞(I), where {Xk+1, . . . , Xm} is a basis of
Lie(W) ∩ V1. Then the curve φ̃ ◦ γ̃ is Lipschitz.

To prove this last statement one first proves the analogous of Lemma 3.15
for curves satisfying (3.31). The estimates are done in the same way but
the constant C ′ also depends on a uniform bound of the controls aj( · ) in
L∞(I). In order to conclude, one can run the same argument of Propo-
sition 3.17, taking into account that the invariance property shown in
Lemma 3.13 also holds for curves satisfying (3.31) with exactly the same
proof. For the sketch of the proof of Lemma 3.13 in the general case when
W is normal we refer the reader to Remark 3.14.

The forthcoming Proposition 3.19 is, to our knowledge, new. It tells us
what are the metric properties of the integral curves γ̃ of Dφ whenever
φ̃ ∈ ID(Ũ ,W;L). The counterpart of Proposition 3.19 in the setting of the
Heisenberg group Hn is already known: for the case in which L is one-
dimensional, the proof follows from the argument of [41, Theorem 4.95,
(3) ⇒ (2)], while for the case in which L is k-dimensional, the proof is
in [15, Proposition 4.6]. A weaker version of this proposition, which also
requires φ̃◦γ̃ to be C1, has appeared in [3, Proposition 3.7] in the Heisenberg
group, for L one-dimensional, and in [18, Proposition 5.6] in Carnot groups
of step 2, for L one-dimensional.

Proposition 3.19. — Let W and L be two complementary subgroups
in a Carnot group G, with L horizontal and k-dimensional, let Ũ be an
open set in W and let φ̃ : Ũ → L be an intrinsically differentiable function
at w0 ∈ Ũ . Then the following facts hold.

(i) For every W ∈ Lie(W) ∩ V1 and every integral curve γ̃ : [0, T ] → Ũ

of Dφ
W starting from w0, the composition φ̃ ◦ γ̃ is differentiable
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at 0 and

(3.32) d
dt |t=0

(φ̃ ◦ γ̃)(t) = dφφ(w0)(expW ).

(ii) For every d > 1, W ∈ Lie(W) ∩ Vd and every integral curve γ̃ :
[0, T ] → Ũ of Dφ

W starting from w0, the following holds:

(3.33) lim
t→0

∥φ̃(w0)−1 · φ̃(γ̃(t))∥G
t1/d

= 0.

Proof. — Notice that, since L is horizontal, the homogeneous norm ∥ · ∥G
restricted to L is equivalent to the Euclidean norm of the exponential co-
ordinates. First of all, by item (i) of Remark 2.24, φ̃ is continuous at w0.
If we define q := φ̃(w0)−1 · w−1

0 we get, from item (d) of Proposition 2.10,
that φ̃q(e) = e and, from item (ii) of Remark 2.24, that φ̃q is intrinsically
differentiable at e with dφqφq(e) = dφφ(w0). By (2.17), (2.16) and the tri-
angle inequality, for every Ṽ ⋐ Ũq containing e, there exists a constant C
such that |φq(w)| ⩽ C∥w∥G for every w ∈ Ṽ .

(i). — Fix W ∈ Lie(W) ∩ V1 and γ̃ as in the assumption. By the first
part of Lemma 3.13, there exists γ̃q : [0, T ] → Ũq ⊆ W such that γ̃q is
an integral curve of Dφq

W starting from e. Then, since |φq(w)| ⩽ C∥w∥G
for every w ∈ Ṽ , and since for sufficiently small times t > 0 it holds
γ̃q([0, t]) ⊆ Ṽ , we are in the setting of Lemma 3.15. Thus, from the first
inequality in (3.25), we can write

lim sup
t→0

∥γ̃q(t)∥G
t

< +∞.

Fix an adapted basis (X1, . . . , Xn) of the Lie algebra g such that L =
exp(span{X1, . . . , Xk}) and W = exp(span{Xk+1, . . . , Xn}). We use the
notation of Definitions 2.3 and 2.20. By using the previous inequality we get
that there is a constant C > 0 such that, for every small enough t ∈ [0, T ],

(3.34) |φq(γq(t)) − φq(γq(0)) − t∇φqφq(e)(W )|
t

⩽ C
|φq(γq(t)) − φq(γq(0)) − t∇φqφq(e)(W )|

∥γ̃q(t)∥G
.

Notice that φq(γq(0)) = φq(0) = 0. Moreover, using the particular form
of the projected vector fields in (3.9) and the fact that W ∈ V1, it is easy
to see that πV1(γ̃q(t)) = exp(tW ) for all t ∈ [0, T ]. By exploiting the fact
that the intrinsic differential is linear on the horizontal components (see
Proposition 2.19), we get that for all t ∈ [0, T ]

t∇φqφq(e)(W ) = ∇φqφq(e)(tW ) = exp−1 (dφqφq(e)(exp(tW ))) .
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Let us conclude the proof. The intrinsic differentiability of φ̃q at e pro-
vides (2.17). Thus, by exploiting πV1(γ̃q(t)) = exp(tW ) for all t ∈ [0, T ],
the previous equality, and the fact that the intrinsic differential depends
only on the projection on V1 (see Proposition 2.19), the right hand side
of (3.34) goes to zero as t → 0. Thus, also the left hand side goes to zero
as t → 0 and this means that

d
dt |t=0

(φq ◦ γq)(t) = ∇φqφq(e)(W ).

By using (3.21), and since ∇φqφq(e) = ∇φφ(w0), we get (3.32). This con-
cludes the proof of (i).

(ii). — Assume W ∈ Lie(W)∩Vd with d > 1, and γ̃ as in the assumption.
We proceed with the same argument as in (i). Then, following the lines of
the proof in item (i) and by the first inequality in (3.25), we obtain that
there exists C > 0 such that for sufficiently small t ∈ [0, T ]

(3.35) |φq(γq(t)) − φq(γq(0))|
t1/d

⩽ C
|φq(γq(t)) − φq(γq(0))|

∥γ̃q(t)∥G
.

Since W ∈ Vd with d > 1 and φq(0) = 0, the projection of every integral
curve of Dφq

W , starting from 0, on the horizontal bundle is zero. This follows
by exploiting the particular form of Dφq in coordinates, see (3.9). Then
the intrinsic differentiability of φ̃q at e jointly with (3.35), the fact that the
projection of γ̃q on V1 is zero, and that the intrinsic gradient is linear on
V1 (see Proposition 2.19) yields, with the same reasoning as before,

lim
t→0

|φq(γq(t)) − φq(γq(0))|
t1/d

= 0.

Then, by using (3.21) we conclude (3.33) and thus the proof. □

Remark 3.20. — For the ease of notation, we considered in Proposi-
tion 3.19 only intervals [0, T ], and thus we got conclusions only on the
right limits and the right derivatives. The same proof provides the same
conclusion on the full limit, or the full derivative, whenever the interval is
centered at the origin.

Now we want to deduce metric properties of φ̃ when we know that it
is UID. The following proposition shows that any uniformly intrinsically
differentiable function φ̃ is 1

s -little Hölder continuous on any Carnot group
of step s, when read in exponential coordinates. It is a generalization of [3,
Proposition 4.4].

Proposition 3.21. — Let W and L be two complementary subgroups
of a Carnot group G with L horizontal and k-dimensional, and let Ũ ⊆ W be
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an open set. If φ̃ ∈ UID(Ũ ,W;L), then such a function read in exponential
coordinates is in h

1/s
loc (U ;Rk), that is φ ∈ C(U ;Rk) and for all U ′ ⋐ U

one has

(3.36) lim
r→0

(
sup

{
|φ(b) − φ(a)|

|b− a|1/s
: a, b ∈ U ′, 0 < |b− a| < r

})
= 0.

Proof. — We fix an adapted basis (X1, . . . , Xn) of the Lie algebra such
that L = exp(span{X1, . . . , Xk}) and W = exp(span{Xk+1, . . . , Xn}). We
use the convention in Definition 2.3 and Proposition 2.22, taking into ac-
count the little abuse of notation as in Remark 2.23. In these coordinates,
up to bi-Lipschitz equivalence, we can suppose to work with the anisotropic
norm. If a ∈ U , we denote by a1, . . . , as the vector of components of a in
each layer, so aj ∈ Rmj for every j = 1, . . . , s and a = (a1, . . . , as). For any
a0 ∈ U and r > 0 we set

ρa0(r) := sup
{

|φ(b) − φ(a) − ∇φφa0(a−1b)|
∥φ̃(a)−1a−1b φ̃(a)∥ : a, b ∈ B(a0, r) ∩ U, a ̸= b

}
.

Assuming φ̃ ∈ UID(Ũ ,W;L), we have by (2.18)

(3.37) lim
r→0

ρa0(r) = 0,

for every a0 ∈ U . Fix U ′ ⋐ U with a0 ∈ U ′. From Proposition 2.19, since
the intrinsically linear function dφφa0 depends only on the variables on the
first layer of W, and it is homogeneous, we can find a constant C > 0
depending on a0 for which

|∇φφa0(a−1b)| ⩽ C|b1 − a1|, ∀ a, b ∈ Rn,

and, consequently, we have

(3.38) |∇φφa0(a−1b)|
|b− a|1/s

⩽ Cr1−1/s,

for all a, b ∈ Rn with 0 < |a − b| < r < 1. By a consequence of Proposi-
tion 2.4, see [22, Corollary 3.13], we have with a little abuse of notation

φ̃(a)−1a−1b φ̃(a) = b− a+ P(φ̃(a), a−1b),

for every a, b ∈ Rn, where

P(φ̃(a), a−1b) := (P1(φ̃(a), a−1b), . . . ,Ps(φ̃(a), a−1b)),

with P1(φ̃(a), a−1b) = 0. Moreover, for each i = 2, . . . , s, there is Ci > 0
depending only U ′ and φ̃ such that

|Pi(φ̃(a), a−1b)| ⩽ Ci
(
|b1 − a1| + · · · + |bi−1 − ai−1|

)
,
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for all a, b ∈ U ′. Hence there exists C ′ > 0 depending only on Ci and on
the group G such that

∥φ̃(a)−1a−1b φ̃(a)∥
|b− a|1/s

⩽ C ′, ∀ a, b ∈ U ′ with 0 < |a− b| < 1.

Finally, by the last inequality together with (3.38), we get

(3.39)

|φ(b) − φ(a)|
|b− a|1/s

⩽
|φ(b) − φ(a) − ∇φφa0(a−1b)|

∥φ̃(a)−1a−1b φ̃(a)∥
∥φ̃(a)−1a−1b φ̃(a)∥

|b− a|1/s

+ |∇φφa0(a−1b)|
|b− a|1/s

⩽ C ′ρa0(r) + Cr1−1/s,

for all a0 ∈ U and all a, b ∈ U ′ ∩ B(a0, r) with 0 < |a − b| < r < 1. We
stress that, ultimately, C ′ depends only U ′ and φ̃, while C depends only
on a0.

We conclude the proof by contradiction. Assume we can find U ′ ⋐ U ,
two sequences (ah) and (bh) in U ′, and an infinitesimal sequence (rh) of
positive numbers such that 0 < |ah − bh| < rh and

|φ(bh) − φ(ah)|
|bh − ah|1/s

> M,

for some M > 0. Since U ′ is compact, we can assume that, up to passing
to subsequences, both (ah) and (bh) converge to some a0 ∈ U ′. By (3.39)
we would find some M ′ > 0 such that that

ρa0(rh) > M ′,

for arbitrarily large h ∈ N, a contradiction to (3.37). □

The previous proposition tells us what is the regularity of φ in all the
exponential coordinates, in case it is UID. Actually, we can refine Proposi-
tion 3.21 by improving the property (3.33). We stress that the forthcoming
proposition would also follow from the implication (1) ⇒ (2) of [31, The-
orem 4.3.1] but, up to our knowledge, the proof presented here is new.
Indeed, in (1) ⇒ (2) of [31, Theorem 4.3.1] it is proved that if the intrin-
sic graph of φ is a co-horizontal C1

H-surface with complemented tangents,
then (3.40) holds. Then the following Proposition 3.22 would be a con-
sequence of that implication and Proposition 2.28. Instead, we here give
a direct proof within our context. In conclusion we obtain, in a different
way, the implication (1) ⇒ (2) of [31, Theorem 4.3.1] by making use of
Propositions 3.22 and 2.28.
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Proposition 3.22. — Let W and L be two complementary subgroups
of a Carnot group G, with L horizontal and k-dimensional. Let Ũ ⊆ W
be open and φ̃ ∈ UID(Ũ ,W;L). Fix an adapted basis (X1, . . . , Xn) in
which W = exp(span{Xk+1, . . . , Xn}), L = exp(span{X1, . . . , Xk}) and let
Ṽ ⋐ Ũ . Then

(3.40) lim
ϱ→0

(
sup

{
|φ(γ(t)) − φ(γ(s))|

|t− s|1/deg j

})
= 0,

where the supremum is taken over j = m + 1, . . . , n, γ′ = Dφ
Xj

◦ γ, γ ⊆ V

and 0 < |t− s| ⩽ ϱ.

Proof. — We use the convention in Definition 2.3 and Proposition 2.22,
taking into account the little abuse of notation as in Remark 2.23. By item
(a) of Proposition 2.25 we have that φ̃ is intrinsically Lipschitz on Ṽ ⋐ Ũ .
We denote by C the constant for which φ̃ is intrinsically C-Lipschitz in Ṽ .

Fix w0 ∈ Ṽ . Let us take m + 1 ⩽ j ⩽ n, and an integral curve γ̃ : I →
Ṽ ⊆ W of Dφ

Xj
. Without loss of generality we may assume that the curve

is defined on I = [0, T ], with T > 0 possibly depending on the curve.
By the particular form of Dφ

j in coordinates, see (3.9), and the fact that
j ⩾ m+ 1, we have that the projection of γ̃ on V1 is constant. Then, since
by Proposition 2.19 ∇φφw0 depends only on the projection on V1 and it is
linear, we have, for all t, s ∈ [0, T ],

(3.41) |φ(γ(t)) − φ(γ(s)) − ∇φφw0(γ(s)−1 · γ(t))|
∥φ̃(γ̃(s))−1 · γ̃(s)−1 · γ̃(t) · φ̃(γ̃(s))∥

= |φ(γ(t)) − φ(γ(s))|
∥φ̃(γ̃(s))−1 · γ̃(s)−1 · γ̃(t) · φ̃(γ̃(s))∥ .

Since φ̃ is intrinsically C-Lipschitz in Ṽ , by (3.29) there exists a constant
Cj > 0 depending only on j, C and the adapted basis such that

(3.42) ∥φ̃(γ̃(s))−1 · γ̃(s)−1 · γ̃(t) · φ̃(γ̃(s))∥ ⩽ Cj |t− s|1/ deg j ,

∀ 0 ⩽ s < t ⩽ T.

In particular, we can find a constant C ′ > 0 depending only on C and
the adapted basis such that for every j = m + 1, . . . , n, for every integral
curve γ̃ : [0, T ] → Ṽ of Dφ

Xj
and every 0 ⩽ s < t ⩽ T we have

(3.43) |φ(γ(t)) − φ(γ(s))|
∥φ̃(γ̃(s))−1 · γ̃(s)−1 · γ̃(t) · φ(γ̃(s))∥ ⩾

|φ(γ(t)) − φ(γ(s))|
C ′|t− s|1/ deg j .
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Combining (3.43) and (3.41) we get

(3.44) |φ(γ(t)) − φ(γ(s))|
|t− s|1/ deg j

⩽ C ′ |φ(γ(t)) − φ(γ(s)) − ∇φφw0(γ(s)−1 · γ(t))|
∥φ̃(γ̃(s))−1 · γ̃(s)−1 · γ̃(t) · φ̃(γ̃(s))∥ ,

for every j = m + 1, . . . , n, every integral curve γ̃ : [0, T ] → Ṽ of Dφ
Xj

,
every 0 ⩽ t < s ⩽ T and every w0 ∈ Ṽ . If |t − s| ⩽ ϱ, by the estimate in
Proposition 2.4 and (3.42), we get

(3.45) ∥γ̃(s)−1 · γ̃(t)∥ ⩽ C(ϱ),

for every j = m+ 1, . . . , n and every integral curve γ̃ : [0, T ] → Ṽ of Dφ
Xj

,
where C(ϱ) is a continuous increasing function such that limϱ→0 C(ϱ) = 0,
depending on φ̃ and independent on the choices of j and γ̃.

Assume by contradiction that (3.40) is false. Then there exist ε0 > 0, a
sequence of integral curves γ̃ℓ : [0, Tℓ] → Ṽ of Dφ

Xiℓ
, for some iℓ ∈ {m +

1, . . . , n}, and sequences of times 0 ⩽ tℓ < sℓ ⩽ Tℓ such that |tℓ − sℓ| → 0
as ℓ → ∞ and

(3.46) |φ(γℓ(tℓ)) − φ(γℓ(sℓ))|
|tℓ − sℓ|1/ deg(iℓ)

⩾ ε0.

By compactness, up to passing to subsequences, there exists ṽ ∈ Ṽ such
that γ̃ℓ(tℓ) → ṽ. Then, by the uniform control (3.45) and the fact that
|tℓ − sℓ| → 0, we get also γ̃ℓ(sℓ) → ṽ. Since φ̃ is uniformly intrinsically
differentiable at ṽ, we get, by Proposition 2.22 (see (2.18)) that the right
hand side of (3.44) evaluated at γ̃ = γ̃ℓ, t = tℓ, s = sℓ, and w0 = ṽ goes
to 0 as ℓ → +∞. Passing (3.44) to the limit (with j = iℓ) gives the sought
contradiction with (3.46). □

Remark 3.23. — In case G is a Carnot group of step 2 and rank m, and
we choose an adapted basis of g such that L = exp(span{X1, . . . , Xk}) and
W = exp(span{Xk+1, . . . , Xm, Xm+1, . . . , Xn}), we have that Dφ

Xj
= ∂xj

for m + 1 ⩽ j ⩽ n, see Example 3.6. If φ̃ ∈ UID(Ũ ,W;L) then Propo-
sition 3.22 tells us that on every compact subset of U , the function φ is
uniformly 1/2-little Hölder continuous in the vertical coordinates. More-
over, (3.32) and the fact the dφφ is continuous, see Proposition 2.25, tell
us that along the integral curves of Dφ

Xj
, with k + 1 ⩽ j ⩽ m, φ is C1.

Then, by exploiting the triangular form of the vector fields Dφ in (3.9),
one could use the previous informations to prove that φ is locally 1/2-little
Hölder continuous in all the variables, and thus give an alternative proof of
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Proposition 3.21 in the step-2 case. This is essentially the idea of the proof
in [3, Proposition 4.4].

3.4. Definition of broad*

In this subsection we give the notion of broad* solution to the system
Dφφ = ω, with ω continuous. Eventually we show that an intrinsically
differentiable function φ with continuous intrinsic gradient ∇φφ (see Defi-
nition 2.20) is a broad* solution to Dφφ = ∇φφ.

Let W and L be complementary subgroups of a Carnot group G, with L
horizontal and k-dimensional. Let Ũ be an open subset of W and let φ̃ : Ũ ⊆
W → L be a continuous function. We fix an adapted basis (X1, . . . , Xn)
of the Lie algebra g, such that W = exp(span{Xk+1, . . . , Xn}) and L =
exp(span{X1, . . . , Xk}). We give the notion of broad* solution of the system

(3.47)


Dφ
Xk+1

φ(1) . . . Dφ
Xm

φ(1)

...
. . .

...
Dφ
Xk+1

φ(k) . . . Dφ
Xm

φ(k)

 =

 ω1 k+1 . . . ω1m
...

. . .
...

ωk k+1 . . . ωkm

 ,

where ω := (ωℓj) : U → Rk×(m−k), with ℓ ∈ {1, . . . , k}, j ∈ {k+ 1, . . . ,m},
is a continuous matrix valued function, and where we refer to the notation
introduced in Definition 2.3.

Definition 3.24 (Broad* and broad solutions). — Let W and L be
complementary subgroups of a Carnot group G, with L horizontal and
k-dimensional. Let Ũ ⊆ W be open and let φ̃ : Ũ → L be a continuous
function. Consider an adapted basis (X1, . . . , Xn) of the Lie algebra g such
that L = exp(span{X1, . . . , Xk}) and W = exp(span{Xk+1, . . . , Xn}). Let
ω := (ωℓj) : U → Rk×(m−k) be a continuous matrix valued function with
ℓ ∈ {1, . . . , k} and j ∈ {k + 1, . . . ,m}. We say that φ =: (φ(1), . . . , φ(k)) ∈
C(U ;Rk) is a broad* solution of Dφφ = ω in U if for every a0 ∈ U there
exist 0 < δ2 < δ1 and m−k maps Eφj : B(a0, δ2) × [−δ2, δ2] → B(a0, δ1) for
j = k + 1, . . . ,m, where the balls are considered restricted to U , satisfying
the following two properties.

(a) For every a ∈ B(a0, δ2) and every j = k + 1, . . . ,m, the map
Eφj (a) := Eφj (a, · ) is C1 regular and it is a solution of the Cauchy
problem {

γ̇ = Dφ
j ◦ γ

γ(0) = a,
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in the interval [−δ2, δ2], where the vector field Dφ
j := Dφ

Xj
is defined

in (3.1).
(b) For every a ∈ B(a0, δ2), for every t ∈ [−δ2, δ2], every j = k +

1, . . . ,m and every ℓ = 1, . . . , k one has

φ(ℓ)(Eφj (a, t)) − φ(ℓ)(a) =
∫ t

0
ωℓj(Eφj (a, s)) ds.

We say that Dφφ = ω in the broad sense on U if for every W ∈ Lie(W)∩
V1 and every integral curve γ : I → U of Dφ

W , it holds that
d
ds |s=t

(φ ◦ γ)(s) = ω(W )(γ(t)), ∀ t ∈ I,

where by ω(W ) we mean the matrix ω applied to the (m− k)-vector W .

Remark 3.25. — We stress that, in the setting of Definition 3.24, if
φ̃ ∈ C1(Ũ) then Dφφ = ∇φφ both pointwise and in the broad sense on U .
First φ̃ ∈ UID(Ũ ,W;L) by [18, Theorem 4.9], because φ̃ ∈ C1(Ũ). Then
we can consider the intrinsic gradient ∇φφ as in Definition 2.20, which is
continuous, see Proposition 2.25. Thus the claim is an outcome of point (i)
of Proposition 3.19 and point (c) of Proposition 4.10, that becomes a point-
wise equality if φ̃ is C1(Ũ), see the proof of Proposition 4.10.

Remark 3.26. — Let us notice that the definition given in Definition 3.24
is a priori susceptible to the choice of an adapted basis. Nevertheless, when
it is coupled with the vertically broad* hölder condition in the same basis,
see Definition 4.3, it is independent of this choice. This is an outcome of
Theorem 4.16. Indeed, from (d) ⇒ (a) of Theorem 4.16, it follows that
the broad* condition and the vertically broad* hölder condition on a fixed
basis imply that φ̃ is UID. Thus, from item (i) of Proposition 3.19, we get
that the broad* condition is satisfied for every other basis. Finally, from
Proposition 3.22, we get that also the vertically broad* hölder condition
holds in every other basis.

With the above reasoning, we remark that we can conclude something
stronger: if the broad* condition and the vertically broad* hölder condition
hold on a fixed basis, then they hold uniformly on the choice of W ∈ Lie(W)
with bounded norm, see Definition 1.4, and Definition 1.5.

The following result is already known in the Heisenberg groups Hn: in
case L is one-dimensional, it is proved in [41, (3)⇒(2) and Theorem 4.95],
while in case L is k-dimensional it is proved in [15, Theorem 1.4, (iii) ⇒ (ii)].
We here generalize it to arbitrary Carnot groups, in the case L is horizontal
and k-dimensional.
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Proposition 3.27. — Let W and L be complementary subgroups of
a Carnot group G, with L horizontal and k-dimensional, and consider an
adapted basis of the Lie algebra g such that W = exp(span{Xk+1, . . . , Xn})
and L = exp(span{X1, . . . , Xk}). Let Ũ be an open subset of W, and
φ̃ ∈ ID(Ũ ,W;L) be such that dφφ is continuous on Ũ . Denote by ∇φφ the
k× (m− k) matrix that represents dφφ in coordinates, see Definition 2.20.

Then, we have that

(3.48) d
dt |t=t0

(φ(ℓ) ◦ γ)(t) = ∇φ
ℓjφ(γ(t0)),

for every j = k + 1, . . . ,m, every integral curve γ̃ : I → Ũ of Dφ
j := Dφ

Xj
,

every ℓ = 1, . . . , k, and every t0 ∈ I. In particular the function φ is a broad
solution, and thus also a broad* solution, of the system Dφφ = ∇φφ.

Proof. — Equation (3.48) directly follows from (3.32) seen in coordi-
nates. Then, from (3.48) and the fact that ∇φφ is continuous by hypothesis,
the second part of the thesis follows. □

4. Main Theorems in arbitrary Carnot groups

In this section we prove Theorem 4.16, that is Theorem 1.6 in the intro-
duction. We deal with an arbitrary Carnot group G along with a continuous
function φ̃ : Ũ ⊆ W → L, where W and L are complementary subgroups of
G, with L horizontal and k-dimensional, and Ũ is an open subset of W.

In Section 4.1, we study how Hölder properties of φ̃ along integral curves
of the vector fields Dφ as defined in (3.1) affect the intrinsic regularity of
the function φ̃. The main result of this section is a converse of Proposi-
tion 3.22: if Dφφ = ω holds in the broad* sense (see Definition 3.24) and
there is, locally around every point, a family of curves satisfying the lit-
tle Hölder regularity condition (3.40) (we shall call this property vertically
broad* hölder regularity, see Definition 4.3), then φ̃ is uniformly intrinsi-
cally differentiable. For the full statement, see Proposition 4.5. We notice
that, taking Remark 3.23 into account, the latter proposition generalizes [3,
Theorem 5.7], which deals with the case G = Hn and L one-dimensional,
[18, Theorem 5.8, (4) ⇒ (2)], which is proved in case G has step 2 and L is
one-dimensional, and [15, Theorem 5.3] that solves the problem for G = Hn
with L horizontal and k-dimensional. We remark that, also in these cases,
we obtain slightly stronger results, requiring just a locally 1/2-little Hölder
regularity in the vertical components.
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Proposition 4.5 could also be obtained by a combination of (2)⇒(1)
of [31, Theorem 4.3.1] and Proposition 2.28, which is proved in [18]. The
idea of (2) ⇒ (1) in [31, Theorem 4.3.1] is to show that the Hölder con-
ditions on φ̃ along a family of integral curves, that is the assumptions of
Proposition 4.5, imply that the intrinsic graph of φ̃ is a co-horizontal C1

H-
surface with complemented tangents. To prove this latter fact the author
uses a characterization of co-horizontal C1

H-surfaces by means of uniform
Hausdorff convergence to tangents (see [31, Theorem 3.1.12]) that is in turn
based on the so-called four cones Theorem, see [8, Theorem 1.2]. With the
independent proof we give in Proposition 4.5, with more analytic flavor, we
stress we can indirectly obtain (2) ⇒ (1) of [31, Theorem 4.3.1] by mak-
ing use of Propositions 4.5 and 2.28. We also obtained (1) ⇒ (2) of [31,
Theorem 4.3.1], see the discussion before Proposition 3.22.

Our proof of Proposition 4.5 requires Proposition 4.1, that is stated only
for L horizontal and k-dimensional. The Proposition 4.1 is a converse of
Lemma 3.15, i.e., it can be roughly read in the following way: the uniform
Hölder regularity of the curves φ̃ ◦ γ̃, where γ̃ is an integral curve of the
vector field Dφ, implies the intrinsically Lipschitz regularity of φ̃. We give
a proof of Proposition 4.1 as we crucially need it for the proof of Propo-
sition 4.5, but we remark that a more general statement can be given, in
case W is normal, with a proof that is very similar to the one of Proposi-
tion 4.1. Notice that the general statement with W normal can be found in
(3) ⇒ (1) of [31, Theorem 4.2.16]. For more details, see Remark 4.2.

As a by-product, we obtain some analytical results, that can have their
own independent interests. The first one is given by Corollary 4.9 and
it states that broad* regularity implies broad regularity. Roughly speak-
ing, having a function that is Hölder regular on a precise family of inte-
gral curves implies the Hölder regularity on every integral curve. Then, in
Corollary 4.7, we prove that every intrinsically differentiable function that
is vertically broad* hölder (see Definition 4.3), and that has a continuous
intrinsic gradient, is uniformly intrinsically differentiable. We do not know
at present whether the assumption on the vertically broad* hölder regular-
ity can be dropped in Corollary 4.7, see also Remark 4.8. We expect that
the hypothesis on the vertically broad* hölder regularity in Corollary 4.7
can be dropped in general, see also the paragraph Geometric characteri-
zations of intrinsic differentiability in the introduction. From the results
proved in [10] and [15], we know that the assumption on the vertically
broad* hölder regularity in Corollary 4.7 is not necessary in the case of
the Heisenberg groups Hn, with L horizontal k-dimensional, see also the
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introduction to Section 5. We stress we obtain that we can remove the as-
sumption on the vertically broad* hölder regularity in Corollary 4.7 also in
the case of step-2 Carnot groups with L one-dimensional, see Section 6.

In Section 4.2 we focus on the case in which L is one-dimensional and
we prove Proposition 4.10. We present an area formula that represents the
perimeter of the subgraph of a uniformly intrinsically differentiable function
φ in terms of the density

√
1 + |∇φφ|2. For more details about the area

formula and a representation involving the Hausdorff measures, we refer the
reader to Remark 4.11. In Proposition 4.10 we also prove that, whenever
the target L is one-dimensional, every uniformly intrinsically differentiable
function φ is a distributional solution of the system Dφφ = ∇φφ and, in
Corollary 4.12, we deduce that if Dφφ = ω holds in the broad* sense with
a continuous datum ω and φ is vertically broad* hölder, then Dφφ = ω in
the sense of distributions. We do not know, in general, if in Corollary 4.12
we can remove the assumption on the vertically broad* hölder regularity.
In fact, one can remove the hypothesis on the vertically broad* hölder
regularity in Corollary 4.12 in Heisenberg groups, and it is a consequence
of the results in [10]. We stress that thanks to the results obtained in
Section 6, we drop the assumption on the vertically broad* hölder regularity
in Corollary 4.12 also in the case of step-2 Carnot groups.

It is interesting to investigate the converse implication: if one has Dφφ =
ω in the sense of distributions with a continuous function ω, is it true that
Dφφ = ω in the broad* sense? This is actually the case in the Heisenberg
groups, see [9], and the techniques used in Section 6 seem a good tool to
address this implication in arbitrary step-2 Carnot groups. We will not
address this issue in this paper and it will be the target of further investi-
gations. It is however interesting to notice that, in some examples besides
the step-2 case and for particular φ, one can obtain that if Dφφ = ω holds
in the sense of distributions with a continuous function ω, then Dφφ = ω

in the broad* sense. We will not discuss this issue in the paper, but we
refer the reader to [1].

In Section 4.3 we come back to the general case in which the target L
is horizontal and not necessarily one-dimensional. We prove that if φ is
locally approximable with a sequence of smooth functions whose intrinsic
derivatives converge to a continuous function ω, then Dφφ = ω in the
broad*, see Proposition 4.14. This notion of local approximability has been
first introduced and studied in [3], see also Remark 4.13. We exploit this
result to prove that every uniformly intrinsically differentiable function φ

always solves Dφφ = ∇φφ in the broad* sense.
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In Section 4.4, we combine some of the previous results together to prove
our main theorem Theorem 4.16, which is Theorem 1.6 in the introduction.
Notice that our result provides the generalization to all Carnot groups, and
to any possible horizontal and k-dimensional target L, of [18, Theorem 5.8].
We stress that Theorem 4.16 will be strengthened in Section 6 dropping
the hypothesis on the vertical broad* hölder regularity in the setting of
Carnot groups of step 2. We stress that, in general, the assumption on the
vertical broad* hölder regularity cannot be dropped in Theorem 4.16, see
Remark 4.17 for a counterexample in the easiest step-3 group, namely the
Engel group.

4.1. From regularity of φ along integral curves of Dφ to
regularity of φ

In this subsection we show how the Hölder regularity of φ along integral
curves of Dφ affects the intrinsic regularity of φ̃.

Proposition 4.1. — Let W and L be complementary subgroups of a
Carnot group G, with L horizontal and k-dimensional, let Ũ be open, and
let φ̃ : Ũ ⊆ W → L be a continuous function with e ∈ Ũ and φ̃(e) = e.

Let (X1, . . . , Xn) be an adapted basis of the Lie algebra g such that
L = exp(span{X1, . . . , Xk}) and W = exp(span{Xk+1, . . . , Xn}). Denote
by Dφ

j := Dφ
Xj

, for every j = k + 1, . . . , n. Let L > 0.
Fix v ∈ U and consider a concatenation of curves γk+1, . . . , γn in U

connecting 0 to v such that γj : Ij → U is an integral curve of Dφ
j for

j = k+1, . . . , n. Assume that the function φ◦γj is 1
deg j -Hölder continuous

on Ij , for j = k+1, . . . , n, with Hölder constant L. Then, there exists C > 0
only depending on L,W, L and the adapted basis (X1, . . . , Xn) such that

|φ ◦ γj(t)| ⩽ C∥v∥G, ∀ t ∈ Ij , ∀ j = k + 1, . . . , n,(4.1)

|γ(i)
j (t)| ⩽ C∥v∥deg i

G , ∀ t ∈ Ij , ∀ i, j = k + 1, . . . , n,(4.2)

where γ(i)
j denotes the i-th component of γj in exponential coordinates.

Proof. — Up to bi-Lipschitz equivalence, we can prove the result choos-
ing the anisotropic norm ∥x∥G :=

∑n
ℓ=1 |xℓ|1/ deg ℓ. For the sake of readabil-

ity, we fix k = 1 and assume that all the layers Vi of the algebra g, with
i ⩾ 2, are 1-dimensional, so that deg i = i − 1 for every i = 2, . . . , n. The
proof in the general case only requires a typographical effort to deal with
multiple components in each layer and the fact that we have more zeros in
the components of the first layer.
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We work in exponential coordinates so that v = (0, v2, . . . , vn), and de-
note the extremal points of the concatenation of γ2, . . . , γn by the following
chain

(4.3)
e = (0, 0, . . . , 0) → γ2(0, v2, r3,2, . . . , rn,2) → γ3 . . .

. . . → γj (0, v2, . . . , vj , rj+1,j , . . . , rn,j) → γj+1 . . .

. . . → γnv = (0, v2, . . . , vn).

In the previous chain, we used the triangular form of Dφ
j given in (3.9),

so that the flow along Dφ
j does not affect the coordinates with index less

than j. Notice also that, without loss of generality we can assume Ij ⊆
[−|vj − rj,j−1|, |vj − rj,j−1|], with the convention r2,1 := 0. Indeed, again
by using (3.9), in order to correct the error rj,j−1 in the j-th component,
we have to flow for a time vj − rj,j−1 along Dφ

j .
We prove (4.1) and (4.2) by induction on j. When we say that a constant

depends on W and L we mean that also depends on the chosen adapted
basis (X1, . . . , Xn).

By assumption, the curve φ ◦ γ2 is L-Lipschitz on I2 and φ ◦ γ2(0) = 0.
Consequently, we have that

(4.4) |φ◦γ2(t)| = |φ◦γ2(t)−φ◦γ2(0)| ⩽ L|t| ⩽ L|v2| ⩽ L∥v∥G, ∀ t ∈ I2.

Therefore (4.1) is proved for j = 2.
Next we shall prove (4.2) for j = 2 by means of induction on i. For i = 2,

we have γ(2)
2 (t) = t and then

|γ(2)
2 (t)| = |t| ⩽ |v2| ⩽ ∥v∥G, ∀ t ∈ I2.

Assume now that for some i0 ⩾ 2, there is a constant C2,i0 > 0 such that

(4.5) |γ(i)
2 (t)| ⩽ C2,i0∥v∥deg i

G = C2,i0∥v∥i−1
G , ∀ t ∈ I2, ∀ i = 2, . . . , i0.

We want to prove that there exists C2,i0+1 > 0 such that

|γ(i0+1)
2 (t)| ⩽ C2,i0+1∥v∥deg(i0+1)

G = C2,i0+1∥v∥i0G , ∀ t ∈ I2,

where C2,i0+1 only depends on i0, L, C2,i0 ,W and L. By using the particular
triangular form of Dφ

2 in exponential coordinates, see (3.9), we get that

(4.6) |γ(i0+1)
2 (t)| =

∣∣∣∣∫ t

0
P 2
i0+1(φ ◦ γ2(s), γ(2)

2 (s), . . . , γ(i0)
2 (s))ds

∣∣∣∣ , ∀ t ∈ I2,

for some polynomial P 2
i0+1 of homogeneous degree deg(i0 + 1) − deg 2 =

i0 −1. Then, from (4.4) and (4.5), we deduce there exists C2,i0+1 depending
on i0, L, C2,i0 ,W and L such that∣∣∣P 2

i0+1(φ ◦ γ2(t), γ(2)
2 (t), . . . , γ(i0)

2 (t))
∣∣∣ ⩽ C2,i0+1∥v∥i0−1

G , ∀ t ∈ I2,
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and thus, by using this inequality in (4.6), and since |t| ⩽ |v2| ⩽ ∥v∥G,
we get

|γ(i0+1)
2 (t)| ⩽ C2,i0+1|t|∥v∥i0−1

G ⩽ C2,i0+1∥v∥i0G , ∀ t ∈ I2.

To conclude the proof of (4.1) and (4.2) in the case j = 2, it is enough to
set C2 := maxi=2,...,n C2,i, where C2,2 = max{L, 1}.

Assume now that for some 2 ⩽ j0 ⩽ n and some constant Cj0 > 0 one
has

|φ ◦ γj(t)| ⩽ Cj0∥v∥G, ∀ t ∈ Ij , ∀ j = 2, . . . , j0,(4.7)

|γ(i)
j (t)| ⩽ Cj0∥v∥deg i

G , ∀ t ∈ Ij , ∀ i ⩾ 2, ∀ j = 2, . . . , j0.(4.8)

We want to find Cj0+1 > 0 only depending on L, j0, Cj0 ,W and L such that

|φ ◦ γj0+1(t)| ⩽ Cj0+1∥v∥G, ∀ t ∈ Ij0+1,(4.9)

|γ(i)
j0+1(t)| ⩽ Cj0+1∥v∥deg i

G , ∀ t ∈ Ij0+1, ∀ i = 2, . . . , n.(4.10)

To prove (4.9), we develop the following inequalities:

(4.11) |φ ◦ γj0+1(t)|
⩽ |φ ◦ γj0+1(t) − φ ◦ γj0+1(0)| + |φ ◦ γj0+1(0)|

⩽ L|t|1/ deg(j0+1) + |φ ◦ γj0+1(0)|

⩽ L|vj0+1 − rj0+1,j0 |1/j0 + Cj0∥v∥G
⩽ L|vj0+1|1/j0 + L|rj0+1,j0 |1/j0 + Cj0∥v∥G

⩽ L∥v∥G + LC
1
j0
j0

∥v∥G + Cj0∥v∥G = C̃j0+1∥v∥G, t ∈ Ij0+1,

where in the second inequality we used the fact that φ ◦ γj0+1 is Hölder
of constant L; in the third inequality we used the definition of Ij0+1 for
the first term, while the estimate on the second term comes from (4.7)
and the fact that γj0+1(0) is the endpoint of γj0 ; the fifth inequality is
a consequence of (4.8), inequality |vj0+1|1/j0 ⩽ ∥v∥G, and the fact that
rj0+1,j0 is the endpoint of γ(j0+1)

j0
.

We are left to prove (4.10). First we notice that, by (3.9), for 2 ⩽ i ⩽ j0

we have γ(i)
j0+1(t) ≡ vi ⩽ ∥v∥deg i

G for all t ∈ Ij0+1. Using again (3.9), for
i = j0 + 1 we have that γ(j0+1)

j0+1 (t) = rj0+1,j0 + t. Then, since |t| ⩽ |vj0+1 −
rj0+1,j0 |, for every t ∈ Ij0+1, arguing similarly to (4.11), one can obtain

|γ(j0+1)
j0+1 (t)| ⩽ 2|rj0+1,j0 | + |vj0+1| ⩽ (2Cj0 + 1)∥v∥j0

G .

Setting Cj0+1,j0+1 = max{2Cj0 + 1, 1}, we get

|γ(i)
j0+1(t)| ⩽ Cj0+1,j0+1∥v∥deg i

G , t ∈ Ij0+1, i = 2, . . . , j0 + 1.
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Let us now proceed by induction on i and assume there exists i0 ∈
{j0 + 1, . . . , n} and a constant Cj0+1,i0 > 0 such that

(4.12) |γ(i)
j0+1(t)| ⩽ Cj0+1,i0∥v∥deg i

G = Cj0+1,i0∥v∥i−1
G ,

t ∈ Ij0+1, i = 2, . . . , i0.

We want to find Cj0+1,i0+1 > 0 only depending on L,Cj0 , Cj0+1,i0 ,W and
L such that

|γ(i0+1)
j0+1 (t)| ⩽ Cj0+1,i0+1∥v∥deg(i0+1)

G = Cj0+1,i0+1∥v∥i0G , ∀ t ∈ Ij0+1.

By using again (3.9), we get that, for every t ∈ Ij0+1, one has

(4.13) |γ(i0+1)
j0+1 (t)|

=
∣∣∣∣ri0+1,j0 +

∫ t

0
P j0+1
i0+1 (φ ◦ γj0+1(s), γ(2)

j0+1(s), . . . , γ(i0)
j0+1(s))ds

∣∣∣∣
⩽ |ri0+1,j0 | +

∫ t

0

∣∣∣P j0+1
i0+1 (φ ◦ γj0+1(s), γ(2)

j0+1(s), . . . , γ(i0)
j0+1(s))

∣∣∣ds,
for a polynomial P j0+1

i0+1 of homogeneous degree deg(i0 + 1) − deg(j0 + 1) =
i0 −j0. From (4.11) and (4.12), we deduce that there exists a constant M >

0 depending only on j0, i0, L,W and L (it indeed depends on the coefficients
of the polynomial, the constant C̃j0+1, and the induction constant Cj0+1,i0)
such that∣∣∣P j0+1

i0+1 (φ ◦ γj0+1(t), γ(2)
j0+1(t), . . . , γ(i0)

j0+1(t))
∣∣∣ ⩽M∥v∥i0−j0

G , ∀ t ∈ Ij0+1,

and thus from (4.13) we get

(4.14) |γ(i0+1)
j0+1 (t)| ⩽ |ri0+1,j0 | +M |t|∥v∥i0−j0

G

⩽ |ri0+1,j0 | +M |vj0+1 − rj0+1,j0 |∥v∥i0−j0
G ,

for every t ∈ Ij0+1. Notice that ri0+1,j0 is the endpoint of γ(i0+1)
j0

, as well
as rj0+1,j0 is the endpoint of γ(j0+1)

j0
. Thus, by (4.8), we get that

|ri0+1,j0 | ⩽ Cj0∥v∥deg(i0+1)
G = Cj0∥v∥i0G ,

and

|vj0+1 − rj0+1,j0 | ⩽ (1 + Cj0)∥v∥deg(j0+1)
G = (1 + Cj0)∥v∥j0

G .

Replacing these last two equalities in (4.14), we get

|γ(i0+1)
j0+1 (t)| ⩽ Cj0+1,i0+1∥v∥i0G , ∀ t ∈ Ij0+1,

for the constant Cj0+1,i0+1 := Cj0 + M(1 + Cj0), which only depends on
j0, i0, L,W, and L. Inequalities (4.9) and (4.10) are completed by choosing
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Cj0+1 := max{maxi=j0+1,...,n Cj0+1,i, C̃j0+1}. To conclude the proof, it is
enough to set C := maxj=2,...,n Cj . □

Remark 4.2 (An improvement of Proposition 4.1). — The careful reader
could have noticed that the scheme of the proof Proposition 4.1 above can
be adapted to prove the very same statement, in the more general case in
which W is normal. We will not use the conclusions of this remark in what
follows, but we nonetheless give a sketch of the proof of this fact.

Indeed, also in the case in which W is normal, taking Remark 3.10 into
account, the vector fields Dφ

j , for k+1 ⩽ j ⩽ n, in exponential coordinates,
have a triangular form analogous to Proposition 3.9. Then, if we adopt the
same notation and setting as the statement of Proposition 4.1 and if we
assume that the curves φ̃ ◦ γ̃j are 1

deg j -Hölder with respect to the norm
∥ · ∥G, the same double-induction argument of the proof of Proposition 4.1
implies that, for any k+ 1 ⩽ j ⩽ n, and any t ∈ Ij , one has ∥φ̃ ◦ γ̃j(t)∥G ⩽
C∥v∥G, and ∥γ̃j(t)∥G ⩽C∥v∥G, instead of (4.1), and (4.2),respectively.

Thus, by evaluating the general form of (4.1) at j = n and time t corre-
sponding to the endpoint of In, we get ∥φ̃(v)∥G ⩽ C∥v∥G, with a constant
C only depending on L, W, L and the basis adapted to the splitting. Then,
if we assume that the bound L on the Hölder constant of φ̃ ◦ γ̃j is uniform
with respect to the choice of the integral curve γj of Dφ

j , with k+1 ⩽ j ⩽ n,
we get, by exploiting the fact that W is locally Dφ-connectible according
to Lemma 3.11, that

(4.15) ∥φ̃(v)∥G ⩽ C∥v∥G,

for every v ∈ Ũ ′ ⋐ Ũ , where the constant C only depends on L, W, L and
the chosen basis adapted to the splitting.

Finally, if we do not necessarily assume φ̃(e) = e as in the statement
of Proposition 4.1, but we still assume that the 1/deg j-Hölder constant
of φ̃ ◦ γ̃j is uniformly bounded with respect to the choice of the integral
curves γ̃j , the same translation argument as in the beginning of the proof
of Proposition 3.17, joined with the conclusion (4.15) and the third point of
Proposition 2.13, implies that φ̃ is intrinsically Lipschitz on Ũ ′ ⋐ Ũ . This
last statement is the local converse of Proposition 3.17.

We finally remark that the improved result we described here is the
implication (3) ⇒ (1) of [31, Theorem 4.2.16].

We now exploit Proposition 4.1 to show a criterion to prove that a func-
tion is uniformly intrinsically differentiable in an arbitrary Carnot group.
To do so we introduce the definition of the vertically broad* hölder property
in a fixed adapted basis.
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Definition 4.3 (Vertically broad* hölder and vertically broad hölder
condition). — Let W and L be two complementary subgroups of a Carnot
group G with L horizontal and k-dimensional, and fix an adapted basis
(X1, . . . , Xn) of the Lie algebra g such that W = exp(span{Xk+1, . . . , Xn})
and L = exp(span{X1, . . . , Xk}). Let us fix Ũ ⊆ W an open subset and
let us denote Dφ

j := Dφ
Xj

as defined in (3.1). We say that a continuous
function φ̃ : Ũ → L is vertically broad* hölder if for every a0 in U there
exist δa0 > 0 and neighborhoods U ′

a0
⋐ Ua0 ⋐ U of a0 such that for every

a ∈ U ′
a0

and every j = m + 1, . . . , n one can find a C1 regular solution
Eφj (a) : [−δa0 , δa0 ] → Ua0 of the Cauchy problem{

γ̇ = Dφ
j ◦ γ

γ(0) = a

such that

(4.16) lim
ϱ→0

(
sup

{
|φ(Eφj (a, t)) − φ(Eφj (a, s))|

|t− s|1/deg j

})
= 0,

where the supremum is over j = m+ 1, . . . , n, a ∈ U ′
a0

and 0 < |t− s| ⩽ ϱ.
We moreover say that φ̃ is vertically broad hölder if for every V ⋐ U one
has

lim
ϱ→0

(
sup

{
|φ(γ(t)) − φ(γ(s))|

|t− s|1/deg j

})
= 0,

where the supremum is over j = m + 1, . . . , n, γ̇ = Dφ
j ◦ γ, γ ⊆ V , and

0 < |t− s| ⩽ ϱ.

Remark 4.4. — Notice that Definition 4.3 is a priori susceptible to the
choice of a basis adapted to the splitting. However, when it is coupled with
the broad* condition in the same basis, see Definition 3.24, it is independent
on this choice. See Remark 3.26 for details.

Proposition 4.5. — Let W and L be complementary subgroups of a
Carnot group G, with L horizontal and k-dimensional, and fix an adapted
basis (X1, . . . , Xn) of g such that W = exp(span{Xk+1, . . . , Xn}) and
L = exp(span{X1, . . . , Xk}). Let Ũ ⊆ W be open, let φ̃ : Ũ → L be a
vertically broad* hölder map and assume ω : U ⊆ Rn−k → Rk×(m−k) is a
continuous function such that Dφφ = ω in the broad* sense on U . Then
φ̃ ∈ UID(Ũ ,W;L). Moreover ∇φφ = ω, where ∇φφ is the intrinsic gradient
defined in Definition 2.20.
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Proof. — Up to bi-Lipschitz equivalence, we can prove the result choos-
ing the anisotropic norm ∥x∥G :=

∑n
ℓ=1 |xℓ|1/ deg ℓ. For the sake of read-

ability, we give the proof in the case k = 1. The proof for a larger k only
requires a typographical effort due to the fact that φ has more than one
component.

Fix a0 ∈ U . According to the definition of vertically broad* hölder,
we find δa0 > 0, neighborhoods U ′

a0
⋐ Ua0 ⋐ U of a0 and C1 maps

Eφj (a) : [−δa0 , δa0 ] → Ua0 satisfying the conditions of Definition 4.3. De-
fine for every ϱ > 0 sufficiently small the quantity

(4.17) f(ϱ) := sup
{

|φ(Eφj (a, t)) − φ(Eφj (a, s))|
|t− s|1/deg j

}
,

where the supremum is taken over j = m + 1, . . . , n, a ∈ U ′
a0

and 0 <

|t − s| ⩽ ϱ. By assumption, f converges to 0 as ϱ → 0. Throughout the
proof, we will often write Eφj instead of Eφj (a), where the dependence on
the starting point has to be understood for a suitable a ∈ U ′

a0
.

We claim that φ is UID at a0 and ∇φφa0(b) = ω(a0) · b1, for every
b ∈ Rn−1, where b1 ∈ Rm−1 denotes the projection of b onto the first
(m − 1) components, and where ω(a0) · b1 :=

∑m
i=2 ωi(a0) · b1

i denotes the
usual scalar product on Rm−1.

By (2.18), we just need to prove that

(4.18) lim
ϱ→0

(
sup

{
|φ(b) − φ(a) − ω(a0) · (b1 − a1)|

∥φ̃(a)−1a−1b φ̃(a)∥

})
= 0,

where the supremum is taken over a ∈ B(a0, ϱ) and ∥a−1b∥ < ϱ.
Since Dφφ = ω in the broad* sense, by Definition 3.24, we can find

neighborhoods U ′′ ⋐ U ′ ⋐ U ′
a0

⋐ U of a0 and δ > 0 such that, for every j =
2, . . . ,m, one has Eφj (U ′′ × [−δ, δ]) ⊆ U ′. We can improve this observation
using the triangular form of Dφ

j , see (3.9), and arguing as in Lemma 3.11.
Indeed, the sets U ′′ and U ′ can be chosen small enough such that, for every
a, b ∈ U ′′, there exists a path connecting a to b, entirely contained in U ′,
made first by a concatenation of the maps Eφ2 , . . . , Eφm (defined accordingly
to Definition 3.24) and then by a concatenation Eφm+1, . . . , E

φ
n of integral

curves of Dφ
m+1, . . . , D

φ
n provided by the vertically broad* hölder condition.

Let use improve this conclusion. We know from Lemma 3.13 that if γ̃
is an integral curve of Dφ

j , then γ̃q := q · γ̃ · (qL)−1 is an integral curve of
D
φq
j , see (3.17). Then, by possibly taking a smaller U ′′, we can suppose

without loss of generality that there exist neighborhoods V ′′ ⋐ V ′ of 0,
such that, for every a ∈ U ′′ and every b′ ∈ V ′′, there exists a path connect-
ing 0 to b′, entirely contained in V ′ made of q-translations of exponential
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maps. Indeed, if a, b ∈ U ′′, it is enough to set q := φ̃(a)−1a−1 and build
the concatenation of q-translated of the maps (Eφ2 )q, . . . , (Eφm)q, that are
integral curves of Dφq

2 , . . . , D
φq
m , respectively, by Lemma 3.13, and then

chain it with the q-translated curves (Eφm+1)q, . . . , (Eφn )q, that are integral
curves of Dφq

m+1, . . . , D
φq
n , respectively. By construction, this concatenation

connects 0 to b′ = φ̃(a)−1a−1bφ̃(a). It suffices then to take a small enough

V ′′ ⊆
⋃

{φ̃(a)−1a−1b φ̃(a) : a, b ∈ U ′′}.

Moreover, by (d) of Proposition 2.10, we get φq(0) = 0 and by (c) of
Proposition 2.10, one also has φq(b′) = φq(b′) − φq(0) = φ(b) − φ(a).
Notice also that

(
φ̃(a)−1a−1b φ̃(a)

)1 = b1 − a1, so that we have

(4.19) |φ(b) −φ(a) −ω(a0) · (b1 − a1)|
∥φ̃(a)−1a−1b φ̃(a)∥ = |φq(b′) −φq(0) −ω(a0) · (b′)1|

∥b′∥
,

for any a, b ∈ U ′′.
For any a, b ∈ U ′′, we hence consider the concatenation (Eφ2 )q, . . . , (Eφn )q

of integral curves ofDφq
2 , . . . , D

φq
n entirely lying in V ′, constructed as above,

that connects 0 to b′. Similarly to (4.3), we denote the concatenation by
the following chain

(4.20) b′
1 := (0, 0, . . . , 0)

→ (Eφ2 )qb
′
2 := (0, b′

2, r3,2, . . . , rn,2) → (Eφ3 )q . . .

. . . → (Eφ
j

)qb
′
j := (0, b′

2, . . . , b
′
j , rj+1,j , . . . , rn,j) → (Eφ

j+1)q . . .

. . . → (Eφn )qb
′
n := b′ = (0, b′

2, . . . , b
′
n),

where each (Eφj )q is defined on Ij ⊆ [−|b′
j − rj,j−1|, |b′

j − rj,j−1|], with the
convention r2,1 := 0. Since Dφφ = ω in the broad* sense, by Lemma 3.13
and in particular (3.22) and (3.23), we get that

(4.21) (φq ◦ (Eφj (a))q)′(t) = (ωj)q((Eφj (a))q(t)) = ωj(Eφj ((a, t))),

for all j = 2, . . . ,m, all t ∈ Ij and all a ∈ U ′′; where the first equality
follows from (3.23) and the second one by the definition of (ωj)q, see (3.21)
and (3.18). For every a, b ∈ U ′′, we can now perform the following estimates,
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which we subsequently explain:

(4.22) |φq(b′) − φq(0) − ω(a0) · (b′)1|

=

∣∣∣∣∣∣
m∑
j=2

(
φq(b′

j) − φq(b′
j−1) − ωj(a0)b′

j

)
+

n∑
j=m+1

(
φq(b′

j) − φq(b′
j−1)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
j=2

(
ωj(b∗

j ) − ωj(a0)
)
b′
j +

n∑
j=m+1

(
φq(b′

j) − φq(b′
j−1)

)∣∣∣∣∣∣
⩽ sup
j=2,...,m

|ωj(b∗
j ) − ωj(a0)|∥b′∥

+ f

(
sup

j=m+1,...,n
|b′
j − rj,j−1|

) n∑
j=m+1

|b′
j − rj,j−1|1/ deg j .

In the second equality we used (4.21) and, for every j = 2, . . . ,m, the point
b∗
j is on Eφj (Ij) and satisfies the conditions of Lagrange’s Theorem. In the

third inequality we estimated the first term with the supremum norm and
the second term by exploiting the definition of f in (4.17), but replacing
in (4.17) φ ◦Eφj with φq ◦ (Eφj )q. Indeed, by (3.21), the map φq ◦ (Eφj )q is
a Euclidean translation (in the horizontal coordinates) of φ ◦ Eφj .

Notice that, by continuity and with simple estimates coming from Propo-
sition 2.4, by definition of b′ and b∗

j one has

lim
ϱ→0

(
sup{∥b′∥ : a, b ∈ U ′′, ∥a−1b∥ ⩽ ϱ}

)
= 0, and

lim
ϱ→0

(
sup{∥a−1

0 b∗
j∥ : a, b ∈ U ′′, ∥a−1b∥ ⩽ ϱ}

)
= 0, ∀ j = 2, . . . , n,

where we implicitly mean that b∗
j is also a function of the concatenation

and the limit is uniform also with respect to that choice. Moreover, the con-
catenation in (4.20) uniformly collapses to 0 as ϱ → 0, since by continuity
one has

lim
ϱ→0

(
sup{|b′

j − rj,j−1| : a, b ∈ U ′′, ∥a−1b∥ ⩽ ϱ}
)

= 0, ∀ j = 2, . . . , n,

where again, the uniformity has to be understood also in the choice of
the concatenation. We can then find two continuous functions α1, α2 :
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(0,+∞) → (0,+∞) such that limϱ→0 α1(ϱ) = limϱ→0 α2(ϱ) = 0 and, com-
bining (4.22) and (4.19), one has

(4.23) |φ(b) − φ(a) − ω(a0) · (b1 − a1)|
∥φ̃(a)−1a−1b φ̃(a)∥

⩽ sup
j=2,...,m

∥ωj − ωj(a0)∥L∞(B(a0,α1(ϱ)))

+ f(α2(ϱ))
n∑

j=m+1

|b′
j − rj,j−1|1/ deg j

∥b′∥
,

for every sufficiently small ϱ > 0 and every a ∈ B(a0, ϱ) and b ∈ U ′′ such
that ∥a−1b∥ < ϱ. We claim that we are in a position to apply Proposition 4.1
to the function φq and to the curves Eφqj that connect 0 to b′. Indeed, for
j = 2, . . . ,m, the uniform bound on the Lipschitz constant of the map
φq ◦ (Eφj )q follows from (4.21) and the fact that ω is continuous, while
for j ⩾ m + 1 we use the fact that, since f(ϱ) → 0 as ϱ → 0, the maps
φq ◦(Eφj )q are in h1/ deg j(Ij) with a uniform bound on the Hölder constant.
In particular, by (4.2), we get that for every ϱ sufficiently small, there exists
C ′ > 0 depending on the uniform bound of ω on U ′ such that for every
j = 2, . . . , n

|rj,j−1|1/ deg j ⩽ C ′∥b′∥,
and thus from (4.23) we get

|φ(b) − φ(a) − ω(a0) · (b1 − a1)|
∥φ̃(a)−1a−1b φ̃(a)∥ ⩽ sup

j=2,...,m
∥ωj − ωj(a0)∥L∞(B(a0,α1(ϱ)))

+ f(α2(ϱ))(n−m)(1 + C ′).

By the continuity of each ωj , the proof follows by letting ϱ → 0. □

For the forthcoming corollaries we recall for the reader’s benefit that we
are going to use the notation in Definition 2.3.

Corollary 4.6. — Let W and L be two complementary subgroups of a
Carnot group G, with L horizontal and k-dimensional and let (X1, . . . , Xn)
be an adapted basis of g such that W = exp(span{Xk+1, . . . , Xn}) and
L = exp(span{X1, . . . , Xk}). Let Ũ ⊆ W be open and let φ̃ : Ũ → L and
ω : U ⊆ Rn−k → Rk×(m−k) be two continuous functions. Assume that φ̃ is
vertically broad* hölder and assume Dφφ = ω holds in the broad* sense
on U . Then the graph of φ̃ is a co-horizontal C1

H-surface with tangents
complemented by L.

Proof. — It is enough to combine Propositions 4.5 and 2.28. □
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Corollary 4.7. — Let W and L be two complementary subgroups of a
Carnot group G, with L horizontal and k-dimensional and let (X1, . . . , Xn)
be an adapted basis of g such that W = exp(span{Xk+1, . . . , Xn}) and
L = exp(span{X1, . . . , Xk}). Let Ũ ⊆ W be open and let φ̃ ∈ ID(Ũ ,W;L)
be a vertically broad* hölder map and assume dφφ is continuous on Ũ .
Then φ̃ ∈ UID(Ũ ,W;L).

Proof. — It is enough to combine Propositions 3.27 and 4.5. □

Remark 4.8. — We do not know whether, in arbitrary Carnot groups,
one can drop the condition of vertically broad* hölder regularity in Corol-
lary 4.7. This is the case for step-2 Carnot groups, with L horizontal and
one-dimensional, see Corollary 6.13.

Corollary 4.9. — Let W and L be two complementary subgroups of a
Carnot group G, with L horizontal and k-dimensional and let (X1, . . . , Xn)
be an adapted basis of g such that W = exp(span{Xk+1, . . . , Xn}) and
L = exp(span{X1, . . . , Xk}). Let Ũ ⊆ W be open and let φ̃ : Ũ → L and
ω : U ⊆ Rn−k → Rk×(m−k) be two continuous functions. Assume φ̃ is
vertically broad* hölder and assume Dφφ = ω holds in the broad* sense
on U . Then φ̃ is vertically broad hölder and Dφφ = ω holds in the broad
sense on U .

Proof. — It is enough to combine Propositions 4.5, 3.22 and 3.27. □

4.2. Area formula for codimension-one graph in terms of
intrinsic derivatives

We prove here that, if L is horizontal and one-dimensional, and φ̃ ∈
UID(Ũ ,W;L), with Ũ open, then Dφφ = ∇φφ holds in the sense of dis-
tributions. For a precise definition of the distribution Dφφ the interested
reader may soon read the first lines of the proof of Proposition 4.10. We
also provide an area formula for graph(φ̃) in this case. For the case G = Hn,
this formula was already obtained in [3, Proposition 2.22 and Remark 2.23].
Recall that we are going to use the notation given in Definition 2.3.

Proposition 4.10. — Let W and L be two complementary subgroups
of a Carnot group G with L horizontal and one-dimensional, and choose
an adapted basis (X1, . . . , Xn) of g such that L = exp(span{X1}) and
W = exp(span{X2, . . . , Xn}). Let Ũ ⊆ W be open and consider φ̃ ∈
UID(Ũ ,W;L). Then the following facts hold.
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(a) For every j = 2, . . . ,m, the distribution Dφ
j φ := Dφ

Xj
φ is well-

defined on U .
(b) For every a ∈ U , there exist δ > 0 and a family of functions {φε ∈

C1(B(a, δ)) : ε ∈ (0, 1)} such that

lim
ε→0

φε = φ and lim
ε→0

Dφε
j φε = ∇φφ(Xj) in L∞(B(a, δ)),

for every j = 2, . . . ,m.
(c) The equation

(4.24) Dφ
j φ = ∇φφ(Xj) =: ∇φ

j φ,

holds in the distributional sense on U , for every j = 2, . . . ,m. Here
∇φφ is the intrinsic gradient of φ, see Definition 2.20.

(d) The subgraph of φ defined by Eφ := {w · exp(tX1) : w ∈ U, t <

φ(w)} has locally finite G-perimeter(2) in U · exp(RX1) and its G-
perimeter measure |∂Eφ|G is given by

(4.25) |∂Eφ|G(V ) =
∫

Φ−1(V )

√
1 + |∇φφ|2m−1 dL n−1,

for every Borel set V ⊆ U · exp (RX1), where Φ: U → Rn is the
graph function of φ̃ composed with the exponential coordinates, and
with a little abuse of notation we wrote U · exp(RX1) meaning the
set Ũ · exp(RX1) embedded in Rn through exponential coordinates.

Moreover, the set graph(φ̃) has a unit normal given, up to a sign,
by

(4.26)

νEφ =

− 1√
1+ |∇φφ|2m−1

,
∇φ

2φ√
1+ |∇φφ|2m−1

, . . . ,
∇φ
mφ√

1+ |∇φφ|2m−1

∈ Rm.

Proof. — Notice that the fact that Dφ
j φ is a well-defined distribution on

U is a consequence of Proposition 3.9 and the fact that L is one-dimensional.
Indeed, in coordinates, we get that the vector field Dφ

j is the sum of terms
g(x)φh∂xi , for some polynomial function g of the coordinates of W, some
integer h ⩾ 0, and some i = 2, . . . , n. Thus in order to define the distri-
bution Dφ

j φ, we only need to define g(x)φh∂xiφ := g(x) 1
h+1∂xiφ

h+1. Since
g(x) 1

h+1∂xiφ
h+1 is well-defined in the sense of distributions, because φ is

continuous, (a) is proved.

(2) Here we take the usual definition of the horizontal perimeter with respect to the
orthonormal basis (X1, . . . , Xm), see [24, Definition 2.18].
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We now show that equality (4.24) holds pointwise if φ̃ : Ũ ⊆ W → L is
of class C1 in Ũ . In case φ̃ ∈ C1(Ũ), then, by [18, Theorem 4.9], one has
φ̃ ∈ UID(Ũ ,W;L).

We can assume without loss of generality that e ∈ Ũ and φ̃(e) = e. In-
deed, if we want to prove identity (4.24) in a ∈ U , we may consider φ̃p with
p := φ̃(a)−1 · a−1, and use the invariance properties given by Lemma 3.12
and Remark 2.24, and then notice that φ̃p(e) = e. By Proposition 2.28,
since φ̃ is UID, the set graph(φ̃) is a C1

H-hypersurface and therefore there
exist a neighborhood Ṽ of e in G and a function f ∈ C1

H(Ṽ ) such that

(4.27) graph(φ̃) ∩ Ṽ = {p ∈ G : f(p) = 0} ∩ Ṽ and ∇Gf ̸= 0 on Ṽ .

Then, for every sufficiently small ε > 0 and for every j = 2, . . . , n, one has

f
(

exp(εXj)φ̃(exp(εXj))
)

= 0.

Therefore, with a little abuse of notation, one can differentiate with respect
to ε to get

0 = d
dε |ε=0

f
(

exp(εXj)φ̃(exp(εXj))
)

= d
dε |ε=0

f
(
φ̃(exp(εXj))

)
+ d

dε |ε=0
f
(

exp(εXj)
)

= X1f|e

(
d
dε |ε=0

φ(εXj)
)

+Xjf|e

= X1f|e

(
d
dε |ε=0

(φ ◦ πW)(εXj)
)

+Xjf |e

= (X1f)|eD
φ
j φ|e + (Xjf)|e ,

(4.28)

where we used the fact that G = W · L and exploited the fact that φ̃
takes values in L = exp(span{X1}). The last equality follows by using the
definition of Dφ

j acting on φ, see (3.1). The claim is then obtained by (4.28)
and (2.21).

To prove (b), we use some ideas of [25, Theorem 2.1] to show that, for any
a ∈ U , there exist δ > 0 and a family of functions {φε ∈ C1(U) : 0 < ε < 1},
such that

φε → φ, and Dφε
j φε → ∇φφ(Xj), ∀ j = 2, . . . ,m,

uniformly in the Euclidean ball Be(a, δ) ⋐ U , as ε → 0.
By Proposition 2.28, we can find a neighborhood Ṽ of a · φ̃(a) and f ∈

C1
H(Ṽ ) satisfying (4.27). Let δ > 0 be such that, setting B := Be(a, δ),

one has B̃ · φ̃(B̃) ⊆ Ṽ . Then, up to reducing δ and Ṽ and a regularization

TOME 74 (2024), FASCICULE 6



2586 Antonelli, Di Donato, Don & Le Donne

argument analogous to [25, Step 1 of Theorem 2.1], we can construct a
family {fε ∈ C1(Ṽ ) : 0 < ε < 1} such that

(4.29) lim
ε→0

(
sup
Ṽ

|Xjfε −Xjf |

)
= 0, ∀ j = 1, . . . ,m.

Since φ̃ takes values in exp(span{X1}), by Proposition 2.28, we can assume
without loss of generality that X1f > 0 on Ṽ , since X1f ̸= 0 and we are
free to possibly exchange f with −f . By (4.29), we can find ε0 > 0 such
that X1fε > 0 on Ṽ , for every ε ∈ (0, ε0). For any such ε > 0, by the
Euclidean implicit function theorem, we can find φ̃ε, defined on B̃, such
that

graph(φ̃ε) ∩ B̃ · φ̃ε(B̃) = {p ∈ G : fε(p) = 0} ∩ B̃ · φ̃ε(B̃).

Moreover, since fε is smooth, then also φ̃ε is smooth. In particular, for
every b ∈ B̃, one has

fε(b · φ̃ε(b)) = 0, ∀ ε ∈ (0, ε0).

From [25, Step 3 of Theorem 1.2] we deduce that

(4.30) lim
ε→0

(
sup
B

|φε − φ|
)

= 0.

Denote by Φε : B → Rn the graph function of φ̃ε composed with the expo-
nential coordinates. Since φ̃ε is of class C1, by using the pointwise version
of (4.24) for C1 functions and (2.21), we deduce that

(4.31) Dφε
j φε(x) = −Xjfε

X1fε
◦ Φε(x), ∀ j = 2, . . . ,m, ∀ x ∈ B.

Then, by (4.31), (4.29), (2.21) and (4.30), we conclude that, for any j =
2, . . . ,m, the family Dφε

j φε converges uniformly on B to −Xjf
X1f

◦ Φ =
∇φφ(Xj), as ε → 0.

The proof of (c) follows directly from (b) and the particular form of the
distribution Dφ

j φ we discussed at the beginning of this proof. In fact from
the convergence proved in (b), we know that, for any a ∈ U , there exists
δ > 0 such thatDφ

j φ = ∇φφ(Xj) onB(a, δ) in the sense of distributions, for
every j = 2, . . . ,m. It is then enough to consider a locally finite countable
open sub-covering {B(ah, δh) : h ∈ N} of U and build a partition of unity
subordinate to it. The fact that Dφ

j φ = ∇φφ(Xj) holds in the sense of
distributions on U is a consequence of the local identity, the linearity of
distributions, and a standard argument using the partition of unity.
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To prove (d), we first notice that, by [25, Theorem 2.1] and Proposi-
tion 2.28, we know that, for every p ∈ graph(φ̃) there exists a neighbor-
hood Ṽ ′ of p and a function f ∈ C1

H(Ṽ ′), with X1f > 0 on Ṽ ′, representing
graph(φ̃) as non critical level set and such that

|∂Eφ|G(V ) =
∫

Φ−1(V )

|∇Gf |
X1f

◦ Φ dL n−1

holds for every Borel set V ⊆ V ′. Now by (2.21), we can write

(4.32) |∂E|G(V ) =
∫

Φ−1(V )

√
1 + |∇φφ|2m−1dL n−1,

for every Borel set V ⊆ V ′. Since the right hand side of (4.32) does not
depend on the choice of f , by a covering argument we can extend it to
every Borel subset V of U · exp(RX1).

The explicit expression of the unit normal in (4.26) comes from the fact
that the graph of φ̃ is locally the zero-level set of f . Thus, the unit normal
of graph(φ̃) is in the direction of ∇Hf , and taking (2.21) into account, one
has ∇φ

j φ = −Xjf
X1f

◦ Φ for every j = 2, . . . ,m, and then we conclude by
normalization. □

Remark 4.11. — For what concerns the area formula in arbitrary Carnot
groups, in [37, Theorem 1.2], the author proves that

(4.33) PG(E) = β(d, νE)S Q−1 FE,

for any set E of finite perimeter with C1
H-rectifiable reduced boundary FE.

The density β is explicitly computed in [37, Theorem 3.2] and depends on
the metric d and on the normal νE of E that is defined in the sense of
Geometric Measure Theory. Moreover, in case the distance d is vertically
symmetric, β is a constant that only depends on the group G and on the
metric d, see [37, Theorem 6.3]. We finally notice that every Carnot group
admits a metric d that is vertically symmetric, see [24, Theorem 5.1]. For
a survey on the area formula in Carnot groups, we refer the reader to [41,
Section 4].

Notice that if φ̃ is in UID(Ũ ,W;L), the set graph(φ̃) is a C1
H-hypersurface

by Proposition 2.28. Then, by definition of C1
H-rectifiability and by [25,

Theorem 2.1], the subgraph Eφ of φ̃ has a C1
H-rectifiable reduced boundary

FEφ = graph(φ̃). Thus we are in a position to apply Proposition 4.10
and [37, Theorem 1.2], and in particular to compare (4.25) with (4.33) in
order to obtain the explicit representation

(4.34)
∫
Ṽ ∩graph(φ̃)

β(d, νEφ)dS Q−1 =
∫

Φ−1(V )

√
1 + |∇φφ|2m−1dL n−1,
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for every Borel set Ṽ ⊆ Ũ · exp(RX1).
A general area formula for a C1

H-surface Σ, valid in an arbitrary Carnot
groups, has been very recently obtained in [30, Theorem 1.1]. If we call α
the Hausdorff dimension of Σ, and we suppose Σ = graph(φ̃), this formula
allows for a representation of S α Σ as an integral on Ũ of a properly
defined area element with respect to S α W, see [30, Lemma 3.2]. Ac-
cording to the previous equation (4.34), we thus get that for an arbitrary
Carnot group G, and in case L is one-dimensional, the area element of [30,
Theorem 1.1] is, up to the function β, explicitly written in terms of the
intrinsic gradient of φ̃.

Eventually, by the recent work [16], in particular [16, Eq. (43) after Theo-
rem 4.2], we get that on Hn equipped with a vertically symmetric distance,
in case L is horizontal and k-dimensional, one can explicitly write the area
element of [30, Theorem 1.1] in terms of the intrinsic gradient ∇φφ.

Corollary 4.12. — Let W and L be two complementary subgroups
of a Carnot group G, with L horizontal and one-dimensional, and let
(X1, . . . , Xn) be an adapted basis of the Lie algebra g such that W =
exp(span{X2, . . . , Xn}) and L = exp(span{X1}). Let Ũ ⊆ W be open, and
let φ̃ : Ũ → L and ω : U ⊆ Rn−1 → Rm−1 be two continuous functions. As-
sume φ̃ is vertically broad* hölder and assume that Dφφ = ω in the broad*
sense on U . Then Dφφ = ω in the sense of distributions and ω = ∇φφ.

Proof. — It is enough to combine Proposition 4.5 and item (c) of Propo-
sition 4.10. □

4.3. Relations between intrinsic differentiability and local
approximability

Remark 4.13. — The statement (i) ⇒ (ii) of [3, Theorem 5.1] claims that,
in the Heisenberg groups Hn, if L is one-dimensional and φ ∈ UID(U,W;L),
then, there exists ω ∈ C(U ;R2n−1) such that ∇φφ = ω in the sense of
distributions and a family {φε ∈ C1(U) : ε ∈ (0, 1)} such that φε → φ and
∇φεφε → ω uniformly on any compact subset K ⊆ U .

However, the implication (5.17) ⇒ (5.19) in its proof is imprecise. In sight
of this, one could replace point (ii) with a local version of it in which the
approximating functions {φε} depend on the point a and the convergence
is uniform in a neighborhood B(a, δ), see [3, Proposition 4.6]. This does not
affect the validity of the proofs, that only refer to [3, Lemma 5.6], which
holds true with the weakened approximation assumptions, since it has a
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local statement. In the same way, the proof of (ii) ⇒ (i) of [3, Theorem 5.1]
just needs the local approximation. To the best of our knowledge, all the
references to [3, Theorem 5.1] just require the local approximation: see point
(3) [18, Theorem 5.8], point (3) of [17, Theorem 8.2], [15, Theorem 1.3],
[15, Proposition 4.4], [10, Theorem 2.7], [9, Theorem 1.1 and Corollary 1.4],
[6, Theorem 2.7].

The original formulation of (i) ⇒ (ii) of [3, Theorem 5.1] can be fixed with
the approximation argument exploited in the proof of [38, Theorem 1.2] and
we expect the statement to hold true in all Carnot groups of step 2. We
warmly thank Francesco Serra Cassano and Davide Vittone for precious
suggestions.

Proposition 4.14. — Let W and L be two complementary subgroups
in a Carnot group G, with L k-dimensional and horizontal. Let (X1, . . . , Xn)
be an adapted basis of g such that L = exp(span{X1, . . . , Xk}) and W =
exp(span{Xk+1, . . . , Xn}). Let Ũ ⊆ W be an open set and let φ̃ : Ũ → L
be a continuous function.

Assume there exists ω ∈ C(U ;Rk×(m−k)) such that, for every a ∈ U ,
there exist r > 0, and a family of functions {φε ∈ C1(B(a, r);Rk) : 0 <

ε < 1} satisfying
lim
ε→0

φε = φ in L∞(B(a, r)) and

lim
ε→0

Dφεφε = ω in L∞(B(a, r);Rk×(m−k)).

Then φ is a broad* solution in U of the system Dφφ = ω.

Proof. — The proof closely follows the argument used in [3, Lemma 5.6].
For simplicity, we consider the case k = 1. The case k ⩾ 2 can be reached
with the same proof and some typographical effort.

Let a ∈ U and fix j ∈ {2, . . . ,m} and ε > 0. Since φε ∈ C1(B(a, r)), we
can find 0 < δ2(ε) < δ1 < r and a map Eφεj : B(a, δ2(ε))× [−δ2(ε), δ2(ε)] →
B(a, δ1) such that Eφεj (b, ·) is the unique solution of the Cauchy problem{

γ′ = Dφε
j ◦ γ,

γ(0) = b,

in the interval [−δ2(ε), δ2(ε)], for every b ∈ B(a, δ2(ε)). By Peano’s estimate
on the existence time for solutions of ordinary differential equations (see
e.g. [39, Theorem 1]) we can choose δ2(ε) = C/∥Pj(x, φε)∥L∞(B(a,δ1)), with
C only depending on δ1 and with Pj a polynomial function of the coordi-
nates x of W and the components of φε. This polynomial function depends
only on the structure of Dφ

j , see (3.9). In particular, since φε is converging
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uniformly on B(a, δ1), then δ2(ε) has a positive lower bound M indepen-
dent on ε and we are going to verify the conditions of Definition 3.24 with
δ2 ⩽M .

Since φε are bounded on B(a, δ1) uniformly in ε > 0 and Dφε
j are vec-

tor fields with polynomial coefficients in φε and, possibly, in some of the
coordinates, the functions Eφεj are equi-Lipschitz with respect to ε on the
compact set B(a, δ2) × [−δ2, δ2]. By Arzelá–Ascoli Theorem, we can there-
fore find an infinitesimal sequence (εh) in (0, 1) such that Eφεhj converges
to some continuous function Eφj uniformly on B(a, δ2) × [−δ2, δ2]. By defi-
nition of Eφεhj , one has

E
φεh
j (b, t) = b+

∫ t

0
D
φεh
j

(
E
φεh
j (b, s)

)
ds and

φεh

(
E
φεh
j (b, t)

)
− φεh

(
E
φεh
j (b, 0)

)
=
∫ t

0
D
φεh
j φεh

(
E
φεh
j (b, s)

)
ds,

for every b ∈ B(a, δ2) and every t ∈ [−δ2, δ2].
By letting h → ∞ and using that all the involved convergences are

uniform, we get

Eφj (b, t) = b+
∫ t

0
Dφ
j

(
Eφj (b, s)

)
ds, and

φ(Eφj (b, t)) − φ(Eφj (b, 0)) =
∫ t

0
ωj(Eφj (b, s))ds,

for every b ∈ B(a, δ2) and every t ∈ [−δ2, δ2], which are the conditions we
were looking for to make Dφφ = ω hold in the broad* sense. □

Corollary 4.15. — Let W and L be two complementary subgroups in
a Carnot group G, with L horizontal and k-dimensional. Let (X1, . . . , Xn)
be an adapted basis of the Lie algebra such that L= exp(span{X1, . . . , Xk})
and W = exp(span{Xk+1, . . . , Xn}). Let Ũ ⊆ W be open and let φ̃ ∈
UID(Ũ ,W;L). Then, there exists ω ∈ C(U ;Rk×(m−k)) such that φ is a
broad* solution in U of the system Dφφ = ω. Moreover, ω = ∇φφ.

Proof. — It is enough to choose ω = ∇φφ, which is continuous taking
Proposition 2.25 into account, since φ̃ ∈ UID(Ũ ,W;L). The proof follows
by combining item (b) of Proposition 4.10, which also holds in case L is
k-dimensional, see the beginning of the proof of Theorem 4.16, together
with Proposition 4.14. □
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4.4. Main theorem

Now we are in a position to give the following theorem, which is a gen-
eralization of [18, Theorem 5.8] to all Carnot groups.

Theorem 4.16. — Let W and L be two complementary subgroups in
a Carnot group G, with L horizontal and k-dimensional. Let Ũ ⊆ W be
open and let φ̃ : Ũ ⊆ W → L be a continuous function. Fix a graded basis
(X1, . . . , Xn) of the Lie algebra g such that L = exp(span{X1, . . . , Xk}) and
W = exp(span{Xk+1, . . . , Xn}). Then, the following facts are equivalent.

(a) φ̃ ∈ UID(Ũ ,W;L);
(b) φ is vertically broad* hölder and there exists ω ∈ C(U ;Rk×(m−k))

such that, for every a ∈ U , there exist δ > 0 and a family of
functions {φε ∈ C1(B(a, δ);Rk) : ε ∈ (0, 1)} such that

lim
ε→0

φε = φ and lim
ε→0

Dφε
j φε = ωj in L∞(B(a, δ);Rk),

for every j = k + 1, . . . ,m;
(c) φ is vertically broad hölder and there exists ω ∈ C(U ;Rk×(m−k))

such that Dφφ = ω in the broad sense.
(d) φ is vertically broad* hölder and there exists ω ∈ C(U ;Rk×(m−k))

such that Dφφ = ω in the broad* sense.
Moreover, if any of the previous holds, then ω = ∇φφ.

Proof. — Before giving the detailed proof of the theorem, let us show
that point (b) of Proposition 4.10 can be generalized to the case L is hori-
zontal and k-dimensional. The computations for the k-dimensional case is
similar to the ones in Proposition 4.10, but one should pay attention to the
fact that if f =: (f (1), . . . , f (k)) ∈ C1

H(Ṽ ;Rk) is a vector valued map, its
horizontal gradient is a (k × m)-dimensional matrix (see Definition 2.26).
Using componentwise the regularization argument of [25, Step 1 of Theo-
rem 2.1], as done in the proof of Proposition 4.10 in the case k = 1, we
find a family of functions {fε ∈ C1(Ṽ ;Rk) : 0 < ε < 1}, such that each
component Xjf

(i)
ε converges uniformly to Xjf

(i) for every i = 1, . . . , k and
j = 1, . . . ,m as ε → 0, and such that, for every ε ∈ (0, 1), the associated
matrix ∇Lfε defined in Definition 2.26 has det∇Lfε ̸= 0 on Ṽ .

Then in order to prove point (b) of Proposition 4.10 in this general case,
we exploit the obvious multidimensional version of (4.28) and the Implicit
Function Theorem in Proposition 2.28, to obtain that there exist {φε ∈
C1(B(a, δ);Rk) : 0 < ε < 1} such that the following multidimensional
version of (4.31) holds

(4.35) Dφεφε(x) = − (∇Lfε(Φε(a)))−1 ∇Wfε(Φε(a)), ∀ x ∈ B(a, δ),
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where Φε is the graph map of φε. Then taking into account the uniform
convergence of Xjf

(i)
ε to Xjf

(i), (2.20), and taking ε → 0 in (4.35), we
obtain the uniform convergence of Dφεφε to ∇φφ on B(a, δ) as ε → 0, and
thus the proof of point (b) of Proposition 4.10 is concluded in the case in
which L is horizontal and k-dimensional.

Let us move to the proof of the Theorem. The implication (a) ⇒ (b)
follows by combining Proposition 3.22, and item (b) of Proposition 4.10 in
the k-dimensional case as adapted above. Notice that ω = ∇φφ, which is
continuous since φ is UID, see Proposition 2.25. The implication (b) ⇒ (d)
follows from Proposition 4.14. The implication (d) ⇒ (a) follows from
Proposition 4.5. The implication (a) ⇒ (c) follows from Proposition 3.22,
Proposition 3.27 and the continuity of ω follows from Proposition 2.25. The
implication (c) ⇒ (d) is trivial. □

Remark 4.17. — Notice that in [31, Example 4.5.1], in the setting of
Example 3.8, the author constructs a function φ̃ : Ũ ⊆ W → L such that
Dφφ = −1 in the broad* sense but φ̃ is not vertically broad* hölder, see
Definition 4.3. Taking Theorem 4.16 into account, this means that φ̃ cannot
be UID. This also means that, in general, in Theorem 4.16, one cannot
drop the assumption on the vertically broad* hölder regularity in arbitrary
Carnot groups. We will show that this is possible for step 2 Carnot groups,
in Section 6. For more examples related to this topic, we refer the reader
to [31, Section 4.5].

5. Some applications

Let us begin with an observation that will motivate the first part of
this section. Consider the first Heisenberg group H1 with Lie algebra g :=
span{X,Y } ⊕ span{Z}, and the only nontrivial relation [X,Y ] = Z. By
a direct application of the Baker–Campbell–Hausdorff formula one gets
expX expY exp(−X) exp(−Y ) = expZ. By exploiting this formula, in
Proposition 5.1 below, we give an alternative proof, in the case of Hn with
n ⩾ 2, of [10, Theorem 3.2]. The argument we use is different because
we prove that being a broad* solution with a continuous datum implies
being 1/2-little Hölder continuous along vertical coordinates (see also Re-
mark 3.23) that is actually simpler than proving 1/2-little Hölder continuity
in all the coordinates as in [10, Theorem 3.2]. Nevertheless, this is sufficient
for applying Proposition 4.5. Similarly, in Proposition 5.2, we obtain the
same result of [10, Theorem 1.2], by making use of Proposition 5.1 and 4.5.
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We remark that our argument is different by the one used in [10] but, on
the contrary, it does not work for n = 1.

Recently, in [15, Proposition 4.10], the author has proved a generalization
of [10, Theorem 3.2] that holds for arbitrary complemented subgroups in
Hn, and this statement is one of the key step in order to get the main
theorem [15, Theorem 1.4]. By using our reasoning, we are also able to
recover [15, Proposition 4.10], and thus [15, Theorem 1.4], in the case Hn =
W · L with L horizontal and k-dimensional, with k < n. However, our
argument does not apply to the remaining case k = n, while the argument
in the reference does.

Even if these results already appeared in the literature, we think it is
worth writing them down with these different proofs. Indeed, the proof of
Proposition 5.1 provides a useful “toolkit” for the forthcoming theorems:
in fact, a similar idea to the one exploited in Proposition 5.1 will be used in
Theorem 6.6 to prove the analogous version of Proposition 5.1 in the setting
of free Carnot groups of step 2, when L is one-dimensional. This will be
the key step to obtain the analogous Proposition 5.2 for Carnot groups of
step 2 with L one-dimensional. We refer the reader to the introduction of
Section 6.

In Example 5.3 below we give a class of nontrivial examples of UID func-
tions in the Engel group. We build them by making use of Theorem 4.16.
This class of examples is inspired by [11, Eq. (3.1)]. Moreover, a slight mod-
ification of [11, Eq. (3.1)], gives rise to functions whose intrinsic graphs are
both of class C1

H and of class C1, but they possess a characteristic point,
see Remark 5.4. We thank R. Serapioni for having discussed this example
with us.

5.1. A different proof of the propagation of broad* regularity in
Hn, with n ⩾ 2

Proposition 5.1. — Let W and L be two complementary subgroups
of Hn, with n ⩾ 2 (see Example 3.4) such that L is horizontal and k-
dimensional with k < n, and let φ̃ : Ũ ⊆ W → L be a continuous function,
with Ũ open.

Then there exists (X1, . . . , X2n+1) an adapted basis of the Lie algebra
such that L = exp(span{X1, . . . , Xk}), W = exp(span{Xk+1, . . . , X2n+1}),
and such that the only nonvanishing bracket relations are [Xi, Xn+i] =
X2n+1 for every 1 ⩽ i ⩽ n.
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Moreover, if there exists a continuous function ω : U ⊆ R2n+1−k →
Rk×(2n−k) such that Dφφ = ω in the broad* sense, then φ̃ is vertically
broad* holder. Namely, since we are in Hn (see Remark 3.23), for every
a0 ∈ U there exists a neighborhood Ua0 ⋐ U of a0 such that

(5.1) lim
ϱ→0

(
sup

{
|φ(ξ, z1) − φ(ξ, z2)|

|z1 − z2|1/2

})
= 0,

where the supremum is taken over (ξ, z1) ∈ Ua0 , (ξ, z2) ∈ Ua0 and 0 <

|z1 − z2| < ϱ and we mean that ξ ∈ Ua0 ∩ {z = 0} ⊆ R2n−k and z1, z2 ∈ R
are the (2n+ 1)th coordinates of (ξ, z1) and (ξ, z2) when seen as elements
of Hn.

Proof. — The existence of the basis as in the first part of the state-
ment comes from [27, Lemma 3.26]. Fix a0 ∈ U and find δ > 0 and suf-
ficiently small neighborhoods V ′

a0
⋐ Va0 ⋐ U of a0 such that, for every

a ∈ V ′
a0

, and every j = k + 1, . . . , 2n, we have the existence of integral
curves Eφj (a) : [−δ, δ] → Va0 satisfying the conditions of Definition 3.24.
Denote by β : [0,+∞) → [0,+∞) a modulus of uniform continuity for ω
on Va0 .

We fix a neighborhood Ua0 ⋐ V ′
a0

of a0, ϱ > 0 and points (ξ, z1), (ξ, z2) ∈
Ua0 such that |z1 − z2| < ϱ. The set Ua0 has to be chosen small enough:
this will be clear during the proof. We are going to prove that, for every
sufficiently small ϱ, we have

(5.2) |φ(ξ, z1) − φ(ξ, z2)|
|z1 − z2|1/2 ⩽ 2kβ(α(ϱ)),

for a continuous function α with α(0) = 0 that only depends on the norms
of φ and ω on Va0 . From this fact (5.1) would follow, concluding the proof.

Recall that, by (3.4) and since k < n, one has Dφ
k+1 = Xk+1 and

Dφ
n+k+1 = Xn+k+1. Assume without loss of generality that z2 > z1, and

set t0 := (z2 −z1)1/2. We exploit the relation [Dφ
k+1, D

φ
n+k+1] = X2n+1 and

the Baker–Campbell–Hausdorff formula to conclude that we can join (ξ, z1)
and (ξ, z2) by means of a concatenation of integral curves of Dφ

k+1 = Xk+1
and Dφ

n+k+1 = Xn+k+1. In particular

a := (ξ, z1) → Eφ
k+1(a) a1 := Eφk+1(a, t0)

→ Eφ
n+k+1(a1) a2 := Eφn+k+1(a1, t0)

→ Eφ
k+1(a2) a3 := Eφk+1(a2,−t0)

→ Eφ
n+k+1(a3) a4 := (ξ, z2) = Eφn+k+1(a3,−t0),

(5.3)
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and if ϱ is sufficiently small with respect to δ (for example ϱ < δ2) we know
that the integral lines in (5.3) are defined in [−t0, t0] and all the points
a1, a2, a3 ∈ V ′

a0
. Notice that it is precisely here that we have to take Ua0

small enough to guarantee that the points defined in (5.3) are in V ′
a0

. This
can be done since we are taking the concatenation of integral curves living
up to a time whose norm is bounded above by t0 < ϱ1/2.

We set φ =: (φ(1), . . . , φ(k)) in coordinates. From Definition 3.24 we get
that, for every a ∈ V ′

a0
, j = k + 1, . . . , 2n + 1, ℓ = 1, . . . , k and t ∈ [−δ, δ],

we have

(5.4) d
ds |s=t

φ(ℓ)(Eφj (a, s)) = ωℓj(Eφj (a, t)).

Thus, by using the points defined in (5.3), Lagrange’s theorem and the
triangle inequality, we get

(5.5) |φ(ξ, z1) − φ(ξ, z2)|
|z1 − z2|1/2

= |(φ(a) −φ(a1)) + (φ(a1) −φ(a2)) + (φ(a2) −φ(a3)) + (φ(a3) −φ(a4))|
|z1 − z2|1/2

⩽
k∑
ℓ=1

1
|z1 − z2|1/2 ·

∣∣∣ (φ(ℓ)(a) − φ(ℓ)(a1)
)

+
(
φ(ℓ)(a1) − φ(ℓ)(a2)

)
+
(
φ(ℓ)(a2) − φ(ℓ)(a3)

)
+
(
φ(ℓ)(a3) − φ(ℓ)(a4)

) ∣∣∣
=

k∑
ℓ=1

|−t0ωℓ,k+1(b1,ℓ)− t0ωℓ,n+k+1(b2,ℓ)+ t0ωℓ,k+1(b3,ℓ)+ t0ωℓ,n+k+1(b4,ℓ)|
t0

⩽
k∑
ℓ=1

(|ωℓ,k+1(b3,ℓ) − ωℓ,k+1(b1,ℓ)| + |ωℓ,n+k+1(b4,ℓ) − ωℓ,n+k+1(b2,ℓ)|)

⩽
k∑
ℓ=1

(β(|b3,ℓ − b1,ℓ|) + β(|b4,ℓ − b2,ℓ|)) ,

where, for every ℓ = 1, . . . , k, the points b1,ℓ, b2,ℓ, b3,ℓ, b4,ℓ are respectively
chosen according to Lagrange’s Theorem, that can be applied in view
of (5.4), on the images of the integral curves Eφk+1(a), Eφn+k+1(a1),
Eφk+1(a2), Eφn+k+1(a3) used in (5.3). By simple estimates relying on the
triangle inequality, we get a constant C0 > 0 only depending on Va0

such that for every ℓ = 1, . . . , k, the estimates |b3,ℓ − b1,ℓ| ⩽ C0t0, and
|b4,ℓ−b2,ℓ| ⩽ C0t0 hold. Since t0 = |z1 −z2|1/2, and |z1 −z2| < ϱ, from (5.5)
we thus get (5.2) with α(ϱ) := C0ϱ

1/2. □
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Proposition 5.2. — In the setting of Proposition 5.1, it holds

Dφφ = ω in the broad* sense ⇒ φ̃ ∈ UID(Ũ ,W;L).

Proof. — It is a direct consequence of Propositions 5.1 and 4.5. Indeed,
taking into account (3.5) of Example 3.4, the integral curves of Dφ

2n+1 are
vertical lines and, therefore, condition (5.1) of Proposition 5.1 implies that
φ is vertically broad* hölder. □

5.2. Examples of uniformly intrinsically differentiable functions

We show a class of nontrivial examples of UID functions in the Engel
group, see Example 3.8.

Example 5.3. — Consider the Engel group E, with the splitting E = W·L
described in Example 3.8. We show that the function

(5.6) φα(0, x2, x3, x4) := xα4χ{x4⩾0}(0, x2, x3, x4),

produces φ̃α ∈ UID(W;L) for any α > 1/3. We first claim that Dφα
X2
φα =

α
2 x

3α−1
4 χ{x4⩾0} in the broad* sense. Indeed, for any ε ∈ (0, 1), the functions

(φα)ε := ε1/3χ{x4<0} + (x3α
4 + ε)1/3χ{x4⩾0}

are globally C1 and

lim
ε→0

(φα)ε = φα in L∞
loc(R3), and

D
(φα)ε
X2

(φα)ε = α

2 x
3α−1
4 χ{x4⩾0}, ∀ ε ∈ (0, 1),

where the last equality comes from the particular form of Dφ
X2

in (3.8). By
applying Proposition 4.14, we get the claim.

We claim now that φ is vertically broad* holder, see Definition 4.3. In-
deed, since the integral curves of Dφα

X4
are the vertical lines along direc-

tion x4, see (3.8), and since α > 1/3, we get that φα is locally uniformly
1/3-little Hölder continuous along these curves. We are left to prove that,
locally around any a := (0, x2, x3, x4), condition (4.16) is satisfied for the
integral curves of Dφα

X3
, whose expression is in (3.8).

According to the sign of x4 we identify three families of integral curves
of the vector field Dφα

X3
starting from a. If x4 < 0, the only integral curve

of Dφα
X3

starting from a is γ(t) = (0, x2, x3 + t, x4), and it is well-defined for
every time t. If x4 = 0, we have that an integral curve of Dφα

X3
, existing for

all times t, starting from a is given by

γ(t) =
(

0, x2, x3 + t, (1 − α)1/(1−α)t1/(1−α)χ{t⩾0}(t)
)
,
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while, if x4 > 0, we have that an integral curve of Dφα
X3

starting from a is
given by

γ(t) =
(

0, x2, x3 + t, (1 − α)1/(1−α)
(
t+ (x4)1−α

1 − α

)1/(1−α))
,

defined for t ∈
(

−x1−α
4

1−α ,+∞
)

. By exploiting this explicit choice of integral
curves, we notice that γ(t), in the three cases, is constant or it is of order
t1/(1−α) on the last component. Thus, we get that φα is 1/2-little Hölder
continuous along these integral curves, because α/(1 − α) > 1/2 for any
α > 1/3, and this happens locally uniformly. From this, we conclude that
φα is vertically broad* holder. Now we conclude by applying (d) ⇒ (a) of
Theorem 4.16.

Notice that, if α = 1/3, the function φα is not UID in every neighborhood
of the origin. Indeed, by Theorem 4.16, if φα is UID, then it is vertically
broad* hölder and so 1/3-little Hölder continuous along the integral curves
of the vector field Dφα

X4
. This means that φα should be 1/3-little Hölder

continuous in the last coordinate, but this is not true when α = 1/3.
We remark here that, in the case of the Heisenberg group H1, a slight

modification of this types of examples gives rise to a C1
H-hypersurface, that

is also C1 Euclidean, but it has 0 as a characteristic point, see Remark 5.4.

Remark 5.4. — Consider the first Heisenberg group H1 identified with R3

by means of exponential coordinates, and consider the splitting H1 = W ·L
described in Example 3.4, with L one-dimensional. Define φ : W ≡ R2 →
L ≡ R by setting φ(0, x2, x3) := sgn(x3)|x3|2/3.

Since φ2(0, x2, x3) = |x3|4/3 ∈ C1, by [3, Corollary 5.11], then φ̃ ∈
UID(W;L) and, consequently, its graph is a C1

H-hypersurface. Moreover, in
coordinates, one has

(5.7) (0, x2, x3) · (φ(0, x2, x3), 0, 0)

=
(

sgn(x3)|x3|2/3, x2, x3 − 1
2 sgn(x3)x2|x3|2/3

)
.

The surface Σ parametrized by (5.7) is the union of two surfaces Σ1,Σ2
given by

Σ1 :=
{

(x1, x2, x3) ∈ R3 : x1 ⩾ 0, x3 − x
3/2
1 + 1

2x1x2 = 0
}
,

Σ2 :=
{

(x1, x2, x3) ∈ R3 : x1 ⩽ 0, x3 + (−x1)3/2 + 1
2x1x2 = 0

}
,

(5.8)
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that are glued along the x2-axis {(x1, x2, x3) ∈ R3 : x1 = x3 = 0}. We
thus get that, for any x ∈ int(Σ1), one has TxΣ1 =

( 1
2x2 − 3

2x
1/2
1 , 1

2x1, 1
)⊥

with respect to the standard Euclidean scalar product, while for any x ∈
int(Σ2), one has TxΣ2 =

( 1
2x2 − 3

2 (−x1)1/2, 1
2x1, 1

)⊥ with respect to the
standard Euclidean scalar product. From these explicit expressions, Σ1 and
Σ2 glue together in C1 regular way along the x2-axis, and thus Σ is also
C1-Euclidean surface. Moreover, from the previous expressions, we get that
T0Σ = (0, 0, 1)⊥ = {x3 = 0} = V1 and hence 0 is a characteristic point
for Σ.

We remark here that a similar example appeared in [27, Example 3.8].
In that case the intrinsic graph is C1

H regular but not C1 regular.

6. Carnot groups of step 2

As already underlined in Remark 4.17, a co-horizontal C1
H-surface cannot

be always characterized only by its horizontal geometry. This is however
possible inside Carnot groups of step 2. Indeed, in this section, we show that
the assumption on the vertical broad* hölder regularity of Theorem 4.16
can be dropped when G is a Carnot group of step 2 and L is a horizontal
one-dimensional subgroup of G. In particular, as main result of this section,
we get Theorem 6.17, which is Theorem 1.7 in the introduction.

We describe the strategy of the proof of Theorem 6.17. The key idea is
to first show that the implication

(6.1) Dφφ = ω broad* ⇒ φ vertically broad* hölder

holds in free Carnot groups of step 2, for a continuous ω. This is done in
two main steps. First, we explicitly write the intrinsic vector fields Dφ and
we notice that the nonlinearity given by φ only shows up in one vertical
coordinate for each vector field, see (6.5). Second, by using the structure
of the vector fields Dφ, one can propagate the broad* regularity from the
horizontal components of φ to the little Hölder regularity along vertical
components by using a geometric trick: if [X,Y ] = Z, and φ is C1 on the
integral curves of X and Y , we expect φ to be 1/2-little Hölder continuous
on the integral curves of Z.

More precisely, the first step allows us to obtain the 1/2-little Hölder
regularity on the vertical coordinates affected by the nonlinearity by means
of an adaptation of [3, Theorem 5.8]. The second step allows us to obtain
the 1/2-little Hölder regularity on all the remaining vertical coordinates.
Notice that the efforts made to prove (d) ⇒ (a) in Theorem 4.16, asking
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for just the regularity along the integral curves of Dφ (i.e., the vertically
broad* regularity), are here payed back from a crucial simplification of this
proof. Indeed, to conclude the proof of Theorem 6.17 in the case of free
Carnot groups of step 2, namely Theorem 6.6, we just use (6.1) and apply
(d) ⇒ (a) of Theorem 4.16. This can be done after having noticed that
on Carnot groups of step 2 the vertically broad* hölder regularity reads as
the locally 1/2-little Hölder continuity along vertical coordinates, see also
Remark 3.23.

Finally, to conclude the proof of the difficult implication (e) ⇒ (a) of
Theorem 6.17, we use (6.1) together with the fact that, on a Carnot group G
of step 2, the broad* condition lifts to the free Carnot group F of step 2 and
of the same rank of G, see Proposition 6.10, while having a vertically broad*
hölder property is naturally transferred from F to G, see Proposition 6.11.
The resulting strategy presents some similarity to [32].

We point out that (a) ⇔ (c) of Theorem 6.17 is a generalization to all
step 2 Carnot groups of [3, Theorem 5.1] and (a) ⇔ (e) is a generalization
of [10, Theorem 1.2]. We refer the reader to the introduction for a more
detailed discussion on the literature.

In the current section, without loss of generality, we will always work
in coordinates and there will be no distinction between □ and □̃. See Re-
mark 6.4 for details on the identifications.

6.1. Regularity results for broad* solutions in free Carnot
groups of step 2

Free-nilpotent Lie algebras can be defined as follows (see Definition 14.1.1
in [12]).

Definition 6.1 (Free-nilpotent Lie algebras of step 2). — Let m ⩾ 2
be integer. We say that fm,2 is the free-nilpotent Lie algebra of step 2 with
m generators X1, . . . , Xm if the following facts hold.

(i) fm,2 is a Lie algebra generated by the elements X1, . . . , Xm (i.e.,
fm,2 is the smallest Lie algebra containing {X1, . . . , Xm});

(ii) fm,2 is nilpotent of step 2 (i.e., nested Lie brackets of length 3 are
always 0);

(iii) for every nilpotent Lie algebra g of step 2 and every function
Ψ: {X1, . . . , Xm} → g, there exists a unique homomorphism of Lie
algebras Ψ : fm,2 → g that extends Ψ.
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Definition 6.2 (Free Carnot groups of step 2). — A free Carnot group
of step 2 is a Carnot group whose Lie algebra is isomorphic to a free-
nilpotent Lie algebra fm,2 for some m ⩾ 2. In this case, the horizontal layer
of the free Carnot group is isomorphic to the linear span of the generators
of the Lie algebra fm,2.

Remark 6.3 (Free Carnot groups of step 2 in exponential coordinates).
We give an explicit representation of free Carnot groups of step 2. Fix an
integerm ⩾ 2 and denote by n := m+m(m−1)

2 . In Rn denote the coordinates
by xj , for 1 ⩽ j ⩽ m, and by yℓs, for 1 ⩽ s < ℓ ⩽ m. Let ∂j and ∂ℓs denote
the standard basis vectors in this coordinate system. We define n linearly
independent vector fields on Rn by setting:

(6.2)
Xj := ∂j + 1

2
∑

j<ℓ⩽m

xℓ∂ℓj − 1
2
∑

1⩽ℓ<j
xℓ∂jℓ, if 1 ⩽ j ⩽ m,

Yℓs := ∂ℓs, if 1 ⩽ s < ℓ ⩽ m.

Let F := (Rm+m(m−1)
2 , · ) be the coordinate representation of the step 2

Carnot group with m generators whose Lie algebra is generated by the
vector fields in (6.2). Then F is free and its Carnot structure is given by

V1 := span{Xj : 1 ⩽ j ⩽ m} and V2 := span{Yℓs : 1 ⩽ s < ℓ ⩽ m}.

Moreover, for any p and q ∈ F, the product p · q is given by the Baker–
Campbell–Hausdorff formula, and yields

(p · q)j = pj + qj , if 1 ⩽ j ⩽ m,

(p · q)ℓs = pℓs + qℓs + 1
2(pℓqs − qℓps), if 1 ⩽ s < ℓ ⩽ m.

It is easily verified that for 1 ⩽ s < ℓ ⩽ m and 1 ⩽ j ⩽ m, one has

(6.3) [Xℓ, Xs] = Yℓs and [Xj , Yℓs] = 0.

Remark 6.4. — Let F be a free Carnot groups of step 2 and rank m. To
keep the notation simpler, throughout this section, we identify without loss
of generality F with Rn with n := m+ m(m+1)

2 by means of the coordinates
described in Remark 6.3. Moreover, given two complementary subgroups
W and L with L horizontal and one-dimensional, we identify them in the
following way:

(6.4)
L := {(x1, . . . , xn) ∈ Rn : x2 = · · · = xn = 0} ,
W := {(x1, . . . , xn) ∈ Rn : x1 = 0} .

Therefore, there are natural identifications between Rn−1 and W and be-
tween R and L. We stress that, given an arbitrary free Carnot group of

ANNALES DE L’INSTITUT FOURIER



UNIFORMLY DIFFERENTIABLE CO-HORIZONTAL INTRINSIC GRAPHS 2601

step 2 and complementary subgroups W and L, with L horizontal and one-
dimensional, we can always choose coordinates satisfying (6.4) and such
that the identifications of Remark 6.3 are satisfied.

Remark 6.5 (Projected vector fields on free Carnot groups of step 2). —
Let F be a free Carnot group of step 2 represented in coordinates as in
Remark 6.3 and let W and L be complementary subgroups of F as in (6.4).
Given V ⊆ W an open set, and given a continuous map ψ : V ⊆ W → L,
according to Example 3.6, the projected vector fields are given by

(6.5)

Dψ
j = ∂j − ψ∂j1 + 1

2
∑

j<ℓ⩽m

xℓ∂ℓj − 1
2
∑

1<s<j
xs∂js

= Xj |V − ψYj1|V , j = 2, . . . ,m,

Dψ
ℓs = ∂ℓs = Yℓs|W, 1 ⩽ s < ℓ ⩽ m.

Then, for each j = 2, . . . ,m, every integral curve γj : I → Rn−1 of Dφ
j

has vertical components y := (yℓs)1⩽s<ℓ⩽m : I → R
m(m−1)

2 satisfying the
following equations

ẏj1(t) = −ψ(x2, . . . , xj−1, xj + t, xj+1, . . . , xm, y(t)),

ẏℓj(t) = 1
2xℓ, if j < ℓ ⩽ m,

ẏjs(t) = −1
2xs, if 1 < s < j,

ẏℓs(t) = 0, otherwise,

where the horizontal components of γj(0) are (x1, . . . , xm).

We now prove that, given an open set V ⊆ W and a continuous function
ψ : V → L, a broad* solution of Dψψ = ω for some continuous ω is also
vertically broad* hölder (see Definition 4.3). In particular, since the vector
field Dψ

ℓs satisfies Dψ
ℓs = ∂ℓs for every 1 ⩽ s < ℓ ⩽ m (see (6.5)), then (4.16)

is equivalent to the following condition: for every a0 in V , there exists a
neighborhood V ′ of a0 with V ′ ⋐ V such that for every ℓ and s with
1 ⩽ s < ℓ ⩽ m, one has

(6.6) lim
ϱ→0

(
sup

{
|ψ(ξ, η) − ψ(ξ, y)|

|ηℓs − yls|1/2

})
= 0,

where the supremum is taken on all the couples (ξ, η), (ξ, y) ∈ V ′ such that
ηkτ = ykτ for any (k, τ) ̸= (ℓ, s) and 0 < |ηℓs − yℓs| ⩽ ϱ.

In the first part of the proof of Theorem 6.6 below, we use techniques
that are similar to the ones exploited in [3, Theorems 5.8 and 5.9] in the
context of Heisenberg groups. The third step of the proof is new.
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Theorem 6.6. — Let W and L be two complementary subgroups of the
free Carnot group F of step 2 with L horizontal and one-dimensional. Let
V ⊆ W be open and ψ : V → L be a continuous function and assume that ψ
is a broad* solution of the systemDψψ = ω in V , for some ω ∈ C(V ;Rm−1),
with respect to the basis chosen in Remarks 6.3 and 6.4. Then ψ is vertically
broad* hölder.

Proof. — Working in the coordinates described in Remarks 6.3 and 6.4,
we can assume without loss of generality that W and L are defined as
in (6.4). If m = 2, then F = H1, and therefore the statement would follow
from [10, Theorem 1.2]. We therefore assume that m > 2.

We prove the following stronger fact, from which (6.6) follows. For each
a0 ∈ V there are sufficiently small neighborhoods I ⋐ I ′ ⋐ V of a0 such
that, for every 1 ⩽ s < ℓ ⩽ m, one can find a continuous and increas-
ing function αℓs : (0,+∞) → [0,+∞) only depending on I ′, ∥ψ∥L∞(I′),
∥ω∥L∞(I′) and on the modulus of continuity of ω on I ′ with the property
that

(6.7) lim
ϱ→0

αℓs(ϱ) = 0,

and
|ψ(ξ, η) − ψ(ξ, y)|

|ηℓs − yℓs|1/2 ⩽ αℓs(ϱ),(6.8)

for every (ξ, η), (ξ, y) ∈ I such that ηkτ = ykτ for every (k, τ) ̸= (ℓ, s) and
0 < |yℓs − ηℓs| ⩽ ϱ.

Fix a0 ∈ V . Since ψ is a broad* solution of Dψψ = ω in V , there exist
0 < δ2 < δ1 and a family of maps

Eψj : B(a0, δ2) × [−δ2, δ2] → B(a0, δ1),

for j = 2, . . . ,m, such that the conditions of Definition 3.24 are satisfied.
Define I ′ := B(a0, δ1) and I := B(a0, δ2), and set M1 := ∥ψ∥L∞(I′). Let
also β be an increasing modulus of uniform continuity of ω on I ′. We are
going to prove (6.8) with αℓs defined by

(6.9) αℓs(ϱ) :=
{

3δ(ϱ), if (ℓ, s) = (j, 1) and j = 2, . . . ,m,
Gℓs(ϱ), otherwise,

where Gℓs will be determined later in (6.23) and

(6.10) δ(ϱ) := max
{
ϱ1/4,

√
β(Cϱ1/4)

}
,
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for some constant C := C(j) > 0 such that

(6.11) |ηj1 − yj1| + 2(|ξ| +M1)|ηj1 − yj1|1/4 ⩽ C|ηj1 − yj1|1/4

for any (ξ, η), (ξ, y) ∈ I ′ with ηkτ = ykτ for every couple (k, τ) ̸= (j, 1).
First step. — If a = (x, y) ∈ I, by using (6.5), we have that for any

2 ⩽ j ⩽ m and any t ∈ [−δ2, δ2], it holds

(6.12)

Eψj (a, t) = (x2, . . . , xj−1, xj + t, xj+1, . . . , xm, y(t)), where

yℓs(t) =


yj1 −

∫ t
0 ψ(Eψj (a, r)) dr, if (ℓ, s) = (j, 1),

1
2 txℓ + yℓj , if s = j, and j < ℓ ⩽ m,

− 1
2 txs + yjs, if ℓ = j, and 1 < s < j,

yℓs, otherwise,

and consequently, since Eψj are the maps provided by Definition 3.24, t 7→
yj1(t) is a solution of the Cauchy problem

ÿj1(t) = d
dt

[
− ψ(Eψj (a, t))

]
= −ωj(Eψj (a, t)), t ∈ [−δ2, δ2],

yj1(0) = yj1,

ẏj1(0) = −ψ(a).

As a consequence of (6.12) one gets

(6.13) max
r∈[−|t|,|t|]

|ẏ(r)|

⩽
1
2

∣∣∣∣∣∣
∑

j<ℓ⩽m

xℓ

∣∣∣∣∣∣+ 1
2

∣∣∣∣∣∣
∑

1<s<j
xs

∣∣∣∣∣∣+ max
r∈[−|t|,|t|]

∣∣∣ψ(Eψj (a, r))
∣∣∣

⩽ C1(|x| +M1),

for every t ∈ [−δ2, δ2], where the constant C1 > 0 only depends on the
topological dimension of F.

Second step. — Fix j = 2, . . . ,m and assume a = (ξ, η), â = (ξ, y) ∈ I

with ηkτ = ykτ for all couples (k, τ) ̸= (j, 1). We will need to possibly
shrink I in a way that will be clear throughout the proof. We aim to show
that

(6.14) |ψ(a) − ψ(â)|
|ηj1 − yj1|1/2 ⩽ αj1(|ηj1 − yj1|),

where, according to (6.9), αj1(ϱ) = 3δ(ϱ). This would imply (6.8) for
(ℓ, s) = (j, 1).
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Set δ := δ(|ηj1 − yj1|) and suppose (6.14) is not true, namely

(6.15) |ψ(a) − ψ(â)|
|ηj1 − yj1|1/2 > 3δ.

Let Eψj (a, · ) and Eψj (â, · ) be the integral curves of Dψ
j given by the broad*

condition. By the first step they satisfy

Eψj (a, t) = (ξ2, . . . , ξj−1, ξj + t, ξj+1, . . . , ξm, η(t)),

and
Eψj (â, t) = (ξ2, . . . , ξj−1, ξj + t, ξj+1, . . . , ξm, y(t)).

We claim we can find t∗ ∈ [−δ2, δ2] such that ηj1(t∗) = yj1(t∗), with
ψ(Eψj (a, t∗)) ̸= ψ(Eψj (â, t∗)). This will lead to a contradiction, by the fact
that the equality ηj1(t∗) = yj1(t∗) would also imply η(t∗) = y(t∗).

Without loss of generality, assume that the initial data satisfy ηj1 > yj1.
By the first step of this proof, for every t ∈ [−δ2, δ2], one has

ηj1(t) − yj1(t) − (ηj1 − yj1)

=
∫ t

0

[
η̇j1(0) − ẏj1(0) +

∫ r′

0
(η̈j1(r) − ÿj1(r)) dr

]
dr′

= −t(ψ(a) − ψ(â)) −
∫ t

0

∫ r′

0

(
ωj(Eψj (a, r)) − ωj(Eψj (â, r))

)
drdr′.

Using (6.13) and the fundamental theorem of Calculus, one gets a constant
C2 > 0 only depending on C1 such that

(6.16) |Eψj (a, r) − Eψj (â, r)|

⩽ |η − y| + |r|
(

max
r∈[−|t|,|t|]

|η̇(r)| + max
r∈[−|t|,|t|]

|ẏ(r)|
)

⩽ |η − y| + |t|
(

max
r∈[−|t|,|t|]

|η̇(r)| + max
r∈[−|t|,|t|]

|ẏ(r)|
)

⩽ C2 (|ηj1 − yj1| + 2|t|(|ξ| +M1)) ,

for every r ∈ [−|t|, |t|] and t ∈ [−δ2, δ2]. Hence, we obtain that

(6.17) ηj1(t) − yj1(t) − (ηj1 − yj1)

⩽ −t(ψ(a) − ψ(â)) + t2 max
r∈[−|t|,|t|]

β
(
|Eψj (a, r) − Eψj (â, r)|

)
⩽ −t(ψ(a) − ψ(â)) + t2β (C2(|ηj1 − yj1| + 2|t|(|ξ| +M1))) ,
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for every t ∈ [−δ2, δ2]. Up to redefining β, we can replace without loss of
generality β(C2ϱ) with β(ϱ). Now, by (6.15) we know that

(6.18) −|ψ(a) − ψ(â)| < −3δ|ηj1 − yj1|1/2.

Without loss of generality, up to restricting I, we can assume that

(6.19) δ2 ⩾ |yj1 − ηj1|1/4 ⩾ |yj1 − ηj1|1/2/δ,

where the second inequality directly follows from (6.10). If ψ(a) = ψ(â),
then (6.14) would be trivial. We study two cases: ψ(a) − ψ(â) < 0 or
ψ(a) − ψ(â) > 0. If ψ(a) − ψ(â) < 0, set t0 := − |ηj1−yj1|1/2

δ (otherwise
we can choose t0 := |ηj1−yj1|1/2

δ ) and evaluate (6.17) in t = t0. Combining
it with (6.11), (6.18), (6.19), the definition of δ, and the fact that β is
increasing, we obtain (in both cases)

(6.20) ηj1(t0) − yj1(t0)

⩽ ηj1 − yj1 + |ηj1 − yj1|1/2 −|ψ(a) − ψ(â)|
δ

+

+ 1
δ2 |ηj1 − yj1|β

(
|ηj1 − yj1| + 2(|ξ| +M1) |ηj1 − yj1|1/2

δ

)
⩽ ηj1 − yj1 − 3|ηj1 − yj1| + |ηj1 − yj1|

β
(
C|ηj1 − yj1|1/4)

δ2

⩽ ηj1 − yj1 − 3|ηj1 − yj1| + |ηj1 − yj1| ⩽ −|ηj1 − yj1| < 0.

If ψ(a) − ψ(â) > 0 we can define

t∗ := sup{ r ∈ [0, δ2] : ηj1(s) − yj1(s) > 0, ∀ s ∈ [0, r]},

since the set { r ∈ [0, δ2] : ηj1(s) − yj1(s) > 0, ∀ s ∈ [0, r]} is not empty;
indeed, recall that we assumed without loss of generality that ηj1 > yj1
and therefore ηj1(0) − yj1(0) = ηj1 − yj1 > 0. Moreover 0 < t∗ < t0 ⩽ δ2,
and recalling that ηkτ = ykτ except for (k, τ) = (j, 1), one has, by (6.12)
that

(6.21)

ηj1(t∗) = yj1(t∗),

ηℓj(t∗) = yℓj(t∗) = 1
2 t

∗ξℓ + ηℓj , for j < ℓ ⩽ m,

ηjs(t∗) = yjs(t∗) = −1
2 t

∗ξs + ηjs, for 1 < s < j,

ηℓs(t∗) = yℓs(t∗) = ηℓs, otherwise.
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Hence, by definition of Eψj (a, · ) and Eψj (â, · ) in (6.12), one gets Eψj (a, t∗) =
Eψj (â, t∗) and therefore

(6.22) ψ(Eψj (a, t∗)) = ψ(Eψj (â, t∗)).

In the case ψ(a)−ψ(â) < 0, we consider t0 = − |ηj1−yj1|1/2

δ and define t∗ :=
inf{r ∈ [−δ2, 0] : ηj1(s) − yj1(s) > 0, ∀ s ∈ [r, 0]}. Then −δ2 ⩽ t0 < t∗ < 0
and, also in this case, (6.21) and (6.22) are satisfied.

We now show that this leads to a contradiction. In case ψ(a) −ψ(â) > 0,
by using the properties of Eψj , (6.16), (6.18), (6.11), the definition of β and
the fact that t∗ < t0, we deduce

− (ψ(Eψj (a, t∗)) − ψ(Eψj (â, t∗)))

= −(ψ(a) − ψ(â)) −
∫ t∗

0

(
ωj(Eψj (a, r)) − ωj(Eψj (â, r))

)
dr

⩽ −3(ηj1 − yj1)1/2δ + |t∗| max
r∈[0,t∗]

β
(

|Eψj (a, r) − Eψj (â, r)|
)

⩽ −3(ηj1 − yj1)1/2δ + |t∗|β (|ηj1 − yj1| + 2|t∗|(|ξ| +M1))

⩽ −3(ηj1 − yj1)1/2δ + |t∗|β
(

|ηj1 − yj1| + 2(|ξ| +M1) |ηj1 − yj1|1/2

δ

)
⩽ −3(ηj1 − yj1)1/2δ + (ηj1 − yj1)1/2δ

β
(
C(ηj1 − yj1)1/4)

δ2

⩽ (−3 + 1)(ηj1 − yj1)1/2δ < 0.

Similarly, if ψ(a) − ψ(â) < 0, then

ψ(Eψj (a, t∗)) − ψ(Eψj (â, t∗))

= ψ(a) − ψ(â) +
∫ t∗

0

(
ωj(Eψj (a, r)) − ωj(Eψj (â, r))

)
dr

⩽ −3(ηj1 − yj1)1/2δ + |t∗| max
r∈[−t∗,0]

β
(

|Eψj (a, r) − Eψj (â, r)|
)
< 0.

Hence, in both cases we have ψ(Eψj (a, t∗)) ̸= ψ(Eψj (â, t∗)) that is in con-
tradiction with (6.22), so (6.14) follows.

Third step. — Fix ℓ, s with 1 < s < ℓ ⩽ m, denote by M2 := ∥ω∥L∞(I′)
and define

(6.23) Gℓs(ϱ) := 2
√
M2αℓ1(4M2ϱ) + 2

√
M2αs1(4M2ϱ) + 2β(C0ϱ

1/2),

where αℓ1 and αs1 are defined as in (6.9) for j = ℓ and j = s, respectively,
β is an increasing modulus of uniform continuity of ω on I ′ and C0 > 0 is a
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suitable constant, only depending on the supremum norm of ω on I ′, that
will be determined later.

We want to show that

(6.24) |ψ(a) − ψ(â)|
|ηℓs − yℓs|1/2 ⩽ Gℓs(ϱ),

for every sufficiently small ϱ > 0, every a = (ξ, η), â = (ξ, y) ∈ I, such
that ηkτ = ykτ for every (k, τ) ̸= (ℓ, s) and 0 < |ηℓs − yℓs| ⩽ ϱ. Denote by
Tℓs := |ηℓs − yℓs|1/2. We will need to possibly shrink I in a way that will
be clear from the proof.

Rough idea of the proof. — We build a concatenation of integral curves
of the vector fields Dψ

ℓ and Dψ
s that joins â and a suitable point a4 that

can be connected to a with two vertical lines on which we can use the
result of the second step of this proof. We start from â and follow the
integral curve of Dψ

ℓ for a time Tℓs and we follow the integral curve of Dψ
s

for the same time Tℓs; finally, we repeat the same procedure but for time
−Tℓs. At the end of this process, we obtain a point with three different
vertical components with respect to â: two increments are given by the non
linear terms −ψ∂ℓ1 and −ψ∂s1 coming respectively from Dψ

ℓ and from Dψ
s

and one increment is given by the commutator [Xℓ, Xs] (which is Yℓs). In
particular, whenever ηℓs − yℓs > 0, the (ℓ, s)-component becomes equal to
the (ℓ, s)-component of a, that is ηℓs. Vice versa, if ηℓs − yℓs < 0, one has
to replace the times ±Tℓs with ∓Tℓs. In the end, we complete the proof by
using the estimate of the second step of this proof applied to a4 and a. The
desired estimates come by using Lagrange’s Theorem.

Assume ηℓs − yℓs > 0. Then we construct the following chain of points.

â → Eψ
ℓ

(â) a1 := Eψℓ (â, Tℓs) → Eψs (a1) a2 := Eψs (a1, Tℓs)

→ Eψ
ℓ

(a2) a3 := Eψℓ (a2,−Tℓs) → Eψs (a3) a4 := Eψs (a3,−Tℓs),
(6.25)

where we recall that Eψℓ and Eψs are the integral curves of the vector fields
Dψ
ℓ and Dψ

s , respectively, given by the fact that Dψψ = ω in the broad*
sense. In particular, Eψℓ and Eψs satisfy (6.12).

In case ηℓs − yℓs < 0 we repeat the same construction by replacing
±Tℓs with ∓Tℓs. In both cases, we have that a4 =: (ξ, y(a4)) is such that
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y
(a4)
ℓs = ηℓs. Indeed, if ηℓs − yℓs > 0, then y

(a4)
kτ equals

ηℓs, if (k, τ) = (ℓ, s),

ηℓ1 −
∫ Tℓs

0
ψ(Eψℓ (â, t))dt+

∫ Tℓs

0
ψ(Eψℓ (a2, t))dt, if (k, τ) = (ℓ, 1),

ηs1 −
∫ Tℓs

0
ψ(Eψs (a1, t))dt+

∫ Tℓs

0
ψ(Eψs (a3, t))dt, if (k, τ) = (s, 1),

ykτ , otherwise.

We can assume that a1, a2, a3, a4 ∈ I. Indeed, this can be done because
for a sufficiently small ϱ only depending on the supremum norms of φ and ω
on I ′, we can possibly reduce I to some I0 so that all the curves as in (6.25)
starting in I0, and living for times bounded above by ϱ, lie inside I.

Let a5 = (ξ, y(a5)) be a point that has the same components of a, except
for position (ℓ, 1) for which y(a5)

ℓ1 = y
(a4)
ℓ1 . As remarked above, we can assume

without loss of generality that also a5 ∈ I. Moreover, we can estimate
|ψ(a) − ψ(â)| as follows:

(6.26) |ψ(a) − ψ(â)| ⩽ |ψ(a) − ψ(a5)| + |ψ(a5) − ψ(a4)| + |ψ(a4) − ψ(â)| .

We start by considering |ψ(a) −ψ(a5)|. Evaluating (6.14) for j = ℓ, we get
that

|ψ(a) − ψ(a5)| ⩽ |ηℓ1 − y
(a5)
ℓ1 |1/2αℓ1(|ηℓ1 − y

(a5)
ℓ1 |),

and we also notice that

|ηℓ1 − y
(a5)
ℓ1 | =

∣∣∣∣∣
∫ Tℓs

0
ψ(Eψℓ (â, t))dt−

∫ Tℓs

0
ψ(Eψℓ (a2, t))dt

∣∣∣∣∣ .
Recalling that M2 = ∥ω∥L∞(I′), we aim to show that

(6.27)

∣∣∣∣∣
∫ Tℓs

0
ψ(Eψℓ (â, t))dt−

∫ Tℓs

0
ψ(Eψℓ (a2, t))dt

∣∣∣∣∣ ⩽ 4M2T
2
ℓs,

that would imply

(6.28) |ψ(a) − ψ(a5)| ⩽ 2
√
M2Tℓsαℓ1(|ηℓ1 − y

(a5)
ℓ1 |)

⩽ 2
√
M2Tℓsαℓ1(4M2T

2
ℓs).

ANNALES DE L’INSTITUT FOURIER



UNIFORMLY DIFFERENTIABLE CO-HORIZONTAL INTRINSIC GRAPHS 2609

We first observe that∣∣∣∣∣
∫ Tℓs

0
ψ(Eψℓ (â, t))dt−

∫ Tℓs

0
ψ(Eψℓ (a2, t))dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ Tℓs

0

(
ψ(Eψℓ (â, t)) − ψ(â)

)
dt−

∫ Tℓs

0

(
ψ(Eψℓ (a2, t)) − ψ(a2)

)
dt

+ Tℓs ((ψ(â) − ψ(a2)))

∣∣∣∣∣
⩽
∫ Tℓs

0

∣∣∣ψ(Eψℓ (â, t)) − ψ(â)
∣∣∣dt+

∫ Tℓs

0

∣∣∣ψ(Eψℓ (a2, t)) − ψ(a2)
∣∣∣dt

+ Tℓs|ψ(â) − ψ(a2)|.

Recalling that for every t in the interval of definition of the curve Eψℓ ,
one has d

ds |s=tψ(Eψℓ (A, s)) = ωℓ(Eψℓ (A, t)) for A = â, a2, by exploiting the
fundamental theorem of Calculus the previous estimate then yields∣∣∣∣∣
∫ Tℓs

0
ψ(Eψℓ (â, t))dt−

∫ Tℓs

0
ψ(Eψℓ (a2, t))dt

∣∣∣∣∣
⩽ 2M2T

2
ℓs + Tℓs|ψ(â) − ψ(a2)|.

By Lagrange’s Theorem one also gets

|ψ(â) − ψ(a2)| ⩽ |ψ(â) − ψ(a1)| + |ψ(a1) − ψ(a2)|
= Tℓs|ωℓ(b∗

0)| + Tℓs|ωs(b∗
1)| ⩽ 2M2Tℓs,

where b∗
0 and b∗

1 are two points on Eψℓ (â, [0, Tℓs]) and Eψs (a1, [0, Tℓs]), respec-
tively. Hence, combining together the last two estimates, one obtains (6.27)
and, consequently, also (6.28) holds.

Now we consider |ψ(a5) −ψ(a4)|. Since |a5 − a4| = |y(a5)
s1 − y

(a4)
s1 |, analo-

gously to the previous case, one obtains

(6.29) |ψ(a5) − ψ(a4)| ⩽ 2
√
M2Tℓsαs1(|y(a5)

s1 − y
(a4)
s1 |)

⩽ 2
√
M2Tℓsαs1(4M2T

2
ℓs),

where αs1 is defined as in (6.9) and

|y(a5)
s1 − y

(a4)
s1 | =

∣∣∣∣∣
∫ Tℓs

0
ψ(Eψs (a1, t))dt−

∫ Tℓs

0
ψ(Eψs (a3, t))dt

∣∣∣∣∣ .
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Eventually, we estimate ψ(a4) − ψ(â) in the following way:
|ψ(a4) − ψ(â)|
⩽ |(ψ(a4) −ψ(a3)) + (ψ(a3) −ψ(a2)) + (ψ(a2) −ψ(a1)) + (ψ(a1) −ψ(â))|
= |−Tℓsωs(a∗

3) − Tℓsωℓ(a∗
2) + Tℓsωs(a∗

1) + Tℓsωℓ(a∗
0)|

⩽ Tℓs(|ωs(a∗
1) − ωs(a∗

3)| + |ωℓ(a∗
2) − ωℓ(a∗

0)|)
⩽ Tℓs (β(|a∗

1 − a∗
3|) + β(|a∗

2 − a∗
0|)) ,

where a∗
0 ∈ Eψℓ (â, [0, Tℓs]), a∗

1 ∈ Eψs (a1, [0, Tℓs]), a∗
2 ∈ Eψℓ (a2, [−Tℓs, 0]) and

a∗
3 ∈ Eψs (a3, [−Tℓs, 0]) are chosen to fulfill the conditions of Lagrange’s

Theorem. By simple estimates relying on the triangle inequality, we get a
constant C0 > 0, only depending on the supremum norm of ω on I ′, such
that |a∗

1 − a∗
3| ⩽ C0Tℓs, and |a∗

2 − a∗
0| ⩽ C0Tℓs. Hence

(6.30) |ψ(a4) − ψ(â)| ⩽ Tℓs (β(|a∗
1 − a∗

3|) + β(|a∗
2 − a∗

0|)) ⩽ 2Tℓsβ(C0Tℓs).

By combining (6.26) with (6.28), (6.29) and (6.30) and recalling that
Tℓs = |ηℓs − yℓs|1/2 and |ηℓs − yℓs| < ϱ, we thus get (6.24). Indeed, one has
ψ(a) − ψ(â)
|ηℓs − yℓs|1/2

⩽
2
√
M2Tℓsαℓ1(4M2T

2
ℓs) + 2

√
M2Tℓsαs1(4M2T

2
ℓs) + 2Tℓsβ(C0Tℓs)

|ηℓs − yℓs|1/2

= 2
√
M2

(
αℓ1(4M2|ηℓs − yℓs|) +αs1(4M2|ηℓs − yℓs|)

)
+ 2βC0|ηℓs − yℓs|1/2

⩽ Gℓs(ϱ).
Finally, since Gℓs is defined as sum of continuous maps that are 0 at 0, it
follows that, if ϱ → 0, then Gℓs(ϱ) → 0 for which we get (6.8) also for all
(ℓ, s) with s ̸= 1 and the proof is complete. □

6.2. Regularity result for broad* solutions in Carnot groups of
step 2

In this section we see how to generalize Theorem 6.6, valid for free Carnot
groups of step 2, to any Carnot group of step 2. We adapt some techniques
already exploited in [32]. More precisely, in Proposition 6.10 we prove that
the broad* condition lifts from G to the free group F with same step and
rank of G. In Proposition 6.11 we show that the vertically broad* hölder
regularity on F implies the vertically broad* hölder regularity on G. These
two facts will put us in a position to prove Theorem 6.17 by exploiting
Theorems 4.16 and 6.6.
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We here introduce Carnot groups of step 2 and we refer the reader to [12,
Chapter 3]. We denote with m the rank of G and we identify G with
(Rm+h, ·). If q ∈ G, we write q = (x, y) meaning that x ∈ Rm and y ∈ Rh.
The group operation · between two elements q = (x, y) and q′ = (x′, y′) is
given by

(6.31) q · q′ =
(
x+ x′, y + y′ − 1

2 ⟨Bx, x′⟩
)
,

where ⟨Bx, x′⟩ := (⟨B(1)x, x′⟩, . . . , ⟨B(h)x, x′⟩) and B(i) are linearly inde-
pendent and skew-symmetric matrices in Rm×m, for i = 1, . . . , h.

For any i = 1, . . . , h and any j, ℓ = 1, . . . ,m, denote by (B(i))jℓ =: (b(i)
jℓ ),

and define m+h linearly independent left-invariant vector fields by setting

X ′
j(p) := ∂xj − 1

2

h∑
i=1

m∑
ℓ=1

b
(i)
jℓ xℓ ∂yi , for j = 1, . . . ,m,

Y ′
i (p) := ∂yi , for i = 1, . . . , h.

The ordered set (X ′
1, . . . , X

′
m, Y

′
1 , . . . , Y

′
h) is an adapted basis of the Lie

algebra g of G. Using the skew-symmetry of B, it easy to see that

(6.32) [X ′
j , X

′
ℓ] =

h∑
i=1

b
(i)
jℓ Y

′
i , and [X ′

j , Y
′
i ] = 0,

for every j, ℓ = 1, . . . ,m, and i = 1, . . . , h.

Remark 6.7. — When G is a free Carnot group of step 2 with coordinate
representation defined as in Remark 6.3, we denote the matrices of the
beginning of Section 6.2 with B(i) =: B(ℓ,s) with 1 ⩽ s < ℓ ⩽ m. The
composition law (6.31) also tells us that B(ℓ,s) has entry 1 in position (ℓ, s),
−1 in position (s, ℓ) and 0 elsewhere.

Since the space of skew-symmetric m-dimensional matrices has dimen-
sion m(m−1)

2 , in any Carnot group G of step 2, the dimensions m of the
horizontal layer and h of the vertical layer are related by the inequality

h ⩽
m(m− 1)

2 ,

and G is free if and only if h = m(m−1)
2 .

From now on G is a Carnot group of rank m and step 2, with the coor-
dinate representation previously discussed, and F is the free Carnot group
of step 2 and rank m with the coordinate representation as in Remarks 6.3
and 6.4.
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We denote by (X1, . . . , Xm) a basis of the first layer of the Lie algebra
of F. By definition of free Lie algebra, there exists a Lie group surjective
homomorphism π : F → G such that π∗(Xℓ) = X ′

ℓ for any ℓ = 1, . . . ,m (see
e.g., [32, Section 6]).

If we consider on F and G the Carnot–Carathéodory metrics dF and dG
respectively, the map π preserves the length of horizontal curves, so it is
Lipschitz with Lip(π) = 1. The following lemma is well-known. We refer
the reader to [32, Lemma 6.1] for a proof.

Lemma 6.8. — For any p ∈ F and any q′ ∈ G, there exists p′ ∈ π−1(q′)
such that

dF(p, p′) = dG(π(p), q′).

Recall that the dimension of F is n = m + m(m−1)
2 . From the definition

of π, we notice that it preserves the horizontal coordinates, namely, for any
(x, y) ∈ Rn, there exists y∗ ∈ Rh such that

(6.33) π(x, y) = (x, y∗).

We denote by WG and LG two complementary subgroups of G with
LG horizontal and one-dimensional. Similarly to Remark 6.4, by means of
exponential coordinates we identify them with Rm+h−1 and R by setting

(6.34)
LG := {(x1, 0 . . . , 0) : x1 ∈ R},

WG :=
{

(0, x2, . . . , xm, y1, . . . , yh) :
xi, yk ∈ R
for i = 2, . . . ,m, k = 1, . . . h

}
.

Remark 6.9. — Let G be a Carnot group of step 2 and WG, LG be the
complementary subgroups of G defined as in (6.34). Then, according to
Example 3.6 the projected vector fields relative to a continuous φ : U ⊆
WG → LG, with U open, are given by

(6.35)

Dφ
j = ∂xj −

h∑
i=1

(
b

(i)
j1φ+ 1

2

m∑
k=2

xkb
(i)
jk

)
∂yi

= X ′
j |U −

h∑
i=1

b
(i)
j1φY

′
i |U , j = 2, . . . ,m,

Dφ
i = ∂yi = Y ′

i |U , i = 1, . . . , h.

Now let WF and LF be the complementary subgroups of F defined as
in (6.4). Then π|LF : LF → LG is an isomorphism and more precisely, with
our identification, we can assume it is the identity, see (6.33). Moreover,
by (6.33), it follows that π|WF

: WF → WG is onto.
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Since π is a Lie group homomorphism, its differential is a Lie algebra
homomorphism. Hence, for any 1 ⩽ s < ℓ ⩽ m, one also has

π∗(Yℓs) = π∗([Xℓ, Xs]) = [π∗(Xℓ), π∗(Xs)] = [X ′
ℓ, X

′
s] =

h∑
i=1

b
(i)
ℓs Y

′
i ,

where we used (6.3), (6.32) and π∗(Xj) = X ′
j . We can therefore write the

following formula

(6.36) π(x1, . . . , xm, y21, . . . , ym(m−1)) = (x1, . . . , xm, y
∗
1 , . . . , y

∗
h),

where y∗
i =

∑
1⩽s<ℓ⩽m

b
(i)
ℓs yℓs, ∀ i = 1, . . . , h.

Proposition 6.10. — Let G be a Carnot group of step 2 and let WG
and LG be two complementary subgroups of G, with LG horizontal and
one-dimensional and choose coordinates such that (6.34) is satisfied. Let
F be the free Carnot group of step 2, rank m and let WF and LF be the
complementary subgroups of F satisfying the identification (6.4). Let U ⊆
WG be an open set and denote by V ⊆ WF the open set defined by V :=
π−1(U). Let φ : U → LG be a continuous map and let ψ : V → LF be the
map defined as

ψ := π−1 ◦ φ ◦ π|V .

Assume there exists ω ∈ C(U ;Rm−1) such that Dφφ = ω in the broad*
sense. Then ψ is a broad* solution in V of the system Dψψ = ω ◦ π.

Proof. — Fix j = 2, . . . ,m. By (6.5), we have

(6.37) Dψ
Xj

= ∂xj − ψ∂j1 + 1
2
∑

j<l⩽m

xℓ∂ℓj − 1
2
∑

1<s<j
xs∂js,

and by (6.35), it follows

(6.38) Dφ
X′
j

= ∂xj −
h∑
i=1

(
b

(i)
j1φ+ 1

2

m∑
k=2

xkb
(i)
jk

)
∂yi .

Let a = (0, x2, . . . , xm, η21, . . . , ηm(m−1)) ∈ V , and denote with b := π(a)
the point in WG with coordinates b = (0, x2, . . . , xm, y

∗
1 , . . . , y

∗
h). Let δ > 0

and let γj : [−δ, δ] → U be an arbitrary integral curve of Dφ
X′
j

starting from
b such that

(6.39) φ(γj(t)) − φ(b) =
∫ t

0
ωj(γj(s))ds, ∀ t ∈ [−δ, δ].

Recall that by (6.36), there is an explicit relation between the coordinates
of a and the coordinates of b. We are going to prove that we can lift γj
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to an integral curve ζj of Dψ
Xj

starting from a, defined on [−δ, δ] and with
values in V , that satisfies

ψ(ζj(t)) − ψ(a) =
∫ t

0
(ωj ◦ π)(ζj(s)) ds, ∀ t ∈ [−δ, δ].

Indeed, let ζj : [−δ, δ] → WF be defined as

(6.40) ζj(t)=(0, x2, . . . , xj−1, xj + t, xj+1, . . . , xm, η21(t), . . . , ηm(m−1)(t)),

where ηℓs(t) =



ηj1 −
∫ t

0
φ(γj(r))dr, for (ℓ, s) = (j, 1),

1
2 txℓ + ηℓj , for s = j and j < ℓ ⩽ m,

−1
2 txs + ηjs, for ℓ = j and 1 < s < j,

ηℓs, otherwise,

for t ∈ [−δ, δ]. By definition, one immediately gets ζj(0) = a. We are left
to prove the following facts.

(i) π ◦ ζj = γj ;
(ii) ζj : [−δ, δ] → V is an integral curve of Dψ

Xj
;

(iii) For every t ∈ [−δ, δ] one has

ψ(ζj(t)) − ψ(a) =
∫ t

0
(ωj ◦ π)(ζj(s))ds.

(i). — By (6.38), and the fact that γj(0) = b= (0, x2, . . . , xm, y
∗
1 , . . . , y

∗
h),

we can explicitly write γj , exploiting the fact that it is an integral curve of
Dφ
X′
j
, and get

(6.41) γj(t) = (0, x2, . . . , xj−1, xj + t, xj+1, . . . , xm, y
∗
1(t), . . . , y∗

h(t)),

where y∗
i (t) = y∗

i − 1
2 t
(

m∑
k=2

xkb
(i)
jk

)
− b

(i)
j1

∫ t

0
φ(γj(r))dr,

for every i = 1, . . . , h and t ∈ [−δ, δ]. Using the explicit formula of π given
in (6.36), we obtain that

(6.42) π(ζj(t)) = (0, x2, . . . , xj−1, xj + t, xj+1, . . . , xm, η
∗
1(t), . . . , η∗

h(t)),

where η∗
i (t) =

∑
1⩽s<ℓ⩽m

b
(i)
ℓs ηℓs(t), ∀ i = 1, . . . , h, and ∀ t ∈ [−δ, δ].
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In particular, by (6.40), we have that

η∗
i (t) = b

(i)
j1

(
ηj1 −

∫ t

0
φ(γj(r))dr

)
+

∑
j<ℓ⩽m

b
(i)
ℓj

(
1
2 txℓ + ηℓj

)

+
∑

1<s<j
b

(i)
js

(
−1

2 txs + ηjs

)
+

∑
1⩽s<ℓ⩽m
s̸=j,ℓ ̸=j

b
(i)
ℓs ηℓs,

for every i = 1, . . . , h and t ∈ [−δ, δ]. Using again (6.36), we also notice
that y∗

i =
∑

1⩽s<ℓ⩽m b
(i)
ℓs ηℓs, and, by the skew-symmetry of B(i), we deduce

that

η∗
i (t) = y∗

i − 1
2 t
(

m∑
k=2

xkb
(i)
jk

)
− b

(i)
j1

∫ t

0
φ(γj(r))dr,

for every i = 1, . . . , h and t ∈ [−δ, δ]. Comparing (6.41), (6.42) and the last
equality, we get π ◦ ζj = γj , as desired.

(ii). — We now check that ζj is an integral curve of Dψ
Xj

. Recall-
ing (6.37), and by the definition of the components of ζj in (6.40), it suffices
to check its (j, 1)-coordinate, since for all the others is trivial. Observe that,
from (i), (φ ◦ γj)(t) = (φ ◦ π ◦ ζj)(t) = (ψ ◦ ζj)(t), for every t ∈ [−δ, δ],
and so

ηj1(t) = ηj1 −
∫ t

0
φ(γj(r))dr = ηj1 −

∫ t

0
ψ(ζj(r)) dr, ∀ t ∈ [−δ, δ],

as desired. Notice that we have used that π|LF identifies LF with LG.
(iii). — We first notice that, since U ⊇ γj([−δ, δ]) = (π◦ζj)([−δ, δ]) and

V = π−1(U), then also ζj([−δ, δ]) ⊆ V . Using π ◦ ζj = γj and the fact that
γj satisfies (6.39), we finally obtain

(6.43) ψ(ζj(t)) − ψ(a) =
∫ t

0
(ωj ◦ π)(ζj(s))ds, ∀ t ∈ [−δ, δ].

We thus showed that every integral curve of Dφ
X′
j

satisfying (6.39) can be

lifted to an integral curve of Dψ
Xj

satisfying (6.43), with a procedure that is
patently local. Thus, by using Definition 3.24, it follows that, if Dφφ = ω

holds in the broad* sense on U , then Dψψ = ω ◦ π holds in the broad*
sense on V . □

Proposition 6.11. — Let G be a Carnot group of step 2 and let WG
and LG be two complementary subgroups of G, with LG horizontal and
one-dimensional and choose coordinates such that (6.34) is satisfied. Let
F be the free Carnot group of step 2, rank m and let WF and LF be the
complementary subgroups of F satisfying the identification (6.4). Let U ⊆
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WG be an open set and denote by V ⊆ WF the open set defined by V :=
π−1(U). Let φ : U → LG be a continuous map and let ψ : V → LF be the
map defined as

ψ := π−1 ◦ φ ◦ π|V .

Then, if ψ is vertically broad* hölder, also φ is vertically broad* hölder.

Proof. — We observe that in the case we are dealing with, the vertically
broad* hölder condition is equivalent to the locally 1/2-little Hölder con-
tinuity along vertical coordinates, see the discussion before the statement
of Theorem 6.6, that holds verbatim for arbitrary Carnot groups of step
2. Fix b0 ∈ U and let a0 ∈ π−1(b0). Since ψ is vertically broad* hölder,
there exist two neighborhoods V ′ and V ′′ of a0 with V ′ ⋐ V ′′ ⋐ V and an
increasing map α : (0,+∞) → [0,+∞) only depending on V ′′, such that
limϱ→0 α(ϱ) = 0 and

(6.44) |ψ(ξ, η) − ψ(ξ, y)|
|ηℓs − yℓs|1/2 ⩽ α(ϱ)

for every (ℓ, s) such that 1 ⩽ s < ℓ ⩽ m, every sufficiently small ϱ > 0
and every (ξ, η), (ξ, y) ∈ V ′ with ηkτ = ykτ for every (k, τ) ̸= (ℓ, s) and
0 < |ηℓs − yℓs| ⩽ ϱ.

Set U ′ := π(V ′) so that b0 ∈ U ′ and clearly U ′ ⋐ U. We aim to prove that
there exists an increasing function β : (0,+∞) → [0,+∞) only depending
on U ′′ := π(V ′′) such that limϱ→0 β(ϱ) = 0 and

(6.45) |φ(ξ, η) − φ(ξ, y)|
|ηi − yi|1/2 ⩽ β(ϱ),

for every i = 1, . . . , h, every sufficiently small ϱ > 0 and every (ξ, η), (ξ, y) ∈
U ′ with yk = yk for every k ̸= i and 0 < |ηi − yi| ⩽ ϱ. Fix i = 1, . . . , h and
ϱ > 0 sufficiently small and consider b = (ξ, η) b̂ = (ξ, y) in U ′ such that
ηk = yk for all k ̸= i and 0 < |yi − ηi| ⩽ ϱ.

Applying Lemma 6.8 to the points b0 and b we find a = (ξ, η∗) ∈ π−1(b)
such that dG(b0, b) = dF(a0, a) and, since π is continuous, we can also
assume, up to possibly reducing U ′, that a ∈ V ′. Applying again Lemma 6.8
to the points b and b̂, we find â = (ξ, y∗) ∈ π−1(̂b)∩V ′ such that dG(b, b̂) =
dF(a, â). Since the horizontal components of the points b and b̂ are equal
and the norm induced by the distance dG is equivalent to the anisotropic
norm on G, we have that dG(b, b̂) is equivalent to |ηi − yi|1/2. Similarly,
notice that a, â have the same horizontal components and by the fact that
the norm induced by dF is equivalent to the anisotropic norm on F, it
follows that |η∗ − y∗|1/2 is equivalent to dF(a, â). In particular, we can find
a geometric constant C1 > 0 such that |η∗ − y∗|1/2 ⩽ C1|ηi − yi|1/2.
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We can then make the following estimates:

|φ(ξ, η) − φ(ξ, y)|
|ηi − yi|1/2 = |ψ(ξ, η∗) − ψ(ξ, y∗)|

|η∗ − y∗|1/2
|η∗ − y∗|1/2

|ηi − yi|1/2

⩽ C1

(
|ψ(ξ, η∗) − ψ(ξ, y∗

21, η
∗
31, . . . , η

∗
m(m−1))|

|η∗
21 − y∗

21|1/2 + . . .

· · · +
|ψ(ξ, y∗

21, . . . , y
∗
m(m−2), η

∗
m(m−1)) − ψ(ξ, y∗)|

|η∗
m(m−1) − y∗

m(m−1)|1/2

)
⩽ C1

(
α(|η∗

21 − y∗
21|) + · · · + α(|η∗

m(m−1) − y∗
m(m−1)|)

)
,

where we used (6.44) and assumed without loss of generality that all the
considered points in the chain belong to V ′. Observe that, for any (ℓ, s) such
that 1 ⩽ s < l ⩽ m, one has |η∗

ℓs − y∗
ℓs| ⩽ |η∗ − y∗| ⩽ C2

1 |ηi − yi| ⩽ C2
1ϱ,

and then we can define

β(ϱ) := C1
m(m− 1)

2 α(C2
1ϱ).

The previous computations have shown that
|φ(ξ, η) − φ(ξ, y)|

|ηi − yi|1/2 ⩽ β(ϱ),

and hence (6.45) holds, completing the proof. □

Theorem 6.12. — Let W and L be complementary subgroups of a
Carnot group G of step 2 with L horizontal and one-dimensional and choose
coordinates such that (6.34) is satisfied. Let U ⊆ W be an open set and
let φ : U → L and ω : U → Rm−1 be two continuous functions such that
Dφφ = ω in the broad* sense. Then φ is vertically broad* hölder.

Proof. — Let F be the free Carnot group of step 2, rankm and let WF and
LF be the complementary subgroups of F satisfying the identification (6.4).
By Proposition 6.10, we know that ψ := π−1 ◦φ ◦ π is a broad* solution of
Dψψ = ω ◦π in V = π−1(U). Then, by Theorem 6.6, ψ is vertically broad*
hölder and finally, by using Proposition 6.11, we obtain the thesis. □

We state here some corollaries of the previous results.

Corollary 6.13. — Let W and L be complementary subgroups of a
Carnot group G of step 2 with L horizontal and one-dimensional and choose
coordinates on G such that (6.34) is satisfied. Let U ⊆ W be an open set
and let φ : U → L and ω : U → Rm−1 be two continuous functions such
that Dφφ = ω in the broad* sense on U . Then φ ∈ UID(U,W;L).
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Proof. — It is enough to combine Proposition 4.5 and Theorem 6.12. □

Corollary 6.14. — Let W and L be complementary subgroups of a
Carnot group G of step 2 with L horizontal and one-dimensional and choose
coordinates on G such that (6.34) is satisfied. Let U ⊆ W be an open set
and let φ : U → L and ω : U → Rm−1 be two continuous functions such
that Dφφ = ω in the broad* sense on U . Then, the intrinsic graph of φ is
a surface of class C1

H.

Proof. — It is enough to combine Corollary 4.6 and Theorem 6.12. □

Corollary 6.15. — Let W and L be complementary subgroups of a
Carnot group G of step 2 with L horizontal and one-dimensional and choose
coordinates on G such that (6.34) is satisfied. Let U ⊆ W be an open set,
and let φ : U ⊆ W → L and ω : U → Rm−1 be two continuous functions.
Assume that Dφφ = ω in the broad* sense on U . Then Dφφ = ω in the
sense of distributions on U .

Proof. — It is enough to combine Theorem 6.12 and Corollary 4.12. □

Remark 6.16. — The converse implication of Corollary 6.15 is, up to
now, only known for Heisenberg groups, see [9]. This implication in the
general step-2 case will be a subject of further investigations by means of
the techniques exploited in this section.

6.3. Main theorem in Carnot groups of step 2

Now we are in a position to give the following theorem (stated in Theo-
rem 1.7), which shows that the assumption on the vertically broad* hölder
regularity in Theorem 4.16 can be dropped if we are inside a Carnot group
of step 2 and L is one-dimensional. We use the same conventions as in
Theorem 4.16, following the notation of Definition 2.3.

Theorem 6.17. — Let W and L be complementary subgroups of a
Carnot group G of step 2 with L horizontal and one-dimensional. Let
Ũ ⊆ W be an open set and let φ̃ : Ũ → L be a continuous function. Then
the following conditions are equivalent:

(a) φ̃ ∈ UID(Ũ ,W;L);
(b) φ̃ ∈ ID(Ũ ,W;L) and dφφ is continuous on Ũ ;
(c) there exists ω ∈ C(U ;Rm−1) such that, for every a ∈ U , there exist

δ > 0 and a family of functions {φε ∈ C1(B(a, δ)) : ε ∈ (0, 1)} such
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that

lim
ε→0

φε = φ and lim
ε→0

Dφε
j φε = ωj in L∞(B(a, δ)),

for every j = 2, . . . ,m;
(d) there exists ω ∈ C(U ;Rm−1) such that Dφφ = ω in the broad sense

on U ;
(e) there exists ω ∈ C(U ;Rm−1) such that Dφφ = ω in the broad*

sense on U with the choice of coordinates of (6.34).

Proof. — (a) ⇒ (b) is trivial, by item (b) of Proposition 2.25 and (b) ⇒
(a) follows from Proposition 3.27, Theorem 6.12 and Corollary 4.7.

(a) ⇒ (c) follows from (a) ⇒ (b) of Theorem 4.16 and (c) ⇒ (a) follows
by combining Proposition 4.14 and Corollary 6.13.

(d) ⇒ (e) is trivial, by Definition 3.24. (e) ⇒ (a) follows from Corol-
lary 6.13. (a) ⇒ (d) follows from (a) ⇒ (c) of Theorem 4.16. □
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